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Abstract approved:

Decision-making in environmental management is complex due to the multiplicity arid

diversity of management objectives and technological choices. This suggests that modelers

and experts could utilize (I) multiple-criteria decision-making (MCDM) approaches to

assist stakeholder groups in integrating and synthesizing relevant data and information to

address ecological and socio-econornic concerns and (2) uncertainty approaches to quantify

the risks related to the impact of decision alternatives. Since decisions made under

uncertainty and MCDM methods have been studied almost independently, most of the

MCDM approaches do not address the uncertainties of real world decision situations.

This dissertation presents the use of a MCDM methodology and its related decision-

making tool, RESTORE. RESTORE is an integrative geographical information system-

based decision-making tool that was developed to help watershed councils prioritize and

evaluate restoration activities at the watershed level. RESTORE's deterministic

performance evaluation module is developed from experts' knowledge and experiences.

However, to filly address the complexity of the various landscape processes and human

subjectivity, RESTORE should involve uncertainties inherent to experts' knowledge. No

single method is able to model all types of uncertainty, therefore the examination of

various uncertainty theories is critical before selecting one best suited to a specific decision

context. This work explores three uncertainty theories: certainty factor model, Dempster-
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Shafer theory, and fuzzy set theory. To evaluate these methods in a MCDM watershed

restoration context, we (1) identified criteria to assess the suitability of a method for a

specific MCDM context, (2) characterized each theory in terms of the identified criteria

using RESTORE, and (3) applied each theory using RESTORE. Special emphasis was

given to the development of a comprehensive fuzzy MCDM methodology.

Uncertainty-based MCDM approaches provide a valuable tool in analyzing complex

watershed management issues. When used properly, the proposed MCDM methodology

allows decision-makers (DMs) to explore a broader range of drivers and consequences.

The inclusion of uncertainty analysis provides DMs with meaningful information on the

quality of the evidence supporting the impact of a decision alternative, allowing them to

make more informed decisions.
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DEVELOPMENT AND EVALUATION OF M1JLTIPLE CRITERIA

DECISION-MAKING

APPROACHES TO WATERSHED MANAGEMENT

CHAPTER 1

GENERAL INTRODUCTION



'In this contribution MCDM can be distinguished from Multiple Attribute Decision
Making (MADM) and Multiple Objective Decision Making (MODM). In a MODM
method, such as the one presented in Chapter 2, decision alternatives are not
predetermined, a mathematical algorithm is used for selecting the decision alternatives.
Each decision alternative, once identified, is judged against its ability at meeting DMs'
objectives. A MADM approach entails that the selection of a decision alternative is made
among predetermined decision alternatives using attribute as criteria (Hwang and Yoon,
1981). Proposed MCDM ranking methods presented in Chapter 3 and 4 can also be seen as
MADM methods.

2
Nowadays, most environmental decision-making bodies must use a decision process

that is consistent, open, and transparent to ensure that sound and high quality decisions are

made in accordance with the various and often conflicting decision-makers (DMs')

objectives. In Oregon, Watershed Councils offer a good example. Their mission is to

involve the local population in a consultation arid decision process toward the design of

watershed management plans that meet the objectives of their members. Such decision-

making contexts typically contend with the following challenges (Janssen, 1992): (1)

consideration of a variety of often conflicting management objectives representative of

stakeholders' multiple interests, (2) understanding of ecosystem processes and functions

within a socio-economic context, (3) multiple and diverse technological choices for

restoration, (4) qualitative and quantitative evaluation criteria, (5) inability to provide exact

assessment of alternatives which may originate from uncertainty in experts' knowledge

and/or data errors, and (6) need of transparent and quantitative methods for evaluating and

selecting restoration options.

Because of these difficulties, uncertainty is almost always present in the decision

process. Consequently, experts may have difficulty to evaluate and distinguish between

decision alternatives with respect to their ability at addressing multiple DMs' objectives.

Most watershed management decision-mákingsituations. suggest that modelers and experts

could utilize (1) multiple-criteria decision-making (MCDM') approaches to assist
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stakeholder groups in integrating and synthesizing relevant data and information, and in

addressing ecological, economic, and sociological concerns (Salminen et al., 1998) and (2)

uncertainty approaches to quantify the risks related to the impact of decisions alternatives,

allowing DMs to make more informed decisions.

MCDM methods offer a structured approach, in which decision-making is a process-

oriented activity that must be able to deal with qualitative, quantitative, and uncertain

information. However, decisions under uncertainty and MCDM methods have been studied

almost independently (Dubois et aL, 2000). A lot of efforts have been put on knowledge

capture and inference, yet uncertainty assessments are the most poorly understood and

implemented in nearly all decision-support systems (DSSs) and more specifically in

MCDM-based DSSs. Decision-making approaches that include uncertainty analysis can be

seen as more credible approaches since they recognize that uncertainty occurs at many

points in the modeling process (e.g. models assumptions, parameters, experts' knowledge,

system definitions). Additionally, uncertainty analysis provides critical information to DMs

about the quality of the evidence supporting the impacts ofa decision alternative.

To assist watershed councils to prioritize and evaluate restoration activities both at the

site and the watershed scales, RESTORE, a spatially-explicit DSS was developed.

ftESTORE uses MCDM methods, knowledge base, evaluative models, and geographical

information system resources. It includes a rule-based system that models the experts'

percejtion of restoration optiOns perfcrmance at meeting DMs' multiple objectives...

Objectives considered include water quality, water storage, habitat quality, social concerns,

and economics that often conflict. A deterministic MCDM performance evaluation leads to

the ranking of restoration alternatives that are used as building blocks for the design of

watershed restoration plans. Rankings, which reflect restoration alternatives impacts on the



objectives described above, are determined through the application of a set of rules

developed from experts' knowledge and experience. However, the complexity of the

various landscape processes and human subjectivity suggest that a robust performance

evaluation module would involve the modeling of the inherent uncertainties in experts'

knowledge, including partial belief, conflicting evidence, ignorance, and/or ambiguity.

This dissertation endeavors to address these issues. Chapter 2 presents the use of a

multiple-objective decision-making methodology and its related tool, RESTORE.

Chapter 3 aims to (1) describe each step of a proposed fuzzy MCDM approach using

RESTORE, (2) characterize the types of uncertainty in experts' knowledge that the

approach could address, (3) introduce a novel ranking method for fuzzy performance

evaluation, and (4) evaluate the ability of the approach at exploiting the knowledge

provided by DMs and experts. The ranking method is based on a MCDM algorithm that

captures the properties of the fuzzy solutions through seven decision variables combined

into four criteria: (1) expected performance of the restoration option at meeting DMs'

objectives, (2) vagueness of the expected performance, (3) ambiguity of the expected

performance, and (4) accumulation of evidence.

Chapter '4 explores the use of uncertainty assessments in the RESTORE decision-

'making process, three uncertainty theories are investigated: (1) certainty factors model, (2)

Dempster-Shafer theory, and (3) fuzzy set theory. To facilitate the evaluation of the utility

of these three methods' in a MCDM watershed restoration context, we (1) examine the

basic mechanisms for reasoning under uncertainty advocated by each theory, (2) identify

criteria to assess the suitability of a theory for a specific MCDM context, (3) characterize

each theory in terms of the identified criteria using RESTORE, and (4) apply each theory

using RESTORE. Decision-making issues in the certainty factors model and the Dempster-

4



Shafer theory frameworks have not been much investigated in the literature (Dubois et al.,

1996). To address this gap, new avenues for ranking decision alternatives are proposed.

Chapter 5 concludes with a brief summary and suggestions for future research.

S



CHAPTER 2

DEVELOPMENT AND EVALUATION OF MULTIPLE OBJECTIVE DECISION-
MAKING METHODS FOR WATERSHED

MANAGEMENT PLANNING

F. Lamy, J. P. Bolte, M. Santelmann, and C. Smith

Journal of the American Water Resources Association
4 West Federal Street, P.O. Box 1626, Middleburg VA 20118-1626
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2.1 INTRODUCTION

Humandomjnated land uses have resulted in extensive loss, fragmentation, and

degradation of natural habitats (Freemark 1995; Vitousek et al. 1997). As an example, in

the two hundred years after 1780, the United States lost more than half of its wetlands.

These losses can be attributed to many causes (DahI, 1990; Johnson, 1994). Fresh water is

becoming increasingly limited in many parts of the world as industry, expanding cities, and

agriculture compete for limited supplies. The stress on the environment can lead to a

decline in biodiversity, disrupting the balance of natural ecosystems, and ultimately

threaten the foundation on which all living organisms depend (Gliessman, 1990; Naeem et

al. 1994, Sala et al. 2000). A growing awareness of the environmental impacts of human

development activities resulted in the concept of sustainable development as a general

development policy (Janssen, 1992 ASCE, 1998). The Brundtland Commission's report

(WCED, 1987) offers this characterization:

"Development is sustainable f it satisfies present needs
without compromising the ability offuture generations to
meet their own needs.

Managing natural resources in a sustainable way and in observance of environmental

regulations dictates considering the variety of management objectives and management

practices that are most appropriate to achieve these objectives (Kangas and Pukkala 1996;

Nijkamp and van der Bergh, 1997). Objectives may refer to biodiversity, water quality,

water storage, habitat quality, social, and economic issues, which oftenconflict. One

approach to reconcile these conflicts lies in a systems approach to land use planning. Such

an approach combines information from hydrologists, agronomists, economists,

sociologists, communities, farmers, landowners, and other sources (Jensen et al., 1996;

Santelmann et al. 2001). In Oregon, an example is a watershed council that addresses

conflicting values using an ecosystem approach to management at the local scale. Councils



involve local people in a consultation process intended to yield a watershed management

plan that meets community objectives. Social scientists have shown that effective natural

resource management is community-based and includes participation of stakeholders such

as landowners and other resource users (Western and Wright, 1994; USEPA/OWOW,

1997; Marriot et al., 1999).

Since watershed councils are quite new, they form a useful test for assessing the utility

of decision-making approaches. Many watershed councils have completed a process to

assess the conditions in their watershed. The purpose of these assessments is to prioritize

problems and identify areas for restoration activities. To date, councils have identified

restoration projects opportunistically. Leadership, funds, a cooperating landowner, and

ease of getting permits typify the selection of projects. 1-Towever, the watershed

assessment processes have demonstrated the benefits of a more holistic approach to

restoration planning. Consequently, councils identified a need for tools integrating

scientific and technical knowledge for prioritizing actions. These tools should assist the

decision-makers (DMs) in selecting restoration options at the site level that satisfy

watershed level ecological and socio-economic goals.

Evaluating efficacy of restoration activities at addressing restoration goals and setting

priorities are complex tasks. They require an understanding of ecosystem processes and

functions in the context of the landscape and restoration option characteristics. The reality

of most decision-making situations suggests that modelers and experts could utilize

multiple-objective decision-making (MODM) tools to assist community groups, integrate

and synthesize their knowledge, and address concerns relat.ing to ecological, econOmic, and

sociological issues (Karacapilidis et al., 1997; Moreno-Jiménez et al., 1999; ReVelle,

2000). Without such tools, DMs and stakeholder groups will have difficulty integrating

8



multiple objectives into watershed-level plans for restoration and cannot realistically

assess the potential success of restoration strategies to meet watershed restoration

objectives (Moualek, 1997; Stam et al., 1998; Crist et al., 2000).

We describe the development of the RESTORE decision support system (DSS); a tool

designed to assist stakeholders and DMs in watershed restoration planning and

prioritization. The DSS was developed with two watershed councils, from Oregon's

Willamette Valley. This paper presents the rationale for integrating the elements mentioned

previously into a decision-making methodology and its related decision-making tool,

RESTORE. RESTORE uses MODM methods, evaluative models, and GIS-hased

(geographical information system) resources. It offers a platform that supports interactive

analysis of the restoration decision-making. The aim of RESTORE is to compare different

restoration options and watershed restoration plans at meeting the DMs' objectives and to

rank them in terms of their utility at addressing these objectives. The questions we address

here are: (1) What are the socio-economic and environmental impacts of the differem

restoration options as a function of landscape position? and (2) What is the mix of

restoration options (watershed restoration plan) that creates the preferred solution

responding to the DMs' objectives at the watershed level?

.2.2 MULTII!LE-OBJECTWE DECISION-MAKING METHODS

Practitioners and the scientific community's view of effective watershedrestoration

strategies has evolved over the last two decades from a focus on localized restoration

projects to the adoption of holistic approaches. Such approaches address spatial patterns

and processes, the interrelationships among landscape elements and reconcile conflicting

management objectives. For example, the United States Environmental Protection Agency

9



10
(USEPA) asserts that restoration requires a design based on the entire watershed, not

just on the section(s) of the watershed that may be the most degraded (USEPA, 2000).

Decision-making in a watershed restoration context is a complex activity. It may include

both social and environmental guidelines, models, methods, and tools that allow the DMs

to choose between several alternatives that address conflicting objectives and different

sources of uncertainties. The emergence of intelligent systems makes accessible valuable

resources to practitioners, scientists, and DMs to deal with the intricacy of the decision-

making process (Zhu et al., 1998).

Effective decision-making requires DMs to assess the potential success of different

restoration options in meeting watershed restoration objectives. This assessment generally

requires the simultaneous consideration of different objectives that are often in conflict;

thus it is inadequate to use a traditional single-objective planning approach (Janssen, 1992;

Avogadro et at., 1997). Public agencies generally look for a preferred solution that trades

off the achievement of one objective against another objective (Salminen et al., 1998;

Martell et al., 1998; Al-Rashdan et al., 1999). The tradeoff assessment often becomes a

personal value question and requires the subjective judgment of the DMs (Keeney and

Raiffa, 1993; Clemen, 1996). When objectives are conflicting, the suitable framework for

the formulation of the decision problem should involve MODM methodologies (Bogetoft

and Pruzan, 1991; Sen and Yang, 1998). In the context of our study, we use a MODM

method. classified as a prior articulation of preferences method (Chankong and Haimes,

1983; Mollaghasemi and Pet-Edwards, 1997). The information required by the DM is

obtained before the formulation of the mathematical model. These methods are fairly

simple to use, since typically the multiple-objective problem is reduced to a single-

objective problem (Mollaghasemi and Pet-Edwards, 1997). Several methods exist for prior
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articulation of preferences MODM, such as the Simple Additive Weighted method

(Hwang and Yoon, 1981), goal programming (Charnes and Cooper, 1971), value and

utility theory (Keeney and Raiffa, 1993), and outranking methods such as ELECTRE (Roy,

1968).

The Simple Additive Weighted method (SAW) was selected as our MODM model.

SAW has few input requirements from the DMs; it is flexible and easy to interpret. It is

one of the simplest MODM methods and one of the most popular (Triantaphyllou and Liii,

1996; Mollaghasemi and Pet-Edwards, 1997).

Different MODM methods have been widely applied to environmental management

decision problems in areas including environmental disaster planning (Jenkins, 2000),

planning of water resources sharing (Avogadro et al., 1997), urban waste management

(Haastrup et al., 1998), and tactical forest planning (Kangas and Pukkala, 1996; Church,

2000). The spatial nature of environmental management problems suggests that a DSS be

developed and implemented using GIS technology combined with models and decision-

making techniques.

While similar to environmental management DSSs, DSSs for watershed restoration

planning seem to involve a more active participation of the DMs and require a more

important integration of different sources of knowledge coming from the decision-makers,

community, experts, scientists, and practitioners involved in the planning activity. Many of

the DSSs: applied to watershed management focus on sharing informatiOn and presenting

synthesized and comprehensive information to the users (Allen et al., 1998; Demissie et a!,

1999). Other DSSs focus only on one or two problematic issues in the watershed or a few

restoration projects (Al-Rashdan, 1999; Crist et al., 2000; Nero et al., 2001; Westphal et

al., 2001) rather than incorporating a holistic perspective of watershed management.
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Finally, some DSSs depend on a number of different components running together,

compared to RESTORE that is an integrated tool (Prato and Fulcher, 1998; Reynolds et al.,

1999; Call and Hayes, 2001). To date, significant efforts have been placed on information

organization, modeling, and analysis rather than on decision-making issues (Avogadro et

al., 1997). The discipline of decision-making requires the development of an integrated

watershed restoration DSS that can help DMs through the entire evaluation process

(Demissie and Tidrick, 2001).

