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diversity of management objectives and technological choices. This suggests that modelers
and experts could utilize (1) multiple-criteria decision-making (MCDM) approaches to
assist stakeholder groups in integrating and synthesizing relevant data and information to
address ecological and socio-economic concerns and (2) uncertainty approaches to quantify
the risks related to the impact of decision alternatives. Since decisions made under
uncertainty and MCDM methods have been studied almost independently, most of the

MCDM approaches do not address the uncertainties of real world decision situations.

This dissertation presents the use of a MCDM methodology and its related decision-
making tool, RESTORE. RESTORE is an integrative geographical information system-
based decision-making tool that was developed to help watershed councils prioritize and
evaluate restoration activities at the watershed level. RESTORE’s deterministic
performance evaluation module is developed from experts’ knowledge and experiences.
However, to fully address the complexity of the various landscape processes and human
subjectivity, RESTORE should involve uncertainties inherent to experts’ knowledge. No
single method is able to model all types of uncertainty, therefore the examination of

various uncertainty theories is critical before selecting one best suited to a specific decision

context. This work explores three uncertainty theories: certainty factor model, Dempster-




Shafer theory, and fuzzy set theory. To evaluate these methods in a MCDM watershed
restoration context, we (1) identified criteria to assess the suitability of a method for a
specific MCDM context, (2) characterized each theory in terms of the identified criteria
using RESTORE, and (3) applied each theory using RESTORE. Special emphasis was
given to the development of a comprehensive fuzzy MCDM methodology.
Uncertainty-based MCDM approaches provide a valuable tool in analyzing complex
watershed management issues. When used properly, the proposed MCDM methodology
allows decision-makers (DMs) to explore a broader range of drivers and consequences.
The inclusion of uncertainty analysis provides DMs with meaningful information on the

quality of the evidence supporting the impact of a decision alternative, allowing them to

make more informed decisions.
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DEVELOPMENT AND EVALUATION OF MULTIPLE CRITERIA
DECISION-MAKING
APPROACHES TO WATERSHED MANAGEMENT

CHAPTER 1

GENERAL INTRODUCTION
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Nowadays, most environmental decision-making bodies must use a decision process
that is consistent, open, and transparent to ensure that sound and high quality decisions are
made in accordance with the various and often conflicting decision-makers (DMs’)
objectives. In Oregon, Watershed Councils offer a good example. Their mission is to
involve the local population in a consultation and decision process toward the design of
watershed management plans that meet the objectives of their members. Such decision-
making contexts typically contend with the following challenges (Janssen, 1992): (1)

consideration of a variety of often conflicting management objectives representative of

- stakeholders’ multiple interests, (2) understanding of ecosystem processes and functions

within a socio-economic context, (3) multiple and diverse technological choices for
restoration, (4) qualitative and quantitative evaluation criteria, (5) inability to provide exact
dssessment of alternatives which may originate from uncertainty in experts’ knowledge
and/or data errors, and (6) need of transparent and quantitative methods for evaluating and
selecting restoration options.

Because of these difficulties, uncertainty is almost always present in the decision
brocéss. Cvonseqﬁently, experts'rriay have difficulty to evaluate and distinguish between

decision alternatives with respect to their ability at addressing multiple DMs’ objectives.

Most watershed management decision-making situations suggest that modelers and experts

could utilize (1) multiple-criteria decision-making (MCDM') approaches to assist

" In this contribution MCDM can be distinguished from Multiple Attribute Decision
Making (MADM) and Multiple Objective Decision Making (MODM). In a MODM
method, such as the one presented in Chapter 2, decision alternatives are not
predetermined, a mathematical algorithm is used for selecting the decision alternatives.

"Each decision alternative, once identified, is judged against its ability at meeting DMs”

objectives. A MADM approach entails that the selection of a decision alternative is made
among predetermined decision alternatives using attribute as criteria (Hwang and Yoon,
1981). Proposed MCDM ranking methods presented in Chapter 3 and 4 can also be seen as
MADM methods.




stakeholder groups in integrating and synthesizing relevant data and information, and in
addressing ecological, economic, and sociological concerns (Salminen et al., 1998) and (2)
uncertainty approaches to quantify the risks related to the impact of decisions alternatives,

allowing DMs to make more informed decisions.

MCDM methods offer a structured approach, in which decision-making is a process-
oriented activity that must be able to deal with qualitative, quantitative, and uncertain
information. However, decisions under uncertainty and MCDM methods have been studied
almost independently (Dubois et al., 2000). A lot of efforts have been put on knowledge
capture and inference, yet uncertainty assessments are the most poorly understood and
implemented in nearly ali decision-support systems (DSSs) and more specifically in
MCDM:-based DSSs. Decision-making approaches that include uncertainty analysis can be
seen as more credible approaches since they recognize that uncertainty occurs at many
points in the modeling process (e.g. models assumptions, parameters, experts’ knowledge,
system definitions). Additionally, uncertainty analysis provides critical information to DMs

about the quality of the evidence supporting the impacts of a decision alternative.

To assist watershed councils to prioritize and evaluate restoration activities both at the

site and the watershed scales, RESTORE, a spatially-explicit DSS was developed. -

RESTORE uses MCDM methods, knowledge b_ase,‘vevaluative models, and geographical

information system resources. It includes a rule-based system that models the experts’

~ perception of restoration options performance at meeting DMs’ multiple objectives.:.

Objectives considered include water quality, water storage, habitat quality, social concerns,
and economics that often conflict. A deterministic MCDM performance evaluation feads to
the ranking of restoration alternatives that are used as building blocks for the design of

watershed restoration plans. Rankings, which reflect restoration alternatives impacts on the




objectives described above, are determined through the application of a set of rules
developed from experts’ knowledge and experience. However, the complexity of the
various landscape processes and human subjectivity suggest that a robust performance
evaluation module would involve the modeling of the inherent uncertainties in experts’
knowledge, including partial belief, conflicting evidence, ignorance, and/or ambiguity.
This dissertation endeavors to address these issues. Chapter 2 presents the use of a

multiple-objective decision-making methodology and its related tool, RESTORE.

Chapter 3 aims to (1) describe each step of a proposed fuzzy MCDM approach using
RESTORE, (2) characterize the types of uncertainty in experts’ knowledge that the
approach could address, (3) introduce a novel ranking method for fuzzy performance
evaluation, and (4) evaluate the ability of the approach at exploiting the knowledge
provided by DMs and experts. The ranking method is based on a MCDM algorithm that
captures the properties of the fuzzy solutions through seven decision variables combined
into four criteria: (1) expected performance of the restoration option at meeting DMs’
objectives, (2) vagueness of the expected performance, (3) ambiguity of the expected
performance, and (4) accumulation of evi.d'ence..

Chapter 4 explores the use of uncertainty assessments in the RESTORE decision-
‘making process, three uncertainty theories are investigated: (1) certainty factors model, (2)
Dempster-Shafer theory, and (3) fuzzy set theory. To facilitate the evaluation of the utility
of these three methods'in a MCDM watershed restoration coﬁtext, we (1) examine the
basic mechanisms for reasoning under uncertainty advocated by each theory, (2) identify
criteria to assess the suitability of a theory for a specific MCDM context, (3) characterize
each theory in terms of the identified criteria using RESTORE, and (4) apply each theory

using RESTORE. Decision-making issues in the certainty factors model and the Dempster-
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Shafer theory frameworks have not been much investigated in the literature (Dubois et al.,
; 1996). To address this gap, new avenues for ranking decision alternatives are proposed.

Chapter 5 concludes with a brief summary and suggestions for future research.
l
|
|
|
|




CHAPTER 2

DEVELOPMENT AND EVALUATION OF MULTIPLE OBJECTIVE DECISION-
MAKING METHODS FOR WATERSHED
MANAGEMENT PLANNING

F.Lamy, J. P. Bolte, M. Santelmann, and C. Smith

Journal of the American Water Resources Association
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2.1 INTRODUCTION

Human-dominated land uses have resulted in extensive loss, fragmentation, and
degradation of natural habitats (Freemark 1995; Vitousek et al. 1997). As an example, in
the two hundred years after 1780, the United States lost more than half of its wetlands.
These losses can be attributed to many causes (Dahl, 1990; Johnson, 1994). Fresh water is
becoming increasingly limited in many parts of the world as industry, expanding cities, and
agriculture compete for limited supplies. The stress on the environment can lead to a
decline in biodiversity, disrupting the balance of natural ecosystems, and ultimately
threaten the foundation on which all living organisms depend (Gliessman, 1990; Naeem et
al. 1994, Sala et al. 2000). A growing awareness of the environmental impacts of human
development activities resulted in the concept of sustainable development as a general
development policy (Janssen, 1992; ASCE, 1998). The Brundtland Commission’s report

(WCED, 1987) offers this characterization:

“Development is sustainable if it satisfies present needs
without compromising the ability of future generations to
meet their own needs.”

Managing natural resources in a sustainable way and in observance of environmental
regulations dictates considering the variety of management objectives and management

| ,practices. that are most appropriate to achieve these objectives (Kangas and Ppk_kala 1996;
Nijkamp and van der BergH, 1997). .Objectivés may rgfer to biodivversity, water quality,

j N A ... Wwaterstorage, habitbat‘quva!ity, .sécial, vandvecon>c.>mic issues, Which oftve’n,‘conf‘lict. One
approach to reconcile these conflicts lies in a systems approach to fand use planning. Such
an approach combines information from hydrologists, agronomists, economists,

| sociofogists, comrﬁunities, farmers, landowners, and other sources (jensen et al., 1996;

\ ' Santelmann et al. 2001). In Oregon, an example is a watershed council that addresses

conflicting values using an ecosystem approach to management at the local scale. Councils
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involve focal people in a consultation process intended to yield a watershed management
plan that meets community objectives. Social scientists have shown that effective natural
resource management is community-based and includes participation of stakeholders such
as landowners and other resource users (Western and Wright, 1994; USEPA/OWOW,

1997; Marriot et al., 1999).

Since watershed councils are quite new, they form a useful test for assessing the utility
of decision-making approaches. Many watershed councils have completed a process to
assess the conditions in their watershed. The purpose of these assessments is to prioritize
problems and identify areas for restoration activities. To date, councils have identified
restoration projects opportunistically. Leadership, funds, a cooperating landowner, and
ease of getting permits typify the selection of projects. However, the watershed
assessment processes have demonstrated the benefits of a more holistic approach to
restoration planning. Consequently, councils identified a need for tools integrating
scientific and technical knowledge for prioritizing actions. These tools should assist the
decision-make_rs (DMs) in selecting restoration options at the site level that satisfy

watershed level ecological and socio-economic goals. |
Evaluating efficacy of restoration activities at addressing restoration goals and setting

priorities are complex tasks. They require an uriderstanding of ecosystern processes and

functions in the context of the landscape and restoration option characteristics. The reality

~ of most decision-making situations suggests that modelers and experts could utilize

multiple-objective decision-making (MODM) tools to assist community groups, integrate

“and synthesize their knowledge, and address concerns relating to ecological, economic, and

sociological issues (Karacapilidis et al., 1997; Moreno-Jiménez et al., 1999; ReVelle,

2000). Without such tools, DMs and stakeholder groups will have difficulty integrating




multiple objectives into watershed-level plans for restoration and cannot realistically
assess the potential success of restoration strategies to meet watershed restoration

objectives (Moualek, 1997; Stam et al., 1998; Crist et al., 2000).

We describe the development of the RESTORE decision support system (DSS); a tool
designed to assist stakeholders and DMs in watershed restoration planning and
prioritization. The DSS was developed with two watershed councils, from Oregon’s
Willamette Valley. This paper presents the rationale for integrating the elements mentioned
previously into a decision-making methodology and its related decision-making tool,
RESTORE. RESTORE uses MODM methods, evaluative models, and GIS-based
(geographical information system) resources. It offers a platform that supports interactive
analysis of the restoration decision-making. The aim of RESTORE is to compare different
restoration options and watershed restoration plans at meeting the DMs’ objectives and to
rank them in terms of their utility at addressing these objectives. The questions we address
here are: (1) What are the socio-economic and environmental impacts of the different
restoration options as a function of landscape position? and (2) What is the mix of
festoration opfions (Watérshed resfof;tion plan) that creates the preferred solutidh

responding to the DMs’ objectives at the watershed level?

2.2 MULTIPLE-OBJECTIVE DECISIONfMAKIN G METHODS

- Practitioners and the scientific community’s view of effective watershed-restoration
strategies has evolved over the last two decades from a focus on localized restoration
projects to the adoption of holistic approaches. Such approaches address spatial patterns
and processes, the interrelation;hips among landscape elements and reconcile conflicting

management objectives. For example, the United States Environmental Protection Agency
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(USEPA) asserts that restoration requires a design based on the entire watershed, not

Jjust on the section(s) of the watershed that may be the most degraded (USEPA, 2000).
Decision-making in a watershed restoration context is a complex activity. It may include
both social and environmental guidelines, models, methods, and tools that aliow the DMs
to choose between several alternatives that address conflicting objectives and different
sources of uncertainties. The emergence of intelligent systems makes accessible valuable
resources to practitioners, scientists, and DMs to deal with the intricacy of the decision-

making process (Zhu et al., 1998).

Effective decision-making requires DMs to assess the potential success of different
restoration options in meeting watershed restoration objectives. This assessment generally
requires the simultaneous consideration of different objectives that are often in conflict;
thus it is inadequate to use a traditional single-objective planning approach (Janssen, 1992;
Avogadro et al., 1997). Public agencies generally look for a preferred solution that trades

off the achievement of one objective against another objective (Salminen et al., 1998;

~ Martell et al., 1998; Al-Rashdan et al., 1999). The tradeoff assessment often becomes a

personal value qﬁestion and requires the éubjective judgrﬁent of the DMs (Keeﬁey and
Raiffa, 1993; Clemen, 1996). When objectives are conflicting, the suitable framework for
the formulation of the decision problem 'should‘invol\"/e' MODM methodologies (Bogetoft': |
and Pruzan, 1991; Sen and Yang, 1998). In the context of our study, we use a MODM
method classified as a prior aﬁiculati.on of preferences method (Chankong and Haimes, .
1983; Mollaghasemi and Pet-Edwards, 1997). The information required by the DM is
obtained before the formulation of the mathematical model. These methods are fairfy
simple to use, since typically the multiple-objective problem is reduced to a single-

objective problem (Mollaghasemi and Pet-Edwards, 1997). Several methods exist for prior
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articulation of preferences MODM, such as the Simple Additive Weighted method

(Hwang and Yoon, 1981), goal programming (Charnes and Cooper, 1971), value and
utility theory (Keeney and Raiffa, 1993), and outranking methods such as ELECTRE (Roy,
1968).

The Simple Additive Weighted method (SAW) was selected as our MODM model.
SAW has few input requirements from the DMs; it is flexible and easy to interpret. It is
one of the simplest MODM methods and one of the most popular (Triantaphyliou and Lin,
1996; Mollaghasemi and Pet-Edwards, 1997).

Different MODM methods have been widely applied to environmental management
decision problems in areas including environmenta! disaster planning (Jenkins, 2000),
planning of water resources sharing {Avogadro et al., 1997), urban waste management
(Haastrup et al., 1998), and tactical forest planning (Kangas and Pukkala, 1996; Church,
2000). The spatial nature of environmental management problems suggests that a DSS be
developed and implemented using GIS technology combined with models and decision-

making techniques.

While sirﬁilaf to environmental management DSSs, DSSS for watershed restoration
planning seem to involve a more active participation of the DMs and require a more
important integration of different sources of knowledge coming from the decision-makers,
community, experts, scientists, and practitioners involved in the planning activity. Many of
the DSSs:ap'plied't'o watershed management focus on sharing-information and presentirig
synthesized and comprehensive information to the users (Allen et al., [998; Demissie et al,

. 1999). Other DSSs focus only on one or two problematic issues in the watershed or a few
restoration projects (Al-Rashdan, 1999; Crist et al., 2000; Nero et al., 2001 ;_Westphal et

al., 2001) rather than incorporating a holistic perspective of watershed management.
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Finally, some DSSs depend on a number of different components running together,
compared to RESTORE that is an integrated tool (Prato and Fuicher, 1998; Reynolds et al.,
1999; Call and Hayes, 2001). To date, significant efforts have been placed on information
organization, modeling, and analysis rather than on decision-making issues (Avogadro et
al., 1997). The discipline of decision-making requires the development of an integrated
watershed restoration DSS that can help DMs through the entire evaluation process

(Demissie and Tidrick, 2001).

