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The developed algorithm addresses a foundational problem of understanding an individ-

ual’s task engagement state in human-robot teams operating in dynamic, unstructured

environments.
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Chapter 1: Introduction

Human-robot teams involve humans and robots collaborating to achieve tasks under var-

ious environmental conditions. Understanding human actions and their interactions with

the physical world provides the robot with more context as to what type of assistance

the human may need, which is crucial for enabling natural and successful teaming. Nat-

ural teaming requires robots to adapt autonomously to a human teammate’s state. An

important element of such adaptation is the robot’s ability to infer the tasks performed

by its human teammates. This dissertation developed and evaluated algorithms to iden-

tify tasks performed by human teammates in unstructured, dynamic environments using

non-intrusive, non-vision wearable sensors.

Human-Robot Teams (HRTs) are often required to operate in dynamic, unstructured

environments. Task identification requires sensors to determine the actions undertaken by

human teammates. However, teams in unstructured environments cannot rely on sensors

(e.g., motion capture, cameras) that are embedded in the environment. Moreover, the usage

of image or video data may raise privacy concerns, and can be computationally expensive

to process in real-time, especially in time-critical applications (e.g., disaster response do-

mains). Using non-vision wearable sensors can permit identifying human teammates’ tasks

in real-time.

Tasks performed by HRTs can involve various activity components: cognitive, speech,

auditory, visual, gross motor, fine-grained motor, and tactile. Gross motor movements

involve motions that displace the entire body (e.g., walking, running, and climbing stairs),

or major portions of the body (e.g., bending the torso and swinging an arm), while fine-

grained motor movements involve the motion of body extremities (e.g., using wrists and

fingers for grasping and object manipulation). Tactile interaction involves motions that

cause a sense of touch (e.g., mouse clicks, and keyboard strokes). HRT tasks are often

composite tasks in that they aggregate multiple series of coordinated actions across various

activity components. For instance, responding to a message over Walkie-Talkie aggregates

an auditory component of listening to the information, a cognitive component of processing

the information to decide if a response is required, a fine-grained motor component of

picking up the Walkie-Talkie, a tactile component of pressing and holding the Walkie-
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Talkie, and finally, a speech response.

Current state-of-the-art HRT task recognition using wearable sensors is limited to gross

motor and some fine-grained motor tasks. Prior research identified visual, cognitive, and

some auditory tasks using wearable sensors; however, none of those methods recognize

composite tasks across all activity components. A robot’s ability to recognize the human’s

composite tasks is a key requirement for realizing successful HRT collaboration. This

dissertation developed a multi-dimensional task recognition algorithm that utilizes wearable

sensors for identifying composite tasks, involving seven activity components, performed by

humans in unstructured, dynamic environments.

Another limitation of current HRT task recognition algorithms is the inability to recog-

nize concurrent, or overlapping tasks. Most existing algorithms assume that an individual

only performs one activity at a time, which is not the case for many HRT scenarios, where

the human may perform two or more tasks concurrently. Consider a disaster response

search operation, where humans are working with multiple unmanned ground and aerial

vehicles. A human supervisor located in the warm zone (i.e., a safe distance from the

contaminant, but close to the area) may be commanding a ground vehicle, while monitor-

ing the status of an aerial vehicle simultaneously. At each time step, tasks that involve

direct human interaction are identified as foreground tasks, while all other active tasks

are identified as background tasks. Detecting this task concurrency will allow robots to

better adapt to the team’s interactions, priorities, or appropriations, which will improve

the team’s overall collaboration and performance. This dissertation presents a concurrency

detection method that augments the multi-dimensional task recognition algorithm in order

to detect composite tasks that occur simultaneously.

This dissertation’s primary focus is the development of a multi-dimensional task recog-

nition algorithm to identify tasks performed by HRTs working in unstructured, dynamic

environments. The algorithm detects concurrent, composite tasks across multiple activity

components using wearable sensors. The developed algorithm is validated across multiple

task environments to assess its viability across domains. Chapter 2 provides background

information on task recognition, metrics incorporated for task recognition, and reviews the

existing task recognition algorithms by activity component, and validates their compos-

ite and concurrency capabilities. Chapter 3 discusses the methodology for developing the

multi-dimensional task recognition algorithm. Chapters 4 and 5 validate the algorithm’s

performance across two HRT domains, while Chapter 6 outlines the primary contributions

and suggests key future research directions.
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Chapter 2: Related Work

Task recognition involves classifying an activity performed by an individual from a set

of domain relevant activities, or tasks [271]. Assume a user is performing a task, ak,

belonging to a task set A. There exists a sequence of sensor readings sk that corresponds

to the task ak. The objective of task recognition is to identify a function f that predicts

the task performed based on the sensor readings sk, such that the discrepancy between

the predicted task âk and the ground truth ak is minimized. f does not usually take sk as

input directly, as the sensor readings are often processed using a function Φ that converts

the sensor reading sk into a d -dimensional feature vector Φ(sk)
.
= d ∈ Rd by extracting

meaningful features [271]. The function f takes the feature vector d as input, and predicts

the task âk. Human’s individual differences can result in the same task being performed

in multiple different ways or with differing completion times, which can lead to a number

of feature vectors being mapped to a single task. Therefore, machine learning algorithms

are widely adopted for learning the function f , instead of solving it deterministically [146].