The conceptual framework that we present here aims to contend with the lack of

decision-making tools applied to watershed restoration decision problems. It integrates and

makes use of existing decision-making approaches and techniques, GIS technologies, and

it exploits wide-ranging models to support a holistic approach to watershed restoration

planning.

2.3 CASE STUDY

The participation of stakeholders in identifying relevant data, models, and decision-

making criteria is crucial for building a DSS tool that can express their objectives and

preferences. For that purpose, we partnered with watershed councils in two watersheds in

western Oregon's Willamette Valley: (1) the South Santiam watershed (3400km2) and (2)

the Long Tom watershed (1050 km2) (Figure 2.1). These watersheds were selected for (1)

their diversity, one being a larger rural watershed and the other, a smaller watershed on an

urban fringe, (2) their range of ecological, geomorphic, and socio-economic conditions,

and (3) the availability of a number of spatially explicit datasets capable of supporting the

types of analyses envisioned in this project. The South Santiam watershed includes the

rural service centers of Lebanon, Sweet Home, and Scio. The watershed is the main source



of city drinking water. While substantially modified since the 1850's, the South Santiam

is a less-disturbed ecological system. The Long Torn watershed is much more urbanized.

adjacent to Oregon's second-largest metropolitan area, Eugene-Springfield. It is more

disturbed by agricultural and urban activities and has been the site of a number of conflicts

related to land use and resulting ecological impacts.

Portland

Figure 2.1: Location of Study Areas

2.4 METHODOLOGY

We approach watershed restoration planning as a holistic activity, gathering

information from a wide variety of disciplines; synthesizing, exploring, and developing

that information based on DMs objectives into a plan to guide in the selection of

restoration projects. To assist this process, we developed a decision-making methodology

shown in Figure 2.2. The overall objective of this methodology and more specifically of

the decision-making tool, RESTORE, is to help the DMs understand, dissect, and structure

the decision problem. We hypothesize that this ability will improve the rationality of the

Oregon



1

Stakeholders/
Scientist!

Cooperators

Description of the
decision situation

2

Identification .

of DMs' values

3

Identification of the
Attributes stored in

Spatial Database

4 1

5

Definition of the
Rules and constraints

Efficient Landscape
Generation

Evaluafve Models
(Habitat, Hydrologic,
Economic and Social)

Figure 2.2: Diagram of the decision-making process used in RESTORE

7

Selection of the
Preferred Watershed

Restoration Plan

t
Landscape
Evaluation

8

Implementation
of the Watershed
Restoration Plan



15

decision-making process and therefore its quality. This approach is based on the

availability of accurate information and on the openness of the planning procedure, which

should involve DMs early in the decision-making process (Karacapilidis et al., 1997;

Moualek, 1997).

RESTORE supports all steps in the decision-making. The role of RESTORE is to

provide insight into the decision problem by reducing the cognitive resources the users

need to make choices among the restoration options, encouraging the DMs to look at the

watershed holistically, and evaluating the restoration options that could be used to address

DMs objectives. RESTORE allows the user to specify watershed area(s) of interest, the

objectives and subobjectives to be addressed, and the restoration options to be considered

in the creation of a watershed restoration plan.

2.4.1 Description of the decision situation

Problems arise from a series of interconnected events, actions, and needs. This first

step of the methodology is to clearly define the nature of the system under consideration,

and to develop a shared knowledge and perception of the decision problem.

In the Long Tom watershed, a decision problem is concerned about the quality of

drinking water, which may be threatened by industrial waste, and urban and agricultural

runoff; The context should be described in terms of social, economic, biological, and

hydrologic issues. RESTORE allows the user to visualize, through its GIS-based module,

the data and information on which the system is based, facilitating the problem definition.

Within RESTORE, a user starts the assessment of the decision situation by selecting

the watershed of his or her interest. A cell, ranging from 0.4 ha. to 12 ha., is considered as

the smallest spatial land unit on which decision-makers can make a decision. The cells are
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built on the assumption that small landscape areas can be aggregated into individual

units that are homogeneous with respect to land use, soil, and drainage. In Figure 2.3, the

RESTORE user-screen illustrates the study area divided into cells. Each cell is color cded

to a specific land use. A cell's properties table portrays the different characteristics of the

selected cell (e.g. cell no.: 5371; land use = pasture; area: 1.57 ha).

2.4.2 Identification of a set of objectives and restoration options by the DMs

The watershed council sets the objectives and the restoration options used to develop to

preferred watershed restoration plan. A restoration option is a site modification or change

in management that addresses OflC or niore stakeholder objectives. Examples include

installation of a riparian buffer along a water course or reducing toxicant use on agricultural

fields. Options applied at specific sites are used as building blocks for a future watershed

restoration plan. Objectives reflect stakeholder goals when considering restoration planning

and in RESTORE are defined hierarchically. The intent of the objectives hierarchy is to

provide the DMs with a logical framework that structures their priorities and concerns

(Clemen, 1996; Al-Rashdan et al., 1999). Explicit presentation of objectives makes DMs

conscious of their own and others' perspectives. The main outcome of this second step is an

increased understanding of the decision problem for the DMs, the community, the experts

or any interested parties (French Ct al., 1998). Focus group meetings, content analysis of

newsletters, meeting minutes, and discussions with watershed council leaders helped in the

identification of the five main objectives, the twenty-eight subobjectives, and the twenty

restoration options presently used in RESTORE (Figure 2.4),
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Figure 2.3: RESTORE user-screen illustrating the study area divided into celis and
displaying the decision variables (attributes) of the cell. Each cell is shaded with

a color that corresponds to a specific land use identified in the legend.
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The decision-making framework does not limit the DMs to a constrained set of

watershed restoration objectives, subobjectives, or options. In RESTORE, the user assigns

a weight to each objective to be included in the decision analysis and selects from among

the different subobjectives and restoration options those to be considered by the decision

framework. Weights are used to resolve tradeoffs between objectives by including the DMs

relative preferences for specific objectives (Chankong and Haimes, 1983; Sen and Yang,

1998). In the following example (Figure 2.5), we illustrate one set of priorities and

concerns.

Here, water quality and water quantity are primary concerns (objectives), reflecting

interest in decreasing water temperature and runoff, conserving water and increasing

stream flows, improving nutrient management, and protecting drinking water and wells

(subobjectives). These concerns are followed closely by interest in socio-economic issues,

including education and outreach, social networking, and building community

involvement. Maintaining and enhancing fish and wildlife habitat are a relatively low

priority. The weights given to the five different objectives are: Water Quality objective

weight 0.9; Water Quantity objective weight: 0.9; Habitat Objective weight: 0.3; Social

objective weight: 0.7, and Economic objective weight: 0.7 (Figure 2.5, right part of

RESTORE user-screen). All of the restoration options that are listed in the left part of the

user-screen are considered in the analysis (box is checked), as well, as the complete set of

subobjectives that can be seen in other RESTORE user-screens.
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2.4.3 Identification of attributes that relate to each objective

Attributes are site-based decision variables that need to be considered by RESTORE

when directing the selection of specific restoration options. These are qualitative or

quantitative measures used to characterize a site with respect to its potential to support

various restoration options. They may be given by a model, measured directly or assessed

subjectively (Mollaghasemi and Pet-Edwards, 1997). Most of the attribute data used in

RESTORE are widely available. These data are brought together in a GIS and structured to

allow its sharing and evaluation by all those involved in the decision-making process.

Examples of attribute data used by the decision-making tool are land use, hydrology,

topography, and proximity to landscape features (e.g.: wetlands, roads, streams, urban

areas).

2.4.4 Definition of the rules and constraints

Once objectives and attribute data are identified, the next step is to organize important

relationships between entities in the system. In RESTORE, rules and constraints embody

the knowledge about site and landscape-level guidelines for restoration options. For each

cell, the rules and constraints direct a socio-economic and environmental impact

assessment of the different restoration options, as a function of the cell's landscape

position. Consttãints determine if a restoration' option should be considered at a site based

on the site attributes. If constraints are satisfied, applicable rules score different restoration

options based on the options ability to meet each objective. The rules are represented by

IF-THEN statements that are an intuitive way to represent knowledge. A collection of rules

has the ability to represent different sources of knowledge in a consistent format.
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All rules provide a quantitative describing a positive or negative impact of a specific

restoration option at addressing an objective. These impacts are (e.g. low = 1; moderate =

2; significant 3; high = 4; low negative = -1; moderate negative -2; significant negative

= -3, and high negative = -4). For example, the following rule assesses the efficacy ofan

"agricultural riparian buffer" for meeting the water quality objective.

IF Erosion potential is less than 2 tons/acre

THEN Effectiveness of an "agricultural riparian buffer" at reducing sediment transport

into a stream is considered low (1)

RESTORE currently has approximately 350 such rules describing the utility of various

restoration options at meeting restoration objectives under various site conditions.

2.4.5 Efficient landscape generation

Watershed councils generally need to focus on solutions that will simultaneously meet

multiple objectives. To do so, the SAW method is used to rank, for each cell, the utility of

different restoration options by combining single objective scores weighted by the

objective preferences described previously. The SAW method uses the following equation

to evaluate the efficacy (J') of the x th alternative:

vx =1wivix (2.1)

In equation (2.1), (v) corresponds to the scores resulting from the decision rules'

output. It describes the efficacy of a particular restoration option (x) at reaching a specific

objective (i=1.....m). We assume that the objectives are mutually independent, a

requirement for the SAW additive structure. The priorities assigned to each objective are

denoted as weights (w). The goal of the SAW method is to score the utility of each



restoration option at meeting multiple objectives. RESTORE then uses these scores to

rank the restoration options for a site and select the highest scoring option.

RESTORE evaluates 20 restoration options per cell. For a typical watershed, over 5

000 cells are examined, with more than 2015000 possible "proposed landscapes" or

watershed restoration plans. We hypothesize that the use of the SAW method combined

with a rule-based approach can generate a representative subset of efficient "proposed

landscapes". In RESTORE, an efficient "proposed landscape" is considered as a feasible

watershed restoration plan that cannot be dominated by another plan (Bogetoft and Pruzan,

1991). Based on the set of objectives and weights identified by the DMs, the purpose of

step 5is (1) to select a restoration option (including a "no restoration option") for each cell,

leading to the creation of an efficient "proposed landscape" and (2) by varying the weights

associated with each objective, to generate a representative subset of efficient "proposed

landscapes".

Figure 2.6 shows the results of the analysis on an area of the Bear sub-basin within the

Long Tom watershed. The analysis allocates a specific restoration option to a cell only if

all applicable constraints are met. For instance, the efficient option that best addresses the

concerns identified in Step 2 for the cell 5371 was an "agricultural riparian buffer" This

cell is broadly characterized by a pastureland land use and its adjacency to a stream and a

road. The "agricultural riparian buffer" option obtained scores of 4, 1, 4, 3.5, and 0 for the

"water quality", "water quantity," "habitat quality," "social", and "eonomic" objectives,

respectively. Since the weights given to the objectives were respectively 0.9, 0.9, 0.3, 0.7,

03; the composite score after weights normalization equals 2.33 out of 4. These scores
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Figure 26: RESTORE user-screen displaying the results from the MODM analysis for a
specific cell. The results include a composite score and the scores that relate to each

objective. Scores describe the efficacy of the restoration option at
reaching the DMs objectives.



reflect the combination of applicable rules available to RESTORE. These scores

emphasize the fact that an "agricultural riparian buffer" option was selected for the cell

5371 mainly due to its positive impacts on the water quality (e.g. maintain cool water,

reduce transport of sediments and other pollutants into the stream) and the creation of

social opportunities (e.g. aesthetically pleasing, provide opportunities for recreation).

2.4.6 Landscape evaluation

The final output of RESTORE is a spatially and visually explicit preferred "proposed

landscape". A preferred "proposed landscape" should be viewed as the DMs' preferred

watershed restoration plan integrating a mix of restoration options that are optimal or near

optimal at addressing the various objectives of the DMs. However, the preferred watershed

restoration plan cannot be developed in the first run. Rather, it should evolve as a result of

the evaluation process of the several efficient "proposed landscapes" created in step 5.

As implemented in RESTORE, DMs can perform a visual evaluation of the "proposed

landscapes". They can look at different combinations of information layers and perform

multiple-scale analyses of the generated "proposed landscapes". In Figure 2.7, a

RESTORE user-screen depicts a Bear sub-basin "proposed landscape". The largest portion

of the screen is devoted to the map. Each cell i shaded with a color that corresponds to a

specific restoration option in the legend. The histogram illustrates the ratio of the main.

restoration options that were applied in the "proposed landscape". The "create condition

favorable to native species", "forest harvest type scale modification", "agricultural

chemical BMPs", "increase late summer flow", "wetlands construction" restoration

options were applied to respectively 33%, 30%, 13%, 11%, 10% of the Bear sub-basin's

cells.
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Figure 2.7: RESTORE user-screen displaying a preferred watershed restoration plan that
integrates a mix of restoration that are optimal or near optimal at

addressing the DMs objectives.



27
We also use a multiple objective optimization method to evaluate the efficient

"proposed landscapes" that satisfSi guidelines for meeting watershed level objectives. The

multiple objective optimization method being developed uses the SAW method for the

same reasons that were expressed previously. The objectives and decision variables that are

used at the watershed level are different than the ones used at the cell level, since key

issues and observed processes are different for different spatial scales. Therefore,

evaluative models were developed to look at the patterns, structure, and functions of the

"proposed landscapes". Such models allow the user to explore the effects of landscape

characteristics on the fundamental processes observed at the watershed level and to assess

how well each of the efficient "proposed landscapes" is at meeting the different objectives.

2.4.7 Selection of the preferred watershed restoration plan

Selecting a preferred watershed restoration plan is an iterative process. It is critical

that several solutions are considered simultaneously to keep the DMs aware that there is no

claim that any one of these is the preferred watershed restoration plan (French, 1986). The

process is completed when the DMs are satisfied with the preferred watershed restoration

plan; i.e. when they feel that the analysis is requisite.

2.5 DISCUSSION

The work reported in this paper is on going; it addresses the lack of decision-making

tools that can be applied to watershed restoration decision problems. We present the

features of a DSS for watershed restoration being implemented and validated in two

Oregon watersheds. The questions addressed in this paper are (1) what are the socio-

economic and environmental impacts of the different restoration options as a function of

landscape position? and (2) what is the preferred watershed restoration plan that responds
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to the DMs' objectives at the watershed level? To answer these specific questions, we

present a methodology and a decision-making tool that generates a mix of restoration

options in the form of a watershed restoration plan that satisfies the objectives specified by

the DMs at both the local and the watershed levels.

The approach offers several advantages, including: (1) a learning environment enabling

all those involved to develop a more holistic view of watershed restoration planning, (2)

the capability of structuring and articulating problems, and (3) the automation of the

decision-making process. Our approach also demonstrates a GIS-based approach where

rule-based models and other modeling techniques are used rationally to solve a spatially

explicit decision problem.

RESTORE is a filly integrated DSS. It does not depend on proprietary software or

commercial simulation models that may be difficult for users to understand and it does not

require that users are knowledgeable about the different RESTORE components.