The conceptual framework that we present here aims to contend with the lack of
decision-making tools applied to watershed restoration decision problems. It integrates and
makes use of existing decision-making approaches and techniques, GIS technologies, and
it exploits wide-ranging models to support a holistic approach to watershed restoration

planning.

2.3 CASE STUDY

The participation of stak‘eholderslin identifying relevant data, models, and decision-
making criteria is crucial for building a DSS tool that can express their objectives and
preferences. For that purpose, we partnered with watershed councils in two watersheds in
' wes'tevml Orégbn’s Willamette Valley: (1) fhe South Sanfiam.watershed (3400-k‘m2)vand (2)
the Long Tom watershed (1050 km?) (Figure 2.1). These watersheds were selected for (1)
| 'theif'diversity, one béing a larger rural watershed and the other, a'smaller watershed on an
urban fringe, (2) their range of ecological, geomorphic, and socio-economic conditions,
and (3) the availability of a number of spatially explicit.datasets capable of supporting the
types of analyses envisioned in this project. The South Santiam watershed includes the

rural service centers of Lebanon, Sweet Home, and Scio. The watershed is the main source



. 13
of city drinking water. While substantially modified since the 1850’s, the South Santiam

is a less-disturbed ecological system. The Long Tom watershed is much more urbanized,
adjacent to Oregon’s second-largest metropolitan area, Eugene-Springfield. It is more
disturbed by agricultural and urban activities and has been the site of a number of conflicts

related to land use and resulting ecological impacts.

?

l

Oregon J

l o Figure 2.1 Location of Study Areas

2.4 METHODOLOGY

We approach Watershed restorationvplanning as‘ a holistic activ‘ity, géthering
information from a wide variety of disciplines; synthesizing, exploring, and developing
that i'nf(.)miation based on DMS objectives into a plan tb gﬁide iﬁ the selection of
restoration projects. To assist this process, we developed a decision-making methodology
shown in Figure 2.2. The overall objective of this methodology and more specifically of
the decision-making tool, RESTORE, is to help the DMs understand, dissect, and structure

the decision problem. We hypothesize that this ability will improve the rationality of the
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decision-making process and therefore its quality. This approach is based on the
availability of accurate information and on the openness of the planning procedure, which
should involve DMs early in the decision-making process (Karacapilidis et al., 1997;

Moualek, 1997).

RESTORE supports all steps in the decision-making. The role of RESTORE is to
provide insight into the decision problem by reducing the cognitive resources the users
need to make choices among the restoration options, encouraging the DMs to look at the
watershed holistically, and evaluating the restoration options that could be used to address
DM:s objectives. RESTORE allows the user to specify watershed area(s) of interest, the
objectives and subobjectives to be addressed, and the restoration options to be considered

in the creation of a watershed restoration plan.

2.4.1 Description of the decision situation

Problems arise from a series of interconnected events, actions, and needs. This first
step of the methpdolpgy is to clearly define the nature of the system under consideration,
and to develop a shared knowledge and perception of the decision problem.

In the Long Tom watershed, a decisiqn problem is concerned about the quality of
drinking water, which rriéy be threatened by induStriai waste, and urban énd aériéultural '
runoff; The context should be described in terms of social, economic, biological, and
'hydrojl'bAgicA ‘i‘ssues. RESTORE allows the user to visualize, through its GIS-based module,
the data and information on which the system is based, facilitating the problem definition.

Within RESTORE, a user starts the assessment of the decision situation by selecting
the watershed of his or her interest. A cell, ranging from 0.4 ha. to 12 ha., is considered as

the smallest spatial land unit on which decision-makers can make a decision. The cells are
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built on the assumption that small landscape areas can be aggregated into individual

units that are homogeneous with respect to land use, soil, and drainage. In Figure 2.3, the
RESTORE user-screen illustrates the study area divided into cells. Each cell is color coded
to a specific land use. A cell’s properties table portrays the different characteristics of the

selected cell (e.g. cell no.: 5371; land use = pasture; area: 1.57 ha).

2.4.2 Identification of a set of objectives and restoration options by the DMs
The watershed council sets the objectives and the restoration options used to develop to

preferred watershed restoration plan. A restoration option is a site modification or change

““in management that addresses one or more stakeholder objectives. Examples include

installation of a riparian buffer along a water course -or reduciﬁg toxicant use on agricultural
fields. Options applied at specific sites are used as building blocks for a future watershed
restoration plan. Objectives reflect stakeholder goals when considering restoration planning
and in RESTORE are defined hierarchically. The intent of the objectives hierarchy is to
provide the DMs with a logical framework that structures their priorities and concerns
(Clemen, 1996; Al-Rashdan et al., 1999). Explicit presentation of objectives makes DMs
conscious of their own and others’ perspectives. The main outcome of this second step is an
incpeased und_erstanding of the decision problem for the DMs, the -c'ommunjty, the experts
or any interested parties (French et al., 1998). Focus group meetings, content analysis of
newsletters,.mee't,ibng miputés, aI;d Aiécussions witH watershed coﬁﬁcil leaders helped in fhe .
identification of the five main objectives, the twenty-eight subobjectives, and the twenty

restoration options presently used in RESTORE (Figure 2.4).
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Figure 2.3: RESTORE user-screen illustrating the study area divided into celis and
displaying the decision variables (attributes) of the cell. Each cell is shaded with

a color that corresponds to a specific land use identified in the legend.
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The decision-making framework does not limit the DMs to a constrained set of
watershed restoration objectives, subobjectives, or options. In RESTORE, the user assigns
a weight to each objective to be included in the decision analysis and selects from among
the different subobjectives and restoration options those to be considered by the decision
framework. Weights are used to resolve tradeoffs between objectives by including the DMs
relative preferences for specific objectives (Chankong and Haimes, 1983; Sen and Yang,
1998). In the following example (Figure 2.5), we illustrate one set of priorities and
concerns.

Here, water quality and water quantity are primary concerns (objectives), reflecting
interest in decreasing water temperature and runoff, conserving water and increasing
stream flows, improving nutrient management, and protecting drinking water and wells
(subobjectives). These concerns are followed closely by interest in socio-economic issues,
including education and outreach, social networking, and building community

involvement. Maintaining and enhancing fish and wildlife habitat are a relatively low

' priority. The weights given to the five different objectives are: .‘Water Quality dbjec’:tive

weight: 0.9; Water Quantity objective weight: 0.9; Habitat Objective weight: 0.3; Social
objective wei:ght: 0.7, and Economic objective weight: 0.7 (Figure 2.5, right part of

RESTORE user-screen). All of the restoration options that are listed in the left part of the

* user-scréen are considered in the analysis (box is checked), as well as the complete set of .

subobjectives that can be seen in other RESTORE user-screens.
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2.43 Identification of attributes that relate to each objective

Attributes are site-based decision variables that need to be considered by RESTORE
when directing the selection of specific restoration options. These are qualitative or
quantitative measures used to characterize a site with respect to its potential to support
various restoration options. They may be given by a model, measured directly or assessed
subjectively (Mollaghasemi and Pet-Edwards, 1997). Most of the attribute data used in
RESTORE are widely available. These data are brought together in a GIS and structured to
allow its sharing and evaluation by all those involved in the decision-making process.
Examples of attribute data used by the decision-making tool are land use, hydrology,
topography, and proximity to landscape features (e.g.: wetlands, roads, streams, urban

areas).

2.4.4 Definition of the ruies and constraints

Once objectives and attribute data are identified, the next step is to organize important
relatiénships between entities in the system. in RESTORE, rules and constraints embody
the knowledge about site and landscape-level guidelines for restoration options. For each

cell, the rulés and constraints direct a socio-economic and environmental impact

- assessment of the different restoration options, as a function of the cell’s landscape

position. Constraints determine if a restoration option should be considered at a site based -

on the site attributes. If constraints are satisfied, applicable rules score different restoration

- options based on the options ability to meet each objective. The rules are represented by

IF-THEN statements that are an intuitive way to represent knowledge. A collection of rules

has the ability to represent different sources of knowledge in a consistent format.
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All rules provide a quantitative describing a positive or negative impact of a specific
restoration option at addressing an objective. These impacts are (e.g. low = 1; moderate =
2; significant = 3; high = 4; [ow negative = -1; moderate negative = -2; significant negative
= -3, and high negative = -4). For example, the following rule assesses the efficacy of an

“agricultural riparian buffer” for meeting the water quality objective.

IF Erosion potential is less than 2 tons/acre
THEN Effectiveness of an “agricultural riparian buffer” at reducing sediment transport

into a stream is considered low (1)

RESTORE currently has approximately 350 such rules describing the utility of various

restoration options at meeting restoration objectives under various site conditions.

2.4.5 ' Efficient landscape generation

Watershed councils generally need to focus on solutions that will simultaneously meet
multiple objectives. To do so, the SAW method is used to rank, for each cell, the utility of

different restoration options by combining single objective scores weighted by the

objective preferences described previoﬁsly. The SAW method uses the following equation

to evaluate the efficacy (V) of the x ¢ alternative:

m
Vx =Zwivix (21)
e S : '

In eqﬁation 2.0, corresponlds to the scores résulting frém fhe decision rules’ |
output. It describes the efficacy of a particular restoration option (x) at reaching a specific
objective (i=1, ..., m). We assume that the objectives are mutually independent, a
requirement for the SAW additive structure. The priorities assigned to each objective are

denoted as weights (w). The goal of the SAW method is to score the utility of each
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restoration option at meeting multiple objectives. RESTORE then uses these scores to

rank the restoration options for a site and select the highest scoring option.

RESTORE evaluates 20 restoration options per cell. For a typical watershed, over 15
000 cells are examined, with more than 20'°°° possible “proposed landscapes” or
watershed restoration plans. We hypothesize that the use of the SAW method combined
with a rule-based approach can generate a representative subset of efficient “proposed
landscapes”. In RESTORE, an efficient “proposed landscape” is considered as a feasible
watershed restoration plan that cannot be dominated by another plan (Bogetoft and Pruzan,

1991). Based on the set of objectives and weights identified by the DMs, the purpose of

~step 5'is (1) to select a restoration option (including a “no restoration option™) for each cell,

leading to the creation of an efficient “proposed landscape” and (2) by varying the weights
associated with each objective, to generate a representative subset of efficient “proposed

landscapes”.

Figure 2.6 shows the resuits of the analysis on an area of the Bear sub-basin within the
Long Tom watershed. The analysis allocates a specific restoration option to a cell only if
all applicable constraints are met. For instance, the efficient option that best addresses the

concerns identified in Step 2 for the cell 5371 was an “agricultural riparian buffer”. This

cell is broadly pharactériéed by a pastureland land use and its adjacency to a stream and a

road. The “agricultural riparian buffer” option obtained scores of 4, 1, 4, 3.5, and 0 for the
“water quality”, “water quantity,” “habitat quality,” “social”, and “economic” objectives,

respectively. Since the weights given to the objectives were respectively 0.9, 0.9, 0.3, 0.7,

0.7; the composite score after weights normalization equals 2.33 out of 4. These scores




Figure 2.6: RESTORE user-screen displaying the results from the MODM analysis for a
specific cell. The results include a composite score and the scores that relate to each
objective. Scores describe the efficacy of the restoration option at
reaching the DMs objectives.
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reflect the combination of applicable rules available to RESTORE. These scores

emphasize the fact that an “agricultural riparian buffer” option was selected for the cell
5371 mainly due to its positive impacts on the water quality (e.g. maintain cool water,
reduce transport of sediments and other pollutants into the stream) and the creation of

social opportunities (e.g. aesthetically pleasing, provide opportunities for recreation).

2.4.6 Landscape evaluation

The final output of RESTORE is a spatially and visually explicit preferred “proposed
landscape”. A preferred “proposed landscape” should be viewed as the DMs’ preferred
watershed restoration plan integrating a mix of restoration options that are optimal or near
optimal at addressing the various objectives of the DMs. However, the preferred watershed
restoration plan cannot be developed in the first run. Rather, it should evolve as a result of

the evaluation process of the several efficient “proposed landscapes” created in step 5.

As implemented in RESTORE, DMs can perform a visual evaluation of the “proposed
landscapes”. They can look at different combinations of information layers and perform
multiple-scale analyses of the generated “proposed landscapes”. In Figure 2.7, a
RESTORE user-screen depicts a Bear sub-basin “proposed landscape”. The largest portion
of the screen is dévoted to the rﬂap. Eac'h- cell is shaded with a colof that corresponds tb a‘
specific restoration option in the legend. The histogram illustrates the ratio of the main .
resforétidn optisns that were appliéd in the “proposed laﬁdscape;’. The “create condition
favorable to native species”, “forest harvest type scale modification”, “agricultural

chemical BMPs”, “increase late summer flow”, “wetlands construction” restoration

options were applied to respectively 33%, 30%, 13%, 11%, 10% of the Bear sub-basin’s

cells.
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Figure 2.7: RESTORE user-screen displaying a preferred watershed restoration plan that
integrates a mix of restoration that are optimal or near optimal at
addressing the DMs objectives.
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We also use a multiple objective optimization method to evaluate the efficient
“proposed landscapes” that satisfy guidelines for meeting watershed level objectives. The
multiple objective optimization method being developed uses the SAW method for the
same reasons that were expressed previously. The objectives and decision variables that are
used at the watershed level are different than the ones used at the cell level, since key
issues and observed processes are different for different spatial scales. Therefore,
evaluative models were developed to look at the patterns, structure, and functions of the
“proposed landscapes”. Such models al{low the user to explore the effects of landscape
characteristics on the fundamental processes observed at the watershed level and to assess

how well each of the efficient “proposed landscapes™ is at meeting the different objectives.

2.4.7 Selection of the preferred watershed restoration plan -

Selecting a preferred watershed restoration plan is an iterative process. It is critical
that several solutions are considered simultaneously to keep the DMs aware that there is no
claim that any one of these is the preferred watershed restoration plan (French, 1986). The
process is cofnpleted when the DMs are satisfied with the preferred watershed restoration

plan; i.e. when they feel that the analysis is requisite.

2.5 DISCUSSION

The work reported in fh-is paper is on»goihg; it. éddreésés lthé lack of decision-making
tools thét can be applied to watershed restoration decision problems. We present the
features of a DSS for watershed restoration being implemented and validated in two
Oreg(;n watersheds. The questions addressed in this paper‘are (1) what are; the socio-
economic and environmental impacts of the different restoration options as a function of

landscape position? and (2) what is the preferred watershed restoration plan that responds
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to the DMs’ objectives at the watershed level? To answer these specific questions, we
present a methodology and a decision-making tool that generates a mix of restoration
options in the form of a watershed restoration plan that satisfies the objectives specified by
the DMs at both the local and the watershed levels.

The approach offers several advantages, including: (1) a learning environment enabling
all those involved to develop a more holistic view of watershed restoration planning, (2)
the capability of structuring and articulating problems, and (3) the automation of the
decision-making process. Our approach also demonstrates a GIS-based approach where
rule-based models and other modeling techniques are used rationally to solve a spatially
explicit decision problem.

RESTORE is a fully integrated DSS. It does not depend on proprietary software or
commercial simulation models that may be difficult for users to understand and it does not
require that users are knowledgeable about the different RESTORE components.

RESTORE captures the expert judgment, in the form of rules, to enable DMs to

evaluate different restoration options at the celi level, based on quantitative and qualitative

" attributes. The rule-based approach was selected because it allows flexible knowledge

representation and is relatively easy to maintain and modify. A MODM module creates a
final ranking of the restoration options resulting in a subset of efficient “proposed

landscapes”. The RESTORE MODM module utilizes the SAW method. Subsequently,

each efficient “proposed landscape™ is evaluated at the watershed scale to assess the

landscape’s impacts on predefined environmental and socio-economic criteria. The
“proposed landscape” that best addresses the watershed restoration objectives is selected as
the DMs preferred watershed restoration plan. The decision-making framework does not

limit the DMs to a constrained set of watershed restoration objectives or options; instead, it
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offers a framework for almost limitless possibilities to configure a wide variety of
alternative watershed restoration plans that meet selected objectives.

