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Nuclear techniques such as perturbed angular correlation (PAC) sample the

hyperfine interactions of a large number of probe atoms in specific crystal-

lographic sites. Real crystals contain static defects producing a distribution

of electric field gradients (EFGs) that add to the ideal EFG of the crystal at

any given probe site. Also, dynamic defects like moving vacancies and inter-

stitial atoms can be present in the crystal and contribute to the distribution

of EFGs. The distribution of EFGs leads to line broadening and a change in

the observed asymmetry parameter 17 since the total EFG no longer has the

symmetry of the perfect crystal. When both defects are present in a material,

obtaining quantitative information from the analysis of PAC spectra is usu-
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ally very difficult since great care has to be taken to ensure that the source

of line broadening is identified correctly. In order to relate the relationship

between the static line broadening and changes in the asymmetry parameter

i, a uniform random distribution of point charges was used to simulate the

static defect EFG. PAC spectra collected on cubic niobium metal, cubic sta-

bilized zirconia and Nb-doped tetragonal zirconia were fitted with this model.

Although the quality of the fits is good, more work is needed to clarify the

relationship between the new model parameters and the line broadening and

asymmetry parameter derived from conventional model fits. The PAC spectra

of Nb-doped tetragonal zirconia were fitted with a conventional static model

to establish a reliable relationship between line broadening and the asymmetry

parameter when only static defects are present in a sample. To account for ef-

fects of dynamic defects, a four state stochastic model for vacancy motion was

adapted in order to include the line broadening and changes in the asymmetry

produced by static defects. As a result, the activation energies corresponding

to the rates at which a oxygen vacancy is trapped by, detraps from, and hops

among equivalent sites about a PAC probe atom were calculated. The values

that were found are physically reasonable, indicating that the dynamics of an

oxygen vacancy around a PAC probe atom are satisfactorily described.
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The Dynamics Of Oxygen Vacancies In Zirconia: An Analysis Of PAC Data

1 INTRODUCTION

Zirconia is a material with wide potential for applications in modern in-

dustry due to its unique properties. It is tough, strong and is resistant to

caustic and corrosive chemicals. Its uses range from the cubic zirconia crys-

tal, commonly used in jewelry, to special ceramics with high ionic conductivity

that are found in oxygen sensors, high temperature heating elements, catalytic

converters, and solid electrolyte fuel cells. It can be used as a refractory ma-

terial due to its high melting point. Also, due to its nonreactive nature and

its biocompatibility it can be used in prosthetic devices.

In spite of all its useful characteristics for technological applications, zir-

conia cannot usually be employed in its pure form. Zirconia can exist in more

than one crystalline structure. The phases of pure solid zirconia at ambient

pressure are monoclinic, tetragonal and cubic. During a phase transition from

the monoclinic to the tetragonal form there is a significant change in volume.

This volume change makes zirconia, in its pure form, unusable for engineering

applications where one needs to fabricate ceramic devices with this material.

In order to suppress this phase transition, dopants are added so that the

mechanical characteristics of zirconia are improved. These dopants can alter

the ionic conductivity of these materials. For example, when a lower-valence

dopant like Y203 is used, the negative charge introduced by the dopant is com-

pensated by the formation of oxygen vacancies. The oxygen vacancies that are

thus formed increase the ionic conductivity of the ceramic material. On the
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other hand, lower valence dopants can trap these oxygen vacancies and in

the process reduce the ionic conductivity of the material. Macroscopic tech-

niques like conductivity measurements and thermogravimetric analysis have

been used to measure ionic conductivity in ceramic materials. But the results

are sparse and non-conclusive. Moreover, the high temperatures at which these

measurements need to be made (the operating temperatures of some of the

ceramic devices) can affect the quality of such measurements.

Perturbed angular correlation of 'y rays (PAC) is a non-contact nuclear

measuring technique that allows probing the microscopic environment around

a probe nucleus. PAC requires the introduction of very small quantities of

radioactive atoms to the sample being studied. The angular correlation of

gamma rays emitted by the probe nucleus is affected by electric field gradients

(EFGs) due to the charges of the crystal lattice and defects present in the

sample material. The oxygen vacancies introduced by the dopants are dynamic

defects. The vacancies are free to move around the probe nucleus and perturb

the angular correlation of the emission of gamma rays. In the sample material

there are a number of other kinds of defects. Static defects must be taken

into consideration when the PAC technique is used. Interstitial ions, stresses

in the crystalline structure, and impurities are examples of static defects that

can produce electric field gradients and perturb the angular correlation of

gamma rays.

If the PAC technique is employed to study the dynamics of oxygen vacan-

cies in zirconia ceramics, one must be able to separate the effects of the static

and dynamic defects. Fig. 1.1 shows, schematically, how these effects add up.

As an example, it is shown how the PAC spectrum and perturbing function

should look for a probe atom located in the interior of an ideal tetragonal
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crystal under the influence of static and dynamic defects. The perturbation

function shows the characteristic oscillations that results from the hyperfine

splitting frequencies. The presence of defects leads to the broadening of the

PAC spectral lines and damping of the PAC perturbation function, G22 (t).
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Figure 1.1: Simplified representation of the effects of the presence of static
and dynamic defects on the PAC spectrum and perturbation function. The
spectral line broadening (top) and the damping of the perturbation function
G22(t) (bottom) are a direct result of the presence of defects in the material.



ri

It is possible to identify qualitatively the contribution of static and dy-

namic defects. The perturbing function that describes the influence of the

defects is temperature-dependent. The contribution of static defects to the

perturbation is weakly dependent on the temperature, and it is due to the

expansion of the crystalline lattice. On the other hand, the motion of ions in

a material is highly dependent on the temperature. At high temperatures the

rapid motion of the ionic conductors averages out the perturbations; at lower

temperature the presence of dynamic defects is more discernible.

Various studies have addressed the problem of quantifying and modeling

the presence of static defects in crystalline structures. But, they neither yield

satisfactory results nor present quantitative expressions that could be directly

used in a PAC experiment. For this reason the main objective of this thesis is

to develop a method to quantify the contributions of the static defects and to

extract the contribution of static-defect-related line broadening in cases where

dynamic line broadening is also present. As a direct result of this analysis,

quantities directly related to the ionic conductivity of zirconia, the trapping,

detrapping and hopping of oxygen vacancies, will be determined. An overview

of PAC theory is presented in Chapter 2. Chapters 3 and 4 are concerned

with the description of materials and methods used in this work. In Chapter

3 a review of zirconia ceramics is given. The data used in this work, the

experimental procedure and the data handling are briefly described in Chapter

4. Chapter 5 is devoted to presentation of a model that seeks to simulate the

presence of static defects and their influence in the PAC data. Chapter 6

details the results of a second model used to simulate the distribution of static

defects. Chapter 7 is a summary of this work.
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2 PERTURBED ANGULAR CORRELATION

Like Mössbauer spectroscopy, nuclear magnetic resonance (NMR), and

nuclear quadrupole resonance (NQR), perturbed angular correlation (PAC)

is a nuclear technique that measures the hyperfine interaction between the

nuclear moment and electromagnetic fields.

In the case of PAC, what is measured is the hyperfine interaction be-

tween the quadrupole moment of a probe nucleus and the electric field gradient

(EFG) generated by the electronic charge in the environment about the probe.

PAC is a technique that has been widely utilized to study the properties of very

different materials. It has emerged as an important materials characterization

technique. PAC provides atomic scale information about the structure and

function of materials in physics, chemistry and biology [1, 2, 3, 4]. PAC has

some advantages when compared to other hyperfine interactions techniques:

It gives the same signal efficiency at all temperatures. Also, the quantity of

probe nuclei needed in a typical PAC experiment is very small, on the order

of 1011 - 1012 atoms. This assures that the probe nuclei in the sample mate-

rial are very dilute. Therefore they do not affect the overall properties of the

material being studied. Note, however that the probe must also be seen as an

impurity center in the sample material, since it is not native to the sample,

usually.

The radiations emitted by a radioactive atom as it decays are not ran-

domly distributed in space. They obey a given angular pattern, or in other

words, they are correlated. In the case of PAC, and particularly for this thesis,

one is interested in the correlation between the emission of two successive 'y

rays by a probe nucleus. In order to be useful in a PAC experiment, the y



rays emitted by a radioactive atom must have different energies in such a way

that it is possible for a detector to distinguish between those two radiations.

Also, the time interval between emissions has to be large enough to be mea-

surable (> 10 ns), but it should be small enough to avoid a high probability of

the simultaneous detection of other decaying atoms (< several microseconds).

Moreover, the radioactive probe must have chemical characteristics that will

allow its incorporation into the material to be studied. As a consequence of

these requirements, only a few atoms can be used as PAC probes. The data an-

alyzed in this thesis were collected in PAC experiments that used two different

probes: '81Hf and "In.

A very interesting characteristic of hafnium is that most zirconium min-

erals contain about 1% of this metal occupying substitutional zirconium po-

sitions; i.e. zirconia materials usually contain about 1% of Hf02 [47]. The

PAC probe, 181Hf can be obtained by the irradiation of the sample material by

thermal neutrons. The most important features of the decay scheme of '81Hf

are shown in Fig. 2.1. '81Hf decays by the emission of a /3, and has a half

life of 42.4 days. The excited state of '81Ta has a half-life of 17.8 [ts. The

decay to the ground state can occur by the emission of different 'y rays. Of

interest in PAC are the 133 keV and the 482 keV radiations. The intermediate

state in this cascade has a 10.8 ns half-life, and has a quadrupole moment,

Q+5/2 2.36(5) b, that interacts with the sample material EFG [5].

The decay scheme for 111111 is shown in Fig. 2.2. It decays to an excited

level of "Cd by electron capture. The excited state of "Cd has a half-life of

120 ps. The decay to the ground level occurs by the emission of two successive

'y rays of energies 171 keV and 245 keV. The half-life of the intermediate level

is 85 ns.
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The interaction with a local EFG is proportional to a quadrupole moment

of Q+5/2 = 0.83(13) b. "In is the most often used PAC probe. It is available

commercially as indium chloride in dilute HC1 solution.

To measure the angular correlation between the radiations emitted by the

probe nuclei, it is necessary to define a given orientation in space. In a bulk

experiment, as is performed with zirconia materials, this is not possible. The

relatively large number of probe nuclei in a sample have the nuclear quadrupole

principal axes randomly oriented, which prevents the choice of any favored

spatial orientation. The randomness in the orientation can be removed in

two ways. The first one consists in lowering the temperature of the sample

material in very strong electric field gradients. In the second one, the spatial



orientation is defined by the emission of the first 'y ray, 'Yi of the cascade

decay, and a detector at an arbitrary position. The direction of emission of 'y

is then used to define a quantization z-axis. Associated to the z-direction is the

quantum number m. The conservation of angular momentum in a radioactive

decay dictates that only certain intermediate nuclear rn-states take part in the

decay. So, by choosing the direction of emission of the 'yi ray of the cascade, a

population of nuclei oriented with a specific angular distribution are selected.

In this way it is possible to measure the angular correlation of '72 with respect

to '-y. As a result it is observed that radiation is emitted according to an

anisotropic pattern [61. This anisotropic radiation pattern is shown in Fig.

2.3. Angular correlation experiments are useful to obtain nuclear properties

such as spins, parities of nuclear states and occasionally the magnetic moment

of nuclear levels.

The angular correlation as described above occurs for nuclei in a region

of space where there are no EFGs. In this situation, the measurements of

coincidences and the recording of the number of radiations '72 by a detector in

a fixed position in space will result in exponential decay with half-life equal to

the half-life of the intermediate state of the probe being used.

A probe nucleus, when introduced in a material, will feel the effects of

the local EFG. This interaction will then perturb the angular correlation of

emission of the radiations. By measuring the '72 decays, as indicated above,

one can observe, superimposed on the exponential decay curve, "oscillations"

or "wiggles". These wiggles are a direct result of the hyperfine interaction

between the quadrupole moment of the nuclei and the local EFG.
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z

(a)

Figure 2.3: Angular distribution of 'y with respect to the direction of a pre-
ceding 'y in a radioactive transition [7].

In order to better understand the results obtained in a PAC experiment,

in the following sections will be discussed the theory describing the angular

correlation of 'y rays and the perturbations caused by the presence of static

and time dependent EFGs. The formal theory of PAC is rather complicated.

Other theses and publications have described it in detail [40, 47, 49, 5, 8]. In

this thesis, the main results of PAC theory will be presented in a compact

way, based on previous Ph.D. dissertations from our department [47, 9, 10].

The reader interested in the formal theory of PAC is referred to the references

listed above.
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2.1 THE ANGULAR CORRELATION FUNCTION

In a nuclear cascade I -+ I -+ I, the initial state I, M decays by

the emission of radiation 'y' into the intermediate state 1, M), and then into

the final state I M'i by the emission of 72. The probability that these two

radiations are emitted in the directions k1 and k2 into the solid angles dQ1 and

dQ2 is given by W(k1, k2, t)dQ1dQ2, where t is the time separation of emission

of the radiations (see Fig. 2.4). The function W(k1, k2, t) defines the angular

correlation of 'Yi and 72

x
Y

Figure 2.4: Angles used for the definition of the 'y' and 72 radiation directions.

Using density matrix formalism, the most general form of the angular

correlation function is

W(k1,k2,t) = Tr[p(ki,t)p(k2,O)] = (2.1)
mm'

where p(ki, t) and p(k2, 0) are the density operators that describe the system
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immediately after the emissions of 'Xi and 'Y2, respectively; m and m' are the

sub-levels for the intermediate state.