RESTORE captures the expert judgment, in the form of rules, to enable DMs to

evaluate different restoration options at the cell level, based on quantitative and qualitative

attributes. The rule-based approach was selected because it allows flexible knowledge

representation and is relatively easy to maintain and modify. A MODM module creates a

final ranking of the restoration options resulting in a subset of efficient "proposed

landscapes". The RESTORE MODM module utilizes the SAW method. Subsequently,

each efficient "proposed landscape" is evaluated at the watershed scale to assess the

landscape's impacts on predefined environmental and socio-economic criteria. The

"proposed landscape" that best addresses the watershed restoration objectives is selected as

the DMs preferred watershed restoration plan. The decision-making framework does not

limit the DMs to a constrained set of watershed restoration objectives or options; instead, it
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offers a framework for almost limitless possibilities to configure a wide variety of

alternative watershed restoration plans that meet selected objectives.

The RESTORE interface supports each step of the methodology. It is broad enough to

accommodate a wide variety of decision situations, thus stimulating collaboration between

DMs. Maps-based and textual summaries of restoration decision-making are readily

available in a friendly format. They are a useful and meaningful way of presenting both

attribute information and decision results. They are easily interpreted and understood,

facilitating the exploration and evaluation of alternative solutions.

We see our modeling process as iterative and dynamic. We continue to interact with

DMs, citizens, and experts to make improvements to the decision-making tool, and to each

step of the decision-making methodology. Still, progress remains to be made to improve

the RESTORE tool. We continue to improve watershed scale evaluative tools. In addition,

continued evaluation of RESTORE by DMs is required if the decisions made with

RESTORE are to effectively address watershed restoration needs.

Other improvements to the present structure of RESTORE include modeling of the

different sources of uncertainty, which are intrinsically part of human judgments and the

landscape characterization. A sensitivity analysis module would allow investigation of the

effects of changes in the input data on the suggested solutions and to test the robustness of

the decisions made. Finally, since conflicts of interest and negotiations are inevitable in

any decision-making environment, future research might consider the addition of group

decision-making techniques to stimulate consensus development, decrease the time to

make decisions, and improve the quality of the decisions made.
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2.6 CONCLUSIONS

The proposed DSS has a number of limitations, but by providing a fertile test-bed for

exploration, it raises a variety of ideas and questions for future research in the development

of DSS tools that address watershed restoration in a holistic way.

The results obtained so far strongly reinforce the fact that multiple-objective methods

provide a valuable tool in the analysis of complex watershed management issues. We

hypothesized that, when used properly, our methodology allows DMs to explore a broad

range of drivers and consequences. The RESTORE methodology helps to identify and

explore possible solutions. It leads to a better understanding of the impacts of decisions.

DMs and experts were involved throughout the development process. They have been

consulted on the main assumptions underpinning the system and on the different choices

embodied in the system. Our experiences tell us that the perspectk'e provided by

RESTORE is compatible with the utilization by DMs. However, to confirm or refute this

first impression, a complete assessment of the decision-making system must be done to

evaluate how useful it is and whether it can promote decision-making in a watershed

restoration context.
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3.1 INTRODUCTION

Performance evaluation of restoration options for addressing watershed restoration

objectives is a complex task, due to the multiplicity and diversity of management

objectives and technological choices (Lamy et al., 2002a). It requires an understanding of

ecosystem processes and functions in the context of the landscape patterns and structure

and restoration option characteristics. In most watershed management decision-making

situations, experts and modelers could utilize multiple-criteria decision-making (MCDM)

approaches to assist decision-makers (DMs) to integrate and synthesize the relevant data

and information and to holistically address concerns relating to ecological, economic, and

sociological issues. Lamy et al. (2002a) asserted that without such approaches and related

tools, DMs and community groups would have difficulty in integrating multiple objectives

into watershed-level plans for restoration. Additionally, in such context they cannot

rationally and realistically assess the potential success of restoration strategies to meet

watershed restoration objectives that are often in conflict within a sustainable development

paradigm. Relevant objectives may refer to biodiversity, water quality, water storage,

habitat quality, social, and economic issues. Although MCDM approaches may support

DMs in complex decision-making contexts, most of these approaches use deterministic

techniquesthat do not address the intrinsic uncertainties in real world decision situations

(Mower, 2000). Decision-making approaches that include an uncertainty analysis can be

seen as more credible, since they recognize that parameters are not precisely known and

decision models are abstract views of the world. Uncertainty analysis provides critical

information to DMs, allowing them to make more informed decisions. Such information

provides them a pragmatic basis to better evaluate the soundness of the conclusions
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reached, thus increasing DMs' confidence in the decision model (Byström el al., 2000;

Crossetto et al., 2000).

When modeling real phenomena, Ziminermann (2000) identified the following sources

of uncertainties: lack of information, abundance of information, conflicting evidence,

ambiguity, measurement, and beliefs. In most situations, it is an intricate task to appraise

all sources of uncertainty present in a decision-making process. Therefore, proposed

methodologies should attempt to focus on sources of uncertainty that have an impact on the

decisions that have to be made. A variety of approaches, such as probability theories (de

Finetti, 1972), fuzzy set theory (Zadeh, 1965), rough set theory (Pawlak, 1982), and

Dempster-Shafer theory (Dempster, 1967; Shafer, 1976) can be used to model uncertainty.

Each theory can address only specific types of uncertainty; consequently the choice of the

appropriate theory is context dependent (Armacost and Pet-Edwards, 1999).

In a community-based watershed restoration context, the process of evaluating and

selecting restoration options is often accomplished based on information expressed in

linguistic terms, which are intrinsically subjective and imprecise. This paper thus focuses

on the modeling of the ambiguity in expert's knowledge, which we hypothesize could be

well captured by fuzzy set theory.

A growing number of publications on MCDM and fuzzy MCDM (FMCDM)

applications related to water resource management have been published (Chang et al, 1997;

Reynolds et al., 1999; Despic and Simonovic, 2000). However, little research has been

done on MCDM and FMCDM applied to holistic watershed restoration decision problems

(Lamy et al., 2002a). To address the lack of such decision-making tools, we explore the

application of a FMCDM approach at modeling the uncertainty in experts' knowledge in

the context of RESTORE, a watershed restoration decision tool. RESTORE (Lamy et al.,
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2002a) is a geographical information system-based decision-making tool developed to

help watershed councils evaluate and rank restoration activities at the watershed level. It

includes a rule-based system that models the experts' perception of restoration options

performance at meeting DMs' multiple objectives. A performance evaluation leads to the

ranking of the restoration options, which results in a subset of efficient watershed

management plans. It is done in terms of the restoration option's impacts on the predefined

environmental and socio-economic criteria. RESTORE's performance evaluation module

is developed from experts' knowledge and experience. It provides a crisp (no uncertainty)

evaluation of the restoration alternatives.--The complexity of the various landscape

processes and human subjectivity suggest that a robust inference process should involve

the modeling of the inherent uncertainties of experts' knowledge.

The aim of this paper is to: (1) characterize the types of uncertainty in experts'

knowledge that the approach can address; (2) introduce a novel ranking method for fuzzy

performance evaluation, and (3) evaluate the ability of the approach at exploiting the

knowledge provided by experts. Section presents an overview of the fuzzy set

mathematical framework, section 2 presents the methodology overview, and section 3

illustrates the application of the methodology with an example.

3.2 FUZZY SET THEORY OVERVIEW

In 1965, Lofti Zadeh proposed fuzzy set theory a mathematical framework that gives

experts the ability to convey the fuzziness or the intrinsic vagueness of qualitative

concepts. Most qualitative concepts have no precise boundaries or cannot be described

precisely, therefore soft boundaries are used to handle the idea of partial truth.



For instance, a characterization of commonly accepted boundaries between what is

believed to be moderate soil erosion and excessive soil erosion could never be done

because it is highly subjective and context dependent. For a certain community, a 6 t/ha

value can be to some extent moderate and to some extent excessive, there is a gradual

transition so that there is no single value at which the soil erosion abruptly begins to be

excessive (Figure 3.1). In these situations uncertainty mainly originates from linguistic

ambiguity, which could be captured by fuzzy set theory. Fuzzy set theory is more

compatible with linguistic terms than a two-valued logic or a crisp logic, where a

membership function iA of a fuzzy set A associates a membership value (tA(X)) in the

interval {O, 1] with each element x of the universe of discourse U.

Excessive

3 6 10

Soil erosion (t/ha)

Figure 3.1: Membership functions describing the experts' view of the linguistic terms
"moderate" and "excessive" soil erosion

Membership values model degrees of truth of fuzzy propositions, ranging from 0

(incompatibility with the set) to 1 (full compatibility with the set). Degrees of truth or

membership values describe how much each given object is compatible with each of the

linguistic terms represented by a given fuzzy subset. Linguistic terms (eg. moderate and

excessive) can be seen as subjective categories describing a linguistic variable (e.g. soil
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erosion). Fuzzy subsets can be arbitrarily defined using a diverse set of mathematical

functions. A detailed description of fuzzy set theory concepts can be found in

Zimmermann (1987) and Klir and Yuan (1995).

3.3 METHODOLOGY

There are a number of surveys on FMCDM (Chen and Hwang, 1992; Lai and Hwang,

1994; Ribeiro, 1996). The field of fuzzy set theory matured since its development in 1965

by L.A. Zadeh. Still, Dubois et al. (2000) pointed out that uncertainty analysis and MCDM

theory are two fields that have been developed almost completely independently until

recently. Applications of FMCDM can be seen in energy production, engineering, resource

allocation, transportation, waste management, manufacturing, imaging systems, robot

simulation, economics, and other fields.

The FMCDM methodology presented here is applied to holistic watershed

management. Its goal is to assist DMs in the selection process of restoration options when

creating watershed restoration plans. However, the methodology could be applied to any

performance evaluation contexts where multiple criteria and intrinsic uncertainty are

involved. The methodology allows DMs to express their experience, intuition or beliefs in

vague linguistic terms, which may more realistically reflect real world decision-making

problems. It consists of three main steps, which lead to the creation of a feasible watershed

restoration plan (Figure 3.2).

3.3.1 Description of the decision situation and identification of objectives

This first step of the methodology is to describe the system being considered and to

identify DMs' objectives in this specific decision situation. This step, which helps to
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develop a shared comprehension and perception of the decision problem, is critical to

guarantee the success of watershed restoration efforts. Successful watershed restoration

planning is often characterized as one that ensures water quality, riparian and wetland

habitat for fish, wildlife, and native plants while recognizing the importance of peoples

economic livelihood and quality of life.

Description of the decision situation
Identification of objectives

Creation of a fuzzy Logic Controller

Fuzzy Logic Knowledge Base

Inference Process J

Design of a fuzzy multiple-criteria
Decision-making module

Feasible watershed restoration plan

Figure 3.2: Diagram of the FMCDM methodology for the design of feasible
watershed restoration plans

Once the decision situation and relevant objectives are characterized, restoration

options that may drive the solution toward the design of a feasible watershed restoration

plan should now be identified. Restoration options are used as building blocks for a future

watershed restoration plan. An objectives hierarchy is used to graphically summarize the

37
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identified priorities and concerns (Clemen, 1996). It helps to understand what is the

vision of DMs when restoring their watershed. The main outcome of this step is an

increased understanding of the decision problem by the DMs, the community, the experts

or any interested parties. Focus group meetings, content analysis of newsletters, and

meeting minutes, as well as discussions with watershed council leaders help in the

identification of the five main objectives, the twenty-eight subobjectives, and the twenty

restoration options used in RESTORE and available to the watershed councils (Figure 3.3).

3.3.2 Creation of a Fuzzy Logic Controller

Once priorities and concerns are identified, the next step is to create a fuzzy logic

controller (FLC) that directs a socio-economic and environmental impact assessment. The

impact assessment evaluates the performance of the restoration options at meeting each

objective individually as a function of the cell's landscape position. A cell is considered the

smallest site or land unit on which DMs can make a decision. In the literature, there is no

broadly accepted practice for fuzzy control design (Glorennec, 1994; Klir and Yuan, 1995).

In general, the design involves the development of a rule base and an inference engine that

embodies mechanisms for interpreting these rules and drawing conclusions from them,

based on the characteristics specific to the decision problem. Rules are defined using

linguistic variables described by fuzzy subsets. Several decisions have to be made when

designing a FLC, including the definition of the rules collection, the linguistic variables

and linguistic terms in the input and output spaces, the shape of the linguistic terms'

membership functions, aggregation operators, and ranking process. For the FLC presented

here, the design components are described below.
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Figure 3.3: Objectives hierarchy that structures the DMs priorities and concerns
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Fuzzy Logic Knowledge base

Through a fuzzification process, the fuzzy rule base was built from a subset of

RESTORE's 350 crisp rules. Fuzzification is a process that uses membership functions or

fuzzy subsets to translate system input and output into linguistic variables. Two distinctive

classes of fuzzification methods are proposed in the literature, direct and indirect methods

(Klir and Yuan, 1995). In the proposed approach a direct fuzzification method was used.

Experts are asked to identify the linguistic terms and associated fuzzy subsets defining

each concept present in the rules. The rules in RESTORE embody knowledge about site

and landscape-level guidelines for restoration options. Rules use qualitative or quantitative

attributes that need to be considered when directing the selection of restoration options.

Examples of the main quantitative attributes driving the decision-making process are land

use, land cover, hydrology, topography, and proximity to landscape features (e.g.: fish

distribution, wetlands, roads, streams, urban areas). All rules provide a conclusion

describing a positive or negative impact (e.g. low, moderate, significant, high, low

negative, moderate negative, significant negative, and high negative) of a specific

restoration option at addressing an objective under specific site conditions. Applicable

rules' conclusions are linked by the sentence connective also. They are run in parallel to

produce an overall conclusion considering the information coming from all the applicable

rules (Cox, 1999). In Figure 3.4, rules assess the efficacy of an "agricultural riparian

buffer" at meeting the water quality objective.

The linguistic terms "low" and "medium" are defined by fuzzy subsets associated with

the linguistic variable "soil erosion". The linguistic terms "moderate" and "significant" are

defined by fuzzy subsets associated with the linguistic variable "impact on the water
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quality objective". The antecedent (the rule's premise) describes under what conditions

the rule contributes to the model solution, while the conclusion (the rule's consequent)

assigns a membership function to each of the output variables that is correlated with the

truth of the antecedent. Membership functions can take an infinite number of forms.

However, most FLCs use only fairly simple linear equations. In the approach used here;

DMs can choose between linear, triangular, or trapezoidal shapes, which could be bounded

or not.

Figure 3.4: Rules assessing the efficacy of an "agricultural riparian buffer" at
meeting the water quality

Inference process

A fuzzy inference process defines the mapping from a given input space to an output

space. It evaluates the truthfulness of the fuzzy rules, selects the rules that contribute to the

conclusion, aggregates these rule conclusions, and infers a fuzzy conclusion. An inference

process should be context dependent, limit the loss of information and aim to model DM's

behavior when making a decision. A few operators have a major impact on the inference

process: fuzzy implication operator, sentence connectives "and" and "or ", and the

sentence connective "also ".

IF erosion potential is "low" (antecedent)

or erosion potential is "moderate"

THEN effectiveness of an "agricultural riparian buffer" at reducing (conclusion)

sediment transport into a stream is considered as "moderate"

also

IF a stream listed for fecal coliform is "near" the site (antecedent)

and a stream is present on the site

THEN effectiveness of an "agricultural riparian buffer" at reducing (conclusion)

sediment transport into a stream is considered as "significant"



Fuzzy implication operator

Fuzzy implication could be defined as a mechanism that defines the degree of truth of a

rule. Numerous fuzzy implication operators are available including tnorm, strong

implication, residual implication, and quantic implication. Research concerning the

applicability of implications operators for different applications has been conducted by

various authors (Kiszka et al., 1985; Cao and Kandel, 1989; Cárdenas et al., 1994; Cordon

et al., 1997). These researchers generally concluded that each operator generated good

results in a specific context and that t-norm minimum (MIN) operator frequently

performed well. The MIN implication operator was selected in our methodology. In the

approach used here, the sentence connective "and" is modeled by the MIN operator,

because experts point out that two facts linked by the sentence connective "and" must be

both true to a certain extent for the rule to be considered in the evaluation process. The

rule's impact on the fuzzy conclusion is negligible when at least one of the two facts is not

true. The sentence connective or"is modeled by the MAX operator, because experts are

said to believe in the rules' conclusion at least to an extent equivalent to the condition

having the highest degree of truth.

