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In this dissertation I explore the application of two novel modeling

techniques for improving risk analysis of vector-borne disease and discuss their

potential use in integrating environmental risk assessment that guides

environmental and public health decisions. Techniques for analyzing risk have

been considered inadequate due to a lack of understanding of the problem and an

appropriate analytic-deliberative process clarifying the meaning of analytic

findings and uncertainty (National Research Council (NRC), 1996; Peterman and

Anderson, 1999). Thus, new integrative risk analysis tools are needed that are

responsive to more complex environmental problems. In this work, I develop a

qualitative community model that combines a conventional biomathematical

model of vector-borne disease transmission with recent developments in

community modeling. My procedure predicts the change in risk of vector-borne

disease from press perturbations, a disturbance that results in a permanent change

in a growth parameter. I also use a Relational Bayesian Modeling technique to

exploit existing data to determine plausible mechanisms and geospatial and

temporal patterns of disease spread. I apply these tools to Lyme disease and West

Nile Encephalitis as examples of two different vector-borne diseases associated

with complex ecological communities. Both the qualitative modeling and Bayesian

methods provide an integrated risk analysis framework that identifies relationships

important in the system and thus, guide the application of quantitative models or

provide sufficient information for management decisions.
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iNTEGRATIVE RISK ANALYSIS OF VECTOR-BORNE DISEASE

CHAPTER 1

INTRODUCTION

Environmental protection decisions are often guided by risk assessments

serving as tools to develop regulatory policy and other related guidance. Risk

assessment reflects a process for estimating the likelihood of an adverse effect

resulting from an anthropogenic stress (National Research Council [NRC], 1983).

As such, it involves both qualitative and quantitative analyses relating exposure to a

stressor and biological responses. A key component of risk assessment is risk

characterization, which builds on an analysis of risk, providing decision makers

with the overall evidence of a hazard. Techniques for analyzing risk have been

considered inadequate due to a lack of understanding of the problem and an

appropriate analytic-deliberative process clarifying the meaning of analytic findings

and uncertainty (NRC, 1996; Peterman and Anderson, 1999). This dissertation

presents two novel modeling techniques for improving risk analysis and discusses

their potential for use in environmental risk assessment and public health. I apply

these techniques to the ecological aspects of infectious disease, an emerging

scientific research issue (NRC, 2000; DiGiulio and Benson, 2002) as an example of

integrating ecological and human health risk analysis.

Background

Over the past thirty years, the use of risk assessment in environmental

decisions has increased among the scientific and regulatory community and is now

required by Federal, State, Tribal, and some local governments. Historically, risk

assessments were developed to protect humans from the potential carcinogenic

effects of chemical exposures. Risk assessments now address endpoints other than
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cancer, extend to species other than humans, and consider non-chemical stressors.

With the development of Guidelines for Ecological Risk Assessment (US

Environmental Protection Agency [USEPA], 1998), the impact of risks in complex

ecosystems can be assessed, including problems extending across temporal and

spatial scales and different levels of biological organization.

The initial risk assessment paradigm popularized by the NRC's National

Academy of Sciences (NAS) centers on four primary steps: hazard identification,

dose-response assessment, exposure assessment, and risk characterization (NRC,

1983). Hazard identification involves a qualitative description of possible adverse

effects. Dose-response assessment provides a quantitative estimate of the

relationship between exposure and the biological response. A description of

exposure from source to receptors, including environmental fate, relevant

pathways, magnitude and duration are encompassed in the exposure assessment

step. The final step, risk characterization then provides a description of the weight

of the evidence concerning the hazard and the uncertainties, variability and

assumptions used in the quantitative assessment.

The EPA's ecological guidelines (Figure 1.1) use a similar process

beginning with a problem formulation step, which is a conceptualization of the

problem and includes the development of an assessment plan (USEPA, 1992,

1998). The steps of exposure assessment and dose-response assessment, recast as

characterization of exposure and effects, respectively, are encompassed in an

overall analysis step. Included as part of the analysis step, are the development of

exposure and stressor response profiles. Risk characterization makes up the final

phase of the assessment and follows the same approach as under the NAS

paradigm.
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Figure 1.1. Ecological risk assessment framework (USEPA, 1992, 1998).

Risk characterization is an integral component to risk assessment. In their

reexamination of risk characterization, the NAS suggested that risk characterization

should be conducted at the onset of a risk assessment rather than as a concluding

step, adding that it should be decision driven, involve the users of the information

and reflect both analytic and deliberative processes (NRC, 1996). The analytic and

deliberative processes are iterative--one influences the other. Analysis involves

rigorous, replicable methods while deliberation involves a discussion of the issues

that help frame further analysis.

Risk analysis can be quantitative and qualitative depending on the risk

problem and available data. It involves the application of analytical techniques to

understand risk, and weigh the impacts of different decision scenarios. Current

analysis techniques are criticized as being inadequate and irrelevant, and have the

potential to be misinterpreted due to a lack of understanding of the problem, and an

inability to deal with uncertainty (NRC, 1996; Peterman and Anderson, 1999).

The paradigm for conducting distinct risk assessments for human health or

ecological effects is now shifting toward the integration of these processes
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(DiGiulio and Benson, 2002). The idea of integrating risk assessment approaches

has been the topic of extensive discussion over the past decade. A recent forum

sponsored by International Programme on Chemical Safety (IPCS) outlined an

integrated process combining elements of both human health and ecological

processes (Suter et al., 2003). Hazard identification becomes an element of problem

formulation, and dose response assessment occurs as part of the characterization of

effects. Stakeholders and risk managers are involved throughout the process to

ensure buy-in and responsiveness of the assessment to the specific problem (Suter

et al., 2003). Thus, integration combines the process of risk estimation for humans,

biota, and natural resources into one assessment for the purpose of improving the

information used in environmental decisions, resulting in more effective protection

of resources that society values (Miranda et al., 2002; Suter et al., 2003). This

approach would benefit from the consideration of interactions between stressors,

receptors such as wildlife or humans, and the environment. Employing community

ecology concepts in an integrated risk analysis approach may rectify the

inadequacies of traditional analytical techniques. The basis for such an integrated

approach is the perspective that ecosystems serve as part of the foundation for

defining human well-being.

In this dissertation, we discuss two novel community-level models as new

tools to be used in risk analysis. We apply these tools to the issue of emerging

infectious disease, focusing on two different vector-borne diseases that are

associated with complex ecological communities. The NRC Committee on Grand

Challenges in Environmental Sciences suggested that an integrated risk assessment

approach would be useful in addressing what they perceived as important

environmental research challenges for the next generation (NRC, 2000). Emerging

infectious disease and the environment were identified as one of four priority areas

for research with a goal of improving our understanding of the interactions among

pathogens, hosts/receptors, and the environment (NRC, 2000).
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Emerging Infectious Disease

For centuries, the environment was considered a nidus, or hidden source for

transmissible diseases (Pavlosky, 1966). Goodwin (1958) noted that even before

etiologic agents had been identified, diseases such as malaria and the plague had

been associated with specific habitats. Disease may be endemic to a particular

region or habitat, or result from habitat disruption. Pavlovsky (1966) noted that

although diseases appeared as new to physicians, they had been in the land,

undiscovered, for a long time. This relationship becomes more apparent with

increased population and globalization of human society. An increase in population

density results in changes in human behavior and habitat alteration, leading to

disease emergence or reemergence; potentially increasing human contact with

disease carrying organisms (NRC, 1992; Wilson, 1995). Changes in climate and

habitat may further result in adaptation or changes within organisms also leading to

disease emergence or re-emergence (NRC, 1992; CDC, 1994; Patz et al., 1996).

The concept of disease emergence and reemergence was discussed by the

NRC's Institute of Medicine (NRC, 1992) and further promoted by the Centers for

Disease Control and Prevention (CDC, 1994) and Levins et aL, (1994). The NRC

(1992) characterized emerging infectious diseases as an increased incidence of

clinically distinct conditions in humans. This definition has been expanded to

include infectious diseases whose geographic range, host range, and prevalence

have also been increasing in wildlife and plant populations (Daszak et al., 2000;

Dobson and Foufopoulos, 2001; Friend et al., 2001).

Levins et al. (1994) characterized infectious disease as that which is brought

about by a parasite, also referred to as a pathogen, invading a susceptible animal.

The type of parasite could include microorganisms such as bacteria and viruses or

multicellular organisms such as protozoa and helminthes. They are dependent on

"host" animals for completing a part of their lifecycle. The lifecycle activity within

the host results in the disease (Levins et al., 1994).



Microparasites, such as bacteria and viruses, can be introduced to a host

either directly or indirectly through a vector. Macroparasites, such as helminthes,

have more complex lifecycles and are largely dependent on vectors for disease

transmission (Levins et al., 1994). Vectors may include insects such as mosquitoes,

flies, ticks, and fleas, as well as rodents and other mammals.

Modeling Disease Emergence

Much of what is known about diseases transmitted through a vector, hence

vector-borne disease, has been learned from modeling. Perhaps the first ecological

model of disease was Koch's Germ Theory (VanLeeuwen et al., 1999). Koch's

model conceptually depicted a stable equilibrium between the environment, host

and agent. Disruption to any of these three elements could positively or negatively

affect the health status of the host or the disease agent (VanLeeuwen et al., 1999).

Ross (1908, 1910) developed the first biomathematical model for vector-borne

disease (Bailey, 1982). His pioneering model of malaria later refined by Macdonald

(1952), characterized the number of infections that could be distributed by a vector

within a community from a single case, also known as the basic reproduction rate.

Although these types of models revolutionized the public health

community, they described simple systems containing only two to three variables

and assumed that all parasites, or agents, are infectious, and cause one type of

disease (VanLeeuwen Ct al., 1999). Many disease systems, however, are more

complex, potentially having both vector and zoonotic components in their

transmission (Levins et al., 1994; Real, 1996). Thus, models describing these

infectious diseases need to involve more than three variables. In addition, the

etiology of many diseases indicates multiple causes with many agents capable of

causing more than one disease (Levins et al., 1994).

Since Ross and Macdonald's malaria model, a myriad of infectious disease

models have been developed. The 'Susceptible, Infected, and Recovered (SIR)'

epidemiologic model was developed to understand the dynamics of epidemics
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(Kermack and McKendrick, 1927). This model explores the growth of infection

among individuals who are susceptible, infected, or recovered (Sattenspiel, 1990).

Hethcote (1976) expanded the SIR model and developed a deterministië,

communicable disease model where birth and death rates were evaluated for

different age classes in a population. Age classes were further categorized as

susceptible, infected, recovered and immune, or recovered and not immune. Using

a similar concept, Anderson and May (1979) developed a simple dynamic model

explaining disease behavior in populations of laboratory mice with an interest in

the consequences of acquired immunity within the host population.

Post et al. (1983) developed a different mathematical model to understand

epidemic processes. Post and coworkers used their model to understand the concept

of population threshold and spatial arrangement in sustaining disease. They

demonstrated that spatial heterogeneity of host populations has aneffect on disease

thresholds that is dependent on the interaction between the infected and susceptible

populations.

Many of the quantitative models of vector-borne disease have built on the

original concept of the Ross-Macdonald model estimating the basic reproduction

rate. These models were used to demonstrate potential regulatory roles that

parasites had on wildlife populations (May, 1993; Dobson and Hudson, 1994;

Hudson et al., 1998; Tompkins and Begon, 1999). Understanding the role diseases

play in population regulation as well as community dynamics is integral to the

development of conservation strategies (Dobson and May, 1986; Hess, 1996).

Macdonald (1980) and Plowright (1982) provided qualitative descriptions

of wildlife disease. Macdonald (1980) presented a qualitative argument for the

control of rabies by considering the relationship between vector ecology and

behavior, which in this case was the fox ( Vulpes vulpes), and its role in the

community. Community dynamics were also suggested to be important in

considering control options for the rinderpest virus in Africa (Plowright, 1982).