Since the intermediate level has a finite lifetime, the presence of pertur-

bations, i.e. EFGs, can affect the angular correlation between successive radi-

ations. The interaction between the probe nucleus and the local EFG occurs

during the lifetime t of the intermediate state, and it is described by the inter-

action Hamiltonian K(t) . The time evolution operator of the system is given

as
7 1

A(t) exp
J

K(t')dtl) (2.2)

The matrix elements of the first term in the right-hand side of (2.1) can

be expressed as

where

and

(mp(ki, t) rn') = (mo(p(ki, 0) mo')(mbmb' G(t) mama') (2.3)
mbrnb
mama,

(mbmb' G(t) mama') = (ma A(t) mb) (mb' A(t) ma') (2.4)

p(ki, t) A(t)p(k1, 0)A(t) (2.5)

In (2.3) and (2.4), ma, ma' define the sublevels in the intermediate state

immediately after the emission of 'Yi, and mb, mb' the sublevels immediately

before the emission of 'Y2. G(t) is the perturbation factor.

If polarization of the radiations is not observed, the matrix elements of

p(ki, t) and p(k2, 0) are given by

( I I
(mlp(ki, 0) rn') = (_1)2i+mAk, ('Xi)

)

/Y' (Ok, c51)

k1N1 m' m N1

(2.6)
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II I k\
(mp(k2, 0) rn') = (_l)2I_If+mAk2 (2)

k2N2 l\rn rn N2)
k(02,2)

(2.7)

(i i k1\ (I I k2\
The terms (

I and ( are the Wigner 3-j sym-
\rn' rn 1V1) rn' rn N2)

bols, and }' are spherical harmonics.

Combining equations (2.1) and (2.3), and using equations (2.6) and (2.7)

gives

Ak1(u1)Ak2(72) N1N2W(k1,k2,t) =
(2k + 1)(2k2 + 1)

(t)Y1(O1,l)Yk2(O2,2)

Nj N2

(2.8)

The perturbation factor G2 (t) is defined as

G12(t) (_1)2I_ma+mb/(2k1 + 1)(2k2 + 1)
ma 7a
mbTnbl

/ I I ki) (i I k2)
(rnaA(t)rnb)(rnblA(t)rna') (2.9)x

rn' rn N1 rn' rn I\T2

Equation (2.8) expresses the angular correlation in its most general way

when the polarization of the radiations is not considered. The perturbation

factor, given by equation (2.9), contains all the information about the inter-

action between the probe nuclei and the external EFG. Note that in equation

(2.9) the summation is carried over all sublevel transitions. Also, the Wigner

3-j symbols give the amplitude of the coupling of the angular momentum of

the nucleus and the local EFG.

Ak1('yl) = Ak1(L1L'iIJ) and Ak2(y2) = Ak2(L2L'21f I) are factors known

as the anisotropies of the angular correlation, and they depend only on the
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spins of the nuclear states, I, I and I involved in the transition and on the

multipolarities of the emitted radiations, L.

One can say that, classically, the perturbation exists because the torque

exerted by the local EFG on the probe nucleus causes it to precess about the

axis of symmetry of the EFG with a given precession frequency. The preces-

sional motion of the nucleus will reorient it in space, and, in turn, alter the

angular correlation of the emitted radiations. Fig 2.5 illustrates the classi-

cal interpretation of the perturbation on the angular correlation. This view

does not correspond to what is really happening quantum mechanically, but

it is useful in helping to visualize the interaction between the nucleus and the

EFG. The changes observed in the angular correlation are a consequence of the

redistribution in the rn-state populations caused by transitions in the probe

nucleus as a result of its interaction with the local EFG.

vzz

Figure 2.5: Classical interpretation of the perturbed angular correlation. The
nuclear spin I precesses about the V, axis with precession frequency WQ.
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22 ANGULAR CORRELATION OF FREE NUCLEI

If the sum of all perturbations is equal to zero, as is the case if the probe

nucleus is in material whose lattice has cubic symmetry and is defect-free, the

interaction Hamiltonian K(t) = 0, and A(t) = 1.

Equation (2.4) becomes

(maA(t) Im&) mb' A(t) ma' marnbrna/mbI (2.10)

Introducing this result in equation (2.9), and using the orthogonality re-

lation for the 3-j symbols

(I I k\ (i I k2\

(,m' m N1) m' m N2) = (2k1 + 1)'kk2öN1fl, (2.11)
mm'

the perturbation factor is then given by

G2(t) = kik28Nin2 (2.12)

Using the addition theorem for spherical harmonics

k
47r

Pk(cos9) = 2k+1
y*N(0)yN(9) (2.13)

N=--k

and inserting equation (2.12) into equation (2.8), and carrying out the sum-

mation over N1 and N2, one obtains the unperturbed form of the angular

correlation function
k,,,

W(k1,k2)=
i

k=O even

kmax

Akeyl)Ak(y2)Pk(cosO) = AJPk(cosO) (2.14)
k=O,even

Pk(cos 0) are the Legendre polynomials,0 is the angle between the radia-

tions 'y' and 'Y2, and Akk = A('y1)A('y2). The summation in equation (2.14)



16

contains oniy even values because it is assumed that the polarization of the

radiations is not observed, and kmax = MIN(21, L1 + L, L2 + L). The probe

nuclei 181Ta and '11Cd have spin of the intermediate state I 5/2, which

gives kmax = 4. The cascade decay depends only on nuclear transition param-

eters, given by the Akk parameters. The Legendre polynomial term gives the

connection between successive radiations in the cascade decay.

2.3 EFFECT OF STATIC EFGS ON THE ANGULAR
CORRELATION FUNCTION

If the EFG at the probe site stays constant during the lifetime of the

intermediate state, the interaction Hamiltonian, K will be time independent,

and the time evolution operator is given by

A(t) = exp (_Kt) (2.15)

To diagonalize the interaction Hamiltonian, K, a unitary matrix is used:

UKU1 = E (2.16)

where E is the diagonal energy matrix with energy eigenvalues E.

Combining (2.16) and (2.15), and expanding the result in a power series,

it can be shown that time evolution operator is given by

A(t) = U1exp (JEt) U (2.17)

The matrix elements of A(t) are

(maIA(t)Imb) = (maIn)(nlmb)exp (_Et) (2.18)
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Using this result, the matrix elements of G(t) (see (2.4)) become

(mbmb' G(t) mama') (man) (ma' flI)*(mbn)*(mb, n') exp i
h

(

fin,
(2.19)

and the perturbation factor can be written as

( I IG2(t) = (_1)2I_ma+mb/(ki + 1)(2k2 +1)

)mama! , in' m 1V1
mbmb,

x1
II I

k2) (
.E

m N2
z t)

(2.20)

Analytical expressions for (t) for various values of I for static inter-

actions can be found in [12].

If the EFG is axially symmetric, the quantization axis can be chosen to

coincide with the axis of the symmetry. In this situation, K and A(t) become

diagonal, and the perturbation function is given by

G2(t) = (_1)2ma+mb\/(2kl + 1)(2k2 + 1)
nfl,

IxI exp z

(I I k1\ II I

k2)m N1) m' in N2 h
(2.21)

If any of the radiations is emitted parallel to the symmetry axis of the

perturbing field, the corresponding spherical harmonic Y1m in equation (2.9)

becomes
/2k +yN

8N0 (!\ 4ir
(2.22)

Using the sum rule of the 3-j symbols in (2.32) gives n' n + N = 0; all

terms n n' vanish and the perturbation function becomes



C2(t) = 81c1k2 (2.23)

which shows that in this situation the angular correlation is not perturbed.

Commonly, powder samples are used in PAC experiments. These samples

can be seen as a collection of a large number of microcrystals randomly oriented

in space. In order to find the perturbation function, it is necessary to average

equation (2.20) over all possible spatial orientations of the microcrystals. D(l)

is the rotation matrix that transforms the interaction Hamiltonian K(z) from

the lab coordinate system z to the principal axes system of a single microcrystal

z' through a set of Euler angles Q = (, 0, 'y)

K(z') D(Q)K(z)D1(12) (2.24)

Using the operator U to diagonalize K(z'), the time evolution operator is

A(t) D'()U' exp (_Et) UD(Q) (2.25)

and the matrix elements of A(t) are

(maAmb) = (nmi)(nm2exp (_Et) DI* ()D2mb() (2.26)mlma
?fllfl12fl

where the terms

D' (Q) = m1D(Q)m) (2.27)
ni1 rri

are the matrix elements for the rotation operator.

With (2.26) the matrix elements of G(t) are

(7ribrnb'G(t)riiama') =
m1m1,
m2Tn2,

( E
En1t DI* (Q)D' ,ma,(* ()Dl,b,() (2.28)x exp

h )
7fll7fla m1 ) 7fl27fl
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Combining (2.26) and (2.9), and the contraction relation for the 3-j sym-

bols:

( i 32
11 Di2 (2.29)m m m')

Dmi = D,
m1rn2 m1 m2 m)

and after the summation over mam'a and mbm'ô is performed, the perturbation

is

G2(t) = (_1)21+m1+m2[(2k1 +1)(2k2+1)]exp (_ Ew)
mlm2
m m

/ I I k\ / I I k2
Dk1* 1Q\Dk2 (Q)p1N1 / p2N2x

m1 p1) m2 P2)
x (nml)(7l1nl)*(nm2)(nm2,)* (2.30)

With the orthonormality of the rotation matrices given by

IDu1* ()Di2 (Q)d 2j+ (2.31)mjmj m2m2

it is possible to average (2.30) over all possible orientations of the microcrystals

in the powder sample. The result is

(Gk1k2(t)

klk26NlN26plp2S2exp z
n

(2.32)
nfl,

The S2 coefficients are defined by:

- / (_1)21+ml+m2
(i I k1 / I I k2)

mm
m1 ) m2 pmj 7112

x (2.33)
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The selection rules of the 3-j symbols require rn'1 m1 + p = 0 and rn'

rn2 + p = 0. The sums over in1, rn'1 and rn2, rn'2 can therefore be replaced by

a sum over p. Inserting (2.33) in (2.32) gives

Gkk(t) = (_1)2I+m1+m2
( I I k1\ (i i k)

fl1jmfl
'

rn m1 p1 rn' rn2 p
rnm

( .E,
x exp t) (nrni)*(nhrni)(nfrn2)(nm2,)* (2.34)

The comparison of (2.34) with (2.20) shows that the perturbation function

for a powder sample is the average of the perturbation function of a single

crystal

G/ç(t) G(t) (2.35)
2k + 1

p

Rearranging (2.32) gives the perturbation function for a powder

= + Scos ((En
(2.36)

n nn'

Inserting this equation in (2.8) and summing over N1, N2 and applying the

addition theorem for the spherical harmonics gives a the angular correlation

function for a powder

k max

W(O,t) = AkkGkk(t)Pk(cosO) (2.37)
k=O,even

The term S, is independent of time; it is known as the hard core term.

This term shows that the angular correlation of a powder is never completely

wiped out by static fields of any kind. Its origin is due to the fact that a

powder sample with a very large number of microcrystals has a number of

these microcrystals aligned with the direction of propagation of one of the 'y
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rays emitted by the probe nuclei. According to the result given by (2.23), in

this situation, the angular correlation is not perturbed.

For I 5/2, kmax = 4 and (2.37) is given by

W(O, t) = 1 + A22G22(t)P2(cos 9) + A44G44(t)P4(cos 0) (2.38)

The Akks are normalized so that A00 = 1.

2.4 THE STATIC QUADRUPOLE INTERACTION

After obtaining an expression for the angular correlation function, it is

now necessary to calculate the perturbation factor. The perturbation results

from the interaction of the electric quadrupole moment of the probe nude with

the local EFG. Nuclei that have non-spherically symmetric charge distributions

possess quadrupole moments (see Fig. 2.6).

Figure 2.6: Shape of charge distribution in a nucleus. A positive quadrupole
moment corresponds to a prolate (left) charge distribution. A negative
quadrupole moment corresponds to an oblate charge distribution [7].
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The energy of interaction of the nuclear charge distribution p(r) and the

extranuclear field potential (r) is

E = fp(r)(r)dr (2.39)

Expanding the potential in a Taylor series about r 0 gives

(r)=(0)+( (2.40)
j1 aj i,j1

The interaction energy can then be written as

where

EE = E° + E' + E2 +... (2.41)

= ofp(r)dr (2.42)

E'
I'

( 0

= -) J p(r)xdr (2.43)

E2
1 )xixif(r)xixidr (2.44)

i,j=1

The term E° corresponds to the energy contribution of a point charge

distribution; and it is a constant. The term E1 describes the energy of

interaction between the dipole moment and the electric field at the center of

the nucleus. This term does not contribute because the expectation value of

the dipole moment is zero. The only important term in the expansion is

This term is a 3 x 3 symmetric matrix that can be diagonalized into a principal

axis system. The diagonalization yields

E2 = Ij f p(r)xdr = 1jjf p(r)rdr+ Ijj f p(r) (x dr

(2.45)
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ii = (2.46)

Since the potential obeys the Poisson equation, at the center of the nucleus,

the potential can be expressed as

(v2)0 >I (2.47)
Ej

where (0)2 is the probability density of the electron wave function at the

center of the nucleus. Inserting (2.47) into (2.45) gives

where

and

E2 = EM + EQ (2.48)

EM = (0)2fp(r)dr (2.49)
6co

EQ =
f p(r)

dr (2.50)

EM is the monopole term and can be written as

EM = 02Kr2 (2.51)

The monopole term depends only on the mean square of the nuclear radius;

it does not depend on the nuclear orientation and does not contribute to the in-

teraction between the nucleus and the external EFG. EQ, the quadrupole term,

does depend on the nuclear orientation and is the source of the quadrupole

interaction. By defining the tensors

Q = fp(r) dr (2.52)

and

ii = vi + (v) (2.53)
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the quadrupole term can be written as

EQ = VQ (2.54)

Note that V is a traceless matrix and that (V2) öj does not contribute

since > Q = 0. Vj is the tensor that describes the EFG, and oniy charges

not localized in the nucleus contribute to l/j.

Since > = 0, the EFG can be completely defined by two parameters.

By choosing a principal axis system, one can have IVZZI > > V. One of
these parameter is V, the other is the asymmetry parameter defined as

vyyvxx 0ii1 (2.55)
vzz

To calculate EQ., it is easier to express and V as spherical tensors.