Sentence connective "also"

Under the composition step, all of the rules' conclusions are combined together, with

the sentence connective "also ", to form a single fuzzy subset associated to the output

space. This step is seen as the one of aggregating experts' opinions (Portilla et al., 2000).

In a decision situation, aggregating experts' opinion can be modeled by using

disjunctive, conjunctive, or compromise operators. Zimmermann and Zysno (1980) stated

that most decisions involving a performance evaluation needed to allow compensation
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between different degrees of performance achievements. Compensation assumes that

good performance by one rule is perceived to partially compensate for lower performance

by another. In the case of a community-based decision problem, a compensatory approach

that trades off opinions about potential impacts can allow consideration of different

opinions or conflicting evidence. The inference process used here uses a compensatory

parameterized function (equation 3.1) to model the sentence connective "also" that

combines multiple rule conclusions. This function is a weighted combination of the non-

compensatory "and" and the fully compensatory "or" that is used to model the

performance (l.tpredicate) of a restoration option at meeting each objective individually. A

weighting factor (X)represents the degree of optimism of DMs. It models the balance that

DMs want to reach, toward the minimum or maximum fuzzy conclusion (Cox, 1999).

Ppredicate =(i-.- X)min(ua[x],,ub{xD+ Xmax(ua[x],/lb[xD with 0 ; X I (3.1)

This method was selected because it is intuitive, the degree of compensation can be

controlled, and it takes into account the full range of performance achievements.

3.3.3 Design of a fuzzy multiple-criteria decision-making module

The design of the FMCDM module consists of two steps. The first step is the

aggregation of the performance scores, computed by the FLC, with respect to all the

objectives for each decision alternative. The second step is the ranking of the decision

alternatives to the aggregated scores. Both steps aim to make use of techniques that

preserve knowledge and experiences provided by experts during the design of the Fuzzy



Logic Knowledge base, and keeping this information ensures a more complete and

comprehensive analysis of the decision alternatives' performance (Islei et al., 1999).

Aggregation of the fuzzy performance scores

The main challenge, when aggregating fuzzy performance scores, is to choose an

aggregation function that properly models the concerns of experts and DMs. In the

approach used here, the FMCDM problem is defined as a finite set of(n) decision

alternatives, which are evaluated with respect to (m) objectives (V1). The priorities

assigned to each objective are represented as weights (w1). The result of the aggregation is

a composite objective function (D) represented by a fuzzy subset. As mentioned

previously, as in fuzzy control, the aggregation of subjective categories in the context of

real world MCDM situations generally shows some degree ofcompensation (Shih and Lee,

2000; Despic and Simonovic, 2000). In the approach used here, the decision-making

problem is said to be compensating because good performance on one objective is

perceived to partially compensate for lower performance on another.

Fuzzy set theory provides a large number of different compensatory aggregation

connectives for combining membership functions. Frequently used compensatory

aggregation connectives in FMCDM are the arithmetic mean and the geometric mean.

With these methods, however, the degree of compensation cannot be controlled to reflect

the specific DM's behavior. To express the DMs' subjective attitude toward the

comparison of different fuzzy subsets, the generalized mean aggregation function

(Dyckhoff and Pedrycz, 1984) (equation 3.2) was selected.
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where y is a DM's attitude control parameter. According to the method, the grade of

compensation can cover the entire interval between the MIN (y - cc) and the MAX (y

cc). In the approach used here, the weights are determined by direct estimation. DMs are

asked to represent the importance of each objective with a value between zero

(unimportant objective) and one (critical objective). The output of the aggregation of the

fuzzy performance scores step produces a fuzzy subset that represents the overall

performance of each decision alternatives at simultaneously addressing the different

objectives.

Ranking of the decision alternatives

Ranking decision alternatives represented by fuzzy subsets is an important issue of

fuzzy decision-making unlike crisp sets which form a natural linear order. Many

approaches for ranking fuzzy subsets have been proposed in the literature. There exists an

assortment of methods classified by Chen and Hwang (992) as: (1) preference relation,

(2) fuzzy mean and spread, (3) fuzzy scoring, and (4) linguistic method. In spite of the

existence of a variety of methods, no single method can rank fuzzy subsets satisfactorily in

all cases and situations. Most of them suffer from drawbacks, including difficulty of

implementation, counter-intuitive behavior, lack of discrimination, and failure to include

all information. Others make assumptions about the DM's behavior and fuzzy subset shape
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(Bortolan and Degani, 1985; Wang and Ken-c, 2001). These factors have made selection

of a ranking method subjective and specific to each decision context.

The need for further study focusing on the development of customizable and intuitive

ranking methods that account for the information richness of fuzzy subsets is manifest.

Consequently, a novel approach for ranking fuzzy solutions based on a grade of merit

index (GMI) is presented.

The proposed GMI method can be broadly characterized as a method using a FMCDM

model and uncertainty-based information to analyze the information content of the fuzzy

subset coming from the overall performance evaluation of each decision alternative.

Generalized information theory deals with the broad concept of uncertainty-based

information, which is defined in terms of uncertainty reduction (Klir, 1999). in fuzzy set

theory, two different types of uncertainty-based information exist, which are fuzziness and

nonspecificity (Klir, 1987). The GMI method aims to address the abovementioned

drawbacks of the existing ranking methods by considering more information in the ranking

process and emulating the way experts think about a specific problem. A decision

alternative with the highest GMI score is the one that best meets experts' and DMs'

expectations in terms of what should be considered as a good solution. Expectations could

be the one of a risk-taking, a risk-averse, or a risk-neutral DM. The GMI ranking method

offers (1) flexibility at modeling the expert behavior when making decisions; (2) inclusion

of different forms of information that are manifested in the fuzzy solution, and (3) ability

of ranking arbitrary fuzzy qualifier shapes.

The GMI ranking method integrates information about both the expected performance

of the decision alternative at meeting DMs' objectives and the uncertainty of the evidence

supporting the performance itself. To capture the properties of the fuzzy solutions, the GMI

involves four criteria: (1) expected performance of the restoration option at meeting DMs'
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objectives, (2) vagueness of the expected performance, (3) ambiguity of the expected

performance, and (4) accumulation of evidence. Each criterion is represented by fuzzy

subsets. The GMI uses (1) a FLC, similar to the one employed for eva'uating the

performance of each restoration option, to evaluate each decision alternative in terms of the

four criteria and their associated attributes and (2) a simple additive weighted method

(Chen and Hwang, 1992) is used to rank the decision alternatives by combining single

criterion scores coming from the FLC into a composite criteria score.

Weights could be assigned to each criterion, allowing experts to identify compensation

between the expected performance and the uncertainty related to it. More weights given to

the performance criterion could be seen as a risk-taking DM. Conversely more weights

given to the uncertainty related criteria could be seen as a risk-adverse DM. For instance,

in some situations. a high score on the performance criterion might not be appropriate, due

to possible uncertainty or risk related to proposed watershed restoration plans. In some

cases, DMs might want to select a solution whose uncertainty is minimal or whose range of

impacts simultaneously belongs only to a few neighboring fuzzy subsets.

Figure 3.5 presents a hierarchy of the information used by the GMI ranking method.

The upper level of the hierarchy presents the four aforementioned criteria based on which

the decision alternatives are ranked and the lowest-level of the hierarchy are the seven

attributes that measured the criteria. DMs and experts could easily include in the analysis

any other criteria to better model their values and perspective.
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Figure 3.5: Hierarchy of the information used in the ranking process

Criterion 1: Expected performance

In the literature, one of the most commonly used practices to evaluate the expected

performance of fuzzy alternatives makes use of a defuzzification method. The alternative

with the greatest defuzzified value is selected as the one that best meets the overall DMs'

objectives. The most widely used defuzzification method is the center of area method

(COA) (Mamdani and Assilian, 1975). The GMI uses the COA as a defuzzification

method. It was selected over other defuzzification methods for its simplicity and the fact.

that it combines evidence from all rules (Cox, 1999). However, this method has serious

drawbacks. For instance, if output membership .functions lie on the same single vertical

axis, their COA value (dcoA) remains constant independently of whether the rule fired

strongly or weakly. COA is not able to discriminate between the three fuzzy subsets shown

in Figure 3.6, where the fuzzy subset B is intuitively preferable to fuzzy subset A and C.
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Therefore, simple COA is not suitable for computing decision alternatives expected

performance.

p (x)
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Figure 3.6. COA value and COA truth-value for three different fuzzy subsets.
COAj.IA = COA1B = COAic;

COA truth-value ItA = 0, COA truth-value tB = 1, COA truth-value LC = 0.5.

In order to overcome COA drawbacks, the GMI uses the dcOA in combination with two

other attributes to compute the expected performance criterion of each decision alternative.

These are the membership value of the dCOA and the lowest dcoA obtained for the key

objectives. A good expected performance value is one that maximizes each of the three

attribute values.

(1) Center of area value (dcoA)

The COA (also known as the center of gravity method) converts each fuzzy subset

conclusion (A) obtained from equation (3.2) to a single real number. It could be seen as a

mean value representing the overall performance of the restoration at meeting

simultaneously the DMs' objectives. The dcoA is computed as:



.r
dcoA(A)= (3.3)

A(y)dy
a

Truth value of the center of area value

The dcoA is a single crisp value representing the total range of the fuzzy subset

solution. However, it may not locally represent the fuzzy subset and thus, the dcoA's

membership value in the fuzzy subset conclusion is computed. For instance, the three

different fuzzy subsets, shown in Figure 3.6, result in an identical dcoA of 5, though the

membership values are different. This attribute allows experts to assert that the higher the

dcoA's membership value, the more representative or reliable the dcoA might be of the

expected performance.

Lowest COA value among the key objectives

When defining the objectives hierarchy in step 1, DMs identify their values in terms of

objectives and associated weights to be considered when selecting a restoration option for a

particular site. GMI allows experts to limit the expected performance of a decision

alternative by the lowest dCOA obtained by one of the objectives or by a subset of objectives

(e.g. objectives having received a weight higherthan 0.6 on a scale of 0 to 1). Considering

the lowest dCOA, as an attribute, means that conservative experts could say that avery low

performance on one important objective might cancel any favorable performance on other

objectives or in other words might reduce the credibility of the expected performance

score
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Criterion 2: Fuzziness

Fuzziness results from the imprecise boundaries of fuzzy subsets representing the

experts' point of view about corresponding linguistic terms (Klir and Yuan, 1995). In the

context of the GMI, a measure of fuzziness characterizes to what extent the decision

alternative performance applies to each linguistic term describing impacts. Therefore, it is

necessary to have a criterion to measure the fuzziness of fuzzy subsets. The following two

attributes are used to evaluate the fuzziness criterion. A good score on the fuzziness

criterion could be one that minimizes the entropy value and maximizes the y-centroid

value.

(1) Entropy value

An entropy measure can be seen as uncertainty-based information, measuring the

fuzziness or vagueness of a fuzzy subset. DeLuca and Termini (1972) proposed a measure

of entropy based on the classical Shannon entropy function. Kaufmann (1975) proposed

that the fuzziness of a fuzzy subset can be measured through the distance between the

fuzzy subset and its nearest non-fuzzy subset. Yager (1979) introduced a measure that is

considered as a holistic idea of the measurement of fuzziness, which is expressed by the

distance between the fuzzy subset and its complement. The GMI uses the Yager's method

(equation 3.4), because it is intuitive and easy to model (Higashi and Klir, 1982).

D(A,CA)
F(A)

HSupp(A)
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Let

S = Supp(A) D(S,CS) =S 1/p (3.6)

CA complement of the fuzzy subset A

p = scaling factor

relative cardinality of A

Entropy is considered as minimum F (A) = 0, when the fuzzy solution could be seen

as a crisp set, in other words when the mapping between the linguistic variables and the

quantitative values is either 0 or 1. A maximum fuzziness is obtained when the degree of

membership is 0.5.

(2) The Y -center of area

Identical entropy value can be obtained for two fuzzy subsets that have different

centroid value (j) in the y axis (Figure 3.7), however intuitively between these two

fuzziness values experts might prefer the fuzzy subset with the highest center of gravity in.

the y-axis. Therefore, to differentiate fuzzy subsets having the same fuzziness, the y-center

of area (equation 3.7) is used.

- = rbf(x)2dx (3.7)
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Figure 3.7: Entropy values for two different subsets
FP!LA =

Criterion 3: Ambiguity

A fuzzy subset describing the expected performance of a decision alternative might be

related to various linguistic variables. For instance, the solution might simultaneously have

to some extent low-negative, moderate, and high-positive impacts on the different

objectives. The ambiguity in a set is connected with the size of the subsets. In our case,

subsets designate linguistic variables describing the restoration options' impacts on the

different objectives. The larger the subsets, the less specific is the characterization. The

following decision variable is used to model the ambiguity of the fuzzy solution.

(1) Nonspecificity

The nonspecificity variable is another uncertainty-based information measure that is

connected with the size (cardinalities) of fuzzy solutions or subsets. Nonspecificity can be

thought of as a way of assessing the consistency of the different solutions. For instance, if

all the impacts are described by the same linguistic variable, then the ambiguity regarding

the impact is low. This is the most straightforward situation to deal with from an expert's
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perspective. Nonspecificity provides an indication of the dispersion of the

characterization. Thus a high value of nonspecificity indicates that the solution belongs to

several different descriptive categories and this information could be used in risk-based

management decision-making.

To compute the nonspecificity of any nonempty set A defined on a finite universal set

X, we use the U-uncertainty function (equation 3.8), a generalization of the Hartley

function (Higashi and Klir, 1983).

where represents the cardinality of the a-cut of A and h(A) is the height of A. The a-

cut of a fuzzy subset A is the crisp set A that contains all the elements of the universal X

whose membership grades in A are greater than or equal the specified value of a.

High specificity is obtained when a solution belongs to a single set. The meaning of a

wide fuzzy subset is more ambiguous compared to a narrow one which meaning is more

definite. For instance, a number of experts could prefer a solution defined by a narrow

fuzzy subset, because impacts are constrained to only one category of impacts. In other

circumstances, a solution with a wide output would be preferred for its versatility since it

pertains simultaneously to different categories of impacts.

Criterion 4: Accumulation of evidence

(1) Number of rules

Intuitively, the reliability of a fuzzy solution could be seen as proportional to the

number of rules fired, because more extensive knowledge is accumulated.
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3.4 WATERSHED RESTORATION PLANNING EXAMPLE

The proposed approach was applied using RESTORE, a DSS for watershed restoration

planning. RESTORE selects the most desirable restoration options under specific land use

characteristics and creates a watershed restoration plan. The Upper Amazon sub-basin, part

of the Long Tom watershed of Oregon's Willamette River Basin, was studied. The Upper

Amazon sub-basin is substantially urbanized and is in to Oregon's second-largest

metropolitan area, Eugene. The sub-basin has been significantly disturbed by agricultural

and urban activities, resulting in a number of conflicts related to land use and consequent

ecological impacts.

For this study, RESTORE MCDM algorithm (Lamy et al., 2002a) was modified to use

a FMCDM when selecting a preferred restoration option. RESTORE evaluates, compares,

and ranks restoration options subject to stakeholders' objectives. In the following example,

we illustrate one set of stakeholders' priorities and concerns. DMs were considered risk-

neutral. Water quality and water quantity were among five primary objectives, reflecting

subobjectives of decreasing water temperature and runoff, increasing stream flows and

improving nutrient management. These objectives were followed closely by socio-

economic issues, including aesthetic quality, public support, and education and outreach.