The RESTORE interface supports each step of the methodology. It is broad enough to
accommodate a wide variety of decision situations, thus stimulating collaboration between
DMs. Maps-based and textual summaries of restoration decision-making are readily
available in a friendly format. They are a useful and meaningful way of presenting both
attribute information and decision results. They are easily interpreted and understood,
facilitating the exploration and evaluation of alternative solutions.

We see our modeling process as iterative and dynamic. We continue to interact with
DM, citizens, and experts to make improvements to the decision-making tool, and to each
step of the decision-making methodology. Still, progress remains to be made to improve
the RESTORE tool. We continue to improve watershed scale evaluative tools. In addition,
continued evaluation of RESTORE by DMs is required if the decisions made with

RESTORE are to effectively address watershed restoration needs.

Other improvements to the present structure of RESTORE include modeling of the
different sources of uncertainty, which are intrinsically part of human judgments and the
landscape characterization. A sensitivity analysis module would allow investigation of the
effects of chahges in the input data on the suggested solutions and to test the roEustness of

the decisions made. Finally, since conflicts of interest and negotiations are inevitable in

- any decision-making environment, future research might consider the addition of group

decision-making techniques to stimulate consensus development, decrease the time to

make decisions, and improve the quality of the decisions made.
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2.6 CONCLUSIONS

The proposed DSS has a number of limitations, but by providing a fertile test-bed for
exploration, it raises a variety of ideas and questions for future research in the development

of DSS tools that address watershed restoration in a holistic way.

The results obtained so far strongly reinforce the fact that multiple-objective methods
provide a valuable tool in the analysis of complex watershed management issues. We
hypothesized that, when used properly, our methodology allows DMs to explore a broad
range of drivers and consequences. The RESTORE methodology helps to identify and
explore possible solutions. It leads to a better understanding of the impacts of decisions.
DMs and experts were involved throughout the development process. They have been
consulted on the main assumptions underpinning the system and on the different choices
embodied in the system. Our experiences tell us that the perspective providad by
RESTORE is compatible with the utilization by DMs. However, to confirm or refute this
first impression, a complete assessment of the decision-making system must be done to

evaluate how useful it is and whether it can promote decision-making in a watershed

restoration context.
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3.1 INTRODUCTION

Performance evaluation of restoration options for addressing watershed restoration
objectives is a complex task, due to the multiplicity and diversity of ménagement
objectives and technological choices (Lamy et al., 2002a). It requires an undefsfanding of
ecosystem processes and functions in the context of the landscape patterns and structure
and restoration option characteristics. In most watershed management decision-making
situations, experts and modelers coﬁld utilize multiple-critefia decision-making (MCDM)
approaches to assist decision-makers (DMs) to integrate and synthesize fhe relevant da{a |
and information and to‘holisticélly address ;onéems relating to ecological, economicl,’and
sociological issues. Lavfny et al. (2002&) asserted that wifhout such approaches and related\
tools, DMs and commumty groups would have dlff culty in mtegratmg multlple/objectlves
into watershed-level plans for restoration. Addmonally in such context they cannot
rationally and realistically assess the potential success of restoration strategies to meet
watershed restoration objectives that are often in conflict within a sustainable develo;afriént
paradigm. Relevant objectives may refer to biodiversity, water quality, water \storage,
habitat quality, social, and economic issues. Although MCDM approaches may suppiort‘

DMs in complex decision-making contexts, most of these approaches use deterministic

techniques that do not address the intrinsic uncertainties in real world decision situations

‘(Mower, 2000). Decision-making approaches that include an uncertainty analysis can be

seen as more credible, since they recognize that parameters are not precisely known and
decision models are abstract views of the world. Uncertainty analysis provides critical
information to DMs, allowing them to make more informed decisions. ‘Such information

provides them a pragmatic basis to better evaluate the soundness of the conclusions
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reached, thus increasing DMs’ confidence in the decision model (Bystrom el al., 2000,

Crossetto et al., 2000).

When modeling real phenomena, Zimmermann (2000) identified the following sources
of uncertainties: lack of information, abundance of information, conflicting evidence,
ambiguity, measurement, and beliefs. In most situations, it is an intricate task to appraise
all sources of uncertainty present in a decision-making process. Therefore, proposed
methodologies should attempt to focus on sources of uncertainty that have an impact on the
decisions that have to be made. A variety of approaches, such as probability theories (de
Finetti, 1972), fuzzy set theory (Zadeh, 1965), rough set theory (Pawlak, 1982), and
Dempster-Shafer theory (Dempster, 1967; Shafer, 1976) can be used to model uncertainty.
Each theory can address only specific types of uncertainty; consequently the choice of the

appropriate theory is context dependent (Armacost and Pet-Edwards, 1999).

In a community-based watershed restoration context, the process of evaluating and
selecting restoration options is often accomplished based on information expressed in
linguistic terms, which are intrinsicaily subjective and imprecise. This paper thus focuses
on the modeling of the ambiguity in expert’s knowledge, which we hypothesize could be

well captured by fuzzy set theory.

A growing number dfpubliéations on MCDM and fuzzy MCDM (FMCDM)
applications related to water resourcé management have been published (Chang et al, 1997;
Reyholds et al., 1999; Despic and Simonovic, 2000). However, little research has been
done on MCDM and FMCDM applied to holistic watershed restoration decision problems
(Lamy et al., 2002a). To address the lack of such decision-making tools, we explore the
application of a FMCDM approach at modeling the uncertainty in experts’ knowledge in

the context of RESTORE, a watershed restoration decision tool. RESTORE (Lamy et al.,
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2002a) is a geographical information system-based decision-making tool developed to

help watershed councils evaluate and rank restoration activities at the watershed level. It
includes a rule-based system that models the experts’ perception of restoration options
performance at meeting DMs’ muitiple objectives. A performance evaluation leads to the
ranking of the restoration options, which resuits in a subset of efficient watershed
management plans. It is done in terms of the restoration option’s impacts on the predefined

environmental and socio-economic criteria. RESTORE’s performance evaluation module -

* is developed from experts’ knowledge and experience. It provides a crisp (no uncertainty)

evaluation of the restoration alternatives.-The complexity of the various tandscape
processes and human subjectivity suggest that a robust inference process should involve

the modeling of the inherent uncertainties of experts’ knowledge.

The aim of this paper is to: (1) characterize the types of uncertainty in experts’
knowledge that the approach can address; (2) introduce a novel ranking method for fuzzy
performance evaluation, and (3) evaluate the ability of the approach at exploiting the
knowledge provided by experts. Section 1 presents an overview of the fuzzy set
mathematical framework, section 2 presents the methodology overview, and section 3

illustrates the application of the methodology with an example.

3.2 FUZZY SET THEORY OVERVIEW

In 1965, Lofti Zadeh proposed fuzzy set theory, a mathematical framework that gives
experts the ability to convey the fuzziness or the intrinsic vagueness of qualitative
concepts. Most qualitative concepts have no precise boundaries or cannot be described

precisely, therefore soft boundaries are used to handle the idea of partial truth.
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For instance, a characterization of commonly accepted boundaries between what is
believed to be moderate soil erosion and excessive soil erosion could never be done
because it is highly subjective and context dependent. For a certain community, a 6 t/ha
value can be to some extent moderate and to some extent excessive, there is a gradual
transition so that there is no single value at which the soil erosion abruptly begins to be
excessive (Figure 3.1). In these situations uncertainty mainly originates from linguistic
ambiguity, which could be captured by fuzzy set theory. Fuzzy set theory is more
compatible with linguistic terms than a two-valued logic or a crisp logic, where a
membership function p, of a fuzzy set 4 associates a membership value (a(x)) in the

interval [0, 1] with each element x of the universe of discourse U.
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Figure 3.1: Mémbérship ﬁmctioris describing the experts’ view of the linguistic terms
“moderate” and “excessive” soil erosion
Membership values model degrees of truth of fuzzy propositions, ranging from 0
(incompatibility with the set) to 1 (full compatibility with the set). Degrees of truth or
membership values describe how much each given object is compatible with each of the
linguistic terms represented by a given fuzzy subset. Linguistic terms (e.g. moderate and

excessive) can be seen as subjective categories describing a linguistic variable (e.g. soil
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erosion). Fuzzy subsets can be arbitrarily defined using a diverse set of mathematical
functions. A detailed description of fuzzy set theory concepts can be found in

Zimmermann (1987) and Klir and Yuan (1995).

3.3 METHODOLOGY

There are a number of surveys on FMCDM (Chen and Hwang, 1992; Lai and Hwang,
1994; Ribeiro, 1996). The field of fuzzy set theory matured since its development in 1965
by L.A. Zadeh. Still, Dubois et al. (2000) pointed out that uncertainty analysis and MCDM
theory are two fields that have been developed almost completely independently until
recently. Applications of FMCDM can be seen in energy production, engineering, resource
allocation, transportation, waste management, manufacturing, imaging systems, robot

simulation, economics, and other fields.

The FMCDM methodology presented here is applied to holistic watershed
management. Its goal is fo assist DMs in the seiection process of restoration options when
creating watershed restoration plans. However, the methodology could be applied to any

performance evaluation contexts where multiple criteria and intrinsic uncertainty are

involved. The methodology allows DMs to express their experience, intuition or beliefs in

vague linguistic terms, which may more realistical'ly reflect real world decision-maki'ng
problems. It consists of three main steps, which lead to the creation of a feasible watershed

restoration plan (Figure 3.2).

3.3.1 Description of the decision situation and identification of objectives
This first step of the methodology is to describe the system being considered and to

identify DMs’ objectives in this specific decision situation. This step, which helps to
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develop a shared comprehension and perception of the decision problem, is critical to
guarantee the success of watershed restoration efforts. Successful watershed restoration
planning is often characterized as one that ensures water quality, riparian and wetland
habitat for fish, wildlife, and native plants while recognizing the importance of people's

economic livelihood and quality of life.

Description of the decision situation
Identification of objectives

v

Creation of a fuzzy Logic Controller

Fuzzy Logic Knowledge Base

Inference Process

| ‘ v

Design of a fuzzy multiple-criteria
Decision-making module

Aggregation of fuzzy
performance scores

Ranking of alternatives

v

Feasible watershed restoration pién- '

Figure 3.2: Diagram of the FMCDM methodology for the design of feasible
watershed restoration plans
Once the decision situation and relevant objectives are characterized, restoration
options that may drive the solution toward the design of a feasible watershed restoration
plan should now be identified. Restoration options are used as building blocks for a future

watershed restoration plan. An objectives hierarchy is used to graphically summarize the
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identified priorities and concerns (Clemen, 1996). It helps to understand what is the
vision of DMs when restoring their watershed. The main outcome of this step is an
increased understanding of the decision problem by the DMs, the community, the experts
or any interested parties. Focus group meetings, content analysis of newsletters, and
meeting minutes, as well as discussions with watershed council leaders help in the
identification of the five main objectives, the twenty-eight subobjectives, and the twenty

restoration options used in RESTORE and available to the watershed councils (Figure 3.3).

3.3.2  Creation of a Fuzzy Logic Controller

Once priorities and concerns are identified, the next step is to create a fuzzy logic
controller (FLC) that directs a socio-economic and environmental impact assessment. The
impact assessment evaluates the performance of the restoration options at meeting each
objective individually as a function of the cell’s landscape position. A cell is considered the
smallest site or land unit on which DMs can make a decision. In the literature, there is no
broadly accepted practice for fuzzy control design (Glorennec, 1994; Klir and Yuan, 1995).
In general, the design involves the development of a rule base and an inference engine that
embodies mechanisms for interpreting these rules and drawing conclusions from them,
based on the characteristics speciﬁc to the decision problem. Rules are defined using
linguistic variables described by fuzzy subsets. Several decisions have to be made when
designing a FLC, including the definition of the rules collection, the linguistic variables
and linguistic terms in the input and output spaces, the shape of the linguistic terms’
membership functions, aggregation operators, and ranking process. For the FLC presented

here, the design components are described below.
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Fuzzy Logic Knowledge base

Through a fuzzification process, the fuzzy rule base was built from a subset of
RESTORE’s 350 crisp rules. Fuzzification is a process that uses membership functions or
fuzzy subsets to translate system input and output into linguistic variables. Two distinctive
classes of fuzzification methods are proposed in the literature, direct and indirect methods
(Klir and Yuan, 1995). In the proposed approach a direct fuzzification method was used.
Experts are asked to identify the linguistic terms and associated fuzzy subsets defining
each concept present in the rules. The rules in RESTORE embody knowledge about site
and landscape-level guidelines for restoration options. Rules use qualitative or quantitative
attributes that need to be considered when directing the selection of restoration options.
Examples of the main quantitative attributes driving the decision-making process are land
use, land cover, hydrology, topography, and proximity to landscape features (e.g.: fish
distribution, wetlands, roads, streams, urban areas). All rules provide a conclusion
describing a positive or negative impact (e.g. low, moderate, significant, high, low
negative, moderate negative, significant negative, and high negative) of a specific
restoration option at addressing an objective under specific site conditions. Applicable
rules’ conclusions are linked by the sentence connective also. They are run in parallel to
produce an overall conclusion considering the information coming from all the applicable
rules (Cox, 1999). In Figure 3.4, rules assess the efficacy of an “agricultural riparian
buffer” at meeting the water quality objective.

The linguistic terms “low” and “medium” are defined by fuzzy subsets associated with
the linguistic variable “soil erosion”. The linguistic terms “moderate” and “significant” are

defined by fuzzy subsets associated with the linguistic variable “impact on the water
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quality objective”. The antecedent (the rule's premise) describes under what conditions
the rule contributes to the model solution, while the conclusion (the rule's consequent)
assigns a membership function to each of the output variables that is correlated with the
truth of the antecedent. Membership functions can take an infinite number of forms.
However, most FLCs use only fairly simple linear equations. In the approach used here;

DMs can choose between linear, triangular, or trapezoidal shapes, which could be bounded

or not.

IF erosion potential is “low* {antecedent)
or erosion potential is “moderate”

THEN effectiveness of an “agricultural riparian buffer” at reducing (canclusion)

sediment transport into a stream is considered as “moderate”
also

1F a stream listed for fecal coliform is “near” the site (antecedent)
and a stream is present on the site

THEN effectiveness of an “agricultural riparian buffer” at reducing (conclusion)

sediment transport into a stream is considered as “significant”

Figure 3.4: Rules assessing the efficacy of an “agricultural riparian buffer” at
meeting the water quality

Inference process

A fuzzy inference process defines the mapping from a given input space to an output
space. It evaluates the truthfulness of the fuzzy rules, selects the rules that contribute to the
conclusion, aggregates these rule conclusions, and infers a fuzzy conclusion. An inference
process should be context dependent, limit the loss of information and aim to model DM’s
behavior when making a decision. A few operators have a major impact on the inference
process: fuzzy implication operator, sentence connectives “and” and “or ", and the

sentence connective “also”.
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Fuzzy implication operator

Fuzzy implication could be defined as a mechanism that defines the degree of truth of a
rule. Numerous fuzzy implication operators are available including t-norm, strong
implication, residual implication, and quantic implication. Research concerning the
applicability of implications operators for different applications has been conducted by
various authors (Kiszka et al., 1985; Cao and Kandel, 1989; Cardenas et al., 1994; Cordon
et al., 1997). These researchers generally concluded that each operator generated good
results in a specific context and that t-norm minimum (MIN) operator frequently
performed well. The MIN implication operator was selected in our methodology. In the
approach used here, the sentence connective “and” is modeled by the MIN operator,”
because experts point out that two facts linked by the sentence connective “and” must be
both true to a certain extent for the rule to be considered in the evaluation process. The
rule’s impact on the fuzzy conclusion is negligible when at least one of the two facts is not
true. The sentence connective “or” is modeled by the MAX operator, because experts are
said to believe in the rules’ conciusion\ at least to an extent equivalent to the condition

having the highest degree of truth.

Sentence connective “also”

Under the composition step, all of the rules’ conclusions are combined together, with
the sentence connective “also”, to form a single fuzzy subset associated to the output

space. This step is seen as the one of aggregating experts’ opinions (Portilla et al., 2000).