The components of the EFG are

V2 = ± ) (2.56)

V22 = ±(V V±2iV)

A principal axis transformation yields

V20 = 471
V21 = 0 (2.57)

V2 = V) =

The classical electric quadrupole moment is

Q = Jp(r)0dr
(2.58)

eV 5
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In quantum mechanics Q is defined as the expectation value of the quadrupole

operator

Q = (Imr2YIm) (2.59)
e 5

By the Wigner-Eckart theorem

2 I
m 0 m)

(ImQ2oIm) = (_1)m (IIQ2I (2.60)

In this way it is possible to define the electric quadrupole moment as

Q2q
2y (2.61)

and the quadrupole energy is expressed as

EQ = (_1)eQ2qV2q (2.62)

In the quantum formalism (2.62) the electric quadrupole energy is the ex-

pectation value of the quadrupole interaction and Qq is the operator operating

on the nuclear states
2

EQ = (ImHQ JIm') = (-1)"(ImQ2qjIm'V2q (2.63)
q=-2

When calculating the energy eigenvalues, it is interesting to consider the

cases where 17 = 0 and where > 0.

For the axial symmetry case (ij = 0), applying the condition V = V, to

(2.62) yields

EQ = KImHqlIm) = (2.64)

With the definition of Q

Q = 4(iIQ2oII) = ( 1 2
I KIQ2I) (2.65)"I 0 I,)



and substituting (2.60) into (2.64) gives

-m0 ___
(1 2 I

m)
EQ=VZZ(_1)Im eQV 3m2 1(1+1)

(i 2
ZZ 41(21 1)

)eQ (2.66)

0I)
The transition energies between two sublevels m and m' are given by

eQV = 3(m m'2)tl/Q (2.67)EQ(m) EQ(m')
41(21-1)

where
eQV

WQ
41(21 1)h

(2.68)

is the quadrupole frequency.

In (2.67) the term (m2m'2) is always an integer and, as a consequence, the

transition frequencies are integer multiples of the lowest transition frequency:

= GWQ for half-integer I, and W0Q = 3WQ for integer I.

For I = 5/2, the transition energies are

EQ(m = ±1/2) =

EQ(m = +3/2) =eQV (2.69)

EQ(m = ±5/2) = eQV

and the PAC transition frequencies are

EQ(+3/2) EQ(±1/2)
6w1=

EQ (±5/2) EQ(±3/2)
= 12WQ (2.70)w2=

= W1 + W2 18WQ
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Fig. 2.7 shows the energy splitting for an I = 5/2 nuclear level and the

PAC transition frequencies.

Using (2.67), the perturbation function for a powder sample (2.36) becomes

Gkk(t) = S + > 8, cos[3wQ(m2 rn'2)t] (2.71)
m mm'

Equation (2.71) can be further simplified by

= rn rn'2 /2, for half-integer I, or n rn2

defining

Sk=S,= (i
mm' \rn

The result is

introducing an index

rn'2 for integer I, and by

I k\
(2.72)

rnpJ

Ckk(t) = Sko + Skn cos(nwt) (2.73)
m>O

The Sk are normalized so that > S = 1, and Gkk(0) = 1. The meaning

of (2.73) is that the perturbation function rotates with frequencies nw°Q and

that each frequency is weighted by the amplitudes S.

If the interaction Hamiltonian is not axially symmetric, it has to be diag-

onalized to find the energy eigenvalues. Although this is difficult for non-axial

symmetries, it is still possible to express the matrix elements of the Hamilto-

nian for the general case as

Hm,m = flwQ[3m (1(1 1)]

= 0 (2.74)

Hm,m2 = wQ[(I+m 1)(I±m+1)(I±m+2)]
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Figure 2.7: The electric quadrupole splitting of the intermediate state I = 5/2.

The probe nuclei 181Ta and '11Cd have the spin of the intermediate state

I = 5/2. In this situation the Hamiltonian matrix as a function of ij is

10 0 17\/iii 0 0 0

0 2 0 3i/ 0 0 I

HQ = t1WQ
/ii 0 8 0 3/ 0 I

I
(2.75)

0 3i/ 0 8 0

0 0 3i/ 0 2 0

0 0 0 /i 0 io)

The secular equation for the quadrupole Hamiltonian is

E3 - 28E(i72 + 3)(hwQ)2 160(1 j2)(hwQ)3 = 0 (2.76)
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E572 = 2ahWQ cos [ cos'

E312 = -2aWQCOS (2.77)

E+i/2 = -2WQ

a/2+3) (2.78)

80(1 n2)
(2.79)

a3

The transition frequencies are the differences between the energy levels

(2.77).

E312 E172 = 2wQWi =
n

riE312 2wQ sin -( cos' )1 (2.80)W2 =
h L3

riE512 E112 = 2wQ sin + cos1W3 =
h

where w3 = w1 + w2. The energies of the levels and the PAC transition fre-

quencies are dependent on . Figure (2.4) shows the eigenvalues (2.77) and

the frequencies (2.80) as a function of j.

Introducing again the index n = rn2 rn'2 /2 the expression for the per-

turbation function in a powder is

3

Gkk = Sko(?7) + Sj(i1) cos[w(j)t] (2.81)
n=i

When 17 > 0 the Skn coefficients are functions of the asymmetry parameter TI

[14]. These coefficients are tabulated in Table 2.1. As in the case ij = 0, the

Sk are normalized so that Sk = 1.
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For I = 5/2, the angular correlation function is

W(O, t) = 1 + A22G22(t)P2(cos 0) + A44G44(t)P4(cos 0) (3.38)

The dependence of the perturbation function G22 (t) on the asymmetry

parameter i is shown in Fig. 2.9.

The probe nuclei in the interior of a material are under the influence of the

EFGs generated by the material. There are four sources that can contribute

to the total EFG at the probe nuclei [40, 15]:

(i) Ions and electrons from the crystalline lattice surrounding the probe.

(ii) Electrons in the probe atom located in unfilled atomic shells.

(iii) Electrons in filled electronic shells in the probe atom.

(iv) Defects in the lattice.

The contribution of the first source (i), although relatively important,

has the same symmetry as the crystal where the probe nuclei are located, it

only adds to the overall EFG of the material without changing its symmetry

significantly.

In first approximation it is valid to consider that the contribution of the

electrons from (ii) is not important if one assumes that electrons in filled

atomic shells have a spherically symmetric distribution and therefore do not

contribute to the EFG at a probe site. The other electrons in unfilled shells

contribute to the EFG and reduce the EFG from the crystal due to their

asymmetric distribution. It is estimated that this effect has a small importance

on the total EFG at the probe site.
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Figure 2.8: Elgenvalues (top) and PAC frequencies (bottom) for quadrupole
interaction (I = 5/2) as a function of the asymmetry parameter i. Energies
are given in units of hwQ.
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Figure 29: Perturbation function G22(t) for a static quadrupole interaction
(I = 5/2) as a function of i.
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S20 S21 S22 S23

17

520 S21 S22 S23

0.2000 0.3714 0.2857 0.1429
0.0

0.1111 0.2381 0.2857 0.3651

0.2024 0.3688 0.2855 0.1432
0.1

0.1098 0.2395 0.2858 0.3649

0.2090 0.3617 0.2850 0.1443
0.2

0.1061 0.2435 0.2861. 0.3643

0.2181 0.3517 0.2844 0.1458
0.3

0.1010 0.2491 0.2864 0.3634

0.2280 0.3405 0.2840 0.1474
0.4

0.0955 0.2553 0.2867 0.3625

0.2373 0.3296 0.2841 0.1490
0.5

0.0904 0.2613 0.2866 0.3617

0.2451 0.3198 0.2847 0.1504
0.6

0.0860 0.2668 0.2863 0.3609

0.2511 0.3113 0.2861 0.1515
0.7

0.0827 0.2715 0.2855 0.3603

0.2552 0.3044 0.2882 0.1522
0.8

0.0804 0.2753 0.2844 0.3599

0.2576 0.2988 0.2910 0.1526
0.9

0.0791 0.2784 0.2828 0.3596

0.2583 0.2945 0.2945 0.1528
1.0

0.0787 0.2808 0.2808 0.3596

Table 2.1: Sk coefficients (k = 2, 4) as a function of for a quadrupole
interaction with I = 5/2.
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When in free space, the filled electronic shells of the probe atom possess

spherical symmetry. Inside the material, due to the presence of the lattice

EFG, the filled shells are distorted and lose their spherical symmetry, and

this will produce an EFG that will add to the EFG already present at the

probe site. The EFG is proportional to r3, and due to the proximity of the

probe nucleus to the electrons in these distorted shells, this contribution can

be significant. But, unfortunately, the calculation of this effect is complicated.

In a defect-free lattice the EFG at the probe site has the symmetry deter-

mined by the lattice. The presence of a defect in near proximity to the nucleus

will alter significantly the symmetry at the probe site. A charged impurity or

stresses in the lattice structure can significantly increase or decrease the EFG

symmetry at the probe site. Defects are considered to be the most important

factors that can alter or disturb the EFG in a material.

It is very difficult to model or to account for these contributions to the

EFG. Still, PAC is capable of providing important information about the en-

vironment surrounding the probe nuclei because, usually, the two parameters

that are used to describe the EFG at the probe site, 'q and V, are unique

depending on the conditions present around the probe nuclei.

Equations (2.73) and (2.81) were obtained by assuming that the microcrys-

tals in a powder are defect-free. Even though high purity crystals can be pre-

pared, most of the materials of interest have static defects such as impurities,

lattice deformations, etc. When these defects are present in small concentra-

tions, the EFG from these imperfections is often assumed to be described by

simple distribution functions such as Gaussian and Lorentzian distributions.

The perturbation functions are then modified to include the contribution of

the static defects. The Gaussian and Lorentzian distributions are used when
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the relative width of the EFG distribution, S = /VZZ/VZZ is small.

The perturbation function is given by the convolution of the theoretical

perturbation function with the distribution function. This is expressed as

G'kk(t)
f Gkk(t)f(w w')dw (2.83)

where f(w w') is the normalized distribution function and w' is the peak

frequency.

The Gaussian distribution is

1 1 (w_wI)21
fG(Ww')= exp\a 2a2 ]

(2.84)

a is the width parameter of the distribution. The result of its convolution with

the theoretical perturbation function for powder samples is

3

G'k(t) = Sko() + S() cos[w'()t] exp (Sw't)21
(2.85)

2 jn=1

where S = 0/WQ. The peak frequencies w'?, as well as the damping term ,

are determined by fitting the experimental PAC data with the model.

For a Lorentzian distribution

1 172
fL(w w') = (2.86)

(F/2)2 + (w w')2

where F is the FWHM of the distribution. Its convolution with the perturba-

tion function for a powder gives

Gk(t) = Sko() + Sk() cos[w'()t] exp(Sw't) (2.87)

with S defined as: S = F/2wQ.

The normalized Gaussian and Lorentzian distribution functions are shown

in Fig. 2.10. They represent the expected profile of the PAC spectral lines.
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Figure 2.10: Graphs of normalized Lorentzian and Gaussian distributions,
with FWHM, F = 2.354cr. w' IS the peak frequency.

2.5 TIME-DEPENDENT PERTURBATIONS

The existence of mobile charge carriers like vacancies in a material gives

rise to time-varying EFGs. The motion of these dynamic defects causes the

lattice to relax and alter the local lattice EFG, at least on average. A probe

nucleus located in proximity to a dynamic defect feels the change in the sym-

metry of the local EFG which perturbs the angular correlation of the 'y cascade

decay. The understanding of the relaxations caused by randomly fluctuating

EFGs are relevant in the study of zirconia ceramics, being related to important

physical quantities such as activation energies.
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The first studies of time-dependent perturbations [16] considered probe

nuclei in a liquid solution. The Brownian motion of the ions and the tumbling

motion of the probes in the liquid are the source of the varying EFG experi-

enced by the probes. Assuming that the interaction between the environment

EFG and the quadrupole moment of the probe nuclei varies randomly in time,

the perturbation function was found to be a simple function:

CJç(t) = e_t (2.88)

The damping factor .'k is given by

Ak = + 1)[41(I + 1) k(k + 1) 1] (2.89)

where 'r is the relaxation time that describes the time it takes for local config-

uration to change in the liquid 10'), and (w is the time and spatial

average of the quadrupole frequency. Eq. (2.88) is valid when (w)r << 1,

which corresponds to the fast motion of small molecules in low viscosity liquids.

The slow rotational diffusion effect on the angular correlation was derived

assuming a tumbling motion of the probe nuclei in an axially symmetric molec-

ular EFG [17]. The perturbation function in this case is

Gkk(t) = e_tGrtw(t) (2.90)

Gt(t) is the perturbation function discussed in a previous section. Ak =

k(k + 1)D, where D is the rotational diffusion coefficient. Interestingly, the

liquid behave as if it were frozen and the perturbation function is modified by

an exponential factor that damps the angular correlation, which is typical of

dynamic effects in quadrupole interactions [18]. This result has been used to

fit PAC data on zirconia ceramics [47].



A formula for simultaneous static and time-dependent perturbation was

derived [47] based on the formalism of the Bloch, Wangness and Redfield

theory of nuclear relaxation [19]. The perturbation function in a powder when

both static and time-dependent perturbations are present is

Gkk(t) = e0tS() + S() cos(wnt)emt (2.91)

Ako is given by (2.89). The A are defined as

= A112,312

A312,512

A3 =

with

6 2
Amm' = YC(WQ) [12(1 + 1)2 + 1(1 + 1)(m2 + rn'2 1) - 3m2m/2] (2.92)

When there is no static interaction, the perturbation function simplifies to

(2.88), the expression derived for the perturbations in a liquid.

Other studies addressed this problem. Some tried to derive analytical

expressions to describe the time-dependent perturbations [201. But the results

obtained are not entirely reliable due to assumptions and simplifications that

had to be made in order to deal with this difficult problem. To circumvent

the complexity of the theory of quadrupole interactions, stochastic models

have been developed with the purpose of obtaining numerical solutions for the

perturbation functions. An extensive reference list of stochastic models can

be found in [18, 21].

