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The genetic engineering made possible by the discovery of recombinant DNA

has played an increasingly important role in agricultural research. The present study

employs a knowledge production model to assess the efficacy of, and relationship

between, basic and applied research in agricultural biotechnology, allowing for both

compiementarity and substitutability between these two research endeavors. Practical

measures of basic and applied research outputs, and a paper trail characterizing the

information flows between them, are constructed using a unique database on

agricultural biotechnology patents and patent-cited scientific publications.

Results suggest university bioscience research and graduate education are

mostly complements, or in some cases slight substitutes, for one another. Highly

ranked universities are less efficient than are their lower-ranked counterparts in

producing not only graduate students but the bioscience that is cited in agricultural

biotechnology patents. University R&D expenditures have been inoptimally allocated
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between post-doctoral fellows and non-post-doctoral inputs. Higher returns to R&D

funding would be achieved by diverting some such funds away from non-post-doctoral

inputs and toward post-doctoral fellows, and away from biology programs and toward

agricultural programs.

Commercial firms' agricultural and non-agricultural (primarily

pharmaceutical) research are complements to one another. Firms' propensity to patent

agricultural biotechnology inventions, rather than hold them as trade secrets, has

increased significantly, while their propensity to patent in non-agricultural or non-

biotechnology fields has fallen. Biotechnology firms have devoted too little of their

R&D expenditures to scientists and engineers and too much to non-salary inputs.

Boosting biotech firms' R&D expenditures would bring only a small change in their

agricultural biotechnology output but a large increase in their non-agbiotech output.

In the production of agricultural biotechnology innovations alone, basic

bioscience and applied biotechnology appear always to be complementary with one

another. But in the production of non-agricultural innovations, bioscience and applied

technology are either complements or substitutes, depending upon the maimer in

which R&D expenditures are allocated. In general, choices among alternative R&D

inputs greatly influence the effectiveness of R&D investments in agricultural

biotechnology. Complementarity between science and technology in agriculture

suggests boosting communication between basic and applied research would bring

high social dividends.
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Science and Technology in Cutting-Edge Agricultural Biotechnology Research

Chapter 1: Introduction

Two decades ago, it was generally thought that genetically modified

agricultural products were in the distant future. Since U.S. Department of Agriculture

(USDA) first permitted the Flavor Savor tomato, a new GM plant variety, to be

offered directly to consumers in 1992, transgenic crops have gained increasing market

share. In 2001 about 26% of the corn and 68% of the soybeans and cotton grown in

the United States were transgenic varieties (Crop Production Report 2001, USDA

National Agricultural Statistical Service). The new biotechnology has helped increase

farm-level productivity by increasing yields and reducing input requirements, and has

helped enhance food quality such as flavor, texture, shelf-life, and nutritional content.

But this is only the beginning. New generations of transgemc crops and animals will

embody novel product characteristics such as oil, vitamin, starch, carbohydrate, and

protein content tailored for specific uses, enabling specific demand profiles to be

catered to in ways unthinkable in the past. For example, a recent development in

agbiotech is the design of GM agricultural products intended for industrial

manufacturing, such as a new corn variety that may be used to produce plastics or

inks Despite recent consumer safety worries and environmental concerns,

agricultural biotechnology is reshaping agriculture as profoundly as mechanical,

biological, and chemical innovation paradigms did during the past 150 years

(Zilberman, Yarkin, and Heiman, 1999).



2

The revolution was first brought about by significant progress in basic

biological science. Discovery of the double-helix structure of DNA, and the

subsequent development of recombinant DNA technology in the 1950s and 1960s, led

to practical protocols for transferring potentially useful genes from one organism to

another. Exploitation of those protocols soon led to patentable products, which finally

became commercialized after years of field trials. Applied agricultural R&D in this

new biotechnological era has become more science-based than in the past. It is less

dependent on trial-and-error and increasingly dependent upon and interlinked with

research in basic biological sciences (Narin, Hamilton, and Olivastro, 1997;

Mansfield, 1995). As reported by CHI Research, a typical 1999 biotechnology patent

cites nearly twenty scientific publications, an increase even since the mid-i 990s and

far higher than the one per patent in non-biotechnology fields.

The deepening relationship between science and technology has significant

implications for agricultural R&D. Scientists map the broad features of the molecular

terrain that technologists explore and partition in a more detailed way, prospecting for

new and marketable products. At the same time, scientists themselves make

laboratory use of technological innovations and often focus on areas in which

technology is advancing rapidly. Communication and coordination between these two

is facilitated through the increasingly universal language of molecular and cellular

biology. That coordination likely enhances research returns, accounting for much of

the rise in agricultural R&D expenditures and of the private sector's share of it.
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In America's earlier years, only weak intellectual property protection, such as

through the 1930 Plant Patent Act and 1970 Plant Variety Protection Act, was granted

to biological inventions (Fugue et al. 1996). But in last 25 years, patent protection has

been granted for an ever-widening array of product and process innovations (Jaffe,

1999). In 1980, the U.S. Supreme Court ruled in Diamond vs. Chakrabarty that living

organisms were patentable. In 1985, the U.S. Patent Office extended patent protection

to all new plant varieties, animal breeds, genes, and traits. These stronger intellectual

property rights (IPRs) allow for monopoly profit, enhancing incentives for private

biotechnological innovation. Since passage of the Bayh-Dole Act in 1980, which

allowed universities to patent innovations resulting from federally funded research,

universities have increased their patenting activities and the commercial utilization of

academic inventions. Thus, both the private and public sectors have operated in an

increasingly privatized setting.

A clear understanding of the rapidly evolving agricultural research system

requires an explicit model of the relationship between basic bioscience and applied

biotechnology. The competitiveness of U.S. agriculture is determined mainly by its

productivity growth. In the new science-based biotechnology, increasing and

sustaining agricultural productivity depends not only on the novel technologies

developed in applied research, but also on new scientific knowledge generated from

basic research and on effective management of the information flows between the two.

Therefore, it is important to consider how the public and private sectors are

performing in agricultural biotechnology. Does the private sector engage mainly in



applied research toward patentable inventions and marketable products, and does the

public sector focus on basic research to create the breakthrough scientific knowledge

the private sector lacks incentive to conduct? If so, do increasing R&D expenditures

and basic bioscience progress enhance a biotech firm's applied research success?

Does boosting a university's research budget improve its success in producing basic

bioscience? Are basic bioscience and applied biotechnology substitutes or

complements for one another? Are agricultural research policies effective in

coordinating public and private research efforts and in linking basic with applied

research?

To address these issues, I develop below a primal model of agricultural

knowledge production. The model distinguishes between inputs and outputs of both

basic and applied research in agricultural biotechnology and allows for both

complementarity and substitutability between those two research programs. Using

data on 1,746 U.S. agbiotech patents issued between January 1985 and August 2000,

and the scientific references cited by those patents, I construct a practical measure of

information flow between basic bioscience and applied biotechnology. I then design

and estimate an econometric model of knowledge output in the basic and applied

agricultural sciences and use the model to assess the characteristics of, and

relationship between, basic and applied research. Using the econometric results as a

framework, I offer guidance to public and private agricultural research policies.

4



Chapter 2: Literature Review

Since the arrival of endogenous growth theory, the economics of research and

development has received increasing interest. Many studies have been conducted to

evaluate the returns to public agricultural R&D, employing university research and

extension expenditures as shift terms in a production or cost function of individual or

aggregated farm outputs (Fugue, et al., 1996). These approaches seek to link R&D

inputs to final-product outputs, permitting direct inferences about the social welfare

effects of public research expenditure decisions. With the science-based

biotechnology well under way, new approaches are needed, allowing for detailed

characterization of agricultural research processes and an explicit examination of the

relationships between basic and applied research and between public and private

R&D.

However, the agricultural economics literature on biotechnology innovations is

still in its infancy, populated mostly by thought pieces and conceptual models. Little

explicit or quantitative work has yet emerged on the subject. Econometric tests have

been few, and models have specialized on only particular aspects of the innovation

and transfer system (Foltz, Barham, and Kim, 2000; Foltz, Kim, and Barham, 2001;

Graff, Rausser, and Small, 2001). In general economics, Griliches pioneered the

analysis of the relationships between R&D, innovation, and productivity at the firm

and industry levels, using patent data from the 1980s. Others developed the patent-

based measures further, employing them to examine a number of broadly classified

industries. In so doing, they have investigated the production of scientific knowledge,

5
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the effects of academic research on industry-patented innovations and productivity

change, and both public-private and basic-applied research relationships.

In the first section of this chapter, I discuss the extant literature on the returns

to agricultural research. I then: (a) review the literature on private R&D, innovation,

and productivity outside of agriculture; (b) summarize studies of public R&D, science,

and productivity, and the relationship between basic and applied research; and (c)

discuss studies of agricultural biotechnology, particularly those regarding public and

private sector R&D, basic and applied research synergies, intellectual property rights,

and industry structure.

2.1 Literature on Returns to Agricultural R&D

Sustained use of new knowledge and technology is the cornerstone of

American economic growth and development. Economic returns to U.S. public

investment in science and technology have been large. The earliest public support for

research - over a century ago was focused on agriculture. Ever since then,

research has played an important role in increasing agricultural productivity and

enhancing the welfare of agricultural input producers, farmers, consumers, and

investors.

Many empirical studies of the social rate of return to agricultural R&D have

been conducted. Two main analytic frameworks, the economic surplus approach and

the econometric approach, have been used in these studies. The first approach

assesses the changes in producer and consumer surplus that may be attributed to

research and compares those changes with the associated research cost. Such an
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approach is usually employed for individual farm commodities. The econometric

approach relies instead on statistical estimation of agricultural production processes, in

which R&D expenditure is included as an explanatory variable. Using primal or dual

methods, research-induced profit gains or cost savings can then be computed,

controlling for other factors that may have an effect on agricultural productivity. The

latter approach permits one to use a flexible functional form and to assess the returns

to agricultural research at a more aggregate level than does the first approach (Fugue,

et al., 1996; Alston, Norton, and Pardey, 1995).

2.1.1 Aggregate Returns to Agricultural R&D

Table 2.1 summarizes studies of the aggregate rate of return to agricultural

research investment. Despite differences among these studies in period coverage, data

aggregation, model specification, and estimation methods, estimates of annual return

rates have consistently hovered between 40 and 60 percent. Some of these studies

suggest that the rate of return has declined over time. Fugue et al. (1996) offer a

number of possible explanations for the decline. They argue that a decline might be

expected if research expenditures rose relative to the availability of technological

opportunities, or if the research funding system had become less effective at selecting

the best projects, or if public research had increasingly been directed to nonmarket

benefits such as environmental protection and food safety. Yet the evidence for this

decline is weak. If we compare measures in recent studies (Huffman and Evenson,

1989; Yee, 1992) with those in earlier ones (Griliches, 1964; Evenson, 1968; Cline

1975), we find return rates to be in the same range in both sets. Even after accounting



Table 2.1. Studies on Aggregate Returns to Agricultural
Research and Extension

Evenson (1968)

Huffman 1976

L

Lu, Cline, and Quance (1979)

is

9..

1969-72
Prod. function 193 9-48

1949-5 8

1959-68
1969-72

30.5
27.5

25.5
23.5

8

1venon (1979) Prod. function 1868-1926 65

\Vhite, llavlicek. and Otto (1979) Prod. function 1929-41 54.7
1942-57 48.3

1958-77 41.7

White and Havlicek (1982) Prod. function 1943-77 Jul-36

Braha and Tweeten 1986) Prod. function 1959-82 47

Huffman and Evenson (1989) Prod. function 1950-82 41

Source: Fuglie et al. (1996).

Prod. function 1949-59 35-40

!J
Prod. function 1949-59 47

rr
Prod. function 1964 110

Author Methodology Study Period Aimual Rate of
Return (Percent)



for the deterioration of returns in later years, and the potential upward bias in rate

estimates that some critics have pointed out, the annual rate of return to agricultural

R&D has apparently been at least 35 percent, much higher than the 18 to 20 percent

return rates earned elsewhere in the economy. The high rates of return in agriculture

suggest that further allocation of funds to agricultural research would be beneficial to

the entire economy. Moreover, the computer- and bio-technologies originating from

breakthroughs in the 195 Os have not yet been fully exploited in agriculture. With

these unexploited technological opportunities, the possibly long lag between research

expenditure and payoff, and between scientific discovery and its absorption into

technology development, one would expect the returns to agricultural research to

remain very high or even to rise in the next 30 to 50 years.

2.1.2 Returns to Agricultural R&D in Crops, Livestock, and Farm Commodities

Besides studies of aggregate rates of return, economists have examined returns

to research in the crop sector, the livestock sector, or in particular agricultural

commodities. A summary of these studies is provided in table 2.2. Although most

research investments have been found to yield high return rates, little consensus has

been reached on which agricultural research sectors are the most productive. For

example, Bredahi and Peterson (1976), Evenson and Welch (1979), and Norton (1981)

found a higher return rate to livestock research than to crop research, whereas

Huffman and Evenson (1993) reported the opposite. No strong conclusions seem to

be possible about how agricultural research funds should broadly be reallocated to

maximize total social benefits.

9



Table 2.2. Studies on Returns to Agricultural Research and Extension

in Crops, Livestock, and Various Farm Commodities

Author

Griliches (1958)

Schmitz and Seckler 1970

Norton (1981)

Source: Fugue et al. (1996).

Poultry

Dairy

Livestock

Cash grains

Dairy

Livestock

Cash grains

1969

1969

1969

1969

l974
1974

1974

30-56

27-50

56-111

3 1-57

33-62

66-132

44-85

10

Commodity Study Period Annual Rate of

Return (Percent)

Hybrid corn 1940-55 35-40

Hybrid sorghum 1940-57 20

Tomato 1958-69 16-46

Smith, Norton, and Havlicek Poultry 1978 61

(1983) Dairy 1978 25

Livestock 1978 22
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The studies discussed heretofore immediately relate agricultural research and

extension inputs to final farm production, simplifying social welfare computation.

They ignore the intermediary steps in the knowledge generation process, such as how

research inputs produce basic research outputs, and how basic research outputs are

absorbed by applied researchers and interact with their own research inputs to generate

new products, which in turn contribute to agricultural productivity growth.

2.2 Literature in General Economics on Private R&D, Innovations, and
Productivity

2.2.1 Private R&D and Patents

Because of the difficulties of obtaining appropriate indicators of research

output, empirical analysis of the innovation generation process has been limited. The

hypothesis of a systematic relationship between innovation increments and R&D

expenditures has been maintained for years. But in the early 1980s, Griliches

pioneered the statistical test of this hypothesis in a number of non-agricultural

industries, facilitated by the computerization of the U.S. Patent Office's database

during the 1970s.

In their 1980 paper, Pakes and Griliches formulated a knowledge production

function model in which current innovation increments, measured by the number of

patents, are a function of current and lagged research expenditures, a time trend, and a

set of firm-specific dummy variables. Using panel data of 121 firms in seven

industries from 1968 to 1975, they found a significantly positive relationship between
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research inputs and outputs. In particular, a 1% increase in cunent and previous-five-

year research expenditures leads to 0.6% increase in patent outputs.

Encouraged by the promising use of patents as an indicator of inventive

activity and research output, much work has since emerged on patent-R&D

relationships at the firm and industry level. Among them are Griliches (1981, 1984,

1986, and 1988); Hausman, Hall, and Griliches (1984); Pakes (1985); Hall, Griliches,

and Hausman (1986); Levin (1987); and Acs and Audretsch (1988). In these studies,

the power of R&D expenditures to explain patenting rates was found primarily in

cross-sectional observations (cross-firm or cross-industry) rather than in the within-

section, time-series dimension.

A maj or question addressed in these studies was whether there were

diminishing returns to R&D In the cross-sectional dimension, larger firms received

fewer patents per R&D dollar, so that in the aggregate, patents-earned did not keep up

with the growth of R&D expenditure. But this finding was quite sensitive to

functional form, weighting scheme, and the particular point at which the elasticity was

evaluated. It has been argued that the appearance of diminishing returns might be due

to a selectivity effect in data collection (namely, that small firms are proportionately

highly represented in the sample and have to be unusually successful to be listed in the

stock exchange and hence included in the researchers' dataset), to the difference

between small and large firms in the role of formal R&D, and to the extent to which

R&D is reported in small and large firms. In the time-series dimension, the estimated

total elasticity of patents with respect to R&D expenditures lay between 0.3 and 0.6;
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this estimate was robust to alternative estimation and weighting methods. However,

the question of diminishing returns did not arise here, as no strong relationship

between annual changes in R&D and patenting is detected in the time series

dimension. Finally, patenting culture, such as the propensity to patent, differs greatly

across industries.

Various lag structures between research inputs and outputs were tested in the

above studies. But the results reveal difficulties in trying to pin down the shape of the

lag distribution, and were inconclusive even as to whether a significant lag exists at all

(Hall, Griuiches, and Hausman 1986). A rather strong contemporaneous relationship

between R&D expenditure and patenting was identified, possibly because patents tend

to be taken out at an early stage of research and possibly because of some reverse

causality: successful research leading to both patent output and to the investment of

additional funds for further research and development. A lag-truncation bias due to

the possible influence of pre-sainpie unmeasured R&D expenditures was also found

(Hausman, Hall, and Griliches 1984).

Another issue of interest in the R&D-patent relationship is that of R&D

spillovers among firms (industries), namely the effect that other firms' (industries')

R&D has on the productivity of a given firm's (industry's) R&D. Early evidence of

such spillovers, and suggestions for and difficulties of modeling it, can be found in a

survey by Griliches (1979). In his 1986 paper, Jaffe quantified some industrial-level

spillovers in the R&D process. He first grouped firms into 21 distinct technological

clusters, using the distribution of the firms' patents across patent classes. He then



14

constructed a measure of the potential spillover pool in a given cluster, namely the

weighted sum of other firms' R&D in that cluster. After accounting for this spillover

pooi in addition to a firm's R&D and other attributes, Jaffe found that the elasticity of

a firm's annual patent numbers with respect to its own R&D expenditures is 0.85. The

effect of the spillover pooi itself on patent numbers is very large. Firms in clusters in

which the average firm performed more R&D received more patents per R&D dollar.

2.2.2 Patents, Productivity, and Stock Market Values

Since the discovery of the "residual", the large portion of output growth that

cannot be explained by growth in conventional inputs, in the 1950's, economists have

tried to assess the contribution of R&D expenditures to technical change and

productivity growth. A popular approach in this effort has been the econometric

production flmction, in which total output or total factor productivity is a function of

conventional inputs and R&D expenditures. As discussed in section 2.1, the same

approach has also been widely used in agricultural economics. A rich literature is

available on this topic, including Griliches (1964, 1979, 1986, 1988, 1994), Terleckyj

(1974), Mansfield (1980), Lichtenberg and Siegel (1991), and many others. The main

fmding of these studies has been a significantly positive relationship between various

measures of productivity and R&D expenditures at the firm, industry, or country level.

But estimated R&D effects are modest, not large enough to account for observed

productivity fluctuations.

With the help of computerized patent data, a number of studies have attempted

to link patent numbers with measured productivity growth, assuming patent numbers
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are indicators of inventive outputs, which in turn contribute to productivity (Basberg

1982; Walsh 1984; Eaton and Kortum, 1996; Porter and Stern, 2000). The estimated

relationships have been inconclusive and Gnliches offers possible explanations for

this in his 1990 survey. He reasons that: (i) at most only one half of productivity

growth is due to innovation increments, and only a fraction of this is captured by

patented inventions; and (ii) an invention's effect on productivity likely requires long

and variable lags, which cannot be identified with the available data and are further

smoothed by aggregation over many inventions.

As the success of a firm's research effort is thought to be reflected in its stock

market value much more quickly than in its profit or productivity, another line of

research (Griliches 1981; Pakes 1985; Jaffe 1986; Cockburn and Griliches 1988;

Griliches, Hall, and Pakes 1991; Hall 1993; Blundell, Griffith, and Reenen 1999) has

investigated the value of patents, using data on firm market values. By estimating a

firm-level market value function, including physical tangible capital and intangible

capital reflected in patents or R&D, some researchers have found that patents typically

do not have as much market-value explanatory power as does R&D, even though

patents should be suggestive of the "success" of a firm's R&D program. The low

correlation between patent rates and dollar-denominated measures such as R&D and

market value might arise because patent counts are a noisy measure of the economic

significance of innovations contained in these patents. The distribution of patent

qualities is known to be dispersed and highly skewed. Few patents are very valuable,

and many earn no revenues at all. The number of patents a firm holds cannot,
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therefore, well represent the sum of values of those patents, and we should not expect

the correlation to be high.

2.2.3 Patent Values and Other Uses of Patent Data

With more information on patent documents becoming available since the late

1980's in computerized form, some economists have focused on improving the

conceptualization and measurement of research outputs. The ideal measure of a

patent's quality would be the license revenues eventually earned from it.

Unfortunately, data on license revenues are hard to find. Alternative measures, such

as the number of claims in a patent, the patent's renewal, and the number of countries

in which an invention is patented, have been used as proxies for patent quality

(Lanjouw and Schankerman, 1997). Among these measures, patent citations have

attracted the most interest. Patent citations represent the previously existing

technological state-of-art upon which a citing patent builds, so that the number of

citations a patent receives provides evidence of its technological importance or even

economic value. Using patent citation data, Trajtenberg, Henderson, and Jaffe (1997)

constructed several measures of "importance" and "generality" to capture the

"basicness" and "appliedness" of a matched sample of university and corporate

patents. They suggested reexamining older studies in the light of their measures

instead of using simple patent counts as R&D output indicators. Several analysts have

explored the relationship between citation-weighted patent rates and value measures

such as licensing revenues (obtained from a limited sample survey), stock market

values, and social welfare (Trajtenberg 1990; Harhoffet al.1999; Hall, Jaffe, and
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Trajtenberg 2000). They find that those value measures are considerably more highly

correlated with citation-weighted patents than with the simple patent counts,

reconfirming that citation weighting provides a superior proxy of patent quality.

Another important signal that patent citations convey is knowledge flow,

which otherwise might have been regarded as nearly impossible to trace. A large

amount of noise is recognized to exist in citation data (Jaffe, Trajtenberg, and Fogarty,

2000). For example, some patents' citations to previous patents are added by the U.S.

patent examiner, so that the citing-patent inventors were unaware of the cited patents

during the invention process. In this case, it is clear that no direct knowledge

spillovers have occurred. However, the "objectivity" of such citations may be greater

than those added by the inventor, and they may provide important contributions to the

technological context in which the patent was granted (Griliches, 1990). In that sense,

even the patents entering the citation list through the patent officer have spilled into

the citing patent, though not in an explicit maimer As patents contain detailed

information about application and issue date, patent class, assignee organization, and

geographic location of inventors, economists can use patent citation data to investigate

knowledge flows across time, technological, organizational, and space boundaries.

For example, by comparing the geographic location of the citing patent with that of the

cited patent, Jaffe, Trajtenberg, and Henderson (1993) fmd that the knowledge

spillovers are geographically localized at country, state, and local (SMSA) levels,

although the localization fades slowly over time. They fmd no evidence of a

technological area effect on citation localization, that is, citations in the same patent
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class are as likely to be from the same geographic location as not. They attribute this,

as did Jaffe (1986), partly to the fact that knowledge spillovers are not confined to a

firm's immediate technological neighborhood.

The National Bureau of Economic Research has developed a patent database

comprising detailed information on U.S. patents issued between 1963 and 1999 and all

citations made to these patents between 1975 and 1999. Documentation and

description of this data file can be found in Hall, Jaffe, and Trajtenberg (2001). Some

variables in the file are based on patents' front page information, such as technological

category, citation lags, number of citations made and received, share of self-citation

(citation to patents owned by the same organization as the citing patent), and measures

of generality and originality. Hall, Jaffe, and Trajtenberg also matched their patents to

firms listed in 1989 in Compustat (the production and financial data of all firms traded

on the U.S. stock market), hoping to use the matched data to examine the relationship

between R&D, patents, and firm-level production. It is the most comprehensive

public patent and citation data file thus far developed.

2.3 Literature in General Economics on Public R&D, Science, and Productivity

Work in the economics of science has focused mainly on three lines of inquiry

(Stephan 1996). Inspired by earlier work of sociologists on incentive schemes for

scientists and scientists' reactions to those schemes, economists have demonstrated the

existence of a non-market-based reward structure in science and have examined the

characteristics and efficiency of this structure (Merton 1957; Dasgupta and Maskin

1987; Dasgupta and David 1994; Stem 1999). In a second line of inquiry, analysts



have sought to understand the scientific labor market in a human-capital framework,

enabling an explanation of scientists' publishing activities, acceptance of new ideas,

and earnings over a life cycle. Studies along this line include Becker (1962), Levin

and Stephan (1991), Ehrenberg (1992), and Leslie and Oaxaca (1993). As the most

important factor attracting economists' attention to science is the indisputable

contribution of science to economic growth, the third line of inquiry is about the

production of scientific knowledge itself and about the relationship between science

and technology, for example, about how each spills over to facilitate the other.

Studies of the effects of tecimology and innovation on profitability and growth have

been discussed in the previous section. In the following, this third line of inquiry

about the economics of science is reviewed.

2.3.1 Public R&D and Scien 4/Ic Papers

On the production of scientific discovery and knowledge, economists

traditionally have focused most of their attention on the direct contributions of an

individual scientist's time and cognitive resources, such as his intelligence and

knowledge base (Stephan 1996). Although, in his 1959 paper, Nelson recognized the

risky nature of basic scientific research and the substantial economic resources

required to pursue it, economists didn't begin quantifying the role that research

resources play in knowledge production until about two decades ago.

Parallel to the framework discussed above in the analysis of patents and R&D

expenditures, knowledge production functions are often used to explore basic research

input-output relationships, both in agricultural science and in other scientific fields. In

19
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these knowledge production functions, knowledge increments depend on current and

lagged research expenditures, a time trend, and other variables. Scientific

publications, or the subsequent citation performance of these publications, usually are

used to proxy the quantity (or quality-adjusted quantity) of scientific output.

However, this topic has been far less studied than has the relationship between

industrial patents and R&D.

Using a panel of publication outputs and research expenditures in the 48

mainland agricultural experiment stations, Pardey (1989) quantified the input-output

relationship in agricultural research. He found no systematic effect of year-to-year,

within-state research expenditure fluctuations on research performance, while

between-state differences in average research expenditures did show a systematic

influence on scientific publication rates. This is consistent with the finding from non-

agricultural patent and R&D studies that the explanatory power of R&D expenditures

exists primarily in cross-sectional observations rather than in the time-series

dimension. Pardey's results convey little information about the precise shape of the

lag distribution. However, his study does obtain a significant relationship between

long-run lagged research expenditures and publication output, as measured at least by

the sum of coefficients on current and lagged expenditures. He estimates that a 1%

increase in total research expenditure during the previous seven years led to a 1.2%

increase in publication output. Using citation performance to adjust the quality of

publication output, this expenditure response rises to around I .6%. Alternatively,
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using quality-unadjusted and quality-adjusted output measures, mean gestation lags

between project inception and completion were 2.8 and 3.4 years, respectively.

In their 1996 paper, Adams and Griliches focused on the research performance

of U.S. universities in eight scientific fields during the 1980's. In most of scientific

fields aggregated across universities, they found approximate equality between growth

rates in publication and citation and that in R&D expenditures, suggesting constant

returns to scale in the production of new scientific knowledge. Exceptions were in

agricultural science and mathematics, where increasing and decreasing returns

prevailed, respectively. At the university-field level, diminishing returns to research

scale were found in every field. The elasticity of research output with respect to

research input was higher using citations rather than publications as the output

measure. In agricultural science, a 1% increase in R&D expenditures brought a 0.90%

and 0.93% increase in publication and citation quantity, respectively. In all eight

fields taken together, the average elasticity of publication and citation quantity with

respect to R&D expenditures was 0.60 and 0.73, respectively.

The contrast between constant returns at the aggregated field level and

diminishing returns at the university-field level might be explained by the exclusion of

research spillovers between universities at the university-field level and possible

misclassification and imperfect accounting for R&D by university and field. Adams

and Griliches conclude that the leading schools are more efficient in generating

scientific publications than are lesser schools, and private schools are more efficient

than their public counterparts. An equation for graduate teaching output, measured by
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the number of Ph.D. degrees awarded in each field, was added to the research output

equation to form an equation system. In SIJR estimates of this system, R&D impacts

on publication and citation quantity were similar to those in the single-equation

estimates. The number of Ph.D. degrees was significantly positively associated with

universities' quality rankings.

2.3.2 ScientfIc Papers and Productivity

As applied R&D has not been observed to be a large contributor to

productivity growth, several economists have argued that something more basic, i.e.

the expansion of the knowledge base opening up new technological opportunities, has

been left out of the modeling process. Adams (1990) has sought to overcome this

discrepancy by exploring the relationship between published academic science and

multifactor productivity growth in 18 manufacturing industries between 1953 and

1980. He developed an indicator of the stock of knowledge in each of nine scientific

fields at a given time by counting the number of publications in that field from 1930

forward. An industry-level knowledge stock measure was then created by allocating

these counts according to the distribution of scientific personnel in each industry field,

under the assumption that an industry's ability to absorb advances in basic scientific

research is maintained by the scientists working in that industry.

Adams also distinguished between an industry's own knowledge stock and the

"spillover" knowledge stocks absorbed from other industries, weighted by the

technological closeness of those industries to the industry in question. By regressing

annual productivity growth in the eighteen industries against own and "spillover"
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knowledge stocks, energy shock variables, and industry dummies, Adams found both

knowledge stocks to be sizable contributors to productivity growth. The elasticity

contribution of own knowledge to productivity growth ranged between 0.30% and

0.86%, and of spillover knowledge to productivity growth between 0.11% and 0.64%,

in various specifications and subperiods. Adams identified a lag of about 20 years for

own knowledge and 30 years for interindustry knowledge spillovers, implying a much

longer search time than those identified in the private R&D studies discussed above.