In a decision situation, aggregating experts’ opinion can be modeled by using
disjunctive, conjunctive, or compromise operators. Zimmermann and Zysno (1980) stated

that most decisions involving a performance evaluation needed to allow compensation
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between different degrees of performance achievements. Compensation assumes that
good performance by one rule is perceived to partially compensate for lower performance
by another. In the case of a community-based decision problem, a compensatory approach
that trades off opinions about potential impacts can allow consideration of different
opinions or conflicting evidence. The inference process used here uses a compensatory
parameterized function (equation 3.1) to model the sentence connective “also” that
combines multiple rule conclusions. This function is a weighted combination of the non-
compensatory “and” and the fully compensatory “or” that is used to model the
performance (Mpredicate) Of a restoration option at meeting each objective individually. A
weighting factor ‘(X)‘represents the degree of optimism of DMs. It models the balance that

DMs want to reach, toward the minimum or maximum fuzzy conclusion (Cox, 1999). .

Hpredicate = (1 - X)min(,ua [xl Hp [xD +X max(/ua [xl Hp [x]) with0 <X =1 (3.1

This method was selected because it is intuitive, the degree of compensation can be

controlled, and it takes into account the full range of performance achievements.

3.3.3 Design of a fuzzy multiple-criteria decision-making module

The design of the FMCDM module consists of two steps. The first step is the
aggregation of the performance scores, computed by the FLC, with respect to all the
objectives for each decision alternative. The second step is the ranking of the decision
alternatives to the aggregated scores. Both steps aim to make use of techniques that

preserve knowledge and experiences provided by experts during the design of the Fuzzy
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Logic Knowledge base, and keeping this information ensures a more complete and

comprehensive analysis of the decision alternatives’ performance (Islei et al., 1999).

Aggregation of the fuzzy performance scores
The main challenge, when aggregating fuzzy performance scores, is to choose an

aggregation function that properly models the concerns of experts and DMs. In the

. approach used here, the FMCDM problem is defined as a finite set of (n) decision

alternatives, which are evaluated with respect to (m) objectives (V). The priorities
assigned to each objective are represented as weights (wy). The result of the aggregation is
a composite objective function (D) represented by a fuzzy subset. As mentioned
previously, as in fuzzy control, the aggregation of subjective categories in the context of
real world MCDM situations generally shows some degree of compensation (Shih and Lee,
2000; Despic and Simonovic, 2000). In the approach used here, the decision-making
problem is said to be compensating because good performance on one objective is

perceived to partially compensate for lower performance on another.

Fuzzy set theory provides a large number of different compensatory aggregation
connectives for combining membership functions. Frequently used compensatory
aggregation connectives in FMCDM are the arithmetic mean and the geometric mean.
With these methods, however, the degree of compensation cannot be controlled to reflect
the specific DM’s behavior. To express the DMs’ subjective attitude toward the
comparison of different fuzzy subsets, the generalized mean aggregation function

(Dyckhoff and Pedrycz, 1984) (equation 3.2) was selected.
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(3.2)

where vy is a DM’s attitude control parameter. According to the method, the grade of

compensation can cover the entire interval between the MIN (y = - «©) and the MAX (y =
). Tn the approach used here, the weights are determined by direct estimation. DMs are
asked to represent the importance of each objective with a value between zero
(unimportant objective) and one (critical objective). The output of the aggregation of the
fuzzy performance scores step produces a fuzzy subset that represents the overall
performance of each decision alternatives at simultaneously addressing the different

objectives.

Ranking of the decision alternatives

Ranking decision alternatives represented by fuzzy subsets is an important issue of
fuzzy decision-making unlike crisp sets which form a natural linear order. Many
approaches for ranking fuzzy subsets have been proposed in the literature. There exists an
assortment of methods classified by Chen and Hwang (1992) as: (1) preference relation,
(2) fuzzy mean and spread, (3) fuzzy scoring, and (4) linguistic method. In spite of the
existence of a variety of methods, no single method can rank fuzzy subsets satisfactorily in
all cases and situations. Most of them suffer from drawbacks, including difficuity of
implementation, counter-intuitive behavior, lack of discrimination, and failure to include

all information. Others make assumptions about the DM’s behavior and fuzzy subset shape
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(Bortolan and Degani, 1985; Wang and Kerre, 2001). These factors have made selection

of a ranking method subjective and specific to each decision context.

The need for further study focusing on the development of customizable and intuitive
ranking methods that account for the information richness of fuzzy subsets is manifest.
Consequently, a novel approach for ranking fuzzy solutions based on a grade of merit
index (GMI) is presented.

The proposed GMI method can be broadly characterized as a method using a FMCDM
model and uncertainty-based information to analyze the information content of the fuzzy
subset coming from the overall performance evaluation of each decision alternative.
Generalized information theory deals with the broad concept of uncertainty-based
information, which is defined in terms of uncertainty reduction (Klir, 1999). In fuzzy set
theory, two different types of uncertainty-based information exist, which are fuzziness and
nonspecificity (Klir, 1987). The GMI method aims to address the abovementioned
drawbacks of the existing ranking methods by considering more information in the ranking
process and emulating the way experts think about a specific problem. A decision
alternative with the highest GMI score is the one that best meets experts’ and DMs’
expectations in terms of what should be considered as a good solution. Expectations could
be the one of a risk-taking, a risk-averse, or a risk-neutral DM. The GMI ranking method
offers (1) flexibility at modeling the expert behavior when making decisions; (2) inclusion
of different forms of information that are manifested in the fuzzy solution, and (3) ability
of ranking arbitrary fuzzy qualifier shapes.

The GMI ranking method integrates information about both the expected performance
of the decision alternative at meeting DMs’ objectives and the uncertainty of the evidence
supporting the performance itself. To capture the properties of the fuzzy solutions, the GMI

involves four criteria: (1) expected performance of the restoration option at meeting DMs’
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objectives, (2) vagueness of the expected performance, (3) ambiguity of the expected
performance, and (4) accumulation of evidence. Each criterion is represented by fuzzy
subsets. The GMI uses (1) a FLC, similar to the one employed for evaluating the
performance of each restoration option, to evaluate each decision alternative in terms of the
four criteria and their associated attributes and (2) a simple additive weighted method
(Chen and Hwang, 1992) is used to rank the decision alternatives by combining single
criterion scores coming from the FLC into a composite criteria score.

Weights could be assigned to each criterion, allowing experts to identify compensation
between the expected performance and the uncertainty related to it. More weights given to
the performance criterion could be seen as a risk-taking DM. Conversely more weights
given to the uncertainty related criteria could be seen as a risk-adverse DM. For instance,
in some situations, a high score on the performance criterion might not be appropriate, due
to possible uncertainty or risk related to proposed watershed restoration plans. In some
cases, DMs might want to select a solution whose uncertainty is minimal or whose range of
impacts simultaneously beiongs only to a few neighboring fuzzy subsets.

‘Figure 3.5 presents a hierarchy of the information used by the GMI ranking method.
The upper level of the hierarchy presents the four aforementioned criteria based on which
the decision alternatives are ranked and the lowest-level of the hierarchy are the seven
attributes that measured the critéria. DMs and experts ;:ould easily include in the analy“sis-

any other criteria to better model their values and perspective.
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Figure 3.5: Hierarchy of the information used in the ranking process

Criterion 1: Expected performance

In the literature, one of the most commonly used practices to evaluate the expected
performance of fuzzy alternatives makes use of a defuzzification method. The alternative
with the greatest defuzzified value is selected as the one that best meets the overall DMs’
objectiVes. The m,osf wideiy used defuzzification method is the center of area method
(COA) (Mamdani and Assilian, 1975). The GMI uses the COA as a defuzzification
mgthod.'It was selected over other defuzzification methods for its simplicity and the fact
that it combines evidence from all rules (Cox, 1999). However, this method has serious
drawbacks. For instaﬁce, if output membership functiors lie on the same single vertical
axis, their COA value (dcoa) remains constant independently of whether the rule fired
strongly or weakly. COA is not able to discriminate between the three fuzzy subsets shown

in Figure 3.6, where the fuzzy subset B is intuitively preferable to fuzzy subset Aand C.
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Therefore, simple COA is not suitable for computing decision alternatives expected

performance.
peo 1
Ha
U
0.5 He
0
0

SCOores

Figure 3.6. COA value and COA truth-value for three different fuzzy subsets.
COAp4 = COApg = COApc;
COA truth-value p = 0, COA truth-value pp = 1, COA truth-value pc=0.5.

In order to overcome COA drawbacks, the GMI uses the dcoa in combination with two
other attributes to compute the expected performance criterion of each decision alternative.

These are the membership value of the dcoa and the lowest dcoa obtained for the key

_objectives. A good expected performance value is one that maximizes each of the three

attribute values.

) Center of area value (dcoa)

. The COA (also known as the center of grav.ity. method) converts each fu;éy subset
conclusion (A) obtained from equation (3.2) to a single real number. It could be seen asa
mean value representing the Qverall performance of the restoration at me_eting |

simultaneously the DMs’ objectives. The dcoa is computed as:
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(2) Truth value of the center of area value

The dcoa is a single crisp value representing the total range of the fuzzy subset
solution. However, it may not locally represent the fuzzy subset and thus, the dcoa’s
membership value in the fuzzy subset conclusion is computed. For instance, the three
different fuzzy subsets, shown in Figure 3.6, result in an identical dcoa of 5, though the
membership values are different. This attribute allows experts to assert that the higher the
dcoa’s membership value, the more representative or reliable the dcos might be of the

expected performance.

(3) Lowest COA value among the key objectives

When defining the objectives hierarchy in step 1, DMs identify their values in terms of
objectives and associated weights to be considered when selecting a restoration option for a
particular site. GMI allows experts to limit the expected performance of a decision

alternative by the lowest dcoa oObtained by one of the objectives or by a subset of objectives

* (e.g. objectives having received a weight higher than 0.6 on a scale of 0 to 1). Considering

the lowest dcoa, as an attribute, means that conservative experts could say that a-very low
performance on one important objective might cancel any favorable performance on other |
objectives or in other words might reduce the credibility of the expected performance

score.
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Criterion 2: Fuzziness

Fuzziness results from the imprecise boundaries of fuzzy subsets representing the
experts’ point of view about corresponding linguistic terms (Klir and Yuan, 1995). In the
context of the GMI, a measure of fuzziness characterizes to what extent the decision
alternative performance applies to each linguistic term describing impacts. Therefore, it is
necessary to have a criterion to measure the fuzziness of fuzzy subsets. The following two
attributes are used to evaluate the fuzziness criterion. A good score on the fuzziness
criterion could be one that minimizes the entropy value and maximizes the y-centroid

value.

)] Entropy value

An entropy measure can be seen as uncertainty-based information, measuring the
fuzziness or vagueness of a fuzzy subset. DelLuca and Termini (1972) proposed a measure
of entropy based on the classical Shannon entropy function. Kaufmann (1975) proposed
that the fuzziness of a fuzzy subset can be measured through the distance between the
fuzzy sﬁBset and 'its nearest non-fuzzy subsef. Yager (1979) introduced a ;neasure that is
considered as a holistic idea of the measurement of fuzziness, which is expressed by the
| distance bétween the fuzzy subset and its complement. The GMI uses the Yag'er’s method -
(equation 3..4l), because it is intuitive and easy to model (Higashi and Klir, 1982).

D,(4,CA)

_pre (3.4)
| Supp(A) || '

Fy(4)=1-

. . . . 1 .
| ) /
Dp(A,CA){Z!ﬂA(xi)—ﬂCA(xJ)”J, p=1,23.. (5

i=1 .
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Let

S = Supp(4): D, (S.CS) = S| (3.6)

CA = complement of the fuzzy subset A
p = scaling factor
||S|| = relative cardinality of A

Entropy is considered as minimum F, (A) = 0, when the fuzzy solution couid be seen
as a crisp set, in other words when the mapping between the linguistic variables and the
quantitative values is either 0 or 1. A maximum fuzziness is obtained when the degree of

membership is 0.5.

(2) The Y -center of area
Identical entropy value can be obtained for two fuzzy subsets that have different
centroid value (¥ ) in the y axis (Figure 3.7), however intuitively between these two
fuzzipess yalues experts might prefer the fuzzy subset with the highest center of g»ra,vity‘ in
the y-axis.'Th'er.eAfore, to differentiate fuizy subsets having the same fuzzinéss, the y-center

of area (equation 3.7) is used.

- 1 x=b 2 '
y=5o [ r@ias 3.7)
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Figure 3.7: Entropy values for two different subsets
Fpua = Fppa=l

Criterion 3: Ambiguity

A fuzzy subset describing the expected performance of a decision alternative might be
related to various linguistic variables. For instance, the solution might simultaneously have
to some extent low-negative, moderate, and high-positive impacts on the different
objectives. The ambiguity in a set is connected with the size of the subsets. In our case.
subsets designate linguistic variables describing the restoration options’ impacts on the
differe-nt objectivés. THe larger the subsets, the less specific 1s the charécterization. The

following decision variable is used to model the ambiguity of the fuzzy solution.

(1) Nonspecificity

The'nonsi)eciﬁcity variable is another uncertainty-based information measure that is
connected with the size (cardinalities) of fuzzy solutions or subsets. Nonspecificity can be
‘thought of as a way of assessing the consistency of the different solutions. For instance, if
all the impacts are described by the same linguistic variable, then the ambiguity regarding

the impact is low. This is the most straightforward situation to deal with from an expert’s
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perspective. Nonspecificity provides an indication of the dispersion of the
characterization. Thus a high value of nonspecificity indicates that the solution belongs to
several different descriptive categories and this information could be used in risk-based
management decision-making.

To compute the nonspecificity of any nonempty set A defined on a finite universal set
X, we use the U-uncertainty function (equation 3.8), a generalization of the Hartley

function (Higashi and Klir, 1983).

1 g, .
Ud)=—- [ log,|* dda (3.8)

h(A)

where { aAt represents the cardinality of the a-cut of A and h(A) is the height of A. The a-

cut of a fuzzy subset A is the crisp set ®A that contains all the elements of the universal X
zy D

whose membership grades in A are greater than or equal the specified value of a.

High specificity is obtained when a solution belongs to a single set. The meaning of a
wide fuzzy subset is more ambiguous compared to a narrow one which meaning is more
definite. For instance, a number of experts could prefer a solution de,ﬁngd by a narrow
fuzzy subset, because impacts are constrained to only one category of impacts. In other

circumstances, a solution with a wide output would be preferred for its versatility since it

' pei‘taihs simultaneously to different catégoﬁes of impacts.

Criterion 4: Accumulation of evidence
M Number of rules
. Intuitively, the reliability of a fuzzy solution could be seen as proporﬁorial to the

number of rules fired, because more extensive knowledge is accumulated.
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3.4 WATERSHED RESTORATION PLANNING EXAMPLE

The proposed approach was applied using RESTORE, a DSS for watershed restoration
planning. RESTORE selects the most desirable restoration options under specific land use
characteristics and creates a watershed restoration plan. The Upper Amazon sub-basin, part
of the Long Tom watershed of Oregon’s Willamette River Basin, was studied. The Upper
Amazon sub-basin is substantially urbanized and is in to Oregon’s second-largest
metropolitan area, Eugene. The sub-basin has been significantly disturbed by agricultural
and urban activities, resulting in a number of conflicts related to land use and consequent

ecological impacts.

For this study, RESTORE MCDM algorithm (Lamy et al., 2002a) was modified to use
a FMCDM when selecting a preferred restoration option. RESTORE éva]uates, compares,
and ranks restoration options subject to stakeholders’ objectives. In the following example,
we illustrate one set of stakeholders’ priorities and concerns. DMs were considered risk-
neutral. Water quality and water quantity were among five primary objectives, reflecting
subobjectivesI of decreasing watef temperature aﬁd runoff, increasing stream flows and H
improviﬁg nutrient management. These objectives were followed closely by socio-

"econpmic issues, including aeSthefic quélity; public suppoi't, and education én-d outreach. -

Maintaining and enhancing fish and wildlife habitat had a relatively low priority. The
normaiiZed weights given to the five objectives are: water'quality 1; Water quantity 1; -
habitat 0.33; social 0.78, and economic 0.78.