Blume's stochastic model [22, 23] serves as core for various stochastic mod-

els that solved numerically the perturbation function. One model [24] considers



that only a fast fluctuating EFG is present. In this case, the resulting per-

turbation function is equal to (2.88). Another model [25] also includes in the

calculations a static EFG, the perturbation function obtained in this situation

corresponds to a high visciosity case and (2.90) is revcovered.

More recently, a family of stochastic models has been developed [26, 27,

18, 21, 28]. They expanded previous models to include the trapping and

detrapping of vacancies by a probe nucleus. Of particular interest to this

work is the four-state stochastic model for vacancy motions with trapping and

detrapping in the high-temperature regime [29]. It is described in Chapter 6.



3 ZIRCONIA

Zirconia ceramics have been extensively studied due to their various ap-

plications. As a ceramic material, it presents mechanical hardness, interesting

dielectric properties, as well as resistance to heat and to the attack of chem-

icals. But one of the mechanical properties of zirconia renders it useless in

technological applications: the tetragonal to monoclinic transformation re-

suits not only in a change of symmetry but also in a volume expansion of

about 4.7 %. This transformation occurs very fast and causes a break-up of a

ceramic device [30].

In order to preserve the integrity of a ceramic device, zirconia can be al-

loyed with metal oxides and rare-earth metal oxides such as CaO, CeO2, MgO,

Sc203, La203, and Y203. The introduction of these dopants stabilizes the ma-

terial by lowering the temperature for the cubic to tetragonal and tetragonal

to monoclinic phase transformations. Even though systems like CaO-, MgO-

and Y203-Zr02 have been investigated thoroughly, it is not yet known with

certainty why the introduction of dopants has a stabilizing effect; the solubil-

ity in a solid solution of the stabilizing ion together with a suitable value of

the atomic radius seem to be dominant parameters in the stabilization process

for zirconia [31, 32]. This work is mainly concerned with the effects of doping

zirconia with yttria, Y203.

To better understand the results obtained from PAC and from the analysis

presented here, in the next sections is reviewed some of the physical properties

of pure and doped zirconia, the defects and previous PAC studies of zirconia

systems.
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3.1 ZIRCONIA STRUCTURE

Pure zirconia is a solid that can exist in three different crystalline struc-

tures or polymorphs: the monoclinic, tetragonal, and cubic phases. Also, at

room temperature and at high pressures (> 40x108 Pa) zirconia can exist as

an orthorhombic crystal [33].

The monoclinic, tetragonal and cubic phases are based on the fluorite

crystal structure shown in Fig. 3.1. This structure is a face-centered-cubic

packing of the catioris, with the anions occupying the interstitial tetrahedral

sites.

.0
OZr

Figure 3.1: The fluorite structure of zirconia [34].

Monoclinic zirconia exists at temperatures below 1170°C. Its crystal struc-

ture is the one that most deviates from fluorite structure. It can be seen as

a distortion of the fluorite structure where the unit cell is stretched along the
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c-axis followed by a tilt of the c-axis versus the a-axis by Its cell di-

mensions are: a = 5.1505 A, b = 5.2116 A, c 5.3173 A, and 9 = 81.22°.

It has P21/c space group symmetry. The atomic arrangement in the unit cell

is (4e) + (x, y, z; , y + 1/2, 1/2 z), with the following parameters: Zr(x

O.2578,y = 0.0404,z = 0.2809), O-I(x = 0.O69,y = 0.342,z = 0.345) and 0-

II(x = 0.451, y = 0.758, z 0.479). The coordination number of the Zr atom

is seven. In this system there are two types of oxygen atoms, 0-I has three

Zr neighbors and 0-TI has four Zr neighbors. The 0-I atoms are triangularly

coordinated to the Zr and are approximately parallel to the (100) plane. The

four 0-IT atoms are coordinated nearly tetrahedrally in a distorted square par-

allel to the (100) plane. The Zr atoms are located between the layers formed

by the 0-I and 0-IT atoms. At room temperature the distances between Zr

and the 0-I atoms range from 2.05 to 2.16 A, and for the Zr and 0-TI atoms

from 2.15 to 2.29 A[35, 36].

The tetragonal phase of zirconia is stable between -' 1170 and 2370°C.

The structure of tetragonal zirconia can be represented by a slightly distorted

fluorite structure where the c-axis has been stretched. The dimensions of the

unit cell are a = 3.64 A and c = 2.065 A. The tetragonal cell is described by

means of two formula units. The Zr atoms are at (0,0,0) and (1/2, 1/2, 1/2).

The 0 atoms are located at (0, 1/2, z), (1/2, 0, z) , (0, 1/2, 1/2 + z), and

(1/2, 0, 1/2 z). The parameter z is slightly dependent on temperature [37].

For instance, at T=1250°C, z = 0.185. The space group symmetry is P42/umc.

Each 0 atom is coordinated by four Zr atoms, and each Zr atom is eight-fold

coordinated with four 0 atoms at a distance 2.455 A, and four at 2.065 A.

The first four 0 atoms and the Zr form an elongated tetrahedron. The closer

group 0 atoms and the Zr form a flattened tetrahedron rotated by 90° with

respect to the first [35].
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Figure 3.2: Crystal structure of monoclinic (left) and tetragonal (right) zirco-
ha [34].

Above 2370°C and up to the melting point at 2680°C, zirconia exists in the

cubic phase. The cubic phase has the fluorite structure with a lattice constant

a = 5.07 A. The Zr atoms are located at (0,0,0) and the 0 atoms are located

at the eight (±1/4, ±1/4, +1/4) positions. It has the space group symmetry

Fm3m. Each Zr atom is eight-fold coordinated by equidistant 0 atoms, and

the 0 atoms are tetrahedrally coordinated by four Zr atoms [35, 39].

In Fig. 3.3 is shown the Zr-0 phase diagram. Metallic Zr is present in low

concentrations up to nearly stoichiometric Zr02.
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Figure 3.3: Zr-O phase diagram [40].

3.2 ZIRCONIA-YTTRIA

In Fig.3.4 is shown the zirconia-rich section of the zirconia-yttria phase

diagram. Fully stabilized zirconia (FSZ) is obtained by the addition of at

least 17 wt.% yttria. FSZ stabilizes to the cubic phase over the entire range

of temperatures up to its melting point. Partially stabilized zirconia (PSZ)

results when less of the stabilizing agent is added, PSZ is a mixture of cubic

and tetragonal or cubic and monoclinic phases.
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Figure 3.4: Phase diagram of the Y203- Zr02 system [40].

Of particular interest is PSZ. It has better mechanical and thermal char-

acteristics than pure zirconia or FSZ [41]. It has a smaller volume change

coefficient related to the tetragonal-monoclinic phase transformation. The

doping of zirconia with Y203 introduces cations on the regular Zr sites. Due

to charge conservation, oxygen vacancies are created. The introduction of two

three-valent cations such as y3+ generates one oxygen vacancy. These oxygen

vacancies possess great mobility and move through the ceramic material with

velocities many orders of magnitude faster than the cations [30].



3.3 POINT DEFECTS IN ZIRCONIA

Various kinds of defects can exist in a crystal. Of particular interest are

point defects such as vacancies, substitutional ions, electrons, holes, interstitial

atoms and impurities. Also of importance are extended defects like strains in

the crystal lattice and defects that are induced by temperature changes in the

material. All of these defects can, at least in principle, have their presence

measured by PAC. The PAC technique can measure with great sensitivity the

interaction between a probe ion and the surrounding electric field gradient.

Due to this sensitivity, and in order to better interpret the results from a PAC

experiment, it is useful to know what kind of defects can be present in zirconia

as measured by other techniques.

In ionic conductors like zirconia ceramics, the concentration of ionic defects

can be several orders of magnitude larger than the concentration of electronic

defects [30]. Dynamic properties of the material, like diffusion and electrical

conductivity, are dependent on the concentration of ionic defects. Various

techniques have been used to characterize and quantify the ionic defects present

in the material. Conductivity measurements indicate that oxygen vacancies

are the main ionic defect at lower partial oxygen pressure in monoclinic [42] and

in tetragonal zirconia [43, 44]. At higher partial oxygen pressure in monoclinic

[42] and tetragonal zirconia [43] the dominant ionic defect is the fully-charged

zirconium vacancy. Other studies using electrical conductivity measurements

[45] disagree with the results at higher oxygen partial pressure; it is proposed

that a coupled transport by oxygen vacancies and oxygen interstitials is the

dominant effect.

Thermogravimetric measurements [46] made at temperatures between 900
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and 1400°C confirm some of the results found by conductivity measurements;

at lower oxygen partial pressures oxygen vacancies dominate, and at higher

oxygen partial pressures zirconium vacancies dominate.

Vacancies and interstitial atoms can also be classified as dynamic defects.

Strains in the crystal lattice and impurities in the ceramic material, due to

their limited mobility, can be classified as static defects. Their presence can

be measured by X-ray diffraction or scanning electron microscopy in the case

of strains, or by analytical techniques like neutron activation analysis, neutron

scattering analysis and traditional analytical chemical techniques. However,

these studies do not shed any light on how static defects interact with a probe

ion in a PAC experiment. It is necessary to use models to describe how the

presence of static defects affects the electric field gradient around a probe ion.

These models and their results are presented in Chapter 5.

3.4 PREVIOUS PAC STUDIES OF ZIRCONIA

Two different probe nuclei, '81Hf and "11n, have been used in PAC to

study zirconia. Their dissimilar chemical characteristics allow the investigation

of different properties of the sample material.

Hafnium has the same valence as zirconium; they are very similar chemi-

cally. Hafnium in zirconia occupies substitutional zirconium positions. There-

fore, it cannot attract point defects in a material electrostatically. Hafnium's

daughter atom, 181Ta, the actual PAC probe, has a +5 formal charge, and it

has an effective +1 charge when substituted in the crystal lattice. In principle,

'81Ta should attract negatively-charged point defects and repel oxygen vacan-



cies which have an effective charge of +2. Monte Carlo simulations [47, 48]

performed in order to reproduce frequency distributions in Hf PAC in 18.4

wt.% yttria-stabilized zirconia showed that an oxygen vacancy never popu-

lates the nearest neighboring anionic shell. This suggests that the dynamics of

an oxygen vacancy near a 181Ta probe may be different from a zirconium atom

or different from a trivalent dopant like yttrium [49]. Hf PAC can be used

to determine phase transitions, the diffusive motion of oxygen vacancies that

lead to relaxation of the lattice, and the presence of impurities in the ceramic

material.

111111 and its daughter atom, 111Cd, attract oxygen vacancies, due to the

fact that they have lower valences than zirconium. The probe atom, 111Cd,

has a formal charge of +2. In the zirconia crystal lattice this corresponds to an

effective charge of 2. It is expected that '11Cd will respond to the dynamics

of an oxygen vacancy around a divalent or trivalent dopant in the zirconia

system.

Hf PAC has been used to identify the phases and to study the phase

transitions in zirconia [47]. In Fig. 3.5 are shown typical Hf PAC data for

pure zirconia. The crystal lattice in each phase defines the local electric field

gradient (EFG). The pure zirconia monoclinic and tetragonal phases have

quite distinct PAC spectra. It can be argued that the 181Ta probe can attract

and trap negatively charged point defects, and that these defects, in principle,

could affect the local EFG. But, at the high temperatures at which the PAC

data was obtained, the trapping and detrapping of these defects by the PAC

probe occur many times during the lifetime of the intermediate state of 181Ta.

These effects average out, and the net contribution to the local EFG comes

from the crystal lattice.
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Figure 3.5: Hf PAC time and frequency spectra for monoclinic (top) and
tetragonal (bottom) zirconia.

In Fig. 3.6 is shown the hysteresis curve of the tetragonal-monoclinic

transformation in zirconia as measured by PAC. The large hysteresis in the

transition is a consequence of the volume change of 4.7% that occurs during

the transformation.

Table 3.1 lists the frequencies w1, w2, and the values of the asymmetry

parameter, ij. Only w1 and w2 are listed since w3 w1 + w2.
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Figure 3.6: The monoclinic-tetragonal phase transformation on heating and
cooling of pure zirconia [47].

phase w1 (Mrad/s) w2 (Mrad/s)

monoclinic (800°C) 847(4) 1503(6) 0.32(1)

tetragonal (1200°C) 993(4) 1985(5) 0.01(1)

Table 3.1: Hyperfine parameters in pure monoclinic and tetragonal zirconia
as measured by Hf PAC [40].

Another interesting system studied with Hf PAC is yttria-stabilized cubic

zirconia (CSZ). The EFG experienced at a probe site in CSZ is dependent on

the oxygen vacancies and dopants surrounding it. This is very different from

the EFG at a cation site in pure cubic zirconia where every probe nucleus

experiences, in the case of a perfect crystal, a zero EFG. In pure tetragonal

and monoclinic zirconia the PAC frequency spectrum consists of three different

frequencies.
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Figure 3.7: Hf PAC time and frequency spectra for 18.4 wt.% yttria cubic-
stabilized zirconia.

In CSZ the PAC frequency spectrum consists of a wide distribution of

frequencies, this is due to the fact that there are many different ways to arrange

dopants and oxygen vacancies around the probe nuclei in CSZ. In Fig. 3.7 are

shown time and frequency spectra of 18.4 wt.% yttria CSZ. Note that the

wide distribution of frequencies results in a nonoscillatory behavior of the

PAC perturbation function.

Phase identification can also be performed with In PAC. In Fig. 3.8 are

shown typical In PAC data for 0.5 wt.% Nb203 doped zirconia [49]. 111111 and

"Cd have lower valence than zirconium and can attract oxygen vacancies that

can perturb the lattice EFG. To obtain the frequency triplets that correspond

uniquely to the lattice, it is necessary to dope zirconia with niobia to remove

oxygen vacancies. The triplet frequencies and are listed in Table 3.2.