Task recognition algorithms use machine learning to analyze the underlying patterns

in the features x extracted from the sensor data for classifying the tasks. Machine learning

can be broadly divided into two categories: supervised learning and unsupervised learning.

Supervised learning requires training with labeled data that has inputs and corresponding

target outputs, while unsupervised learning does not require labeled training data [222].

Supervised learning is more common for task recognition [47], because it requires the

learning model to predict a class label as output [146].

HRTs often operate in dynamic, uncertain, and unstructured environments that do not

enable the use of static environmentally embedded sensors. Therefore, wearable sensors are

preferred for a broader set of domains due to ease of deployment in environments with more

uncertainty and dynamic aspects, while environmentally embedded sensors are generally

more suitable for structured environments with less uncertainty (e.g., control rooms). HRT

tasks may encompass multiple activity components: cognitive, speech, auditory, visual,

gross motor, fine-grained motor, and tactile. Cognitive tasks require a person to process

new information mentally, as well as recall or retrieve that information from memory

[117, 133, 234, 281, 286]). Speech-reliant tasks are performed by a person using their voice
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(e.g., communicating with a supervisor over the radio) [6, 49]), while auditory tasks involve

sensing acoustic events in the environment (e.g., listening to an important announcement

or emergency sounds) [91, 144, 159, 256]). Visual tasks use the eyes to perform tasks (e.g.,

identifying different objects, and reading) [30, 98, 99, 253]. Gross motor tasks involve

physical movements that displace the entire body (e.g., walking, running, and climbing

stairs), or major portions of the body (e.g., swinging an arm) [10, 43, 45, 105, 151]. Fine-

grained motor tasks involve the motion of body extremities (e.g., using wrists and fingers

for grasping and object manipulation) [58, 127, 142, 282]. Tactile tasks involve physical

movements that cause a sense of touch (e.g., mouse clicks and keyboard strokes) [93, 150].

Most existing task recognition approaches focus primarily on detecting tasks involving

physical movements (i.e., gross motor and fine-grained motor tasks). However, some tasks

(e.g., reading or identifying a moving target) may involve little to no physical movement.

Robots need a holistic understanding of the various activity components involved in the

tasks in order to detect those tasks accurately.

2.1 Typical Task Recognition Categories

Tasks with similar activity components or characteristics can be grouped into a single task

category based on the task environment, context, and task types. Seven common task

categories exist in the literature.

Ambulatory tasks involve an individual’s mobility (e.g., walking, running, sitting,

lying down, or ascending and descending the stairs or similar structures or objects [47, 205]).

Ambulatory tasks typically encompass the gross motor activity component only, and are

atomic in nature. Other task categories (e.g., patient monitoring [196, 275], elder care

[191], and fall detection [108]) exist; however, the tasks pertaining to these categories also

detect gross motor tasks, similar to the ambulatory tasks. Therefore, all such tasks are

categorized as ambulatory. Detecting ambulatory tasks can be considered a solved problem,

as recognition solutions with accuracies over 90% exist (e.g., [43, 107, 110, 147, 209]).

Activities of Daily Living (ADL) collectively describes the basic set of tasks

performed by individuals in their day-to-day life (e.g., eating, cooking, brushing teeth

[34, 58, 66, 142, 171, 176, 184, 200, 216, 274]). The ADL tasks encompass the gross motor,

fine-grained motor, tactile, and visual components. Depending on the tasks detected, a

research result may involve all or a subset of the aforementioned activity components.

Office tasks are more sedentary, requiring standing or sitting at a table or computer
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desktop. The tasks include: copying and pasting text, browsing the web, reading from

a printed paper or computer monitor, typing, and taking handwritten notes [30, 98, 116,

174, 253]. The tasks performed typically encompass the fine-grained motor, tactile, visual,

and cognitive activity components.

Industrial tasks have physical demands (e.g., carrying heavy objects, using a screw-

driver, attaching and detaching assembly parts) performed by workers in a manufacturing

setting [62, 92, 127, 130]. These tasks are composed primarily of gross motor, fine-grained

motor, and tactile components.

Object manipulation tasks consist of articulated activities that enable individuals

to physically interact with objects of different shapes and sizes. Grasp motions (e.g.,

ulnar pinch, tripod grasp, precision disk) enable individuals to hold and maneuver various

objects and are common object manipulation activities [22, 93, 111, 121, 287]. These tasks

encompass the fine-grained motor and tactile activity components.

Emergency response tasks focus on medical procedures (e.g., cardiopulmonary re-

suscitation and chest-tube decompression) performed on patients seeking emergency med-

ical attention [88, 154, 157]. These tasks are composite in nature and typically involve the

gross motor, fine-grained motor, and tactile activity components.

Fitness tasks include recreational and sports activities [52, 62, 128]. These tasks

primarily involve the gross motor, followed by the fine-grained motor activity components.