Maintaining and enhancing fish and wildlife habitat had a relatively low priority. The

normalized weights given to the five objectives are: waterquality 1; water quantity 1;

habitat 0.33; social 0.78, and economic 0.78.

The RESTORE framework evaluates more than 20 restoration options per cell. For the

Upper Amazon sub-basin, 12 200 cells are examined, with more than 2012200 possible

landscapes or watershed restoration plans. Cells are built on the assumption that small



Create conditions favorable
to native species

LIncrease late summer flow

Forest riparian buffer

LIIAgricultural riparian buffer

Wetlands constRiction

Stream network

56

landscape areas can be aggregated into an area that is reasonably honiogeneous with

respect to land use, soil, and drainage. The example presented here focuses on a small

riparian area of the watershed, where five restoration options were considered for each cell.

These restoration options were: (1) riparian agricultural buffer, (2) increase late summer

flow, (3) riparian forest buffer, (4) create condition favorable for native species, and (5)

wetlands construction (Figure 3.8). Detailed results for a specific site (#3424) are presented

in Table 3.1. This site can be broadly characterized as agricultural land adjacent to a stream

and road.

Figure 3,8: Proposed restoration plans resulting from the analysis perfonned by (A)

MCDM RESTORE model and (B) FMCDM RESTORE model, on the study area. The
MCDM analysis allocated to each site the restoration option with the highest score and the

FMCDM analysis allocated to each site the restoration option with the highest GMI
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As shown in Table 3.1, both the crisp and the fuzzy approaches rejected from the

evaluation process "the forest riparian buffer" and the "wetlands construction" restoration

options, because the agricultural site under study has not met the constraints of these two

restoration options. No significant differences can be seen in the ranking results coming

from the two approaches. The RESTORE framework ranks decision alternatives based on

one attribute, which is the performance of the alternatives at simultaneously meeting the

multiple objectives. In contrast the FMCDM approach ranks decision alternatives based on

four criteria and seven attributes. One of the criteria relates to the expected performance of

the alternative at simultaneously meeting the multiple objectives and the three other criteria

relate to the uncertainty or the risk related to the expected performance itself. Both

approaches (Table 3.1) concluded that the "late-summer flow control" restoration option

was the best among the other alternatives at meeting the performance criterion. Therefore,

the RESTORE MCDM framework applied the "late-summer flow control" restoration

option on cell 3424 with a score of 2.69 out of 4. However, the RESTORE FMCDM

approach, which modeled a risk-neutral DM, selected the "agricultural riparian buffer"

restoration option over the "late-summer flow control" restoration option with a score of

5.84 out of 10 (in fuzzy terms, it is described by both moderate and a significant impacts).

It was assumed that .high scores on the uncertainty criteri compensated foi the lower score

obtained on the expected performance criterion.

he RESTORE MCDM algorithm assumes that variables can be represented by single

discrete numbers, ignoring their continuous and wide-ranging nature. Such an approach

entails certainty about the existing knowledge and averages the overall performance of

each decision alternative at simultaneously addressing the different objectives. During this

averaging process, diversity and uncertainty inherent in original information is lost.



Table 3.1: Detailed results of the FMCDM approach for a specific site
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In contrast, the RESTORE FMCDM approach enables experts to express their

knowledge and experiences with linguistic terms represented by fuzzy subsets (which can

be seen as uncertainty intervals) rather than discrete values. Such approach widens the

range of the solution space by adding tolerance and flexibility in the analysis of the

alternatives. Fuzzy rules use fuzzy subsets that allows a membership in more than one

category, which makes the model more robust in front of uncertainty inexpert knowledge

or when adding new information. For instance, an alternative is not excluded from, the

evaluation process simply because it exceeds a 'constraint (e.g. stream proximity should be

less than 20 meters) by a small amount (e.g. 1 meter).

The output of the FMCDM evaluation process is a fuzzy subset, which is rich in

information-content. Information-content may refer to local characteristics (e.g. extent to

which an option has met or not met the rules' conditions, and extent to which an option is

Restoration
option

Ambiguity
criterion

Expected
performance

criterion

Accumulation
of evidence

criterion

Vagueness
criterion

GM!
Score

RESTORE
score

Agricultural
riparian
buffer

6.34 5.22 8.42 3.38 5.84 2.07

Late-summer
flow control 4.68 6.84 4.68 3.94 5.03 2.69

Create
condition

favorable for
native

species

3.33 3.95 3.84 3.33 3.61 1.04

Forest
riparian
buffer

6.68 6.3! 6.33 3.32 0 0

Wetlands
construction

4.68 4.14 6.94 3.53 0 0
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characterized by one linguistic term) or global characteristics (e.g. center of area,

uncertainty-based information) of the fuzzy subset. This information can be used in the

ranking process, as it is done by the GM!. !n addition, having this information allows a

DMs and experts to reevaluate in some cases the benefits of a restoration apparently not

suitable in the first place. When more information is included in the ranking process, the

decision alternatives are better understood by DMs. A GMI score provides an indication of

the quality of the evidence showing the value of the different alternatives, being either

included or rejected from the evaluation process. The GM! extends the existing ranking

methods by providing a more complete analysis of the fuzzy subset being ranked and by

better supporting the accumulated information. More specifically, it does so by (1) making

use of a FMCDM technique that considers four criteria and seven attributes characterizing

the different facets of fuzzy subsets (most existing methods use only one attribute to rank

fuzzy subsets) and allows experts to specify weights on each criterion, (2) including

uncertainty-based information as attributes for measuring the uncertainty of the fuzzy

subsets, (3) not making any assumptions about the shape of the fuzzy subsets to be ranked,

and (4) making use of fuzzy rules to evaluate each criterion, which brings transparency and

flexibility to the ranking process and allows DMs to express their values and perspective

about what should be considered agood alternative in a specific decision context.

The evaluation and selection process of alternatives in a community-based watershed

restoration planning context is often accomplished with information expressed in linguistic

terms which are intrinsically subjective and imprecise. A FMCDM approach is more

realistic than a traditional MCDM approach because it gives experts' the flexibility to take

into account the uncertainty involved in the decision-making process.
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3.5 CONCLUSIONS

A FMCDM approach was proposed and applied to the context of RESTORE, a

decision tool for holistic watershed restoration planning. The approach involves three basic

steps: (1) expert values are first captured and serve as a starting point to additional analysis

steps, (2) a FLC is built, which contains (a) a knowledge base, (b) an inference process

enabling DMs to evaluate the performance of the restoration options at meeting the

different objectives separately, and then (3) a FMCDM module is developed, which (a)

aggregates fuzzy subsets to calculate a composite objective function for each option and

finally (b) integrates a novel ranking method to create a final ranking of the restoration

options, resulting in an efficient watershed management plan.

The results obtained so far strongly indicate that our FMCDM approach provides a

valuable tool in the analysis of complex watershed management issues because it properly

addresses the inherent ambiguity in experts' knowledge. The approach presents a novel

fuzzy ranking method, GMT. The GMI is a flexible and intuitive ranking method that uses a

FMCDM technique, includes uncertainty-based information, does not make assumptions

about the shape of the fuzzy subsets to be ranked, and allows DMs and experts to express

their values and perspective about what should be considered as a good alternative in a

specific decision context.

Community-based decision-making is a collaborative process, where negotiations

among participants and conflicts of interest are almost inevitable. DMs need tools to

support consensus and compromise building. A future version of RESTORE should

include methods providing a systematic means for developing effective group decision

making, where the inclusion of conflicting opinions may alter the shape of the fuzzy

criteria and the ranking of decision alternatives.
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Other improvements to the present structure of RESTORE include the modeling of

other sources of uncertainty. This paper was concerned with the linguistic uncertainty in

expert knowledge which does not include the uncertainty related to the occurrence bf an

event. In some situations, a DM might not be 00% sure about the shape of a fuzzy subset

or the truthfulness of a rule, which could be translated as uncertainty due to a lack of

knowledge or ignorance about a situation. There is an opportunity to combine fuzzy set

theory with another uncertainty theory that would specifically address this type of

uncertainty.
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4.1 INTRODUCTION

Watershed restoration decisions involve interactions between socio-economic and

environmental systems, which are both complex and not fully understood. Typically, a

decision-making process involves several distinct and iterative steps, including decision

problem description, identification of decision-makers (DMs)' values, creation of a

knowledge base, and generation and evaluation of feasible solutions (Lamy et al., 2002a).

Spatially explicit decision support systems (DSSs) show potential for assisting in the

production of watershed restoration plans. These plans typically involve multiple DMs'

interests and must balance a variety of often conflicting objectives. DSSs have been

defined as computer-based systems that support the decision-making process by enhancing

problem comprehension and by providing data, analytical tools, and methods to

characterize uncertainty (Mowrer, 2000). However, only a few DSSs recognize and

implement uncertainty assessment (Heuvelink, 1998; Crosetto et al. 2000, Mowrer, 2000).

Several theories to model uncertainty in expert knowledge have been proposed,

including Bayesian theoty (de Finetti, 1972), possibility theory (Zadeh, 1978), Dempster-

Shafer theory (Dempster, 1967; Shafer, 1976), fuzzy set theory (Zadeh, 1965), and

certainty factor model (Buchanan and Shortliffe, 1984). Even though each of them can

only be applied to specific decision-making contexts, modelers have a tendency to favor

one theory and apply it to all cases. Additionally, few studies have compared the suitability

of different theories to specific decision problems. The selection of appropriate 'methods

for modeling uncertainty is decision context dependent (Zimmermann, 2000).

To date, no study has compared the applicability of different uncertainty theories to

watershed restoration. Here, we explore the utility of three uncertainty theories, including

certainty factor model, Dempster-Shafer theory, and fuzzy set theory; at modeling the
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uncertainty in experts' knowledge using RESTORE. RESTORE (Lamy et al., 2002a) is

a geographical information system-based decision-making tool developed to help

watershed councils evaluate and rank restoration activities at the watershed level. It

includes a rule-based system that models the experts' perception of restoration alternatives

performance at meeting DMs' multiple objectives. Objectives considered include water

quality, water storage, habitat quality, social concems and economics that often conflict. A

multiple criteria decision-making (MCDM) performance evaluation leads to the ranking of

restoration alternatives, which are used as building blocks for future restoration plans.

Rankings reflect alternatives' impacts on the objectives described above, which are

determined through the application of a set of rules, developed from experts' knowledge. A

rule describes a restoration alternative's performance at achieving a specific objective for

given site conditions.

The complexity of the various landscape processes and human subjectivity suggest that

a robust performance evaluation module would involve the modeling of uncertainties

inherent to experts' knowledge. This information can be critical from a DM's point of view

and can allow a DMto make more informed decisions (Crosetto et al., 2000; Hoffman et

al., 1999). In RESTORE, evaluation of alternatives is carried out using a crisp (no estimate

of uncertainty) rule base that contains heuristic knowledge, which utilizes spatial data (e.g.

soil type, slope, distance to stream) stored in a geographic information system (GIS)

database. Heuristic knowledge is generated from experts' experiences, beliefs, and

judgments (Yen, 1999) and takes the form of rules that embody the experts' knowledge

about site and landscape level guidelines for restoration alternatives.

Knowledge representation is crucial to the ability of RESTORE and similar systems to

capture important decision processes. Methods dealing exclusively with precise statements

often cannot fully capture the richness and complexity of experts' knowledge (Baroni et
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al., 2001). For example, assessing the ability of a wetlands restoration project at

improving the aesthetic quality of an area is a difficult task because (1) the assessment is

qualitative and often based on the experience, judgment, and beliefs of experts in the field,

experts might not have all the information available to make an unequivocal

assessment, and (3) the experts' natural language used to describe an impact (e.g. low or

significant impact on the aesthetic quality objective) is inherently vague. Due to these

difficulties, uncertainty exists in the estimated value of a restoration alternatives' ability to

address DMs' objectives.

Various methods have been proposed to quantitatively represent experts' knowledge

and related uncertainty in DSSs. In this paper, certainty factors model, Dempster-Shafer

theory, and fuzzy set theory approaches are investigated using RESTORE's rule base. In

the following sections, we will (1) explore the basic mechanisms for reasoning under

uncertainty advocated by each approach, (2) identify criteria that should help modelers

assess whether or not an uncertainty method is appropriate for a specific MCDM context,

characterize each theory in terms of the identified criteria using RESTORE, and (4)

apply each theory using RESTORE.

4.2 METHODS OF UNCERTAINTY

In this paper, the notion of uncertainty refers to Zimmermann's (2000) interpretation:

"Uncertainty implies that in a certain situation, a person does not dispose information,

which quantitatively and qualitatively is appropriate to describe, prescribe, or predict

deterministically and numerically a system, its behavior or other characteristics". In other

words, a statement is considered as uncertain if an expert, based on the available

information, cannot evaluate its truth or falsity in a dichotomous way. In heuristic
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modeling approaches such as RESTORE, uncertainty in experts' knowledge originates

from (1) beliefs (e.g. partial beliefs, conflicting beliefs, disagreement among experts about

potential impacts), (2) linguistic imprecision (ambiguity of the terms or linguistic variables

used in the knowledge base), and (3) ignorance about the true state of nature (Cleaves,

1995).

A classical method for addressing model's uncertainty is the Bayesian probabilistic

approach (de Finetti, 1972 ). However, this approach is not well suited to experts systems,

such as RESTORE, since it requires the evaluation of a priori probability distributions for

all facts in the rules, while these probabilities are generally not available (Beynon et al.,

2000; Kozine and Filimonov, 2000). Furthermore, Bayesian theory is inadequate to model

ignorance. For these reasons, other approximate reasoning theories have been developed;

among these are (1) fuzzy set theory, (2) certainty factor model, and (3) Dempster-Shafer

theory; all of which were used in this study. These theories can either model beliefs,

ambiguity, and/or ignorance in experts' knowledge.

Here, we relate uncertainty theory and generalized information theory (Klir and Smith,

1999). The aim of the generalized information theory is to characterize uncertainty-based

information within any feasible mathematical framework (Klir and Yuan, 1995). In this

theory, the term information is given a mathematical meaning as a numerically measurable

quantity. Three types of uncertainty-based information are recognized: fuzziness,

nonspecificity, and conflict (K!ir and Yuan, 1995). However, in this study, we considered

ignorance as another facet of uncertainty-based information, ignorance in evidence

represents the inability of the experts to completely assign their belief to one or more

subsets of the universal set X. Nonspecificity in evidence is related to the size of the

subsets that characterize a solution; the larger the subset, the less specific (or more

ambiguous) the characterization. Dissonance is present whenever there is inconsistency or
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disagreement in evidence. It is exhibited when there is more than one disjoint subset

describing a solution. Finally, fuzziness results from the imprecise boundaries of fuzzy

subsets. The shape of a fuzzy subset presents a measure of the fuzziness of the

corresponding linguistic term in the mind of the experts. Specific characterizations of

uncertainty reflect the mathematical theory used; therefore any uncertainty theory is

capable of capturing only certain types of uncertainty-based information.

Uncertainty-based information allows DMs to evaluate the quality of the evidence

supporting a decision alternative. In the event of poor evidence quality (e.g. high

nonspecificity, fuzziness, conflict, and/or ignorance), DMs might decide to reject an

alternative or look for new information to reduce the uncertainty. The amount of

uncertainty and the amount of information are intimately connected (Klir and Yuan, 1995).

Following is a brief description of the certainty factor model, Dempster-Shafer theory,

and fuzzy set theory. Special attention is given to the theoretical concepts, inference

process, and uncertainty-based information.