In order to study the dynamics of oxygen vacancies, zirconia can be doped

with different quantities of yttria. In Fig. 3.9 is plotted the dependence of the

quadrupole interaction frequency WQ versus temperature in tetragonal zirconia

at various levels of doping [50].
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Figure 3.8: Hf PAC time and frequency domain spectra for 0.5 wt.% Nb203

doped (top) monoclinic and (bottom) tetragonal zirconia.

The weak temperature dependence in niobia-doped zirconia can be ex-

plained by the thermal expansion of the crystal lattice. The temperature

dependence of the pure and yttria-doped zirconia can be explained [51] by

the interaction between oxygen vacancies and the probe nuclei. An increasing

concentration of yttria will result in a larger concentration of vacancies due

to charge compensation. The high temperature of measurement favors the

rapid motion of trapped vacancies around the probe nuclei. This rapid motion

averages out the interaction between the probe and the vacancy, resulting in a

weak, or even zero, EFG experienced by the probe nuclei. In this situation, the
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interaction frequency measured by PAC is the result of the weighted average

contributions of the lattice and the average over the time a vacancy is trapped

by a probe nucleus [49]

Wmeasred = fwvo + (1 f)Wiatce (3.1)

where f is the trapping fraction of occupancy of the vacancy around the probe.

It is temperature dependent. wv0 and Wlattjce are the interaction frequency

when the vacancy sits next to a probe, and the interaction frequency that

results from the crystal lattice. f is found from statistical mechanics:

1=
1 + exp_EA/cT

(3.2)

where N is the number of occupancy sites. N is 8 for nearest-neighbor sites and

24 for next-nearest neighbor sites. EA is the binding energy, k is Boltzmann's

constant and T is the temperature. Computer fits using this model gave best

results when N 24, Wv0 0 Mrad/s, and EA = 0.44(3) eV and 0.8(1) eV

for the hopping barrier [51].

phase w1 (Mrad/s) w2 (Mrad/s)

monoclinic (800°C) 104.6(3) 147.9(4) 0.63(2)

tetragonal (1200°C) 38.5(3) 73.6(4) 0.19(1)

Table 3.2: Hyperfine parameters in 0.5 wt.% Nb203 doped monoclinic and
tetragonal zirconia as measured by In PAC [52].

Another model [40] was proposed to explain the dynamics of the oxygen

vacancy at high temperatures near a probe site. In this model, three physical

parameters associated to the oxygen vacancy's motion, are associated to the
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Figure 3.9: Temperature dependence of the quadrupole interaction frequency
Wq. After [50].

damping of the PAC perturbation function. It is assumed that the oxygen

vacancies can hop among equivalent sites around the probe nuclei; they can

be trapped by and can detrap from the PAC probes. The activation energies

of these three processes, derived by this model, are 0.3-0.6 eV, 0.9-1.6 eV, and

0.4-0.6 eV, respectively [40].

With the improvement in sample-making techniques, it was possible to

observe the expected axial symmetry of the EFG in tetragonal zirconia [52, 50].

Also, as a result of the use of purer samples, better values for the binding

energies for the vacancy-cadmium and vacancy-yttrium pairs were found to be

0.62(3) eV and 0.28(3) eV, respectively [50].
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4 EXPERIMENTAL METHODS

Since the main objective of this thesis is the analysis and interpretation

of PAC data, the experimental hardware will be discussed briefly here, with

the purpose to make the reader familiar with the experimental aspects of

the PAC technique. The data utilized in this thesis were collected by other

members of the PAC research group at OSU [40, 47, 52, 53]. Details about

sample preparation can be found in these references. The spectrometers used

to collect the data analysed in this work were built by the OSU PAC research

group. The construction, operation and characteristics of these spectrometers

are described in [47, 10, 54].

4.1 PAC SPECTROMETER

The main tasks of the spectrometer are to detect and identify the energy,

the time separations, and the angle between the radiations emitted from a

sample doped with PAC probe nuclei. The experimental arrangement of the

PAC spetrometer can be seen in Fig. 4.1. It consists of four detectors placed

in a plane and at 90° intervals about the sample. The angular correlation

anisotropy for powder samples is maximized in this geometry. Each detector

is formed by a fast-response BaF2 scintillator and a photo-multiplier tube

(PMT). The distance between each detector and the sample is usually a few

centimeters.

The detectors collect data according to a 'start-stop' procedure: When one

of the PMTs detects a signal corresponding to a 'Yi radiation, it immediately,
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Figure 4.1: Simplified PAC experimental setup. Four detectors placed at 90°
and in a plane with the sample in the center.

within the time response of the electronic equipment, stops collecting data

and commands the other three detectors to start looking for the 72 radiation

at the same time that a timing clock starts. As soon as one of the PMTs

detects 72 the process stops, the energy and the time interval between the

detection of the 7 rays are recorded and then the cycle starts again. The time

the detectors spend waiting for 72 depends on the half-life of the intermediate

state. Usually, this time is less than five half-lives. If no radiation with the

right energy is detected in this time interval, the system resets and the PMTs



57

detectors start again to look for radiations with the right energy. The stop

signal is delayed so that it is possible for a 72 to be detected by a PMT first

and a 'y' be detected by another FMT. In this situation, the time measured is

negative and these combinations are called reverse spectra.

Of interest is the time interval of detection between ' and 72 These

coincidence pairs of 'y 72 are called events. The time interval of each event

is recorded in a histogram array, where each array consists of a number of

channels (500 -1000) 1 ns wide. Usually, data is collected for 8-24 hours. In

a typical run i0 events are accumulated, and the channel that corresponds

to the peak of the spectrum accumulates in excess of iü events. The events

measure the lifetime of the intermediate state. The histogram thus represents

the exponential decay of the intermediate state modulated by the perturbation

on the angular correlation and other factors. In Fig. 4.2 are shown typical

forward and reverse accumulated coincidence spectra.

On the opposite side of the true coincidence counts are the background

counts. There is a small, but perceptible, slope decreasing from the peak of

the spectrum. Its origin is electronic, but the exact cause of this effect is not

clear.

There are eight possible pairs of detectors that can record events; four give

forward spectra and the other four reverse spectra. The spectra recorded by

a pair of detectors is given by

D(O,t) = N0ccaexp (_) W(O,t) + (4.1)

where i and j indicate the detector pair, 0 is the sample-self absorption, N0 is

the sample activity, c and are the PMT efficiencies, r is the lifetime of the
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Figure 4.2: Accumulated coincidence spectra. Forward (left) and reverse
(right) spectra of actual PAC data.

intermediate level, and is the background count.

The counting rate is obtained after subtracting the background count:

C(O,t) = D,(O,t) = Noaexp (_) W(O,t) (4.2)
Y

The correct removal of the background count is very important. When

fitting PAC data, one is usually interested in the line broadening 6 and the

asymmetry parameter 1]. Both parameters can be affected by the way the

background count is subtracted, particularly 6. One method to remove the

background count uses the count average of channels located as far away as

possible from the peak of the spectrum where the background is the flattest

(see Fig.4.2). Also, it is possible to extract the background count by fitting the

modified exponential decay with the expression: c = aoexp(t/'r) + b, where

5 gives the background count.

Several algebraic procedures may be used to extract the perturbation func-
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tion from the Cs [55]. One of them is to form the forward and reverse counting

ratios as:

v/-c02c13 \/CO3C12
Rf(t)

20213+ 22

\rC2OC31
(t)

22031 + 2C30C21

(4.3)

For practical calculations the expression (3.38) can be approximated as:

W(O,t) = 1 +A22G22(t)P2(cosO) (4.4)

Inserting (4.4) and (4.2) into (4.3) gives the four spectra ratio

where

R(t) = A22G22(t) (4.5)

G22(t) = S20 + S21 cos(w1t) + S22 cos(w2t) + S23 cos(w3t) (4.6)

The anisotropy coefficient for is A22 = 0.180, and for 181Hf is

A22 = 0.295. These values of the anisotropies are only valid for a point source

and point detectors. Since these conditions are not true for most experiments,

A22 is replaced by the effective anisotropy As a shorthand, the effective

anisotropy is still designated A22.

A PAC experiment is essentially a counting of radioactive decays that

occur in a random way. As a consequence, the error associated with N counts

is \/N, which is one standard deviation.



4.2 DATA FITTING

Expression (4.5) gives the experimental perturbation function G22(t). It

contains all the information that can be obtained in a PAC experiment. The

correct interpretation of the perturbation function allows the description of the

environment around the probe nuclei. Also, its Fourier transform can serve as

a first step in identifying the key aspects about the material being analysed,

like the phase the material is in or the number of probe sites. Examples of

R(t) and its Fourier transform can be seen in Figs 2.5, 2.7 and 2.8. In the case

of zirconia, the cubic, monoclinic and tetragonal phases are easily identifiable.

To extract all the parameters associated with the environment around the

probe, it is necessary to model the experimental data with empirical or theo-

retical functions. The successful fitting of the data to a model is an indication

that it is possible to describe correctly the environment around the probe

nuclei.

A fitting program [56] based on the Levenberg-Marquardt algorithm has

been used by the PAC research group. More recently, a fitting subroutine that

allows the fitting of multiple data sets related to each other through common

parameters was developed [57]. It is also based on the Levenberg-Marquardt

algorithm. In this work both fitting subroutines have been used.

The goodness of a fit can be described by the parameter x2. Its most

useful definition is

= (y y(xi))2
(4.7)

which is the reduced form of x2 yj is the ith data point, y(Xj) is the value of

the fitting function, o- is the uncertainty of the data point, and p is given by



the number of data points minus the number of free parameters used in the

fitting.

In this definition, x approaches one for a perfect fit. If > 1.5, the fitting

function cannot represent the data properly. x < 1 is an indication that the

uncertainties have not been calculated correctly. A good fit has x 1.1.

The Levenberg-Marquardt algorithm is a least-squares fitting method whose

purpose is to find the parameters used to define the fitting function in such

a way that x is minimized. A description of this algorithm can be found in

[58, 59]

4.3 RANDOM NUMBERS

Part of this work (see Chapter 5) consists in the use of a model to describe

the experimental PAC data. To generate the functions that describe this model

some very long series of random numbers are necessary. Since portability of

these series is important, instead of using true random numbers, a subroutine

that generates pseudo-random numbers, rand2 [58], was used. To verify that

this subroutine can generate a series of uncorrelated numbers, a series of tests

were performed.

Usually, in the case of defective generators, it is possible to discern visually

patterns or trends in plots of the run sequence, histogram or scatter plots of

the series of generated numbers. As an example, Fig. 4.3 shows a scatter plot

of each number generated against the number previously generated (x x

In this kind of plot a significant number of outliers or the presence of patterns
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Figure 4.3: Scatter plot of pseudo-random numbers. Good (top) and snspicious
(bottom) generators produce distinct plots. The presence of regular patterns
on the bottom plot is an indication of correlation.

is an indication that there is a problem with the generator.

Simple statistical tests can be performed on the number series to assess

its randomness and uniformity [60]. If the random numbers are distributed

with a uniform probability, the following condition must be satisfied for the

kth moment of the random distribution:
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N

T:x
1- (4.8)

k+l
i=1

A test with N = io and k = 1, 3 and 7 yields 0.49999, 0.246959, and

0.123661, respectively.

Another test to evaluate whether the random numbers are distributed

uniformly is the x2 test. Data from the histogram of observed distributions of

random numbers allows one to calculate

x2 =
(O E)2

(4.9)

where k is the number of categories or bins in the histogram (see Fig. 4.4),

O is the observed frequency per bin and E is the expected frequency. For

N = i07 and k = 100, the critical value at the 5% level of significance is

124.24. The value found is x2 34.85, well below the critical value.

The correlations between neighbors can be tested by taking the sum

C(k) = (4.10)

For k = 10, 50, 100 and 1000 the values of C(k) are 0.249993, 0.249867,

0.249759 and 0.249586, respectively.

The correlation between pseudo-random numbers were measured with two

physical tests [61, 62]. The first is a random walk test. On a plane which is

divided in four equal blocks, each of which has an equal probability the random

walker will be after a walk of length n. This test is performed N times and the

number of occurrences in each of the four blocks is compared to the expected

value of N/4, using a x2 test with three degrees of freedom. The generator fails

if the x2 value exceeds 7.815 in at least two of three independent runs. This

should occur with a probability of 3/400. The value found was = 3.7815
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Figure 4.4: Histogram of the observed frequency of random numbers, N = i07.

with n 500 and N = 106.

The second test used to quantify the correlations present in the pseudo-

random numbers is the n-block test. In this test a sequence {x1, x2,. . . , Xn}

of uniformly distributed random numbers 0 < x < 1 is generated and the

average is calculated. If 1/2, y = 1 is chosen; otherwise yj = 0. This is

repeated N times. A x2 test on the variables y with one degree of freedom is

performed. Each test is repeated, and the generator fails the test with fixed

n if at least two out three x2 values exceeds 3.841, which should occur with

a probability of about 3/400.The value found was x2 = 3.1055 with n = 500

and N = 106.

The subroutine rand2 passed in the tests above, indicating that the series

of pseudo-random numbers used in this work is reliable.
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5 RANDOM STATIC EFGS

Random strains, electric fields, point defects and other static perturbations

on the crystal lattice produce a distribution of EFGs that add to theideal EFG

of the perfect crystal. This distribution of EFGs leads to line broadening and

a change in the observed asymmetry parameter i since the EFG no longer has

the symmetry of the perfect crystal.

Random perturbations have been studied, but the focus has usually been

on stochastic fluctuations to study dynamic processes in solids [63, 64, 65, 26,

27, 66, 28, 29] or liquids [67, 68, 69] with static perturbations oniy being treated

as a limiting case, if at all. In solids, time-dependent perturbations are usually

moving point defects, like vacancies or interstitial atoms, which give rise to line

broadening and relaxation. The measurement of relaxation over a temperature

range can be used to gain information about hopping, trapping or detrapping

rates (see Chapter 6). On the other hand, static line broadening has been used

to characterize nanocrystalline materials by estimating the fraction of probe

atoms sitting in or near grain boundaries [70]. Static line broadening still is not

well understood, and PAC spectra exhibiting static line broadening are usually

fitted to a Lorentzian [71] or to a Gaussian [72, 73] without much theoretical

justification. Also, earlier research has explored the theoretical aspects of line

broadening, but did not provide quantitative expressions that can be fitted

immediately to experimental spectra [74].