Plowright (1982) observed that contact with cattle (Bos taurus), the reservoir for

the virus, during herd migration increased juvenile mortality in wildebeest

(Connochaetes taurinus) and buffalo (Syncerus caffer). Plowright (1982) further
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noted the importance of host population dynamics and behavior in the epidemic

episodes of the rinderpest virus.

Many of the vector-borne disease models are age-classified, Leslie-type

models aimed at assessing species fitness, or lambda (X). Pathogens, however, are

closely enmeshed in the environment and animal communities. While there are

models that describe community level interactions (Roundy, 1978; Lotz et al.,

1995; Miller et al., 2002), their general use is made difficult, largely due to a lack

of quantitative knowledge.

Qualitative models are used to understand important relationships and

interactions among variables of a complex community system. In particular,

qualitative models are useful when variables are difficult to measure (Puccia and

Levins, 1985). These types of models have been used in ecology to generate

hypotheses or predictions of system behavior in response to perturbations. Puccia

and Levins (1991) noted that qualitative models could be used to evaluate the

direction of change, resilience, and stability of ecological systems.

Loop and matrix analyses are examples of qualitative models (Puccia and

Levins, 1991). Loop analysis has been used to characterize simple predator-prey

relationships (Dambacher et al., 1999) and more complex transitions in community

composition over time (Ortiz and Wolff, 2002). Based on differential equations

characterizing a change in a particular variable over time, loop analysis, a type of

signed digraph, provides a pictorial display of a complex (having more than two

variables) community that is at or near equilibrium (Levins, 1975; Puccia and

Levins, 1985, 1991). From the loop model, a community matrix can be developed.

Qualitative predictions can be developed through an analysis of pulse or

press perturbations. Pulse perturbations result in a temporary change in one

variable but then returns to its original state. A press perturbation results in a

permanent change in a growth parameter of a variable. The direction of change can

be predicted from the community matrix (Dambacher et al., 2002).

In Chapter 2, I present and validate from the literature a new procedure to

predict changes in risk through a qualitative prediction of vector-borne disease

behavior within an ecological community. This procedure builds on the foundation



of the Ross-Macdonald model for vector-borne disease and recent mathematical

developments in community ecology. The procedure uses a qualitative modeling

approach that can simulate a systems behavior without quantitative

parameterization. Results of this approach can generate more focused hypotheses to

guide quantitative models.

To illustrate this approach, I constructed a community model for Lyine

disease, which is representative of a disease where the ecological relationships are

documented. Lyme disease is found in temperate, forested landscapes and is the

result of long-term ecological disturbance related to the presence of deer

(Odocoileus virginianus). It is caused by a spirochete bacterium Borrelia

burgdorferi that infects ticks, wildlife, and humans (Ostfeld, 1997). Although

Lyme disease has likely been present in North America for decades, it reached

public attention in the 1 970s following the discovery of a cluster of childhood

arthritis cases in Lyme, Connecticut (Ostfeld, 1997). The disease is carried by a

tick, Ixodes dammini (aka I. scapularis) found in the northeast or mid-western U.S.

and I. pacfIcus in the western U.S. In humans, the disease is first exhibited as a

skin rash; neurological problems and arthritis in the knee, hip or other joints can

follow in chronic cases.

The second risk analysis tool I developed is presented in Chapter 3. Here I

demonstrate the use of Relational Bayesian Modeling (RBM), a model discovery

technique using machine-learning technology, to construct quantitative,

biologically-consistent models from sparse survey data of the spread of West Nile

Virus (WNV). Relational Bayesian Modeling is a method for building models

using relational data. It encourages the modeler to interact with the data and

develop multiple hypotheses concerning the incidence and spread of the disease as

a way of exploring the combined data residing in multiple data tables. The models

constructed may be updated as new information becomes available in the form of

additional data or expert knowledge contributed by experts.

West Nile Virus was selected as an example of an emerging infectious

disease whose ecology is less well known. The WNV produces West Nile

Encephalitis. It has recently been found in temperate regions such as Europe and
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North America (Komar, 2000). Known as an arboviral disease of birds in

particular, it poses a risk to other wildlife, domestic animals, including horses, and

humans. The disease was first described in humans from a case in Uganda in 1937

and was characterized as a mosquito-borne virus in Egypt in the 1 950s (Komar,

2000). West Nile Virus is endemic in Egypt; over the past 40 years it has spread to

several countries in Europe, Africa, the Middle East, Asia, and now North America.

The WNV is a bird virus that is spread by mosquitoes (Komar, 2000). The

distribution of WNV suggests that the spread of the virus is related to bird

migration, and perhaps commerce (Lundstrom, 1999; Rappole et al., 2000). Of

particular concern is the risk of fatal encephalitis in horses, birds, and humans. In

North America, the primary vector species is thought to be Culexpipiens. C.

pipiens was first implicated in the transmission of the virus in the New York City

outbreak of 1999, but may be only a moderately effective vector (Komar, 2000);

other mosquito species were found to be highly susceptible (Enserink, 2000). The

primary vertebrate host species appear to be passerine birds. At present, WNV has

been detected in over 160 species of birds, and numerous species of mammals

including bats (Enserink, 2000; CDC, 2002a). In addition, more than 25 different

species of mosquitoes have tested positive for WNV including those active in the

morning, daytime, and evening (CDC, 2002a).

The emergence of WNV, typically an "Old World" pathogen, in the "New

World" raises the consciousness that vector-borne disease has the potential to

spread anywhere environmental conditions are favorable. The existence of a more

global economy and increased air travel, enhance this potential through the

inadvertent introduction of nonnative organisms, including pathogens.

Use of community models are discussed in Chapter 4 as a means of

integrating risk analysis for human and ecological endpoints. The iterative and

heuristic nature of these models, improve our ability to evaluate the impacts of

human and natural activity on complex ecosystems, including humans. They

provide a general, but realistic and practical approach for developing hypotheses

concerning the interacting relationships of community members. Issues of

uncertainty are accounted for through the analysis of probability distributions. The



11

value of the use of these models in an integrated risk analysis framework will be to

better inform environmental and public health decisions.
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CHAPTER 2

COMMUNITY-LEVEL ANALYSIS OF R1SK OF VECTOR-BORNE DISEASE

Jennifer Orme Zavaleta and Philippe A. Rossignol
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Abstract

Ecological community structure can be a key factor in understanding the

risk to public health of communicable disease emergence, the mode of

transmission, and control options (Forget and Lebel, 2001). Community structure

is particularly important in vector-borne zoonotic diseases with complex life cycles.

Population models, such as the Ross-Macdonald model (Bailey, 1982), have been

important in developing and characterizing our current understanding of human

vector-borne diease. However, these models often by-pass or minimize

community-level interactions. In diseases restricted to human hosts, this focus may

be of benefit in understanding transmission, but in zoonotic diseases in particular,

important community-level considerations may be lost (LoGuidice et al., 2003).

Another limitation is that the level of quantification possible in population models

may not be achievable in community models. Qualitative community model

analysis (Puccia and Levins, 1991) may provide a meaningful alternative to

modeling vector-borne disease. We built on recent mathematical developments in

qualitative community modeling (Dambacher et al., 2002) coupled with

conventional biomathematical models of vector-borne disease transmission, to

provide new procedures to analyze risk. Our procedure predicts the change in risk

of vector-borne disease from press perturbations, such as control measures, habitat

alteration or global warming. We demonstrate the application of this procedure to

an oak forest communify to predict the risk of Lyme disease. Our predictions of the

community dynamics of Lyme disease are consistent with observations observed in

the literature
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Introduction

Ecological community structure is a key factor in understanding the public

health risk of communicable disease emergence, mode of transmission, and control

options (Forget and Lebel, 2001). Community structure is particularly important in

vector-borne parasitic diseases, where a minimum of three species, namely, host,

vector, and pathogen, is involved. In the case of human diseases such as malaria

and dengue fever, further zoonotic components are irrelevant or negligible. In the

case of zoonotic diseases, disease systems often involve numerous and complex

vector and zoonotic components in their transmission, and perhaps more than one

host. The number of parameters and variables needed to characterize such vector-

borne disease dynamics is greater than those typically used in public health models.

Deterministic and stochastic population models are important in

characterizing our understanding of the ecological relationship with vector-borne

disease (Dobson and Hudson, 1994). These models stem from the landmark

concept of basic reproduction rate developed by Ross (1908, 1910) and Lotka

(1923), and later popularized by Macdonald (1952). Bailey (1982) provides a more

formal and useful presentation of these concepts. The models were used to

demonstrate potential regulatory roles parasites have on animal populations (May,

1993; Dobson and Hudson, 1994; Hudson et al., 1998; Tompkins and Begon,

1999).

In addition to epidemiologic considerations, understanding the role that

disease and parasitism plays in population regulation as well as in community

dynamics is integral to the development of wildlife conservation strategies (Dobson

and May, 1986; Hess, 1996). However, because current disease models focus on

population dynamics, they bypass direct consideration of community-level

interactions. This omission is due in no small part to insufficient quantitative

information needed to model community interactions as well as the lack of

appropriate models.

Qualitative community models can provide a practical and rigorous

alternative to modeling transmission of vector-borne disease. One form of
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qualitative modeling, Loop analysis, involves both signed digraphs and matrix

analysis (Puccia and Levins, 1985, 1991). From the signed digraph model, a

community matrix can be developed and used to assess stability conditions and to

make qualitative predictions of population response to press perturbations in

community structure. A press perturbation is a permanent change in a growth

parameter such as a birth or death rate. These models are particularly useful in

predicting responses to anthropogenic disturbances. Recent mathematical

developments have provided a degree of flexibility and reliability that was

previously lacking in the approach (Dambacher et al., 2002, 2003a, and b). We

present a new procedure predicting changes in risk of vector-borne disease. This

procedure predicts system behavior with minimal quantitative parameterization,

and evaluates changes in risk of vector-borne disease from an ecological

community perspective arising from perturbations, such as habitat alteration or

global warming.

Models and Methods

Here we summarize models used in public health and community ecology

that we considered in developing a new procedure for qualitatively predicting

community-level response to stress and vector-borne disease risk. We apply this

procedure using Lyme disease as an example of a vector-borne disease where the

disease ecology is well known.

Basic Reproduction Rate

Ross, (1908, 1910) first developed a biomathematical model characterizing

the disease status between host and vector populations, later formalized by Lotka

(1923). The Ross model, as popularized for malaria by Macdonald (1952), provides

a basic model of disease transmission that can apply to vector-borne diseases. The

model, often called the Ross-Macdonald model, focuses on the basic reproductive
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rate (R0), which is the number of secondary infections that can arise from a single

primary case.

To control malaria during the World Health Organization's campaign,

Garrett-Jones (1964) proposed a simplification that focused on the vector. This

simplification, referred to as vectorial capacity (VC), is defined as the maximal

average daily (at least in malariology; units are otherwise system specific) number

of infective contacts possible between vector population and its host (Garrett-Jones,

1964; Bailey, 1982). In the case of malaria where rates are daily by convention, VC

is directly proportional to basic reproduction rate. A major practical advantage is

that VC is determined solely from the entomological parameters of the Ross-

Macdonald formulation of basic reproduction rate. Another benefit of the VC

equation is that the impact of an infected vector population on the epidemiology of

a disease can be evaluated even in the absence of the parasite (Bailey, 1982). Thus,

there are fewer parameters to determine compared with the Ross-Macdonald

equation for R0.