4.2.1 Certainty factors model

The certainty factor model (CFM) was created in the mid 1970's by Bruce Buchanan

and Edward Shortliffe (1984) for the rule-based medical expert system Mycin. The model

has been applied primarily in the medical field, with additional applications in other

domains, e.g. mineral exploration (Yardick et al., 1986) and housing discrimination

(Anandanpillai and Barta, 1999). In this model, each proposition is assigned a measure of

certainty, called a certainty factor (CF: [-1, 1]) that combines degree of belief (MB: [0, 1])

and disbelief (MD: [0, 1]) into a single number (equation 4.1).



where MB[h,e] = the measure of increased belief in the hypothesis h, based on evidence e

and MD[h, e] = the measure of increased disbelief in the hypothesis h, based on evidence e.

A CF of-i, 0, and I means respectively that the proposition is known with certainty to be

false, no evidence support its truthfulness or falsity, and known with certainty to be true.

In RESTORE, a CF assigned to a rule (or hypothesis) is equal to MB since, in

RESTORE, experts do not express disbelief. A CF is an experts' subjective belief, often

seen as subjective probability, that describes the strength of their confidence in the

conclusion of a rule, assuming the rule's premise is true (Figure 4.1). A CF is applied to

every rule; these are then combined to compute the CF of a conclusion. For instance,

having a first rule which takes the following form: IF A then B, with a measure of belief

(CF=O.8) in conclusion B. Giving another rule IF C then D with a CFO.5 in conclusion D,

the combined CF (CFrevisecj) of two rules is defined as: CFrevised = CF0Id + CFnew (1CFOId), In

the preceding example, CFrevjged = 0.8 + 0.5 (1-0.8) = 0.9. This approach accumulates

certainty to a result as more evidence supporting that result is considered. Rules may

contain multiple antecedents. For conjunctive antecedents of a rule, the combined CF is

equal to the minimum of the antecedents' CFs. For disjunctive.antecedents, the combined

CF is equal to the maximum of the antecedents. In spite of its simplicity, the CFM

performed well when judged against human domain experts in Mycin (Horvitz et al.,

1988).

The output of the traditional CFM is a single number, which does not allow the

representation of the different types of uncertainty-based information that are recognized

here, i.e. fuzziness, nonspecificity, conflict, and ignorance.
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RESTORE crisp rules

rule!
IF soil erosion is < 2 (tons/acre)

THEN the Agricultural Riparian buffer's impact

on the water quality objective is 1/4

rule2

IF Erosion_Potential >= 2 (tons/acre) and

Erosion_Potential < 5 (tons/acre)

THEN the Agricultural Riparian buffer's impact

on the water quality objective is 2/4

rule3

IF Distance to_Pesticide_listed_Stream > 1000

(meters)
THEN the Agricultural Riparian buffer's

impact on the water quality objective is 1/4

RESTORE certainty factor rules

IF soil erosion is <2 (tons/acre) with certainty of(l)

THEN the Agricultural Riparian buffer's impact

on the water quality objective is 1/4 with a

certainly of(0.8)

IF Erosion_Potential >= 2 (tons/acre) and

Erosion_Potential < 5 (tons/acre) with certainty of(1)

THEN the Agricultural Riparian buffer's impact

on the water quality objective is 2/4 with a

certainly of(0.8)

IF Distance_to_Pesticide_listed_Stream > 1000

(meters ) with certainty of(l)
THEN the Agricultural Riparian buffer's impact

on the water quality objective is 1/4 with a

certainty of(0.8)

RESTORE Dempster-Shafer rules

IF soil erosion is < 2 (tons/acre)

THEN the Agricultural Riparian buffer's

impact on the water quality objective is (I)

low with a belief of (0.8) and (2) unknown

with a belief of 0.2

IF Erosion_Potential >= 2 (tons/acre) and

Erosion_Potential < 5 (tons/acre)

THEN the Agricultural Riparian buffer's

impact on the water quality objective is (1)

moderate with a belief of (0.8) and (2)

unknown with a belief of 0.2

IF Distance_to_Pesticide_listed_Stream

1000 ( meters

THEN the Agricultural Riparian buffer's

impact on the water quality objective is (1)

low with a belief of (0.8) and (2) unknown

with a belief of 0.2

RESTORE fuzzy rules

IF soil erosion is low

THEN the Agricultural Riparian buffer's

impact on the water quality objective is low

IF Erosion_Potential is moderate

THEN the Agricultural Riparian buffer's

impact on the water quality objective is

moderate

IF Distance_to_Pesticide_listed_Stream is far

THEN the Agricultural Riparian buffer's

impact on the water quality objective is low

Figure 4.1: Examples of RESTORE's crisp rules translated into the scheme of certainty
factor model, Dempster-Shafer theory, and fuzzy set theory.
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4.2.2 Dempster-Shafer theory

The Dempster-Shafer theory (DST) (Dempster, 1967; Shafer, 1976) provides a method

for representing and reasoning with degrees of belief DST uses a number between 0 and I

to indicate a subjective assessment of the degree of support that a body of evidence

provides for a proposition (Yager, 1983). Unlike probabilistic approaches, DST theory

does not require a complete set of prior and conditional probabilities. In addition, DST

provides an explicit way for representing a lack of knowledge or ignorance about a specific

state of nature. DST is more suitable for decision problems that involve a hierarchical

structure, because it allows experts to assign degrees of belief to a collection of hypotheses

and a single hypothesis. Such a feature facilitates the aggregation of evidence gathered at

varying levels of detail. RESTORE's decision domain has a natural hierarchical structure.

In Figure 4.2, an illustration of a RESTORE value tree objective is presented. The

main objective is "Watershed Restoration", which consists of five key objectives, each

characterized by subobjectives, then attributes are added under the subobjectives.

Attributes are site-based decision variables that are considered by RESTORE when

evaluating the impacts of alternatives on DMs' objectives. The lowest part of the hierarchy

is composed of decision alternatives that are connected to the attributes.

Few researches have investigated the use of a DST-based MCDM approach (Beynon et

al., 2000; Yang, 2001; Beynon, 2002). Furthermore, to the knowledge of the authors, no

research has been conducted on the application of a DST-based MCDM approach to

watershed management issues in general and more specifically to watershed restoration.

DST has been applied to topics such as safety analysis (Wang et al., 1995), engineering

(Yang and Sen, 1997, Sönmez et al., 2001), word recognition (Bowles and Damper, 1989),
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and remote sensing (Le Hegarat-Mascie, et al., 1997; Bendjebbour et al., 2001). Yet the

vast potential of DST has remained unexploited (Hajek, 1994).

DST assumes a frame of discernment denoted by 0, which is a finite, nonempty set of

the possible hypotheses assumed to be mutually exclusive. In RESTORE, these hypotheses

can be the set of grades defining an impact (e.g. low, moderate, significant, and high). Each

hypothesis in 0 corresponds to a single subset (singleton). DST uses a basic probability

assignment (bpa) that allocates a degree of belief (m) of 0 to the empty set m(1) and a

value in the range of [0,1] to each subset of all possible subsets of 0, which is denoted by

the power set 2°. A subset for which (m)> 0 is called a focal element. The total degree of

belief assigned must sum up to 1. The quantity of m(0) is a measure of that portion of the

total degree of belief that experts were unable to assign to any particular subset of 0. It is

seen as experts' ignorance about possible outcomes.

For a given bpa allocated to a subset A of 0, Bel(A) is a belief measure that

corresponds to the total amount of belief that supports the subset A. A plausibility measure

is the total amount of belief that A is compatible with the available evidence. The interval

[Bel(A), P1(A)] can be considered to be a measure of ignorance about A. Evidence in 0 is

combined using Dempster's rule of combination (2). The bpas assigned to rule 1 (m1) and

rule 2 (m2), being respectively X and Y are combined by summing all products (equation

4.2), such operation focuses on the intersection XflY, as shown in Table 4.1. Then the

resulting bpa m12(C) is combined with a third rule; all rules are combined using this

technique.

m1(X)in2(Y)

1KXnY=C

(4.2)



K = m1(X)m2(Y) (4.3)

XmY=4

where m1(X) and m2(Y) are beliefs that run over all hypotheses of 0.

K is a normalizing factor, which measures how much m1 and m2 are conflicting. It

normalizes the new belief distribution by re-assigning any bpa which is assigned to the

empty set, t, by the combination. Table 4.1 presents an example of Dempster's rule of

combination using the rules 1 and 3 from the RESTORE Dempster-Shafer rules presented

in Figure 4.1. In this example, experts estimated that for a specific site, based on available

information and evidence, an agricultural riparian buffer's ability to address the water

quality objective was low with a confidence of 0.8. The remaining 0.2 was the unassigned

degree of belief(m(0)), which may have been due to a lack of knowledge or information

about the impact of the alternative on the water quality objective.

The uncertainty-based information that can be measured in DST is nonspecificity and

conflict. Nonspecificity measures the inability to distinguish which of several possible

alternatives is the true one in a particular situation. Nonspecificity occurs when beliefs are

assigned to overlapping subsets. Conflict measures the inconsistency or disagreement

present in the evidence. Conflict occurs when one piece of evidence points in one direction

and a second piece points in another direction. The degree of conflict is proportional to the

strength of the disagreeing pieces of evidence..

A measure of nonspecificity was first proposed for possibility and necessity measures

by Higashi and Klir (1983). It was later generalized by Dubois and Prade (1985) for belief

functions. The measure of nonspecfici1y is defined as:

N(m) m(A)log2 Al (4.4)

AEF
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where A is the cardinality of the focal element A and F signifies the set of all focal

elements. All focal elements are weighed by their basic bpas. The measure of

nonspecificity is a weighed average of the Hartley function (1928), which was conceived in

terms of classical set theory. It measures the uncertainty associated with sets of

alternatives.

Table 4.1: Example of the Dempster's rule of combination. The results of the combination
of the rules 1 and 3 from Figure 4.1 are shown in the normalized combined basic

probability assignment. L, M, S, H, and 0 representing respectively low, moderate,
significant, high, and unknown impact on specified objective.

Various methods have been presented for measuring conflict (Höhle, 1982; Klir and

Ramer, 1990). The method preferred in this study is Yager's (1983) method. It uses the

function E, called the measure of dissonance , defined by:

Em = - m(A)log2Pl(A) (4.5)
AF

Evaluation grades L M S H 0

Rules/assessment

Rulel 0.8 0 0 0 0.2

Rule 3

L 0 0 0 0 0 0

M 0.8 1?(0.64) 0 0 0 M(0.16)

SO 0 0 0 0 0

HO 0 0 0 0 0

o 0.2 L(0.16) 0 0 0 0(0.04)

Combinedbpas 0.16 0.16 0 0 0.04 0.64

Normalized
Combined bpas 0.44 0.44 0.11
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4.2.3 Fuzzy Set Theory

In 1965, Lofti Zadeh proposed fuzzy set theory, a mathematical framework that gives

experts the ability to convey the fuzziness or the intrinsic vagueness of qualitative

concepts. Most qualitative concepts have no precise boundaries or cannot be described

precisely; therefore, soft boundaries are used to handle the idea of partial truth. Fuzzy logic

models the intrinsic fuzziness or vagueness of natural language. Fuzziness relates to the

degree to which an event occurred, rather than to the likelihood of its occurrence. Fuzzy set

theory is more compatible with linguistic terms than a two-valued logic or a crisp logic,

where a membership function 1A of a fuzzy set A associates a membership value (tA(X)) in

the interval [0, 1] with each element x of the universe of discourse U.

A usual fuzzy inference process includes the following major steps: (1) fuzzification,

(2) implication, (3) aggregation, and (4) defuzzification (Cox, 1999). These steps, shown in

Figure 4.3, are described below:

FuzzfIcation. A variety of fuzzy subsets is defined for each input and output variable.

For instance, in Figure 4.3, the fuzzy set (linguistic variable) soil erosion is defined in

terms of the fuzzy subsets (linguistic terms): low, moderate, and significant.

Implication. A mechanism that defines the degree of truth of a rule. The truth-value for

the premise of each rule is computedand applied to the rule's conclusion. In Figure 4.3, the

minimum implication function (MIN) is applied, truncating the output membership

function by the rule premise's minimum degree of truth.

Aggregation. Fuzzy subsets assigned to output variables are combined together to form a

single fuzzy subset. In Figure 4.3, the maximum function is used, taking the pointwise

maximum over all of the combined fuzzy subsets.
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4. Defuzzficatjon, A fuzzy subset is converted to a crisp number. There are many

defuzzjficatioii methods available in the literature; the most often used is the center of area

method (Mamdani and Assilian, 1975) (equation 4.6). This method weights the area under

the fuzzy subset (A) with the truth-value A(y).

f A(y)ydy
dcoA(A)= a

(4.6)

La A(y)dy

Fuzzy set theory allows the measurement of two types of uncertainty-based

information, fuzziness and nonspecificit-v. Fuzziness results from the imprecise boundaries

of fuzzy subsets representing the experts' definition of corresponding linguistic terms (KIir

and Yuan, 1995). Entropy measures are used to quantitatively evaluate the fuzziness of a

fuzzy subset. DeLuca and Termini (1972) proposed a measure of entropy based on the

classical Shannon entropy function. Kaufmann (1975) proposed that the fuzziness of a

fuzzy subset can be measured through the distance between the fuzzy subset and its nearest

non-fuzzy subset. Yager (1979) introduced a measure of fuzziness (Fr), expressed as the

distance (Dr) between the fuzzy subset (A) and its complement (CA). Yager's method

(equation 4.7) is intuitive and easy to model (Higashi and Klir, 1982).

D(A,CA)

FSupp(A)I
(4.7)

D(A,CA) =
jzl

S = Supp(A) =

- p= 1,2,...

where I.tA(X) is a membership value of value x in the fuzzy subset A, and /iCA(X) being its

complement; p is a factor allowing the distance specification (p1, p2 and pcxD, represent



U(A)
1 (A)

h(A)
log2Ada (4.10)

respectively the I-Jamming, Euclidean, and Sup metrics), and is the relative
78

cardinality of A.

Nonspecificity measures the size (cardinalities) of a fuzzy subset. Nonspecificity

provides an indication of the dispersion of the characterization. In RESTORE, a low

nonspecificity means that an impact assessment is well represented by the evidence

gathered; thus, there is a low risk and ambiguity about the likely impacts ofa solution on

the prioritized objectives. To compute the nonspecificity of a fuzzy subset C, the U-

uncertainty function, a generalization of the Hartley function (Hartley, 1928; Higashi and

Klir, 1983), is used.

where represents the cardinality of the a-cut of the fuzzy subset A, h(A) is a

normalizing factor corresponding to the maximum truth value of the fuzzy subset A. An a-

cut of a fuzzy subset A is the crisp set a that contains all the elements of the universal X

whose membership grades in A are greater than or equal the specified value of a.

4.3 ANALYSIS CRITERIA

To date, no research has compared uncertainty theories using MCDM applied to

watershed management. Since no single method is able to model all types of unëertainty

and to address all DMs' and experts' practical requirements, the examination of various

uncertainty theories is a critical step in any given application. Each theory is proficient at

modeling at least one kind of uncertainty present in expets' knowledge, related either to

experts' beliefs, linguistic imprecision, and/or ignorance about the true state of nature.

Ideally, the selected method should be able to maximize the use of the information



provided by experts and to provide unambiguous results from a DMs' standpoint. To

help modelers in the selection process, we identified a list of criteria that can be used to

characterize uncertainty theories. To date, most research has focused on the theoretical

issues of uncertainty; their practical application has received less attention (WaIley, 1996).

The theoretical foundations of each of the three theories have been extensively

investigated. This paper proposes an application-oriented list of criteria. Ultimately, the

objective of such criteria is to find a match between the profile of a decision situation and

the profile of one or more uncertainty theories. These criteria are described below.

1. Interpretation

The chosen theory should provide a clear interpretation of the uncertainty that is being

addressed. When modeling uncertainty, a modeler should identify the sources of

uncertainty specific to the context under study. An unambiguous interpretation is important

from a modeler's point of view because it allows the identification of sources of

uncertainty that can be modeled by the uncertainty theory and the successful design of an

inference process. Each theory uses an inference process most suitable for the

corresponding interpretation. From a DM's point of view, an unambiguous interpretation

allows a clear understanding of the conclusions coming fromthe inference process.