It is difficult to obtain quantitative information about dynamic processes

from the analysis of line broadening because one must be able to separate the

contributions from static and dynamic defects. Some information about the

origin of the line broadening can be obtained by studying the temperature



dependence of the broadening. The line broadening produced by static de-

fects is weakly affected by temperature changes, whereas the broadening that

is caused by moving defects is highly dependent on the temperature of the

material.

In this chapter, a model that simulates the static line broadening and its

relation to the changes in the asymmetry parameter is presented. This model

assumes that the static line broadening has to be directly related to a change

in the parameter since the related EFGs do not have the symmetry of the

crystal.

Defects can produce a random EFGr that is added to the EFGIat of the

perfect lattice. As a consequence, both line broadening and the asymmetry pa-

rameter i approximately depend only on the ratio of the two EFG components
T1/ran and /1cLt, as long as vram is small compared to Vtt

I zzI zz I

5.1 THE STATIC RANDOM DEFECT MODEL

To model the EFG of the static distributions of dissolved impurities and

defects in a material, a number of charges (50-5,000) were placed randomly

inside a sphere. The EFG at the center of this sphere arising from the charge

distribution is

3x r 3xy1 3xz
vran Ze 1

3xy 3y r? 3yz (5.1)

iO I3xz 3yz 3z

where r is the vector from the origin to the point charge i. The center of the

sphere represents the position of a probe site.
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Although, in general, the EFG of the undisturbed site may have any sym-

metry, the model is limited to cubic and axial symmetries, and nuclear probes

with I = 5/2. For axial symmetry (i 0), EFGIat is added to EFGT. EFGIat

is given by

Vt0 0

vlat_ 0 1/tat 0 (5.2)

0vt
where the Laplace equation requires V + V + V = 0.

The EFG at the center of the sphere was calculated for a large number of

random charge distributions (N3 = 1 x 106) to obtain a probability distribution

of random electric field gradients, EFGVTh

The diagonalization of the resulting EFG tensors yields a distribution of

Vs and s, and hence a distribution of w1, w2 and w3 (see Section 2.4). The

distributions of Vs are characterized by their most probable values The

ratio vt
(5.3)

is used to define the distributions of the EFGs thus obtained.

From a theoretical point of view, the correct interpretation of the PAC

time spectrum is equivalent to solving the following equation:

(.1 raG

G22(t)
J J

P('i, V)G22(ii, V, t)dVdri (5.4)

0 -oo

This is a rather complicated expression. Besides, one lacks a complete

knowledge of the distribution function P(i7, With the static random

defect model (SRDM) (5.4) is approximated by

G22(t) = G2(mVzz,t) (5.5)

j=1



where G2(ij, V2, t) is the perturbation function (4.6) for a probe site. The

values of q and are obtained from the distributions of EFGs calculated

from the spherical charge distributions.

As mentioned above, G22(t) has all the information one can extract from

a PAC experiment. The main objective of these simulations is to obtain ex-

pressions for C22 (t) to describe cubic and axial materials for various defect

concentrations. The model utilized here is, in a sense, a statistical model that

seeks to simulate the influence of physical defects on the PAC spectra.

The distributions were calculated for other shapes (cubes, ellipsoids, etc.),

but the results were essentially identical. This is expected since the EFGs

are proportional to r3. Also, distributions were computed for both bare and

exponentially screened impurity potentials with no difference other than scale

factors. The model has no intrinsic length scale and the dimension of the

sphere does not relate to a unit cell of the crystal.

5.2 CUBIC MATERIALS, 7=0

The simulations presented in this section are representative of a defective

cubic material. The EFG produced by a cubic crystalline lattice is zero, so the

distributions shown below represent the effects of defects alone. Distributions

were calculated for different numbers of charges placed inside the spheres, but

there were no differences between distributions other than scale factors.

Figs. 5.1-3 show the distributions of the absolute value of the largest eigen-

values V , of the asymmetry parameter and the transition frequencies w1,

w2 and w3, respectively. Since polarization is not observed in the experiments,



the absolute absolute value VZZ is used.

These distributions are highly asymmetric and they share a common fea-

ture: they can be well described by a sum of Lorentzians. The distribution of

T/ran, Fig. 5.1, is scaled with respect to the most probable value of

Therefore, the peak value of this distribution corresponds to IV:an = 1. The

shape of the curve does not depend on the magnitude of the distribution at

all. As an example, the scaled distribution of V is given by

0.0228189
PGVTh))

0.77983 + (yran - 0.055426)2

0.022461
(5.6)

0.767066 + (T/ran 0.0564189)2

The distribution function P(iy, V() obtained from the simulations is rep-

resented by the surface shown in Fig. 5.4.

With P(i, JVI) it is possible, in principle, to calculate G22(t) for a de-

fective cubic material. The description of this function is very complicated.

Since the main objective of the SRDM is to find an expression for G22(t), a

numerical representation of P(i1, is of little help because the integral in

(5.4) still must be solved.

In this model, the perturbation function is now calculated according to

(2.81):

G22(t) = ([s + S1 cos(wt) + S2 cos(w)t) + S3 cos(wt)]) (5.7)

with SLk = Skk@17i) and wL = Wk('r/j,

As a matter of convenience, equation (5.7) is rewritten as

G22(t) fo + f1(t) + f2(t) + f3(t) (5.8)
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where

72

1
fl8

(5.9)
i=1

f1(t) =
1

-S1cos(wt)
N3

(5.10)
i=1

f2(t) =
N3

S2cos(wt) (5.11)
i=i

f3(t) =
N3

S cos(wt) (5.12)
i=1

The simulated perturbation function, C22 (t), and its constituents, fi (t), f2 (t)

and f3(t), are shown in Fig. 5.5. Their behavior is nonoscillatory, as expected.

In order to find an expression for G22(t) derived from the numerical simu-

lations, the constituents f1(t), f2(t) and f3(t) were fitted with the following

function

y(t) = a0 cos[(ait)a2] exp[ (a3t)a4} (5.13)

where the as are free fitting parameters. Several fitting functions can be used,

the advantage of (5.13) is the small number of parameters used in the fitting.

In the scale used in Fig. 5.5 it is not possible to distinguish between the

results of the simulations and the fits. The perturbation function for 'y = 0 is

given by:

G22(t) = 0.22647

0.339859 cos[(14. 85lwtt)0797764] exp[ (5. 27O7wjtt)0482657]

0.283964 cos[(20. l62lwtt)0804196] exp[ (8.1 i835witt) .388161] (5.14)

0.149709 cos[(34. 6959wtt)08h1655] exp[ (1 3.O66lwtt)0433809]
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Figure 5.5: Simulated perturbation function, G22 (t), and its constituents,
f1(t), f2(t) and f3(t), 'y = 0.

where is the fitting parameter. With (5.14) it is possible to fit experimen-

tal PAC data for defective cubic materials using only two fitting parameters,

and A22 (see Eq. (4.5)). In order to test the validity of the model being

proposed, a series of tests were performed. Experimental PAC data for dif-

ferent materials are fitted with the SRDM. The results are presented in the

following subsections.

5.2.1 Cubic Niobium Metal

Niobium is a metal with a body-centered cubic structure. Since it has

cubic symmetry, the only EFG at a probe site is due to the presence of defects.
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PAC data on Hf-doped niobium metal with different impurity contents

(0.84 8.4 at.%) were collected [53]. The probe atom in these PAC experi-

ments is 181Ta. Since these samples are free of dynamic defects, the PAC data

obtained in these experiments can be fitted with (5.14).

The time and the corresponding Fourier spectra of the PAC data and the

fits with the SRDM are shown in Figs. 5.6 and 5.7. In Table 5.1 are listed the

impurity levels, the history of the samples, and the parameters An and

obtained from the fits. These samples were irradiated at a reactor to produce

the desired 181Hf activity, and are susceptible to radiation damage. In Table

5.1, CW refers to samples whose PAC spectra were measured in a cold-worked

condition at room temperature, and AN refers to samples that were annealed

in order to remove any radiation damage.

5.2.2 Cubic Stabilized Zirconia

Zirconia is stabilized in the cubic phase in the full range of temperatures

when it is doped with at least 17 wt.% yttria. Since yttrium is three-valent, its

addition as a dopant to zirconia will cause one oxygen vacancy to be formed

for every two atoms added. In cubic zirconia the EFG at a probe site vanishes

due to the cubic symmetry. The replacement of Zr+4 with a Y+3 disturbs the

cubic symmetry and the EFG is no longer zero. The EFO is the same as an

empty lattice with a relative charge of e at the position of the Y ion. Also,

when an Q2 is removed, a vacancy is created and the EFG is the same as

an empty lattice with a relative charge of +2e at the site of the vacancy. In

this way, the EFG at a site in stabilized zirconia depends on the surrounding

distribution of oxygen vacancies and dopants. The dopants and vacancies can
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Figure 5.6: PAC time spectra and Fourier transforms of Hf-doped Niobium
metal. Samples Nb-i, Nb-2 and Nb-3.
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Figure 5.7: FAG time spectra and Fourier transforms of Hf-doped Niobium
metal. Samples Nb-3, Nb-4 and Nb-6.
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Sample at.% impur. A22 w (Mrad/s) history

Nb-i 0.84 0.163(2) 5.54(1) CW

Nb-2 0.84 0.174(3) 4.49(2) AN

Nb-3 1.58 0.066(i) 7.14(2) CW

Nb-4 1.58 0.081(1) 6.16(1) AN

Nb-5 8.40 0.191(4) 15.4(2) CW

Nb-6 8.40 0.183(2) 12.4(2) AN

Table 5.1: Impurity levels, history and fitting parameters derived with the
SRDM for Hf-doped niobium metal.

be distributed on the lattice in many possible ways. As a consequence, there

is a distribution of EFGs values, and the probe nuclei will experience different

EFGs. The PAC spectrum is formed by a wide range of frequencies that results

in a nonoscillatory behavior of the angular correlation function. The total EFO

in stabilized zirconia has two components: a static component from the dopant

ions in the lattice, and a fluctuating component due to the motion of oxygen

vacancies. Anions vacancies are highly mobile in the fluorite structure, and

the mobility of the oxygen vacancies gives rise to relaxation [47J.

In order to apply the results of the SRDM, Eq. (5.8) needs to be modified

to take into account the lattice relaxation. In the high temperature region

(T> 700°C), and according to (2.91), Eq. (5.8) is transformed to

G22(t) = e20tfo + e1tfi(t) + e_2tf2(t) + e_3tf3(t) (5.15)

For I = 5/2, the relaxation parameters are

A20 = 100.8(wQ2)i- (5.16)

A1 = i.048A20 (5J7)



us]

A2 1.190A20 (5.18)

= 1.429A20 (5.19)

where the coupling constant is

4I(2I i)h) (
+1)) (5.20)(w2ç)

eQV
\2

and the correlation time of the fluctuating EFG is

1= exp 1 1 (5.21)
L/ \kT)

where v0 is the attempt frequency, tE is the activation energy for a vacancy

jump, and k is the Boltzmann constant.

In the low temperature regime (T < 700°C), Eq. (5.8) is modified to

G22(t) = et(fo + f1(t) + f2(t) + f3(t)) (5.22)

More details about the derivation of the above equations and constants

can be found in [47, 17]. What is relevant to the present discussion is the fact

that in order to fit the PAC time spectra, when relaxation is present, it is

necessary to include an extra parameter in the fitting function.

PAC spectra for cubic zirconia, doped with 18 wt.% yttria and taken in

the temperature range of 22 to 1450°C, were fitted with (5.15) and (5.22).

Table 5.2 lists the main fitting parameters and, Figs. 5.8 and 5.9 show the

time spectra and corresponding Fourier transforms.
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Figure 5.8: PAC time spectra and Fourier transforms of 18 wt.% yttria-doped
zirconia: 22°, 450° and 750°C
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Figure 5.9: PAC time spectra and Fourier transforms of 18 wt.% yttria-doped
zirconia: 950°C and 1470°C.



Sample Temp. (°C) A22 w (Mrad/s) (Mrad/s)

CSZ-1 22 0.159(2) 112(8) 0.40(18)

CSZ-2 450 0.174(3) 186(12) 32(6)

CSZ-3 770 0.156(21) 70(4) 110(13)

CSZ-4 950 0.171(2) 53(6) 68(3)

CSZ-5 1470 0.173(2) 38(6) 2.3(7)

Table 5.2: Parameters used to fit cubic stabilized zirconia PAC spectra. )s. =

)\20 for T> 700°C and .\ = for T< 700°C.

5.3 AXIAL MATERIALS, 'y> 0

For axial materials, the distributions of , i and w as well as the

perturbation functions G22 (t) are described as functions of the parameter 'y.

The value of '-y is small for the more defective materials and large for the purer

ones. Since the main purpose of this work is to simulate dilute concentrations

of defects, oniy values of > 30 are considered. Simulations to obtain distri-

butions of EFGs were performed with 30 <'-y < 2000. Distributions of ,

17 and w for 'y = 30 and 100 are shown in the Figs. 5.10-12. Fig. 5.13 depicts

the perturbation function obtained from the simulations for y = 30, 100 and

1000.

The distributions of VZZ are asymmetric, but they can be well described

by a Lorentzian. This asymmetry is also present in the distributions of w1.

In order to compare the line shapes that result from the simulations, the

distributions of w1 and w2 for = 30 are fitted with a Lorentzian and a

Gaussian, as depicted in Fig. 5.13. It can be seen that the Lorentzian fits
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the simulated distributions better than the Gaussian. As 'y increases, the

distributions become narrower, and the shape of the w1 distribution approaches

that of a Lorentzian more closely. The distributions of w2 and w3 are well fitted

with a Lorentzian for any value of 'y.