2.3.3 Public and Private R&D and Basic and Applied Research

2.3.3.1 Universities' Basic Research and Firms' Applied Research

Basic research directed toward the advancement of scientific knowledge,

instead of toward the creation of new or improved products and processes, involves a

large amount of resources and great uncertainty, and returns to it are largely

inappropriable. Hence, a gap exists between the marginal private and marginal social

benefits from this research, and private firms lack incentives to perform socially

optimal levels of basic research (Nelson 1959). Universities traditionally have been

dedicated to basic research and to the free dissemination of its results. Despite recent

trends toward the privatization of their research, most university scientists still focus

on relatively abstract concepts which have no immediate application to goods or

services. Instead, they are responsible for invoking scientific breakthroughs, opening

up new technological opportunities, and reducing the costs of applied research.

Therefore, most university research has economic value only insofar as it affects the
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subsequent development, primarily by private firms, of commercially viable

inventions and products. This is often called the spillover effect of university

research.

Some economists have worked to characterize the relevance of university

research and teaching to technical innovations, or to their scientific antecedents, at

commercial firms. For example, in surveys of research managers in 130 industries,

Nelson (1986) asked respondents to score, on a scale from 1 to 7, the relevance in their

lines of business of various university research and teaching fields to technical change.

He found that university research was an important source of technical progress in

certain industries, particularly in those related to the biological sciences. University

teaching on average received higher score than university research in that it provides

training to future industrial scientists.

Mansfield (1991) surveyed 76 firms in seven manufacturing industries to seek

the scientific roots of their product and process innovations commercialized from 1975

to 1985. He found that 11% of their new products and 9% of their new processes

could not have been developed (without substantial delay) in the absence of academic

research carried out during the 15 years preceding the commercialization. The mean

lag between the relevant academic research finding and the product's or process's

commercial introduction was about seven years. Using sales data, he estimated the

social rate of return to academic research to be 28 percent. Mansfield (1995) asked

each of the 76 firms to cite academic researchers whose work contributed most

importantly to their new products and processes. He then linked those researchers to
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data on the resources and characteristics of the universities at which they worked. He

found that the contribution of a university's research to industrial innovation was

related directly to the quality of its faculty, to the size of its R&D expenditures in

relevant fields, and to its geographical proximity to the industries affected. The

academic researchers cited by these firms reported complementarity between their

government-funded and industry-funded work: their government-funded research was

more fundamental and preceded their industry-funded research, and the ideas and

problems they encountered in their industrial consulting influenced their government-

funded projects.

Although these surveys provide evidence of spillovers from universities to

firms, Jaffe (1989) was the first to identify the extent to which university research

relates to the generation of private-firm innovations. In order to model this

relationship, he modified the knowledge production function introduced by Pakes and

Griliches (1980). In addition to industry R&D expenditures, university research

expenditures and a measure of the geographical coincidence of university and

corporate research were included as inputs to produce firms' new innovations as

measured by patent counts. To allow for endogenous determination of university and

industry R&D expenditures, the knowledge production equation and two other

equations characterizing the interdependence between university research expenditures

and industry R&D were estimated simultaneously, using state-level time-series data in

five broad technology areas.
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Jaffe's results provide evidence that corporate patenting activity responds

positively to commercial spillovers from university research conducted in the same

state. The elasticity of response is about 0.1. University research appears to have an

indirect effect on local innovations by inducing commercial R&D within the state.

Combining the elasticity of commercial R&D with respect to university research

(0.704) and the elasticity of corporate patents with respect to commercial R&D

(0.814) gives an elasticity of induced corporate patents with respect to university

research of about 0.6. On the other hand, the effect of commercial R&D on university

research expenditures is fairly small and nonsignificant. Using a more direct measure

of innovative output, the number of innovations instead of the patent count measure in

a knowledge production function, Acs, Audretsch, and Feldman's (1992) estimation

results reinforced Jaffe' s (1989) findings. There were some indications that

knowledge spillovers, particularly those from university research, are more decisive in

promoting innovation activity for small firms than for large firms (Acs, Audretsch,

and Feldman, 1994).

Geographical localization of knowledge spillovers is embodied in these studies

to the extent that spillovers can flow only within a state boundary. Indeed, Audretsch

and Feldman (1996) fmd that knowledge-based industries tend to cluster their

innovative activity and production near areas of university research and skilled labor.

The rationale for this localization is that part of the knowledge remains tacit in the

sense that it is difficult to communicate in writing, but instead is facilitated through

personal communication and cooperation. Yet the actual mechanisms by which the
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knowledge is transported have not been modeled. Without a trail linking knowledge-

producing universities with the firms using their knowledge, it is difficult to ascertain

whether knowledge spillovers are truly geographically bounded. A more structural

model of the connections between academic science, private R&D, and patenting

rates, estimated with data on individual universities and firms, would lead to better

understanding of the mechanism underlying the nation's research system.

2.3.3.2 Universities' Applied Research, Firms' Basic Research, and their
Implications for the Basic-Applied Research Relationship

I have focused above on the public-good characteristics of universities' basic

scientific research, and on the proprietary nature of private firms' technological

innovations. However, since the 1980 Bayh-Dole Act and subsequent court decisions

permitting universities to patent many of their own innovations, the university sector

has operated in an increasingly privatized setting. Universities have established

technology transfer offices to identify patentable inventions, to market these

inventions by licensing their use rights to large private or start-up companies, and to

seek industry support for university research (Graff, Heiman, and Zilberman 2001).

From 1985 through 2000, university patent awards increased from 550 to 3,272 per

year, while the share of university patents in total U.S. patents rose from 0.5% to

2.2%. Universities have increasingly commercialized their research results: in 2000,

university licensing revenues amounted to $1,100 million, up from $130 million in

1991, and the start-up companies founded on the basis of university research

numbered 368, up from 223 in 1995 (AU]TM Licensing Survey, various years). As
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noted by Zilberman, Yarkin, and Heiman (1999 and 2001), most of the rise in

university patenting and licensing activities has occurred in the medical and biological

fields.

Henderson, Jaffe, and Trajtenberg (1998) offer a detailed analysis of 1965-

1992 university patenting. They find, using citation-based measures of importance

and generality, that university patents prior to the mid-1980's were more important

and more general than were a random sample of all U.S. patents. Since then, this

advantage has disappeared. Legal changes such as the Bayh-Dole Act apparently have

increased universities' propensity to patent and to commercialize, but have had no

significant impact on the generation of commercially important university inventions.

In a more recent study, Thursby and Thursby (2000) have modeled university

licensing as a three-stage process, each involving multiple inputs, to identify the

sources of growth in university licensing. Using data from an AUTM licensing survey

and from a survey of firms which licensed university inventions, they find results

similar to those of Henderson, Jaffe, and Trajtenberg's (1998), that is, that increased

licensing has been due more to an increased willingness of faculty and administrators

to patent and to license than to a shift in the faculty's research agenda.

Privatization of university research has been reflected also in the rise in

industry support for university research, which may in turn be a response to

universities' rising interest in applied research and patenting. The last two decades

have witnessed a dramatic increase in public-private research partnerships. These

have drawn substantial attention from economists, most recently from Hall (2002),
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Adams, Chiang, and Jensen (2000), Adams, Chiang, and Starkey (2000), Hall, Link,

and Scott (2000), and David and Hall (2000). While some wony that university

researchers have become too responsive to economic incentives and that public-

private partnerships might crowd out public-good university research, others believe

that privatization fosters knowledge spillovers and that the commercialization of

university research helps realize'more complementarities between basic and applied

research and between public and private R&D (Rausser 1999).

Just as universities emphasizing basic research still do applied research, private

firms engaged primarily in applied research and development also do basic research.

Cohen and Levinthal (1989) recognized the dual role of a commercial firms' R&D:

innovation and learning. By conducting basic research, firms develop their "learning"

or "absorptive" capacity to evaluate and exploit potentially useful scientific

knowledge created in universities or in other sectors. They thereby gain a first-mover

advantage in exploiting these new technologies. Alternatively, they are able to

assimilate new technologies that competitors have developed and thus act as a rapid

second mover in the presence of inter-firm spillovers. Mansfield (1980) was one of

the early to relate an industry's or firm's productivity change to the amount of basic

research it has performed. With the help of survey data on the R&D expenditure

composition of 119 firms, he found a statistically significant and direct relationship

between basic research effort and total factor productivity growth at both the industry

and firm level, holding constant applied research effort. This finding suggests that

firms which direct their resources more toward basic research have a larger capacity to
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utilize information available elsewhere, or that applied R&D is more effective when

carried out in conjunction with basic research.

In recent years, applied research has become increasingly science-based, less

dependent on trial-and-error. As Arora and Gambardella (1994b) point out, increases

in theoretical understanding, better instrumentation, and better computing capabilities

have universalized the terms in which applied R&D is conducted, fostering greater

communication between scientists and applied technologists. The increasing

universality of technology has enabled a greater division and specialization of firms'

research efforts and has brought greater pressure for firms to seek complementarities

between their basic and applied research (David, Mowery, and Steinmueller 1992).

Cockburn, Henderson, and Stern (1999) provide an example of this complementarity

in the design of commercial firms' incentive schemes for research effort. A "basic"

research management strategy is to base an individual employee's promotion and

salary on his publications, whereas an "applied" strategy is to reward an entire group's

patenting success by increasing the work budget for that group. These two strategies

are complements in the sense that raising incentives in one direction increases the

marginal return to raising incentives in the other. Cockburn, Henderson, and Stern

show that weighting publications strongly in determining an employee's compensation

tends also to reward her patenting success highly, exploiting the complementarity

between scientific and technological skill.

In our rapidly evolving research system, the public and private sector each

conducts both basic and applied research, scientific and technological knowledge spill



between the two sectors, and public and private funding both interact and compete

with one another. Hence, the system is multi-dimensional and complicated.

Economists can significantly contribute to an understanding of this system and can

guide research policy design if they employ appropriate measures of research inputs

and outputs and develop accurate structural models of research processes and

interactions.

2.4 Literature on Biotech and Agricultural Biotech R&D

As the agricultural biotech industry is still in its infancy, the agricultural

economics literature on biotechnology has contained little quantitative analysis and

instead has proceeded in exploratory fashion. Studies in agbiotech range between

discussions of policy issues, organizational descriptions of the industry, thought pieces

on international development, rough estimates of surplus, and conceptual models of

research, production, and distribution. Because of the complexity in examining

information flows and the difficulty in modeling the relationships between public and

private and basic and applied research, especially few studies of the characteristics and

productivity of agbiotech R&D have emerged.

2.4.1 R&D in General Biotech

Fortunately, one can learn from studies of R&D in general biotechnology, or in

particular, in pharmaceutical biotech, the more mature cousin of agbiotech.

Researchers have employed knowledge production functions to explore the

relationship between industrial R&D, patents, productivity, and stock market

31
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valuations in the chemical, biomedical, and pharmaceutical industries, among others,

as discussed in section 2.2.

2.4.1.1 University Bioscience Research and Commercial Biotechnology
Research

The heavy dependence of the biotech industry on basic science research has

led a number of researchers to examine the role of geographic proximity between the

biotech firm and the university scientist. Audretsch and Stephan (1996) collected data

from 54 biotech firms that had prepared an initial public offering in the U.S. between

March 1990 and November 1992, identified 445 university-based scientists affiliated

with those firms and the role each played with the firm, and linked the scientists to the

name and location of their home universities. By doing so, they developed an explicit

paper trail linking biotech firms and university scientists.

Their data suggest that although biotech firms were geographically

concentrated, the supply of scientific talent was much less so. While locational

proximity plays a role in establishing ties between firms and scientists, it is by no

means an overwhelming role. Approximately 30% of university scientists affiliate

with firms in the same region they are, but the rest of the firm-scientist links are not

geographically bounded. Audretsch and Stephan identified three key roles that

university scientists played in biotech firms: they facilitate knowledge transfer, signal

the firms' quality to the scientific and financial community, and help chart the

companies' scientific direction. They found that scientists who performed the first

function were more likely to be local than were scientists performing the latter two
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functions. Scientists' characteristics, such as their age, citation history, and Nobel

Prize status, also shaped the importance of geographical proximity to the scientist-firm

connection. They noted that the locational link was more important when knowledge

spillovers were informal. When knowledge was transmitted in a formal setting,

geographical proximity did seem less valuable.

Zucker, Darby, and Brewer (1998) believe that, at least for the first 10 to 15

years of their history, biotechnology innovations have been based on naturally

excludable knowledge held by only a few "star" scientists. To test the hypothesis that

the entry of new biotech firms is explained primarily by the distribution of leading

scientists who actively contribute to basic science, they used panel data (in 183

functional economic areas from 1976 to 1989) on new entrants and incumbents in the

biotech industry. The data consist of "star" scientists identified through publications

in which gene sequence discoveries were reported in academic journals, the

organizational affiliations of these "star" scientists, information on the associated

regional scientific base as reflected in the "biotech-relevant" university department

ranking and the value of federal research support, and local economic activity

indicators.

Regressing the number of biotech firms per area against the number of "star"

scientists in that area and against a set of scientific base and economic activity

indicators, they find that the quantity of important scientific findings was the principal

determinant of the growth and location of the biotech industry. Research universities

and their highly productive scientists played a key role in this new high-tech industry
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above and separate from the federal research funding they received. Thus, biotech

start-up firms were more likely to be found in locales with outstanding university

bioscientists, probably because geographic proximity reduced the cost of exploiting

the tacit and complex scientific knowledge required to produce an innovation. The

Zucker-Darby-Brewer study, however, lacks a paper trail of information flows

between scientists and firms. It can demonstrate localized effects but cannot affirm or

deny the presence of knowledge spillovers in a local knowledge network.

2.4.1.2 Commercial Biotech Research and University-Firm Collaboration

Because of the complexity of the knowledge base which underlies

biotechnology, and because of biotech's science-push origin, biotech firms' absorptive

capacity for external information has become increasingly important. So too have the

collaborative alliances among large biotech firms, small new firms, and universities.

Consistent with Cohen and Levin (1989), Arora and Gambardella (1994a) distinguish

between two types of biotech firm capabilities: the scientific ability to evaluate

information, and the technological ability to use it. In order to characterize how these

two abilities help a firm to enter into and benefit from collaborative relationships,

Arora and Gambardella compare large biotech firms' collaborative agreements with

their in-house science bases and technological capabilities, respectively measured by

their published scientific papers and biotech patents, and with a set of firm

characteristic variables. Using data on a sample of 26 established large U.S. biotech

companies, they concluded that a firm's technological ability increased the number of

its external linkages, while its scientific ability made it focus on fewer but more
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valuable collaborations. They acknowledged they could not capture much of the

complexity of technical and knowledge linkages.

Another indicator of a firm's tacit knowledge capture, the number of research

articles coauthored by finn scientists and top research university scientists, was

developed by Zucker, Darby, and Armstrong (2002). They hypothesized that

collaborative work with university scientists enables commercial firms to capture the

scientists' tacit knowledge, which in turn promotes the firms' innovation and product

development. Using panel analysis, they find that publications written jointly by firm

and university scientists have a positive effect on the number and citation performance

of the firm's patents, employment, and output. Papers coauthored with "star" scientist

are more significant in this respect than are other joint papers. Although the Zucker-

Darby-Armstrong study explicitly traces the paper trails between biotech firms' and

universities' basic research, it does not document the information flows from basic to

applied research. Given that the basic research represented by the joint journal articles

presumably feeds into the firm's applied research, the contribution of basic research

from sources other than the coauthored papers appears to be neglected.

2.4.2 R&D in Agricultural Biotech

2.4.2.1 Intellectual Property Rights, Industry Structure, and Agbiotech
R&D

Strengthening intellectual property protection and the changing structure of the

biotech industry have reshaped agricultural research, requiring an analysis that goes

beyond the conventional agricultural R&D models reviewed in section 2.1
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(Shoemaker et al. 2001). Yet, just as the agbiotech industry itself, the analysis of

agricultural biotech R&D clearly is an infant industry, marked largely by conceptual

models and descriptive analysis.

Most agricultural research outputs historically were released into the public

domain or held as trade secrets, since property-right protections for them were difficult

to enforce because of their public-good characteristics, that is their nonexciudability or

nonappropriability. But the arrival of biotechnology redefined intellectual property.

Since the 1980 Supreme Court's Diamond vs. Chakrabarty decision allowing patents

on genetically modified living organisms, and the Bayh-Dole Act permitting patents

on discoveries from federally funded research, patenting opportunities have expanded

for public and private agbiotech research. In response to the potential monopoly

profits which patents confer, perhaps the most powerful of all intellectual property

protections, private companies have been actively and increasingly engaged in

agricultural research. In 1998, 57% of agricultural R&D in the United States was

performed in the private sector, an increase of about 22% from 1980 (USDA). In

contrast, public R&D funding for agricultural research remained almost constant in

real terms during the same period. The public sector increasingly has sought patent

protection for its agricultural research, and the revenues from the commercial

utilization of these patents. For example, Barham, Foltz, and Kim (2001) report that

university agbiotech patent volume rose from 10 per year in the early 1980's to 105,

124, and 174 in 1997, 1998, and 1999, respectively. University agbiotech research has

in some sense been privatized through this patenting trend.
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Models have been developed of the relationship between intellectual property

rights and agbiotech R&D. Recognizing that an agent inventing a new agricultural

technology would, when transferring the technologies to a competitive farm sector,

exploit the monopoly rights afforded by its patent, Moschini and Lapan (1997)

constructed a profit function to evaluate the implications of intellectual property rights

for the welfare effects of agricultural R&D. Using simulated data, they find that

conventional models which assume competitive pricing of publicly produced

innovations usually overestimate the welfare gains from agricultural R&D. In their

2000 paper, Oehmke et al. focused on how increasing private ownership of intellectual

property affect the agribusiness environment and the evolving role of public

agricultural research. A dual cost neo-Schumpetarian framework, in which R&D is

modeled as a sequence of stochastic races, was employed to examine whether the

commercialization of public research maximizes social welfare. Oehmke et al.' S

model includes two major types of life-science company: large firms with well-funded

R&D, and small university-related firms. Their results suggest that, relative to the

social optimum, private firms uriderinvest in applied research. But there is a role for

the public sector in conducting R&D in niche markets and in providing the basic

research which enhances the productivity of applied research.

Koo and Wright (1999) utilize a stylized dual model of cumulative innovation

to explore the dynamics of patent protection with licensing agreements for plant

genetic resources. They find that the patent life and royalty rate which maximize
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worldwide dynamic social welfare would differ from those which optimize static

social welfare.

Intensive mergers, acquisitions, and co-venture activity in agriculture

biotechnology during the last decade have dramatically increased concentration in this

industry. In 1997, the leading four-firm concentration ratio in the U.S. corn, cotton,

and soybean seed market reached 67%, 71%, and 49%, respectively (Hayenga 1998).

Some researchers (Kalaitzandonakes and Hayenga 1999) have argued that these

horizontal and vertical integrations have been driven by the characteristics of biotech

research itself, by the strengthened patent system, and by high transaction costs.

Consolidated firms with a large market share and strong patent portfolios are in a

better position to exploit complementary knowledge assets and thus to capture greater

returns to R&D. Too much market power, however, might reduce R&D activity in

this industry. Concentrated firms have greater access to capital and to agbiotech

markets than do start-up firms, which often conduct the research bridging the gap

between basic research and new product development. Moreover, concentrated firms'

strong patent portfolios may inhibit public and private research by limiting access to

newly patented technologies. Brennan, Pray, and Couitinanche (1999) investigated

the relationship between agbiotech industry concentration and R&D activity, the

former measured by the four-firm concentration ratio or Herfindahl-Hirshfield Index,

and the latter by the quantity of field trials. Using an innovation market approach,

they showed that concentration had not reduced R&D activity as a whole, but had

adversely impacted the R&D activity of non-top-four firms and inhibited the entry of



new finns. There was some evidence of reduced research efficiency among large

firms.

Like pharmaceutical biotech, agricultural biotechnology is science-based. But

biotechnological innovations are used extensively by bioscientists, and successes and

failures in new technology development affect the topics in which bioscientists are

involved. Therefore, as Rausser (1999) has discussed at length, applied research

efforts can enhance basic research just as basic research insights facilitate

technological development. That is, a complementarity exists between basic

bioscience and applied agricultural biotechnology. How to encourage and exploit

such complementarities is of great interest to R&D policy makers, research

administrators, and private firms. Yet no explicit study addressing these issues has

emerged.

2.4.2.2 Patent Production in Agbiotech

Patent production in agricultural biotechnology in been investigated in several

empirical quantitative studies. Foltz, Barham, and Kim (2000) focus on university

patent production. They identify 795 agbiotech patents owned by 107 universities,

with application dates ranging from 1971 through 1998. Following the knowledge

production function approach, they relate each university's agbiotech patent numbers

and citation-weighted patents to its research fUnding by source (federal, state, industry,

and own institution), to the quality of its research labor as measured by graduate

school and biology-related department ranking, to its land grant status, to the number

of agricultural science Ph.D.s awarded, and to the number of employees in its
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Technology Transfer Office, among other variables. Their results reveal the

importance of land grant university infrastructure, technology transfer effort, and the

presence of "star" scientists in a university's agbiotech patent production. While own-

institution research expenditures are potentially important, funding from federal and

state governments and industry do not in their study seem significantly to promote

patent-producing research.

This static analysis was extended by Foltz, Kim, and Barham (2001) to capture

the dynamic and nonlinear processes of university agbiotech innovations. They

developed a dynamic count-data model in which a feedback mechanism from previous

patent success is incorporated explicitly into the modeling structure. In addition to the

factors found important in the static analysis, the dynamic model demonstrates that

state funding and feedback affect patent success as well.

Graff, Rausser, and Small (2001) investigate private-firm production of three

technological categories of plant biotechnology patents, test the complementarities

between these intellectual assets, and examine the relationship between changes in

industry structure and intellectual asset complementarities. Data were collected on

1,188 agricultural biotech patents awarded to 76 firms between 1975 and 1998, on the

firms' R&D spending, and on their other characteristics such as their total sales, share

of all plant biotech patents, and non-plant-biotech patents. Graff, Rausser, and Small

sort patents into three key categories of plant biotechnology: genetic transformation

tools, gene sequences and genetically coded traits, and elite plant germplasm. They

aggregate the data on those 76 firms into consolidated and unconsolidated industry



41

samples based on the industry's pre-merger and post-merger structure in 1994 and

1999, respectively.

Regressing patent counts in each of the three categories against firm R&D

expenditures and other characteristics, they find in all three patent categories that

regression fitness was much higher whereas the coefficients significance was lower in

the consolidated industry sample than in the unconsolidated one. As expected, a

firm's share of total plant biotech patents had a significantly positive effect on its

patent production, while its size, approximated by its sales and its non-plant-biotech

patent production, had positive but insignificant effects. Complementarity between

two classes of knowledge stock is indicated by a positive correlation in the residuals of

the patent production regression of those two classes. The strongest complementarity

was found between genetic transformation patents and gene-sequence patents. Some

complementarity was detected between genetic transformation and germplasm patents,

and between gene-sequence and germplasm patents. Patent complementarities rose

when moving from the unconsolidated to the consolidated industry sample, suggesting

that the recent dramatic consolidation in the biotech sector can partly be explained by

the desire to exploit these complementarities.

All the studies discussed in this section have concentrated on either a

university's or private firm's biotechnological research. Thus they provided little

information about the characteristics of basic bioscience research or about the

relationships between basic bioscience and applied agricultural biotechnology

research.
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The growing interdependence between science and technology in agbiotech,

the increasing privatization of agricultural research in both the public and private

sectors, and rising concentration in the agbiotech industry have profound implications

for public and private agbiotech research activities and for the relationship between

basic bioscience and applied biotechnology in each sector. Thus, a clear

understanding of the returns to agricultural research in this rapidly evolving biotech

era warrants a more detailed and explicit study of the relationship between basic and

applied research in the public and private sectors.



Chapter 3: Theoretical Framework

To assess the efficacy of, and relationship between, basic and applied research

in public and private sectors, a theoretical model is developed here distinguishing

between inputs and outputs of both basic and applied research and permitting both

complementarity and substitutability among research programs.

3.1 Identifying Information Flows

In the human-capital-intensive U.S. economy, and especially in biotechnology,

productivity is enhanced largely through a reorganization and intensification of

knowledge. The study of the efficacy of basic bioscience and applied biotechnology

research conducted by public and private research enterprises, or in Arora and

Gambardella' s (1 994b) words, the "technology of technical change," essentially is the

study of information transformation, that is, of how the information inputs are

transformed into information outputs. Thus, increasing and sustaining agricultural

productivity in the biotech era depends greatly on the management of information

flows among bioscientists and biotecimologists (Zilbernian, Yarkin, and Heiman

1999).

Unfortunately, information variables cannot be traced as easily as physical

inputs are. It would be difficult even for a researcher herself to identify all the

information leading her to a particular insight or discovery. Yet because ideas are

fruitful only in combination with related ones, they are best bundled in such printed

forms as patent documents, books, journal articles, and theses and dissertations, or in
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unprinted form such as meeting presentations and online publications. This sort of

bundling provides us with the possibility of identifying some of the major sources of

inspiration and prior art of a research project.

However, document bundling has its limits. Scientists cannot put in writing

everything they know about a genetic transformation tool or gene sequence they are

working on. Part of their knowledge has to remain "tacit" in the sense that practical

information about it can be provided only through continuous face-to-face

communication. This was especially true during the early stage of biotechnology

development. As discussed in section 2.4.1, some economists have shown that the

tacit portion of knowledge explains why start-up biotech companies tend to locate

close to research universities with strong biology research programs and "star"

bioscientists. It also explains why biotech companies employ basic scientists and form

cooperative alliances with universities, since only by doing so can they enhance their

"absorptive capacity" to evaluate and capture the knowledge sources available.

In the present study, I am interested in the information transformation between

basic bioscience and applied biotechnology research. As one can imagine, it is

difficult to draw a clear line in practice between what is "basic" and what is "applied."

Although in principle it is widely agreed that basic research is directed toward an

increase of fundamental knowledge and all understanding of a subject or natural

phenomena, while applied research is oriented toward practical knowledge with

economic value, agbiotech research can be viewed along a continuum from the very

basic to that directly applied to the farm. Furthermore, both public and private sectors
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conduct both types of research. Nevertheless, the private sector engages primarily in

research that creates economically significant knowledge, while most scientific

research focusing on relatively abstract concepts is conducted in the public sector

(Jaffe, 1999). Moreover, as discussed above, biotech firms pursue basic research

mainly to develop their "absorptive capacity" for exploiting basic scientific knowledge

generated by the public sector, and the public sector's "applied" research tends to be

located closer to the basic end of the basic-to-applied continuum than is the private

sector's applied research. Therefore, I will assume that private biotech firms invest

primarily in applied research, while the public sector (including universities,

government agencies, and federally financed R&D centers, but mainly universities)

performs primarily basic research.

Practical measures of the knowledge generated in basic and applied research,

and of a paper trail characterizing the information flows between these two research

programs, will be discussed in detail in the empirical model chapter. With the help of

these practical measures, we will be able to examine how new scientific knowledge is

produced from universities' bioscience research, how this scientific knowledge spills

into biotech firms and interacts with the research inputs at those firms to produce

applied agbiotech innovations, and how firms' applied research efforts spill back into

universities' basic research. A visual description of these knowledge flows is given in

figure 3.1.



3.2 Knowledge Production Function Framework

As discussed in the previous chapter, dual models of optimal agricultural R&D

investment in generally imperfectly competitive market structures have been

Figure 3.1 Information Flows Between Universities' Basic Bioscience
Research and Biotech Firms' Applied Biotechnology Research
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developed by, among others, Moschini and Lapan (1997), Oehnike et al. (1999), and

Koo and Wright (1999). Consistent with Foltz, Barham, and Kim (2000) and Graff,

Rausser, and Small (2001), the present study focuses on a primal model of knowledge

production, first sketched and utilized by Pakes and Griliches (1980), to examine the

patent-R&D expenditure relationship in non-agricultural sectors. In particular, my

model stresses the relationship between basic bioscience and applied biotechnology

research.



where time subscripts and lag operators are suppressed for notational simplicity.

47

In a given time interval, let

Yf be the outputs of applied agricultural biotech research (agbiotech

innovations) at a given biotech firm;

Ybu the outputs of basic bioscience research (new bioscience knowledge)

utilized by the given biotech firm's innovations at a given university;

L the physical capital quantity and biotechnologist time, respectively,

employed in applied biotechnology research at the firm;

K , L the physical capital quantity and bioscientist time, respectively,

employed in basic bioscience research at the university;

the vector of fixed factors of the firm producing the biotechnological

innovations; and

X' the vector of fixed factors of the university producing the new

bioscience knowledge.

Thinking of the research process as a classic production process using labor,

capital, and other inputs, the technology of biotechnological change can be represented

by

if =F' rf v' X)a 'a 'a '1b '

vu =F' (TJU rU r-'f L,Xu) (3.2)
1b b kb 'b'a '

(3.1)
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Equation (3.1) says that the number of agbiotech innovations in a given time

interval depends on the quantity of capital and technologist time allocated to applied

research at the biotech firm, on the level of basic bioscience knowledge which the

biotech firm has the capacity to absorb, and on the biotech firm's fixed factors and

characteristics that affect its research infrastructure. Variable Y11a in this equation

reflects the fact that the informational outputs of basic research are "intermediate

inputs," which are indispensable in the downstream applied research eventually

leading to agbiotech innovations.