2.2 Task Recognition Metrics Evaluation

Task recognition algorithms require metrics to assess the tasks performed by individuals;

therefore, selecting appropriate sensing metrics is crucial. The metrics employed in a task

recognition algorithm depend on the task domain and the activity components involved

in the task set. Thirty two task recognition metrics were identified across the activity

components. The metrics are evaluated using the following criteria: sensitivity, versatility,

and suitability. Directly comparing task recognition metrics is challenging, as the metrics

are employed in different task recognition algorithms across different task domains con-

taining different task types. Thus, the metrics’ classifications are provisional, although the

classifications for widely used metrics (e.g., inertial metrics) are unlikely to change.
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2.2.1 Evaluation Criteria

Sensitivity refers to a metric’s ability to detect tasks reliably. A metric’s sensitivity is

classified as High if at least three citations indicate that the metric detects tasks with

≥ 80% accuracy, while a metric is classified as Medium if the task detection accuracy is

≥ 70%, but < 80%. Low metric sensitivity occurs if the metric detects tasks with < 70%

accuracy. Metrics without sufficient citations to determine their sensitivity are classified as

Indeterminate, and additional evidence is required to substantiate the metric’s sensitivity.

Versatility refers to a metric’s ability to detect tasks across different task domains. A

metric’s versatility is High if the metric is cited for discriminating tasks in at least two or

more task domains. Similarly, if the metric was used for classifying tasks belonging to only

one task domain, the versatility is Low.

Suitability evaluates the feasibility of using a metric for detecting tasks in various

physical environments (i.e., structured vs. unstructured), which depends on the sensor

technology employed to gather the metric. Ideally, sensors must be independent of the

environment and must be unaffected by any form of disturbance, so that they can be used

for gathering data across domains and environments. Disturbances can occur in two ways:

i) internal, and ii) external. Internal disturbances are intrinsic to the user (e.g., noise

caused due to sensor displacement, or excessive perspiration during the task). External

disturbances are caused due to changes in the environment (e.g., background noise or

lighting conditions). Two sub-criteria were developed in order to evaluate a sensor for a

metric’s suitability: i) wearability, and ii) reliability. A sensor is classified as wearable if

it can be worn by the user (e.g., accelerometers and gyroscopes), while sensors classified

as unwearable (i.e., environmentally embedded sensors) are mounted at fixed locations

throughout the environment. Acoustic [141], ambient [121, 268], and other static sensors

(e.g., cameras [114, 130] and Radio Frequency Identification (RFID) tags [118, 157]) are

a few examples of environmentally embedded sensors. A sensor is classified as reliable if

it is unaffected by both external and internal disturbances, while a sensor is classified as

unreliable if it is susceptible to internal or external disturbances. These two subcriteria

inform the suitability of a metric.

A metric’s suitability can be classified as conforming, or non-conforming, where con-

forming is defined as complying with the criterion. A metric is classified as conforming if

the metric can be gathered by a sensor that is both wearable and reliable, while a metric’s

suitability is classified as non-conforming if the metric cannot be gathered by a wearable,
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reliable sensor. A metric conforming with the suitability criteria indicates that it can be

used to detect tasks in both structured and unstructured environments. Conversely, a

metric not conforming with the suitability criteria is typically limited to detecting tasks

only in structured environments.

The task recognition metrics and the corresponding sensitivity, versatility, and suit-

ability classifications are provided in Table 2.1. The Activity Component column in Table

2.1 indicates which components (i.e., cognitive, speech, auditory, visual, gross motor, fine-

grained motor, and tactile) are associated with the metric. For example, the inertial metrics

are primarily used for recognizing gross and fine-grained motor tasks (e.g., grasping and

object manipulation [127, 130, 185]), while electrooculography metric is widely employed

for recognizing visual tasks (e.g., reading from a paper, or a computer [30, 99]). Certain

metrics may not measure an activity component directly, but provide contextual infor-

mation that can be leveraged to inform the performed task. For example, RFID, which

measures a user’s close proximity to a particular object or location, can indicate a human’s

interaction with the object [94] or involvement in an activity associated with the location

[157], both representing contextual information that can aid task recognition.

2.2.2 Task Recognition Metrics

A classification of the task recognition metrics based on their sensing properties is pre-

sented. Further, each metric is evaluated based on three evaluation criteria in order to

identify the most reliable, minimal set of metrics to recognize tasks for the intended HRT

domain.

2.2.2.1 Inertial Metrics

Inertial metrics can be decomposed into two independent metrics: i) linear acceleration

measures the three-dimensional acceleration of a body region via an accelerometer; and ii)

orientation, or a body part’s rotation and rotational rate in three-dimensions, as gathered

using gyroscope and magnetometer. Inertial metrics can be gathered jointly using an

Inertial Measurement Unit (IMU) sensor that integrates the accelerometer, gyroscope and

magnetometer into a single sensor. Inertial metrics are primarily used for detecting physical

tasks, which includes both gross and fine-grained motor tasks [45, 47, 146, 266].

Linear acceleration is the most widely employed inertial metric, and can be used as a
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Table 2.1: Metrics evaluation overview by Sensitivity (Sens.), Versatility (Verst.), and
Suitability (Suit.), where

∨
,
∏
, and

∧
, represent Low, Medium, and High, respectively.

(.) indicates Indeterminate, while * indicate hypothesis predicted for the particular metric.
Suitability is classified as conforming (C) or non-conforming (NC).