In the axial case, when only static defects are present, the perturbation

function (5.8) becomes

G22(t,'y) fo('y) + f1(t,'y) + f2(t,'y) + f3(t,'y) (5.23)

with fo('y) fi(O,'y) +f2(O,'y) +f3(O,'y).

The constituents f1(t, '-y), f2(t, 'y) and f3(t, 'y) are also fitted with a func-

tion that has the form of (5.13) with the difference that now the free fitting

parameters are a function of 'y.

For each constituent, the fitting functions are

f1(t, 'y) = ao('y) cos[(al(7)t)a2] exp{_(a3(y)t)a4]

f2(t, 'y) = bo('y) cos{(bi(y)t)b2()] exp{_(b3(7)t)b4] (5.24)

f3(t, 'y) = c0('y) cos[(ci(7)t)c2] exp[_(c3(7)t)C4]

The dependence of these parameters on 'y is given in (5.25-27). The fits

were made using a subroutine that allows the fitting of multiple data sets. It

was found that the parameters a4, b4 and c4 can be kept as constants.

ao('y) =0.371445 - 0.243666'y1 + 0.8215047_2

ai(7) =6.0 - 2.20048f1 + 6.69009[2

a2('y) =1.0 0.26855'[' - 0.554205'y2 (5.25)

a3('y) =4.14839'[ + 2.43967'y2

a4 =0.950049
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bo(y) =0.285715 0.00788611'y' + 0.0518714'y2

bi('y) =12.0 12.8274'y' + 8.12401'y2

b2y) =1.0 + 0.000365646'[ 0.334901'y2 (5.26)

b3('y) =9.56956'y1 4.60644'y2

co(7) 0.14287 + 0.03344297_i 0.0769652'y2

ci('y) =18.0 - 18.5204'y1 + 24.15417_2

c2(7) =1.0 0.010567' 1.21318'y2 (5.27)

c3(7) =13J108'y1 - 7.98248'y2

C4 =1.024982



Zirconia with negligible vacancy concentrations can be made by doping

with pentavalent Nb. In Nb-doped zirconia relaxation is suppressed completely

[49]. Therefore, the PAC spectra is influenced only by the lattice EFG and by

the distribution of charged defects around the probe sites.

In the present case, the SRDM fits the data with the parameters 'y and

w. The results from these fits are compared with the commonly used static

model (see Eq. 2.87), which is a heuristic representation of PAC spectra.

When the static model is used, the fitting parameters are w1, w2, and 8. The

asymmetry parameter 17 is calculated from the ratio w2/i1, and the value of

WQ is calculated from (2.80). The parameters, 8, and WQ, are the parameters

from which one obtains information about the environment of a probe site.

The SRDM model does not give these results directly. In order to compare

the results of these two models, the perturbation functions derived from the

numerical simulations, G22(t, 'y), are fitted with the static model. As a result,

for a given value of 'y it is possible to assign a pair of values i and 6. In

this way, a correspondence is established between these two models. Fig 5.15

shows how ij and 6 vary with

It must be noted that the static model can produce fits with smaller values

of . This is expected since the SDRM model is more constrained than the

static model; for the SRDM any value of 'y is associated to a unique pair of

values 17 and 8. The main objective of the SDRM is the unambiguous descrip-

tion of the effects of defects on the PAC spectra. Therefore, slightly larger

values of for the SDRM are not very significant in the present analysis.
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Figure 5.15: Asymmetry parameter 17 and line broadening ö as a function of
'7.

PAC data on Nb-doped zirconia [50] were fitted with the SRDM and static

models. Tables 5.3 and 5.4 list the values of the main fitting parameters for the

static and SRDM models. The samples were doped with different quantities

of Nb: TZA 0.1 at.%; TZB, 0.2 at.%; TZC, 0.3 at.%; and TZC, 0.5 at.%. Fig.

5.16 shows typical fits of PAC spectra using the SDRM model.

5.4 DISCUSSION OF RESULTS

Using only the x criteria to define the quality of the fits made with the

SRDM, one can say that the overall quality of the fits for cubic and tetragonal

materials is very good. In the case of Nb-doped tetragonal zirconia, the com-

parison with the conventional static model shows that although the SRDM is

more constrained, it can fit the data satisfactorily.
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Figure 6.2: PAC time spectra and Fourier transforms for Nb-doped tetragonal zirconia fitted with the SRDM.



Sample Temp.

(°C) (Mrad/s)

S

(%)

x

TZA-1 1200 309(50) 6.178(4) 0.036(4) 0.25(4) 1.0139

TZA-2 1100 268(45) 6.229(5) 0.039(3) 0.28(4) 1.0632

TZA-3 1000 217(41) 6.262(3) 0.043(3) 0.35(5) 1.1387

TZA-4 1400 323(55) 6.081(2) 0.035(4) 0.24(4) 1.2090

TZA-5 950 193(36) 6.272(2) 0.041(2) 0.31(2) 1.1107

TZA-6 1293 240(62) 6.148(2) 0.042(6) 0.25(7) 1.030

TZB-1 1200 172(29) 6.210(2) 0.050(4) 0.45(6) 1.270

TZB-2 1100 326(100) 6.232(5) 0.035(8) 0.23(11) 1.1662

TZB-3 1000 168(65) 6.276(4) 0.051(8) 0.45(12) 1.1785

TZB-4 950 174(31) 6.306(4) 0.050(6) 0.45(8) 1.1785

TZC-1 1200 119(16) 6.244(4) 0.062(4) 0.65(8) 1.0562

TZC-2 1100 100(10) 6.270(3) 0.068(4) 0.77(8) 1.0656

TZC-3 1000 81(12) 6.307(4) 0.075(5) 0.95(9) 1.0433

TZC-4 900 92(18) 6.312(2) 0.070(8) 0.83(13) 1.1020

TZD-1 1200 51(5) 6.314(3) 0.098(7) 1.50(12) 0.9824

TZD-2 1100 48(5) 6.320(3) 0.101(2) 1.60(12) 1.0013

TZD-3 1000 50(5) 6.354(4) 0.099(3) 1.50(12) 1.1293

TZD-4 950 50(6) 6.400(3) 0.099(2) 1.50(14) 1.1157

TZD-5 920 47(5) 6.407(4) 0.102(3) 1.63(12) 1.0359

Table 5.3: Fitting parameters 'y and obtained by fitting Nb-doped t-Zr02

with the SRDM model and the corresponding values of i and S.



Sample Temp.

(°C)

w

(Mrad/s) (%)

x

TZA-1 1200 6.137(4) 0.063(8) 0.33(5) 1.0012

TZA-2 1100 6.210(5) 0.066(10) 0.34(2) 1.0642

TZA-3 1000 6.232(3) 0.068(9) 0.37(4) 1.0494

TZA-4 1400 6.071(2) 0.048(10) 0.29(2) 1.0699

TZA-5 950 6.245(2) 0.077(12) 0.43(3) 1.0018

TZA-6 1293 6.097(7) 0.052(9) 0.28(3) 1.0314

TZB-1 1200 6.170(2) 0.074(9) 0.34(3) 1.2743

TZB-2 1100 6.201(6) 0.100(9) 0.41(4) 1.1151

TZB-3 1000 6.236(12) 0.088(6) 0.39(6) 1.1183

TZB-4 950 6.266(4) 0.093(9) 0.61(8) 1.2230

TZC-1 1200 6.167(5) 0.115(12) 0.92(13) 1.0475

TZC-2 1100 6.209(4) 0.106(9) 0.99(10) 1.0631

TZC-3 1000 6.216(3) 0.141(11) 1.15(10) 1.0217

TZC-4 900 6.232(2) 0.156(12) 1.96(9) 1.0942

TZD-1 1200 6.278(1) 0.162(15) 2.01(12) 0.9132

TZD-2 1100 6.300(6) 0.157(14) 1.82(14) 1.0013

TZD-3 1000 6.321(3) 0.166(11) 1.83(11) 1.1215

TZD-4 950 6.354(4) 0.185(12) 1.95(16) 1.1236

TZD-5 920 6.360(6) 0.180(13) 2.01(13) 1.0164

Table 5.4: Fitting parameters w, 'q and 5 obtained by fitting Nb-doped
t-Zr02 with the static model.
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For cubic materials, the results obtained are particularly interesting. The

SRDM suggests that random distributions of charges can reproduce non-zero

EFGs, and the broad asymmetric distributions of YZZ observed experimen-

tally. A point charge model (PCM) [75] has been developed to explain the

distributions of EFGs in perovskite compounds with cubic symmetry [76].

The distribution of EFGs in these materials is the result of trapped oxygen

vacancies in the cubic lattice. The results obtained by the PCM are similar

in nature to what is simulated by the SRDM: non-zero EFG in a material

with cubic symmetry, and broad asymmetric YZ distributions. The shapes

of the distributions modeled by the PCM are slightly different from the ones

obtained by the SRDM. The PCM requires an exact knowledge of trapped

oxygen vacancies, their distribution, etc.

Although the quality of the fits for Nb-doped tetragonal zirconia is satisfac-

tory (compare Tables 5.3 and 5.4), there are noticeable discrepancies between

the results given by the SRDM and the static model. Fig. 5.17 depicts the

values of 17 and 8 found by fitting the PAC spectra with both models. The

values of i and 6 found with the SRDM are smaller than those found with

the static model. Fig. 5.18 shows the temperature dependence of the param-

eter for the sample TZA as calculated from the fits using both models.

The decrease of with increasing temperature is expected, due to lattice

thermal expansion, which results in a decrease of the lattice EFG. Data fitted

with both models show this weak temperature dependence of wjt, but there

is a consistent difference between the values of obtained with the SRDM

and static models, with the values given by the SRDM always being larger.

These differences can be explained, in part, by the fact that in order to fit

the data in the best possible way, the SRDM compensates the smaller values
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of 'q with larger values of w. The distribution of w1 for the SRDM is not

symmetric, and this can also affect the calculation of the asymmetry parameter

7].

To understand better the dependence of the parameters 1] and 8 on 'y, a

series of numerical experiments were performed. These experiments consisted

of fitting the perturbation functions derived from the numerical simulations,

G22(t, 'y), when noise and error bars are added to them. These artificially gen-

erated PAC time spectra were fitted with the static model. It was found that

the values of i and 8 and even WQ derived in this way are dependent on the

noise level and size of error bars. This observation brings into question the

validity of the static model for fitting PAC experimental data measured in a

laboratory. This is a serious question that needs considerably more work to

understand fully. For purposes of this thesis the observation implies that one

cannot determine unambiguously any relationship between the 'y, WQ param-

eters of the SRDM and the ij, 8, and WQ parameters of the static model.

On the other hand, the SRDM suggests that the use of a Lorentzian line

profile can be justified 111 certain cases. The SRDM also shows that the asym-

metric line profiles should be investigated.

The influence of defects on FAG spectra still can be determined by exper-

imental methods. Fig. 5.17 shows that it is possible to derive an empirical

formula that describes the relation i vs. 8 for materials with a dilute concen-

tration of defects. To avoid any ambiguity in the interpretation of the data,

the results obtained with the conventional static model are used. The Nb-

doped tetragonal zirconia data used in this work are of very good quality, and

the FAG spectra obtained from these samples are free of most experimental

artifacts [52, 50]. Therefore, results derived from their analysis are reliable.



Using the values of j and 6 found with the static model one obtains a formula

that describes the relation between i and 6:
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Figure 5.17: Relation between i and 6 obtained by fitting Nb-doped tetrag-
onal zirconia PAC spectra with the SRDM and static models. The fit is an
experimental derivation of the vs. ö relation.

Also, another important result can be obtained from the results listed in

Table 5.3 and shown in Fig. 5.18. In weakly Nb-doped t-Zr02, the observed

quadrupole interaction frequency w is the quadrupole interaction frequency

of the vacancy-free lattice [50]. The temperature dependence of wt is given

by:

WQ(T) = 6.63(2)Mrad/s 4.03(5) x 104Mrad/(s°C) x T (5.29)
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These results are used in the next chapter to quantify the presence of static

defects in zirconia ceramics where oxygen vacancies are known to be present.
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6 DYNAMIC DEFECTS

Among the important properties of zirconia is its ionic conductivity at

high temperatures. At T > 1000°C, yttria-doped zirconia becomes an ex-

cellent ionic conductor as a result of the high mobility of oxygen vacancies.

The ionic conductivity in zirconia at high temperature has many technological

applications such as solid electrolytes in fuel cells and oxygen sensors. [77].

In PAC is particularly useful in the study of dynamics of oxygen vacancies

in zirconia. In the zirconia lattice, "1Cd has an effective charge of 2, and

attracts oxygen vacancies that have an effective charge of +2. The PAC probe

can trap the vacancy, and their mutual interaction serves as a means to obtain

information about the dynamics of oxygen vacancies.

A vacancy can be trapped at and detrap from a PAC probe nucleus. Also,

when trapped, a vacancy can hop between equivalent sites around the probe

nucleus. The angular correlation of the emission of 'y rays by the PAC probe

is affected by the fluctuating EFG produced by the moving vacancy. These

time-dependent interactions will produce relaxation and damping of the PAC

time spectra.

Several stochastic models have been developed [22, 24, 26, 21, 18] to cal-

culate the effects of fluctuating fields on the perturbation function G22 (t). A

model, whose results can be directly applied to tetragonal zirconia at temper-

atures between 900 and 1300°C [29], is used in this work to obtain physical

quantities of interest. The main characteristics of this model are presented in

the next section.



6.1 STOCHASTIC MODEL FOR VACANCY MOTION

This is a physically-motivated four-state model that consists of three

trapped states with equivalent axially-symmetric EFGs of mutually orthogo-

nal orientations (x, y and z directions), and a detrapped state with a weaker

axially-symmetric EFG whose symmetry axis is oriented along the diagonal

between the three trapped EFGs. It corresponds to a cubic structure with

the nuclear probe at the center of the cube with the vacancy hopping around

the nearest eight lattice positions. The 24 second-neighbor traps are not con-

sidered, as experimental evidence shows that oxygen vacancies are trapped in

a first neighbor trap by the probe nucleus, "1Cd [50]. The model is based

on the families of XYZS models [26] developed to calculate the effects of

time-dependent EFGs on the PAC spectra.