Equation (3.2) says that the quantity of new bioscience knowledge is a function

of the quantity of capital and bioscientist time devoted to basic bioscience research at

the unviersity, of the quantity of inputs allocated at private firms to applied research in

that field, and of the university's fixed factors and characteristics. Applied research

inputs K and L in this equation represent the feedback from applied research to

basic bioscience. Successes of applied agbiotech research marketable outputs such

as genetic material, lab equipment and processes, proprietary gene-sequence data

bases, and computational software for gene data analysis - are extensively utilized by

university bioscientists to reduce the costs or increase the effectiveness of their basic

research. However, failures as well as successes in applied research help stimulate

fundamental questions and bring interesting phenomena to the fore, guiding

bioscientists in their search for new knowledge about molecular and genetic biology.

For this reason, I utilize applied research efforts K and L rather than applied
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research outputs Yf to represent the feedbacks, in equation (3.2), from applied to

basic reserach.

Equations (3.1) and (3.2) provide a model of the influence of universities'

basic bioscience research investments on commercial agbiotech innovations. The

universities employ scientists and capital in their basic biological research programs.

After the appropriate lags, these investments generate bioscience outputs Ybu at a rate

depending upon the universities' fixed factors such as their location, history, and

institutional and qualitative characteristics. Biotech firms employ scientists,

technologists, and capital resources to exploit the bioscience outputs and to develop

them into economically significant agbiotech innovations. The success rate of this

effort depends also on the firms' fixed factors such as their location, size, market

orientation, management strategy, and other characteristics.

Analogous to a producer's conventional optimization behavior, let us assume

the biotech firm and university choose (K1, L ) and (K , L) to maximize their

applied research output Yf and basic research output yu respectively, given their

respective research budget constraints:

Max F1 (K,L,Y,X1)a

i. (W,, ) + (w, ) L

Max Fbt'
(VU

L'
vf rf

' b 'a ,XU )
K

(3.3)

Sf. (w )U KU + (w, ) L (3.4)kb b



where

(Wk ) denotes the rental price of physical capital employed in applied

research at the firm producing the biotechnological innovations;

(w ) the price of biotechnologist time employed in applied biotechnological

research at the firm;

(w ) the rental price of physical capital employed in basic research at the

university generating the new bioscience knowledge;

(w) the price of bioscientist time employed in basic bioscience research at

the university;

Ea' expenditures on applied biotechnological research at the firm; and

E expenditures on basic bioscience research at the university.

At the optimal allocations of (K , L ) and (K , L) derived from the first-

order conditions of the above two mazimizations, I obtain

iç' =G 1(Wk) (w1)

E ' E-'
' b

a a )

( (wj (w1) K1 L1 X
I EU Eu

b b

Note that (Kr, L ) cannot be replaced by E in equation (3.6) because the university
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(3.5)

(3.6)

cannot control the research input allocation at the biotech firm. Let us further assume



competitive markets for scientific labor and physical capital, so that (Wk ) = (Wk )

and (w (w. Holding these prices fixed, equations (3.5) and (3.6) can be

rewritten as

- G (E Y X1)
\ a' b'

(Eu K1 L ,X" ) (3.8)
'. b' a'

Since basic research outputs rarely produce direct economic benefits, but

instead are necessary "immediate inputs" to applied research, a society might wish in

general to allocate research inputs so as to maximize long-run technological

innovation, which contributes directly to technical change, productivity growth, and

economic development. Of course, such decisions in the United States are not

centrally controlled. However, understanding the structure of our agbiotech research

system and the principal forces driving agricultural biotechnological change, can

under certain intellectual property protection schemes and industry structures provide

useful guidance to the allocation of public research funding.

Suppose basic bioscience output Yb" is an intermediate input and agbiotech

innovation Yf is maximized as the final output, subject to a total research budget

constraint E° = E + E. Substituting (3.8) into (3.7) in this maximization gives us

Max G1 tE -u (Eu K1 L1 X" ' x'j, '-Tb k ba
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(3.7)

s.t. (Wk) K + (w1) L



+ E E° (3.9)

The socially optimal levels of ( E ,E) and (K , L ) can be derived from the first-

order conditions of this maximization. At the optimal levels of such choice variables,

the maximized Yf is obtained as

f=H[(wk)1,(w)f,E0,x1,xu] (3.10)

As the socially optimal level of ( K , L ) is determined simultaneously with the

optimal allocation of ( E , E), we can get rid of the associated prices and rewrite

equation (3.10) as

= H (E°, x, xu ) (3.11)

For the same reason, basic bioscience research output equation (3.8) can be

expressed in terms of expenditures on basic and applied research:

(E:,EaJ, xu) (3.8')

Recall applied biotechnological research output equation (3.7):

Yf = G (E r , x1 ) (3.7)

The relationships between research investments and the increments in the stocks of

useful scientific or technological knowledge in equations (3.7) and (3.8') are termed
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knowledge production functions, or sometimes research production functions. The

spillovers from basic to applied, and from applied to basic, research in these equations

provide the essentials for testing whether the two enterprises are complements or

substitutes for one another. Because allocations of research inputs, especially of the

capital input in equations (3.1) and (3.2), are difficult to observe, and because labor

and capital inputs may not be separable in either basic or applied research process,

equations (3.7) and (3.8') form the principal model to be estimated in the present

study. Substituting (3.8') into (3.7) gives the applied research output reduced form

Ya' = G 1E GU (EU E1 X ),x' )\ a' b

= G (E EU XU , X) (3.12)
a \. a b

This model is summarized in figure 3.2.



Figure 3.2 Summary of the Knowledge Production Network
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In the derivation of the estimable knowledge production functions above, I first

maximized Y/ and Ybt' over (K , L ) and (Kt' , L), respectively. I then optimized

jointly over (K( , L ) and (E , E ) on behalf of the social planner. The same results

can be obtained by first optimizing jointly over (K , L ) and (K ,L) on behalf of

the social planner, then socially optimizing again over (E , E ). The derivation

following this approach is presented in Appendix A.



3.3 Complementarity Between Basic and Applied Research

Holding X and XU fixed, the total differential of (3.12) is

dY/ dE dEU +
''

dE (3.13)
a

JU E' ' ayu fEa'

Suppose a social budget restriction is enforced over the basic and applied research

programs. That is, E° = + E', implying dE = dE. Any decrease in the

applied research budget equals the corresponding increase in the basic research

budget. Substituting the social budget restriction into (3.13) and divding both sides by

dE gives the total derivative

dYj ayf y1
/ yu yu

(3.14)
dE; aE ayu aE; /

This total derivative of the applied research output reduced form gives us the total

effect on applied research of reallocating another scarce research dollar to basic

research from applied reserch.

The total effect has direct and indirect components. The direct effect,

represented by the first right-hand term in the above equation, is that of reducing the

output rate of applied biotech innovations. In addition, as reflected in - ô Yb' I ô

the reallocation reduces the rate at wbich bioscience knowledge is generated to the

extent that applied research activity, which the budget cutback has retarded, stimulates

basic bioscience. Through the positive effect of basic bioscience on applied agbiotech
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innovations, a Yf I 5 1,,", this reduction feeds back by reducing the rate of applied

innovations. On the other hand, the extra dollar spent on bioscience research increases

basic research output by S Y I S E', which then increases the rate of applied

agbiotech innovations by way of the positive influence a Yf / a Y1,. The latter two

effects on applied innovations are called indirect because they are realized through the

influence of basic science on applied innovations instead of through a direct change in

applied research expenditures. If (a yf / a y ) (a yu / 5E ) exceeds

(aif ia )+ (af ia; ) ia )inabsolutevalue,equation(3.14)

is positive, implying that reallocating money from applied to basic research increases

the applied innovation rate. Such will occur only if the impact of basic research

expenditures on basic research outputs, a Yb' I a E, is especially large.

We now are able to distinguish between bioscience's partial and total effect on

agricultural biotechnological innovations. The partial effect, a Yf i S Y, presumably

is positive because scientific insights usually enhance the returns to biotecimological

research effort. But total effect d Yf / d Y' is positive only if (3.14) is, since only

then do Yf and U both rise as basic bioscience research budget E' does. That is,

basic and, applied research outputs in the agbiotech field are complementary if both

rise as research funding is exogenously reallocated toward basic science research.

In a diagram of a production possibility frontier with basic scientific

knowledge and applied technological innovations as the two outputs, the allocation

represents a movement along a frontier on which total research budget is held fixed.
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Complementarity occurs wherever the frontier has positive slope. Bioscience in these

zones acts more as an input to, than as a competing output with, agricultural

biotechnology. Where there are agglomeration or network economies, rational

research administrators likely operate within such complementanty zones. But in the

presence of decreasing returns, decision makers might push beyond such zones and

operate where the two research outputs are substitutes for one another.

A knowledge production function of this sort differs from conventional ones in

which inputs are rival and tradable. Basic research generally has been conducted

following the tradition of "open science", which offers complete, rapid, and free

disclosure of results and methods. In that case, a firm buys informational outputs from

basic research at zero market price but at a shadow cost equaling the resources

expended to evaluate and exploit the information. Such a cost depends on the firm's

fixed factors and accumulated science know-how.

The sample variation necessary for estimating model (3.7) and (3.8') is

provided by inter-year and inter-firm or inter-university differences in research

expenditures and productivity. Hence, the model in this study will reflect a weighted

average of individual firms' and universities' knowledge-production technologies.

Nevertheless, it can readily be used to draw inferences about the effects of individual

firms' and universities' R&D expenditures (E and E) and characteristics (X and

Xu), and spillovers between them. These will enableone to test hypotheses about the

principal factors affecting the production of basic bioscience knowledge and

agricultural biotechnological innovations, and the synergy between them.



Chapter 4: Empirical Modeling and Initial Testing

Based on the knowledge production function framework sketched above, I now

specify estimation equations for biotech firms' applied biotechnology research and

universities' basic bioscience research. I then discuss important issues in empirical

model specification and estimation, such as the practical measures of research outputs

and information flows, and selection of functional form, lag structure, and estimation

technique.

4.1 Practical Measures of Research Outputs and Information Flows

4.1.1 Measures of Applied and Basic Research Outputs

The first task in speciflying an empirical model is to identify practical

measures of research outputs. This is not an easy exercise because research activities

generate intangible knowledge assets, whose values are not as easy to measure as are

tangible outputs produced from a conventional production process. Nevertheless,

consistent with most recent literature, I will use patent awards as the measure of

applied research output and scientific publications as the measure of basic research

output.

The strengths and weaknesses of using patents as indicators of increments to

economically useful knowledge resulting from applied research have been discussed

extensively in Griliches (1990) and Cockbum, Henderson, and Stem (1999). A patent

is a property right granted by a government agency to exclude others from making,

using, or selling the invention for a limited time (in the United States currently 20
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years from the date on which the application for the patent is filed), in exchange for

public disclosure of the invention when the patent is granted. Among the three types

of patent presently granted in the U.S., the utility patent, design patent, and plant

patent', utility patents provide the strongest and broadest protection to inventors.

According to the U.S. Patent and Trademark Office (USPTO), "Utility patents may be

granted to anyone who invents or discovers any new and useful process, machine,

article of manufacture, or compositions of matters, or any new useful improvement

thereof." The patent law specifies that, in order for an invention to be patentable, it

must be novel, non-obvious, and useful, and that mere ideas and suggestions cannot be

patented. Hence, patent awards by definition relate to a finn's or industry's

inventiveness and reflect the increment to it's stock of economically useful

knowledge. This is especially true for biotechnology the urge to patent innovations

has become part of the culture of this industry since patent protection was extended to

living organisms in the early 1980's. Moreover, patents are quantitative and readily

accessible, perhaps the most readily accessible, indicator of inventions, which make

them attractive in empirical economic analysis.

However, a patent measure does have problems, the major ones being that not

all inventions are patentable or patented, and that patents differ greatly in their

technical and economic significance. For example, some biotech firms, especially

large ones, retain certain discoveries as trade secrets, developing and marketing them

on their own rather than patenting and licensing them to other entities. In this case,

'A design patent protects new or original design for an article of manufacture. A plant patent may be
granted to an invention or discovery and asexual reproduction of any new and distinct variety of plant.
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the patent measure understates the firms' research productivity. On the other hand,

many biotech finns' patented discoveries perform unsuccessfully in the subsequent

field-trial phase of R&D, or even if they are successful there, prove later to be

commercially unprofitable. Indeed, by surveying patent owners, investigating patent

renewal patterns, or modeling the relationship between patents and market value,

economists have found very high variances and skewnesses in the distribution of

patent values.

The problem that not all inventions are patented can, one would think, be at

least partly taken care of by limiting the analysis to a particular industry, namely the

biotech industry in the present study, as all firms in the same industry probably share

similar research characteristics and patenting strategy and culture. But variations in

patent quality have led to doubts about the appropriateness or accuracy of patent

counts as an indicator of firms' applied research outputs. Fortunately, the U.S. Patent

Office requires patent applicants to cite the earlier-patented inventions which the

applicants' own inventions have utilized. Thus, a patent's future citations reflect how

broad and technologically important the cited patent turned out to be and may also be

suggestive of the royalty or licensing revenues that may be generated by the cited

patent. This leads to a frequent way of accounting for patent quality: to weight each

patent by the number of citations it eventually receives from subsequent patents.

However, there is an inherent difficulty with the citation-weighted measure: truncation

bias, namely, that patents awarded in later years have had less opportunity than those

in earlier years to be cited, so that citation rates of later-awarded patents tend to be
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downward-biased. Truncation bias likely is especially serious in the agricultural

biotech industry, given the comparatively short time window available for patent data

in this infant industry. For this reason, in the present study, I have to employ raw

patent counts in the econometric analysis.

When we turn to the measurement of outputs from basic academic bioresearch,

the first candidate that comes to our mind is scientific publications. The public-good

nature of basic science research makes it impossible to establish proprietary rights

over research results or to appropriate benefits derived from them. But a non-market-

based incentive for producing public good knowledge has been in place for a long

time: by being the first to communicate an advance in scientific knowledge, a scientist

can establish priority of discovery, a form of intellectual property right bringing

recognition from the scientific community instead of direct financial benefit.

Disclosing research findings in a timely fashion in scientific journals is a necessary

step in establishing this priority. The key role played by publication counts in

determining researchers' salaries, promotions, and tenure status reconfirms the

importance of publication in academia. Furthermore, published articles are

quantitative and easily accessible, adding to their appeal as direct measures of the

increments to basic scientific knowledge.

One of the most frequently encountered criticisms of raw publication counts as

research output measures is that they do not adequately account for quality

differences. Academic researchers widely agree that published papers vary

significantly in scientific quality. A paper authored by a prominent scientist and
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published in a top field journal might be widely cited, while a paper in a lower-ranked

journal might not attract much attention. Since cited publications are believed to be a

useful input in a field's future publication output, scientific publications can be

quality-weighted in a fashion similar to patents, namely by accounting for the number

of times they are cited in subsequent publications. Unfortunately, data on subsequent

publication citation performance of the scientific papers included in our dataset are not

available.' Instead, we do have access to the number of times a given paper was cited

by subsequent agbiotech patents. Although this number understates the overall

scientific impact of the given paper, it is specifically indicative of the paper's

influence in agricultural biotechnology. Moreover, preliminary evidence suggests that

bioscience publications highly cited in publicly accessible scientific literature tend

also to be highly cited in biotech patents (CHI Research). Hence, in the context of the

present study, the number of citations to a bioscience publication made from

subsequent agbiotech patents is a robust proxy of the quality of that publication.

Publication counts weighted by this quality measure also are subject to citation

truncation bias, for the same reason a citation-weighted patent measure is. Therefore,

raw counts of scientific publications are used in the empirical estimation in the present

study.

Let AgPtj represent the number of agricultural biotechnology patents

awarded to thej" firm in the th year, and Science, be the number of bioscience

'Although it is feasible to collect citations to each published paper made from subsequent papers by
manually searching each subsequent year's Science Citation Index and summing the annual citation
counts for the paper in question, the time required by this procedure prevented us from doing so.
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publications authored by bioscientists at the Ih university in the tth year. These are

unweighted measures of firms' applied and universities' basic research outputs. If we

define Ajr as the number of times in the rth year (r' = z+1, z+ ..., T) that a patent

document cites any of the agbiotech patents awarded to the firm in the 1tz year, B

as the number of times in the z4th year (z' =t!, t+2, .., ]) that a patent document

cites any of the bioscience publications authored by bioscientists at the university in

the /h year, and r as the discount rate in the s year, the quality-weighted measures of

research outputs will be

AgPtCitej AJ / (i + r ) (4.1)

ScienceCite11 = B1 / (i + r. )
(4.2)

These are, respectively, the time-discounted number of patent citations to firmj's th

year agbiotech patents and to university i's tth year published bioscience articles,

summed over the years following the award of the cited patents or the publication of

the cited papers. The literature on the economics of technology and science has

recognized the potential noise in patent and publication data as measures of research

outputs, although they are the best measures we currently have.



4.1.2 Measures ofInformation Flow Between Basic and Applied Research

Having identified the measures of applied and basic research output, I now

construct a practical measure of information flow between basic and applied research.

Recognizing that the output of basic research rarely possesses intrinsic

economic value, but instead is a critically important input to the downstream research

investment that yields technological innovations, economists have tried to link

universities' basic research to private finns' applied research in an explicit manner

But efforts to trace the use of basic research have been frustrated by the lack of any

generally reliable means to quantify the use of the informational outputs of a given

basic research program. For example, as reviewed in sections 2.3.3.1 and 2.4.1.1,

Jaffe (1989) modeled university research as an input to private firms' patent

production and allowed for endogenous determination of university and industry R&D

expenditures at the state level. Audretsch and Stephan (1996) examined the

institutional connection of university-based scientists with biotech firms and the

importance of various roles these scientists played in affecting the geographical

proximity between scientist and firm. Zucker, Darby, and Brewer (1998) studied the

contribution of "star" scientists, who discovered important gene sequences, to the

growth and location of the biotech industry. However, these frameworks did not

require detailed origin and destination data for information flows, so none were able to

identify the mechanism through which knowledge produced in basic university

research was transported to firms' technological innovations.

64
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Although David, Mowery, and Steinmueller (1992) and Griliches (1994) have

noted that citations from patents to the scientific literature could be useful for tracing

information flows from basic to applied research (sometimes called the "knowledge

externalities of basic research"), no empirical measures of this sort have been reported.

In the present study, I develop an empirical and explicit paper trail of information

flows between basic bioscience and applied agricultural biotechnology. The trail is

developed by recording each citation that each agbiotech patent made to each

bioscience paper. Let Cr be the number of times that agbiotech patents awarded to

the th firm in the year cite any of the bioscience papers authored by scientists at the

th university in the t'th year ( t' = z-0. . ., i-i). The universities' scientific

informational outputs that feed into a biotech firm's agbiotech patent production can

be expressed as

SciInput = cit I (1+r )Jr r-t

In equation (4.3), is the number of times that all the universities' 1th year bioscience

publications were cited by firmj in year z Summing this over all t years gives the

time-discounted total quantity of scientific inputs into the applied agbiotech research

program of the given firm in the given year.

Constructed this way, measure (4.3) allows one to trace applied research

outcomes back to the antecedent basic research. It consequently facilitates the tracing

(4.3)



of patent-producing firms back to their associated paper-producing universities. To

my knowledge, this is the first successful effort to do so.

4.2 Other Outputs, Research Inputs, and Characteristics Variables

In the knowledge production function framework, my main interest is in the

relationship between R&D expenditures and research outputs, and in the interactions

between basic bioscience and applied biotechnological research. Other characteristics

and fixed factors, however, might affect research productivity.

4.2.1 Other Outputs, Research Inputs, and University Characteristics

A university's major functions are to conduct research and provide education.

An essential part of a bioscience graduate education is the experimental techniques

and research expertise gained from working in university research labs. Hence, the

number of graduate students in agricultural and biological sciences, denoted here by

Grad,1 can serve as a measure of a university's education output, which is jointly

produced with its research output, namely scientific publications. On the other hand,

graduate students are also a university input because they not only receive education

from but provide scientific labor to the university's research programs. After

graduation, the intellectual human capital built from their graduate education will

move from the home university to some other university or to a private firm, providing

66

All the variables discussed in this section, except those representing university fixed factors, are for
university i in year t, where the university and time subscripts are suppressed for notational simplicity.
No time subscript is needed for fixed factors, as they remain constant over time.
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a source of knowledge or information spillover to other institutions. This spillover

effect is difficult to trace and is not modeled in the present study.

Universities' agbiotech-related science research falls mainly in the life science

field, which consists of the agricultural, biological, and medical science disciplines.

Although medical science accounts for the biggest share of life science R&D

expenditure at most universities, and some techniques developed in medical research

can be used for agricultural purposes, the majority of research in medicine does not

have agricultural applications. For this reason, R&D expenditures and other inputs in

medical science contain more noise than useful information in the evaluation of

agbiotech-related basic research. Hence, I focus on the agricultural and biological

fields only.

Agricultural and biological science involves substantial access to lab

equipment and research materials. The overwhelming importance of physical

resources to the research process makes research and development (R&D) expenditure

the most significant measure of a university's capacity to publish scientific articles and

to provide research training to graduate students. Possible measures ofR&D

expenditure in the agricultural and biological disciplines include: (a) AgRDtot,

BioRDtot, AgRDfed, and BioRDfed, total and federally-sponsored R&D expenditures

in agricultural and biological sciences, respectively, and (b) USDARD, NIHRD, and

NSFRD, R&D expenditures provided by the U.S. Department of Agriculture (USDA),

National Institutes of Health (NIH), and National Science Foundation (NSF),
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respectively.' The above two sets of measures may overstate agbiotech-related basic

research budgets to the extent that the indicated research constitutes only a portion of

that financed by the measured R&D expenditure. On the other hand, they may

understate the budgets to the extent that some agbiotech-related basic research

expenditures are reported in other disciplines or are provided by other agencies.

Unfortunately, a precise match between research input and output data can be obtained

only from a survey at the individual research project level. Yet the present measures

are the most disaggregated and best proxies that are readily available. Since NIH and

NSF sponsor research in many different fields, R&D measures referring to the

"agricultural and biological sciences" appear to be the most accurate indicator of the

university-agbiotech-related science research budget.

Postdoctoral fellows have become necessary inputs to life science research. It

is a conmion practice, for example, for a molecular biologist to have two or more post-

docs working in his lab. The numbers of post-docs in agricultural and biological

sciences are denoted here by AgPD and BioPD, respectively. To proxy the quality of

university scientists in these two disciplines, I have developed measures of

agriculture- and biology-related graduate program quality, denoted by AgRank and

BioRank, respectively. As discussed in more detail in section 5.2.1, a quality rank

number is given only to the top 40 to 50 programs in each discipline. All other

programs are assigned a rank number of 114, which is the median between 51 and

177, the total number of universities included in our sample.

Conversations with university biologists suggests that the major agricultural and biological research
funding sources are USDA, NIH, and NSF.
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To proxy the feedback from private-sector applied research to university basic

research, I include aggregate agricultural R&D expenditures (PrivAgRD) in the private

sector as an explanatory variable. This variable can be interpreted as measuring the

spillins from private agricultural research to public research.

A university's characteristics include its overall size, its faculty quality, the

composition of its research funds, the university's orientation toward life science

research, the strength of applied research in the university's life science research, and

the research and teaching intensities of its faculty. A university's overall size can be

measured by Faculty the total number of faculty, or Enroll the total enrollments.

Average faculty salary, FacSalary, can be used to capture overall faculty quality. A

university's research funds generally derive from five sources: the federal government,

state government, industry, the institution itself, and other sources. The composition

of its research funds can be represented by the share of funds from each source

(FedRD, StateRD, IndRD, InstRD, and OtherRD). The ratio of a university's R&D

expenditures in the life sciences to its total R&D expenditures, denoted by

LfeRDshare, reflects its orientation toward life science research. The number of

agbiotech patents awarded to a university, denoted by UnivAgPt can represent its

strength in applied research. Two measures, average R&D expenditures and average

student enrollment per faculty, are employed here to measure a university's research

and teaching intensity, respectively. That is, ResearchlntenseTotalRD/Faculty and

Teachlntense=Enroll/Faculty. All such characteristics describe the general structure
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and environment in which a university's agricultural and biological science research is

conducted.

A university's basic science research is also affected by relatively fixed factors

that change little over time. These include:

LandGrant a dummy variable equaling one for a land-grant university and

zero otherwise;

BEARegion eight dummies to representing the eight BEA economic regions,

one if a university is located in the indicated region and zero

otherwise;

MedSchool a dummy variable equaling one if the university has a medical

school and zero otherwise;

PrivPub a dummy variable equaling one for a private university and zero

for a public university;

HighDegree four dummies to represent the four types of highest degree

awarded (doctorate, master's, bachelor's, and two-year associate

degrees), one if that degree is the highest the university is

authorized to award and zero otherwise.

I can now specify the econometrically estimable versions of(3.8'), using the

unweighted measure of basic bioscience research output:

Science = G' (Grad, AgRD, BioRD, AgPD, BioPD, AgRank, BioRank,

PrivAgRD, Charactu Xu, t) (4.4)
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where Charactu and XU represent the charateristics variables and fixed factors,

respectively, described above. Time trend t is included to control for changes over

time in the knowledge production function or in scientists' propensity to publish.

Time subscripts and lag operators will be provided in the following section when the

lag structure is discussed.

Assuming input-jointness in the production of scientific publications and

graduate students, we have also

Grad = GU (Paper, AgRD, BioRD, AgPD, BioPD, AgRank, BioRank

PrivAgRD, Charact" X", t). (4.5)

Including both outputs in these specifications will allow estimation of the university's

production possibility frontier.

4.2.2 Other Outputs, Research Inputs, and Biotech Finn Characteristics

Biotechnology is a new industry that is knowledge-based and composed

predominantly of small start-up firms and large, established ones. Most start-up firms

are formed to develop the promising inventions of academic scientists. Once such

efforts are successful, they typically are acquired by established firms and the

production and marketing of most final products are undertaken by the latter. Hence,

most start-up companies focus on R&D activities in a limited number of research

lines. In contrast, established firms typically have multiple product lines and devote

only part of their R&D effort to biotechnology. Our use of a tight filter in identifying

agricultural biotech patents, as discussed in section 5.1.1, exclude from the variable
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Patent many biotech patents that have no immediate agricultural applications. Thus,

in addition to AgPatent, the variable NonAgPatent was constructed to represent the

annual numbers of patents issued to the relevant firm in all fields other than

agricultural biotechnology. This includes patents in all non-biotech fields and those in

biotech fields but without agricultural applications.

As shown by Hausman, Hall, and Griliches (1984), Griliches (1990), and

others, R&D expenditure is the most significant available indicator of a firm's

capacity to develop patented technologies. Inasmuch as patent-R&D relationships

vary across technology areas, one ideally would need a firm's R&D expenditure by

research field or technology class in order to analyze the contribution of R&D to its

patent production. Hence, R&D expenditure data in the present study should, to the

extent possible, be specific to agbiotech field. In the industry R&D database, R&D

expenditures related to agbiotech include those in chemistry, biology, inorganic

chemicals, agricultural chemicals, and food and tobacco. Unfortunately, most firms

do not in most years report R&D expenditure by field. Instead, they report overall

R&D expenditure, denoted here by FirmRD. Although such a measure may not

precisely correspond to the fmns' agbiotech patent outputs, it is the most

disaggregated R&D measure readily available. Moreover, controlling for the finns'

non-agbiotech patent outputs permits us to measure the impact of the overall R&D

budget on these two categories of patent production.

Scientists and engineers are the labor input in a firm's patent production

process. In the knowledge-based biotech industry, scientists' and engineers'
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intellectual capital play a specially important role in innovation: scientists need not

only conduct applied research, but have the capacity to understand and explore

advances in basic bioscience. The total number of scientists and engineers is here

denoted by SE.

Because of the science-based nature of the biotech industry, universities'

scientific information outputs serve as important inputs to biotech firms' patent

production. An empirical measure of information flow from university to firm was

constructed in section 4.1.2, providing an explicit paper trail between the two by

tracing citations from patents to scientific papers. That measure, Scilnput, is included

as an explanatory variable in firms' agbiotech patent production functions.

A firm's characteristics, such as its overall size, its R&D intensity, and the

composition of its R&D expenditures, indicate the structure and environment in which

the firm conducts its research. A firm's size can be measured by its total sales (Sales)

or total number of domestic employees (Employee). The ratio of a firm's total R&D

expenditures to its total sales, denoted by RD int, and the ratio of a firm's scientist

and engineer numbers to its total employee numbers, denoted by SE int, can be used

to capture its R&D intensity. The composition of the firm's R&D can be represented

by the shares of its funding derived from alternative sources such as its own or federal

funds, or by the shares of its R&D allocated to alternative functions, such as basic

research, applied research, and development. However, like R&D expenditure data by

research field, those by funding source and function are reported only by few firms in

few years. Finally, firms' geographical locations are denoted by BEARegion.
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Employing the unweighted measure of applied agbiotech research output, the

econometrically estimable version of (3.7) can be specified as

AgPt = G (NonAgPt, Scilnput, FirmRD, SE, Charact, X, t) (4.6)

where Charact1 and X1 refer to the charateristics variables and fixed factors

described above. Time trend t is included to control for changes over time in biotech

firms' knowledge production functions or their propensity to patent. The time

subscripts and lag operators are suppressed for notational simplicity.

Assuming input-jointness in the two applied research outputs, agbiotech

patents and non-agbiotech patents, we have also

NonAgPt = G1 (AgPt, FirmRD, SE, Charact, x1, t) (4.7)

As data are not available on the allocation of scientific inputs to non-agbiotech patent

production, variable Scilnput is not included in equation (4.7). Any bias in this

omission likely is not serious because private-sector R&D in most fields is not as

science-based as it is in biotechnology. Similar to the university model, a production

possibility frontier between the two outputs can be estimated using this specification.