In RESTORE, an uncertainty theory should be able to at least mod& uncertainty

related to experts' beliefs, linguistic imprecision, andlor ignorance.

2. Information required from the experts

Each uncertainty theory requires specific information from experts. Before selecting a

theory, it is critical to assess if the theory can exploit the information richness provided by
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the experts and if the experts are able to provide the information required by the theory.

In RESTORE, the experts provide information in terms of rules, using crisp variables.

Output information required by DMs

In every decision-making context, DMs may request specific types of information to

make comprehensive decisions. DMs' requirements for this information may include that it

(1) is understandable, (2) is provided in a suitable format, i.e. numerical, intervals or

linguistically (Zimmermann, 2000), (3) allows the measurement of uncertainty-based

information (e.g. nonspecificity, fuzziness, ignorance, etc.), and (4) allows an unequivocal

ranking order. It should be noted that the complexity of the ranking procedure is generally

proportional to the amount of information present in the output solution.

Inference process

When selecting an uncertainty theory it is important to be familiar with the different

options made available by the theory's inference process and to evaluate if these options

match the decision problem. The inference process encompasses methods by which

knowledge is interpreted and used to emulate DM's decision-making behavior.

Compatibility with the MCDM paradigm

Not all uncertainty methods are applicable to MCDM. It is important to identify if a

theory provides methods for aggregating multiple criteria. If such methods are not already

available, modelers should assess if the uncertainty theory could easily be adapted to a

MCDM context.
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6. Implementation

The ease of implementation can be an important criterion. Tools that support particular

uncertainty analysis approaches and that can integrate well with MCDM methods used to

address specific applications are desirable.

4.4 CHARACTERIZATION OF THE THREE UNCERTAINTY THEORIES

In this section, each uncertainty theory is characterized using the list of criteria

proposed above, followed by a discussion of utility of these characteristics in RESTORE.

4.4.1 Certainty Factors Model

Interpretation

In the literature, many have presented a CF associated with a rule as a subjective

probability (Buchanan and Shortliffe, 1984; Horvitz et al., 1988; Heiirnann, 1997; Lucas,

200 1), which can be interpreted as the certainty that the conclusion of a rule will be true

given the certainty of the rule' antecedents. Buchanan and Shorliffe (1984) emphasized

that rule independence is necessary for a combination to be consistent with probability

theory. The CFM allows the modeling of one source of uncertainty, which is belief that can

take an infinite number of degrees of belief, representing various shades of uncertainty. For

instance CF=I, CF=0.5, and CF=0 respectively represent full certainty, partial belief, and

no support of an impact score value.

Information required from the experts

One of the strengths Of the CFM is its simplicity. Providing CFs is generally an easy

step. Experts are often hesitant to give probability values and usually prefer to provide

rough estimates of certainty. The CFM was specifically developed to be applied to rule-
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based approaches. Consequently, the model can easily be applied to RESTORE without

major changes in the way experts' knowledge is captured. Usually, preference is given to

relative CFs' values rather than absolute values; thus consistency across the rule base was

considered more important than precision when developing CFs for RESTORE.

Format of the output information

The CFM provides a single crisp number, as output, In RESTORE, such a number

gives information about experts' confidence on the impact score of a decision alternative.

This representation has proven to be easy to understand from a DM's point of view

(Buchanan and Shortliffe, 1984). However, a crisp number does not allow the measure of

uncertainty-based information, such as fuzziness, nonspecificity, conflict, and ignorance. In

the CFM framework, a ranking procedure could include both restoration alternatives'

impacts assessment on DMs' objectives and its related experts' confidence. The

assessment of alternatives' impacts on DMs' objectives comes from the RESTORE

MCDM performance evaluation module (Lamy et al., 2002a).

Inference process

Few choices can be made in the traditional CFM inference process when combining

evidence in rule's antecedent. The CFM uses the standard minimum operator to model

conjunctions and the standard maximum operator to model disjunctions. In the case of

RESTORE, these two operators were believed to be appropriate (Lamy et al., 2002b).

However, in other decision contexts, these operators may be considered improper because

they do not allow modelers to differentially weigh evidence (Yeung and Tsang, 1997). To

combine evidence coming from two or more rules, the traditional CFM offers one



combination method. Other methods have been proposed (Tsadiras and Margaritis,

1998; De Baets and Fodor, 1999), but these have not been broadly investigated.

The decision-making performance of the CFM has received little attention. For

instance, in Mycin, the diagnosis with the highest CF was the one selected as the most

probable disease. To our knowledge, no research has been done in a context like

RESTORE, where a CF is associated with an impact score value and where a decision

must be made taking into account these two numerical pieces of information. Ranking

methods including these two numbers have to be developed.

Compatibility with the MCDM paradigm

We are not aware of any formal research on the use of a CFM-based MCDM approach.

To be applied to RESTORE, multicriteria aggregation procedures have to be developed. In

RESTORE, a CF is assigned to each alternative's negative cr positive impact at achieving

a specific objective. A multiple criteria aggregation method should be identified for

combining the CFs assigned to each impact on each.objective into a meaningful CF

describing the experts' confidence in the multiple criteria performance evaluation of an

alternative.

Implementation

Since the CFM was developed to be used in a rule-based framework, it is easy to

implement using RESTORE. In a MCDM context, the traditional minimum operator was

used to aggregate criteria.
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4.4.2 Dempster-Shafer Theory

Interpretation

Belief, as in DST, is a crisp number that can be seen as the subjective probability that

describes the evidence supporting a proposition. DST uses a number between 0 and I to

specify the degree of support a body of evidence provides for a proposition (Yager, 1983).

A lack of belief does not imply disbelief as in Bayesian theory. Rather, lack of belief in any

particular hypothesis implies belief in the set of all hypotheses, which is referred to as the

state of ignorance.

In RESTORE, m(A) measures the portion of belief that is confined to A. For instance

m(A)=l, m(A)=0.5, and m(A)=0 represent respectively total evidence (certainty), partial

evidence, and no evidence that an alternative address one or more objectives. DST can

represent a scale of partial belief, from no evidence and ignorance to total evidence.

However, as with CFM, it does not address the ambiguity or linguistic imprecision intrinsic

in natural language.

Information required from the experts

DST. is well suited for hierarchically structured decision problems. MCDM problems

are hierarchical by nature. In CFM, only one number, a CF, is required for each rule from

the experts. In contrast, when using DST, experts assign a belief value to every hypothesis

of the frame of discernment, a time consuming task (Table 4.1). As with CFM, in

RESTORE, relative beliefs are more important than absolute beliefs.
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3. Format of the output information

DST theory provides a complete set of beliefs for all subsets of the frame of

discernment including the unassigned belief subset. The raw output is a vector of beliefs,

rather than a discrete number as with CFM.

Some authors have associated beliefs with utility intervals to better describe the impact

of missing information on decision analysis. In DST, beliefs (m(A)) are associated with

each hypothesis of the frame of discernment 0, each of which may correspond to a utility

value (u(A)) (e.g. in RESTORE, 0 include grades such as low, moderate, significant, and

high impact, which are associated with utility values being respectively 1, 2, 3, and 4).

Combining beliefs and utilities (equations 4.11-4.13) allows experts to quantitatively

represent uncertainty in their knowledge in a confidence interval. Savage (1954) was the

first to introduce this concept that is part of the subjective expected utility theory. In

RESTORE, a confidence interval takes values between the minimum expected utility

(lower belief thnction) and the maximum expected utility (an optimistic assessment that

the evidence supports a proposition) (Yang, 2002). This interval of beliefs also helps

prioritize where more information is needed to reduce uncertainty.

Minimum expected utility value = rn(A) x u(A) (4.11)
AeF

Maximum expected utility. =

Minimum expected utility value + m(0)*maximum utility value (4.12)

Average expected utility =

(Maximum expected utility. Minimum expected utility)/2 (4.13)



In RESTORE, DST allows the measurement of three types of uncertainty-based

information: nonspecificity, conflict, and ignorance (see Section 2). Nonspecificity was

considered as negligible since beliefs in RESTORE are not nested among subsets. The

ranking procedure in the DST is not obvious, since one can consider beliefs alone, the

maximum, minimum or average expected utility scores, and/or the uncertainty-based

information.

4. Inference process

DST traditionally offers one method to combine evidence. Dempster' rule of

combination is the classical function to aggregate two bodies of evidence. Some

researchers have praised (Haenni, 2002) and others (Lefevre et aL, 2002) have criticized

Dempster's combination function for its unintuitive resUlts. Alternative functions have

been proposed (Lefevre et al., 2002); however, none of them enjoy unanimity.

When coupled with utility theory, DST's ranking method is based on the expected

utility of the decision alternative. To model a risk-averse DM, preferred decisiOn

alternatives can be the ones maximizing minimum utility score values. In contrast, when

modeling a risk-seeker DM, preferred decision alternatives can be the ones maximizing

average, or maximum utility values. In the literature reviewed, no effective ranking

methods have been proposed. Efficient ranking methods should maximize the use of the

solutions' information content. A first step in this direction is the integration of

uncertainty-based information in the ranking process. Using this information can provide a

good indication of the quality of the evidence. For instance, when a DM wants to avoid

risk or conflicting evidence related to the potential impacts of his (her) decisions,

uncertainty-based information can be integrated into the ranking process.
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Compatibility with the MCDM paradigm

DST is compatible with a MCDM paradigm; however, only a few studies investigated

the use of DST-based MCDM applications. Yang and Xu (2002) proposed an evidential

reasoning approach and Beynon (2002) used the Analytic Hierarchy Process (Saaty, 1980)

MCDM method in combination with DST. This area of research is still immature; research

should address the use of DST in combination with other MCDM methods.

Implementation

One of the major drawbacks of DST relates to the high computational intricacy of its

combination rule. The Intelligent Decision System (IDS) supporting the evidential

reasoning approach is currently the only software capable of handling uncertainty' modeled

with the DST in a MCDM context (Yang and Xu, 2002). In RESTORE, a typical

watershed assessment implies the evaluation of more than twenty restoration alternatives

for each of typically 15, 000 sites. Such assessment is impracticable even when using the

IDS package. More efficient algorithms need to be developed to effectively and easily

apply DST in a watershed management context.

.4.4,3 Fuzzy Set Theory

1. Interpretation

Zadeh (1965) defines fuzzy set theory as a theory modeling the degree of membership

of an eiement in a specific set. The theory does not model the uncertainty related to the

occurrence of an event, but the extent to which an event occurred. For example, the impact
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of an agricultural riparian buffer on the water quality objective may be highly positive to

some extent and moderately positive to another extent. The inclusion of more information

will not reduce the uncertainty in experts' knowledge. The use of fuzzy subsets to describe

a variable allows a gradual transition between sets, so experts are not required to provide

exact numbers (Temponi et al., 1999).

Information required from the experts

The use of fuzzy rules requIres that the evidence and hypothesis be expressed as

linguistic terms, each represented by a given fuzzy subset. Experts often are more

comfortable at providing a range of values (membership functions) than exact numbers to

describe a particular value. Fuzzy methods allow these values to be part of multiple sets.

Format of the output information

In order to use a fuzzy subset for decision-making, two approaches can be taken. One

is to. keep the solution fuzzy and the other is to transform it to a crisp score through a

defuzzification process. Keeping a solution fuzzy requires that experts identify suitable

criteria to characterize such solution and make it meaningful from a DM's perspective. For

instance, uncertainty-based information could be seen as such criteria. To transform a

fuzzy solution to a crisp score, a defuzzification method should be used. Many

defuzzification methods exist, the most often used are center of area, center of sums, and

mean of maxima (Zimmermann, 1987).
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Inference process

One strength of fuzzy set theory is that it supports several operators and methods for

combining evidence and ranking solutions. Modelers have flexibility in determining

inference characteristics to better model DMs' behavior in a specific application. A critical

issue in the fuzzy inference process is the ranking step. Methods range from horizontal and

vertical evaluation of fuzzy subsets to comparative methods. However, one of the main

drawbacks of these methods is that they only base their ranking on portions of the fuzzy

subset solution, thus, information is irreversibly lost (Bortolan and Degani, 1985).

Compatibility with the MCDM paradigm

The literature contain many references on the use of fuzzy MCDM (FMCDM)

approaches in the context of watershed management, but few related to watershed

restoration. Lamy et al. (2002b) proposed a comprehensive FMCDM approach to

watershed restoration. Chen and Hwang (1992) and Lai and Hwang (1994) provide a

thorough review of the different FMCDM that have been developed and used in different

decision contexts.

Implementation

Many expert systems shells implementing fuzzy inference are available, e.g.

FuzzyCLJPS (National Research Council Canada, 1994) and StarFLIP++ (Instituteof

Information Systems, 1997). Here, we implemented a custom fuzzy inference process

procedure.
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45 CASE STUDY - RESTORE

In this case study, a MCDM approach was developed for each of the three theories,

namely CFM, DST, and fuzzy set theory. These CFM-based MCDM, DST-based MCDM,

and FMCDM approaches were applied to RESTORE. Each approach was designed to

capture experts' knowledge, evaluate, and rank restoration alternative subject to DMs'

objectives. The three theories differ in the way they perform these phases of the decision-

making process. CFM-based MCDM and DST-based MCDM are comparable because they

model the same types of uncertainty stemming from experts' belief. The FMCDM

approach addresses uncertainty related to linguistic imprecision, which cannot be modeled

by the two other approaches.

Most research to date has focused on knowledge representation instead of studying the

analytical behavior of decision issues (Dubois et al., 2000). Available ranking methods for

all three theories are not proficient at considering the richness of the information available

in the output solutions. In light of this, a novel ranking method was introduced for each

approach to fully exploit this information. The ranking methods allow a modeler to make a

distinction between the best decision approach for a risk-seeker, risk-neutral, and risk-

averse DM. When selecting a decision alternative, a DM displays a risk-aversion behavior

if he (she) does not tolerate any risk about an expected impact. A DM is said to be risk-

seeker if he (she) prefers a risky decision alternative with a higher expected utility over a

no-risk decision alternative with a lower expected utiIity.

Following are the three ranking methods proposed for each uncertainty approach.



Certainty factor model ranking method

We introduced a novel CFM ranking method that is based on subjective expected

utility (SEU) theory. SEU coupled with CFM, allows DMs to express attitude toward risks

(e.g. risk aversion, risk neutral, risk seeking). Savage (1954) was the first to introduce the

concept of SEU. Here, we combine a CF and its related impact score, which gives a SEU

describing the expected impact of a decision alternative on the prioritized objectives. The

combination takes the following form:

SEU = V x CF + ((i - CF ) (u)) (4.14)

where (V) is the impact score value coming from the crisp RESTORE MCDM algorithm

(equation 2.1). To model partial ignorance, we assume that (1-CF) is the unassigned belief

that could be assigned to any utility value (u) (e.g. -4 to 4 in RESTORE). This approach for

representing partial ignorance (1-CF) and partial belief(CF) allows the characterization of

an interval of subjective probabilities for a proposition A, similar to DST where this

interval is bounded by a lower belief (Bel (A)) and its upper belief (P1(A)). Additionally,

using this approach, uncertainty-based information is quantified in terms of an ignorance

measure. In the traditional CFM, (1-CF) was not defined as experts' ignorance. In this

case study, u was assigned to the 0 utility value, assuming a risk-averse DM. The preferred

decision alternative is the ônethat maximizes the SEU value, which yalues,in RESTORE,

range from [-4, 4}.
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Dempster-Shafer Theory ranking method

The ranking method for DST uses a MCDM approach to combine three criteria that are

assumed to effectively encompass the solution's features. The three criteria were (I)

impact criterion, defined by the minimum utility attribute, (2) ignorance criterion, defined

by the unassigned belief attribute, and (3) conflict criterion, defined by the dissonance

attribute. These criteria were combined using Dempster's combination function. A good

score is one that maximizes the minimum utility and minimizes both the dissonance value

and the belief allocated to the unassigned subset. The output of the ranking method is a

crisp score value ranging from 1 to 1. The decision alternative with the highest score

value is the one selected as the preferred alternative.