The parameters of VC (Equation 1) are: (1) the biting rate (ma), where (m)

is the relative number of vectors with respect to host and (a) denotes the biting

habit of the vector; (2) the probability of vectors surviving to become infective (pfl),

where p is the probability of daily survival and n is the duration of the extrinsic

incubation period (a constant under most conditions); and (3) the life expectancy of

the vector (i/-loge [p]). Parameter, a, is the product of the host preference

(proportion of competent to non-competent hosts fed upon) to frequency of

feeding, which is equal to the inverse of the oogonic cycle in the case of

mosquitoes. The biting habit (a) is factored into the equation twice, once to account

for the initial bite, then a second time to account for bites that infect a host. The

derivation is as follows: A relative number (m) of vectors bite an infected host at a

specific rate (a); a proportion (p) of which survive each day of the extrinsic

incubation period (n). These infective vectors live for a period (1/-1og[pf') and

bite at a rate (a).

VC ma2p' Equation 1
-loge(p)
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In both the basic and daily reproduction rate models, a key variable is

probability of daily survival of the vector, which is represented in (-p"/loge[p]). In

the basic reproduction rate model, Ross (1908, 1910) determined that this term,

being exponential, could be the most important parameter in malaria transmission,

rather than the intuitive, but linear, relative density (m), in considering control

options of vector-borne diseases. Garrett-Jones' (1964) concept of VC reinforced

this counterintuitive finding. Once the relative abundance, or any other parameter,

of vectors falls below a certain threshold, disease will decline to extinction.

Qualitative Community Models

We demonstrate that direction of change following input in the form of a

press perturbation in the important parameters of the generalized Ross-Macdonald

model, namely, relative density (m), frequency of contact, or the biting habit (a),

and vector survival (p) can be evaluated from community models. Community

models, in the form of signed digraphs and the corresponding community matrix,

are used to describe direct and indirect interactions between populations in a

community (Levins, 1975; Puccia and Levins, 1985). Loop analysis has been used

to characterize predator-prey systems (Dambacher et al., 1999), and changes in

abundance (Dambacher et al., 2002), to predict the impact of species introductions

(Li et al., 1999; Castillo et al., 2000), and to explain complex transitions in

community composition over time (Bodini, 1998; Ortiz and Wolff, 2002).

Experimental comparison of various community modeling approaches suggests that

loop analysis was the theoretical approach best suited for predicting the behaviour

of complex community structures following a perturbation (Hulot et al., 2000).

Density-dependent interactions, within and between biological variables of

a community, form the structure of the community matrix (A) (Levins, 1968,

1975). The negative of the inverse of the community matrix (-K'), is a

straightforward procedure that predicts direction of change in abundance of a

population within a community following a press perturbation (Bender et al.,
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1984). The negative of the inverse is equal to the classical 'adjoint' of the matrix

divided by its determinant. Based on the adjoint, Dambacher et al. (2002) derived a

'weighted-predictions matrix' that assesses the indeterminacy of predictions.

Loop analysis allows for a qualitative estimate of interactions among

community variables. While a perturbation may only affect one variable of a

community directly, other variables are affected as a result of the interconnections

within the community (Puccia and Levins, 1985). Perturbations may affect the

abundance of organisms in a population and impact other population demographics

such as age structure that lead to turnover of the population (Puccia and Levins,

1985). Turnover, the reciprocal of life expectancy of a population (Puccia and

Levins, 1985), is determined from the adjoint, or inverse, of the community matrix.

Dambacher et al. (submitted) developed an algorithm (see www.jambrosi.com)

based on the Puccia and Levins (1985) effort for predicting change in life

expectancy (e) following a perturbation.

Lyme Disease

Lyme disease is found in temperate, forested landscapes and is the result of

long-term ecological disturbance related to the presence of deer. It is caused by a

spirochete bacterium Borrelia burgdorferi that infects ticks, wildlife, and humans

(Ostfeld, 1997). Although Lyme disease has likely been present in North America

for decades, it reached public attention in the 1970's following the discovery of a

cluster of childhood arthritis cases in Lyme, Connecticut (Ostfeld, 1997). The

disease is carried by a tick - vector, Ixodes dammini (aka I. scapularis) found in the

northeast and mid-western United States (US) and I. pacIcus in the western US. In

humans, the disease is first exhibited as a skin rash; neurological problems and

arthritis in the knee, hip or other joints can follow in chronic cases.

Transmission and propagation of the disease involves an interrelationship

between the tick-vector and three principal hosts: small mammals such as the deer

mouse (Peromyscus leucopus), deer (Odocoileus virginianus) and humans. In this
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relationship, deer mice serve as the main reservoir for the bacterium. As tick larva

hatch, they become infected when they feed on infected deer mice (Ostfeld, 1997).

The infected larva molt into nymphs, considered the principal agent for disease

transmission because they are more difficult to detect than adult ticks. Nymphs will

infect deer mice, deer and humans. Deer are important hosts in the tick life cycle

because male ticks often mate with females while they are feeding on the deer.

Results

To evaluate vector-borne disease risk within the context of a community

model, we integrate the parameters of the Ross-Macdonald model, and specifically

VC, with loop analysis involving the community matrix. The integration of these

concepts allows for predicting change in disease risk in a host population following

a press perturbation to a remote variable. In our procedure, risk is defined as

vectorial capacity. Changes in key parameters for VC: relative abundance,

frequency of contact (host preference), and life expectancy are evaluated from

manipulations of the community matrix.

To illustrate our procedure, we constructed a model of a Lyme disease

vector-host community (Figure 2.1) based on Ostfeld et al. (1996). The community

and. adjoint matrices are shown along with their interpretation in Table 2.1; the life

expectancy matrix is presented in Table 2.2. Ostfeld and coworkers (1996) suggest

that an increased acorn mast (i.e., increased acorn production) would attract deer,

mice, and other animals, and result in an increase in ticks that potentially carry

Lyme disease, thus increasing disease risk (Ostfeld, 1997). Qualitative predictions

developed from a ioop analysis lend support to Ostfelds' observations showing

increases in population density of mice and ticks following an increase in acorn

production (Table 2.1). Similarly, a positive press on gypsy moths would result in

decreased acorn production because gypsy moths feed on oak leaves.
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Figure 2.1 Signed digraph of the Lyme disease vector-host community. Circles
represent variables; lines represent edges with arrows indicating positive effects
and small, dark circles indicating negative effects. Curved lines with small, dark
circles are self-regulating effects.

Predicting changes in population abundance, however, does not constitute a

complete assessment of risk. Community structure itself also affects risk. Referring

to the loop model (Figure 2.1) based on the Ostfeld et al. (1996) model of an oak

forest community, we can develop a qualitative prediction of risk from the

community matrix, which serves as the basis for determining changes in the

parameters of VC (Tables 2.3 and 2.4). Responses depicted in the adjoint and life

expectancy matrices serve as an index for the parameters in the VC equation. Thus,

a change in relative abundance (m) is determined by a change in the ratio of vector

to a competent host following a press perturbation to a variable such as deer (Table

2.3). The adjoint of the community matrix is also used to determine host preference
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Table 2.1 Response of community variables following a positive press perturbation
within a Lyme disease host-vector community (Figure 2.1). A = community matrix;
adj_A = adjoint; W= weighted matrix. A positive press to mice results in an
increased abundance in ticks (+), a decrease in deer (-), and an ambiguous (?)
impact to small hosts. Responses are determined by comparing the sign of the
response from the adjoint matrix for a variable with the weighted value for that
variable. Weights <0.5 are deemed unreliable. 'Weight' is a mathematical term
accounting for the ratio of positive to negative cycles, or loops, present in the
response, that is, the element of the adjoint of the community matrix (see
discussions in Dambacher et al., 2002); a weight of 0.5 or greater has been shown
to be equivalent to 95% reliability based on simulation studies (Dambacher et al.,
2002).
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Table 2.2 Life expectancy matrix for community variables following a positive
press perturbation within a Lyme disease host-vector community (Figure 2.1). The
diagonal elements reflect the results of a positive press perturbation through
increased (+), decreased (-), or ambiguous (?) death or birth rates. Life expectancy
responses are determined by comparing the sign of the response from the delta E
death and birth matrices for a variable with the weighted value for that variable.
Weights <0.5 are deemed unreliable. 'Weight' is a mathematical term accounting
for the ratio of positive to negative cycles, or loops, present in the response, that is,
the element of the adjoint of the community matrix (see discussions in Dambacher
et al., 2002); a weight of 0.5 or greater has been shown to be equivalent to 95%
reliability based on simulations studies (Dambacher et al., 2002). For example, if
the site of input is to ticks, the response is an increased death rate/ambiguous
response on the birth rate.
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Table 2.3. Input from adjoint of the community matrix for determining Lyme
disease risk. Responses serve as indices for parameters in the equation. Following a
positive press to acorns, risk is determined from the ratio of responses for different
variables. Parameter 'm' is determined from the ratio of ticks to mice. Parameter
'a' is the ratio of the response in mice to that of small non-competent hosts. The
index for life expectancy is shown in Table 2.4.
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Table 2.4. Input from the life expectancy matrix for determining Lyme disease risk.
Input is determined from the diagonal of the matrix and reflects increase (+),
decreased(-), or ambiguous death or birth rates (see Table 2.2).
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Tick Life
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.----- =p
-Iog p

(a). Assuming a constant contact frequency, change in host preference (a) is

estimated from the ratio of the abundance of the competent host (mice) to that of a

non-competent host within the community (small hosts). Finally, change in the

vector survival parameter (j?/-logep) is determined from the response of the vector

in the life expectancy matrix (Table 2.4).

Any change in one of the three parameters of YC might result in a predicted

increased or decreased risk. For example, our model predicts that a positive press to

deer would increase tick and gypsy moth abundance while decreasing the

abundance of acorns, mice and other small hosts (Table 2.3). A positive press to

deer results in no change to tick life expectancy (Table 2.4). As a result, risk for

Lyme disease would increase due to the increased ratio of tick abundance to mice,

parameter m. This result is supported by the observations of Wilson et al. (1983)

and Lane et al. (1991). They summarize studies conducted on Nantucket and Great

Island off the coast of Massachusetts where Lyme disease was endemic. Deer were



25

drastically reduced from Great Island resulting in a significant reduction of tick

populations infesting rodents. Tick populations on Nantucket, where there was no

deer intervention, remained stable. Thus, by altering the community structure,

relative abundance (m) and hence, risk, was reduced.

In another example, Ostfeld (1997) documented that mice and tick

populations increased after an increased oak mast, increasing the infection rate of

nymphal ticks with the bacterium that causes Lyme disease, Borrelia burgdorferi,

thus increasing the risk of Lyme disease. While our procedure supports Ostfeld's

observations of changes in tick and mice abundance (Table 2.3), the epidemiologic

implications are less clear. We can predict that a positive press perturbation

increases the abundance of mice and tick populations. However, taking the ratio of

these responses from the VC equation, the parameter (m) is unchanged. A positive

press to acorns also increases the abundance of small, non-competent hosts, thus

the ratio for (a) also remains unchanged. A positive press to acorns has no impact

to tick life expectancy (Table 2.4) suggesting overall, little to no impact on disease

risk. To increase risk, there would either need to be a decrease in mice abundance

while tick abundance remained constant, or a decrease in the abundance of small

non-competent hosts relative to mice. In fact, the risk of Lyme disease has been

suggested to decrease with increased biodiversity of a community where additional

non-competent hosts serve as a dilution factor (Mather et al., 1989; Ostfeld and

Keesing, 2000; LoGuidice Ct al., 2003).

The application of our procedure provides a qualitative mechanism for

evaluating vector-borne disease risk within a complex community. A perturbation

to a variable such as acorn production is likely to reverse, whereas the removal of

oaks from a forest or changing the population density of non-competent hosts such

as deer would cause a more permanent change in community structure and thus

affect disease risk. Similar to the quantitative use of VC to control vector borne

disease, our qualitative procedure allows for predictions of community response

following press perturbations with no quantitative parameterization.