4.3 Functional Form

Now that we have discussed the output and input variables useful in the

knowledge production functions, we require a functional form to characterize the

specific relationship between research outputs, R&D expenditures, and other inputs.



75

In principle, oniy one functional form may reflect the true data-generating process.

But in practice, the data-generating process is unknown, and decisions about

functional form usually are made according to research objectives and data

availability.

In their pioneer empirical study of firm-level R&D-to-patent relationships,

Pakes and Griliches (1980) found the form best fitting their data was a modified Cobb-

Douglas, namely the logarithm of patents as a function of the logarithm of current and

past R&D expenditures. In many later studies (Jaffe 1989; Pardey 1989; and Adams

and Griliches 1996), the double-log form continued to be appealing, although others,

such as simple linear and log-linear forms, have also been used (Foltz, Kim, and

Barham 2001 and Graff, Rausser, and Small 2001). All these inflexible forms have

the advantage of being easy to estimate and parsimonious in parameters, and of

permitting simple computations of economic effects (Aiston, Norton, and Pardey

1995). But such advantages come at a cost: the inflexible functional forms are

restrictive. For example, the Cobb-Douglas function imposes constant output

elasticity and constant unitary substitution elasticities among inputs.

Flexible functional forms have been developed that do not impose a degree of

economy or scale and that allow a full range of substitution elasticities. The most

commonly used are the translog and Generalized Leontief. The disadvantages of these

forms are that they require many more parameters than do their inflexible

counterparts, in turn consuming substantial degrees of freedom and exacerbating
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multicollinearity problems. Moreover, complicated functional forms often nurture

implausible implications in the results, many of which are difficult to detect.

Although flexible functional forms have gained popularity in the last two

decades, inflexible forms have been used in most econometric studies of knowledge

production, since they require relatively few parameter estimates, conserve degrees of

freedom, and help to avoid multicollinearty. In this, the rather weak data availability

in knowledge production relationships has been the overriding consideration.

I conducted a preliminary examination of functional forms. Regressions using

a quadratic form, relating research outputs to linear and quadratic forms of all inputs

and to interaction terms for some of them, revealed significant multicollinearity. Most

parameter estimates were not significant. Consistent with the knowledge production

literature, this suggested that an inflexible functional form be used. Since a significant

number of zeros are present in both output and input data at both the university and

firm, logarithms cannot be taken. Therefore, a simple linear form for the dependent

and input variables is employed in this study. Curvature in the production possibility

relationships between a university's or firm's outputs is captured by the use of both

linear and square root terms for the right-hand-side output variables.

4.4 Lag Structure

An important issue in the empirical estimation of knowledge production

functions is the structure of the research gestation lag, that is, the lag between the

inception and completion of a research project. In practice, this is the lag between

research inputs and outputs. While the lag structure of an individual research project
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might be identifiable, aggregate analysis of input-output relationships in many

research projects, institutions, and years requires assumptions about the shape and

length of the R&D gestation lag.

Alston, Norton, and Pardey (1995) summarize a wealth of evidence on three

types of lag structure in agricultural research. The first involves well-defmed,

deterministic, and finite lag structures, such as the inverted-V, trapezoidal, and

polynomial. They have been used to reduce the number of estimated coefficients, but

it is questionable whether a finite lag process can completely capture the effects of

past research and whether any single prior about lag structure shape is appropriate.

The second type of lag structure allows for greater flexibility by pretesting the lag

length and weights within a specified lag form, or by searching the lag weights

provided by probability-generating functions such as the binomial and Pascal

disthbutions, then choosing those minimizing the sum of squared residuals. Although

such probability distributions are quiet flexible', the final choice of distribution form

imposes a defmite shape on the lag structure. A third approach has been to use a

form-free lag, by including current and lagged research expenditures as separate

explanatory variables in the knowledge production function. This approach is

appealing if one is interested in the sum of the lagged effects and in the mean lag

distribution, but it still requires a presumption about the lag length and cannot

guarantee non-negativity of coefficients on current and lagged R&D expenditures.

'Different parameterization of binomial and Pascal distributions can approximate various distributions,
such as the normal, geometric, Poisson, and Gaussian, and different skewnesses of those distributions.
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Recent empirical applications of the knowledge production mostly have

employed the form-free lag structure, using short to medium lag lengths from one year

upwards (Acs and Audretsch, 1988; Crepon and Duguet, 1997) to seven (Kim, 1999).

Other studies (Jaffe, 1989; Graff, Rausser, and Small, 2001) have employed only the

current inputs or lagged research expenditures in one previous year. After extensive

empirical work, little consensus has yet been achieved on the appropriate form of

research lag.

4.4.1 Lag Structure in University Model

Following the form-free lag approach, I tested various lag lengths (one, two,

and three years) in the university bioscience production function. None provided good

fits and lag coefficients were estimated with low precision. I then made an attempt to

regress a two-year moving average of bioscience paper output against a one-year

lagged, two-year moving average of all the independent variables. The intention was

to smooth out the randomness in the correspondence between R&D spending and

science output. However, this approach did not produce better estimates.

The weak explanatory power of the above specifications suggests that some

earlier R&D expenditures, which continue to affect a university's bioscience

production, were being omitted in the model. Pardey and Craig (1989) find that the

lag in public agricultural research output can be as long as 30 years. Considering that

our university science model characterizes basic research in the agricultural and

biological sciences, and that basic research is believed on average to take longer than

applied research does, a relatively long lag length is needed. Yet the goodness-of-fit
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of longer lag lengths cannot be tested with the short data horizon (1985-1997) we have

available.

In conclusion, I employ a compact parametric model in the university science

model by including a lagged dependent variable on the right-hand side, essentially

incorporating infinite lags for all regressors but requiring a small number of

parameters. Following this approach, equation (4.5) can be rewritten as

Science11 = a0 + .2 Science,1 + a1 Grad11 + a2 Grad5 +

a3 AgRD11 + a4 Bi0RD11 + a5 AgPD11 + a6 BioPD1 +

a7 AgRank11 + a8 BioRank11 + a9 PrivAgRD11 +

a Charact1 + a11 X,u + a12 t (4.8)

where subscripts i and t index universities and years, respectively. The absolute value

of the coefficient on the lagged dependent variable should not exceed one; otherwise,

the associated dynamic process is unstable. While allowing for infinite lags, this

geometric distributed lag model assigns arbitrarily small weights to the distant past;

specifically, the effect of a regressor in a given year on current science production is

proportionate to the effect of that regressor in the previous year by a factor of.2.

In the equation relating university graduate education to university inputs, the

dependent variable I employ is the number of graduate students currently enrolled

instead of the number of graduate degrees currently awarded. Since currently enrolled

graduate students receive their education from the resources spent in the current year,



no lag should exist between inputs and outputs in this equation. Thus, it can be

expressed in the following functional form with i, t subscripts defined as before:

Grad11 = + Science1, + /32 Science5 +

j53 AgRD11 + BioRD1, + /35 AgPD1, + 136 BioPD1, +

fi AgRank1, + ,5 BioRank1, + /Y PrivAgRD1, +

Charact + Xff + fi2 t (4.9)

For simplicity, equations (4.8) and (4.9) will be called the science and graduate

student equations, respectively.

4.4.2 Lag Structure in Biotech Firm Model

The biotech firm model consists of two knowledge production functions in

which a firm's agbiotech and non-agbiotech patents respectively depend on its total

R&D expenditures, other research inputs, and characteristics, and in which the two

research outputs are affected by one another. As discussed in Chapter 5, our patent

data end in the 2000 award year, whereas biotech firms' R&D data run only through

1998. Thus, a minimum of a two-year lag had to be imposed on biotech firms'

research inputs in order to include the patents awarded in 1999 and 2000. This is

especially important given that the number of agbiotech patents awarded increased

exponentially in the late 1990's.

Tests of various lag structure specifications similar to those in the university

science model were conducted for biotech firms' agbiotech patent production. Results

80
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were quite robust to alternative lag lengths employed, such as a two-year, three-year,

or four-year lag. But regressing a two-year moving average of patent quantities

against a two-year lagged, two-year moving average of all the independent variables

reduced the statistical significance of the coefficient on R&D expenditures. Including

a lagged dependent variable on the right-hand side of these equations did not

significantly improve the goodness-of-fit, implying a finite lag between the inception

and completion of agbiotech research projects would be more appropriate.

The latter is consistent with the fact that private firms perform mainly applied

research, which generally requires shorter lag lengths than does basic research.

Moreover, a large number of start-up companies in the agricultural biotechnology

industry remain for only a few years before being merged into or acquired by

established companies. Indeed, most larger companies did not begin agbiotech

research until recently. These facts argue for a comparatively short lag in the biotech

firm agbiotech patent production model. Because the typical lag between application

for and issuance of an agbiotech patent is 2.5 to 3.0 years and the patent application

date is relatively close to the time when the research is performed, a three-year lag is

employed on all biotech firm input variables. Hence, equation (4.6) can be re-

expressed as

AgPtj = y0 + Yi NonAgPt + 72 NonAgPt +

73 SciInput + 7 FirmRD3 + y SE1 +

76 Charactr3 + 77 xf + 78 t (4.10)
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where j and z refer to the j" firm in the z year.

Symmetric to the specification of the firm's agbiotech patent production

function, the non-agbiotech patent production equation (4.7) can be rewritten as

NonAgPtj 90 + ço AgPt,. + 92 AgPt +

O4 FirmRD3 + q SE3 +

96 (Tt1,3 + 97 j + 98 t (4.11)

For simplicity, equations (4.10) and (4.11) will be called agbiotech and non-agbiotech

equations hereafter, respectively.

4.5 Estimation Issues

In order to implement the university science model consisting of equations

(4.8) and (4.9), and the biotech firm's patent model consisting of equations (4.10) and

(4.11), several estimation issues need to be addressed.

4.5.1 Count Data Model

When analyzing patent-R&D relationships, a commonly used dependent

variable is a count of the total number of patents applied for or issued to a particular

firm in a given year. Count data approaches have been developed to explicitly reflect

the non-negative integer nature of this dependent variable and the associated

preponderance of zeros and small values. In these approaches, Poisson or negative

binomial distributions are used to represent the average counts of events (patents) that
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occur both "randomly and independently" over a period of time, with distribution

parameters related to the firm's input and characteristics variables. Refinements arid

adaptations have been made to handle over-dispersion, weak exogeneity, individual

effects, and serial correlation (Hausman, Hall, and Griliches, 1984; Trivedi, 1997;

Crepon and Duguet, 1997).

As discussed in Chapter 5, a "fractional count" approach has instead been used

in the present study, whereby a fraction of one credit is assigned to a paper author

institution or patent awardee firm according to its share in the list of authors or

awardee institutions. This counting method should be more appropriate than count-

data approaches in measuring research output quantities, especially as inter-

institutional collaborations are common in agricultural biotechnology. Hence, the

dependent variables in our model -- the quantities of bioscience papers and quantities

of agbiotech and non-agbiotech patents awarded -- are constructed as continuous

variables and count-data assumptions are not applicable to our case. The implications

of converting our "fractional counts" to the nearest integers, then estimating a count

data model, deserves further research but will not be covered in this dissertation.

4.5.2 Fixed vs. Random Effects Model

The most contentious issue in the use of panel data, such as the pooled time-

series, cross-university or cross-firm data employed in the present study, concerns the

nature of the time-specific and section-specific variables. While time-specific effects

are proxied by simple linear time trend variables 1, university or firm research

productivities may differ in ways the included regressors cannot completely explain.
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Two frameworks can be employed to capture these university- or firm-specific effects:

the fixed effects and random effects models.

The fixed effects approach assumes the unobservable differences across

sections (universities or firms) can be captured in a section-specific constant term,

which does not change over time. For example, the fixed effects model for biotech

firms' agbiotech patent production can be formulated as

AgPtj = + y1 NonAgPt2. + 72 NonAgPt +

7 SciInput + 7 FirmRD3 + y SEi3 +

76 Charact[r3 + 7 + 2'S + (4.12)

in which ,r. is the individual firm's effect to be estimated and is the random

disturbance term reflecting the inherently stochastic nature of the research process.

Model (4.12) can be estimated by applying OLS, including dummy variables for each

section. A drawback is that the bulk of the variance in panel data usually is in the

cross-sectional dimension, so that a fixed effects model neglects much of the

information in the data and often leads to nonsignificant estimates. Moreover, if the

assumption is not true that the section-specific effect is constant over time, the fixed-

effect estimates are biased.

The random effects model instead treats the unobserved section-specific effect

as a random variable by incorporating, in addition to the conventional residual, a

disturbance term characterizing each individual section. This disturbance term has
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constant probability moments. The random effects model of biotech firms' agbiotech

patent production can be formulated as

AgPt1 = 70 + 71 NonAgPt + 72 NonAgPt +

y Scilnput12. + 7 FirmRD3 + 75 SE1r3 +

76 Charact3 + 7 X + ;v8 t + + (4.13)

where is the disturbance for the f"1 firm with mean zero, variance c, and no

correlation with any e. Consistent and efficient Generalized Least Squares (GLS)

estimators have been developed to estimate this model. Some have argued that the

individual effect should always be treated as random. However, no justification exists

for treating the individual effect as unconelated with the other explanatory variables,

as is assumed in the random effects model. So parameter estimates in the random

effects model may be inconsistent.

Since there is little theoretical guidance about whether unobservable section-

specific effects are present, and if they are, whether the fixed effects or random effects

approach is appropriate, these questions are taken up in our empirical estimations

below.

4.5.3 Contemporaneous Correlation and Endogeneity

As the university and firm model each consists of two equations characterizing

the production of two outputs, one would expect correlations to exist between the

disturbance terms in the two sets of equations. If correlations are present, OLS
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estimation of each equation is still consistent but not efficient. Alternatively,

estimating the two equations in a single model, as an equation system using Seemingly

Unrelated Regressions (SUR), would provide us with efficient estimates (Greene

1997). The greater the correlation between the disturbances is, the greater the

efficiency gain accruing to SUR. Comparisons between OLS and SUR estimates are

provided in Chapter 6.

Because each of the two equations in each model contaims one output as the

dependent variable and the other output as an explanatory variable, the two output

variables are endogenous in appearance, requiring simultaneous equation estimation

such as Two Stage Least Squares (2SLS) or Three Stage Least Squares (3SLS).

However, a closer examination of model structure shows that each of the two

equations represents maximization of a separate output, so that each corresponds to a

separate maximand or institutional culture. Hence, as shown below, the two outputs

are not endogenously determined and the two equations are not simultaneous.

4.6 Production Possibility Frontiers

A production possibility frontier (PPF) can be derived from each of the two

equations, (4.8) and (4.9), in the university model and from each of the two equations,

(4.10) and (4.11), in the biotech firm model. In the present section, I discuss the

construction of a single PPF from each equation pair.

Consider first the university model. The paper equation shows the maximum

number of cited bioscience publications that the representative university can achieve

given a fixed number of graduate students, while the graduate student equation shows
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the maximum number of graduate students the university can achieve given a fixed

number of cited bioscience publications. In the biotech firm model, the agbiotech

equation reflects the maximum number of agricultural biotechnology patents given the

representative biotech fmn can achieve a fixed number of non-agbiotech patents

awarded. The non-agbiotech equation reflects the maximum number of non-agbiotech

patents the firm can achieve given fixed levels of agbiotech patents. Thus, in each

model, the two equations represent two optimization processes, each representing a

separate portion of a production possibility frontier.

This can be illustrated for a biotechnology firm using the generalized PPF

curve shown in figure 4.1. The PPF shape in figure 4.1 can be characterized by an

output directional distance function:

ñ(x,Y,gy)_Max{fi:(Y+figy)P(x)} (4.14)

where Yis the output set consisting of a biotech firm's two outputs (agbiotech and

non-agbiotech patents), Xis the firm's input set, g1 is the output directional vector,

and P represents the production technology. When gy is defined as (1,0) and (0, 1)

in agbiotech and nonagbiotech patent outputs, the directional distance function can be

rewritten respectively in these two outputs as

'AgPt (X,AgPt,NonAgpt;(1,o)) =

Max I : (AgPt + AgPt NonAgPt) e P ( X ) } (4.15)



Agbiotech
Patent

Quantity

D Non-Agbiotech
Patent Quantity

quantities, and two non-agbiotech quantities correspond to a range of fixed agbiotech

quantities.

To see this more clearly, observe how the PPF in figure 4.1 is traced out.

Starting from point A, the agbiotech-maximizing firm reallocates a fixed quantity of

input from the production of agbiotech to non-agbiotech patents. At first, both
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NonAgPt (X,AgPt,NonAgpt;(o,1))

Max { !JNOnAgPI : (AgPt , NonAgPt + J3NOnAgPI ) . ( x ) } (4.16)

The above two distance functions are alternative representations of the

agbiotech equation (4.10) and non-agbiotech equation (4.11). The PPF shape in figure

4.1 cannot be characterized in a single estimable regression context, because two

agbiotech patent quantities correspond to a range of fixed non-agbiotech

Figure 4.1 Generalized Production Possibility Frontier: Illustration for a
Biotechnology Firm
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agbiotech and non-agbiotech outputs may rise because the technical insights gained in

producing non-agbiotech innovations may act as an input to agbiotech innovations.

As reallocation proceeds, the two products become substitutes at point B: additional

units of non-agbiotech are now less an input to than a substitute for agbiotech. As the

fixed input quantities continue to be reallocated to point C, the agbiotech maximizer

encounters the problem that both outputs start to decline. It would be inoptimal for the

firm to operate in zone CD. Suppose instead that a finn maximizing non-agbiotech

innovations begins from point D. Reallocating the fixed inputs at first increases both

agbiotech and non-agbiotech patents, so the firm would continue moving in this

direction. At point C, the two outputs become substitutes. Depending on the relative

prices of the two outputs, it still is potentially rational to operate in this zone.

However, at point B, both outputs start to decline and it would be inoptimal for the

non-agbiotech maximizer to operate in zone BA.

At least two types of firms therefore are represented in figure 4.1: the

agbiotech maximizers, at the top of the PPF (ABC), are the firms that specialize in

agricultural biotechnology and which therefore can be assumed to maximize the

number of agricultural biotechnology innovations permitted by a given set of fixed

resources. The non-agbiotech maximizers, at the right side of the PPF (BCD), are

those firms that specialize mostly in pharmaceutical or other technologies and which

therefore would maximize those outputs at given input levels. For these firms,

agbiotech is a sidelight. We therefore need two equations to characterize the PPF in

figure 4.1. The equations are not simultaneous, as no endogeneity exists between the
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two outputs, but instead reflect different corporate cultures or R&D strategies. A

similar analysis applies to the university model, where universities can alternatively

have a research emphasis or a teaching emphasis.

Returning again to the biotech firm model, it would be desirable if both the

agbiotech and non-agbiotech maximizers' technologies could be represented in a

single PPF, i.e., in a single "grand-technology." However, it is impossible to do so in

a regression context for the very reason that the PPF as shown in figure 4.1 cannot be

characterized by a function. The alternative is to estimate two separate equations and,

for each, to trace out a PPF for a given level of inputs, namely by predicting values of

the left-hand-side output variable at various levels of the right-hand-side one. The

common set of these two PPFs constitutes an approximation of the grand production

possibility frontier. The grand-technology is fairly accurately estimated in this fashion

between A and B (for agbiotech maximizers), and between C and D (for non-

agbiotech maximizers). But it likely is poorly represented between B and C, where a

splicing of the two equations must occur.

Some functional forms might be better than others at approximating given

portions of this grand PPF. For example, a quadratic function is better able to

accommodate the negatively sloped plus one positively sloped portion of figure 4.1,

but it would not necessarily perform well in either of the positively sloped PPF

portions taken alone. The virtue of the square-root functional form, employed in this

dissertation, is that its curvature is greatest at lower levels of the outputs. This makes

it better at approximating the positively sloped portions of the PPF where, because of



the right-skewed nature of our sample (see Chapter 6), the bulk of the firm and

university data lie.

4.7 Optimal Allocation of R&D Expenditures, Returns to R&D, and Other
Elasticities

4.7.1 Optimal Allocation of R&D Expenditures

In the theoretical model of the knowledge production function derived in

Chapter 3, I assume an optimal allocation between inputs such as capital and labor,

and include total R&D expenditures as an explanatory variable instead of breaking

them down by input category. In the empirical university model, however, the number

of post-docs in ag and bio sciences are included as explanatory variables along with

R&D expenditures. The cost of post-docs is, of course, a part of R&D expenditures.

Let AgO and BioO denote aggregate non-post-doc R&D inputs in agricultural and

biological sciences, respectively, at the representative university, such as faculty

research time, equipment, and genetic materials used in experiments. Then total

university agricultural and biological R&D expenditures can be expressed as

AgRD = WAgPD AgPD + WA AgO (4.17)

BioRD = WBOpD BioPD + WBOo BioO (4.18)

where WAgPD and WBIOPD are post-doc salaries and WAgO and WBIOO are the aggregate

prices of non-post-doe R&D inputs in the ag and bio sciences, respectively.

91
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Similarly, the number of scientists and engineers is included in the empirical

biotechnology firm model along with the firms' total R&D expenditures. Let NonSE

denote firms' aggregate R&D inputs other than scientists and engineers, consisting

primarily of research equipment, buildings, and supplies. Then total R&D

expenditures at the firm can be expressed as

FirmRD = WSE SE + WNOflSE NonSE (4.19)

where WSE and WNOnSE are scientist and engineer salaries and price of non-salary

inputs, respectively.

This formulation of the empirical models allows us to test the optimal

allocation of R&D expenditure between post-docs and all other R&D inputs at

universities, and that between scientists and engineers and all other R&D inputs at

biotech firms. The production of bioscience with two agricultural science inputs,

AgPD and AgO, is characterized in figure 4.2 for illustration. If total agricultural

R&D expenditure AgRD is optimally allocated between those two inputs, the

university would operate along expansion path 00001. For example, under the

AgRD budget constraint represented by isocost curve B°, the maximum number of

bioscience papers the university can produce is represented by isoquant Q°, which is

tangent to isocost curve B° at point 00. At this point, the allocation between the two

R&D inputs is cost-minimizing, so output would not change if the university moves

away from point 00 along isocost curve B° by an indefinitely small amount. However,

if the university allocates the two inputs inoptimally, such as at point A to the left of
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the optimal allocation, where too much is spent on non-post-doc inputs, a movement

along the isocost curve to the southeast would increase the university's bioscience

output. In contrast, if the university operates to the right of the optimal allocation,

such as at point E, a movement along the isocost curve toward the northwest would

increase it's bioscience output.

This effect on bioscience production of a movement along an isocost curve can

be captured by the coefficient of AgPD in equation (4.8), that is by

a5 =

the partial derivative of bioscience output with respect to AgPD, holding total

agricultural R&D expenditure and all other variables in equation (4.8) fixed. Thus,

Figure 4.2 University Production of Bioscience with Two Agricultural
Science Inputs

Science

AgPD AgRD°

Non-
Postdoc
Inputs in

Ag Science

0
PostDocs in
Ag Science

(4.20)
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when a5 = 0, the university's agricultural R&D is optimally allocated between post-

does and non-post-doe inputs. If a5 > 0 or a5 <0, the university operates to the left

or right of the optimal allocation, and too few or too many post-does are employed,

respectively.

Similarly, parameter /35 in equation (4.8) can be used to test the optimality of

the allocation between post-docs and non-post-doc inputs in the university's biology

program:

/35
ô Science I

ô BioPD BioRl)

Following the same logic, parameters 7 and O5 in equations (4.10) and (4.11),

respectively representing agbiotech and non-agbiotech patent production, indicate

whether the representative biotechnology firm's R&D expenditures are optimally

allocated between scientists/engineers and non-salary inputs:

AgPt

= ô SE FirniRD°

3 NonAgPt i
D5= I

3SE 1FirmRD0

4.7.2 Returns to R&D

A major interest of our study is the effect of R&D expenditure on research

(4.21)

(4.22)

(4.23)

output as measured by scientific publications or patents, in another words, the returns
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to R&D. As inputs here are specified in linear form, parameter estimates indicate

marginal effects. Multiplying marginal effects by the corresponding ratios of input to

output quantities gives the elasticities of research output with respect to research input

evaluated at selected data points. In the following section, measures of marginal

effects and elasticities of R&D expenditures are developed in order to analyze R&D

impacts on university and firm knowledge production under alternative policy settings.

4.7.2.1 Returns to University R&D

Returns to scale in university agricultural science R&D are discussed here for

illustration. Their counterpart in the biological sciences can be derived analogously.

Suppose under a fixed agricultural R&D budget B°, the university originally

operates at moptimal point A, as shown in figure 4.2. Now permit the budget to

increase by one unit to B'. The marginal effect on bioscience output of this increase in

AgRD can be decomposed into the vertical movement from A to B, or the horizontal

movement from A to D, or any combination of these two movements between B and

D, depending upon the university's flexibility in distributing this extra unit of

agricultural R&D expenditure between post-docs (AgPD) and non-post-doc inputs

(AgO).

The one-unit increase in AgRD consists of expenditure increases in the two

R&D inputs,

= WAgPD aAgPD + WA aAgO (4.24)



o cience I

WAgPD ô AgPD ARD

I a Science

- WAg0 a AgO AgPD°
a'3

This marginal effect is measured by the coefficient of AgRD, i.e., parameter a'3, in the

university's science equation (4.8) and conesponds to the vertical movement from A

to B in figure 4.2.

As shown in equation (4.17), the slope of AgPD, parameter a5, in equation

(4.8) gives the marginal effect on bioscience output of a one-unit increase in

agricultural science post-does, holding total agricultural R&D expenditure fixed. This

marginal effect can be translated into expenditure terms by incorporating the price of

post-does, as follows:

ii a Science I I

- WAgPD a AgPD AgRD°
WAgPD
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where time and university subscripts are suppressed for simplicity. If the university

can spend this extra unit of research money only on non-post-doe inputs, the number

of post-docs will remain at its original level. The marginal effect of this increase in

the university's bioscience production is then

a Science ô Science I

ô AgRD AgPD WA aAgO APD°

(4.25)

(4.26)



97

But since AgRD = WAgPD AgPD + WAgo AgO is fixed, we have

WAZPD 0 AgPD = - WAgO 3 AgO, that is, the cost of non-post-doc inputs must fall by

as much as the cost of post-docs rises. Therefore, (4.26) can be expressed as

1 0 Science i

WAgPD 0 AgPD AgRD 0 =

0 Science 0 Science

WAgPD 3 AgPD AgO0 WAgo 0 AgO AgPD°
(4.27)

Such a marginal movement along the budget line is composed of two effects. The first

right-hand term represents the effect of increasing post-doc expenditure by one unit,

holding non-post-doc inputs fixed. The second term gives the effect of reducing non-

post-doc expenditure by one unit, holding the number of post-docs fixed. These two

effects correspond respectively to the horizontal movement from A to D and vertical

movement from D to C in figure 4.2.

The horizontal movement from A to D represents a situation in which the

university spends its entire marginal dollar on post-docs, keeping its non-post-doc

inputs at their original level. The effect of this one-unit increase in agricultural R&D

expenditure on the university's bioscience production can in this situation be derived

by rearranging (4.27) and substituting (4.25) and (4.26) into it as follows,

0 Science 1 0 Science

3 AgRD AgO° = WAgPD 0 AgPD



Equations (4.25) and (4.28) offer two polar approaches by which the university

may invest an extra unit of agricultural R&D expenditure, namely, by a vertical or a

horizontal movement in figure 4.2. If the university chooses to expend a combination

of the two inputs, the total marginal effect would be an average of the two polar cases,

weighted by the corresponding expenditure share of each input in this extra unit of

R&D expenditure. This average effect corresponds to a movement from A to any

point between B and D in figure 4.2. The point at which the university arrives

depends upon the combination it chooses. That is, the average marginal effect of one

more unit of agricultural R&D is computed as

= a3

0 AgPD= a3 + a5
0 AgRD

0 Science 0 Science- +
- WAgPD 0 AgPD AgRD °

WA 3 AgO AgPD°

1
= a5+a3

WAgPD

WAgPD 3 AgPD

OAgRD

I
1

WAgPD

a5 + a3
I

(4.28)

(WAgPD 0 AgPD

OAgRD
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(4.29)

0 Science
Average

AgPD°

(
1

WAgPD 0 AgPD
+

0 Science
AgO°

WAgPD 3 AgPD

0 AgRD

0 Science

0 AgRD 3 AgRD o AgRD 0 AgRD
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Note that, while the marginal effect of the horizontal movement depends on choice of

post-doc salary, the average marginal effect in (4.29) does not.

As R&D expenditures and post-doc employment in biological science are

included in the university model symmetrically to those in agricultural science, the

vertical, horizontal, and average marginal effects of a one-unit increase in biological

R&D can be derived following the same approach used for agricultural R&D.

Specifically,

If a university receives one more unit of R&D funding and invests it

proportionately to the observed average R&D expenditures in these two disciplines,

the marginal effect of the increase would be the average of the marginal effects in the

agricultural and biological sciences weighted by their respective shares in this extra

unit of total R&D spending:

AgRD0 Science 0 Science

0 AG & BioRD Average
= 0 AgRD

Average
(AgRD + Bi0RD)

8 Science
BioPD0

a4 (4.30)
0 BioRD

0 Science
° --

I (4.31)a6 + a4
0 BioRD BioO

WBOpD

0 Science
=

0 BioPD (4.32)
0 BioRD J

a4 + a6
0 BioRD

Average



All the marginal effects developed here are short-run measures. As a lagged

dependent variable is included in university science equation (4.8) to allow for infinite

lags, the long-run marginal effects of the R&D rise equal the corresponding short-run

measures multiplied by 1/(1 - 2).