The RESTORE framework evaluates more than 20 restoration options per cell. For the

Upper Amazon sub-basin, 12 200 celis are examined, with more than 2012200 possible

-landscapes or watershed restoration plans. Cells are buiit on the assumption that small



landscape areas can be aggregated into an area that is reasonably homogeneous with
respect to land use, soil, and drainage. The example presented here focuses on a small
riparian area of the watershed, where five restoration options were considered for each cell.
These restoration options were: (1) riparian agricultural buffer, (2) increase late summer
flow, (3) riparian forest buffer, (4) create condition favorable for native species, and (5)
wetlands construction (Figure 3.8). Detailed results for a specific site (#3424) are presented
in Table 3.1. This site can be broadly characterized as agricultural land adjacent to a stream

and road.

Create conditions favorable
to native species

Increase late summer flow
Forest riparian buffer

Agricultural riparian buffer

BEOE0O =B

Wetlands construction

Stream network

Figure 3.8: Proposed restoration plans resulting from the analysis performed by (A)
- MCDM RESTORE model and (B) FMCDM RESTORE model, on the study area. The
MCDM analysis allocated to each site the restoration option with the highest score and the
FMCDM analysis allocated to each site the restoration option with the highest GMI
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As shown in Table 3.1, both the crisp and the fuzzy approaches rejected from the
evaluation process “the forest riparian buffer” and the “wetlands construction” restoration
options, because the agricultural site under study has not met the constraints of these two
restoration options. No significant differences can be seen in the ranking results coming
from the two approaches. The RESTORE framework ranks decision alternatives based on
one attribute, which is the performance of the alternatives at simultaneously meeting the
multiple objectives. In contrast the FMCDM approach ranks decision alternatives based on
four criteria and seven attributes. One of the criteria relates to the expected performance of
the alternative at simultaneously meeting the multiple objectives and the three other criteria
relate to the uncertainty or the risk related to the expected performance itself. Both
approaches (Table 3.1) concluded that the “late-summer flow control” réstoration option
was the best among the other alternatives at meeting the performance criterion. Therefore,
the RESTORE MCDM framework applied the “late-summer flow control” restoration
option on cell #3424 with a score of 2.9 out of 4. However, the RESTORE FMCDM
approach, which modeled a risk-neutral DM, selected the “agricultural riparian buffer”

restoration option over the “late-summer flow control” restoration option with a score of

. 5.84 out of 10 (in fuizy terms, it is described by both moderate and a significant impacts).

It was assumed that high scores on the uncertainty criteria compensated for the lower score -
obtained on the expected performance criterion.

* The RESTORE MCDM aigorithm assumes that variables can be réprésented by single

“discrete numbers, ignoring their continuous and wide-ranging nature. Such an approach

entails certainty about the existing knowledge and averages the overall performance of

._each decision alternative at simultaneously addressing the different objectives. During this

averaging process, diversity and uncertainty inherent in original information is lost.
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Table 3.1: Detailed results of the FMCDM approach for a specific site

Accumulation
of evidence
criterion

Vagueness GMI  RESTORE
criterion Score score

Restoration Ambiguity Expected
option criterion  performance
criterion

Agricultural
riparian 6.34 5.22 8.42 3.38 5.84 2.07
buffer

Late-summer 4.68 6.84 4.68 3.94 5.03 2.69

flow control

Create
condition
favorable for 3.33 3.95 3.84 3.33 3.61 1.04
native
species

Forest
riparian 6.68 6.31 6.33 3.32 0 0
buffer

Wetlands

. 4.68 4.14 6.94 3.53 0 0
construction

In contrast, the RESTORE FMCDM approach enables experts to express their

knowledge and experiences with linguistic terms represented by fuzzy subsets (which can

be seen as uncertainty intervals) rather than discrete values. Such approach widens the

range of the solution space by adding tolerance and flexibility in the analysis of the
alternatives. Fuzzy rules use fuzzy subsets that allows a membership in more than one
cafegory, which makes the model more robust in front of uncertainty in expert knowledge

or when adding new ihform_ation. For instance, an alternative is not excluded from the

'eVal'ﬁation'process 'sim"ply because it exceeds a constraint (e.g. stream proximity should be

less than 20 meters) by a small amount (e.g. 1 meter).
The output of the FMCDM evaluation process is a fuzzy subset, which is rich in
information-content. Information-content may refer to local characteristics (e.g. extent to

which an option has met or not met the rules’ conditions, and extent to which an option is
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characterized by one linguistic term) or global characteristics (e.g. center of area,
uncertainty-based information) of the fuzzy subset. This information can be used in the
ranking process, as it is done by the GMI. In addition, having this information allows a
DMs and experts to reevaluate in some cases the benefits of a restoration apparently not
suitable in the first place. When more information is included in the ranking process, the
decision alternatives are better understood by DMs. A GMI score provides an indication of
the quality of the evidence showing the value of the different alternatives, being either
included or rejected from the evaluation process. The GMI extends the existing ranking
methods by providing a more complete analysis of the fuzzy subset being ranked and by
better supporting the accumulated information. More specifically, it does so by (1) making
use of a FMCDM technique that considers four criteria and seven attributes characterizing
the different facets of fuzzy subsets (most existing methods use only one attribute to rank
fuzzy subsets) and allows experts to specify weights on each criterion, (2) including
uncertainty-based information as attributes for measuring the uncertainty of the fuzzy
subsets, (3) not making any assumptions about the shape of the fuzzy subsets to be ranked,
and (4) making use of fuzzy rules to evaluate each criterion, which brings transparency and
flexibility to the ranking process and allows DMs to express their values and perspective
about what should be considered a good alternative in a specific decision context.

The evaluation and selection process of alternatives in a cdmmunity-based watershed

restoration planning context is often accomplished with information expressed in linguistic

terms which are 'intrinsically subjective and imprecise. A FMCDM approach is more
realistic than a traditional MCDM approach because it gives experts’ the flexibility to take

into account the uncertainty involved in the decision-making process.
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3.5 CONCLUSIONS

A FMCDM approach was proposed and applied to the context of RESTORE, a
decision tool for holistic watershed restoration planning. The approach involves three basic
steps: (1) expert values are first captured and serve as a starting point to additional analysis
steps, (2) a FLC is built, which contains (a) a knowledge base, (b) an inference process
enabling DMs to evaluate the performance of the restoration options at meeting the
different objectives separately, and then (3) a FMCDM module is developed, which (a)
aggregates fuzzy subsets to calculate a composite objective function for each option and
finally (b) integrates a novel ranking method to create a final ranking of the restoration
options, resulting in an efficient watershed management plan.

The results obtained so far strongly indicate that our FMCDM approach provides a
valuable tool in the analysis of complex watershed management issues because it properly
addresses the inherent ambiguity in experts’ knowledge. The approach presents a novel
fuzzy ranking method, GMI. The GMI is a flexible and intuitive ranking method that uses a
FMCDM technique, includes uncertainty-based information, does not make assumptions
about the shape of the fuzzy subsets to be ranked, and allows DMs and experts to express

their values and perspective about what should be considered as a good alternative in a

specific decision context.

" Community-based decision-making is a collaborative process, where negotiations

among participants and conflicts of interest are almost inevitable. DMs need tools to

support consensus and compromise building. A future version of RESTORE should
include methods providing a systematic means for developing effective group decision

making, where the inclustion of conflicting opinions may alter the shape of the fuzzy

' criteria and the fanking of decision alternatives.
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Other improvements to the present structure of RESTORE include the modeling of

other sources of uncertainty. This paper was concerned with the linguistic uncertainty in
expert knowledge which does not include the uncertainty related to the occurrence of an
event. In some situations, a DM might not be 100% sure about the shape of a fuzzy subset
or the truthfulness of a rule, which could be translated as uncertainty due to a lack of
knowledge or ignorance about a situation. There is an opportunity to combine fuzzy set
theory with another uncertainty theory that would specifically address this type of

uncertainty.
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4.1 INTRODUCTION

Watershed restoration decisions involve interactions between socio-economic and
environmental systems, which are both complex and not fully understood. Typically, a
decision-making process involves several distinct and iterative steps, including decision
problem description, identification of decision-makers (DMs)’ values, creation of a
knowledge base, and generation and evaluation of feasible solutions (Lamy et al., 2002a).
Sbatially e*plicit decision support systéms (DSSs) show potential for assisting in the
pfoduction of watershed restoration plans. These plans typically involve multiple DMs’
interests and must balance a variety of often conflicting objectives. DSSs have been
defined as computer-based systems that support the decision-making process by enhancing
problem comprehension and by providing data, anaiytical tools, and methods to
characterize uncertainty (Mowrer, 2000). However,‘only a few DSSs recognize and
implement uncertainty assessment (Heuvelink, 1998; Crosetto et al. 2000, Mowrer, 2000).

Several theories to model uncertainty in expert knowledge have been proposed,

including Bayesian theory (de Finetti, 1972), possibility théory (Zadeh, 1978), Dempster-

Shafer theory (Dempster, 1967; Shafer, 1976), fuzzy set theory (Zadeh, 1965), and
certainty factor model (Buchanan and Shortliffe, 1984). Even though each of them can
only be applied té s;?eciﬁc decision-making contexts, modelers have a tendénéy to faVor' ‘
one theory gnd apply it to all cases. Additionally, few studies have compared the suitability
of different theoriés to specific decision problems. The selec_tioh of appropriate methods |
for modeling uncertainty is decision context dependent (Zimmermann, 2000).

To date, na study has compared the applicability of different uncertainty theories to
watershed restoration. Here, we explore the utility of three uncertainty theories, including

certainty factor model, Dempster-Shafer theory, and fuzzy set theory; at modeling the
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uncertainty in experts’ knowledge using RESTORE. RESTORE (Lamy et al., 2002a) is

a geographical information system-based decision-making tool developed to help
watershed councils evaluate and rank restoration activities at the watershed level. It
includes a rule-based system that models the experts’ perception of restoration alternatives
performance at meeting DMs’ multiple objectives. Objectives considered include water
quality, water storage, habitat quality, social concerns and economics that often conflict. A
multiple criteria decision-making (MCDM) performance evaluation leads to the ranking of
restoration alternatives, which are used as building blocks for future restoration plans.
Rankings reflect alternatives’ impacts on the objectives described above, which are
determined through the application of a set of rules, developed from experts’ knowledge. A
rule describes a restoration alternative’s performance at achieving a specific objective for
given site conditions.

The complexity of the various landscape processes and human subjectivity suggest that
a robust performance evaluation module would involve the modeling of uncertainties
inherent to experts’ knowledge. This information can be critical from a DM’s point of view
and can allow a DM to make more iriformed decisions (Crose‘tto‘ et al., 2000; Hoffman et

al., 1999). In RESTORE, evaluation of alternatives is carried out using a crisp (no estimate

of uhc_ertainty) rule base that contains heuristic knowledge, which utilizes spatial data (e.g.’

soil type, slope, distance to stream) stored in a geographic information system (GIS)

_database. Heuristic knowlédge is génerated from experts’ experiences, beliefs, and

judgments (Yen, 1999) and takes the form of rules that embody the experts’ knowledge
about site and landscape level guidelines for restoration alternatives.

Knowledge representation is cru.cial to the‘ability of RESTORE ana s‘imilar systems to
capture important decision processes. Methods dealing exclusively with precise statements

often cannot fully capture the richness and complexity of experts” knowledge (Baroni et
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al., 2001). For example, assessing the ability of a wetlands restoration project at
improving the aesthetic quality of an area is a difficult task because (1) the assessment is
qualitative and often based on the experience, judgment, and beliefs of experts in the field,
(2) experts might not have all the information available to make an unequivocal
assessment, and (3) the experts’ natural language used to describe an impact (e.g. low or
significant impact on the aesthetic quality objective) is inherently vague. Due to these
difficuities, uncertainty exists in the estimated value of a restoration alternatives’ ability to
address DMs’ objectives.

Various methods have been proposed to quantitatively represent experts’ knowledge
and related uncertainty in DSSs. In this paper, certainty factors model, Dempster-Shafer
theory, and fuzzy set theory approaches are investigated using RESTORE’s rule base. In
the following sections, we will (1) explore the basic mechanisms for reasoning under
uncertainty advocated by each approach, (2) identify criteria that should help modelers
assess whether or not an uncertainty method is appropriate for a specific MCDM context,
(3) characterize each theory in terms of the identified criteria using RESTORE, and (4)

apply each theory using RESTORE.

4.2 METHODS OF UNCERTAINTY

In this paper, the notion of uncertainty refers to Zimmermann’s (2000) interpretation:

© “Uncertainty implies that in a certain situation a person does not dispose information. .

which quantitatively and qualitatively is appropriate to describe, prescribe, or predict
deterministically and numerically a system, its behavior or other characteristics”. In other
words, a statement is considered as uncertain if an expert, based on the available

information, cannot evaluate its truth or falsity in a dichotomous way. In heuristic
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modeling approaches such as RESTORE, uncertainty in experts” knowledge originates

from (1) beliefs (e.g. partial beliefs, conflicting beliefs, disagreement among experts about
potential impacts), (2) linguistic imprecision (ambiguity of the terms or linguistic variables
used in the knowledge base), and (3) ignorance about the true state of nature (Cleaves,
1995).

A classical method for addressing model’s uncertainty is the Bayesian probabilistic
approach (de Finetti, 1972 ). However, this approach is not well suited to experts systems,
such as RESTORE, since it requires the evaluation of a priori probability distributions for
all facts in the rules, while these probabilities are generally not available (Beynon et al.,
2000; Kozine and Filimonov, 2000). Furthermore, Bayesian theory is inadequate to model
ignorance. For these reasons, other approximate reasoning theories have been developed,
among these are (1) fuzzy set theory, (2) certainty factor model, and (3) Dempster-Shafer
theory; all of which were used in this study. These theories can either model beliefs,
ambiguity, and/or ignorance in experts’ knowledge.

Here, we relate uncertainty theory and generalized information theory (Klir and Smith,
1999). The aim of the generalized information theory is to characterize uncertainty-based

information within any feasible mathematical framework (Klir and Yuan, 1995). In this

- theory, the term information is given a mathematical meaning as a numerically measurable

quantity. Three types of uncertainty-based information are recognized: fuzziness,

~ nonspecificity, and conflict (Klir and Yuan, 1995). However, in this study, we considered

ignorance as another facet of uncertainty-based information. Ignorance in evidence
represents the inability of the experts to completely assign their belief to one or more
subsets of the universal set X. Nonspecificity in evidence is related to the size of the
subsets that characterize a solution; the larger the subset, the less specific (or more

ambiguous) the characterization. Dissonance is present whenever there is inconsistency or
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disagreement in evidence. It is exhibited when there is more than one disjoint subset
describing a solution. Finally, fuzziness results from the imprecise boundaries of fuzzy
subsets. The shape of a fuzzy subset presents a measure of the fuzziness of the
corresponding linguistic term in the mind of the experts. Specific characterizations of
uncertainty reflect the mathematical theory used; therefore any uncertainty theory is
capable of capturing only certain types of uncertainty-based information.

Uncertainty-based information allows DMs to evaluate the quality of the evidence
supporting a decision alternative. In the event of poor evidence quality (e.g. high
nonspecificity, fuzziness, conflict, and/or ignorance), DMs might decide to reject an
alternative or look for new information to reduce the uncertainty. The amount of
uncertainty and the amount of information are intimately connected (Klir and Yuan, 1995).

Following is a brief description of the certainty factor model, Dempster-Shafer theory,
and fuzzy set theory. Special attention is given to the theoretical concepts, inference

process, and uncertainty-based information.