Category Metrics Sens. Verst. Suit. Activity Component

Inertial
Acceleration

∧ ∧
C

Gross [10, 43, 135, 151, 224]
Fine-grained [142, 272, 282]
Tactile [35, 109, 166]

Orientation (
∧
*)

∧
C

Gross [62, 105, 185]
Fine-grained [127, 128, 185]

Eye Gaze

Fixation
∧ ∧

C Visual [116, 140, 254]
Saccades

∏ ∧
C Visual [30, 99, 253]

Scanpath
∏ ∨

C Visual [100, 174, 253]
Lookahead fixation (

∧
*) (

∧
*) C Visual* [211, 246]

Blink rate
(
∨
*)

∧
* C Visual [30, 97]

(
∧
*)

∧
* C Cognitive* [85, 173]

Pupil dilation (
∧
*) (

∧
*) NC

Visual* [217, 221, 267]
Cognitive* [7, 85, 173]

EOG

∏ ∧
NC Visual [30, 98, 100]

(
∧
*)

∧
NC Cognitive [138, 168]

sEMG

∧ ∧
NC

Gross [202, 241, 261]
Fine-grained [22, 59, 62, 111, 128]

(
∧
*)

∧
NC Tactile [41, 42, 284]

Electro- ECG potential
∨ ∨

C Gross [208, 210, 255]
physiological Heart rate

∨ ∨
C Gross [192, 205, 258]

Heart rate variability (
∧
*) (

∧
*) C Cognitive* [85]

EEG event-related potential
∧ ∨

NC Cognitive [75, 234, 286]
EEG Power spectral density

∧ ∨
NC Cognitive [133, 188, 238]

Vision-based

Optical flow

∧ ∧
NC Gross [125, 131, 264]∏ ∧
NC Fine-grained [137, 264]

Human-body pose

∏ ∧
NC Gross [104, 163, 193]∧ ∧
NC Fine-grained [104, 154, 163, 193]

Object detection
∨ ∧

NC
Gross [58, 176, 189, 216]
Fine-grained [58, 66, 216, 274]

Acoustic
Spectrogram

∧ ∧
C Auditory [82, 144, 159]

MFCC
∧ ∧

C Auditory [184, 256, 279]

Speech

Transcript (
∏
)* (

∨
)* C Speech [78]

Keywords (
∏
)* (

∨
)* C Speech [6]

Speech rate (
∧
)* (

∧
)* C Speech [61, 85, 87]

Voice intensity (
∧
)* (

∧
)* C Speech [61, 87]

Voice pitch (
∧
)* (

∧
)* C Speech [61, 87]

Localization
Outdoor localization

∨ ∧
NC Gross [162, 228, 293]

Indoor localization
∧ ∧

NC
Gross [57, 94, 196]
Fine-grained [60, 156, 157]

Miscellaneous

Physiological
∨ ∧

C Gross [147, 185, 206]
Contact forces (

∧
*) (

∧
*) C Tactile [93, 111]

Elec. Impedance Tomography (
∨
*)

∨
NC Fine-grained [287]

Electromagnetic noise (
∧
*)

∨
NC Fine-grained [143, 269]
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standalone task recognition metric. Orientation is often used in combination with linear

acceleration for task recognition, but can also be used independently. The type and number

of tasks detected by the inertial metrics can be linked to the number and placement of the

sensors on the body [15, 45]. For example, inertial metrics for detecting gross motor tasks

involve placing the sensors at central or lower body locations (e.g., chest, waist, and thighs

[70, 135, 172, 224]), while detecting fine-grained motor tasks involve placing the sensors at

the forearms and wrists [88, 127, 185, 282], and tactile task recognition places the sensors

[35, 109, 166] at the hand’s dorsal side and fingers. Linear acceleration has high sensitivity,

as it can detect tasks with ≥ 80% accuracy. Standalone orientation is indeterminate,

but it is hypothesized to have a high sensitivity. IMUs, accelerometers, gyroscopes, and

magnetometers that gather inertial metrics can be wearable. The inertial metrics, with

appropriate drift removal methods [19, 64], depend only on the users’ movements, making

them reliable. The inertial metrics can detect tasks across multiple task domains. Thus,

inertial metrics have high versatility and conform with suitability criteria.

2.2.2.2 Eye Gaze Metrics

Eye gaze metrics record the coordinates, gx and gy, of the point of gaze over time. Raw

eye gaze data is often processed to yield more meaningful eye movement metrics that

are representative of a user’s visual behavior and can be leveraged for task recognition.

Fixations, saccades, scanpath, blink rate, pupil dilation, and lookahead fixations are some

of the most important eye movement metrics that can be extracted from eye gaze. Most

eye gaze-based task recognition approaches use one or more of these eye movement metrics

[92, 116, 134, 140, 174, 253, 254]. These metrics are commonly used for recognizing visual

tasks, while some prior research has also detected cognitive tasks [100, 132].

Fixations are stationary eye states during which gaze is held upon a particular loca-

tion [30], while the simultaneous movement of both eyes between two fixations is called

a saccade [30]. Fixation has high sensitivity (e.g., [116, 140, 254]), while saccade has

medium sensitivity (e.g., [30, 99, 253]). Both metrics have high versatility, and wearable

eye trackers are reliable to disturbances; therefore, the two metrics conform with suitability.