Having developed above the marginal effects of R&D expenditures under

alternative assumptions about how the university uses the extra unit of R&D, we may

transform the marginal effects into elasticities by multiplying them by the

corresponding ratios of R&D expenditure to output quantity. For example, when a

university invests an extra unit of biological science R&D in both post-docs and non-

post-doe inputs, the short- and long-run elasticities of university bioscience output

with respect to R&D expenditure in a given year are, respectively:

' LR.
' SciencefioRD Average

0 Science 1 BioRD

3 BioRD
Average

Science J

+ a6

( 0 Science
' L.R.

OBioRD )
Average

(Bi0RD
t Science

t: ]
(a4 0 BioPD \

(
= +a6- 0 BioRD) Science]

100

(4.34)

(4.35)

+

0 Science
Average

( BioRD (4.33)
3 BioRD AgRD + BioRD I

0 BioPD (
BioRD

0 BioRD k Science=( a4

SR.
SciencefioRD Average
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Diminishing, constant, or increasing returns predominate when the above elasticities

are greater than, equal to, or smaller than unity.

4.7.2.2 Returns to Biotechnology Firm R&D

As a firm's scientist and engineer numbers are included along with its total

R&D expendture in agbiotech and non-agbiotech equations (4.10) and (4.11) in the

same fashion that numbers of post-docs and R&D expenditures are included in the

university paper equation, the vertical, horizontal, and average marginal effects of a

one-unit increase in the firm's total R&D on its agbiotech and non-agbiotech patent

production can be derived following the same approach used in the university model.

Using parameter estimates from the biotech firm's agbiotech patent equation

(4.10), the three marginal effect measures can be computed respectively as

Equations (4.36) - (4.38) correspond to cases in which the firm invests its extra unit of

R&D expenditure only on equipment, only on scientist and engineers, or on a

combination of the two, respectively. Similarly, marginal effects on its non-agbiotech

aAgPt I

J
SE°

NonSE°

Average

=

1

(4.36)

(4.37)

(4.38)

aFirmRD

ô AgPt

FirmRD

ôAgPt i

75+74
WSE

ÔSE
FirmRD 74 + 75

ô FirmRD
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patent output of an increase in a firm's R&D are based on parameter estimates from

equation (4.11) as follows

a NonAgPt
aFir,nRD SE° =

ô NonAgPt

a FIrmRD NoaSE° -
1

ço5 + 9
TV SE

ÔSEa NonAgPt
Average = 94 +

a FirmRD a FirmRD

Let Al/Pt denote a firm's total annual patent output. Then

Al/Pt = AgPt + NonAgPt and a AZ1Pt = a AgPt + a NonAgPt. Thus, the

increase in the firm's total patent production brought about by a one-unit increase in

its R&D expenditure is the sum of the increases in its agbiotech and non-abiotech

patent production brought about by that R&D increase. Specifically,

a Al/Pt
a FirmRD

a A11Pt a AgPt I a NonAgPt

a FirmRD Equip° = a FirmRD N0nSE° ô FirmRD NonSE°

a A liFt ô AgPt a NonAgPt

a FirmRD Average a FirmRD Average FirmRD
Average

SE°

a AgPt

a FirmRD SE°

a NonAgPt
+

a FirmRD SE

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

Again, multiplying these marginal effects by the corresponding ratios of firms' R&D

expenditures to research outputs gives the R&D returns in elasticity form.



4.7.3 Other Elasticities

Other elasticities also are of interest and can provide insight into the factors

affecting university and firm research productivity. Those elasticities can be

calculated using formulae similar to the ones described in the previous section.

In the university model, the effect of a university's agricultural and biological

graduate program ranking on it's bioscience output can be derived in elasticity form

by differentiating both sides of science equation (4.8) with respect to it's ranking

variables and multiplying this derivative by the reciprocal of output:

3 Science 1= = a7
3 AgRank Science Science

3 Science 1= = a8
3 BioRank Science Science

(4.45)

(4.46)

Note that the program ranking variables are positive integers with non-unique base

values and it is meaningless to think of these as changing by a given percentage.

The elasticities of a university's bioscience output with respect to aggregate

agricultural R&D expenditures in the private sector, and to the number of agbiotech

patents awarded to the university in a given year, are the respective marginal effects

multiplied by the ratio of the conesponding right-hand side variable to the output

quantity:

3 Science PrivAgRD PrivAgRDE SciencePr 1vA5RD =
3 PrivAgRD Science

= a9
Science
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(4.47)

ScienceA gRank

ScienceBioRank
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The above two elasticities show the responsiveness of a university's bioscience output

to, respectively, the applied research expenditures in the private sector and research

expenditures at the university itself. Elasticities for the university's graduate

education output can be derived in the same fashion, using the corresponding

parameter estimates from graduate student equation (4.9).

In the biotechnology firm model, the marginal effect and elasticity of science

citation variable Scilnput in agbiotech equation (4.10) is especially informative,

because it not only measures the direct contribution of scientific findings to

agricultural biotechnology inventions, but also explicitly links university basic

bioscience research with biotechnology firms' applied research. The increase in a

firm's agbiotech patent output brought about by one more cited scientific paper is:

ôAgpt
_73ô Scilnput

This marginal effect can be expressed in elasticity form as

AgPtSciInpul

a Science UnivAgPt UnivAgPt

ô UnivAgPt Science
10 Science

a AgPt Scilnput Scilnput
a Scilnput AgPt AgPt
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(4.48)

(4.49)

(4.50)

The change in a firm's propensity to patent agricultural biotechnology and

non-agbiotech innovations can respectively be derived by taking the natural logarithm

of equations (4.10) and (4.11) and differentiating with respect to time:



E
3/n AgPt 3 AgPt 1 1

AgPI-t - 3 t AgPS
18 AgPt

E NonAgPt-

E AIIPI-t

= (78 + 98)

3 in NonAgPt

3NonAgPt 1 1

NonAgPt
98 NonAgPt

The change in the firm's propensity to patent both types of innovations together is the

sum of the above two elasticities, weighted by the share of each innovation type in

total patent numbers:

o ( AgPt NonAgPt) 1

3 t AgPt + NonAgPt

/
1

AgPt + NonAgPt

( AgPt / NonAgPt

AgPt + NonAgPt J
+ E NonAgPt-t AgPt + NonAgPt1

4.8 Complementarity Between Basic Bioscience and Applied Biotechnology

Recall that equation (3.14) gives the total effect on applied research output of

reallocating another scarce dollar from applied to basic research. Substituting for the

partial derivatives in those equations the corresponding marginal effects estimated

from university paper equation (4.8) and biotech firm agbiotech and non-agbiotech

equations (4.10) and (4.11) provides estimates of the complementarity between
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(4.52)

(4.53)=E AgPI-1
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applied agricultural biotecimology and basic bioscience research. As derived in the

previous section, derivatives 0 Yf /0 Y1,u and 0 yb' /0 E in equation (3.14) are

unique in our model, namely, 0 AgPt /0 Science = Y3 and

0 Science /0 Pr ivAgRDe = a, , respectively. However, the other two derivatives in

equation (3.14) are captured differentially, that is depending on the policy settings.

For example, alternative assumptions can be made about how a policy planner

would extract research resources from a commercial firm and reallocate them to the

university sector: (al) all the reallocated money could be provided to university

agricultural research; (a2) all of it could be provided to university biological research;

or (a3) it could be divided between the two. Under these alternative assumptions,

0 Science
0 Y /0 E in equation (3.14) would be represented by marginal effects

OAgRD'

0 Science 0 Science
Further assumptions can be made about how the,and

0 BioRD 0 Ag & BioRD

university allocates the extra research money between post-docs and non-post-doc

inputs in agricultural or biological science. That is, (hi) all the money maybe

allocated to non-post-doc inputs; (h2) all of it can be allocated to post-docs; or (b3) it

may be allocated to a combination of these two. In agricultural science research,

namely under assumption (al), for example, marginal effects of the above three

C science
allocation plans would be represented respectively by

OAgRD I AgPD°'

0 Science 0 Science
AgO°

and
AgRD

AverageS Similarly, if the extra research money is
0 AgRD
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provided entirely to the university's biological science research, the marginal effects

of allocation schemes (bi), (b2), and (b3) would be represented respectively by

a Science a Science I ô Science
and

ô BioRD BioPD0 ' a BioRD BioO a BioRD J
Average

Any research money a central planner would tax away from a biotechnology

firm affects both its agricultural biotechnology and non-agbiotech patent production.

Yet in our empirical modeling, funds reallocated to the university sector contribute to

the production only of agbiotech-patent-cited scientific papers. To measure total

complementarity between basic and applied research, derivative aYa' / a E in (3.14)

a AgPt a A1ZPt
can be represented either by or , depending upon whether

ö FirmRD a FirmRD

one's research interest focuses only on agricultural biotechnology or expands to non-

agbiotech areas as well. Symmetric to the university model, assumptions may be

made about the identity of the research input from which the firm's research money is

extracted. It might be extracted: (ci) entirely from non-salary inputs, (c2) entirely

from scientist and engineer employment, or (c3) from a combination of these two. If

one focuses on agricultural biotechnology patents only, the marginal effects in these

a AgPt a AgPt
andthree cases would respectively be

a FirmRD I
SE0 ' FirmRD Equip

a AgPt
Averagea FITmRD

Complementarity between basic bioscience and applied biotechnology

research, as specified in equation (3.14), can be computed under alternative policy
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settings, represented by the corresponding measures of 3 Y' /0 E and 0Yf /3

For example, suppose one unit of research expenditure is extracted from a

combination of the firm's spending on scientists and engineers and on non-salary

inputs such as equipments, buildings, and supplies. The money is then reallocated to a

combination of post-docs and non-post-doc inputs in the university's agricultural

research. If I concentrate on the firm's agricultural biotechnology patent production

only, the complementarity measure is:

dAgPt Average OAgPt

d AgRD Average j FiAgPtUnivAgPt
0 FirmRD

Average

OAgPt

3 Scilnput

/
d AgPt Average

d AgRD
J

Average
FfrmAgPlUnivAgPt

+ [a3 + a5

( Science 3 Science

0 AgRD Average PrivAgRD1

Such a complementarity is computed by substituting equations (4.38), (4.49), (4.29),

and (4.47) into (4.54):

- [r4+rs

OAgPD"
OAgRD

I3SE

3 FirmRD

- a9 (4.55)

Using alternative measures of 3 Ybu /0 E and 3Yf /a E will give us alternative

values of the complementarity.

(4.54)
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Of course, units of observation in the university model are different from those

in the firm model, so that FirmRD and Pr ivAgRD , our two measures of applied

research expenditure, are never identical to one another. For the same reason, neither

are Science and Scilnput , our two measures of basic research output. Total

complementarity measures computed as in (4.54) remain meaningful, inasmuch as

Pr ivAgRD and Scilnput reflect a representative firm and university.



Chapter 5: Data Sources and Development

The data for the econometric model divide into research outputs (patents and

scientific papers), inputs to the research process, and inputs to and production outputs

at biotechnology firms. To derive observations on the research output data, I drew a

large sample of agricultural biotechnology patents from the United States Patent

Office database, noted the identity of the awarded firms or institutions, and observed

the scientific publications cited on the patent documents. I next identified the authors

of those publications and the universities or labs at which they worked at time of

publication.

Because of the tedium of determining ag-biotech patents, discriminating

between science and non-science references on a patent, and matching alternative

forms of a scientist's or a firm's names, CHI Research of Haddon Heights, New Jersey

was hired to conduct the above data search and cleaning process for this study. I then

collected, from other sources such as NSF and the Bureau of Census, data on the

research input allocations at the identified firms and universities, including R&D

expenditures and technologists' and scientists' FTEs, and matched them with the

research outputs at the same institutions, taking account of the requisite lag structure.

Finally, data on production inputs and outputs at the identified biotechnology firms

were drawn from the Bureau of Census and matched with the research outputs at the

same firms.
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5.1 Research Outputs

In this study, patents, and published scientific articles cited by those patents,

are used as our respective measures of applied biotechnology and basic bioscience

research outputs.

5.1.1 Patents

5.1.1.1 Search Strategy and Filter

In order to obtain an appropriate measure of agricultural biotechnology patents,

we need a consistent definition of agricultural biotechnology. The USDA defines ag-

biotech as "a collection of scientific techniques, including genetic engineering, that are

used to create, improve, or modify plants, animals, and microorganisms for human

benefit." This definition seems to include both conventional breeding and modem

genetic engineering techniques. In this study I use "biotechnology" in the narrower

sense of referring only to molecular genetic techniques, and define agricultural

biotechnology as such techniques used to alter agricultural and food products. The

definition excludes products or processes with no real direct connection to agriculture,

such as plants and animals genetically modified primarily for treating human or pet

diseases or for research purposes, or employed primarily as pets.

With this definition in mind, we want to collect only biotechnology patents

specifically related to agriculture. Although the U.S. Patent Office's database can be

searched by year, name of awarded firm, patent classification, keyword, and other

criteria, the search system is inadequate by itself for determining which patents relate
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to agricultural biotechnology. Some innovations employing genetic engineering are

not listed under the 'biotechnology' classification and cannot be identified with that

keyword. Other innovations relating to agriculture are not listed as "agricultural."

Still other innovations with "agriculture" as keyword are for pharmaceutical instead of

agricultural use.

In collaboration with CHI Research, I developed a filter for drawing

agricultural biotechnology utility patents from the U.S. Patent Office Database. To

identify biotechnology patents, the filter uses certain 'biotech' classifications as well

as broad keywords referring to gene-related technologies. It then chooses from them

the innovations designated broadly as "agricultural," and specifically those under

given agricultural product keywords. Finally, those for human pharmaceutical use,

research purposes, or pets are excluded by manual culling. The filter specification

takes the following form:

Step 1. Find patents under explicit biotechnology International Patent

Classification (IPC) classifications, namely C12N 15/02 to 15/90.

Step 2. Find patents with transgenic or recombinant DNA keywords in titles,

abstracts or claims-

transgenic, gene* near4 (transf, modiP, expression), DNA near4 (transf, modif',

recombinant), engineer* near4 (gene*, protein) 1

1 Symbols in the filter specification are defmed as follows:
',': logical 'or', for example, 'livestock, cattle' means 'livestock' or 'cattle'.
'?': single character wild card, for example, 'animal?' refers to 'animal' or 'animals'.
'??': double characters wild card, for example, 'fish??' refers to 'fish' or 'fished'.
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Step 3. Combine results from Steps 1 and 2 and eliminate duplicates.

Step 4. Find patents from Step 3 with agricultural keywords in titles, abstracts,

or claims:

animal?, livestock, cattle, ruminant?, bovine?, ungulat*, steer?, heifer?, beef, lamb,

sheep, goat?, swine, pig?, pork, poultry, avian?, chicken?, goose, geese, duck?,

turkey?, fowl, fish??, agricult*, plant?, food, foodstuff?, foodcrop?, crop?, grain?,

cereal?, corn, maize, wheat, barley, rye, oat?, spelt, alfalfa, vegetab*, rape, rapeseed,

sorgum, millet, soy?, soybean?, legum*, bean?, tomat*, potato*, squash,

onion?, leaf*, fruit?, apple?, peach??, pear?; cherr*, cotton, rice

Step 5. Identify patents from Step 4 which contain the following human drug

or therapy terms, or other strong hints of being inelevant to agricultural

biotechnology:

model near5 human*, model near5 non-human, model near5 animal*, human near5

blood, human nearS hemoglob*, human near5 antibod*, human near5 antigen*, human

near5 encod*, human near5 TRK*,

laboratory adj 1 animal*, monkey*, rat, rats, mouse, mice, dog, dogs, cat, cats, feline*,

canine*, transgenic near5 packag*, transgenic nearS non-human, animal near5 study,

(Continued)
*: wild card not restricted to any particular number of characters, for example, 'agricult' refers

to any words containing it, such as 'agriculture' and 'agricultural'.
'near 4': within 4 words, either direction, for example, 'gene near 4 expression' refers to 'gene'

and 'expression' wherever there are at most four words between these two, such as"
'expression of gene.'



animal near5 studies, cancer*, allerg*, alzheimer*, skin nearS disorder*, insulin,

diabet*, islet*

Step 6: Examine patent titles and abstracts found in Step 5 to see if any are

relevant to agbiotech. The remainder are non-ag-biotech patents.

Step 7: Delete from patents found in Step 4 the non-ag-biotech patents found

in Step 6.

Patents remaining after Step 7 form the basis of our final patent database.

Some believe the U.S. Patent Office Classification (USPOC) is more precise,

as it is updated more frequently and has more categories at the subclass level than

have the International Patent Classification (IPC) and other patent classification

systems. However, as we need a classification for biotechnology that is consistent

only over our study period, and the present study is conducted at a fairly aggregate

classification level, the IPC is not significantly less 'precise' than is the USPOC. On

the other hand, the IPC is much better organized for grouping subject matter in a

hierarchical fashion and is considered by CHI to be better arranged by industry area

rather than by invention art. Thus, CEll Research chooses to base its database

categories on the first-given IPC (a patent is usually assigned to several IPC classes

and the first one is the main assignment) to avoid misassignments of patents to

industry areas (CHI Research). I originally intended to include ag-biotech patents

recorded in the European Patent Office database, but later found this infeasible as CHI

Research had not yet distinguished scientific from nonscientific references in EPO

patents in recent years. Nevertheless, using the IPC allows us to apply the same filter
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consistently to both the U.S. and European Patent Office databases. It will thus enable

us to extend the study to include European-registered patents when the opportunity

arrives. For these reasons, I choose to use the International Patent Classification for

filtering purposes in the present research.

Group C12N 15 in the JPC, entitled 'mutation or genetic engineering', 'covers

processes wherein there is a modification of the genetic material which would not

normally occur in nature without intervention of man and which produce a change in

the gene structure which is passed on to succeeding generations.' (7th Edition of IPC).

Except for subgroup C12N 15/0 1 dealing with mutation, all other subgroups within

C12N 15, namely C12N 15/02 through C12N 15/90, refer to biotechnology.

According to the IPC manual, subgroups Cl2N 15/02 - 08 refer to 'the preparation of

hybrid cells by fusion of two or more cells', and subgroups C12N 15/09-90 refer to

'recombinant DNA-technology'. (For more information about IPC classes, see the 7th

edition of the IPC, available online at http://classifications.wipo.int/fulltext/new_ipc/

index.htm.) While the title of the first of these two categories seems not to include

gene modification technology, most patents in this category carry transgenic or

recombinant DNA keywords in their titles and abstracts, as detected in Step 2. Hence,

we retain subgroups C12N 15/02 08 of this first category in our filter.

In USPOC class 935, defined as 'genetic engineering: recombinant DNA

technology, hybrid or fused cell technology, and manipulations of nucleic acids', is the

explicit biotechnology class. There is significant overlap between USPOC class 935

and IPC group Cl2N 15, although they don't correspond to each other exactly.
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In some IPC classes such as C12N 5 (undifferentiated human,

animal or plant cells, tissues), some patents may be biotechnological but are not

assigned into any explicit biotechnology IPC groups. In order to include those patents,

we use certain keywords referring to transgenic or recombinant DNA in addition to

classifications that are explicitly biotechnological.

After all the patents considered to be biotechnological were drawn, selected

agricultural keywords were employed to restrict the set to those directly connected to

agriculture. These keywords include broad ones such as 'agriculture', 'food', 'crop',

'animal', and 'livestock', as well as the names of specific agricultural commodities.

As a check of the completeness of this keyword list, I searched patents containing the

names of commodities not included in the list. For example, I checked all patents in

1998, 1999, and 2000 for those containing the term 'grape', 'grapes', 'grapevine', or

'grapevines'. Among the 76 'grape*' patents, just four involve transgenic plants or

recombinant DNA; all four of these had been identified in our filter even though we

had not explicitly included the term 'grape*' in it. They had been captured because

they had fallen into the correct biotech IPC class, or contained the transgenic or rDNA

keywords, and included the term 'plant'. This reassures us that our agricultural

keyword list includes most or all innovations that have been agricultural.

Noting that the patents returned in the above steps may, however, include

some that are not specific to agriculture, I next employed selected terms to exclude

them. The excluded categories are: (1) transgenic plants and animals that are

primarily for use in humans or on human diseases, e.g., 'human antibody', 'human
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antigen', and 'diabetes'; (2) any animals or plants used entirely for research purposes,

e.g., 'mouse', 'rat', and 'monkey'; (3) any animals primarily designated as pets, e.g.,

'dog' and 'cat'. As some of the patents so excluded might in fact be relevant to ag-

biotech, a manual culling process is undertaken by reading through the excluded

patents' titles and abstracts and forming a judgment about which ones are indeed non-

ag-biotech. I followed this approach because a manual examination of patents

assigned to certain medical and pharmaceutical classes such as A61K revealed that the

majority of them are clearly agriculturally related.

Deleting the non-ag-biotech patents in this fashion, we are left with a selected

set of agricultural biotechnology patents. In the final step of our search strategy, I

examine the "neighbors" of those in the selected set, defined as those directly cited by

or directly citing the patents in the selected set, except for those in the selected set

themselves. From among these neighbors, I identify those containing any agricultural

keyword included in the above-defined filter. I then examine the titles, abstracts, and

classifications of the so identified patents to determine whether they should be added

to the selected set. If more patents are added in this way, our filter is effectively

supplemented and our final patent set is more complete. It is, at the same time, a good

test of our filter's robustness. Were only a few patents so added, the filter would

presumably be fairly robust and complete. Adding such patents to the selected set

gives us the final set of agricultural biotechnology patents for our study.



5.1.1.2 Variables

Using the search strategy and filter specified in the previous section, I draw a

set of 1,746 agricultural biotechnology patents issued between 1985 and August 2000

from the U.S. Patent Office database. An ag-biotech patent document is given for

illustration in Appendix B. For each of these patents, the information on the front

pages of the patent document is observed and summarized by the following variables:

Patent number assigned by the Patent Office

Application date

Issue date

Title of the patent

Abstract of the patent

USPOC classes assigned by the Patent Office and the position of each class

in the list of USPOC classes for this patent.

IPC classes assigned by the Patent Office and the position of each class

in the list of JPC classes for this patent.

Assignee names at the time of patent issuance, the position of each

assignee in the list of assignees for this patent, and the current corporate

parent names1 of each assignee, as unified by CIII.

118

1A subsidiary owned more than 50% by a parent is counted as wholly owned by the parent. CHI keeps
up-to-date track of the organizational and name changes of the numerous companies and joint ventures
that are awarded patents, including parent-subsidiary relationships, mergers, divestitures, and patent re-
assignments.



Citing patents are recorded as of January 2001.
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Inventor names, the position of each inventor in the list of inventors of

this patent, and each inventor's city, state, and country.

Number of claims

Number of patents in the U.S. and European Patent Office (EPO) databases

citing this patent, and the patent number, application date, and issue date of

each citing patent.1

(1) Number of patents in the U.S. and EPO databases cited by this patent, and

the patent number, application date, and issue date of each cited patent.

(m)Patent number, issue year, and issue country of each of the foreign (non-

U.S. or EPO) patents cited by this patent.

Some of these variables, such as patent number, title, abstract, and application

and issue dates, have single values on a given patent, whereas other variables, such as

inventors, assignees, patent classifications, and citing and cited patents, have multiple

values. For the sake of avoidmg repetition of information about the same patent on a

simple spreadsheet, the data on the listed variables are saved in several tables linked

by the patent numbers in a relational database. The relationships among those tables

are presented in figure 5.1. A description of the tables and their component data fields

can be found in Appendix C.



Figure 5.1 Relationship Among Tables in the Relational Agbiotech Patent and Bioscience Paper Database
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5.1.2 Scientific Papers

5.1.2.1 Identification of Scientific Papers

Apart from the information discussed in the previous section, the front pages of

each patent document contain a bibliographic list of non-patent references consisting

of scientific and nonscientific publications. CHI reports that approximately two

million publications are referenced in the two million biotech and non-biotech U.S.

patent documents that it has observed. Since one million of these references were to

nonscientific material, such as to congressional hearings and newspapers, only one-

half of all references have been to scientific papers journal articles or papers

presented at professional meetings. CIII Research has discriminated between the

scientific and the nonscientific references. For example, among the ten non-patent

references listed on the front pages of a certain patent, CHI can identify eight as

scientific papers, six of which have full bibliographic information. If only five of

those six are found in the library, these five are identified as scientific papers cited by

the given patent.

5.1.2.2 Variables

In our selected set of 1,746 agricultural biotechnology patents, scientific and

nonscientific publications are cited 43,918 times. Each patent is linked to scientific

papers cited by this patent by pairing the patent number and the paper locators
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assigned by CHI.' A total of 30,792 of such pairings represent all linkages that can be

verified between the 1,746 ag-biotech patents and the 13,325 scientific papers cited by

such patents in a one-to-many correspondence. It should be noted that one paper can

also be cited by more than one patent. Consequently, the linkage from a paper to its

citing patents is also a one-to-many relationship.

For each scientific paper, we have observed the following information:

Paper locator

Journal name abbreviation

Full journal name

Publication year

Volume ofjournal

Page

Abbreviated names of authors

CHI Research then matches these data to the Institute of Science Information's

(ISI) Science Citation Index (SCI) to identify the institutions at which the scientists

worked at time of publication. SCI lists only the addresses of authors' affiliations at

the department or school level, not at the level of the home institution of each separate

author. This creates problems in assigning weights to different author institutions

when multiple authorships are listed on a paper.

Consider, for example, a case in which a bioscience article cited by an

agricultural biotech patent is authored by three scientists, the first and third being

CHI Research assigns a unique paper locator to each paper.
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affiliated with the Department of Biochemistry at Michigan State University and the

second with the Department of Molecular Biology and Medical School at Cornell

University. If we give weight to each author institution based on the proportion of the

number of authors associated with that institution to the total number of authors in the

paper, a weight of 2/3 should be assigned to Michigan State University and 1/3 to

Cornell University. In the Science Citation Index, however, the paper's author

affiliations will be listed as three addresses: Department of Biochemistry at Michigan

State University, Department of Molecular Biology at Cornell University, and Medical

School at Cornell University. Hence, under a weighting system based on the mentions

of each institution in the list of authors' affiliation addresses, Michigan State

University and Cornell University will instead be given 1/3 and 2/3 credits for this

paper, respectively. Although the first weighting method reflects more precisely the

contribution of each institution to the given paper, we can follow only the second

method, as SCI is the solely complete database providing information on author

institutions in scientific literature.

CHI Research develops two approaches for assigning credits to each author

institution. In the first approach, a fraction of one credit is assigned to an author

institution of a given paper, as discussed previously. The credit assigned this way is

called the "fractional count." In the other approach, one credit, or a "whole count," is

given to each author institution in a given paper. Using this approach, Michigan State

University and Cornell University will receive one credit each in the above example.
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It was found that among the 13,325 scientific papers cited by our selected set

of 1,746 agricultural biotechnology patents, a subset of 8,099 were from at least one

U.S. institution and published between 1973 and 1997. The cited papers published in

1998, 1999, and 2000 were not included since when CHI prepared the database for

this study, it had not yet cleaned the citations to those papers in patents issued in 2000.

However, only a very few papers were missed by this process considering the lag

between the publication date of a cited paper and the application date of the citing

patent, and the lag between the patent's application and issue dates, which usually are

more than 18 months and a year, respectively. For example, in patents issued in 1999

in our dataset, no citations were to papers published in 1998 or 1999, and less than 1%

of the citations were to papers published in 1997. Similarly, we expect the number of

citations from patents issued in 2000 to papers published in 1999 and 2000 to be

extremely low or zero, and citations to papers published in 1998 to account for less

than 1% of total paper citations.

In each of the 8,099 scientific papers with at least one U.S. author institution,

the following variables have been identified:

Paper locator

Author institution names

Position of each institution in the list of author institution names

Total count of author institutions' addresses at department or school levels

Number of addresses associated with each institution for this paper

Fractional count of each institution (f e / d < 1)



Data on the paper side were saved in several tables linked by the paper

locators. These paper-related tables were then linked with the patent-related tables

discussed in section 5.1.2 by pairing patent numbers and paper locators in an index

table. Summaries of the paper-related tables and relationships among the various

patent-related and paper-related tables are illustrated in figure 5.1. Description of

those tables and of their component data fields is given in Appendix C.

5.2 Research Inputs

Data on research input allocations and other characteristics of the identified

patent assignees and paper author institutions come from a number of sources,

including the National Science Foundation (NSF), the National Center for Education

Statistics (NCES) of the U.S. Department of Education, the Association of University

Technology Managers (AUTM), the National Research Council (NRC), the Gourman

Report of Graduate Programs, the National Association of State Universities and Land

Grant Colleges, and the Bureau of Census. Patent assignees and scientific paper

author institutions identified in our patent and paper datasets, respectively, fall into

five sectors: universities and colleges, Federally Financed Research and Development

Centers (FFRDCs), nonprofit institutions, government agencies, and private finns, all

except the last of which are not profit-making organizations. Data sources and data

fields differ by sector, and the detailed data discussion below refers only to the

university and private firm sectors. Descriptions of data in the other three sectors are

given in Appendix D.
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5.2.1 Research Inputs at Universities and Colleges

Universities and colleges are institutions of higher education engaged primarily

in providing at least 2 years of college-level study leading toward a degree. In this

section, university and college data are discussed according to source.

5.2.1.1 National Science Foundation

Data on research inputs at universities and colleges are, for the most part,

available from the WebCASPAR database of the National Science Foundation. They

include information by individual university or college, as obtained from a number of

surveys described below. The first four of these surveys are conducted by NSF and

the last by the NCES of the U.S. Department of Education.