4.2.1 Certainty factors model

The certainty factor model (CFM) was created in the mid 1970's by Bruce Buchanan
and Edward Shortliffe (1984) fo’r the rﬁle-baséd medical expert system Myéin. The model
has been applied primarily in the medical field, with additional applications in other
domains, e.g. mineral exploration (Sﬂ(ardick etal, 1986)'ar'1d‘ housing discrimination
(Anandanpillai and Barta, 1999). In this model, each proposition is assigned a measure of
certainty, called a certainty factor (CF: [-1, 1]) that combines degree of belief (MB: [0, 1])

and disbelief (MD: [0, 1]) into a single number (equation 4.1).
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CF [h, e] = MB[h,e] - MDI[h, €] (4.1)

where MBJ[h,e] = the measure of increased belief in the hypothesis h, based on evidence e
and MDJh, e] = the measure of increased disbelief in the hypothesis h, based on evidence e.
A CF of -1, 0, and 1 means respectively that the proposition is known with certainty to be
false, no evidence support its truthfulness or falsity, and known with certainty to be true.
In RESTORE, a CF assigned to a rule (or hypothesis) is equal to MB since, in
RESTORE, experts do not express disbelief. A CF is an experts’ subjective belief, often
seen as subjective probability, that describes the strength of their confidence in the
conclusion of a rule, assuming the rule’s premise is true (Figure 4.1). A CF is applied to
every rule; these are then combined to compute the CF of a conclusion. For instance,
having a first rule which takes the following form: IF 4 then B, with a measure of belief
(CF=0.8) in conclusion B. Giving another rule IF C then D with a CF=0.5 in conclusion D,
the combined CF (CFievisea) Of two rules is defined as: CFrevised = CFoig + CFrew (1-CFolg). In
the preceding example, CF eyisea = 0.8 + 0.5 (1-0.8) = 0.9. This approach accumulates
certainty to a result as more evidence supporting that result is considered. Rules may

contain multiple antecedents. For conjunctive antecedents of a rule, the combined CF is

equal to the minimum of the antecedents’ CFs. For disjunctive antecedents, the combined

CF is equal to the maximum of the antecedents. In spite of its simplicity, the CFM
performed well when judged against human domain experts in Mycin (Horvitz et al,
1988).

The output of the traditional CFM is a single number, which does not allow the
representation of the different types of uncertainty-based information that are recognized

here, i.e. fuzziness, nonspecificity, conflict, and ignorance.




RESTORE crisp rules

rulel
IF soil erosion is <2 {tons/acre}
THEN the Agricultural Riparian buffer’s impact
on the water quality objective is 1/4
rule2
IF Erosion_Potential >= 2 {tons/acre} and
Erosion_Potential <5 {tons/acre}
THEN the Agricultural Riparian buffer’s impact
on the water quality objective is 2/4
rule3
IF Distance to_Pesticide_listed_Stream >= 1000
{meters}
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is 1/4

RESTORE certainty factor rules

IF soil erosion is <2 {tons/acre} with certainty of (1)
THEN the Agricultural Riparian buffer’s impact
on the water quality objective is 1/4 witha
certainty of (0.8)

IF Erosion_Potential >= 2 {tons/acre} and

Erosion_Potential <5 {tons/acre} with certainty of (1)

THEN the Agricultural Riparian buffer’s impact
on the water quality objective is 2/4 with a
certainty of (0.8)

IF Distance_to_Pesticide_listed_Stream >= 1000
{meters } with certainty of (1)
THEN the Agricultural Riparian buffer’s impact
on the water quality objective is 1/4 witha
certainty of (0.8)

RESTORE Dempster-Shafer rules

IF soil erosionis <2 {tons/acre}
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is (1)
low with a belief of (0.8) and (2) unknown
with a belief of 0.2

IF Erosion_Potential >= 2 {tons/acre} and
Erosion_Potential <5 {tons/acre}
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is (1)
moderate with a belief of (0.8) and (2)
unknown with a belief oj; 0.2

IF Distance_to_Pesticide_listed_Stream >=
1000 { meters }
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is (1)
low with a belief of (0.8) and (2) unknown
with a belief of 0.2

RESTORE fuzzy rules

IF soil erosion is low
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is low

IF Erosion_Potential is moderate
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is

moderate

IF Distance_to_Pesticide_listed_Stream is far
THEN the Agricultural Riparian buffer’s
impact on the water quality objective is low

69

Figure 4.1: Examples of RESTORE’s crisp rules translated into the scheme of certainty
factor model, Dempster-Shafer theory, and fuzzy set theory.
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4.2.2 Dempster-Shafer theory

The Dempster-Shafer theory (DST) (Dempster, 1967; Shafer, 1976) provides a method
for representing and reasoning with degrees of belief. DST uses a number between 0 and 1
to indicate a subjective assessment of the degree of support that a body of evidence
provides for a proposition (Yager, 1983). Unlike probabilistic approaches, DST theory
does not require a complete set of prior and conditional probabilities. In addition, DST
provides an explicit way for representing a lack of knowledge or ignorance about a specific
state of nature. DST is more suitable for decision problems that invoive a hierarchical
structure, because it allows experts to assign degrees of belief to a collection of hypotheses
and a single hypothesis. Such a feature facilitates the aggregation of evidence gathered at
varying levels of detail. RESTORE’s decision domain has a natural hierarchical structure.

In Figure 4.2, an illustration of a RESTORE value tree objective is presented. The
main objective is “Watershed Restoration”, which consists of five key objectives, each
characterized by subobjectives, then attributes are added under the subobjectives.
Attributes are site-based decision variables that are considered by RESTORE when
evaluating the impacts of alternatives on DMs’ objectives. The lowest part of the hierarchy
is composed of decision alternatives that are connected to the attributes.

Few researches have investigated the use of a DST-based MCDM approach (Beynon et
al., 2000; Yang, 2001; Beynon, 2002). Furthermore, to the knowledge of the authors, no
research has been conducted on the application of a DST-based MCDM approach to
watershed management issues in general and more specifically to watershed restoration.
DST has been applied to topics such as safety analysis (Wang et al., 1995), engineering

(Yang and Sen, 1997, Sénmez et al., 2001), word recognition (Bowles and Damper, 1989),
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and remote sensing (Le Hégarat-Mascle, et al., 1997; Bendjebbour et al., 2001). Yet the

vast potential of DST has remained unexploited (Hajek, 1994).

DST assumes a frame of discernment denoted by 6, which is a finite, nonempty set of
the possible hypotheses assumed to be mutually exclusive. In RESTORE, these hypotheses
can be the set of grades defining an impact (e.g. low, moderate, significant, and high). Each
hypothesis in 0 corresponds to a single subset (singleton). DST uses a basic probability
assignment (bpa) that allocates a degree of belief (m) of 0 to the empty set m(®) and a
value in the range of [0,1] to each subset of all possible subsets of 8, which is denoted by
the power set 2°. A subset for which (m) > 0 is called a focal element. The total degree of
belief assigned must sum up to 1. The quantity of m(0) is a measure of that portion of the
total degree of belief that experts were unable to assign to any particular subset of 6. It is
seen as experts’ ignorance about possible outcomes.

For a given bpa allocated to a subset A of 0, Bel(A) is a belief measure that
corresponds to the total amount of belief that supports the subset A. A plausibility measure
is the total amount of belief that A is compatible with the available evidence. The interval
[Bel(A), PI(A)] can be considered to be a measure of ignorance about A. Evidence in 0 is
combined using Dempster’s rule of combination (2). The bpas assigned to rule 1 (m;) and
rule 2 (my), being respectively X and Y are combined by summing all products (equation
4.2), such operation focuses on the intersection XNY, as shown in Table 4.1. Then the
resulting bpa m;5(C) is combined with a third rule; all rules are combined using this

technique.

my (X)my (Y)
1-K

my(C)= Y (4.2)

XnY=C



K= 3 m@my() (43)
XNY=0

where m(X) and m2(Y) are beliefs that run over all hypotheses of 6.

K is a normalizing factor, which measures how much m; and m, are conflicting. It
normalizes the new belief distribution by re-assigning any bpa which is assigned to the
empty set, @, by the combination. Table 4.1 presents an example of Dempster’s rule of
combination using the rules 1 and 3 from the RESTORE Dempster-Shafer rules presented
in Figure 4.1. In this example, experts estimated that for a specific site, based on available
information and evidence, an agricultural riparian buffer’s ability to address the water
quality objective was low with a confidence of 0.8. The remaining 0.2 was the unassigned
degree of belief (m(6)), which may have been due to a lack of knowledge or information

about the impact of the alternative on the water quality objective.

The uncertainty-based information that can be measured in DST is nonspecificity and
conflict. Nonspecificity measures the inability to distinguish which of several possible
alternatives is the true one in a particular situation. Nonspecificity occurs when beliefs are

assigned to overlapping subsets. Conflict measures the inconsistency or disagreement

_present in the evidence. Conflict occurs when one piece of evidence points in one direction

and a second piece points in another direction. The degree of conflict is proportional to the

strength of the disagreeing pieces of evidence. .

A measure of nonspecificity was first proposed for possibility and necessity measures
by Higashi and Klir (1983). It was later generalized by Dubois and Prade (1985) for belief

functions. The measure of nonspecificity is defined as:

N(m)="Y m(4)log, | 4] (4.4)
AeF
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where |A| is the cardinality of the focal element A and F signifies the set of all focal

elements. All focal elements are weighed by their basic bpas. The measure of

nonspecificity is a weighed average of the Hartley function (1928), which was conceived in

terms of classical set theory. It measures the uncertainty associated with sets of

alternatives.

Table 4.1: Example of the Dempster’s rule of combination. The results of the combination
of the rules 1 and 3 from Figure 4.1 are shown in the normalized combined basic

probability assignment. 1, M, S, H, and 0 representing respectively low, moderate,
significant, high, and unknown impact on specified objective.

Evaluation grades L M S H 0 (\
Rules/assessment

Rule 1 0.8 0 ¢ 0 0.2

Rule 3

L 0 0 0 0 0 0

M 08 D (0.64) 0 0 0 M (0.16)

S 0 0 0 0 0 0

H 0 0 0 0 0 0

0 02 L(0.16) 0 0 0 6 (0.04)
Combined bpas 0.16 0.16 0 0 0.04 0.64
| No‘rmali"zéd | _ : | |

Combined bpas 0.44 0.44 0.11

Various methods have been presented for measuring conflict (Hohle, 1982; Klir and
Ramer, 1990). The method preferred in this study is Yager’s (1983) method. It uses the

function £ , called the measure of dissonance , defined by:

Em=-)_ m(4)log, PI(4) (4.5)
AeF
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4.2.3 Fuzzy Set Theory

In 1965, Lofti Zadeh proposed fuzzy set theory, a mathematical framework that gives
experts the ability to convey the fuzziness or the intrinsic vagueness of qualitative
concepts. Most qualitative concepts have no precise boundaries or cannot be described
precisely; therefore, soft boundaries are used to handle the idea of partial truth. Fuzzy logic
models the intrinsic fuzziness or vagueness of natural language. Fuzziness relates to the
degree to which an event occurred, rather than to the likelihood of its occurrence. Fuzzy set
theory is more compatible with linguistic terms than a two-valued logic or a crisp logic,
where a membership function 4 of a fuzzy set 4 associates a membership value (ua(x)) in
the interval [0, 1] with each element x of the universe of discourse U.

A usual fuzzy inference process includes the following major steps: (1) fuzzification,
(2) implication, (3) aggregation, and (4) defuzzification (Cox, 1999). These steps, shown in
Figure 4.3, are described below:

1. Fuzzification. A variety of fuzzy subsets is defined for each input and output variable.
For instance, in Figure 4.3, the fuzzy set (linguistic variable) soil erosion is defined in
terms of the fuzzy subsets (linguistic terms): low, moderate, and significant.

2. Implication. A mechanism that defines the degree of truth of a rule. The truth-value for
the premise of each rule is computed and applied to the rule’s conclusion. In Figure 4.3, the
minimum implication function (MIN) is applied, truncating the output membership
function by the rule premise's minimum degree of truth.

3. Aggregation. Fuzzy subsets assigned to output variables are combined together to form a
single fuzzy subset. In Figure 4.3, the maximum function is used, taking the pointwise

maximum over all of the combined fuzzy subsets.



(1) Fuzzification
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Figure 4.3: Fuzzy inference process using rules 1 and 2 from Figure 4.1. Site’s soil erosion = 2.4 t/acre.
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4. Defuzzification. A fuzzy subset is converted to a crisp number. There are many

defuzzification methods available in the literature; the most often used is the center of area
method (Mamdani and Assilian, 1975) (equation 4.6). This method weights the area under

the fuzzy subset (A) with the truth-value A(y).

[ aG)yay
dCOA (A) ==a (46)

[ 4Gy

Fuzzy set theory allows the measurement of two types of uncertainty-based
information, fuzziness and nonspecificity. Fuzziness results from the imprecise boundaries
of fuzzy subsets representing the experts® definition of corresponding linguistic terms (Klir
and Yuan, 1995). Entropy measures are used to quantitatively evaluate the fuzziness of a
fuzzy subset. DeLLuca and Termini (1972) proposed a measure of entropy based on the
classical Shannon entropy function. Kaufmann (1975) proposed that the fuzziness of a
fuzzy subset can be measured through the distance between the fuzzy subset and its nearest
non-fuzzy subset. Yager (1979) introduced a measure of fuzziness (Fp), expressed as the
distance (Dp) between the fuzzy subset (A) and its complement (CA). Yager’s method

(equation 4.7) is intuitive and easy to model (Higashi and Klir, 1982).

F (4)=1 Dp4,CA) 4.7) -
P i Supp(ay)| o
o : I _ ,
: n -, p o .
Dp(A,CA)z[Z’,uA(xi)—yCA(x,-)lp~J p=12.. (4.8)
=1
S = Supp(4) =|s]. | (4.9)

where pa(x) is a membership value of value x in the fuzzy subset A, and L 4(x) being its

complement; p is a factor allowing the distance specification (p=1, p=2 and p=oo, represent
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respectively the Hamming, Euclidean, and Sup metrics), and ||S] is the relative

cardinality of A.

Nonspecificity measures the size (cardinalities) of a fuzzy subset. Nonspecificity
provides an indication of the dispersion of the characterization. In RESTORE, a low
nonspecificity means that an impact assessment is well represented by the evidence
gathered; thus, there is a low risk and ambiguity about the likely impacts of a solution on
the prioritized objectives. To compute the nonspecificity of a fuzzy subset C, the U-
uncertainty function, a generalization of the Hartley function (Hartley, 1928; Higashi and

Klir, 1983), is used.

1l
Ut =5 [oe,

“A[da (4.10)

where laA‘ represents the cardinality of the o-cut of the fuzzy subset A h(A)isa

normalizing factor corresponding to the maximum truth value of the fuzzy subset A. An a-
cut of a fuzzy subset A is the crisp set “A that contains all the elements of the universal X

whose membership grades in A are greater than or equal the specified value of a.

4.3 ANALYSIS CRITERIA

| To date; ﬁo research haé cbmpared uricerfainty theories using MCDM applied fo
- watershed management. Since no single method is able to'model all types of uncertainty 4
and fo address all DMs’ and éXpeﬁs’ pracfical fequireménts, the exarﬁinaﬁon of various
uncertainty theories is a critical step in any given application. Each theory is proficient at
modeling at least one kind of uncertainty present in experts’ knowledge, related either to
experts’ beliefs, linguistic imprecision, and/or ignorance about the true state of nature.

Ideally, the selected method should be able to maximize the use of the information
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provided by experts and to provide unambiguous results from a DMs’ standpoint. To

help modelers in the selection process, we identified a list of criteria that can be used to
characterize uncertainty theories. To date, most research has focused on the theoretical
issues of uncertainty; their practical application has received less attention (Walley, 1996).
The theoretical foundations of each of the three theories have been extensively
investigated. This paper proposes an application-oriented list of criteria. Ultimately, the

objective of such criteria is to find a match between the profile of a decision situation and

the profile of one or more uncertainty theories. These criteria are described below.

1. Interpretation

The chosen theory should provide a clear interpretation of the uncertainty that is being
addressed. When modeling uncertainty, a modeler should identify the sources of
uncertainty specific to the context under study. An unambiguous interpretation is important
from a modeler’s point of view because it allows the identification of sources of
uncertainty that can be modeled by the uncertainty theory and the successful design of an
infer'ence‘pr.ocess. Each theory uses.an inferencé process most. suitab.le fér the

corresponding interpretation. From a DM’s point of view, an unambiguous interpretation

- allows a clear understanding of the conclusions coming from the inference process.

In RESTORE, an uncertainty theory should be able to at least model uncertainty

 related to experts’ beliefs, linguistic imprecision, and/or ignorance.

2. Information required from the experts
Each uncertainty theory requires specific information from experts. Before selecting a

theory, it is critical to assess if the theory can exploit the information richness provided by
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the experts and if the experts are able to provide the information required by the theory.

In RESTORE, the experts provide information in terms of rules, using crisp variables.