Discussion

We present a novel procedure for analyzing vector-borne disease behavior

within an ecological community. Our procedure integrates VC, a measure of

disease transmission, with community variables and adds a new dimension to

public health analysis of vector-borne disease behavior at a community level. A

qualitative community analysis provides useful predictions of the impacts of

anthropogenic change such as habitat availability, or that which impacts population

density of vectors and hosts within the community.

Our approach differs from many of the vector-borne disease models that are

age-classified, Leslie-type models aimed at assessing species fitness (Anderson and

May, 1979; Hudson et al., 1998) or simulation models that are used to estimate

spread of disease (Nicholson and Mather, 1996; LoGuidice et al., 2003). These

types of models address impacts of disease on an individual species, and do not

address the whole ecological community. It is important to consider community

interactions where zoonotic pathogens are closely enmeshed in ecological

communities. While there are models that describe community-level interactions

(Roundy, 1978; Lotz et al. 1995; Miller et al. 2002), their general use is made

difficult due to a lack of quantitative knowledge.

The advantage to our modeling approach is that it redefines a traditionally

quantitative population-level model, VC, in the context of qualitative community

interactions. Through the use of our procedure, reasonable and rigorous predictions

of vector-borne disease risk can be generated from changes in community structure.

Our procedure, however, is not as precise as population models for human diseases

associated with impoverished conditions such as malaria, where community

diversity is low, or where there is direct transmission that does not include a vector.

However, qualitative analysis is better suited to address poorly specified complex

systems. For those diseases that are vector-borne and zoonotic, our procedure can

effectively predict an ecological community response to a perturbation, which in

turn can generate focused hypotheses to guide data collection and control

management strategies as interventions.
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CHAPTER 3

DISCOVERY AND INTERACTIVE DEVELOPMENT OF A COMMUNITY-
LEVEL MODEL OF DISEASE TRANSMISSION: WEST NILE VIRUS

iN MARYLAND

Jennifer Orme Zavaleta, Jane Jorgensen, Bruce D'Ambrosio, Hans K. Luh,
Fredrick W. Kutz and Philippe A. Rossignol



Abstract

Understanding interactions among pathogens, hosts, and the environment is

important in developing a rapid response to a disease outbreak. In order to deploy

the most rapid response possible, we must exploit existing data to its maximum

extent to determine plausible mechanisms and patterns (temporal and geospatial) of

disease spread. These data often are observational in nature, and collected during

independent survey efforts. We demonstrate the use of Relational Bayesian

Modeling (RBM), a model discovery technique using machine-learning technology

and relational data, to construct quantitative and biologically-consistent models of

West Nile Virus (WNV) spread. Survey data on WNV cases in mosquitoes, horses,

humans, and birds in Maryland collected during 2001, along with information on

tire clean-up sites and collection facilities in Maryland were explored using this

technique. Our results indicate a strong association between tire license sites and

birds infected with WNV, and that WNV positive birds serve as good indicators for

infected mosquitoes and humans. Thus, RBM shows promise as a tool to determine

complex community interactions relevant to disease transmission that could guide

monitoring and control strategies during the early stages of an outbreak or during

an ongoing outbreak of a relatively rare disease.
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Introduction

The U.S. National Research Council (NRC) Committee on Grand

Challenges in Environmental Sciences identified the inter-relationship between

infectious disease and the environment as one of four important environmental

research challenges for the next generation (NRC, 2000). Research is needed to

improve our understanding of the interactions among pathogens, hosts, and the

environment to affect change in the infectivity and virulence of organisms posing a

threat to populations of plants, wildlife and humans (NRC, 2000).

The emergence of diseases that are transmitted directly from person to

person often reflects changes in human population density, where as vector-borne

disease emergence is an indication of environmental changes (Epstein, 1994).

Vector-borne disease, particularly those that are zoonotic in origin, may be endemic

to a particular region or habitat, or result from habitat disruption. Emergence of

vector-borne disease has become an issue associated with increased human

population and globalization of human society (Patz et al., 1996). Increased human

influence on the environment results in habitat alteration leading to disease

emergence or reemergence (NRC, 1992; Wilson, 1995). Changes in climate may

also result in disease emergence or re-emergence (NRC, 1992; Centers for Disease

Control (CDC), 1994; Patz et al., 1996). Community-level models that address the

interactions between infectious disease and the environment could be useful tools

for understanding and predicting disease outbreak and spread that are tempered by

the pressures of an increasing human population.

Traditionally, epidemiologists employ highly structured and comprehensive

methods to gather quantitative information, establishing cause and effect

relationships between environmental stressor(s) and disease. This approach is time

consuming and resource-intensive, particularly during a disease outbreak. As a

possible alternative, we demonstrate the use of Relational Bayesian Models

(RBM), discovered in relational data using machine-learning technology, as a rapid

means of investigating and predicting the mechanisms and temporal and geospatial

patterns of disease spread. Relational Bayesian Models can maximally exploit
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existing and largely observational data that are collected during independent survey

efforts. The models developed from RBMs are represented as Bayesian networks

(BNs) that link information from observed and possibly highly correlated data.

We used an RBM to construct qualitative and quantitative, biologically-

consistent models of disease spread from sparse, uncertain survey data. Our

objective was to determine whether RBM would serve as a rapid, realistic, and

practical tool to generate hypotheses related to the transmission of West Nile virus

(WNV) in Maryland.

Models and Methods

The necessity of rapid response to a developing disease outbreak often

precludes the investigation of plausible mechanisms and temporal and geospatial

patterns of disease transmission. In order to deploy the most rapid response

possible, we must exploit existing data to its maximum extent. These data are

usually collected from independent surveys, containing varying degrees of

uncertainty or gaps in quantitative information. For this reason, we chose to

discover RBMs in existing observational data using Cleverset 'Modeler' (Jorgensen

et al., 2003) in our analysis of disease transmission. Modeler is an RBM tool

developed for model discovery and data exploration in relational databases; a beta

version of this model can be obtained from Cleverset, Inc., upon request. Relational

Bayesian Models are a type of probabilistic relational model that is an extension of

a BN (Getoor et al., 2001). The RBMs discovered by Modeler are represented as

BNs, which provide complete representations of the joint probability distribution

over the entire set of variables in the model. Relational Bayesian models may be

used as a tool to frame multiple, simultaneous hypotheses concerning these

variables. We constructed a common frame of reference to temporally and spatially

relate data collected in independent efforts that reside in independent tables. Using

this frame of reference, Modeler heuristically examined all possible models that
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could be derived using the available variables to discover those models that

parsimoniously describe relationships among the variables in the model. These

relationships form the basis for hypotheses about the key factors involved in

transmission of the disease and the manner in which disease spreads.

Model Description

Relational Bayesian Models provide qualitative information on the structure

of a domain, as well as quantitative information in the form of probability

distributions describing correlations among components in the domain. The domain

in this case is the community probabilistically associated with a particular disease.

The structure of the domain is summarized by a directed acyclic digraph comprised

of nodes representing variables and arcs extending from 'parent' nodes to 'child'

nodes, representing conditional dependencies (Figure 3.1) (Ramoni and Sebastiani,

2001). The direction of the arc indicates a probabilistic, though not necessarily

causal relationship between nodes. The conditional dependencies are quantified by

the conditional probability distributions underlying the structure of the graph

(Jensen, 2001).

Modeler performs model discovery by examining the set of variables

specified for inclusion in the model and those it derives from the data. In this

analysis, the data consisted of an enumeration of WNV cases. Modeler aggregated

these instances in counts and evaluated the mean number of cases over a range of

conditions (for example, the mean number of human cases found in a geographic

location where a WNV positive bird had been found the previous month).



Figure 3.1 Hypothetical directed acyclic graph. "A," "B," "C," and "D" represent
variables. The arrows represent arcs indicating conditional linkages between
variables. "A" is the parent node of"B" and "C." "B" and "C" are the parent nodes
of"D."

To construct the BN, Modeler performs a heuristic search to identify all

possible models. Modeler incorporates specific data by selecting a variable pair

with the highest mutual information (see Results for further discussion). A BN is

then constructed beginning with this variable pair using Bayesian Information

Criterion (BIC) as a scoring mechanism (Getoor et al., 2001). The algorithm adds,

deletes, or changes the direction of arcs connecting the variables in the BN. The

BIC imposes a penalty for those models that have a large number of parameters and

is composed of two parts: the prior probability of the structure and the probability

of the data given that structure. The BIC balances the complexity of the structure

with its fit to the data (Getoor et al., 2001). Thus, those models with the largest BIC

have a better fit to the data. When there are no other variables satisfying the BIC

for inclusion in the model, the algorithm then tests whether further modifications

are needed to identify the best possible BN for that run of the RBM. The models

constructed by Modeler can be updated as new information becomes available in

the form of additional data or expert knowledge (see Jorgensen et al., 2003).

The final RBM produced by this analysis is a mixed model, part human and

part machine involving the interaction between machine learning and expert
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knowledge. Through this interaction, different scenarios can be explored to enhance

and refine hypothesis generation. Because this technique relies heavily on input of

transdisciplinary expert knowledge and interpretation, judgment is used to

determine when a meaningful model has been produced. Human experts must be

able to transform the data into appropriate formats, construct a relational

framework that Modeler will use to analyze the data, and eliminate redundancies in

the BN developed by Modeler.

Model Application

We used this modeling approach to explore existing data and to address

multiple hypotheses concerning the incidence and spread of WNV in Maryland

during 2001. West Nile virus is a disease where the ecological dependency on

vector and host populations as well as the ecological conditions necessary for

disease outbreak is uncertain (Figure 3.2).

The mosquito-borne WNV causes West Nile encephalitis, considered an

emerging infectious disease. It has recently been found in temperate regions such as

Europe and North America (Komar, 2000). Known as an arboviral (arthropod-

borne) disease of birds, it poses a risk to other wildlife, domestic animals such as

horses, and humans. The disease was first described in humans from a case in

Uganda in 1937 and was characterized as a mosquito-borne virus in Egypt in the

1950s (Komar, 2000). The virus, endemic in Egypt, has spread over the past 40

years to several countries in Europe, Africa, the Middle East, Asia, and now North

America. The first North American human case of WNV occurred in New York

City in August, 1999 (CDC, 1999); WNV has rapidly spread across the country

reaching the West Coast of the United States by 2002 (CDC, 2002a).
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Figure 3.2 West Nile Virus transmission. Arrows represent direction of viral
transmission. Those transmissions noted with question marks are postulated but not
known. Other animals include native wildlife and domestic or exotic animals.

West Nile virus is transmifted between mosquito vectors and bird hosts

(Figure 3.2). Adult mosquitoes acquire the virus in a blood meal from an infected

avian host. The virus resides in the mosquito salivary glands where it is amplified

through continuous transmissions between mosquitoes and avian hosts. An infected

bird can be infectious for 1-4 days after which the bird, if it survives, develops a

life-long immunity. Therefore, a sufficient number of vectors must feed on an

infective host to cover the extrinsic incubation period of about 14 days (Comel et

al., 1993). Information on the specific species that serve as competent vectors and

hosts is still being gathered. In North America, the primary vector species is

thought to be Culexpipiens. C. pipiens was first implicated in the transmission of

the virus in the New York City outbreak of 1999, but may be only a moderately

effective vector (Komar, 2000); other mosquito species such as Aedes were found

to be highly susceptible (Enserink, 2000). Transmission to horses, humans and

wildlife is thought to occur from non-Culex mosquitoes and arthropods. Natural

infections in both hard (Hyalomma marginatum) and soft (Ornithodoros maritimus)
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ticks, along with swallow bugs (Oeciacus hirundinis) have been reported in Africa,

Europe, and Asia (Komar, 2000).