A fixation-saccade-fixation sequence is called a scanpath [174]. Scanpath has medium

sensitivity, as it can only detect tasks within 70-80% accuracy (e.g., [100, 174, 253]). Scan-

path has a low versatility, because, it has been used only for detecting desktop or office-

based visual activities (e.g., reading a document, web browsing, writing, and typing).
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Scanpath conforms with the suitability criteria.

Blink rate is defined as the number of blinks (i.e., opening and closing eyelids) per unit

time [30]. Blink rate is often used in conjunction with fixation and saccade as an additional

metric to provide further context. The metric’s sensitivity is classified as indeterminate due

to lack of sufficient standalone citations, but it is hypothesized to have low sensitivity for

visual task recognition and is used predominantly to detect desktop or office-based visual

activities (e.g., [30, 97]). Additionally, prior research indicates that the metric highly

correlates with the cognitive workload in supervisory task domains [85, 173]; therefore,

blink rate is hypothesized to have high sensitivity toward cognitive task recognition in the

supervisory task domain. The metric is also hypothesized to have high versatility, as it can

be potentially used in multiple task domains. Finally, the metric conforms with suitability,

as it can be measured using wearable eye trackers.

Pupil dilation is the measure of change in pupil diameter. The metric’s sensitivity

is indeterminate; however, based on the metric’s ability to reliably detect cognitive work-

load [7, 85, 173], and its high correlation in various visual search tasks [217, 221, 267], it

is hypothesized to have high sensitivity and versatility toward cognitive and visual task

recognition. Pupil dilation requires precise measurements on the order of tenths of a mil-

limeter. Lighting changes can significantly impact the metric’s acquisition, so it does not

conform with suitability.

Lookahead fixations are anticipatory eye movements, where humans fixate on objects

that will be interacted with several seconds into the future [180]. The lookahead fixation

metric analyzes a human’s oculomotor behavior when performing tasks that typically re-

quire planning for multiple time steps into the future (e.g., driving, reaching to grasp an

item; and manipulating objects). Lookahead fixation has never been used for task recogni-

tion, so its sensitivity is indeterminate. However, it is hypothesized to have high sensitivity

and versatility to detect visual tasks when used in conjunction with fixation and saccade

metrics, especially for tasks involving high hand-eye coordination [211, 246]. The metric

conforms with suitability, as it can be measured by wearable eye trackers.

2.2.2.3 Electrophysiological Metrics

The electrical signals associated with the nervous system and other body parts (e.g., mus-

cles and eyes, are called electrophysiological signals. These signals can be leveraged for

task recognition, as they are highly correlated with activities humans conduct. The most
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common electrophysiological metrics are electromyography, electrocardiography, electroen-

cephalography, and electrooculography.

Electromyography measures the time-varying voltage signal produced by muscle

tissues during contraction and relaxation. Surface-Electromyography (sEMG) is a non-

invasive electromyography technique, wherein electrodes placed on the skin overlying a

muscle measure the electrical activity. sEMG is the most commonly employed electromyo-

graphy technique in task recognition systems [22, 59, 130]. sEMG electrodes are typi-

cally placed either on the forearm or upper limb, depending on the tasks to be detected.

Forearm positioned sEMG commonly involves detecting fine-grained motor tasks (e.g.,

[62, 88, 111, 128]), while upper limb positioned sEMG involves detecting gross motor tasks

(e.g., [241, 261]). The repeatability and reliability of the sEMG metric for detecting tasks

depends on the number of electrodes (or channels) used to gather the metric. The majority

of the research used 8-channel sEMG sensors (e.g., [59, 62, 88, 128]), while 16-channel (e.g.,

[22, 111]) and <8-channel sEMG sensors (e.g., [41, 42, 202, 261, 284]) have also been used.

The sEMG metric can detect tasks across various domains (e.g., industrial [130], emergency

medical response [88], and fitness [128]); thus, making it the most widely adopted electro-

physiological metric for detecting gross motor and fine-grained motor tasks. The metric

has high sensitivity, and high versatility for detecting gross and fine-grained motor tasks.

The metric has been employed for detecting various finger and intricate hand motions (e.g.,

[41, 42, 284]); thus, it is hypothesized to have high sensitivity for detecting tactile tasks.

Finally, the metric does not conform with suitability, as sweat accumulation underneath

the electrodes may compromise the sEMG sensor’s adherence to the skin, as well as signal

fidelity [4].

The Electrooculography (EOG) metric records the electrical activity caused by eye

movements and measures the voltage between the front and back of the human eye. The

metric has medium sensitivity for classifying visual tasks (e.g., typing, web browsing, read-

ing and watching videos [30, 98, 100]). The metric is also capable of detecting cognitive

tasks (e.g., [50, 138]), but its sensitivity for the cognitive activity component is indeter-

minate, due to insufficient citations. The metric has high versatility, as it can be used in

multiple task domains [50, 138]. Although wearable glasses can measure EOG, the metric

does not conform with suitability, because EOG data is susceptible to noise introduced by

facial muscle movements [138].