3. Output information required by DMs

In every decision-making context, DMs may request specific types of information to
make comprehensive decisions. DMs’ requirements for this information may include that it
(1) is understandable, (2) is provided in a suitable format, i.e. numerical, intervals or
linguistically (Zimmermann, 2000), (3) allows the measurement of uncertainty-based
information (e.g. nonspecificity, fuzziness, ignorance, etc.), and (4) allows an unequivocal
ranking order. It should be noted that the complexity of the ranking procedure is generally

proportional to the amount of information present in the output solution.

4. Inference process

When selecting an uncertainty theory it is important to be familiar with the different
options made available by the theory’s inference pro‘cess iaina fo evaluate if these 6ptions
match the decision problem. The inference process encompasses methods by which

knowledge is interpreted and used to emulate DM’s decision-making behavior.

5. Compatibility with the MCDM paradigm
. Not all uncertainty methods are applicable to MCDM. It is important to identify if a
theory provideé methods for aggregating multiple criteria. If such methods are not aiready

available, modelers should assess if the uncertainty theory could easily be adapted to a

MCDM context.
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6. Implementation

The ease of implementation can be an important criterion. Tools that support particular
uncertainty analysis approaches and that can integrate well with MCDM methods used to

address specific applications are desirable.

4.4 CHARACTERIZATION OF THE THREE UNCERTAINTY THEORIES
In this section, each uncertainty theory is characterized using the list of criteria

proposed above, followed by a discussion of utility of these characteristics in RESTORE.

4.4.1 Certainty Factors Model

1. Interpretation

In the literature, many have presented a CF associated with a rule as a subjective
probability (Buchanan and Shortliffe, 1984; Horvitz et al., 1988; Herrmann, 1997; Lucas,
2001), which can be interpreted as the certainty that the conclusion of a rule will be true.
given the certainty of the rule’ antecedents. Buchanan and Shorliffe (1984) emphasized
that rule independence is necessary for a combinatipn to be consistent with probability

theory. The CFM allows the modeling of one source of uncertainty, which is belief that can

~ take an infinite number of degrees of belief, representing various shades of uncertainty. For

instance CF=1, CF=0.5, and CF=0 respectively represent full certainty, partial belief, and

no support of an impact score value.

2. Information required from the experts
One of the strengths of the CFM is its simplicity. Providing CFs is generally an easy
step. Experts are often hesitant to give probability values and usually prefer to provide

rough estimates of certainty. The CFM was specifically developed to be applied to rule-
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based approaches. Consequently, the model can easily be applied to RESTORE without

major changes in the way experts’ knowledge is captured. Usually, preference is given to
relative CFs’ values rather than absolute values; thus consistency across the rule base was

considered more important than precision when developing CFs for RESTORE.

3. Format of the output information

The CFM provides a single crisp number, as output. In RESTORE, such a number
gives information about experts’ confidence on the impact score of a decision alternative.
This representation has proven to be easy to understand from a DM’s point of view
(Buchanan and Shortliffe, 1984). However, a crisp number does not allow the measure of
uncertainty-based information, such as fuzziness, nonspecificity, chﬂict, and ignorance. In
the CFM framework, a ranking procedure could include both restoration alternatives’
impacts assessment on DMs’ objectives and its related experts’ confidence. The
assessment of alternatives’ impacts on DMs’ objectives comes from the RESTORE

MCDM performance evaluation module (Lamy et al., 2002a).

4. Inference process

Few choic;e's can be made Zin the traditional CFM inferené:e process when combining
evideﬁcg in rule’s Aéntece_dent. The CFM uses the standard minir.num operator 4t»o Amod‘el
conjunctions and the standard maximum operator to model disjunctions. In the case of
RESTORE, these two operators were believed to be appropriate (Lamy et al., 2002b).
However, in other decision contexts, these operators. may ‘be considered improper beéause

they do not allow modelers to differentially weigh evidence (Yeung and Tsang, 1997). To

- combine evidence coming from two or more'rules, the traditional CFM offers one
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combination method. Other methods have been proposed (Tsadiras and Margaritis,

1998; De Baets and Fodor, 1999), but these have not been broadly investigated.

The decision-making performance of the CFM has received little attention. For
instance, in Mycin, the diagnosis with the highest CF was the one selected as the most
probable disease. To our knowledge, no research has been done in a context like
RESTORE, where a CF is associated with an impact score value and where a decision -
must be made taking into account these two numerical pieces of information. Ranking

methods including these two numbers have to be developed.

S. Compatibility with the MCDM paradigm

We are not aware of any formal research on the use of a CFM-based MCDM approach.
To be applied to RESTORE, multicriteria aggregation procedures have to be developed. In
RESTORE, a CF is assigned to each alternative’s negative or positive impact at achieving
a specific objective. A multiple criteria aggregation method should be identified for
combining the CFs assigned to each impact on each objective into a meaningful CF
describing the experts’ confidence in the multiple criteria performance evaluation of an

alternative.

6. Implementation
Since the CFM was developed to be used in a rule-based framework, it is easy to
implement using RESTORE. In a MCDM context, the traditional minimum operator was

used to aggregate criteria.
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4.4.2 Dempster-Shafer Theory

1. Interpretation

Belief, as in DST, is a crisp number that can be seen as the subjective probability that
describes the evidence supporting a proposition. DST uses a number between 0 and 1 to
specify the degree of support a body of evidence provides for a proposition (Yager, 1983).
A lack of belief does not imply disbelief as in Bayesian theory. Rather, lack of belief in any
particular hypothesis implies belief in the set of all hypotheses, which is referred to as the
state of ignorance. |

In RESTORE, m(A) measures the portion of belief that is confined to A. For instance
m(A)=1, m(A)=0.5, and m(A)=0 represent respectively total evidence (certainty), partial
evidence, and no evidence that an alternative address one or more objectives. DST can
represent a scale of partial belief, from no evidence and ignorance to total evidence.
However, as with CFM, it does not address the ambiguity or linguistic imprecision intrinsic

in natural language.

2. Information required from the experts
DST.is well surted for hlerarchlcally structured decision problems MCDM problems

are hlerarchlcal by nature. In CFM only one number a CF is requrred for each rule from

- 'the experts In contrast when uslng DST, experts assign a behef value to every hypothesls

of the frame of discernment, a time consuming task (Table 4.1). As wrth CFM in

RESTORE, relative beliefs are more important than absolute beliefs.
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3. Format of the output information

DST theory provides a complete set of beliefs for all subsets of the frame of
discernment including the unassigned belief subset. The raw output is a vector of beliefs,
rather than a discrete number as with CFM.

Some authors have associated beliefs with utility intervals to better describe the impact
of missing information on decision analysis. In DST, beliefs (m(A)) are associated with
each hypothesis of the frame of discernment 6, each of which may correspond to a utility
value (u(A)) (e.g. in RESTORE, 6 include grades such as low, moderate, significant, and
high impact, which are associated with utility values being respectively 1, 2, 3, and 4).
Combining beliefs and utilities (equations 4.11-4.13) allows experts to quantitatively
represent uncertainty in their knowledge in a confidence interval. Savage (1954) was the
first to introduce this concept that is part of the subjective expected utility theory. In
RESTORE, a confidence interval takes values between the minimum expected utility
(lower belief function) and the maximum expected utility (an optimistic assessment that
the evidence supports a proposition) (Yang, 2002). This interval of beliefs also helps

prioritize where more information is needed to reduce uncertainty.

"Minimum expected utility value = Zm(A)’x ud , (4.11)

AeF

Maximum expected utility =

Minimum expected utility value + m(6)*maximum utility value (4.12)
Average expected utility =

(Maximum expected utility ~ Minimum expected utility)/2: (4.13)
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In RESTORE, DST allows the measurement of three types of uncertainty-based

information: nonspecificity, conflict, and ignorance (see Section 2). Nonspecificity was
considered as negligible since beliefs in RESTORE are not nested among subsets. The
ranking procedure in the DST is not obvious, since one can consider beliefs alone, the
maximum, minimum or average expected utility scores, and/or the uncertainty-based

information.

4. Inference process
DST traditionally offers one method to combine evidence. Dempster’ rule of
combination is the classical function to aggregate two bodies of evidence. Some

researchers have praised (Haenni, 2002) and others (Lefevre et al., 2002) have criticized

" Dempster’s combination function for its unintuitive resalts. Alternative functions have

been proposed (Lefevre et al., 2002); however, none of them enjoy unanimity.

When coupled with utility theory, DST’s ranking method is based on the expected
utility of the decision alternative. To model a risk-aver;e DM, preferred decision
altemati\'és can b'e the ones maximizing minimum utility sc;ore- vaiues. In contrasf, when
modeling a risk-seeker DM; preferred decision alternatives can be the ones maximizing

average or maximum utility values. In the literature réviewed, no effective ranking

methods have been proposed. Efficient ranking methods should maximize the use of the

solutions’ information content. A first'step in this direction is the integration of -
uncertainty-based information in the ranking process. Using this information can provide a
good indication of the quality of the evidence. For instance, when a DM wants to avoid
risk or conflicting evidence related to the potential impacts of his (her) decisions,

uncertainty-based information can be integrated into the ranking process.
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S. Compatibility with the MCDM paradigm

DST is compatible with a MCDM paradigm; however, only a few studies investigated
the use of DST-based MCDM applications. Yang and Xu (2002) proposed an evidential
reasoning approach and Beynon (2002) used the Analytic Hierarchy Process (Saaty, 1980)
MCDM method in combination with DST. This area of research is still immature; research

should address the use of DST in combination with other MCDM methods.

6. Implementation

" One of the major drawbacks of DST relates to the high computational intricacy of its
combination rule. The Intelligent Decision System (IDS) supporting the evidential
reasoning approach is currently the only software capable of handling uncertainty modeled
with the DST in a MCDM context (Yang and Xu, 2002). In RESTORE, a typical
watershed assessment implies the evaluation of more than twenty restoration alternatives
for each of typically 15, 000 sites. Such assessment is impracticable even when using the
IDS package. More efficient algdrithms need to be developed to effecﬁvely and easily

apply DST in a watershed management context.

443 Fuzzy Set Theory

1. Interpretation
Zadeh (1965) defines fuzzylselt-theory as étheory modeling‘ the degree of membership
of an element in a specific set. The theory does not model the uncertainty related to the |

occurrence of an event, but the extent to which an event occurred. For example, the impact
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of an agricultural riparian buffer on the water quality objective may be highly positive to

some extent and moderately positive to another extent. The inclusion of more information
will not reduce the uncertainty in experts’ knowledge. The use of fuzzy subsets to describe
a variable allows a gradual transition between sets, so experts are not required to provide

exact numbers (Temponi et al., 1999).

2.  Information required from the experts

The use of fuzzy rules requires that the evidence and hypothesis be expressed as
linguistic terms, each represented by a given fuzzy subset. Experts often are more
comfortable at providing a range of values (membership functions) than exact numbers to

describe a particular value. Fuzzy methods allow these values to be part of multiple sets.

3. Format of the output information

In order to use a fuzzy subset for decision-making, two approaches can be taken. One
is to.keep the solution fuzzy and the other is to transform lt to a crisp sc;ore through a
defuzzification process. Keeping a solution fuzzy requires that experts identify suitable
criteria to characterize such solution and make it rﬁeaningful from a DM’s perspective. For
instance, un;:érfainfy-baéed infbfmatioﬁ could Be seeﬁ as such criteria. To transfdr_rh a
fuzzy solution to a crisp score, a defuzzification method shéuld be used. Many
défﬁzziﬁcaﬁén méthods'exist, the mc;st oﬁen used are center of aréa, center of éurﬁs, and"

mean of maxima (Zimmermann, 1987).
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4. Inference process

One strength of fuzzy set theory is that it supports several operators and methods for
combining evidence and ranking solutions. Modelers have flexibility in determining
inference characteristics to better model DMs’ behavior in a specific application. A critical
issue in the fuzzy inference process is the ranking step. Methods range from horizontal and
vertical evaluation of fuzzy subsets to comparative methods. However, one of the main
drawbacks of these methods is that they only base their ranking on portions of the fuzzy

subset solution, thus, information is irreversibly lost (Bortclan and Degani, 1985).

5. Compatibility with the MCDM paradigm

‘The literature contain many references on the use of fuzzy MCDM (FMCDM)

- approaches in the context of watershed management, but few related to watershed

restoration. Lamy et al. (2002b) proposed a comprehensive FMCDM approach to
watershed restoration. Chen and Hwang (1992) and Lai and Hwang (1994) provide a
thorough review of the different FMCDM that have been developed and used in different

decision contexts.

6. .Implémentéxtion

Many expert systems shells 1mplement1ng fuzzy mference are available, e.g.
F uzzyCLIPS (Natlonal Research Councﬂ Canada, 1994) and StarFLIP++ (Instltute of

Information Systems, 1997). Here, we implemented a custom fuzzy inference process

procedure.




90
4.5 CASE STUDY - RESTORE

In this case study, a MCDM approach was developed for each of the three theories,
namely CFM, DST, and fuzzy set theory. These CFM-based MCDM, DST-based MCDM,
and FMCDM approaches were applied to RESTORE. Each approach was designed to
capture experts’ knowledge, evaluate, and rank restoration alternative subject to DMs’
objectives. The three theories differ in the way they perform these phases of the decision-
making process. CFM-based MCDM and DST-based MCDM are comparable because they
model the same types of uncertainty stemming from experts’ belief. The FMCDM
approach addresses uncertainty related to linguistic imprecision, which cannot be modeled

by the two other approaches.

Most research to date has focused on knowledge representation instead of study’ing the
analytical behavior of decision issues (Dubois et al., 2000). Availab\le ranking methods for
all three theories are not proficient at considering the richness of the information available
in the output sqll}tions. In light of this, a novel ranking method was introduced for each
approach to fully exploit this information. The ranking methods allow a modeler to make a
distinction between the best decision approach for a risk-seeker, risk-né11tra], and risk-

averse DM. When selecting a decision alternative, a DM displays a risk-aversion behavior

Cif he.(sh'e) does not tolerate any risk about an expectéd impact. A DM is said to be risk-

seeker if he (she) prefers a risky decision alternative with a higher expected utility over a

* . no-risk decision alternative with a lower expected utility.

Following are the three ranking methods proposed for each uncertainty approach.

_
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Certainty factor model ranking method

We introduced a novel CFM ranking method that is based on subjective expected
utility (SEU) theory. SEU coupled with CFM, allows DMs to express attitude toward risks
(e.g. risk aversion, risk neutral, risk seeking). Savage (1954) was the first to introduce the
concept of SEU. Here, we combine a CF and its related impact score, which gives a SEU
describing the expected impact of a decision alternative on the prioritized objectives. The

combination takes the following form:

SEU =V xCF +(1-CF )x(u)) (4.14)

where (V) is the impact score value coming from the crisp RESTORE MCDM algorithm
(equation 2.1). To model partial ignorance, we assume that (1-CF) is the unassigned belief
that could be assigned to any utility value () (e.g. -4 to 4 in RESTORE). This approach for
representing partial ignorance (1-CF) and partial belief (CF) allows the characterization of
an interval of subjective probabilities for a proposition 4, similar to DST where this
interval is bounded by a 10wer belief (Bel (A)) and its upper belief (PI(A)). Additionally,
using this approach, uncertainty-based information is quantified in terms of an ignorance
measure. In the tre;ditional CFM, (1-CF) was not deﬁned as expeﬂé’ ignorance. in this

. éasé study; u‘was> éssigned to fHe 0 uﬁlity \}'alli'e,: assuming a risk-averse DM. The pre‘fél;red
‘decision altemative is the one that maximizes the SEU value, which values, in RESTORE,

" fange from [-4, 41. ‘
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Dempster-Shafer Theory ranking method

The ranking method for DST uses a MCDM approach to combine three criteria that are
assumed to effectively encompass the solution’s features. The three criteria were (1)
impact criterion, defined by the minimum utility attribute, (2) ignorance criterion, defined
by the unassigned belief attribute, and (3) conflict criterion, defined by the dissonance
attribute. These criteria were combined using Dempster’s combination function. A good
score is one that maximizes the minimum utility and minimizes both the dissonance value
and the belief allocated to the unassigned subset. The output of the ranking method is a
crisp score value ranging from —1 to 1. The decision alternative with the highest score

value is the one selected as the preferred alternative.