The Survey of Research and Development Expenditures at Universities and

Colleges (SRDEUC) is the primary source of information on separately budgeted

R&D expenditures within U.S. academia. It has been conducted, annually since fiscal

year 1972, in the target population of institutions that have doctoral or master's

programs in the sciences or engineering and that perform at least $150,000 worth of

separately budgeted R&D each year. The FY 1978 survey employed a different

population and different questions than in preceding or subsequent surveys, so that

information in that year lacks comparability with other years. However, FY 1978 data

still will be included in our empirical analysis in order to render the time series

complete. The key variables reported in SRDEUC include academic institution, R&D

expenditures, research equipment expenditures, field of science and engineering,
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sources of funds (federal, state and local, industry, institutional, and other) and capital

expenditures.

The Survey of Federal Science and Engineering Support to Universities,

Colleges, and Nonprofit Institutions is the only comprehensive source of data on

federal science and engineering funding to individual academic and nonprofit

institutions. It has been conducted annually since 1965 and was expanded in 1971 to

include information on science and engineering (S&E) fields. Universities and

colleges have been covered in every survey year, while coverage of other sectors, such

as FFRDCs and non-profit organizations, in this survey have changed. The target

population consists of as many as 21 federal agencies, which together incur virtually

all obligations for federally financed academic R&D. Key variables included in the

survey are academic institution, federal agency, obligation for S&E by obligating

agency, performer of the S&E work, and type of activity (e.g., R&D, R&D plant, and

S&E instructional facilities).

The Survey of Federal Funds for Research and Development provides

information about federal funding for R&D in the United States. It has been

conducted annually since the early 1950's, and the information included in this survey

has been fairly stable since 1973. The survey's target population consists of all federal

agencies, and in some cases some subdivisions of agencies, which conduct research

and development programs. The following key variables are included: federal agency,

federal obligations and outlays for R&D, field of science and engineering, performer
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(type of orgamzation doing work), and character of work (basic research, applied

research, and development).

The Survey of Graduate Students and Postdoctorates in Science and

Engineering collects data on the number and characteristics of graduate students and

postdoctorates in all institutions offering graduate degree programs in a science or

engineering field, including branch campuses, affiliated research centers, and

separately organized components such as medical schools. This annual survey was

first conducted in 1966 among a limited number of doctorate-granting institutions, and

was expanded since 1975 to include all institutions known to have programs leading to

the master's or doctorate degrees in science and engineering. Although NSF has

attempted to maintain consistent trend data, some modifications have been made in the

data collection to respond to changing issues over the past 25 years. Key variables

reported in this survey are academic institution, number of graduate students and

postdoctorates, field of study, mechanism of financial support (e.g., fellowship,

research assistantship, etc.), primary source of financial support (e.g., NSF, Nifi,

USDA, etc.), enrollment status (full-time versus part-time), citizenship, and sex.

The Integrated Postsecondary Education Data System (IPEDS) is an integrated

system of surveys conducted by the NCBS to collect inlonnation on the faculty,

students, and characteristics of all primary providers of postsecondary education.

Prior to IPEDS, some of the same information had been collected in the Higher

Education General Information Survey (HEGIS). These surveys have been conducted

annually since 1965 and are targeted at all accredited 2- and 4-year postsecondary
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educational institutions in the United States. Key variables include academic

institution, faculty numbers and average salary, master's and doctoral degrees

awarded, enrollment, tuition, and financial statistics.

Some of the data in the WebCASPAR database are available only by

individual university or college, while other data are further broken down into science

and engineering fields. Agricultural biotechnology research and bioscience research

facilitating agricultural biotech research fall into three fields in WebCASPAR:

agricultural, biological, and medical sciences, all listed under the life science category.

However, biotechnology research constitutes only part of these three fields. For

example, landscape architecture in agricultural science and public health in medical

science do not include biotechnology-related research. Given the disaggregated level

of our data on research outputs, we ideally would like to match input and output data

such that data on inputs to research projects correspond to the outputs produced by

those same inputs. However, input data divided into agricultural, biological, and

medical research are the most disaggregate form readily available to us. Under the

limitations of our data sources, these data provide the best approximations to research

input measures at the institutions of interest in our study. Other data at the institution

level can be used to capture the fixed factors and institutional characteristics.

The NSF's WebCASPAR database provides annual data on the following

variables, broken down by S&E field at individual universities or colleges:

Total R&D expenditures

Federally financed R&D expenditures



Current total research equipment expenditures

Current federally financed research equipment expenditures

Total capital expenditures

Federally financed capital expenditures

Number of graduate students

Number of postdoctorates

Number of Master's degrees awarded

Number of Ph.D. degrees awarded

Variables (a) and (b) are available annually from 1973 to 1998, (c) and

(d) annually from 1981 to 1999, (e) and (f) annually from 1972 to 1989, and (g)

through (j) annually from 1972 to 1998.

WebCASPAR includes annual data on the following variables at the

institutional (individual university or college) level only:

R&D expenditures by financing source (e.g., federal government, state

and local government, industry, institution, and others)

Federal obligations for S&E by type of activity (e.g., R&D, R&D plant,

instruction facilities, fellowships, general support for S&E, and other S&E

support) from each obligating federal government agency

Obligations are the amounts for orders placed, contracts awarded, services received, and similar
transactions during a given period, regardless of when the funds were appropriated and when future
payment of money is required. Obligations differ from expenditures in that funds allocated by federal
agencies during one fiscal year may be spent by the recipient institution either partially or entirely
during one or more subsequent years.
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Number of faculty members by academic rank (e.g., full professor,

associate professor, assistant professor, lecturer, and instructor)

Number of tenured faculty by academic rank

Total faculty salary outlay and average faculty salary by academic rank

Opening fall enrollment by enrollment level (undergraduate, graduate, first

professional) and enrollment status (full-time versus part-time)

Tuition by enrollment level and tuition type (e.g., in-state, out-state, and

in-district)

Items (a), (b) through (e), and (f) through (g) are available from 1973 to 1998,

1971 to 1998, and 1967 to 1997, respectively.

Apart from data by individual university or college in the WebCASPAR

database, other data aggregated across universities and colleges are provided on an

annual basis in some NSF report series, such as in "Academic Research and

Development Expenditures" and "Federal Funds for Research and Development."

These data items include:

Total R&D expenditures by character of work (i.e., basic research,

applied research, and development 1)

Federally financed R&D expenditures by character of work

'NSF defmes research as systematic study directed toward fuller knowledge or understanding of the
subject studied. Research is classified as either basic or applied, according to the objectives of the
investigator. Basic research is directed toward an increase of knowledge only, whereas in the applied
research, the primary aim of the investigator is a specific application of the new knowledge.
Development refers to, according to the NSF, systematic use of the knowledge or understanding gained
from research, directed toward the production of useful materials, devices, systems, or methods,
including design and development of prototypes and processes.
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(c) Federal obligations for total research, basic research, and applied research

by field of science and engineering (e.g., agricultural, biological, and

medical sciences) for each obligating federal government agency (e.g.,

USDA, NIH, NSF, etc.)

These three data items are reported for the periods 1953 to 1998, 1972 to 1998,

and 1973 to 2000, respectively. They can be used in conjunction with WebCASPAR

data to compute the proportions of basic and applied research in total R&D

expenditures, or federal obligations in the life sciences at individual universities or

colleges.

5.2.1.2 National Center for Education Statistics, U.S. Department of

Education

The following information on an individual university's location and

characteristics is available from the Institutional Characteristics Data Files in the

Integrated Postsecondary Education Data System (IPEDS), which is maintained by the

NCES of the U.S. Department of Education:

Institution name

Post office state abbreviation code

County name

City location of institution

Institution street address

Zip code
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Bureau of Economic Analysis (BEA) region code (e.g., 01 - New England,

02 Mid East, 03 - Great Lakes, 04 Plains, 05 - Southeast, 06 -

Southwest, 07 Rocky Mountains, 08 - Far West, and 09 Outlying

Areas)

Degree of Urbanization (i.e., large city, mid-size city, urban fringe of large

city, urban fringe of mid-size city, large town, small town, and rural area

designated by the Census Bureau)

Control of institution (e.g., public, private nonprofit, and private for-

profit)

Carnegie Foundation classification (e.g., research university, doctoral

university, master's university, specialized institution.)

Highest degree offered

(1) Presence or absence of hospital

(m) Whether or not a medical degree

These variables do not change much over time and can be used to develop

measures of institutional fixed factors.

5.2.1.3 Association of University Technology Managers

The Association of University Technology Managers' (AUTM) Annual

Licensing Survey is the only one that gathers technology licensing data from academic

institutions. It has been conducted since 1991. The technology transfer infrastructure
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at universities and colleges can be captured by some variables in this survey, reported

on an annual basis and at the institution level. The variables include:

Licensing FTEs in technology transfer office

Licenses and options executed by licensee (i.e., start-up, small company,

and large company)

Total active licenses and options, by field (e.g., life science and physical

science)

Gross license income received, by field

Invention disclosures received

Total and new U.S. patent applications filed

U.S. patents issued

Start-up companies formed

The data are available annually from 1991 to 1999 on a sample of 130 to 180

institutions. The sample frame changes slightly across years but continues to cover

85% of the top 100 U.S. universities as ranked by research dollar volume.

5.2.1.4 Other Sources

The National Research Council (NRC) of the National Academy of Science

conducted two studies (1982 and 1993) to assess the status and quality of research-

doctorate programs in the sciences (including biological sciences, physical sciences

and mathematics, and social and behavioral sciences), in engineering, and in arts and

humanities in the United States. The 1993 study reported information on 3,634
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programs in 41 fields at 274 universities. This sample size was about 35% greater

than that included in the 1982 study. Data were collected from a number of sources,

including the Institution Coordinator Response Data, the Institute for Science

Information's (151) Science Citation Index (Sd), and the National Survey of Graduate

Faculty, in which a sample of faculty was asked to comment on the quality of

programs in their own fields. The fields of interest in the present research are those in

the biological sciences, namely biochemistry and molecular biology, cell and

developmental biology, and molecular and general genetics. The following

information is available on these three fields at individual participating universities:

Scholarly quality of program faculty (five-point scale rating, zero

signifying "not sufficient for doctoral education" and 5 signifying

"distinguished")

Program effectiveness in educating research scholars and scientists

(five-point scale rating, zero representing "not effective" and 5

representing "extremely effective")

Program ranking

Total number of faculty in the program

Percentage of faculty with federal support

Publications per faculty

Citations per faculty
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Items (a) through (e) were collected in the two study years, and items (f) and

(g) were summed over the four-year periods prior to the study years, that is, over

periods 1977 to 1981 and 1988 to 1992.

Another source of graduate program ranking is The Gourman Report, which

has been updated in 1985, 1987, 1993, and 1995, more frequently than the NRC's

report. Both agricultural and biological sciences are included in the Gourman guide,

but ratings are given only to the programs in the top-quality group in each field, i.e.,

those with a rank of 4 or above on a scale of 1 to 5. Using this value for a program

with 4 or above ranking and zero for a program ranked below 4 gives a positive rank

to the first 30-50 programs in each field and then rates all the others as equally poor.

The quality of agricultural programs at a university can be measured by summing the

ratings of this university's graduate programs in the fields of agricultural sciences,

such as animal science, horticulture, botany, and entomology. Similarly, summing the

ratings of graduate programs in the fields of biological sciences including

biochemistry, cellular and molecular biology, genetics, and microbiology gives the

quality of biological programs at that university.

The National Association of State Universities and Land Grant Colleges

(NASULGC) provides a list of land grant universities. Matching the universities in

our study with the ones in that list, we can decide whether a university is land grant or

not.

A university's research infrastructure may affect its research productivity. The

interdisciplinary biotechnology research centers at some universities may enhance
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biotech-related research by bringing scientists from different disciplines together and

facilitating communication among them. Whether such a research exists at a

particular university can be determined at the university's website.

5.2.2 Research Inputs at Private Firms

Private firms are organizations that may legally distribute net earnings to

individuals or other organizations. The primary source of information on R&D

performed by industry within the U.S. is the Survey of Industry Research and

Development (Form RD-i), sponsored by the NSF and enumerated by the Census

Bureau's Manufacturing and Construction Division. It is an annual sample survey

conducted since the early 1950s and representing all for-profit R&D-performing

companies in the nonfarm industries, either publicly or privately held. The Standard

Statistical Establishment List (SSEL), a Census Bureau's compilation containing

information on more than three million establishments' with paid employees, is the

target population from which the frame used to select the survey sample is created.

For companies with more than one establishment, data are summed to the company

level. Each company is assigned a single Standard Industrial Classification (SIC) code

at the 3-digit level based on the activity of the establishment with the highest dollar

value of payroll. Some large companies are surveyed annually. Before 1994, they

consisted of all firms with 1,000 or more employees. This criterion was changed to $1

million in R&D expenditure in the 1995 survey and to $5 million in R&D expenditure

An establishment is defined as an economic unit, at a single location, where business is conducted or
where services or industrial operations are performed.
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in the 1996 survey. Small companies have been surveyed at irregular intervals: in

1967, 1971, 1976, 1981, 1987, 1992, and 1996. Although since the survey was first

fielded, some improvements have been made in sampling, collection, processing, and

tabulation methods, the survey has covered more than 90% of industrial R&D and

provided good indicators of industry R&D spending and personnel.

Aggregate statistics from the industrial R&D survey are published in the

annual NSF report, "Research and Development in Industry at the 2- and 3-digit SIC

Industry Levels." Firm-specific information is held confidentially because of potential

disclosure of information about particular respondents, who are guaranteed anonymity

by law. Fortunately, data files with the microdata are maintained by the Census

Bureau's Center for Economic Studies (CES) and are housed at the Research Data

Center at the University of California, Berkeley, and other sites.

I accessed, for individual agricultural biotech firms, the following RD-i

information for years 1973 to 2000 from the CBS, Bureau of Census microdata files:

Total R&D expenditures

Federally financed R&D expenditures

Company financed R&D expenditures

Distribution of R&D by state

Distribution of total R&D between basic research, applied research, and

development

Total pollution abatement R&D

Employment of R&D scientists and engineers



Total employment

Sales volume

Firm's geographic location

Standard Industrial Classification (SIC) code

Items (a), (b), (i), and (j) are available annually from the large surveyed firms,

and in survey years from small firms. In non-survey years, the latter data may be

imputed. The remaining items are provided voluntarily by large firms in odd-

numbered years (except annually from 1973 to 1977) and contain a number of missing

values.

Most firms included in our study are engaged in more than agricultural

biotechnology R&D and agricultural production. For example, in its annual 10-K

form filed with the Security and Exchange Commission (SEC), Monsanto Co. reported

net sales of $3.470, $4.264, and $5.102 billion in agricultural products, and $2.323,

$2.77 1, and $3.920 billion in pharmaceutical products in years 1997, 1998, and 1999.

For companies with segment sales data available, R&D expenditures in each segment

can be approximated by allocating total R&D expenditures to each segment according

to the proportionate share of that segment in total sales. Using this approach, of the

$ 1.290 billion in total R&D expenditures at Monsanto in 1999, an estimated $729.5

million were allocated to agricultural R&D and $520.5 million to pharmaceutical

R&D.

This study could be extended to include conventional production function

relationships in which biotech firms' patents are used as intermediate inputs.
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Although I do not do so in the present dissertation, I do provide descriptions of the

production outputs, inputs, and other characteristics at biotech firms identified in our

patent and paper datasets. The descriptions are given in Appendix E.



Chapter 6: Results

Using the data discussed in Chapter 5 on agricultural biotechnology patents,

bioscience papers, and firms' and universities' research inputs and characteristics, I

now estimate the models specified in Chapter 4. I then use these estimates to

characterize the production possibility frontiers (PPFs) between the multiple outputs in

the university and firm models. Measures of returns to R&D are computed under

alternative policy settings and elasticities derived. Finally, tests are developed of the

complementarity or substitutability between basic bioscience and applied

biotechnology research.

6.1 Results of University Model Estimation

6.1.1 Parameter Estimates

The university model consists of the two equations (4.8) and (4.9), which

respectively explain the production of patent-cited bioscience articles and graduate

education. The model is estimated using the balanced, pooled, 1985-1997 time-series

cross-sectional data on 177 universities, as described earlier.

As discussed in section 4.2.1, university characteristics variables such as

Faculty, Enroll, FacSalary, LfeShare, Researchlntense, and Teachlntense, and fixed

factors such as LandGrant, MedSchool, FrivPub, and BEARegion , were initially

included in the estimation stepwise. However, the inclusion of these variables

worsens multicollinearity, extracts explanatory power from the R&D variables, and

brings little improvement in the goodness-of-fit. The fact that most of the
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characteristics and fixed factors are nonsignificant implies that, after controlling for

university R&D expenditures, numbers of post-docs, and graduate program rankings

in agricultural and biological sciences, a university's characteristics and fixed factors

such as its overall size, overall faculty quality, orientation toward life science, research

and teaching intensity, land grant status, medical school presence, public vs. private

school status, and geographical location do not significantly affect the university's

efficacy in producing agbiotech-cited scientific papers or in providing graduate

education in the agricultural and biological sciences. Hence, university characteristics

and fixed factors are excluded from the regressions reported below. The simple

correlation coefficient between aggregate private agricultural R&D expenditures

(PrivRD) and a time trend was 0.95. Of these two, only PrivRD was therefore left in

the two equations.

The annual number of agbiotech patents awarded to universities, denoted by

UnivAgPt, constitutes our measure of university applied research output. It was first

included in the university model as the third output, in exactly the same manner as

were the other two outputs, Science and Grad. Since the majority of agbiotech patents

in our database were issued after 1997, only 141 of them were awarded to the 177

universities during the study period of 1985 to 1997. The goodness-of-fit of the

regression relating universities' agbiotech patents to their R&D expenditures and other

inputs is very poor (R2 below 0.1). To simplify the estimation and construction of the

university's PPF, only a simple linear version of UnivAgPt is included in the two

estimation equations. UnivAgPt provides some idea about the relationships between
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basic and applied research and between graduate education and applied research in a

university environment.

The two equations were estimated in a number of alternative ways. First, they

were estimated separately with (a) OLS, (b) a fixed effects model, (c) a random effects

model, and (d) models in which a heteroskedasticity correction was made to the OLS

and fixed effects estimates. Then the equations were estimated jointly with SUR.

Parameter estimates, corresponding t-statistics, and the goodness-of-fit of the two

equations, using each individual estimation technique, are presented in tables 6.1 and

6.2.

In the single equation estimations, the R2s of the paper and graduate student

regressions range from 0.53 to 0.65, and from 0.74 to 0.98, respectively1. The system

weighted R2 in STIR estimation is 0.99. These reasonably high R2s indicate a fairly

close fit of the two equations to the data. In most models, marginal products of all

input are positive.

In both the science and graduate student equations, OLS and SUR produce

rather similar coefficient estimates, and SUR improves estimation efficiency only a

little. It seems, then, that no strong contemporaneous correlation exists between the

two equations' error terms, and SUR probably does not provide estimates superior to

those in OLS.

'The R2 of the random effects model of the graduate student regression was only 0.32, implying a
random effects specification fits the data poorly.



Table 6.1. Cited Bioscience Production in U.S. Universities: Parameter Estimates

Note: ** and * indicate parameters significant at 95% and 90% confidence levels, respectively.

Variable

OLS OLS

Hetero corrected

Fixed Effects Fixed Effects

Hetero corrected

Random Effects SUR

Estimate t Estimate t Estimate t Estimate Estimate t Estimate t

Intercept -0.670 -0.49 0.032 0.04 -7.436 1.96** -7.155 2.63** -0.976 -0.65 -0.3 15 -0.23

Science 0.627 28.65** 0.53 1 24.37 0.420 16.414* 0.326 13.08*4 0.558 24.39*4 0.627 28.63**

Grad 0.002 0.90 0.003 1.83 -0.008 -1.15 0.000 -0.08 0.002 0.83 0.00 1 0.39

Grad 0.5 -0.099 -1.42 -0.089 -2.40 -0.052 -0.24 -0.045 -0.50 -0.12 1 -1.41 -0.098 -1.40

AgRD 0.436 3.28** 0.193 1.65k 0.901 2.60** 0.8 15 2.194* 0.550 347** 0.490 3 .68k *

BIoRD 0.323 3.07 0.185 2.26 0.108 4.20E-0 I 0.375 2.15 0.3 10 2.44*4 0.370 3.48 * *

AgPD 0.137 4.914* 0.203 5.72** 0.13 5 337*4 0,172 3.36 0.146 4.72** 0,145

BioPD 0.013 5.724* 0.017 7.76*4 0.035 5734* 0.032 6.404* 0.016 6.004* 0.013 597*4

AgRank -0.00 1 -0.20 0.004 0.87 0.00 1 0.05 0.000 0.01 -0.003 -0.38 -0.003 -0.54

BioRank -0.008 -1.86 -0.007 2.67** -0.016 -1.77k -0.004 -0.65 -0.0 10 -0.008 1.92*

PrivAgRD 0.007 2.13 0.003 1.86k 0.016 4.30 0.004 2.45 * * 0.009 2.984* 0.007 2.11

UnivAgPt -0.647 -1.77 1.040 1.43 -0.803 2.01** 0.843 1.18 -0.664 1.77* -0.673 1.84*

0.63 0.54 0.65 0.57 0.53 0.99



Table 6.2. Graduate Education Production in U.S. Universities: Parameter Estimates

0.81 0.74 0.98 0.97 0.32 0.99

Note: ** and * indicate parameters significant at 95% and 90% confidence levels, respectively.

OLS OLS

Hetero corrected

Fixed Effects Fixed Effects

Hetero corrected

Random Effects SUR

Variable Estimate t Estimate t Estimate t Estimate t Estimate t Estimate t

Intercept 313.384 11.62** 206.512 9.27** 174.358 7,75** 168,673 7.13** 226.900 12.35** 311.280 11.54**

Science -2.759 393** -3.838 3.88** -0.982 3,82** -0.492 -1.48 -1.210 433** -3.087 4,4**

Science 0.5 15.632 379** 16.601 3.72** 3.651 2.33** 1.402 0.86 5.120 3** 15.520 377**

AgRD 48.100 18.42** 52.300 17.63** -4.981 2.13** -9.248 3** 11.000 4.84** 48.000 18.52**

B1oRD 39.300 19.05** 40.100 16.5** 9505 554** 8.900 4,93** 13.000 7.1** 39.000 19.13**

AgPD 7.677 14.38** 7.264 9.68** 1.222 4.61** 0.932 2.58** 1.820 6.34** 7.800 14.6**

BioPD 0.500 11.52** 0.783 15.55** 0.519 13.37** 0.621 14.71** 0.570 14.02** 0.510 11.8**

AgRank -1.687 _15.92** -1.412 13.13** 0.183 1.48 0.075 0.6 -0.765 6.31** -1.690 15.93**

BioRank -0.150 1.71* 0.139 1.55 -0.173 2.81** -0.117 1.91* -0.193 2.94** -0.160 1.78*

PrivAgRD -0.033 -0.51 0.065 1.53 0.319 13.73** 0.298 15.21** 0.239 9.6** -0.025 -0.38

UnivAgPt -23.448 3.12** -21.967 2.61** -14.848 _5.61** -12.458 3,75** -16.130 5,59* -22.830 3Ø4*
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A Hausman test suggests no significant misspecification in the random effects

model, and a joint F-test caimot reject the fixed effects model in either the paper or

graduate student equations. However, comparisons of parameters from the OLS, fixed

effects, and random effects models suggest it is reasonable to base our policy analysis

on the OLS estimates. The random effects estimation of the paper equations arequite

close to the OLS estimates, and while the fixed effects estimates are less close, they

still are not far from the OLS estimates. Furthermore, the addition of the university-

specific dummy variables represented by the fixed effects model raises theR2 in the

OLS specification by only 0.02, and increases also the coefficient sampling variance

of such policy-relevant variables as biological research expenditures (BioRD). In the

graduate student equation, parameter estimates are less robust to estimation choice

than they are in the paper equation. However, the random effects model provides a

particularly low R2 of 0.32 and the fixed effects model, while offering a much higher

R2, again increases the coefficient sampling variance of important input variables.

Moreover, the characteristics dummy variables representing unobserved, output-

relevant variations among universities were originally included in the model but were

largely nonsignificant, arguing against the modeling of university-specific effects.

Heteorskedasticity was detected in the OLS estimation of the paper and

graduate student equations. Unfortunately, regressions fitting the estimated error

terms against the explanatory variables did not provide a very good fit and no effective

correction could be developed. Indeed, as shown in tables 6.1 and 6.2, the

heteroskedasticity correction attempted with the data available hardly changed the
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OLS parameter estimates. In the presence of heteorskedasticity, OLS estimates are,

although not efficient, consistent, an important property considering the large sample

used in the present study. OLS estimation produces largely significant parameter

estimates. Linear and square-root expressions of graduate student numbers (Grad) are

nonsignificant in the paper equation, but the lagged dependent variable and all inputs

except AgRank are significant at the 10% level. In the graduate student equation, all

variables except PrivAgRD are significant at the 10% level. In the following, I discuss

the university model results based on the OLS estimation.

6.1.2 Production Possibility Frontier

Two portions of a production possibility frontier, based respectively on the

science and graduate student equations in the university model, are traced in figure

6.1. The right-hand side outputs, namely the number of graduate students in the

science equation and the number of patent-cited bioscience papers in the graduate

student equation, are varied in figure 6.1 from zero to one standard deviation above

the sample mean, and all inputs are held fixed at sample means.

Because of the right-skewed nature of the university sample, especially in the

bioscience paper dimension, the bulk of the universities lies near either point A or

point C. For example, the sample median and maximum of the number of cited

bioscience papers published are 0.54 and 97.2, respectively; and in 74.2% of the

observations, the published paper quantity is less than the 4.64 sample mean. The

sample median and maximum of the number of graduate students are 207 and 1445,

respectively, and in 64.5% of the observations, graduate student numbers are fewer
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than the 297 mean value. Thus, an accurate indication of the shape of the PPF is

obtained only by evaluating the paper equation at rather low graduate student

numbers, and the graduate student equation at a rather low bioscience output. If

instead the equations are evaluated at high levels of the opposing outputs, they will

pass through a sample region in which few or no observations are found, and

consequently be poorly indicative of PPF position or shape.

As discussed in section 4.6, a generalized PPF shape cannot be estimated by a

single estimable regression. Alternatively, the joint set of the two PPFs based on two

separate regressions can approximate a single "grand-technology" of universities'

production of bioscience papers and graduate students. In figure 6.1, the portions

from point A to point B and from point C to point B comprise the grand-PPF of the

university model, representing various combinations of the two outputs that a science-

or graduate-specializing university, respectively, can produce using the sample-mean

input levels. Because this single PPF is constructed from two separate regressions and

because our square-root functional form is not effective at approximating the

negatively sloped portion of the generalized PPF shape in the vicinity of the sample

means, a kink occurs at the intersection of the two separate PPF sections. Hence, our

estimate of the grand-PPF in the vicinity of point B is rather inaccurate. However,

since the square-root functional form provides its greatest curvature at lower outputs,

where the bulk of universities operate and where most of the curvature might occur,

our estimate of the single PPF well below point B is fairly reliable.
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The portion of the grand-PPF between points A and B best reflects the

technology of universities specializing in science. At this end of the PPF, the ratio of

science to graduate output is high. Starting from point A, one can imagine

reallocating the sample-mean input levels at a science-oriented university from science

production to graduate students. Early in this reallocation, the PPF is negatively

sloped and the two outputs are strong substitutes: graduate student production rises as

science output drops. At point A, increasing graduate student output from zero to one

leads to a reduction of 0.097 in science output. Increasing graduate student output by

an additional unit brings a 0.047 increase in science output. As reallocation proceeds,

this negatively sloped PPF becomes flatter. Graduate education is still a substitute for

science research, but at a lower rate. Eventually, education becomes rather

supplementary to science. For example, if the representative university is training 150

graduate students, the cost in cited publication output brought about by adding one

more graduate student is only 0.002.

If a university focuses only on generating cited bioscience papers and does not

provide any graduate education, it can produce 5.60 bioscience papers using the

sample-mean input quantities. As it begins to produce graduate students, fixed costs

are incurred such as lab space, computing facilities, and faculty advisors. These fixed

costs, as well as associated variable costs, must be compensated by a reduction in

expenditures that would be allocated to cited science. At low graduate student

numbers, the effect of this reduction on science output far exceeds the services these

graduate students provide toward science output, so that science output decreases. As
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the graduate student number rises, however, the marginal cost of another graduate

student initially drops. The service this additional student provides to science output

comes closer to the loss in science production induced by the reallocation of money

from science to graduate students. When the two effects on science cancel out, the

slope of the PPF will be zero, and graduate students will be perfect supplements to

bioscience papers.

Similarly, the portion between points C and B on the single PPF in figure 6.1

reflects the technology of teaching universities, where graduate student production is

the main goal and the ratio of cited publications to graduate students is low. Starting

from point C, the sample-mean fixed inputs are reallocated from graduate education to

bioscience. Between C and B, both graduate numbers and bioscience rise because the

latter is an input to the former. At point C, raising cited publication output from zero

to one per year increases the number of graduate students by 13. Further input

reallocation to science flattens the PPF's positive slope, so that complementarity

becomes weaker.

For example, raising scientific output by one, given initial output rates of one,

two, and three, respectively, increases the number of graduate students by only five,

three, and two. A university that concentrates solely on graduate education and

generates no cited bioscience papers can maintain 283 graduate students at the sample-

mean input levels.

Our results suggest that it is beneficial for this student-oriented university to

reallocate its resources toward science because both outputs then tend to rise. Modem
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bioscience research projects are not isolated from the entire research system, and

project success often stimulates related research endeavors. Moreover, lab projects

normally consist of several main steps and papers may be published as intermediate

outputs after individual steps are completed. These papers serve as inputs to graduate

education in the sense of providing research topics and tools with which graduate

students can work.