Electroencephalography (EEG) collects electrical neurophysiological signals from

different parts of the brain. EEG measures two different metrics: i) Event-related potential
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measures the voltage signal produced by the brain in response to a stimulus (e.g., [75,

234, 286]); and ii) Power spectral density measures the power present in the EEG signal

spectrum (i.e., alpha (8-12 Hz), beta (13-30 Hz), theta (4-8 Hz), and delta (< 4 Hz)). The

power spectral density metric reflects humans’ cognitive and memory performance [124]

that can be leveraged for cognitive task recognition [133, 188]. Both EEG metrics have

high sensitivity (e.g., [75, 133, 234]). EEG signals may not be accurate when a participant

is physically active, so EEG is best suited for detecting cognitive tasks in supervisory-based

environments, as well as office or desktop-based environments, where the participants are

more sedentary. Therefore, the EEG metrics have low versatility. EEG signals suffer from

low signal-to-noise ratios [243, 286], and incorrect sensor placement can create inaccuracies;

therefore, EEG metrics do not conform with suitability.

Electrocardiography (ECG) measures the time-varying voltage signal that corre-

sponds to the electrical activity of the heart beat. Similar to sEMG, ambulatory ECG

is a non-invasive wearable methodology to record ECG potential [255]. ECG potential’s

signal artifacts induced by body movements [208, 210] can be leveraged to detect gross

motor tasks (e.g., standing, walking, and climbing [209]). ECG potentials are not sensitive

enough to detect tasks on their own; therefore, they are often used in conjunction with

inertial metrics to detect gross motor tasks [107, 119]. ECG potential has low versatility,

as it has been used to detect only ambulatory tasks (e.g., [107, 119, 210]). ECG potential

conforms with the suitability criteria, as it can be gathered by a wearable sensor immune

to environmental noise.

The ECG signals can also be used to measure two other heart-related metrics: i)

heart rate, and ii) heart rate variability. Heart rate refers to the number of heartbeats

per minute, while Heart Rate Variability (HRV) measures the variation in the heart

rate’s beat-to-beat interval. Heart rate has low sensitivity for detecting gross motor tasks

(e.g., [192, 205, 258]) and is often used for distinguishing the participants’ intensity when

performing physical activities [192, 258]. Heart rate has low versatility, as it can only detect

ambulatory tasks. The heart rate metric conforms with suitability, if an individual’s stress

and fatigue levels remain constant. The HRV metric is seldom used for task recognition

[205], but it is sensitive to large variations in cognitive workload [85]. Therefore, the metric

is hypothesized to have high sensitivity for cognitive task recognition. The metric conforms

with suitability, and is hypothesized to have high versatility.
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2.2.2.4 Vision-Based Metrics

Vision-based metrics use videos and images containing human motions in order to infer

the tasks performed. Vision-based metrics are acquired by static cameras installed at fixed

locations in the environment, or using wearable cameras that are typically mounted on a

human’s shoulders, head, or chest (e.g., [58, 176, 177]) to capture egocentric perspectives

[114]. Such metrics provide rich information necessary to classify humans’ interactions with

objects, which allows for a high-level abstraction in task recognition (e.g., distinguishing

between drinking coffee and drinking tea [47]). Video enables object detection, localization,

and motion tracking [51, 84, 226], which are relevant for task recognition; however, its

use is still discouraged. Environmentally embedded cameras will not always be available

in unstructured domains or environments (i.e., outdoors). Even wearable cameras have

limitations given that the video is still highly susceptible to background noise from lighting,

vibrations, and occlusion. Further, recording videos raises privacy concerns [146], and video

processing can be computationally expensive. These limitations constrain the use of vision-

based metrics for the intended HRT domain.

Several vision-based metrics exist. Optical flow measures the relative motion of pix-

els between two image sequences. This metric has high sensitivity for gross motor task

recognition (e.g., [125, 131, 264]), and medium sensitivity for detecting fine-grained motor

tasks (e.g., [137, 264]). Optical flow is versatile, as it can be used in multiple task domains.

The metric is non-conforming for suitability, as it is susceptible to vibrations and camera

distortions. The metric is reliable only when the sensor is environmentally embedded.

Human-body pose measures the skeletal joint positions of an individual [88], which

is highly correlated with the performed task [27]. The human-body pose metric has high

versatility. The metric has medium sensitivity for detecting gross motor tasks (e.g., [104,

193]), and high sensitivity for fine-grained motor tasks (e.g.,[154, 163]). The metric can be

measured using multiple sensors (e.g., IMUs, cameras, and depth sensors [56]); thus, the

suitability criteria depends on the associated sensor.

Object detection refers to identifying and locating instances of objects of interest in

an image or video. Object detection may not be involved in task recognition directly, but it

provides relevant context to inform the performed task. Detecting an object that a human

interacts with vastly reduces the number of possible tasks the human performs; thus, aiding

task detection. Object detection has low sensitivity and high versatility for detecting gross

and fine-grained motor tasks (e.g., [189, 274]). Some research combined human-body pose
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and object detection in that they simultaneously tracked hand poses and detected objects

in the hand in first-person vision to infer the tasks (e.g., [58, 66, 216, 278]). Finally, the

metric is non-conforming for suitability, as they are highly susceptible to change in lighting

conditions and occlusion.

2.2.2.5 Acoustic Metrics

Tasks performed by humans are typically accompanied by characteristic sounds [181].