Fuzzy set theory ranking methed

We believe that ranking decision alternatives based only on the result of a
defuzzification method is not a convincing ranking measure because it combines ail
impetcts into a single value, losing information about the fuzziness of the result in the
process. New methods that take advantage of the richness of information contained in the
output fuzzy subset should be con51dered Lamy et al. (2002b) accomphshed a first step in
thlS dlrectlon with the development of the grade of merit index (GMI) ranking method that :
uses a fuzzy rule-based approach to score different restoration alternatives based on their
' ability.ét' meeting edch criteria. A FMCDM ranking method combines four criteria defined
by seven attributes. The output of the ranking method is a crisp score ranging from -10 to
10. To facilitate the comparison of the results coming from the three uncertainty .
approaches, the FMCDM ranking method used here is a simplified version of the GMI

method. It includes two criteria: (1) impact criteria, defined by the center of area of the
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fuzzy subset and (2) nonspecificity criteria, defined by the nonspecificity measure. A

DM was believed to prefer a solution with a high center of area value and a low

nonspecificity value.

Numerical example

In the following example, we illustrate one set of DMs’ priorities and concerns. DMs
were considered risk-averse. Water quality and water quantity were among five primary
objectives, reflecting subobjectives of decreasing water temperature and runoff, increasing
stream flows, and improving nutrient management. These objectives were followed closely
by socioeconomic issues, including education and outreach, social networking, and greater
community involvement. Maintaining and enhancing fish and wildlife habitat had a
relatively low priority. The normalized weights given to the five objectives were: water
quality, 1; water quantity, 1; habitat, 0.33; social, 0.78; and economic, 0.78. When using
the CFM-based MCDM and DST-based MCDM approaches, we assumed that the amount
of uncertainty a.ss,oc.iated‘ with each rule was constant across methods. Experts were
‘assumed to support each rule with a belief of 0.8, and the remaining 0.2 was assigned to
the un_assi.gn.ed subset. For the fuzzy set approach, a range Qf approximately 0.2 was used

to transform & crisp value into a membership function.

Eachj apprbach sélécted the most désirable reStorati_on altemativ_es_undg; speciﬁp site |
characteristics to create é watershed restoratioﬁ plan for a small area of the Upper Amazon
sub-basin. This sub-basin is part of the Long Tom watershed of Oregon’s Willamette River
Basin. The Long Tom wafershéd is substantially urbanized and is adjacent tc; Oregon’s
second-largest metropolitan area, Eugene. Agricultural and urban activities have genérated

- a number of conflicts related to land use and its ecological impacts. The example presented
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here focuses on a small riparian area of the watershed, where four restoration

alternatives were considered for each site. These restoration alternatives were: (1)
agricultural buffer, (2) increase of late summer flow, (3) forest riparian buffer, and (4)
create condition favorable to native species. Detailed results for a specific site (#3424) are
presented in Table 4.2. This site can be broadly characterized as agricultural land adjacent
to a stream and a road. Table 4.2 shows that when modeling a risk-averse DM, the ranking
of restoration alternatives for all sites remains the same for the three uncertainty
approaches and the crisp RESTORE approach. Relatively similar differences between

score values are obtained, as seen from the results for site #3424.

Similar ranking was expected for two main reasons. First, the knowledge and the
amount of uncertainty associated to the decision context were preserved when moving
from one approach to another. For the CFM-based MCDM and DST-based MCDM

approaches, the same assumptions were made about the structure of the experts’ beliefs.

Both proposed ranking methods allowed the assignment of the ignorance belief to any
utility value. In this case study, when modeling a risk-averse DM, the ignorance belief was
assigned to a utility value of 0. Secondly, the three proposed fanking methods based their
ranking on similar information, including impact, nonspecificity, and ignorance criteria.
Sirﬁilarity in thé résults‘isuggests that the four methods are consistent and are capéble of

generating credible resulits.



Table 4.2: Scoring results (site #3424) for the RESTORE’ crisp MCDM, CFM-based
MCDM, DST-based MCDM, and FMCDM approaches.
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CRISP RESTORE

RESTORE
Restoration alternative impact score
Late-summer flow control 2.69
Agricultural riparian buffer 2.07
Create conditions favorable
for native species 1.04
Forest riparian buffer 0

CERTAINTY FACTOR MODEL APPROACH (CFM)

RESTORE . Subjective

. Certainty

impact Ignorance | expected
Restoration alternative score Jactor utility
Late-summer flow control 2.69 0.80 0.20 2.15
Agricultural riparian buffer 2.07 0.80 0.20 1.66
Create conditions favorable for
native species 1.04 0.80 0.20 0.83
Forest riparian buffer 0 0 0 0

DEMPSTER-SHAFER THEORY APPROACH (DST)
Impact Dissonan- | Ignoran- | Ranking
, , Criteria ce criteria | ce criteria | Score
Restoration alternative
Late-summer flow control 0.47 0.54 0.63 0.51
Agricultural riparian buffer 0.26 0.54 0.63 0.34
Create conditions favorable
for native species 0.09 0.61 0.56 0.30
Forest riparian buffer 0 0 0 0
' FUZZY SET APPROACH
Nonspeci-

IZ.’Z; Ziz{a ficity Ranking
Restoration alternative Criteria Score
Late-summer flow control 795 3.42 4.83

| Agricultural riparian buffer 2.07 6.34 4.12

Create conditions favorable
for native species 1.04 2.33 2.02
Forest riparian buffer 0 0 0
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4.6 DISCUSSION

The purpose of this study was to describe the potential offered by three uncertainty
theories, namely CFM, DST, and fuzzy set theory, at modeling uncertainty in experts’
knowledge and to evaluate if they can be applied in a MCDM approach to watershed
restoration. The selection of a specific uncertainty theory should be derived from an
evaluation of the decision application as well as DMs’ and experts’ preferences. To
facilitate the evaluation of the suitability of these three uncertainty theories, we identified a
set of criteria against which they were assessed. Then, a MCDM approach was proposed
for each uncertainty theory, i.e. CFM-based MCDM, DST-based MCDM, and FMCDM ‘
approaches and applied using RESTORE. Results show that the CFM, DST, and fuzzy set
theory and their related MCDM approaches, all appear to be suited to the RESTORE
decision problem.

Fuzzy set theory differs significantly from the CFM and DST in its inference reasoning
process. It models uncertainty resulting from linguistic imprecision while CFM and DST
model uncertainty related to kexperts’ beliefs and ignorance about restoration alternatives’
impacts on prioritized objectives. With fuzzy logic, information is complete; i.e. no more
information can be gathered to reduce uncertainty. Under the CFM and DST approaches,
in_formation‘ is.incomplete;‘th_l‘ls, information can be gathered to rgduce the uncertainty or

the risk related to an impact. For this reason, the FMCDM approach cannot directly be

‘cobmp,ared. with the two other approaches.

The CFM-based MCDM approach was more straightforward to implement than the
DST-based MCDM metho_d, since CFs can be easily applied in a rule-based framework.
The development of a DST-based MCDM approach was a time-consuming task. Its use of
a frame of discernment requires that modelers modify the way knowledge is captured and

experts need to provide their knowledge in a more complete form. DST allows a more
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complete description of the experts’ knowledge and its related uncertainty and carries,
throughout the inference process, beliefs that are assigned to each element of the frame of
discernment. Using RESTORE, such as fuzzy set theory, DST allows the modeling of two
different kinds of uncertainty-based information: dissonance and ignorance. In contrast,
CFM can model only ignorance. There is a tradeoff between model completeness and

simplicity of implementation.

In comparison to the other two theories, fuzzy set theory supports a greater number of
widely used operators, combination rules and ranking methods. A FMCDM approach uses
fuzzy subsets to model linguistic imprecision, which allows the use of elastic constraints
that relax the need for exact numbers when defining rules’ antecedents and consequents.
The implementation of a fuzzy approach in RESTORE was time-consuming since each

variable needed to be translated into fuzzy subsets.

In the literature, the problem of ranking decision alternatives has not received much
attention. To address this gap, we looked at the ranking procedures available for the three
uncertainty theories and proposed original ranking methods for each uncertainty theory.
The three proposed MCDM approaches are not necessarily suited for each decision
context; yet they introduce novel ideas that could be further developed. We have shown
that MCDM technviQUes are well suited to incorborafe ran‘king because they allow éx-perts
to include more than one criterion when evaluating alternatives. Additionally, we have
shSWn that the infegrat’fon of un'ce-rtainty—bésed. information can be reaai ly indbf‘porated
into a MCDM. Many expert systems, including RESTORE, tend to assume strong
consensus in the evaluation process. They generally perform best only when there is strong

evidence supporting a single conclusion. To address this deficiency, we proposed the use
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of uncertainty-based information to quantitatively assess the quality of the evidence
supporting the decision alternatives’ impacts on DMs’ objectives.

As mentioned in Nakamori and Sawaragi (2000), the results coming from a DSS can
never be formally proven to have been the best possible decision alternatives. The major
justification of the utility of a DSS is acceptable quality and the value of information the
system provides to the users. Through the practical example presented in the case study,
we showed that the uncertainty approaches were able to generate good decisions under a
limited set of conditions, but more robust testing is needed to verify these results in a more
comprehensive setting.

Overall, we conclude that the inclusion of uncertainty analysis in expert-systems (1)
reduced the need for precise experts’ judgments and (2) increases the value of the system
since it provides more information to DMs, enhances their comprehension of the issues
that may affect the outcome of their decisions, and/or broadens their perspective when
selecting restoration alternatives. In a specific context, domain experts might have different
opinions and even not be representative of the whole domain experts’ community;
therefore the inclusion of uncertainty makes the system more robust to small changes in

knowledge and does not imply that impacts are known with complete confidence.

4.7 CONCLUSIONS

The main objectives of this paper were to (1) describe the potential offered by the
DST, CFM, and fuzzy logic in a MCDM watershed restoration decision-making
application and (2) apply each theory using RESTORE. To this end, we (1) identified a list
of criteria to evaluate the potential offered by different uncertainty theories in MCDM, (2)
applied CFM, DST, and fuzzy set theory in a MCDM DSS watershed restoration context,

and (3) developed an MCDM approach for each uncertainty theory, including an original
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ranking method considering criteria related to uncertainty-based information resulting
from each theory. Proposed ranking methods showed that instead of selecting a restoration
alternative based only on impact score values, additional parameters can be introduced to
better represent DM’s behavior when selecting decision alternatives.

The choice of a specific uncertainty method is dependant on application-specific needs.
Each theory can model only specific types of uncertainty, either related to experts’ beliefs
and ignorance or experts’ linguistic imprecision. The results obtained showed that each
uncertainty theory can be utilized in a MCDM context such as RESTORE. The inclusion of
an uncertainty analysis in RESTORE can be seen as an improvement of the DSS because it
provides DMs with meaningful information on the quality of the evidence that supports the

impact of a decision alternative at addressing objectives
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CHAPTER 5

GENERAL CONCLUSIONS
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DSSs have been defined as computer-based systems that should support the

decision-making process by enhancing problem comprehension and by providing data,
analytical tools, and methods to characterize uncertainty (Mowrer, 2000). While this
definition is broadly accepted, very few decision tools support all the abovementioned
capabilities. This project was motivated by the lack of existing decision-making tools that
integrate MCDM approaches, uncertainty analysis, GIS technologies, and that exploit

wide-ranging models to support a holistic watershed restoration planning approach.

This study was successful in illustrating a comprehensive decision-making
methodology and its related decision tool RESTORE, which supported each step of the
decision process, including description of the decision situation, identification of DMs’
values, identification of attributes that relate to each objective, definition of the rules and
constraints, efficient landscape generation, landscape evaluation and selection of the
prefereed watershed restoration plan. Important questions being addressed by the
methodology included (1) what are the socio-economic and environmental impacts of the
different restoration options as a function of landscape position and (2) what is the mix of
restoration bptions (watershed restoration plan) that is a most preferred solution in terms of
its suitability in responding to DMs’ objectives at both the site and watershed levels. The
RESTORE methodology helped DMs to identify and explore possible solutions leading to -

a better understanding of the impacts of their decisions.

’ ‘Th.e complexity of the various landscape processes and human subjectivity suggest that
a robust performance evaluation module would involve the modeling of uncertainties
inherent to experts” knowledge. There is a need for expert systems that better emulate
DMs’ behavior and exploit information-content _of proposed solutions when making

decisions.
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To address these issues, we explored the use of uncertainty assessments in the
RESTORE decision-making process. We first proposed a RESTORE FMCDM approach.
The approach involves three basic steps: (1) expert values were first captured and served as
a starting point to additional analysis steps, (2) a FLC was built, which contained (a) a
knowledge base, (b) an inference process that enabling DMs to evaluate the performance of
restoration options at meeting different objectives, and (3) a FMCDM module was
developed, which (a) aggregated fuzzy subsets to calculate a composite objective function
for each option and (b) integrated a novel ranking method to create a final ranking of the
restoration options, resulting in an efficient watershed management plan. The approach
presented a novel fuzzy ranking method, GMI. The GMI is a flexible and intuitive ranking
method that uses a FMCDM technique, includes uncertainty-based information, does not
make assumptions about the shape of the fuzzy subsets to be ranked and allows DMs to
express their values and perspective about what should be considered as a good alternative
in a specific decision context.

While several theories are proficient at modeling uncertainty in experts’

‘ knbwledge, no one can address all sources of uncertainty. We also studied the utility of
three uncertainty theories at modeling the uncertainty in experts’ knowledge (e.g. conflict
in evidence, partial belief, ignorance, and/or ambiguity). To describ¢ the potential offered
by the DST, C-FM, and fuzzy set theox;y in the céntext of MCbM watershed restoration

. éontext7 we identiﬁed_séveﬁ-fold criteria against which eachi unceftainty theory was

evaluated. To apbly the three uncertainty theories using RESTORE and easily compare

their results, an inference approach was proposed for each of them. These approaches
introducéd idea.s that thué far, to the best knov;/ledge of the .author‘s, have not been
investigated in decision science.AAmong them are (1) the application of DST in the context

of a MCDM DSS applied to watershed restoration, (2) the application of CFM in any
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MCDM context, (3) the association of the CFM with the SEU, and (4) original ranking

methods for each of the three approaches. Ranking methods’ main characteristic includes
the use of a MCDM method including criteria such as uncertainty-based information (e.g.
nonspecificity, ambiguity, dissonance, and/or ignorance). These ranking methods aim at
translating the decision alternatives’ performance evaluation and its related uncertainty into
a meaningful index that could be used to unambiguously generate an ordering of the
decision alternatives.

In general it can be said that the inclusion of uncertainty analysis in RESTORE
highlighted the value of considering uncertainty as another facet of information. From a
DM’s point of view, the proposed decision alternatives are more attractive than traditional
ones, when including uncertainty estimation, because they result in more information from
which decisions can be made. Uncertainty assessments provide DMs with information on
the quality of the evidence that supports the impact of a decision alternative and on the
risks that could jeopardize the expected impacts of an alternative on DMs’ objectives.
From an expert’s point of view, including uncertainty analysis (1) relaxes the need for
exact assessment and (2) allows them to express partial belief, conflicting evidence, and/or
ignorance, all of which provide experts with better means to express their knowledge in a
more comprehensive and complete form. Such inclusion provides more credible and robust

approaches.

Future research
Community-based decision-making is a collaborative process, where negotiations
among participants and conflicts of interest are almost inevitable. DMs need tools to

support consensus and compromise building. A future version of RESTORE should
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include methods that would provide a systematic means for developing efficient group
decision making, where the inclusion of conflicting opinions may alter the shape of the
fuzzy criteria and the ranking of decision alternatives.

In some situations, a DM might not be entirely certain about the shape of a fuzzy
subset or the truthfulness of a rule, which could be translated as uncertainty due to lack of
knowledge or ignorance about a situation. There is an opportunity to combine fuzzy set
theory with other uncertainty theories (e.g. CFM and DST) that would address specifically
this type of uncertainty.

The different approaches presented in this work could be applied to other contexts,
where expert systems are used to support a decision-making process. Therefore, we would

like to apply the novel ideas proposed in this work in a broader range of scientific and

practical applications.
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