This model depends on four parameters: w, the rate a trapped vacancy

hops around a probe; 'Wd, the detrapping rate; w, the trapping rate; and 'Ys,

the ratio of the EFG in the detrapped state (essentially the tetragonal lattice

EFG) to the EFG due to a single vacancy in a trap near the probe nucleus. At

high temperatures, a vacancy can be trapped, hop among equivalent trap sites

and detrap many times during the probe nucleus intermediate state lifetime.

It has been shown that relaxation caused by hopping trapped oxygen va-

cancies is negligible above 600°C [78]. This implies that the hopping pa-

rameter, w, is very large compared to the quadrupole frequency of the static

trapped state, WQ, and other transition rates. Also, it has been determined

that the average detrapping time for oxygen vacancies in tetragonal zirconia

at 1200°C is less than or of order 2 ns [78]. With these results, an expression

for the perturbation function has been calculated with the following condi-
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tions: w/WQ 200, wd/wQ 30 80, and Wt/Wd 0.1 3. The perturbation

function is given by

where

G22(t) = 0.184e_0t + 0.016e_t 13 _1tcos(wt + &)+ 35e
cos(qi)

+ e_2tc0s(t + 52) 1 _3cos(wt + 3)
cos(q3)

(6.1)
cos(q2)

+ 7e

Wd WQ3
= , = 6flWQ Ys =

Wd+3Wt WQ

2
WdWt= A Wt

+ 3(1 2w
(Wd + 3w)3Ys w(wd+3wt)

2A0 (6.2)

A0 = 110, A1 = 110, A2 = 120, A3 = 90

250w8,
2 21.4, WWQs

WWd/8 WWd73

This expression can only be used in the range of temperatures speci-

fled above, and it is not valid for slower transition rates. It describes time-

dependent EFGs fluctuations around a probe nucleus in a tetragonal lattice

site free of static defects. The transition frequencies w and the Sk coefficients

in (6.1) refer to the situation where the EFG at the probe site is axial (i 0).

In this model, the spatial concentration of oxygen vacancies is considered to

be uniform.

In order to apply (6.1) when static defects are present, this expression must

be modified so that changes in the local EFG, described by the asymmetry

parameter 7) and the line broadening 5, are also included in the perturbation

function. In Eq. (6.1) WQ3 is substituted by Eq. (5.29) so that temperature

effects on the lattice quadrupole interaction frequency are accounted for. Also,

the line broadening caused by static defects is included in (6.1) with (5.29).



The transition frequencies w and the Sk coefficients are explicitly defined as

functions of i.

With these modifications (6.1) becomes

G22(t,i1)
0.184 )e '°+ 0.016

0.2
S20(

0.2
S2o(i)e_t

+ S2n()e_tc0t + ) (6.3)
n=1 cos(ç)

Assuming that the fluctuating EFG in the zirconia ceramic is caused by

thermally activated dynamic processes, then the hopping, trapping and de-

trapping rates follow an Arrhenius behavior. These rates are given by

w = woe_T

Wd = wdoeT (6.4)

E /kTWt = wtoe

where Eh, E and Ed are the hopping barrier between equivalent trap sites, the

trapping and detrapping energy barriers, respectively; the prefactor wo '- 110,

where 110 is the phonon frequency (1013 10'4s'); WdO = gdvo, where g is a

geometrical factor of order 1 that describes the ways a vacancy can detrap;

and, 'WtO = gt[Vo]nvo where g is a geometrical factor of order 1 that describes

the ways a vacancy can trap, n is the number of trapping positions, and [Vo] is

the oxygen vacancy concentration. The activation energies are independent of

the sample. Also, the prefactors of the hopping and detrapping rates should

be the same for every sample. Only the trapping rate varies from sample

to sample as it is dependent on the oxygen vacancy concentration. Fig. 6.1

shows the relative energies needed for these processes. It is assumed that the

prefactors do not change significantly with temperature.
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Figure 6.1: Hopping energies in a crystal. The periodic potential in a crystal is
perturbed by the presence of a dopant. A lower-valence dopant is represented
by A, in the center location. An oxygen vacancy moves between equivalent
positions on the crystal until it crosses the hopping barrier E and becomes
trapped. The vacancy can hop between equivalent trap sites if it posses hop-
ping energy Eh. To escape or detrap, an oxygen vacancy must overcome a
large energy barrier Ed [40].

6.2 YTTRIA-DOPED ZIRCONIA

Previous PAC studies on zirconia have been hindered by the inability to

make reproducible samples of controlled oxygen vacancy concentrations and

uniform distribution of oxygen vacancies. The data used in this work are the

results of PAC measurements of high-quality Y-doped zirconia samples [521.

Data from two yttria-doped zirconia samples are used here. Fifteen PAC

spectra for the sample TZYA (0.1 at.% Y) were collected in the temperature

range of 1000 to 1300°C. For the sample TZYB (0.2 at%. Y), eighteen PAC

spectra were collected in the temperature range of 1000 to 1350°C.

Trivalent dopants like yttrium introduce half a vacancy for every yttrium

doped. At the 0.1 at.% and 0.2 at.% doping level, a sample contains 250

ppm and 500 ppm of oxygen vacancies to charge compensate for the yttrium,
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respectively. Also, oxygen vacancies are introduced due to impurities. The

concentration of thermally generated vacancies is negligible in comparison with

extrinsic vacancies, since the formation energy for intrinsic oxygen vacancies

is relatively high at 5 eV [79]. The concentration of vacancies is determined

by the introduction of dopants and impurities.

The oxygen vacancies in yttria-doped zirconia jump freely in the anionic

sublattice in the crystal when not associated with 111Cd probes. The associa-

tion energy for the yttrium-oxygen vacancy pair is about 0.3 eV. The trapping

probability of vacancies around trivalent yttrium is small for T > 1000°C [80].

Also, the probe nucleus can only trap one vacancy at a time since it is ener-

getically unfavorable to trap two or more vacancies into the same system at

the same time [49].

6.3 DATA FITTING

The main purpose in the analysis of Y-doped zirconia data is to obtain the

values related to the dynamics of the oxygen vacancies: the hopping, trapping

and detrapping energies.

With the large number of spectra taken at different temperatures, the data

set is best fitted with a subroutine that fits multiple spectra simultaneously

[57]. The experimental counting ratio, R(t) = A22G22(t), is fitted with (6.3),

and the hopping, trapping and detrapping rates given by (6.4).

The spectra are fitted simultaneously with nine fitting parameters: the

anisotropy A22; the asymmetry parameter i; the energies Eh, Ed and Pit; the

prefactors w0, WdO, and wto; and the ratio between lattice and fluctuating
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EFGs 'ye. With so many free parameters, the multiple spectra data fitting

is rather complicated. Some constraints are introduced and then relaxed in

order to make the fitting converge. The values of A22 do not vary significantly

for a sample. At first it can be assumed to be a constant for all the spectra,

and once the multiple fits start to converge, it is allowed to vary freely. An

initial value of the asymmetry parameter 17 can be estimated from the Fourier

transform of the raw data. Previous work on ytrria-stabilized zirconia [47]

found values for activation energies in the order of 1.0 eV. More recently [50],

it was determined that oxygen vacancies are trapped at first-neighbor positions

to Cd with binding energy 0.62(3) eV. These data suggest that the following

constraints can be used in the fittings: Ed E 0.62 eV, and E 1.0 eV.

Also, it is reasonable to assume E Eh. The value of y was kept constant

at 0.5 at the beginning of the fits.

Table 6.1 lists the dynamical parameters determined by the fits. Figs.

6.2-5 show PAC time spectra and their Fourier transforms for samples TZYA

and TZYB and fits made using (6.3). The observed quadrupole interaction

frequencies for the samples TZYA and TZYB are shown in Fiq. 6.6.

Eh (eV) Ed (eV) E (eV)
Sample

w0 (rad/s) WdO (rad/s) Wtø (rad/s)

0.91(6) 1.54(8) 0.96(7)
TZYA

15(3) x io' 13.2(6) x io' 2.1(7) x 1011

0.86(7) 1.49(7) 0.95(8)
TZYB

12(3) x 1013 14.5(5) x 1013 3.6(8) x 1011

Table 6.1: Dynamical parameters derived from the fitting of 0.1 and 0.2 at.%
Y-doped zirconia PAC spectra.
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Figure 6.2: PAC time spectra and Fourier transforms for 0.1 at.% Y-doped tetragonal zirconia and fits. Sample
TZYA at 1000 and 1100°C.
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Figure 6.3: PAC time spectra and Fourier transforms for 0.1 at.% Y-doped tetragonal zirconia and fits. Sample
TZYA at 1250 and 1350°C.
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Figure 6.4: PAC time spectra and Fourier transforms for 0.2 at.% Y-doped tetragonal zirconia and fits. Sample
TZYB at 1025 and 1125°C.
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Figure 6.5: PAC time spectra and Fourier transforms for 0.2 at%. Y-doped tetragonal zirconia and fits. Sample
TZYB at 1200 and 1300°C.
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6.4 DISCUSSION OF RESULTS

The quality of the results obtained by the fits is first judged by the x

criteria. After results were obtained with the multiple fit program, all the

spectra were also fitted separately with the parameters obtained from the

multiple fit in order to verify any spurious results. The values of x for the

individual fits are in the interval 1.1 < x < 1.22. Figs. 6.2-5 also show that

the overall quality of the fits is satisfactory. Fig. 6.6 shows the dependence

of the hyperfine parameter WQ as a function of the temperature. This figure

can be compared with the results shown in Fig. 3.9. The same data sets,

TZYA and TZYB, were fitted with different models, [50] and (6.3), and there

is a very good agreement between the results. The decrease of the quadrupole
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interaction frequency WQ with temperature can be explained by the trapping

of oxygen vacancies by the "Cd probe nucleus. As a result of the fast motion

of the vacancy, the measured quadrupole interaction frequency depends on the

average EFG of the sites the vacancy jumps in and out of.

From Table 6.1 a first result is the difference Ed E, identified as the

binding enthalpy of an oxygen vacancy to the "Cd probe atom. The values

found in this work: 0.57 and 0.56 eV are inreasonable agreement with the

value found in [50], 0.62(3) eV.

The hopping energy for a bound vacancy is not expected to be identical

to the bulk activation energy of a free vacancy in yttria-doped zirconia. But,

it still interesting to compare the hopping energies in both situations as it

is physically reasonable to expect them to have similar values. Values for

the activation energy in zirconia , measured by other techniques and various

dopant content, range from 0.78 to 1.1 eV [81, 82, 83, 84, 85]. The hopping

energies listed in Table 6.1 are comparable to these values, indicating that

the hopping energy of a bound vacancy can be a good estimate of the bulk

activation energy. Also, values of the hopping energies are comparable to the

activation energies found in yttria-doped zirconia with Hf PAC [47]

The prefactors in Table 6.1 can also yield important information about

the samples and the fitting procedures. The prefactor WtO is dependent on

the concentration of vacancies in the sample. The ratio of the WtO for the two

samples is: 1.7. If the only source of vacancies in the material

is the dopant, this ratio must be 2. Since impurities introduce an unknown

quantity of vacancies, the value found for this ratio is reasonable. The fitted

values of the prefactors w0 and WdO are also physically acceptable.



7 CONCLUSION

Perturbed Angular Correlation spectroscopy can be a very powerful tech-

nique to investigate the properties of materials. PAC is a non-contact, non

destructive, microscopic probe that can measure the strength and the sym-

metry of electric field gradients in the proximity of the PAC probe nucleus.

Time-varying interactions can provide information about the dynamics of de-

fect transport in the material.

To extract physically meaningful data from a PAC experiment, the PAC

spectra must be interpreted correctly. The complexity of the interaction be-

tween the PAC probe nucleus and its environment makes the spectra interpre-

tation very difficult to model, particularly when static and dynamic defects

are present simultaneously in the material.

In order to isolate the influence of static defects on the PAC spectra, a

model (SRDM) that consists of random distributions of point charges in a

probe site was developed. Although the SRDM could simulate, with certain

success, the presence of defects in cubic materials, it produced inconclusive

results in the study of Nb-doped tetragonal zirconia. The PAC data was well

fitted with the SRDM, but more work is needed to establish a clear correspon-

dence between the results of the model and the line broadening observed on

the PAC spectra.

The influence of defects on the PAC spectra were obtained from the anal-

ysis of the Nb-doped tetragonal zirconia with a conventional static model.

From fits of the spectra with this model, it was found that the line broadening

parameter 8 can be expressed as a function of the asymmetry parameter as:
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= 0.12(3) x (%)O.51(2)

To extract information about the dynamics of oxygen vacancies in yttria-

doped zirconia, a four state stochastic model was combined with results from

the static model so that the influence of static defects are also considered when

PAC spectra is analysed. The multiple fit of PAC spectra of yttria-doped

zirconia taken at various temperatures yielded the energies of activation of a

vacancy moving about a probe nucleus. Two samples of yttria-doped zirconia

with different concentrations of yttria were analysed. The sample with 0.1 at.%

Y yielded the following results: hopping energy Eh 0.91(6) eV, detrapping

energy Ed = 1.54(8) ev and trapping E 0.96(7) eV. For the sample with

0.2 at.% it was found: hopping energy Eh = 0.86(7) eV, detrapping energy

Ed = 1.49(7) eV and trapping E 0.95(8) eV. These values are physically

reasonable and are in good agreement with values for activation energy for

yttria-doped zirconia found by other methods.

It is important to emphasize that the interpretation of FAG spectra is not

a straightforward process. It is not difficult to derive mathematical functions

that will fit the observed PAC spectra with success, but that are not physically

meaningful. One of the objectives of this work was to model the presence of

static defects in a material. Although the SRDM did not yield unambiguous

results, it indicates that certain procedures such as the use of a Lorentzian

line profile to model line broadening may be physically valid. Also, the SRDM

suggests that mechanisms that result in asymmetric line profiles should also

be taken into consideration.
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