Acoustic metrics leverage these characteristic sounds in order to detect auditory tasks in

the surrounding environment. Audio signals are usually analyzed in the frequency-domain

rather than the time domain, because the raw audio signal (i.e., time-domain signal) is

too noisy and erratic to be useful. The frequency-domain signal is obtained by applying a

Fourier transformation to the time-domain audio signal. Auditory task recognition algo-

rithms commonly employ two types of frequency-domain metrics: i) spectrogram; and ii)

cepstral coefficients.

Human ears are more sensitive to changes in sound at lower frequencies. The Mel scale

is a frequency measurement scale introduced to relate the perceived frequency of a sound

to the actual frequency measured in Hertz (Hz) [36]. A frequency measured in Hz can be

converted to the Mel scale by performing a non-linear logarithmic transformation. Both

spectrogram and cepstral coefficients are computed on the Mel-frequency scale instead of

Hz, because the Mel-frequency scale better resembles the resolution of the human auditory

system [36].

A spectrogram is a three-dimensional acoustic metric with the first dimension repre-

senting time, the second dimension representing frequency, and the third dimension indi-

cating the amplitude of a particular frequency at a particular time. The Mel spectrogram’s

amplitude is also log-transformed sometimes for numerical stability [82]. The spectrogram

provides high sensitivity and versatility (e.g., [82, 144, 159]).

The Mel-frequency Cepstrum represents the short-term power spectrum of a sound, and

is obtained by applying a discrete cosine transformation on a log power spectrum of a sound

wave on the Mel scale. The Mel-Frequency Cepstral Coefficients (MFCCs), which

represent the amplitudes of the resulting cepstrum, are an acoustic metric employed in

many auditory task detection algorithms. The metric has high sensitivity and versatility

(e.g., [184, 256, 279]). Both metrics conform with suitability, as long as the audio is

captured via a wearable microphone.
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Noise level is another acoustic metric and measures the loudness of a task environment.

The metric is measured in decibels using a sound decibel meter. Noise level correlates to an

increase in auditory workload [86], but it has not been used for task recognition; therefore,

additional evidence is required to substantiate its evaluation criteria. The metric is hy-

pothesized to detect auditory tasks when the events are fewer (≤ 3). The main limitations

are that it cannot differentiate between multiple auditory tasks occurring simultaneously

and may fail if the auditory tasks have a similar loudness profile. The metrics’ sensitivity

and versatility are hypothesized to be low and high, respectively. The suitability criterion

is classified as non-conforming, as the device cannot be worn by a human teammate. A

viable alternative will be to mount the device on a robot teammate.

2.2.2.6 Speech Metrics

Communication exchanges between human teammates can be translated into text, or a

Verbal transcript, such that the message is captured as it was spoken. Transcripts can be

generated manually [78], or using an automatic speech recognition tool (e.g., SPHINX [149],

Kaldi [218], Wav2Letter++ [220]). The transcribed words are encoded into n−dimensional

vectors (e.g., GloVe vector embeddings [213]) to be used as inputs for detecting speech-

reliant tasks [78]. Representative keywords that are spoken more frequently can be used

for detecting tasks [6]. Keywords are detected for every utterance automatically using

word-spotting software [65, 262]. Identifying keywords for each task is non-trivial and

requires considerable human effort. Both transcript and keywords metrics’ sensitivity is

classified as indeterminate due to insufficient citations, but is hypothesized to be medium

[6, 78]. The metrics conform with suitability, provided the speech audio is obtained using

a wearable microphone. The metrics are highly domain specific; therefore, their versatility

is hypothesized to be low.

Several speech-related metrics (e.g., speech rate, pitch, and voice intensity) that do not

rely on natural language processing have demonstrated effectiveness for estimating speech-

workload [61, 85, 87]. Speech rate captures the articulation and pause rate of verbal

communications and is measured by the number of syllables per unit time [61]. Voice

intensity is the root-mean-square value of the mono-channel audio signal, while Pitch

is the signal’s dominant frequency over a time period [87]. These metrics have not been

used for task recognition; therefore, additional evidence is required to substantiate their

evaluation criteria. These metrics are hypothesized to detect speech-reliant tasks based on
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their ability to estimate speech workload [61, 87]. The metrics may fail to detect the tasks

when the speech component is short durationed (e.g., one word or one syllable replies), as

the metrics do not offer the same amount of task-appropriate context when compared to

keywords or verbal transcripts; however, the metrics are believed to provide evidence for

tasks with multiple activity components. For example, a communication response to an air

traffic radio message is predominantly a speech-reliant task, but may be accompanied by a

physical action (e.g., changing the radio frequency). The task may not be detected solely by

using speech-related metrics, but the metrics add validity by providing additional context

to the physical action, which in this case is a fine-grained motor component. The metrics’

sensitivity and versatility are hypothesized to be high. The suitability criterion is classified

as conforming, assuming that the speech audio is obtained via wearable microphones.