6.1.3 Optimal Allocation of R&D Expenditures and Returns to R&D

6.1.3.1 Optimal Allocation of R&D Expenditures

As discussed in section 4.7.2, the coefficients of AgPD and BioPD in the

university model reflect movements along the corresponding isocost curves. The

statistical significance of these coefficients indicates inoptimality in the allocation

between post-docs and non-post-doc inputs in the university's agriculture and biology

programs. In both paper and graduate student equation estimates, these coefficients

are significant and positive; specifically, they are 0.137 and 0.013 in the science

equation and 7.677 and 0.500 in the graduate student equation, respectively. The

implication is that neither the agricultural nor the biological R&D expenditures of the

representative university are optimally allocated between post-docs and non-post-doc

inputs, whether we are speaking of bioscience production or graduate education. In

particular, too few post-docs are employed. Indeed, holding total agricultural R&D

expenditure and all other variables fixed, a 1% increase in agricultural post-docs at the

representative university will increase bioscience and graduate education outputs by
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0.10% and 0.09%, respectively, at sample mean. Similarly, a 1% increase in post-docs

in that university's biology program will bring 0.17% and 0.11% increases,

respectively, in bioscience and graduate education outputs.

6.1.3.2 Returns to R&D

Tables 6.3 and 6.4 show the short-run arid long-nm effects of university R&D

expenditures on bioscience and graduate education under alternative policy settings.

The effects are computed, from the equations presented in section 4.7.2, in both

marginal (slope) and elasticity form. The average post-doe salary is assumed to be

$30,000/year in both the agricultural and biological sciences. All elasticities reported

in the present chapter are evaluated at sample mean input and output levels.

I will first discuss the short-run returns to R&D in university bioscience

production (top portion of table 6.3). Consider alternative scenarios in which the

representative university invests an additional $10,000,000 unit of R&D expenditures:

(al) solely in its agriculture program;

solely in its biology program; or

in a combination of these two.

The largest increase in the university's bioscience output is achieved when that money

is allocated only to post-does (horizontal movement in figure 4.2). In particular,

allocating all new R&D money to post-does increases cited bioscience output by

46.01, 4.51, and 18.45 more cited bioscience papers, given strategies (al), (a2), and

(a3), respectively. In contrast, if this additional R&D unit is allocated only to non-

post-doe inputs (vertical movement in figure 4.2), the university's cited bioscience



Table 6.3. R&D Impacts on Cited Bioscience Production in U.S. Universities:

Marginal Effects and Elasticities

Note 1. The post-doe salary is assumed to be $30,000/year in both agricultural and biological sciences.

2. All evaluations are at sample means.

Policy Setting

Short-Run

Ag Science Bio Science Ag & Bio Science

Elasticity Marginal Elasticity Marginal Elasticity Marginal

Vertical

Horizontal

Average

0.079 0.436

8.362 46.010

0.173 0.952

0.116 0.323

1.618 4.506

0.290 0.808

0.195 0.361

9.980 18.452

0.463 0.856

Policy Setting

Long-Run

Ag Science Bio Science Ag & Bio Science

Elasticity Marginal Elasticity Marginal Elasticity Marginal

Vertical

Horizontal

Average

0.213 1.170

22.418 123.350

0.464 2.551

0.310 0.865

4.338 12,080

0.778 2.167

0.523 0.967

26.756 49.470

1.242 2.296



Table 6.4. R&D Impacts on Graduate Education in U.S. Universities:

Marginal Effects and Elasticities

Note 1. The post-doc salary is assumed to be $30,000/year in both agricultural and biological sciences.

2. All evaluations are at sample means.

Policy Setting

Short-Run

Ag Science Bio Science Ag & Bio Science

Elasticity Marginal Elasticity Marginal Elasticity Marginal

Vertical

Horizontal

Average

0,139

7.548

0.223

48.100

2606.993

77.039

0,225

1.178

0.336

39.300

205.880

58.645

0.364

8.726

0.559

42.257

1012.725

64.826
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output rises by only 0.44, 0.32, and 0.36 under the three respective scenarios.

Alternatively, if the additional R&D unit is allocated between post-doc and non-post-

doc inputs proportionately to their sample-mean share in R&D expenditures (average

movement in figure 4.2), the university's bioscience output rises by 0.95, 0.81, and

0.86, respectively, namely the weighted sum of the corresponding vertical and

horizontal effects.

The strikingly high marginal returns to investment in post-docs compared to

that in non-post-doc inputs implies that agriculture and biology programs at U.S.

universities heavily underinvest in post-doctoral researchers. This is especially serious

in agricultural programs, where the marginal effect is as high as 46.01. Essentially,

utilization of post-docs is in stage I of the university production function, where the

marginal product of this input is extremely high. At sample means, post-docs account

for only 1.1% of university agricultural R&D expenditures, and for only 11.6% in

biological R&D. The important role post-docs play in a university's successful

generation of bioscientific knowledge can be explained by their professional maturity

gained in Ph.D. study, their strong incentive to publish, and their focus on research

work. It seems that, especially in their agricultural programs, U.S. universities have

not taken full advantage of post-docs' high research productivity.

Under each of the three allocation schemes between post-docs and non-post-

doc inputs in table 6.3 (vertical, horizontal, or average), we find that investing the

additional R&D dollar solely in agricultural research [scenario (al)] always brings a

higher return in its bioscience output than does investing in biology program research
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or in a combination of agriculture and biology. This is understandable because

bioscience is measured here by the number of produced papers cited in agricultural

biotecimology patents, and universities' biology programs probably produce more

papers that are uncited in agbiotech patents than agriculture programs do.

In sum, if a university is given an additional $10,000,000 in R&D funding, the

highest returns in cited bioscience papers would be attained if this money were

invested in agricultural program post-does, and the lowest returns if it were invested in

biology program non-post-doc inputs.

Short-mn elasticities reported in the top portion of table 6.3 reflect the returns

to R&D in university bioscience production. Under all three alternative assumptions

about the program in which the representative university invests its additional unit of

R&D expenditure, increasing returns to scale are observed only when that money is

allocated solely to post-does. Specifically, a 1% increase in a university's R&D in

agricultural science, biological science, or combination thereof induces, respectively, a

8.36%, 1.62%, or 9.98% increase in cited bioscience output, provided all the

additional money is allocated to post-does. If the additional money is allocated solely

to non-post-doe inputs, strongly decreasing returns to scale (0.08, 0.12, and 0.2 in the

three scenarios) predominate. If the additional R&D is distributed in proportion to the

average allocation between post-docs and non-post-doe inputs, decreasing returns to

scale, namely 0.17, 0.29, and 0.46, respectively, are also evident. Increasing returns to

scale in R&D invested in post-does reconfirms U.S. universities' incentive to

reallocate expenditure toward post-doctoral fellows.
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Although marginal effects in scenario (al) are always greater than those in (a2)

and (a3), elasticities do not necessarily follow the same pattern. Elasticities are

marginal effects multiplied by the corresponding R&D-to-output ratios

AgRD / Science, BioRD / Science, or (AgRD + BioRD) I Science. At sample mean,

BioRI is approximately twice as large as AgRD, so that all three elasticities in

scenario (a3) (namely those associated with the vertical, horizontal, and average

movements in figure 4.2) are larger than those in (al) and (a2). Hence, the largest

short-run return to R&D in university bioscience is 18.45%, achieved when the

additional R&D is invested entirely in post-docs in scenario (a3). In the same

"average-allocation" scenario, however, we might more realistically assume the

university spends the additional R&D dollar in proportion to the average allocation

between post-docs and non-post-doc inputs. In that case, a 1% increase in R&D

would bring about a 0.46% increase in university bioscience output.

Long-run measures of these marginal effects and elasticities, reported in the

bottom portion of table (6.3), are the corresponding short-run measures multiplied by

I 1(1 2), where 2 is estimated in table 6.1 to be 0.627. It is interesting that long-run

average returns to R&D remain decreasing under scenarios (al) and (a2), but become

increasing under scenario (a3). That is, if the representative university's total R&D

expenditures in agricultural and biology programs each increase by 1%, its bioscience

output increases by 1.50% provided the university allocates the increased expenditures

in such a way that the proportional share of post-docs and non-post-doc inputs in total

spending remains constant.
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Turning to the returns to R&D in university graduate education production,

presented in the top portion of table 6.4, we observe a pattern similar to that in

bioscience production. In all three scenarios (al), (a2), and (a3), a $10,000,000

increase in university R&D induces a larger increase in graduate student numbers if

the R&D increase is allocated only to post-docs than if it is allocated only to non-post-

doc inputs or to a combination of the two. The respective marginal impacts are 2607,

206, and 1012 additional graduate students under these three regimes. The much

greater marginal returns to post-docs than to non-post-doc inputs reported in table 6.4,

this time in connection with graduate education, indicate again an under-expenditure

on post-doctoral fellows in the agricultural and biology programs in U.S. universities.

Many post-docs interact daily with graduate students' laboratory experiments and

provide them with help and advice during the research process. Hence, post-docs

serve not only as a research input but as an input to graduate education.

Comparing the three scenarios in table 6.4, we find that allocating investments

solely to agricultural programs always brings a higher change in graduate student

population than does allocating investment partly to biology programs, regardless of

the allocation of this money between post-docs and non-post-doc inputs. This result

implies that the marginal cost of graduate education is lower in agricultural than in

biology programs. Agricultural programs in Land Grant universities, at least,

traditionally have been more education-oriented than have science college programs.

Because they presumably have a superior infrastructure for providing education, they

wouid presumably enjoy lower marginal costs as well.
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Returns to R&D scale in university graduate education are reflected in the

elasticities reported in table 6.4. Again, in all three scenarios (al), (a2), and (a3), that

is regardless of the allocation of expenditure between agriculture and biology

programs, increasing returns to scale occur only when the additional R&D is allocated

solely to post-doctoral fellows. Increasing the representative university's post-

doctoral expenditures by 1% in agricultural science, biological science, or both raises

graduate output by 7.55%, 1.18%, or 8.73%, respectively. Assuming the sample-mean

allocation between agricultural and biology programs is maintained, investing the

additional R&D money in post-docs alone gives the largest percentage return, namely

8.73%. If in the same scenario the university spends the additional R&D on both post-

docs and non-post-doe inputs, a 1% R&D increase would bring about only a 0.56%

increase in graduate student population.

In summary, the impacts of R&D on cited bioscience and graduate education

in U.S. universities, measured both in marginal (slope) and elasticity ternis, differ

significantly depending upon the allocation of R&D between agricultural and biology

programs and between post-does and other (faculty, equipment, and material) inputs.

Policy choices therefore have much to do with the effectiveness of R&D investment.

6.1.4 Other Elasticities

Elasticities of other variables in the university model reflect their effects on

university research and education productivities.

At sample mean input and output levels, the short-run elasticities of cited

bioscience output with respect to a university's agricultural and biology program
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rankings are -0.02% (statistically nonsignificant) and -0.17%, respectively. That is,

improvement in a university's quality ranking in those two fields reduces its

production of bioscience papers cited by agbiotech patents, holding its R&D

expenditure and other variables fixed. This result contradicts the generally held belief

that leading universities are more efficient in performing research. Instead, it suggests

that if the lower-ranked schools were provided the same amount of R&D money, they

could produce more cited bioscience publications than do the higher-ranked ones.

This can be because too much R&D expenditure is allocated to higher ranked

universities, and decreasing returns to scale in R&D prevail there. However, the result

can also be an illusion created by mismeasurement of university bioscience output.

One possible source of mismeasurement is that leading research universities focus on

higher quality research and bigger "hits", so that the raw, non-quality-weighted

scientific paper counts used in the present study downward bias the bioscience output

measures at those universities. Another possible source is that top universities focus

more on basic research which, even though of long-term value, does not have direct

applications to subsequently patented innovations. Thus, conclusions about the

greater efficiency at lower ranked universities can be made only in terms of the total

numbers of cited bioscience papers they produce.

Aggregate agricultural research expenditures in the private sector have positive

and significant effects on universities' basic bioscience production. In particular, a

1% increase in private agricultural R&D leads to a 0.5% short-run increase in

university's cited bioscience output. This spillover effect from private to public sector
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has been widely recognized in the economic literature. The short-run tradeoff between

university basic bioscience and applied biotechnology is significant at the 90% level

but small in magnitude. At a given R&D expenditure, a university's cited bioscience

output drops by 0.009% when its agbiotech patent output rises by 1%. Hence, these

two research outputs are substitutes rather than complements to one another.

Turning to a representative university's graduate education production, we

observe that, everything else held constant, increasing the agricultural program

ranking by one unit reduces graduate output by 0.58%, and increasing the biological

program ranking by one reduces graduate output by 0.05%. This implies that higher-

ranked schools have a higher R&D-to-graduate-student ratio, and thus a presumably

higher average cost of graduate education. Again, the quality variation across

universities' graduate educations is not captured in our graduate output measure,

namely the total number of Masters and Ph.D. students in agricultural and biological

sciences). Although highly ranked programs attract students, their admission

standards are also unusually high and they restrict their graduate student populations

to maintain quality. Moreover, highly ranked schools tend to focus on Ph.D.

education, which is more research-oriented than is Masters education and thus more

demanding in R&D funding.

A representative university's graduate output responds negatively but

nonsignificanfly to a marginal change in aggregate private-sector agricultural R&D. A

1% increase in private-sector R&D brings about a 0.04% decrease in graduate student

numbers, likely because some potential graduate program candidates are attracted by
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positions in the private sector created by these increased R&D expenditures. A shift in

a university's agenda toward applied biotech research significantly reduces its

graduate student numbers. Specifically, a 1% increase in the number of agbiotech

patents produced at a university leads to a 0.00 5% decrease in its graduate student

numbers in agricultural and biological sciences.

6.2 Results of Biotechnology Firm Model Estimation

6.2.1 Parameter Estimates

Our biotechnology firm model consists of the two equations (4.10) and (4.11),

in which a firm's patenting rates in, respectively, agricultural biotechnology and other

fields are functions of its R&D expenditures and other inputs. The model is estimated

using the unbalanced, pooled time-series cross-sectional data on 85 biotech firms from

1985 to 2000, as discussed in chapter 5. The unbalanced nature of this sample is

caused by two factors. First, many of the firms existed under one name during only

part of our study period, either because they did not exist during some of those years

or because they had been merged into or acquired by other firms. Second, the R&D

expenditures of some of the firms that did exist during particular years from 1985 to

2000 were not reported in the Census Bureau's industry R&D database. After the

observations with such missing values were excluded, 730 observations were left for

estimation purposes.

As discussed in section 4.2.2, a firm's R&D intensity, measured by the ratio of

its total R&D expenditures to its total sales (RDint) or by the ratio of its total scientist
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and engineer numbers to its total employee numbers (SEint), was initially included as

characteristics variables in our model. These two variables were, however,

nonsignificant and did not improve the goodness-of-fit of either the agbiotech or non-

agbiotech equation. The implication is that a firm's R&D intensity does not have any

significant effect on its patent production, holding constant its total R&D expenditures

and scientist and engineer force. The results reported below do not include these two

variables. A firm's size can be measured by its total sales volume (Sales) or total

employee number (Employee). Replacing either of these two variables by the other

produces almost identical parameter estimates for the remaining variables in both

equations. I will present only the results that include Sales.

The commercial firm agbiotech and non-agbiotech patent equations were, as in

the university model, estimated in a number of alternative ways. First, they were

estimated separately with (a) OLS, (b) a fixed effects model, and (c) a model in which

a heteroskedasticity correction is made to the OLS estimates. Then, the equations

were estimated jointly with STIR. Parameter estimates, their corresponding t-statistics,

and the goodness-of-fit of the two equations using each indicated estimation

technique, are presented in tables 6.5 and 6.6.

In the single-equation estimates, the R2 of the agbiotech and non-agbiotech

equations range from 0.57 to 0.77 and from 0.24 to 0.59, respectively. The system

weighted R2 in the SUR estimate is 0.47. Although the R2s in the non-agbiotech

equation are not as high as those in the agbiotech equation, most of its parameters are



Table 6.5. Agricultural Biotchnology Patent Production in Commercial Firms: Parameter Estimates

Note 1. ** and * indicate parameters significant at 95% and 90% confidence levels, respectively.

2. FirmRD, Sales, and SE are lagged three years; all other independent variables are current.

OLS OLS

Hetero corrected

Fixed Effects SUR

Variable Estimate t Estimate t Estimate t Estimate t

Intercept -6.200 4.16** -0.620 2.79** -5.660 5.O7** -6.450 4.32**

NonAgPt -4.20E-03 2.35** 1.20E-04 0.36 -1.60E-03 -1.07 -2.80E-03 -1.57

NonAgPt 0.5
0.137 374** 0.002 0.44 0.049 1.7* 0.135 3.72**

FirmRD 2.90E-03 0.73 1.02E-04 0.11 6.25E-04 0.19 1.83E-03 0.46

SE -8.40E-05 -1.38 -7.77E-07 -0.05 -2.1OE-05 -0.42 -1.1OE-04 1.76*

Scilnput 0.028 27.88** 0.059 33.69** 0.033 28.41** 0.028 27.7**

Sales -4.02E-05 -0.43 -4.24E-06 -0.34 4.25E-05 0.61 -4.08E-05 -0.43

t 0.065 4.11** 0.007 2.83** 0.059 5.01** 0.067 4.26**

R2 0.57 0.63 0.77 0,47



Table 6.6. Non-Agricultural-Biotechnology Patent Production in Commercial Firms: Parameter Estimates

Note 1, ** and * indicate parameters significant at 95% and 90% confidence levels, respectively.

2. FirmRD, Sales, and SE are lagged three years; all other independent variables are current.

OLS OLS

Hetero corrected

Fixed Effects SUR

Variable Estimate t Estimate t Estimate t Estimate t

Intercept 250.280 3.13** 214.640 375** 49.160 0.77 272.800 3.41**

AgPt -4.530 -1.52 1.810 0.7 3.470 1.3 -2.590 -0.87

AgPt°5 33.080 3.21** 4.630 0.62 -5.650 -0.63 32.440 3.15**

FirmRD 0.760 373** 2.000 6.37** -0.370 2.1** 0.740 3.64**

SE 0.018 5.62** 0.008 1.7* 0.029 11.35** 0.018 57**

Sales 5.99E-04 0.12 -l.32E-03 -0.38 -2.91E-03 -0.75 8.97E-04 0.18

t -2.410 2.81** -2.120 353** -0.210 -0.3 -2.670 3.11**

R2 0.29 0.24 0.59 0.47
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estimated with high precision. Given the constraint in data availability, our model

reflects at least part of the firms' patent production technology.

In both the agbiotech and non-agbiotech equations, the OLS and SUR

estimators produce coefficient estimates that are rather similar to one another, and

SUR does not improve estimation efficiency. That is, as found in the university

model, no strong contemporaneous correlation appears to exist between the error

terms of the two equations, and SUR does not clearly provide any advantage over

OLS. Although the fixed effects model in tables 6.5 and 6.6 cannot be rejected in a

joint F-test, most of the corresponding firm-specific effects (not shown in the table)

are nonsignificant. The fixed effects also draw explanatory power away from the

specified variables and induce the slope of FirmRD to become negative, violating

monotonicity in this input. Hence, OLS is selected in favor of SUR and of the fixed

effects model in the present study.

Heteorskedasticity is detected in the OLS estimation of both the agbiotech and

non-agbiotech equations. Correcting for it changes parameter estimates but reduces

their statistical significance. As discussed above, OLS estimates are, in the presence

of heteorskedasticity, consistent although not efficient in large samples. Overall,

statistical significance in the OLS estimates of the biotech firm model are high. In the

agbiotech equation, all variables except FirmRD, Sales, and SE are significant at the

10% level. In the non-agbiotech equation, all variables except AgPatent and Sales are

significant at the 10% level. In the following, I discuss the biotech firm model results

based on the OLS estimation.



6.2.2 Production Possibility Frontier

The two biotech firm production possibility frontiers, based on the agbiotech

and non-agbiotech patent equations respectively, are traced in figure 6.2. The

explanatory output variables, namely, the number of non-agbiotech patents in the

agbiotech equation and the number of agbiotech patents in the non-agbiotech equation,

vary from zero to one standard deviation above their respective sample means, and all

inputs are held fixed at sample means. Because the sample is right-skewed in these

two outputs, especially in the number of agbiotech patents, the bulk of the university

sample lies at the lower portion of the two PPF sections. For example, the sample

median and mean of the quantity of agbiotech patents are 0 and 0.84, respectively, and

the sample standard deviation is 2.82. The sample median and mean of the quantity of

non-agbiotech patents are 30 and 75.34, respectively, and the sample standard

deviation si 117.27. Hence, similar to the university model, our two biotech firm

regressions are more accurately evaluated at lower output levels.

Analogous to the construction of the grand PPF in the university model, the

joint set of the above two PPF sections, based on the two biotech firm equations,

approximately represent the firms' "grand-technology" in producing agbiotecb and

non-agbiotech patents. In figure 6.2, the PPF portions from A to B and from C to B

represent output combinations that a respectively agbiotech- and non-agbiotech-

oriented firm can produce with sample-mean input levels. For the same reason as in

the university model, a kink occurs at the intersection of the two PPF sections, and this
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portion of the grand PPF likely is not very accurate. But at points close to A and C,

where most of the data points lie, the figure 6.2 representation should be quite reliable.

Firms represented between A and B in figure 6.2 are those specializing in

agricultural biotechnology. Particularly near point A, the ratio of agbiotech to non-

agbiotech patent production is high. This neighborhood of the PPF is positively

sloped, so that non-agbiotech patents are complementary to agbiotech patents and thus

reallocating resources from the first to the second increases both outputs. The

complementarity initially is strong. Increasing non-agbiotech output from zero to one

leads to an increase of 0.13 in agbiotech output. As reallocation proceeds, the

positively sloped PPF becomes flatter and the complementarity becomes weaker. For

example, when the non-agbiotech patent output rises from 40 to 41, agbiotech patent

output rises by only 0.007.

A similar analysis applies to firms specializing in pharmaceutical and other

technologies. These firms are represented by the PPF section between C and B in

figure 6.2, where the ratio of agbiotech to non-agbiotech patent production is low.

Between C and B, both non-agbiotech and agbiotech patent production rises as

resources are reallocated form the former to the latter because the latter is an input to

the former. Increasing agbiotech patent quantity from zero to 0.1 raises non-agbiotech

patent production by 10. Further input reallocation toward agricultural biotechnology

weakens the complementarity between the two outputs. For example, raising

agbiotech output from 0.5 to 0.6 increases non-agbiotech patent output by only 2,

down from the 10 patents near point C.
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In summaly, agricultural and non-agricultural biotechnology are complements

to one another at both agbiotech and principally-non-agbiotech research firms.

Research and development in those two fields are often joint: activity in one may

enhance productivity in the other by providing it with research techniques, tools, and

materials, sometimes called spillovers. This is especially so because agricultural and

pharmaceutical biotechnologies are based on the same recombinant DNA principles

and share many research procedures. A new promoter developed in a company's

pharmaceutical research may be applicable to the genetic modification of a corn

variety, while contents extracted from a GM crop or livestock program might prove

useful in a human drug program.

6.2.3 Optimal Allocation of R&D Expenditures and Returns to R&D

6.2.3.1 Optimal Allocation of R&D Expenditures

As discussed in section 4.7.2, the coefficient of SE in the biotechnology firm

model can be used to test the optimality of the firm's allocation between

scientists/engineers and non-salary inputs. In the agricultural biotechnology equation,

coefficient 15 is only 8.40E5 and nonsignificantly different from zero. This might

indicate the representative firm's R&D expenditures are optimally allocated between

salary and non-salary inputs in agbiotech patent production. But the nonsignificance

may also be explained by randomness in the innovation process itself, that is by risks

in the biotechnology research process. Nevertheless, the negative sign of y may

instead imply that too many scientists and engineers are employed to minimize R&D
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costs at given output levels. In that case, augmenting this human capital input under a

fixed budget constraint would reduce agricultural biotechnology patent output.

The estimate of coefficient q,5 in the non-agbiotech equation is 0.018 and

significantly different from zero, indicating a non-cost-minimizing allocation of the

representative firm's R&D between scientists/engineers and non-salary research inputs

in non-agbiotech patent production. Indeed, holding total R&D expenditures and all

other variables fixed, a 1% increase in the number of scientists and engineers (thus

reducing non-salary inputs) increases the firm's non-agbiotech patent output by

0.31%. Commercial firms appear on average to underspend on human capital.

6.2.3.2 Returns to R&D

Impacts on the firm's agbiotech and non-agbiotech patent production of R&D

expenditures under alternative policy settings are reported in marginal and elasticity

form in table 6.7. The average corporate scientist/engineer salary is assumed here to

be $60,000/year and all elasticities are evaluated at sample means. I assess alternative

assumptions about how the firm allocates an additional unit of R&D expenditure

between its two research input types. The alternative allocations are:

(b 1) entirely on non-salary inputs;

entirely on scientists and engineers; or

on a combination of these two.



Table 6.7. R&D Impacts on Patent Production in U.S. Commercial Firms: Marginal Effects and Elasticities

Note 1. The average corporate scientist and engineer salary is assumed to be $60,000/year.

2. All evaluations are at sample means.

Policy Setting

Agricultural Biotechnology

Patent

Non-Agricultural

Biotechnology Patent

Total

Patent

Elasticity Marginal Elasticity Marginal Elasticity Marginal

Vertical 0.085 0.003 0.248 0.760 0.246 0.763

Horizontal -0.326 -0.011 1.212 3.710 1.195 3.699

Average -0.046 -0.002 0.555 1.700 0.549 1.698
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The above three scenarios correspond to the policy settings referred to as horizontal,

vertical, and average in table 6.7.

As estimates of the coefficients of the firm's R&D expenditures and scientist-

and-engineer numbers, ,1'4 and ,r5 respectively, are not significant in the agbiotech

equation, marginal effects and elasticities based on them should be interpreted with

caution. Increasing the representative firm's R&D expenditures by $10,000,000

raises its agricultural biotechnology patent output by 0.003 per year under policy (bi)

and decreases this patent output by 0.011 and 0.002 under policies (b2) and (b3).

These marginal effects are very small compared to the corresponding effects on non-

agbiotech output, consistent with the insignificance of the parameter estimates.

Returns to R&D in the firm's non-agricultural-biotechnology patent production

are positive and substantial. A $10,000,000 increase in R&D expenditures raises non-

agbiotech patent output by 0.76, 3.71, or 1.7 when the additional R&D money is

allocated respectively to non-salary inputs, to scientists and engineers, or to a

combination of them. Thus, if the firm is to spend $10,000,000 more on R&D, it is

optimal in terms of non-agbiotech output to spend it entirely on scientists and

engineers, namely on scenario (b2). Elasticities are the corresponding marginal effects

multiplied by the input-output ratio FirmRD / NonAgPt evaluated at sample means.

As table 6.7 shows, increasing returns to R&D scale prevails in scenario (b2), but

decreasing returns predominate in scenarios (hi) and (b3).

Summing the marginal R&D effects on agbiotech and non-agbiotech patent

output gives the marginal R&D effect on total patent output. As mentioned above,
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marginal effects on agbiotech output are very small compared to those on non-

agbiotech output, so that total marginal effects are almost identical to those on non-

agbiotech output. Multiplying the summed marginal effects by ratio

FirmRD / ( AgPt + NonAgPt) gives the conesponding elasticities. As agbiotech

patent output accounts, at sample means, for only 1.1% of total patent output,

elasticities of total output with respect to R&D expenditure are also very close to those

of non-agbiotech patent output.

6.2.4 Other Elasticities

Other factors affecting biotech firms' agbiotech and non-agbiotech patent

production are also included in our model. While the effects of a firm's sales volume

on its production of the two patent types are very nonsignificant, the contribution of

scientific inputs to agbiotech inventions, and the change in a firm's propensity to

patent both types of innovations, are significant.

The increase in a firm's agbiotech patent output brought about by a 1%

increase in cited scientific papers is 0.55%. This result is consistent with other

economists' findings about the positive spillovers from university research to the

private sector. Indeed, especially in the increasingly science-based biotechnology,

universities' unique capacity in basic research is essential in facilitating applied and

patentable innovations.

Holding all else constant, a representative firm's propensity to patent agbiotech

inventions increased by an average of 8% each year during the study period. h
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contrast, it's propensity to patent non-agbiotech inventions decreased by 3.2% each

year during the same period. During the last two decades, many conventional

chemical manufacturers have shifted their research and production emphasis to

biotechnology, where technological opportunities have not been as fully exploited and

where the urge to patent has become part of the industry culture.

6.3 Complementarity Between Basic Bioscience and Applied Biotechnology

Total complementarity between basic bioscience and applied biotechnology

can be computed from equation (4.55), using alternative marginal impact measures of

firm R&D on patent production and university R&D on bioscience production. These

alternative measures conespond to the alternative policy settings we have been

discussing. Substituting c19 = 0.0066 and y = 0.028 into (4.55) gives

/
d Pt Pt Science

+ 0.028
d UnivRD - FirrnRD UnivRD

where UnivRD refers alternately to the university's agricultural-program R&D only,

its biology-program R&D only, or a combination of the two; and Pt refers alternately

to the representative firm's agricultural biotechnology patent output or total patent

output.

Table 6.8 shows the complementarity measures computed using alternative

combinations of the nine short-run marginal effects on university bioscience reported

in table 6.3 and the six marginal effects on conmiercial finn patent production

0.0066 (6.1)
)
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reported in table 6.7. Corresponding measures using university long-run marginal

effects are presented in table 6.9.

If we concentrate on the firm's agricultural biotechnology patent production

only, the complementarity values in both tables are all positive, indicating the

university's basic bioscience research and the firm's applied agricultural

biotechnology research are always complements to one another. This is because the

research money reallocated from the representative firm to the representative

university has a significant positive effect on the university's bioscience output,

whereas the reduction in the firm's R&D has no significant impact on its agbiotech

patent production.