It is not known whether animals other than birds can serve as competent

hosts and whether there are specific habitats associated with the transmission of the

virus. Early reports on the disease outbreak in the United States suggested that

horses and humans were non-competent hosts because they were unable to develop

a viremia sufficient to infect mosquitoes (Komar, 2000); however recent findings

suggest that infected humans may directly infect other humans through blood

transfusions, organ transplants, breast milk, and intrauterine exposure (CDC,

2002b, c, and d).

The information used to conduct this analysis is the same as those

summarized by Kutz et al. (2003). Specifically, data on positive and negative

mosquito pools (jooIed samples from mosquitoes caught in the same trap on a

given date) for WNV were provided by the Maryland Department of Agriculture.

Mosquitoes were collected in light/CO2 traps placed in locations typical of

mosquito control operations around the country. The main criteria for trap

placement included urban areas where residents granted permission, areas that were

free of vandalism, and likely mosquito habitat such as a freshwater or saltwater

marsh. If a trap did not capture mosquitoes, then it was moved to another location.

The traps were emptied daily and mosquitoes frozen to ensure virus isolation. The

Maryland Department of Health and Mental Hygiene performed viral analyses.

Information on the number and location of WNV cases reported in horses,

birds, and humans from 1999 to 2001 was also available from the Maryland

Department of Agriculture. The Maryland Department of Health and Mental

Hygiene provided information on human cases. Further, our analysis used

information on licensed tire collection facilities and tire clean up sites @otential

mosquito breeding sites) provided by the Maryland Department of the

Environment.



Modeling Procedure

We constructed RBMs using the WNV data for 2001, the only year out of

three where data were available for all the variables of interest. These data included

instances of birds that tested positive for WNV (positive birds), positive mosquito

pools, negative mosquito traps, licensed tire storage or disposal facilities, human

and horse cases recorded in individual data tables. Date of discovery and

geographical location of the cases were also included in the data tables. We

associated these independent data tables across time and space to construct a

composite model of disease spread across positive birds, positive mosquito pools,

licensed tire facilities (both storage and disposal), human and horse cases (Figure

3.3).

Knowing the date and location (latitude and longitude) enabled us to

establish spatial and temporal links. We did this by imposing scale across both the

spatial and temporal dimensions by creating two additional variables, 'geocell' and

'month.' They were defined by dividing the State of Maryland into 5-mile square

geocells and time into months. A 5-square mile geocell was based on the average

distance flown by birds and mosquitoes in a day (Klowden, 1995; Verbeek and

Caffrey, 2002). We associated the data tables containing the instance data with

geospatial and temporal adjacency tables creating a relational database.

Modeler examines the location and time of a case and determines the set of

geocells included in the model. By setting the initial table to positive birds, we

initially incorporated all geocells containing positive birds into the model. Ifwe

had started with using a table containing fewer cases, the initial number of geocells

incorporated into the analysis would have been fewer. For example, starting with

six human cases in three geocells would result in an initial model containing three

geocells. The 732 positive bird cases would then be evaluated with respect to these

three initial geocells. Thus, by starting with the table with cases in the most

geocells, we created the most comprehensive model given the data in the combined

data tables.
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Figure 3.3. Development of relational database for West Nile Virus. Modeler
developed a relational database by conducting a series of pairwise correlations
between two variables: 'geocells' and 'month' (see Modeling Procedure) and
independent data sets. The number of positive and negative mosquito pools,
positive birds, horses, humans, and tire license sites per geocell is given.

Those geocells containing positive birds were evaluated with respect to

licensed tire storage and disposal sites, negative mosquito pools, positive mosquito

pools, human cases and horse cases in the same and adjacent geocells in the same

and previous month (Figure 3.4). When the number of licensed tire facilities,

positive mosquito pools, human and horse cases contributed information to the

model that improved model fit by BIC, these variables were added to the model.

Cases that were not located within the same or adjacent geocells to any positive



38

bird case were not considered in determining the distributions of that particular

variable in the BN.

Modeler also considered temporal correlation. Variables in the model were

counts for a given geocell for a given time period (current month and previous

month; see Figure 3.4). Arcs between variable pairs considering space and time

were created when the variables were found to improve the model based on BIC.

The version of Modeler used for this analysis takes discrete data as input.

Continuous variables of interest such as the number of positive birds in a geocell in

a month were discretized (placed in probability "bins") in order to include them in

the model. Modeler automatically discretizes variables on an exponential scale into

'probability buckets.' For example, the discretization for human and horse cases

was: Category I: one case; Category II: two cases; and Category III: more than two

cases, reflecting the number of positive cases in a geocell in a month. Because we

are using Modeler for exploration and hypothesis generation for trends in disease

spread, point values are not important, rather, we are interested in the direction and

magnitude of the effect that contribute to a hypothesis.

Results

We used Modeler to correlate the independent, observational data for

license sites, positive birds, positive mosquitoes, horses, and humans across space

and time. We considered including landscape information, (i.e., landscape

classified as agricultural, forested, water, urban) into the analysis but the available

data were at too coarse a scale for this particular analysis. In general, we found that

the structure of the BNs produced using Modeler is consistent with what we know

of disease transmission and reflects the biological relationships that are inherent

from the data.
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Figure 3.4. Adjacency relationships in space and time. Modeler correlated data by
relating data in one geocell with adjacent geocells within the same and previous
months.

Starting with positive birds and a full BIC, Modeler constructed a BN

(Figure 3.5) showing a correlation between positive birds and license sites as a

central organizing feature of the model because it is highly connected to other

nodes in the model. We aggregated tire storage and disposal license sites into one

variable after finding no difference when they were included in the model as

separate variables. The highly connected nodes represent those variables that

Modeler found to be linked probabilistically with many other variables.
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Figure 3.5. Bayesian network of positive birds for West Nile Virus in Maryland
during 2001 developed using a full Bayesian Information Criterion. Variables
represent mean number of cases found with respect to a positive bird case. Cases
may be reported in the same month, previous month or month after a positive bird
was found, in the same geocell or adjacent geocell.

Because the data were so sparse, the model constructed with the full penalty

in the BIC were relatively uninformative with few links indicating determinants of

human cases. In order to introduce more complexity into the model, we relaxed the

penalty in the BIC to 0.9 (Figure 3.6) and 0.8 (Figure 3.7) to create a more

connected model.



nrorn#(+) bãds(inonth re; adj geocdl

mom a geocdl

Mutual m#(.)mosâbo 001; montha4geocdl

Information

1.2E-7

mm #(.) morço oo1; month; mon geocdl

Mutual #iicetic trues; geocl
Information

0.04 thekc sites; e cdl

rams ; mon ; a4 geocdl

#lonms to; after gore
# coo ;mne samegeocdl

car ; month 01br some gone

or car ;
bir ; month ftc; a geocdl

Mutual

information
0.06

morn#()mos rob; afltoarg cdl

#(+) marquis oobo; or before; a geocdl

morn#hurnancas ; altoroamegoncdl

41

Mutual
Information

0.1

/m9dosuito
I Mutual I

informaon I

I
0.4

meso #(+) mosqr.abo mont geocdl

Figure 3.6. Bayesian network of positive birds for West Nile Virus in Maryland
during 2001 developed using a Bayesian Information Criterion of 0.9. Variables
represent mean number of cases found with respect to a positive bird case. Cases
may be reported in the same month, previous month or month after a positive bird
was found, in the same geocell or adjacent geocell. Mutual information between
variables is a measure of the shared information between variables, and indicates
the change in one variable that would result from a change in another.
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Figure 3.7. Bayesian network of positive birds for West Nile Virus in Maryland
during 2001 developed using a Bayesian Information Criterion of 0.8. Variables
represent mean number of cases found with respect to a positive bird case. Cases
may be reported in the same month, previous month or month after a positive bird
was found, in the same geocell or adjacent geocell. Mutual information between
variables is a measure of the shared information between variables, and indicates
the change in one variable that would result from a change in another.

When we create a BN using a relaxed BIC of 0.8, we add complexity to the

model, creating linkages not represented in the models created with a BIC of 0.9, or

a full BIC. In all cases, the node representing positive birds associated with tire

license sites is an organizing feature. However, in the BN developed with a BIC of
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0.8, a spatial and temporal pattern of nodes associating positive birds, positive

mosquito pools and humans in the same or adjacent geocell during the same or

previous month becomes apparent.

The BN networks we developed using Modeler are not unique and are

specific to the relational dataset. For example the addition of hypothetical 40 tire

license facilities to geocell 853 (the city of Baltimore) produced a different model

(Figure 3.8). However, the commonalities among these models provide information

about the problem at hand. For example, the number of horse cases did not

contribute additional information to any models regardless of model configuration

or settings to construct the model (i.e., full or reduced BIC). This does not mean

that horses are not biologically important in the mechanistic model, but that they do

not contribute information to the probabilistic model. Positive birds on the other

hand are prominent in all models across space and time and thus can be inferred as

an important indicator of disease.

The linkages within a BN can be further evaluated by examining the mutual

information for a specific node. Mutual information is a measure of shared

information between two variables and indicates which variables are more strongly

correlated such that a change in one would result in a change in the other. Focusing

on positive birds as an indicator of human cases referring to the BN developed

using a BIC of 0.9, the variable "mean # human cases; month after; same geocell"

(which represents the mean number of human cases found the month after a

positive bird was found in the same geocell) has the highest level of mutual

information (0.06) shared with the variable "# tire license sites; same geocell"

(Figure 3.6). Similarly, the variable "mean # human cases; month after; same

geocell" has a high level of mutual information (0.4) with the variable "mean #

human cases; month after; adjacent geocell" indicating that positive bird cases

serve as a good indicator of human cases in space and time. The least amount of

mutual information is shared with this variable "# tire license sites; adjacent

geocell."
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Figure 3.8. Bayesian network of positive birds for West Nile Virus in Maryland
with 40 additional hypothetical tire sites and full Bayesian Information Criterion
penalty. Variables represent mean number of cases found with respect to a positive
bird case. Cases may be reported in the same month, previous month or month after
a positive bird was found, in the same geocell or adjacent geocell.

If we examine positive birds as an indicator for positive mosquito pools, the

variable "mean #(+) mosquito pools; month after; same geocell" has the highest

amount of mutual information (0.4) shared with "mean #(+) mosquito pools; month
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after; adjacent geocell" (Figure 3.6). This information also demonstrates a spatial

and temporal relationship.

Looking at the series of connected nodes from the BN developed with a

BIC of 0.8 (Figure 3.7) we find that the variable relating positive mosquito pools in

the adjacent geocell the month after a positive bird has the highest mutual

information (0.4) with it's child node representing human cases in the month after a

positive bird in the same geocell. The amount of shared information with the

positive bird-positive mosquito in the same geocell variable decreases down the

series of linkages, with the 'grandchild' node representing human cases occurring a

month after a positive bird in the adjacent geocell having a mutual information

value of 0.07.

The BN is essentially qualitative; however, quantitative information can

also be obtained from conditional probability tables. This information can be

represented in a tree format derived from the raw, not discretized data. The

conditional probability table for positive birds in the same geocell as number of tire

license sites indicates the association between the two variables (Figure 3.9). In

geocells with more than 109 tire license sites, there is a greater probability of

finding more than two cases of positive birds. This finding suggest that in the

aggregate, geocells with more than 109 tire license sites are different with respect

to the number of positive bird cases, than geocells with less than 109 tire license

sites. The number of license sites is a result of the modeling algorithm. The

number "109" for tire sites could represent the density of potential breeding habitat

(standing water in stored tires) for mosquitoes. It could also serve as a measure of

urbanization that increases not only breeding habitat but also indicates a certain

human and bird population threshold for disease prevalence.
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Figure 3.9. Conditional probability tree for positive birds in same geocell with
license sites. Probability categories are NA, one case, two cases, and more than two
cases. Thus the probability of finding more than two cases of birds positive for
West Nile Virus in geocells with greater than 109 tire license sites is 0.333.