Fuzzy set theory ranking method

We believe that ranking decision alternatives based only on the result of a

defuzzification method is not a convincing ranking measure because it combines all

impacts into a single value, losing information about the fuzziness of the result in the

process. New methods that take advantage of the richness of information contained in the

output fuzzy subset should be considered. Lamy et al. (2002b) accomplished a first step in

this direction with the development of the grade of merit index (GMI) ranking method that

uses a fuzzy rule-based approach to score different restoration alternatives based on their

ability at meeting each criteria. A FMCDM ranking method combines four criteria defined

by seven attributes. The output of the ranking method is a crisp score ranging from -10 to

10. To facilitate the comparison of the results coming from the three uncertainty

approaches, the FMCDM ranking method used here is a simplified version of the. GMI

method. It includes two criteria: (1) impact criteria, defined by the center of area of the
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fuzzy subset and (2) nonspecificity criteria, defined by the nonspecificity measure. A

DM was believed to prefer a solution with a high center of area value and a low

nonspecificity value.

Numerical example

In the following example, we illustrate one set of DMs' priorities and concerns. DMs

were considered risk-averse. Water quality and water quantity were among five primary

objectives, reflecting subobjectives of decreasing water temperature and runoff, increasing

stream flows, and improving nutrient management. These objectives were followed closely

by socioeconomic issues, including education and outreach, social networking, and greater

community involvement. Maintaining and enhancing fish and wildlife habitat had a

relatively low priority. The normalized weights given to the five objectives were: water

quality, 1; water quantity, 1; habitat, 0.33; social, 0.78; and economic, 0.78. When using

the CFM-based MCDM and DST.-based MCDM approaches, we assumed that the amount

of uncertainty associated with each rule was constant across methods. Experts were

assumed to support each rule with a belief of 0.8, and the remaining 0.2 was assigned to

the unassigned subset. For the fuzzy set approach, a range of approximately 0.2 was used

to transform a crisp value into a membership function.

Each approach selected the most desirable restoration alternatives under specific site

characteristics to create a watershed restoration plan for a small area of the Upper Amazon

sub-basin. This sub-basin is part of the Long Tom watershed of Oregon's Willamette River

Basin. The Long Tom watershed is substantially urbanized and is adjacent to Oregon's

second-largest metropolitan area, Eugene. Agricultural and urban activities have generated

a number of conflicts related-to land use and its ecological impacts. The example presented
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here focuses on a small riparian area of the watershed, where four restoration

alternatives were considered for each site. These restoration alternatives were: (I)

agricultural buffer, (2) increase of late summer flow, (3) forest riparian buffer, and (4)

create condition favorable to native species. Detailed results for a specific site (#3424) are

presented in Table 4.2. This site can be broadly characterized as agricultural land adjacent

to a stream and a road. Table 4.2 shows that when modeling a risk-averse DM, the ranking

of restoration alternatives for all sites remains the same for the three uncertainty

approaches and the crisp RESTORE approach. Relatively similar differences between

score values are obtained, as seen from the results for site #3424.

Similar ranking was expected for two main reasons. First, the knowledge and the

amount of uncertainty associated to the decision context were preserved when moving

from one approach to another. For the CFM-based MCDM and DST-based MCDM

approaches, the same assumptions were made about the structure of the experts' beliefs.

Both proposed ranking methods allowed the assignment of the ignorance belief to any

utility value. In this case study, when modeling a risk-averse DM, the ignorance belief was

assigned to a utility value of 0. Secondly, the three proposed ranking methods based their

ranking on similar information, including impact, nonspecificity, and ignorance criteria.

Similarity in the results suggests that the four methods are consistent and are capable of

generating credible results.



Table 4.2: Scoring results (site l3 424) for the RESTORE' crisp MCDM, CFM-based
MCDM, DST-based MCDM, and FMCDM approaches.

Restoration alternative
Late-summer flow control
Agricultural riparian buffer
Create conditions favorable
for native species 1.04

Forest riparian buffer 0

CERTADTY FACTOR MODEL APPROACH (CFM)

CRISP R1STOR}
RESTORE
impact score
2.69
2.07

DEMPSTER-SHAFER THEORY APPROACH

Ranking
Score

0.51
0.34

0.30
0

95

Impact
criteria

Dissonan-
ce criteria

Ignoran-
ce criteria

Restoration alternative
Late-summer flow control 0.47 0.54 0.63

Agricultural riparian buffer 0.26 0.54 0.63

Create conditions favorable
for native species 0.09 0.61 0.56

Forest riparian buffer 0 0 0

FUZZY SET APPROACH

Restoration alternative

Impact
Criteria

Nonspeci-
ficity
Criteria

Ranking
Score

Late-summer flow control 7.95 3.42 .4.83

Agricultural riparian buffer 2.07 6.34 4.12

Create conditions favorable
for native species 1.04 2.33 2.02

Forest ri asian buffer 0 0 0

Restoration alternative

RESTORE
impact
score

Certainty
factor

Ignorance
Subjective
expected
utility

Late-summer flow control 2.69 0.80 0.20 2.15

Agricultural riparian buffer 2.07 0.80 0.20 1.66

Create conditions favorable for
native species 1.04 0.80 0.20 0.83

Forest riparian buffer 0 0 0 0
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4.6 DISCUSSION

The purpose of this study was to describe the potential offered by three uncertainty

theories, namely CFM, DST, and fuzzy set theory, at modeling uncertainty in experts'

knowledge and to evaluate if they can be applied in a MCDM approach to watershed

restoration. The selection of a specific uncertainty theory should be derived from an

evaluation of the decision application as well as DMs' and experts' preferences. To

facilitate the evaluation of the suitability of these three uncertainty theories, we identified a

set of criteria against which they were assessed. Then, a MCDM approach was proposed

for each uncertainty theory, i.e. CFM-based MCDM, DST-based MCDM, and FMCDM

approaches and applied using RESTORE. Results show that the CFM, DST, and fuzzy set

theory and their related MCDM approaches, all appear to be suited to the RESTORE

decision problem.

Fuzzy set theory differs significantly from the CFM and DST in its inference reasoning

process. It models uncertainty resulting from linguistic imprecision while CFM and DST

model uncertainty related to experts' beliefs and ignorance about restoration alternatives'

impacts on prioritized objectives. With fuzzy logic, information is complete; i.e. no more

information can be gathered to reduce uncertainty. Under the CFM and DST approaches,

information is incomplete; thus, information can be gathered to reduce the uncertainty or

the risk related to an impact. For this reason, the FMCDM approach cannot directly be

compared with the two other approaches.

The CFM-based MCDM approach was more straightforward to implement than the

DST-based MCDM method, since CFs can be easily applied in a rule-based framework.

The development of a DST-based MCDM approach was a time-consuming task. Its use of

a frame of discernment requires that modelers modify the way knowledge is captured and

experts need to provide their knowledge in a more complete form. DST allows a more
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complete description of the experts' knowledge and its related uncertainty and carries,

throughout the inference process, beliefs that are assigned to each element of the frame of

discernment. Using RESTORE, such as fuzzy set theory, DST allows the modeling of two

different kinds of uncertainty-based information: dissonance and ignorance. In contrast,

CFM can model only ignorance. There is a tradeoff between model completeness and

simplicity of implementation.

In comparison to the other two theories, fuzzy set theory supports a greater number of

widely used operators, combination rules and ranking methods. A FMCDM approach uses

fizzy subsets to model linguistic imprecision, which allows the use of elastic constraints

that relax the need for exact numbers when defining rules' antecedents and consequents.

The implementation of a fuzzy approach in RESTORE was time-consuming since each

variable needed to be translated into fuzzy subsets.

In the literature, the problem of ranking decision alternatives has not received much

attention. To address this gap, we looked at the ranking procedures available for the three

uncertainty theories and proposed original ranking methods for each uncertainty theory.

The three proposed MCDM approaches are not necessarily suited for each decision

context; yet they introduce novel ideas that could be further developed. We have shown

that MCDM techniques are well suited to incorporate ranking because they allow experts

to include more than one criterion when evaluating alternatives. Additionally, we have

shown that the integration of uncertainty-based information can be readily incorporated

into a MCDM. Many expert systems, including RESTORE, tend to assume strong

consensus in the evaluation process. They generally perform best only when there is strong

evidence supporting a single conclusion. To address this deficiency, we proposed the use
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of uncertainty-based information to quantitatively assess the quality of the evidence

supporting the decision alternatives' impacts on DMs' objectives.

As mentioned in Nakamori and Sawaragi (2000), the results coming from a DSS can

never be formally proven to have been the best possible decision alternatives. The major

justification of the utility of a DSS is acceptable quality and the value of information the

system provides to the users. Through the practical example presented in the case study,

we showed that the uncertainty approaches were able to generate good decisions under a

limited set of conditions, but more robust testing is needed to verify these results in a more

comprehensive setting.

Overall, we conclude that the inclusion of uncertainty analysis in expert-systems (1)

reduced the need for precise experts' judgments and (2) increases the value of the system

since it provides more information to DMs, enhances their comprehension of the issues

that may affect the outcome of their decisions, and/or broadens their perspective when

selecting restoration alternatives. In a specific context, domain experts might have different

opinions and even not be representative of the whole domain experts' community;

therefore the inclusion of uncertainty makes the system more robust to small changes in

knowledge and does not imply that impacts are known with complete confidence.

4.7 CONCLUSIONS

The main objectives of this paper were to (1) describe the potential offered by the

DST, CFM, and fuzzy logic in a MCDM watershed restoration decision-making

application and (2) apply each theory using RESTORE. To this end, we (1) identified a list

of criteria to evaluate the potential offered by different uncertainty theories in MCDM, (2)

applied CFM, DST, and fuzzy set theory in a MCDM DSS watershed restoration context,

and (3) developed an MCDM approach for each uncertainty theory, including an original
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ranking method considering criteria related to uncertainty-based information resulting

from each theory. Proposed ranking methods showed that instead of selecting a restoration

alternative based only on impact score values, additional parameters can be introduced to

better represent DM's behavior when selecting decision alternatives.

The choice of a specific uncertainty method is dependant on application-specific needs.

Each theory can model only specific types of uncertainty, either related to experts' beliefs

and ignorance or experts' linguistic imprecision. The results obtained showed that each

uncertainty theory can be utilized in a MCDM context such as RESTORE. The inclusion of

an uncertainty analysis in RESTORE can be seen as an improvement of the DSS because it

provides DMs with meaningful information on the quality of the evidence that supports the

impact of a decision alternative at addressing objectives
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DSSs have been defined as computer-based systems that should support the

decision-making process by enhancing problem comprehension and by providing data,

analytical tools, and methods to characterize uncertainty (Mowrer, 2000). While this

definition is broadly accepted, very few decision tools support all the abovementioned

capabilities. This project was motivated by the lack of existing decision-making tools that

integrate MCDM approaches, uncertainty analysis, GIS technologies, and that exploit

wide-ranging models to support a holistic watershed restoration planning approach.

This study was successful in illustrating a comprehensive decision-making

methodology and its related decision tool RESTORE, which supported each step of the

decision process, including description of the decision situation, identification of DMs'

values, identification of attributes that relate to each objective, definition of the rules and

constraints, efficient landscape generation, landscape evaluation and selection of the

prefereed watershed restoration plan. Important questions being addressed by the

methodology included (1) what are the socio-economic and environmental impacts of the

different restoration options as a function of landscape position and (2) what is the mix of

restoration options (watershed restoration plan) that is a most preferred solution in terms of

its suitability in responding to DMs' objectives at both the site and watershed levels. The

RESTORE methodology helped DMs to identify and explore possible solutions leading to

a better understanding of the impacts of their decisions.

The complexity of the various landscape processes and human subjectivity suggest that

a robust performance evaluation module would involve the modeling of uncertainties

inherent to experts' knowledge. There is a need for expert systems that better emulate

DMs' behavior and exploit information-content of proposed solutions when making

decisions.
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To address these issues, we explored the use of uncertainty assessments in the

RESTORE decision-making process. We first proposed a RESTORE FMCDM approach.

The approach involves three basic steps: (1) expert values were first captured and served as

a starting point to additional analysis steps, (2) a FLC was built, which contained (a) a

knowledge base, (b) an inference process that enabling DMs to evaluate the performance of

restoration options at meeting different objectives, and (3) a FMCDM module was

developed, which (a) aggregated fuzzy subsets to calculate a composite objective function

for each option and (b) integrated a novel ranking method to create a final ranking of the

restoration options, resulting in an efficient watershed management plan. The approach

presented a novel fuzzy ranking method, GMI. The GMI is a flexible and intuitive ranking

method that uses a FMCDM technique, includes uncertainty-based information, does not

make assumptions about the shape of the fuzzy subsets to be ranked and allows DMs to

express their values and perspective about what should be considered as a good alternative

in a specific decision context.

While several theories are proficient at modeling uncertainty in experts'

knowledge, no one can address all sources of uncertainty. We also studied the utility of

three uncertainty theories at modeling the uncertainty in experts' knowledge (e.g. conflict

in evidence,.partial belief, ignorance, and/or ambiguity). To describe the potential offered

by the DST, CFM, and fuzzy set theory in the context of MCDM watershed restoration

context, We identified seven-fold criteria against which each uncertainty theory was

evaluated. To apply the three uncertainty theories using RESTORE and easily compare

their results, an inference approach was proposed for each of them. These approaches

introduced ideas that thus far, to the best knowledge of the authors, have not been

investigated in decision science. Among them are (1) the application of DST in the context

of a MCDM DSS applied to watershed restoration, (2) the application of CFM in any
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MCDM context, (3) the association of the CFM with the SEU, and (4) original ranking

methods for each of the three approaches. Ranking methods' main characteristic includes

the use of a MCDM method including criteria such as uncertainty-based information (e.g.

nonspecificity, ambiguity, dissonance, and/or ignorance). These ranking methods aim at

translating the decision alternatives' performance evaluation and its related uncertainty into

a meaningful index that could be used to unambiguously generate an ordering of the

decision alternatives.

In general it can be said that the inclusion of uncertainty analysis in RESTORE

highlighted the value of considering uncertainty as another facet of information. From a

DM's point of view, the proposed decision alternatives are more attractive than traditional

ones, when including uncertainty estimation, because they result in more information from

which decisions can be made. Uncertainty assessments provide DMs with information on

the quality of the evidence that supports the impact of a decision alternative and on the

risks that could jeopardize the expected impacts of an alternative on DMs' objectives.

From an expert's point of view, including uncertainty analysis (1) relaxes the need for

exact assessment and (2) allows them to express partial belief, conflicting evidence, and/or

ignorance, all of which provide experts with better means to express their knowledge in a

more comprehensive and complete form. Such inclusion provides more credible and robust

approaches.

Future research

Community-based decision-making is a collaborative process, where negotiations

among participants and conflicts of interest are almost inevitable. DMs need tools to

support consensus and compromise building. A future version of RESTORE should
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include methods that would provide a systematic means for developing efficient group

decision making, where the inclusion of conflicting opinions may alter the shape of the

fuzzy criteria and the ranking of decision alternatives.

In some situations, a DM might not be entirely certain about the shape of a fuzzy

subset or the truthfulness of a rule, which could be translated as uncertainty due to lack of

knowledge or ignorance about a situation. There is an opportunity to combine fuzzy set

theory with other uncertainty theories (e.g. CFM and DST) that would address specifically

this type of uncertainty.

The different approaches presented in this work could be applied to other contexts,

where expert systems are used to support a decision-making process. Therefore, we would

like to apply the novel ideas proposed in this work in a broader range of scientific and

practical applications.
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