If we now expand our attention in tables 6.8 and 6.9 to total patent output,

including that in pharmaceutical and other non-agricultural biotechnology, the

incidence of complernentarity between science and technology falls In the short run

(table 6.8), 15 of the 27 values shown are negative, indicating substitutability between

basic science and applied technology. In the long run (table 6.9), however, 18 of the

27 values are positive, suggesting that complementarity is quite high even in non-

agricultural research.



Table 68. Total Complementarity Between Basic and Applied Research,
Assuming Short-Run Effects of Basic Research

Agbiotech Patent Total Patent
Vertical Horizontal Average Vertical Horizontal Average

Vertical 0.007 0.021 0.011 -0.359 -3.295 -1.294

Ag & Bio Science Horizontal 0.514 0.528 0.518 19.904 16.968 18.968

Average 0.021 0.035 0.025 0.196 -2.740 -0.739

Vertical 0.009 0.023 0.014 -0.274 -3.210 -1.210
Ag Science Horizontal 1.285 1.299 1.290 50.768 47.832 49.833

Average 0.017 0.038 0.028 0.303 -2.633 -0.632

Vertical 0.006 0.020 0.010 -0.402 -3.338 -1.337
Bio Science Horizontal 0.123 0.137 0.128 4.283 1.347 3.348

Average 0.020 0.034 0,024 0.142 -2.794 -0.793



Table 6.9. Total Complementarity Between Basic and Applied Research,
Assuming Long-Run Effects of Basic Research

Agbiotech Patent Total Patent

Vertical Horizontal Average Vertical Horizontal Average

Vertical 0.024 0.038 0.028 0.320 -2.616 -0.615

Ag&Bio Science Horizontal 1,382 1.396 1.387 54.643 51.707 53.708

Average 0.061 0.075 0.066 1.809 -1.127 0.873

Vertical 0.030 0.044 0.034 0.547 -2.389 -0.388

Ag Science Horizontal 3.451 3.465 3.455 137.389 134.453 136.454

Average 0.042 0.082 0.073 2.095 -0.841 1.159

Vertical 0.021 0.035 0.026 0.205 -2.731 -0.730

Bio Science Horizontal 0.335 0.349 0.340 12.766 9.830 11.831

Average 0.058 0.072 0.062 1.664 -1.272 0.729



Chapter 7: Conclusions

Since the first wide-scale planting of GM crops in 1996, agricultural

biotechnology has been adopted at a rapid rate in the United States and is profoundly

reshaping the agricultural research sector. Broadly speaking, universities continue to

focus on basic bioscience and commercial firms on applied biotechnology. Yet

through the patenting process, both universities and firms fmd themselves in an

increasingly privatized setting. More importantly, the increasingly science-based

nature of biotechnology is providing an incentive for a closer working relationship

between basic and applied research and between university and firm, and

collaborations between the two have risen substantially. The collaboration ranges

from research funding and scientist training to information and gene sequence

exchange, material and equipment transfer, intellectual property licensing, and joint

research endeavors. In the present dissertation, I have developed and analyzed a

unique data set linking university bioscience with commercial agricultural

biotechnology. My goal has been to characterize the impacts which each have on the

other; more particularly, to specify and estimate the knowledge production

relationships whereby science and technology interact to generate useful innovations.

The study's university model provides insights into the bioscience research and

agricultural and biological graduate programs in U.S. universities. Results suggest

that bioscience and graduate education are complements for one another at student-

oriented universities, and slight substitutes for one another at research-oriented

universities. Any shift in a university's emphasis toward applied, patentable

180
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agricultural biotechnology research draws scarce resources away from basic

bioscience research and graduate education, reducing these latter two services.

Surprisingly, highly ranked universities are less efficient in producing cited bioscience

and graduate students than are their lower-ranked counterparts. This may, perhaps, be

related to the non-quality-weighted manner in which science and education are

deliberately measured in this study. However, the result is not unreasonable: if highly

ranked universities produce more cited bioscience and graduate students than do

others, it is not necessarily because they are more efficient in using their resources but

simply because they acquire more of these resources. Aggregate private-sector

agricultural R&D has a significant positive spillover effect on the representative

university's basic bioscience research but a nonsignificant effect on its agricultural and

biological graduate education programs.

R&D expenditures in both agriculture and biology programs at U.S.

universities appear to be inoptimally allocated between post-doctoral fellows and non-

post-doctoral inputs. In particular, universities heavily under-invest in post-doctoral

fellows, and greater returns to R&D would be attained if additional R&D funding

were invested in post-docs. Allocating another R&D dollar solely to the university's

agricultural programs brings a higher increase in cited bioscience papers and in

graduate student enrollments than does allocating that dollar solely to biology

programs or to a combination of agriculture and biology.

Results of the commercial-firm biotechnology model suggest that, both in

agbiotech-only finns and in those with substantial non-agbiotech (primarily
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pharmaceutical) research, agricultural and non-agricultural biotechnology are

complements to one another. Complementarities of such sort often are referred to as

within-firm spillovers. The propensity of biotech firms in our sample to patent

agricultural biotechnology inventions has significantly increased, while their

propensity to patent in pharmaceutical and other areas has dropped. By explicitly

linking, through the citation trail, universities' basic research with biotechnology

firms' applied research, I find that university bioscience research plays an important

and essential role in facilitating patentable agricultural biotechnology innovations.

Research and development in firms' agricultural biotechnology programs is, on

average, nearly optimally allocated between scientists/engineers and non-salary

research inputs. However, firms appear to under-spend on scientists/engineers in their

pharmaceutical and other non-agricultural activities. Boosting a representative biotech

firm's R&D expenditures would bring only a small change in its agbiotech patent

output but a large change in its non-agbiotech patent output, especially if the increased

funds were spent entirely on scientists and engineers. Because agricultural

biotechnology patents account for only a small proportion of a representative biotech

firm's total patent portfolio, conclusions with regard to the firm's non-agbiotech

patent production apply equally well to the analysis of the firm's aggregate total patent

production.

More broadly, we are concerned with the impacts of reallocating R&D

expenditures across society at large, that is between universities and firms and

between basic bioscience and applied biotechnology. Such impacts depend on how
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universities and biotech firms allocate any additional R&D funds obtained. The

impacts also differ between agricultural and non-agricultural biotechnology research.

In agricultural biotechnology alone, basic bioscience and applied biotechnology

appear always to be complementary with one another. In pharmaceutical and other

non-agricultural research, bioscience and applied technology are either complements

or substitutes, depending upon how research monies are allocatedbetween scientist

and non-scientist inputs.

The predominantly complementary relationships identified in this research

between science and graduate education, agricultural and pharmaceutical

biotechnology, and science and technology in general, have implications for the design

of research institutions and the walls between university and firm. For example,

policies that encourage education-oriented universities to engage in more basic

bioscience research would promote these universities' educational programs as well as

contributing to technical innovation. Similarly, we have strong evidence that, on

average, agricultural biotechnology programs are pursued most effectively in

conjunction with pharmaceutical and other non-agricultural biotech programs, no

doubt because of these programs' common link with gene transfer and cell

regeneration methods.

Finally and most importantly, evidence of the complementarity between basic

bioscience and applied biotechnology suggests that productivity in each of these two

endeavors would be enhanced if communication between the two were strengthened.

Likely sources of the complementarity are the science laboratory's growing demand
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for patented materials, processes, and equipment, and the technologist's continual

need for a better understanding of molecular function. Institutions fostering improved

communication include industrial R&D parks in the vicinity of research universities,

departments that house scientists and technologists under a common roof, and short-

term assignment of scientist-technologist teams to specific projects. Tax policies may

also be designed to encourage private firms to collaborate with universities, and

government grant programs may offer priority to joint university-firm proposals.
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Appendix A: Second Approach for Deriving the Estimable Knowledge
Production Functions

Starting from the same representation of the technology of biotechnological

change given in Section 3.1.2,

a - a ,X')- (K' VU (3.1)

FU (KU fU vf L1 VU
) (3.2)

b ' b ' ' 1a ' a ,

Let us jointly maximize over (K L ) and (K , L), Ya' as the final output and rbU

as the intermediate input, while (E , E) are given exogenouly:

Max F (K' rf yu vf)
a 'a b ''

K,

+ ()L
YbU FU (K,L,K,LJa,XU)

()K; + (w1)L" EU (Al)
b b

At the optimal allocation of (Kf , L ) and (K , L) obtained from the first order

conditions of(Al), the maximized Yf and Ybu are achieved at the given level of

(Ea',E):

(Wk) (w1)
X1

E1 ' E1 ' b

\ a a
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YbU

YbU

Assume (Wk ) = (wk ) and (W1 ) = (w1). Holding these prices fixed will allow

us to eliminate them and rewrite the above two equations as

y1f = G' (El U vi)
a ' b ,A

= ru (Eu E1 xu)''b b '

Now we can find the socially optimal allocation of ( Ea' ,E ) by maximizing

as the final output, using Y as the intermediate input and (E , E) as the choice

variables. Substituting (A5) into (A4), we have

Max G (E ,-u (Eu E1 X' X1 )' b\ b' a' )'

s.t. E+E' E° (A6)

When society allocates (E , E ) optimally, the maximum of YJ can be expressed as

= H (E0,X1,XU) (A7)

Therefore, the estimable knowledge production functions (A4) and (A5)

derived with this approach are the same as those in equations (3.7) and (3.8').
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Appendix B: The Front Page of an Agricultural Biotechnology Patent

United States Patent 5,484,956
Lundquist, et al. January 16, 1996

Fertile transgenic Zea mays plant comprising heterologous DNA encoding
Bacillus thuringiensis endotoxin

Abstract
Fertile transgemc Zea mays (corn) plants which stably express heterologous DNA
which is heritable are provided along with a process for producing said plants. The
preferred process comprises the microprojectile bombardment of friable embryogenic
callus from the plant to be transformed. The process may be applicable to other
graminaceous cereal plants which have not proven stably transformable by other
techniques.
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Inventors: Lundquist; Ronald C. (Minnetonka, MN); Walters; David A.
(Bloomington, MN)

Assignee: DeKaib Genetics Corporation (DeKalb, IL)
Appl.No.: 508045
Filed: April 11, 1990
Current U.S. Class: 800/302; 536/23.71
Intern'l Class: AO1H 004/00; C12N 015/05
Field of Search: 800/200,205,230

435/172.1,172.3,240.4,240.5,240.45 536/23.71
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Parent Case Text

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No.
07/467,983, filed Jan. 22, 1990 now abandoned.

Claims

What is claimed is:

A fertile transgenic Zea mays plant of the RO generation containing heterologous
DNA encoding Bacillus thuringiensis endotoxin, wherein said DNA is expressed so
that the plant exhibits resistance to an insect, wherein said expression is not present in
said plant not containing said DNA, and wherein said DNA is transmitted through a
complete normal sexual cycle of the RO plant to the Ri generation, and wherein said

DNA is introduced into said plant by microprojectile bombardment of Zea mays callus
cells.

The transgenic plant of claim 1 wherein said DNA comprises a promoter.

The transgenic plant of claim 1 which is selected from the group consisting of field
corn, popcorn, sweet corn, flint corn and dent corn.

A seed produced by the transgenic plant of claim 1 which comprises a replication of
said heterologous DNA.

An Ri transgenic Zea mays plant derived from the plant of claim 1 wherein said Ri
plant expresses said heterologous DNA so that the Ri plant exhibits said phenotypic
characteristics.
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6. A progeny transgenic Zea mays plant derived from the plant of claim S wherein said
progeny plant expresses said heterologous DNA so that the progeny plant exhibits said
phenotypic characteristics.



Appendix C: Summary of Tables and their Component Data Fields in the
Relational Agbiotech Patent and Bioscience Paper Database
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Table Name Description and component fields

ABSTITLE Patent title and abstract:
1. Patent number
2. Patent title
3. Patent abstract

AUTH INST Author institutions listed on paper:
(note several addresses listed on a paper may resolve to a
single institution)
1. Paper locator
2. Position (one for each institution listed in paper)
3. Author institution name
4. Count (number of mentions of this institution for this

paper--may be several addresses)
5. Total count of addresses for this paper
6. Fractional count of this institution for paper (<=1)

ASSIGNEES Assignees for each patent:
1. Patent
2. Position in list of assignees for that patent
3. Assignee name
4. Name for corporate parent

CITED PATENTS Patents cited by patents in the main set:
1. Patent cited by at least one patent in main set
2. Application date of cited patent
3. Issue date of citedpatent

CITED PATENTS
PAIRS

Patents in the main set and their cited patents:
1. Patent in main set
2. Patent cited by this patent

CITING PATENTS Patents citing patents in the main set (note: both US
and EPO patents):
1. Patent citing at least one patent in main set
2. Application date of citing patent
3. Issue date of citing patent

CITING PATENTS
PAIRS

Patents in the main set and their citing patents (note:
both US and EPO patents):
I. Patent in main set
2. Patent citing this patent

FOREIGNREFS Foreign patents referenced (not EPO):
1. Patent in the main set (referencing patent)
2. Cited patent (foreign)
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3. Month
4. Year
5. Country

IND Index between each patent and each paper:
1. CHPs paper locator
2. Patent number
3. Position of nonpatent reference within patent
4. Position of subreference within non-patent reference

(almost always I)
INVENTORS Inventor names of each patent:

1. Patent
2. Position of inventor in list for this patent
3. Inventor name
4. Inventor state
5. Inventor country abbreviation
6. Inventor city

IPC International Patent Classification of the main patent
set patents:
1. Patent number
2. Position in patent
3. IPC class

NPR Nonpatent references:
1. Patent number
2. Number of nonpatent reference within patent
3. Text of nonpatent reference

PAP Each paper's information:
1. CHI paper locator
2. Journal abbreviation
3. Journal number
4. Publication year
5. Author abbreviation
6. Page
7. Volume
8. CHI internal match status

PATENTS Each patent's information:
1. Patent number (in text fonnat)
2. Application date
3. Issue date
4. Number of cites received
5. Number of references to previously-issued US and

EPO patents
6. Number of other references (non-patent references)
7. Number of claims
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PATENT
COUNTRY KEY

Translation table matches three-digit alphanumeric
country code to country name and to unified country
code (e.g. GB6 to Scotland to United Kingdom):
1. Alpha country code
2. Country name
3. Unified country name

POC US Patent Office Classification:
1. Patent Number
2. Position in patent
3. POC class



Appendix D: Research Inputs in Other Public Sectors

Appendix Dl Research Inputs at Federally Financed R&D Centers

Federally Financed Research and Development Centers (FFRDCs) are R&D-

performing entities that are exclusively or substantially financed by the federal

government and are formed to meet a particular federal R&D objective that cannot be

met effectively by existing organizational resources. Each center is administered

either by a university or college, an industrial firm, or other nonprofit institution.

Data on research inputs at the FFRDCs are available from NSF annual report

series such as "Academic Research and Development Expenditures," "Federal Science

and Engineering Support to Universities, Colleges, and Nonprofit Institutions," and

"Federal Funds for Research and Development," which are based on NSF surveys on

research and development funding and expenditures.

Annual life science R&D expenditures at individual FFRDCs administered by

universities or colleges are reported from 1973 to 1998. But data broken down to the

disciplinary level are not collected for FFRDCs administered by industrial firms or

other nonprofit institutions.

Annual data on federal obligations for research and development and R&D

plant, from each obligating federal agency (e.g., USDA, NIH, and NSF), are available

for individual FFRDCs from 1973 to 1998. FFRDCs' research dollars come primarily

from the federal government. Hence, the federal obligation measures give us a good

idea of the total research funds available at FFRDCs, taking account of the lag

structure between funding obligation and real spending.
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Some FFRDCs are fairly diversified. Research resulting in the outputs

recorded in our patent and scientific paper datasets are only a part of the research

efforts focusing on the life sciences. Thus, the research inputs measured by federal

obligations for R&D do not exactly match our research output measures at given

FFRDCs. The U.S. Department of Agriculture and the U.S. Department of Health and

Human Services (parent agency of National Institute of Health) are the two largest

sources of federal funds for research in life sciences. For example, in 1998, these two

agencies accounted for 7.7% and 76.7%, respectively, of total federal obligations in

life science research. All other agencies, including the Department of Defense and

National Science Foundation, accounted for the remaining federal obligations.

Moreover, the USDA, USHHS, and Department of Veterans Affairs are engaged

primarily in providing funds for research in life sciences.

In 1998, obligations for research in life sciences were 77.8%, 86.5%, and

79.6%, respectively, of the total obligations from these three agencies. All other

agencies allocated much smaller proportions of their obligations to life science

research, for example, 11.0%, 6.8%, and 16.0% respectively from the Department of

Defense (DoD), Department of Energy (DoE), and National Science Foundation.

Annual obligations for R&D in life sciences at an FFRDC can be computed as the sum

of the annual federal obligations to that FFRDC from each obligating federal

government agency, weighted by the ratio of obligations for life science research

(divided into agricultural, biological, and medical sciences) to total obligations for

The Department of Veterans Affairs is not a large funding source for research in life sciences because
its total obligations for research are small compared to other federal agencies.
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research in all fields from those individual obligating agencies in that year. This

approach assumes the proportions do not differ across institutions in a given year.

Suppose, for example, that USHHS and DoE each obligated 19.8 and 4.2 million

dollars, respectively, to a FFRED in 1998. R&D obligations in the life sciences to this

FFRDC are 17.4 million dollars, the sum of (19.8) (0. 865) and (4.2) (6.8). The

proportions are available, on an annual basis between 1970 and 2000 and for each

individual obligating agency, from the NSF report, "Federal Funds Survey, Fields of

Science and Engineering Research Historical Tables."

Appendix D2 Research Inputs at Nonprofit Institutions

Nonprofit institutions are legal entities other than universities and colleges,

privately organized or chartered to serve the public interest and exempt from most

forms of federal taxation. This sector includes three types of institution: research

institute, voluntary hospital, and other independent nonprofit institution such as

professional society and private foundation.

According to reports based on the Survey of R&D Funding and Performance

by Nonprofit Organizations, conducted by the NSF in 1973, 1996, and 1997, nonprofit

organizations fmance their own R&D activities as well as provide R&D funds to other

sectors, including universities and colleges, FFRDCs, and industrial firms. At the

same time, they also receive R&D funding from federal, state, and local governments,

universities and colleges, and industry to perform intramural R&D within their

organizations. For example, in 1997, nonprofit organizations provided $2.606 billion

for R&D to all U.S. recipients, 52.4%, 0.1%, 8.9%, 15.8%, and 22.9% of which were
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respectively allocated to universities and colleges, FFRDCs, industrial firms, nonprofit

organizations themselves, and other institution types. In that same year, the same

nonprofit institutions expended $7.349 billion in their own intramural R&D, with

50.5%, 2.4%, 0.7%, 11.2%, 5.6%, and 29.7% of this amount coming respectively from

the federal government, state and local governments, universities and colleges,

industry, nonprofit institutions themselves, and other sources (such as gifts and grants

from private individuals and foreign sources). Hence, neither the annual total R&D

funds provided by an individual nonprofit institution nor the annual total R&D funds

allocated to that institution from all federal agencies can accurately represent the total

intramural R&D expenditures at that institution in a given year. The NSF survey also

shows that R&D conducted by nonprofit organizations is mainly in the life sciences

field. For example, $5.289 of the $7.349 billion in total intramural R&D expenditures

at nonprofit institutions was spent in the life sciences in 1997.

Although annual data on the intramural R&D expenditures at individual

nonprofit institutions were collected in the NSF survey in 1996 and 1997, the time-

series required for the present study are not available. The only time series available

on research inputs at nonprofit institutions is that for federal obligations to individual

nonprofit institutions from each federal government agency for research and

development and R&D plant. These have been published on an annual basis, since

1963, in the NSF report series "Federal Science and Engineering Support to

Universities, Colleges, and Nonprofit Institutions." Based on the 1997 survey findings

discussed in the previous paragraph, R&D funds from federal agencies account for an
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average of only one-half of intramural R&D expenditures at nonprofit organizations.

Assuming this proportion to be fixed across years, annual federal obligations

completely capture the time-wise variation in total obligations for intramural R&D at

these nonprofit institutions.

As most nonprofit organizations, such as voluntary hospitals and medical

research institutes, concentrate on life science research, one approach to computing the

total life science R&D expenditure at a nonprofit institution is to compute the sum of

life science obligations to this institution from all federal agencies. In another

approach, using the method discussed in section 5.2.1, annual federal obligations for

R&D in the life sciences, specifically in the agricultural, biological, and medical

sciences, at a nonprofit institution can be calculated based on the annual federal R&D

obligations received by that institution from each obligating agency, and on the

proportions of obligations for life science research made by each obligating agency in

that year.

Appendix D3 Research Inputs at Government Agencies

In addition to R&D funds provided to other sectors such as universities,

FFRDCs, and nonprofit institutions, federal agencies obligate funds for R&D

performed directly by federal personnel, that is for intramural R&D. In some federal

agencies, obligations for intramural R&D account for a significant part of total R&D

obligations. In 1998, for example, 69.1%, 20.5%, and 44.6% of total R&D obligations

in the USDA, USHHS, and NSF were for intramural performance.
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Variables describing inputs to intramural R&D at federal agencies are reported

annually by the NSF in "Federal Funds for Research and Development." Annual data

on federal obligations from subdivisions of federal agencies (e.g., Agricultural

Research Service, the USDA's Forest Service, and NIH and FDA within USHHS) for

intramural R&D performance, and total basic and applied research expenditures, are

available from 1973 to 1998. Obligations reported in this category are for activities

performed, or about to be performed, by the reporting subdivision or agency itself; or

they represent funds the agency transfers to another federal agency for R&D

performance. As the federal government is the primary and nearly the only funding

source for R&D activities carried on by federal agencies, and the amounts of funds

transferred among federal agencies for intramural use are not large, these obligation

measures give us fairly complete coverage of the intramural R&D funds used by such

agencies.

Assuming the proportions of obligations for life science research from

different subdivisions of a given federal agency equal the proportions at the entire

agency in a given year, the obligations for intramural life science R&D at an

individual subdivision can be calculated by multiplying these proportions by the

obligations for total intramural R&D. For example, the USDA's Forest Service

obligated $170.2 million for intramural R&D in 1998. Just over three-quarters

(77.8%) of total research obligations at USDA were for life sciences in that year.

Thus, intramural life science R&D obligations at the Forest Service are computed as

($170.2) (0.778) = $132.4 million.
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Appendix E: Production Outputs, Inputs, and Other Characteristics at Private
Firms

Data on production outputs and inputs at agricultural biotechnology firms

identified in our patent and paper datasets are available mainly in the Longitudinal

Research Database (LRD), maintained by the Census Bureau's Center for Economic

Studies (CES) and linked to the R&D database. The LRD consists of manufacturing

establishments' geographic locations, ownership status, cost, output volumes, input

quantities (labor, materials, capital, and energy), and other variables as enumerated in

the Census of Manufactures and Annual Survey of Manufactures. A supplementary

source is the Bureau of Labor Statistics (BLS), which provides price indexes at

aggregate SIC industry levels.

The Census of Manufactures (CM) is an enumeration of all establishments

whose primary activity is manufacturing (McGuckin and Pascoe). The CM was

conducted in 1963, 1967, 1972, 1977, 1982, 1987, 1992, and 1997. The Annual

Survey of Manufactures (ASM) is instead a sample of establishments drawn from the

CM universe. A new sample is selected after each census and is used for the next five

years. Another difference between the CM and ASM is in the data items collected. In

addition to the basic economic activity measures in both the CM and ASM, each

contains information the other does not. For example, individual materials

consumption, value of shipments and physical outputs at the 7-digit SIC level, and

output and input prices are contained only in the CM. Rental payments and capital

assets are contained only in the ASM. Observations on variables available only in

census years may need to be interpolated in intervening years, or might be obtained
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from other sources, including the BLS. The linked CM and ASM form an unbalanced

longitudinal database on which the LRD is based.

The Census Bureau permitted us to access, for individual biotech firms and at

an establishment-level basis, the LRD raw data on outputs, inputs, and other

characteristics in years 1972 to 2000, as detailed below. A number of calculations can

be performed on the raw data to obtain series useful for econometric analysis.

Appendix El Outputs

Value of shipments and quantity of physical outputs produced and shipped are

reported at the SIC 7-digit level in CM years, whereas shipment values are available

for each 5-digit SIC product class in ASM years. In census years, I can calculate the

shipment price index in the form of unit values by dividing total shipment quantity

into total shipment value. However, quantity units are not adjusted for quality. For

example, the 7-digit SIC level does not distinguish between 100 pounds of

concentrated nitrogen solution and the same amount of unconcentrated one. Thus, the

price indexes obtained in this way represent an "average" of all the establishment's

outputs. Observations in non-census years need to be interpolated.

The Bureau of Labor Statistics (BLS) independently reports producer price

indexes based on quality-adjusted products at various aggregation levels, such as in

the 3-, 4-, and 5-digit SIC classes. Dividing shipment value at each

5-digit SIC level in ASM years by the corresponding price indexes gives us quantity

of output in that 5-digit class. The total quantity of outputs is the sum of all SIC 5-

digit output quantities.
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Related information, such as value of resales, receipts for contract work, and

beginning- and end-of-year inventory value, are also available from the LRD for each

establishment in each year. Strictly speaking, inter-year changes in inventory and

resale values should be taken into account when using shipments to represent total

output. However, inventory and resale changes across years are very small compared

to value-of-shipment magnitudes. Inventory and resale values are therefore ignored in

this study.

Appendix E2 Inputs

In the LRD, production factors are grouped into four categories: labor,

materials, capital, and energy. As an establishment is the reporting unit in the CM and

ASM and hence the observation unit in the LRD, establishment's inputs are not

allocable to its products. Input variables are reported at the establishment level.

Appendix E2. 1 Labor

The LRD contains the following variables on labor input: number of

employees, number of production workers, number of production worker hours, total

salaries and wages, production worker wages, and non-production worker wages.

Total labor quantity is the sum of production and non-production worker hours.

Assuming each non-production employee works 2000 hours per year, the latter is the

product of 2000 hours per year and the number of non-production workers, which is

total employment less the number of production workers. Dividing total labor cost

(payroll) by total labor quantity gives the weighted-average wage rate series.



Appendix E2.2 Materials

The total cost of materials is included in ASM years, and the delivered cost and

quantity received and consumed of individual materials are available in CM years. In

census years, I obtain the price for materials by dividing total quantity of materials

into total material cost. Similar to the output price index, material price calculated in

this way is an "average" value of all materials used at one establishment.

Material price and quantity can be computed following another approach. BLS

creates a material deflator for individual SIC 4-digit industries by averaging price

deflators for more than 500 inputs (about 350 manufactured inputs and 150 non-

manufactured inputs), using the relative size of each industry's purchases of that input

as weights. Producer price indexes in various product categories in manufacturing and

non-manufacturing are used as the price deflators. The material price at each

establishment can be developed as the weighted material deflators at the relevant SIC

4-digit level according to the proportionate share of each 4-digit industry in total value

of shipments at that establishment. By dividing the total cost of materials by the

material price, I obtain the quantity of materials used at the given establishment.

Appendix E2.3 Capital

Data on capital inputs (buildings and equipment) reported in the LRD include

assets, new capital investment, rent, depreciation, retirements, and repair cost of

building and machinery. These data, however, cannot be used as capital expenditures
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Cost and quantity of purchased electricity and cost of other fuels (e.g., residual

fuel oil, distillates, coal, coke, and natural gas) are available for each year in the LRD.

217

in production analysis. What is needed is the value of service provided by the capital

stock, which is the rental cost of capital.

By combining separate asset deflators for structures and equipment based on

the distribution of each asset type in the industry, the National Bureau of Economics

Research's (NBER) manufacturing productivity database provides the acquisition

price deflator for new capital spending for each SIC 4-digit industry. The rental price

of capital can be computed using the following formula:

- q-1 i + q 5 - (q - q1 ) (El)

where q is acquisition price of capital, r is opportunity cost of capital, S is capital

depreciation rate, and (q1 - q11) is capital gain. The long-term bond yield can be

used for rt, and the capital depreciation rate S can be assumed to be 1/10. The only

difference between equation (El) and the capital rental price formula in Christensen

and Jorgenson (1969) is that (El) ignores property tax, the structure of which is

complicated and for which no information is readily available. The capital rental price

at each establishment can then be obtained by averaging the rental prices at the SIC 4-

digit level according to the proportionate share of each 4-digit industry in total

shipment value at that establishment. The product of the capital stock and capital rent

price is the rental cost or service flow of capital.

Appendix E2. 4 Energy
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Based on infonnation from various sources, such as the National Energy

Accounts and the Department of Energy's State Energy Price and Expenditure Report,

the price deflator for energy input at the SIC 4-digit level is provided in the NBER's

manufacturing productivity database. The energy price at individual establishments

can be approximated by the average of the energy deflators at the SIC 4-digit level,

weighted by the proportionate share of each 4-digit industry in the total value of

shipments at each establishment. Total energy cost is the sum of cost of purchased

electricity and other fuels. Diving the total cost of energy by the energy price gives

the energy quantity.

Appendix E3 Other Characteristics in Production

Apart from data on establishments' outputs and labor, materials, capital, and

energy inputs, the LRD also provides information on the following characteristics of

manufacturing establishments:

Plant identification number

Employer identification number

Business name

Geographic location (i e, mailing address and state and county codes)

Industrial classification (SIC)

Legal form of organization

Parent firm

Status of establishment
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Items (a) and (d) are permanent in the sense that they stay with the plant from

its birth until it shuts down. In addition, items (g) and (h) allow one to trace an

establishment's ownership changes over time.