Similarly, the distribution of positive birds in adjacent geocells the month

after a positive bird is found is also associated with the number of tire license sites.

The probability increases for the mean number of positive birds in the adjacent

geocell when the adjacent geocell contains more than 109 tire license sites (Figure

3.10).

Conditional probabilities determined for the mean number of human cases

in the adjacent geocell the month after a positive bird was found indicates that the

probability of finding more than two human cases in the same geocell a month after

a positive bird was found is 1 (Figure 3.11). Thus, even with sparse data, a tentative

quantitative estimate can be made regarding the use of positive birds as an indicator

of disease incidence in humans.
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Figure 3.10. Conditional probability tree for the mean number of positive birds in
an adjacent geocell the month after a positive bird is found. The probability
categories are NA, 1, 2, 6, 20, more than 40. Thus the probability of finding more
than 40 positive bird cases in an adjacent geocell one month after a positive bird is
found is 0.6.

Discussion

We demonstrate the use of probabilistic RBMs as a new tool to assist public

health professionals meet the challenge of responding quickly and effectively

during a disease outbreak. The RBM is a tool used to discover models from

independently collected, observational data. The RBM can be used to identify

probabilistically, those variables that may be important during an outbreak, even

from sparse survey data that would not otherwise be useable. These variables may

identify indicators or important conditional relationships that can be used to guide

disease surveillance or management control strategies. The RBM also has

predictive capabilities that could be used to develop hypotheses related to disease

spread.
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Figure 3.11. Conditional probability tree for the mean number of human cases in
the adjacent geocell the month after a positive bird was found. Probability
categories are NA, one case, two cases, and more than two cases. Thus the
probability of finding more than two human cases after finding a positive bird in
geocells with greater than 109 tire license sites is 1.

In the analysis of WNV spread, we found that the associations between

positive birds, positive mosquito pools and human cases support the findings of

Kutz et al (2003). Kutz and co-workers used geospatial techniques to study the

potential impact of two nonnative mosquito species on the epidemiology of WNV

in Maryland. Using licensed tire storage sites as a representative source for vectors,

they demonstrated a spatial convergence of the WNV, the nonnative mosquito

vectors and susceptible hosts, primarily in urban landscapes. They concluded that

the two nonnative species had a high potential to serve as 'bridge' vectors

transmitting the disease to noncompetent hosts: horses and humans. Our analysis

identifies positive mosquito pools, irrespective of species, as an indicator for

disease transmission across space and time.

The two primary benefits to this modeling approach are visualization and

model discovery (Jorgensen et al., 2003). The RBM produces a visually intuitive

interpretation of disease transmission with a quantitative foundation. The BN
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all the variables contained within specified databases. Therefore, analysts can

explore the strengths of relationships contained within the data. Further, we are

able to generate and update hypotheses as more data become available. Thus, this

modeling technique allows for a continuum of analysis in which variables can be

added, deleted, or modified to generate a new model, without starting anew. The

model discovery approach is scalable to large datasets with greater complexity.

Although not conducted in the analysis of WNV, RBMs can be used to

model bias (such as selection or reporting) and confounders that may exist within

the data, to determine the significance of its influence on hypothesized associations

between variables. Modeling bias and confounding occurs through manual

insertion of a variable valued, for example, as high, medium or low, in the

database. Associations between the inserted variable and disease could

quantitatively indicate the influence of bias or confounding in that particular

analysis.

A limitation to this technique is that the models developed are not

necessarily unique. The models developed reflect the data at hand and the particular

settings of the Modeler to explore changes in model structure. While the exact

configuration of the network is limited to the specific data set, general trends in

disease can be observed across and within other datasets. Further, this technique

does not allow testing of point values, a feature of more traditional, frequentist

statistics.

The RBM technique has been used to explore biological data. Getoor et al.

(2001) describes the application of this technique to generate hypotheses relating

patients from a tuberculosis clinic, various risk factors, and specific strains of

tuberculosis. Jorgensen et al. (2003) demonstrated the ability of the RBM to

identify factors related to water clarity in exploring the behavior of the Crater Lake

ecosystem. Here, we demonstrate the use of the RBM technique to determine those

complex community interactions that are relevant to the transmission of WNV. We

found a strong probabilistic relationship between the number of licensed tire

storage and disposal sites and the mean number of birds that are positive for the
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virus. These positive birds serve as spatial and temporal indicators for the mean

number of positive mosquito poois and mean number of human cases. These results

support and extend the findings of Kutz et al. (2003) using a different, geospatial

technique.

Seldom do public health professionals have the luxury of formulating

disease control campaigns with complete knowledge. In nearly all cases they must

make decisions given the data at hand balanced with risks should decisions be

deferred. The pressure is to act early and effectively. As such, this novel technique

may prove to be a valuable tool for evaluations of disease outbreak, particularly in

instances where little is known about transmission and data are sparse.
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Abstract

Environmental risk assessment and its use are changing from stressor-

endpoint specific assessments for use in command and control types of decisions to

an integrated approach for application in community-based decisions. This change

reflects the challenge for environmental public policy to address more complex

scientific problems. As a result, the process of risk assessment and supporting risk

analyses are evolving to characterize the human-environment relationship.

Integrating risk paradigms combine the process of risk estimation for humans,

biota, and natural resources into one assessment to improve the information used in

environmental decisions (Suter et al., 2003). A benefit to this approach includes a

broader, system-wide evaluation that considers the interacting effects of stressors

on humans and the environment, as well the interactions between these entities. To

improve our understanding of the linkages within complex systems, risk assessors

will need to rely on a suite of techniques for conducting rigorous analyses

characterizing the exposure and effects relationships between stressors and

biological receptors. Many of these analytical techniques are narrowly focused and

unable to address the complexities of an integrated assessment. In this paper, we

discuss qualitative community modeling and Relational Bayesian modeling

techniques that address these limitations and evaluate their potential for use in an

integrated risk assessment.
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Introduction

The environmental risk assessment paradigm is shifting from independent

analyses of human health or ecological effects to a more integrative, or unifying,

approach. The idea of integrating risk assessments has been the topic of extensive

discussion over the past decade. Integration ideally would combine the process of

risk estimation for humans, biota, and natural resources into one assessment to

improve the information used in environmental decisions, resulting in more

effective protection of both humans and the environment (Suter et al., 2003). A

benefit to this approach is a broader, system-level evaluation that considers the

interactions of the effects of stressors on humans and the environment, as well the

interactions between these entities. In addition, stressors other than chemicals need

to be considered. The basis for such an integrated approach would be the

perspective that ecosystems serve as part of the foundation defining human well-

being.

Risk assessments are important tools for informing public health and

environmental protection decisions. They constitute the scientific reasoning for

estimating the likelihood of an adverse human or ecological effect resulting from

exposure to a stressor. Although the human health and ecological risk assessment

paradigms were developed independently, they are related. In both paradigms, risk

characterization is a key step providing a description of the weight of the evidence

concerning the hazard, potential exposures, and the uncertainties, variability, and

assumptions used in the assessment. Thus, the integration of risk assessment

approaches could be encapsulated in risk characterization and the analytical

processes it entails.

The shift in risk assessment to an integrated approach is consistent with

changes in the scientific approach to complex problems. In many instances, a

multidisciplinary approach is a necessity to fully evaluate cause and effects

relationships. Wilson (1998) noted that science is no longer a specialized activity,

but involves the synthesis of causal explanations. Thus, scientific research is
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shifting towards understanding linkages within highly complex systems (Vitousek

et al., 1997; Wilson, 1998; NRC, 2000; Forget and Lebel, 2001).

To improve our understanding of the linkages of complex systems as part of

an integrated risk assessment, risk assessors must rely on a suite of techniques for

conducting rigorous analyses characterizing exposure and effects relationships

among stressors and biological receptors. Current analytical techniques have been

criticized as inadequate and irrelevant; they can be misinterpreted due to a lack of

understanding of the problem and the inability to deal with uncertainty (NRC,

1996; Peterman and Anderson, 1999). Further, many of the commonly used

techniques are narrow in focus and unable to adequately evaluate complex systems.

In this paper, we review community-level modeling techniques that account for

these limitations and evaluate their potential for integrated risk assessment.

Risk Assessment Paradigms

The human health risk assessment paradigm (Figure 4.1) was first

popularized by the National Academy of Sciences (NAS) (NRC, 1983). Their

intent was to bring about consistency in health assessments within the U.S. federal

government, but their influence extended throughout the national and international

scientific communities. The NAS paradigm focused initially on humans exposed to

chemical stressors posing a cancer risk and was quickly applied to other, non-

cancer health effects (e.g., developmental, reproductive, or neurotoxicity). It begins

with a qualitative description of hazard to determine whether exposure to a

substance results in an undesired effect. Once a hazard has been identified, a dose-

response assessment determines the potential magnitude of the hazard. Relying

largely on experimental animal studies, or human studies to the extent available,

the dose-response assessment develops a quantitative estimate relating an exposure

dose to the human biological response. An exposure assessment describes the fate

and transport of the substance from source to the receptor, including the likely

delivered dose to the site of toxicity. All of this information is then coalesced into a
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risk characterization. Risk characterization describes the overall likelihood and

magnitude of an adverse effect resulting from exposure to a substance. The

adequacy of the database, models used, assumptions, uncertainties, and overall

confidence in the risk estimate are communicated through the risk characterization

(USEPA, 1995). This step is particularly useful in informing risk management

decisions.

Hazard
Identification

Dose-
Response
Assessment

Exposure
Assessment

Risk
Characterization

Figure 4.1. Human health risk assessment paradigm. Adapted from NRC, 1983

Building on the NAS paradigm, the Guidelines for Ecological Risk

Assessment (USEPA, 1998) was developed to evaluate risks of chemicals and other

stressors in complex ecosystems, including problems that may extend across

temporal and spatial scales at different levels of biological organization. Ecological

risk assessment (Figure 4.2) begins with problem formulation, a conceptualization

of the problem, including an assessment plan. Problem formulation explores

working hypotheses and defines the analytical steps to be included in the

assessment. It also includes the identification of assessment endpoints and

measures of effect. Many of these elements are policy decisions that are informed

by science (Lackey, 1997). After problem formulation, an analysis step involves
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characterization of both exposure and effects. This phase is similar to the human

health paradigm of exposure assessment and dose-response assessment. The

analysis step produces exposure and stressor-response profiles summarizing the

relationship between exposure and receptors. Stressor-response profiles may be

developed for chemical as well as non-chemical stressors. Risk characterization

makes up the final phase of the assessment. Under the ecological guidelines

(USEPA, 1998), risk characterization includes a discussion of the supporting

evidence and overall degree of confidence in the risk estimate, along with an

interpretation of the adversity of ecological risks.

Ecological Risk Assessment

Planning I FORMULATION
(Risk Assessor! I

aRisk Manager!
Interested I z

Parties
I

Dialogue)

H H
Characterization: Characterization' en

of of I

Exposure Ecological
Effects I

aa

RISK CHARACTERIZATION
II

.4

Figure 4.2. Ecological risk assessment paradigm (USEPA, 1992, 1998).

Integrated Risk Assessment Paradigms

Over the past decade several frameworks for integrating risk have been

proposed that are based on the human health and ecological paradigms described

above. For example, Harvey and coworkers (1995) developed a 'holistic' approach

that consisted of parallel and integrated health and ecological assessments. Their



57

process followed the steps originally outlined by the NRC (1983) conducting

human health and ecological assessments in parallel. A series of risk choices is

produced for the risk manager by integrating the results of two parallel assessments

during the risk characterization step. Using mercury as a case study, they developed

a risk characterization consisting of a series of risk estimates developed for humans

exposed through inhalation or ingestion that address neurological or reproductive

effects, and for wildlife exposed through the aquatic food chain addressing

reproductive success and decreased species distributions. The authors suggested

that the series of risk estimates would provide options for risk managers to choose

from in making a decision (Harvey et al., 1995).

Although cast as a holistic process, the Harvey Ct al. (1995) approach is not

really integrative, but rather a comparison of different risk values generated for

different exposure scenarios and toxicity endpoints; protective of different species.

Thus, this approach may be too generic and unresponsive to a particular problem or

management decision.

A special forum of the World Health Organization's International

Programme on Chemical Safety (IPCS) developed another approach. They outlined

an integrated process combining elements of both human health and ecological

processes (Suter et al., 2003). This paradigm (Figure 4.3) is more closely aligned

with the concepts of the Guidelines for Ecological Risk Assessment (US EPA,

1998). Here, hazard identification becomes an element of problem formulation, and

dose response assessment occurs as part of the effects characterization. Most

importantly, this approach considers the interactions among stressors and receptors

such as wildlife or humans, and the abiotic environment.

One distinct difference of the IPCS integrated approach from the Harvey et

al. (1995), NRC (1983) and ecological risk paradigms (USEPA, 1998) is the

involvement of stakeholders and risk managers in the process. The human health

and ecological risk paradigms were designed to be independent from risk

management so that the outcome reflects scientific analyses that are not influenced

by socio-political bias. In the IPCS approach, stakeholder and risk management

involvement throughout the process is viewed as essential to ensure buy-in and
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responsiveness of the assessment to the specific problem, considering both human

and ecological risks where applicable (Suter et al., 2003). While this, in and of

itself does not ensure integration, it increases the potential depending on how the

problem is defined at the onset of the risk assessment.

Problem Formulation with
Hazard Identification

Exposure Effects
Characterization Characterization
With Exposure with Dose-
Assessment Response

Assessment

Risk Characterization

Risk
Managers
&
Stakeholder
Input

Figure 4.3. Integrated risk assessment paradigm. Adapted from World Health
Organization (WHO), 2001.

The IPCS approach combines the process of risk estimation for humans,

biota, and natural resources into one assessment for the purpose of improving the

information used in environmental decisions, resulting in more effective protection

of resources valued by society (Miranda et al., 2002; Suter et al., 2003). Integration

is achieved through all phases of the risk assessment process (Suter et al., 2003).

Under problem formulation, integration entails the development of stressor-driven

assessment questions common to both health and environmental questions that

focus on potential susceptible human and ecological endpoints. Exposure and

effects characterizations are integrated through an evaluation of all the possible

sources of exposure and an understanding of common modes of toxic action in

humans and other organisms. Similar to the holistic approach (Harvey et al., 1995),

the IPCS risk characterization includes multiple estimates of risk from which a best
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estimate of human and ecological risk is selected using a common and consistent

approach (Suter et al., 2003). The authors go on to indicate that evidence for health

and ecological risks would be integrated when appropriate but do not describe how

this would be achieved.

The 1PCS integrated approach was applied to several complex

environmental problems (Table 4.1). The case studies developed using the

integrated approach identify aspects of where integration can or should occur with

respect to exposure and effects characterization, but they do not actually conduct an

integrated assessment. Rather, they describe how to integrate risks. The risk

characterization section in each of the case studies largely reflects parallel risk

comparisons. Two studies (Ross and Bimbaum, 2003, Vermeire et al., 2003)

propose a common quantitative approach, a Toxic Equivalency Factor (TEF)

approach as a means of integrating risks. It is not clear, however, that having a

common quantitative approach to estimate risks for different species is actually

integrative, but rather reflects the commonalities in the toxic endpoints and

mechanisms of toxicity for the exposures and species of interest. Thus, the IPCS

approach goes beyond the holistic approach in describing levels of integration

throughout the risk assessment process. However, the information included in the

risk characterization step presents parallel risk estimates for human and ecological

endpoints under different exposure and effect scenarios. The responsiveness of the

assessment to a particular problem is likely to be greater under the IPCS approach

given the interaction with risk managers and stakeholders throughout the process.

Other approaches to integrative assessments have been proposed that focus

on human and environmental linkages including socioeconomic and political

factors. Epstein (1994) developed an integrated assessment framework of climate

change and ecosystem vulnerability. His generalized framework depicted

overlapping and interacting climate and social systems with ecosystems whose

intersection directly or indirectly produces various outcomes ranging from changes

in health, crop yields, and demography to economic productivity (Figure 4.4).



Table 4.1. Summary of International Programme for Chemical Safety (IPCS)
integrated risk assessment case studies.

Environmental Assessment Areas of Proposed Risk Reference
Problem Endpoints Integration Characterization
"Dioxin-like" Humans and Route of Apply Toxic Ross and
Persistent Organic upper exposure Equivalency Bimbaum,
Pollutants trophic level Mode of Approach (TEF) 2003.

wildlife action to both humans
'Toxicity and wildlife

Tributyl- and Humans and 'Route of Species and Sekizawa
triphenyltins piscivorous exposure exposure-specific et al.,

wildlife 'Mode of human and 2003.
action ecological risk
'Toxicity estimates

UV-Radiation Amphibians, 'Exposure Parallel Hansen et
coral, pathways characterization al., 2003.
humans, and 'Mechanistic of risk across
oceanic pathways assessment
primary endpoints.
productivity

Organophosphorous Humans and 'Exposure Species-specific Vermeire
pesticides wildlife pathways TEFs et al.,

'Toxicity 2003.

Epstein noted that integration was dependent on the use of specific

biological, social or geochemical indicators depicting the functions of complex

systems. Referring to the complex relationship between disease emergence and

changes in climate and ecosystems, Epstein (1994) proposed a number of principles

for modeling and monitoring complex ecosystems. He emphasized the need to

account not only for direct impacts to the different systems but also those indirect

effects resulting from the interactions among factors within the three overlapping

systems. He noted that those diseases transmitted directly from person to person

reflect changes in population density with little interaction among the three

systems, while vector-borne disease reflects environmental changes involving all
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three systems in his integrated model. Integration in Epstein's approach also occurs

through scientific and political collaborations. While he did not present an overall

assessment of risk, he did suggest guidelines for identifying system vulnerabilities

affecting overall stability and resilience; key elements in his view for mitigating

disease emergence.

L
Social

Climate System
System

I Indicators,
I Surveillance,ystem

and Outcomes

Figure 4.4. Framework for integrated assessment of climate, social systems and
ecosystems. Integrated assessment occurs in the area of overlap and involves
indicators for use in surveillance systems and predicting outcomes. Adapted from
Epstein, 1994.

VanLeewen et al. (1999) also presented a conceptual 'butterfly' model that

focused on human health in an ecosystem context. Human health is determined

from the intersection of biophysical and socioeconomic environments. Biochemical

and behavioral filters separate humans from each of these environments to protect

against disease. The boundaries of the butterfly could be at the community,

watershed, or population level and include the interactions between humans and the

nonhuman environment. Their model is not an approach for assessing risk per se

but can be viewed as a mechanism for determining risk factors influencing human

health. Health is influenced by the structural or functional elements of an

ecosystem (VanLeeuwen et al., 1999). As the authors noted, this model focuses
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only on human health and does not determine health for other species in the

ecosystem.

Integrative Analytical Approaches to Risk Assessment

The integrated paradigms described above provide a framework for

considering human and environmental interactions but fall short of demonstrating

specific analytical techniques for conducting an integrated risk analysis. The

examples include a mix of conceptual, integrated approaches that are either

descriptive or consist of parallel risk assessments. Considering the models

presented by Epstein (1994) and VanLeeuwen et al. (1999) it is clear that an

evaluation of interactions among human populations, their environment, and other

important ecological factors are needed in conducting an integrated analysis. This

type of evaluation is similar to that encompassed by an ecoepidemiological

approach. Similar to human epidemiology, ecoepidemiology has been used to study

the ecological effects that are prevalent in certain areas among population groups,

communities and ecosystems and their potential causes (Bro-Rasmussen and

Lokke, 1984; Martens, 1998). This approach focuses on a description of the effects,

identification of causes, and understanding their linkages. Humans are considered

as part of the environment.

Bro-Rasmussen and Løkke (1984) used the ecoepidemiological approach to

describe possible associations between lesions observed in fish, discharge of high

carbohydrate wastewaters, and discharges of chlorophenoxy and phenoxy acid

herbicides in Køge Bay, Denmark. They determined that herbicide exposure alone

was not sufficient to explain lesions observed in fish. Lesions were highest in fish

found in coastal waters contaminated with high levels of organic materials and

chemical pollutants from pulp and paper industries. This resulted in low

oxygenated waters promoting the growth of bacterial flora. Fish in these waters had

compromised immune systems that increased their vulnerability to facultative

pathogens. Only when considering the complexities of the system and exposure to
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multiple stressors were the investigators able to understand the dynamics and

possible etiology for the observed effects.

An ecoepidemiological approach is similar to community and systems-level

ecological risk assessment with respect to understanding relationships between

biotic and abiotic factors. Levins (1973) noted that addressing more complex

systems required breaking down disciplinary boundaries to create an integrated

process that addresses management goals in which community structure, and other

mechanistic factors could be examined as a whole. A system in this context is

defined as a habitat, geographic area, human community or network of

communities (Levins, 1998). As complexity increases, the ability to gather

quantitative information is complicated by the impracticality of the number of

parameters to measure and the loss of realism (Levins, 1966; Puccia and Levins,

1991).

Qualitative models can simplify complex systems without sacrificing

realism (MacArthur and Levins, 1965; Levins, 1966) and enable an integrated

analysis of a system. Qualitative modeling in the form of signed digraphs, 'loop

analysis,' and matrix analysis facilitates the understanding of a system where there

is incomplete information (Figure 4.5). Because qualitative models involve only the

signs of the interactions among variables, (positive, negative, or no change),

variables representing poorly quantified aspects of the system can be included in

the analysis (Puccia and Levins, 1991). Such variables may represent different

species, resources, climate, or socioeconomic factors that influence community

structure and function. When constructing models, qualitative modeling methods

can help determine which variables should be included, what should be measured,

and how system dynamics might be affected under different perturbation scenarios

(Levins, 1998).

Loop analysis and the corresponding community matrix is a useful

analytical tool for exploring and understanding the effects of natural and

anthropogenic stress on a system. Dambacher et al. (1999) used this modeling

procedure to characterize a predator-prey system involving the snowshoe hare and



arctic fox. This technique also proved useful in predicting the impact of species

introductions into a community (Li et aL, 1999; Castillo et al., 2000) and explaining

complex transitions in community composition over time (Bodini, 1998; Ortiz and

Wolff, 2002). Loiselle et al. (2000; 2002) used ioop analysis to examine different

economically-based management scenarios in a wetland ecosystem to identifr

management options and guide monitoring programs.

1 1 0

1 0 1
o i 1

Figure 4.5. Signed digraph and corresponding community matrix. Circles 1, 2, and
3 represent variables. Lines represent linkages in the communities with arrows
indicating positive effects, dark filled circles as negative effects. Half circles on the
variable indicate self-regulating effects.

In the context of integrated risk, Levins (1998) extended qualitative

modeling to the problem of vector-borne disease. In his system, he identified the

invasiveness of vectors and disease reservoirs as core variables that would be

important in an epidemic, adding vector habitat requirements, vector and host

behaviour, host health status, and economic variables as other factors to be

considered. With an increasing 'web of causation,' Levins (1998) argued that

internal processes critical to community function could be examined. In Chapter 2,

we developed a procedure to predict disease risk that combines recent

developments in qualitative community modeling with biomathematical theory of

vector-borne disease transmission. This procedure predicts the change in risk of
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vector-borne disease following perturbations such as increases in vector abundance,

animal control measures, habitat alteration, or global warming. Like Levin's

postulated epidemic-disease community, this procedure allows the consideration of

a complex community structure linking ecological factors to human disease. This

procedure results in a rigorous prediction of an ecological community response to a

perturbation with minimal to no quantitative parameterization. It generates focused

hypotheses to guide data collection and control management strategies as

interventions.

Bayesian analyses in the form of Bayesian networks are another tool that

can be useful in an integrated risk analysis. A Bayesian approach is based on

probability theory and is a useful decision-making or inferential technique when

there is incomplete information or it is not possible to gather enough information to

reduce uncertainties (Reckhow, 2003). A Bayesian network is used to model a

system containing uncertainty, offering both qualitative and quantitative

information in the form of conditional probabilities. It can be applied to

multivariate problems involving complex relationships among variables (Reckhow,

2003). A Bayesian network consists of a directed acyclic graph and a probability

distribution. The network characterizes variable relationships through interrelated

nodes and arcs (Figure 4.5). The nodes represent variables and the arcs represent

conditional dependencies between the nodes. Bayesian networks are used to

identify those key variables influencing relationships within a system, and thus are

an integrative analytical tool.

The use of Bayesian networks is increasing in scientific analyses of

complex problems. Crome et al. (1996) applied a Bayesian approach to evaluate the

impact of logging on bird and mammal species in rain forests. The investigators

had too few data to detect potential impacts using traditional statistical analysis.

However, results of a Bayesian analysis suggested a correlation between canopy

cover and impacted bird species that was not previously apparent. Further, of the 76

species of birds in question, only 4 species were identified as having a high

probability of being adversely impacted by logging.



Figure 4.6. Bayesian network where the probability of"B" is dependent on "A" and
"C." The probability of variable "D" is dependent on "C." The arcs indicate
correlations between variables, which are not necessarily causal.

Bayesian networks have also been used to guide such diverse analyses as

land management decisions (Marcot et al. 2001), fish stock assessment (Vans et al.,

1993; Hammond and Ellis, 2002), and potential risk factors associated with heart

disease (Buntine, 1991). Each of these cases started with a hypothesized model that

could be updated as additional information became available, and involved large

uncertainties, the pooling of information from different datasets, and expert

judgment in the analysis.

When a specific model is not known, a data discovery technique, Relational

Bayesian Modeling (RBM), can perform a heuristic search to discover models from

data (Jorgensen et at., 2003). This technique involves machine learning, guided by

expert judgment to develop a probabilistic model. The RBM extends Bayesian

networks to the relational level, modeling uncertainty related to variables, their

properties, and relationships among variables (Getoor et al., 2001). These

relational data may be obtained from multiple sources, such as observational data

stored in independent data tables that are related in space and time. The

probabilistic relationship between variables is such that the distribution of any one

variable in any one table, or any variable derived from any such variable, is



67

affected by, or probabilistically conditioned on, all other linked variables in the

model. More importantly, variables that are not linked are conditionally

independent of one another. Thus, RBMs are well suited for application to complex

systems.

There are a few examples of where RBM has been used to evaluate

complex problems. Getoor et al. (2001) described an RBM analysis to determine

possible probabilistic relationships between patients from a tuberculosis clinic,

certain risk factors, and specific strains of tuberculosis. In a second example,

Jorgensen et al. (2003) used an RBM approach to explore the long-term changes in

the clarity of Crater Lake using information summarized in multiple databases. The

RBM analysis enabled the investigators to construct multiple, complex hypotheses

concerning the entire lake ecosystem given data obtained from the long-term

studies of the lake.

In Chapter 3, we used Relational Bayesian modeling to identify

probabilistic relationships associated with the transmission of West Nile Virus in

Maryland. Similar to the Crater Lake study (Jorgensen et al., 2003), the RBM

approach was used to explore relationships among multiple, independent databases.

Multiple hypotheses were generated suggesting spatial and temporal relationships

between key vector, host and habitat variables related to disease transmission.

Thus, the RBM technique appears to be an effective means of conducting an

integrated risk analysis through the qualitative and quantitative evaluation of

complex community interactions. The hypotheses generated by the RBM analysis

can be used to guide further quantitative testing of specific relationships between

probabilistically linked variables.

Discussion

In our view, an integrated risk assessment should go beyond parallel

comparisons of risk for species with common exposures and toxicities to chemical

or other types of stressors. It is important to consider the interactions between
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health. An integrated risk assessment should involve appropriate techniques that

facilitate integration of risk analysis, identifying those components of the system

that contribute most to risk.

To conduct an integrated risk assessment, a suite of tools is needed that

integrates human and environmental health in the problem formulation (for

hypothesis generation) and analysis phases of the assessment, not simply during the

risk characterization phase. Such tools should consider the interacting system as a

whole. Although this adds complexity in the analysis, models and other decision

support methods are available that can simplify and reduce complexity.

Ideally, models should strive to characterize natural systems, optimizing

generality, realism, and precision (Levins, 1966). However, such models would

consist of too many parameters to measure, be difficult to solve, or if solved, the

results would have little meaning. Considering that models can reflect only two of

the three areas at best, Levins (1966) favored qualitative models that are flexible

and emphasize realism and generality over precision. He argued that while

quantitative models are useful in testing hypotheses, understanding qualitative

relationships is most important in the long-term in understanding the system

(Levins, 1966).

The 'integrative' models we reviewed are not robust enough to integrate

multiple stressors or multiple endpoints, but use either parallel assessments or

deductive reasoning to remove stressors from consideration. The analytical

techniques employed in these models to characterize risk are applied to either

human health or ecological assessments. Qualitative modeling and Bayesian

methods provide an integrated risk analysis framework that identifies relationships

important in the system and thus, guide the application of quantitative models or

provide sufficient information for management decisions. Experimental

comparison of various community theories suggests that ioop analysis was the

theoretical approach best suited for predicting the behaviour of complex

community structures following a perturbation (Hulot et al., 2000). Both techniques

rely on community structure to aid in formulating the problem, identifying limits,



and for generating hypotheses and testing predictions. Used in conjunction with

mechanistic models, the integrated analytical techniques provide a balanced,

iterative approach for not only assessing risk, but also evaluating possible

consequences of different management decision scenarios.
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CHAPTER 5

CONCLUSIONS

The environmental statutes from the 1 970s and 1 980s, called for risk

assessments that were human centric and cancer phobic in nature. These

assessments focused on environmental research and policy to reduce emissions or

prevent contamination from potentially cancer-causing chemicals in the

environment. During the 1990s, revisions to these environmental statutes placed

greater scrutiny on the scientific analyses supporting environmental regulation

through an increased emphasis on costs and benefits associated with risk

management decisions. As our society strives for innovation, new technology and a

sound economy, there is a greater recognition of the interdependence between

environmental and human health and thus, the need to evaluate risk in an integrated

fashion. However, several integrated risk models do not employ analytical

techniques that integrate multiple stressors or multiple endpoints. Instead,

integrated risks are represented as parallel assessments or involve deductive

reasoning to identify key stressors and endpoints.

As noted in Chapter 4, the conceptualization of a holistic system should

include abiotic factors as well as traditional endpoints of human health and

ecological integrity. To consider these factors in risk analysis adds complexity that

is beyond the capabilities of some commonly used analytical approaches aimed at

estimating the likelihood and severity of risk. Thus, to conduct an integrated risk

assessment, a suite of tools is needed that is responsive to the conceptualized

problem and considers the interacting system as a whole, addressing all appropriate

biotic and abiotic components of a system.

In this dissertation I demonstrate the use of both qualitative and quantitative

community-level modeling techniques for integrating risk analysis associated with

vector-borne disease. Vector-borne disease provides an example of a risk common

to both humans and wildlife. The emergence of vector-borne disease has increased

over the past several decades due, in part, to increased human activity that disrupts



71

the natural environment (NAS, 1992; Daszak et a!, 2000). As a result of this

increase, the NRC emphasized the need to improve our understanding of the

interactions among pathogens, hosts/receptors, and the environment (NRC, 2000).

Thus, to evaluate disease, in particular zoonoses, an integrated approach could

account for the ecology of the disease agent, vector, host, and other abiotic factors

such as climate, economic conditions, or control strategies that can affect the

distribution, frequency or severity of disease (Wilson, 1994).

In Chapter 2, I develop a new qualitative modeling procedure based on

community-level interactions that predicts a change in risk from vector-borne

disease following a disturbance to the community structure. This procedure

combines the parameters from a traditional, quantitative biomathematical model,

vectorial capacity, with qualitative community interactions as determined from a

community matrix to qualitatively predict changes in risk without quantitative

parameterization. This procedure predicts the change in risk of vector-borne disease

from press perturbations, such as control measures, anthropogenic habitat alteration

or global warming. I demonstrated this procedure using a documented example of

an ecological community associated with Lyme disease, a tick-borne disease

affecting humans. This new modeling procedure predicted that a positive press to

deer, for example, increased tick abundance, increasing disease risk. This

prediction is consistent with observations in the literature (Wilson et al., 1983).

Further, the model results also indicated that a positive press to acorns increases the

abundance of mice, other small mammalian hosts, and ticks. However, it does not

necessarily increase the risk of Lyme disease, as suggested in the literature (Ostfeld

et al., 1997). A benefit of this procedure is the ability to generate focused

hypotheses to guide quantitative models and evaluate potential intervention

strategies.

As described in Chapter 3, I explored the application of another

community-level technique Relational Bayesian Modeling (RBM), to develop

hypotheses associated with the transmission of another vector-borne disease, West

Nile Virus (WNV) that affects both humans and wildlife. The uncertainties

concerning the ecology of WNV suggest the application of a Bayesian analysis.
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Using an RBM I was able to model patterns of WNV transmission across space and

time in Maryland from sparse, independently collected observational data. The

RBM is a model discovery technique that uses observational data to construct

quantitative and biologically-consistent models in the form of Bayesian networks.

This probabilistic modeling technique provides both qualitative and quantitative

information enabling investigators to conduct a continuum of analyses in which

information can be added, deleted, or modified to generate a new model, without

starting anew. Issues of uncertainty can be accounted for using an analysis of

probability distributions. In the analysis of WNV in Maryland during 2001, I found

that there was a spatial and temporal pattern of a probabilistic association between

the number of tire license sites, infected birds, infected mosquitoes and humans

within the same or neighboring geographic locations and in the same, previous, or

following month in which a positive bird was found. Thus, even when there are

uncertainties and limited data regarding disease transmission, this novel modeling

technique may prove to be a valuable tool for evaluations of disease outbreak.

In Chapter 4, I explain how both the qualitative and RBM models show

promise in integrating risk analysis. Relying on community structure, these analysis

techniques provide a general, but realistic and practical approach for developing

hypotheses concerning the interacting relationships of community members.

In summary, the iterative and heuristic nature of these models, improves our

ability to predict the impacts of human or natural activity on complex ecosystems.

Their use involves a multidisciplinary approach, improving their utility as an

integrative tool to provide a realistic analysis of community interactions. In the

context of an integrated environmental risk assessment, these models can frame the

problem through the development of multiple and simultaneous hypotheses and

generation of testable predictions. These hypotheses and predictions then guide the

rest of the risk assessment in the analysis, and risk characterization phases through

improved conceptualization of the risk problem and relationships among stressors

and receptors, and evaluation of different management actions.

As a benefit to public health, these modeling tools provide a new and

different analytical approach to public health to evaluate zoonotic disease at a
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community level. Reasonable and rigorous predictions of disease risk can be

developed using the qualitative community model. The RBM model can use

observational data of varying quality to identify, probabilistically, those variables

that are important in a disease outbreak. These variables could then serve as

indicators to guide disease surveillance or control strategies. In addition, the RBM

can be used to determine the influence of bias or confounding in the data. Using

integrative tools such as these, will lead to more informed environmental and

public health decisions.
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