2.2.2.7 Localization-Based Metrics

Localization-based metrics infer the task performed by analyzing either the absolute or

relative position of items of interest, including humans. Localization-based metrics can

be of two different types: i) Outdoor Localization, and ii) Indoor Localization. The

outdoor localization metric often involves the human wearing a receiver, which relies on

satellite navigation systems (e.g., Global Positioning System) to determine the absolute

location (i.e., in latitude and longitude coordinates) of humans. The outdoor localiza-

tion metric has low sensitivity, as the knowledge of location alone cannot determine the

performed tasks accurately [162], but can support task recognition by providing context

[225, 228]. Therefore, the metric is often paired with inertial metrics for task recognition

[10, 146, 293]. The metric is highly versatile, as it has been used in multiple task domains

(e.g., ADL and fitness). A wearable sensor can measure the metric, but can be unreliable,

due to the inherent error (on the order of meters) present in the measurement. Events

that affect the penetration of satellite signals (e.g., adverse weather conditions, dense tree

canopy, and indoor environments) can also result in inaccurate localization [146]. Thus,

the metric does not conform with suitability.

Indoor localization determines the relative position of items, including humans, with

respect to a reference in indoor environments by acquiring the change in radio signals.

RFID tags and wireless modems installed at stationary locations are the standard sensors.

The indoor localization metric infers tasks by determining humans’ location or identifying

objects lying in close proximity [47, 57]. For example, reaching for a blender equipped
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with an RFID tag indicates that the human is about to operate the blender. The indoor

localization metric can detect gross motor and fine-grained motor tasks in multiple task

domains with ≥ 80% accuracy (e.g., [57, 60, 94, 156, 157, 196]); therefore, the metric has

high sensitivity and versatility. The metric requires environmentally embedded sensors;

therefore, it is non-conforming for suitability.

2.2.2.8 Miscellaneous Metrics

Physiological metrics provide precise information about an individual’s state. Several phys-

iological metrics exist: i) Galvanic skin response, which measures the conductivity of

the skin, ii) Respiration rate, which represents the number of breaths taken per minute,

iii) Posture Magnitude, which measures an individual’s trunk flexion (leaning forward)

and extension (leaning backward) angle in degrees, and iv) Skin temperature, are the

most commonly used physiological metrics for task recognition. The physiological metrics

have low sensitivity toward task recognition, since they react to task changes with a time

delay. The physiological signals correlate with the intensity level of the activity, but they do

not reflect the type of activity [206]; however, they may improve recognition accuracy when

used as auxiliary metrics with inertial data [147, 185]. The metrics have high versatility,

as they have been used in multiple task domains, although they are used predominantly to

detect gross motor tasks. The physiological metrics conform with suitability, as they can

be measured by wearable, reliable sensors.

Humans are particularly receptive to tactile cues on their hands, limbs, feet and torso,

which allow complex tasks to be carried out [169]. Therefore, understanding tactile interac-

tions are fundamental to contextual task recognition. Prior tactile task recognition research

employed sensors for detecting only hand-based tactile interaction (e.g., [42, 93, 109, 111]).

Luo et al. [169] developed a wearable full-body tactile textile that can capture tactile cues

on any body part by quantifying the contact forces.

Contact forces are a tactile metric that senses grasp, touch, and other forces that

arise when humans interact with the environment physically [111, 201]. The contact forces

metric is hypothesized to be highly sensitive for detecting tactile-oriented tasks that involve

object interaction and manipulation [93, 111]. The metric is hypothesized to be highly

versatile, as it can be used in multiple different task domains, as long the tasks involve

object interaction. The metric conforms with suitability, as it can be measured by a reliable

wearable sensor; however, the sensor employed may require wearing a pair of gloves or a
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full-body suit, which can hinder task performance.

Most electrical and electromechanical objects (e.g., computing devices, power tools, and

automobiles) emit a signature Electromagnetic noise [269]. When a human makes phys-

ical contact with such objects, the emitted electromagnetic signals that propagate through

the user’s body can be used to identify the objects, which in turn can inform the activity

[143]. However, the metric is limited to only objects that generate electromagnetic noise.

Reproducibility is also an issue, since the sensors are not available commercially. Tomog-

raphy is a non-invasive method of analyzing objects’ inner structure and composition with

radiation (e.g., Computerized Tomography scans and Magnetic Resonance Imaging) [23].

For example, Electrical Impedance Tomography [90] leverages muscle tomography

(e.g., change in muscles’ cross-sectional shape and impedance distribution when flexed) to

recognize hand gestures [287]. Both Electrical Impedance Tomography and Electromag-

netic noise metrics do not have adequate citations to inform sensitivity, and are classified

as indeterminate. The metrics have only been cited for detecting ADL tasks, so they have

low versatility. The associated wearable sensors were developed and used in laboratory

settings; thus, the reliability is not completely understood. Overall, these metrics are

non-conforming for suitability.

2.2.3 Discussion

The objective of any task recognition algorithm is to detect tasks encompassing multiple

activity components via a reliable, but minimal set of metrics. Ideally, a metric must

detect tasks with high accuracy and repeatability. The metrics and associated sensors best

suited for each activity component that can be employed across multiple task domains and

environments were reviewed. HRTs must operate in dynamic, unstructured environments,

emphasizing the need for gathering relevant metrics with unobtrusive wearable sensors

that do not impede humans’ movement, and are resilient to environmental characteristics

(e.g., humidity, heat). The intended domain’s tasks involve all seven activity components;

thus, identifying metrics capable of detecting tasks across activity components given the

environment uncertainty is crucial.

The gross motor tasks can be detected accurately using inertial metrics measured at

the waist, shoulder, thigh and ankle locations, while sEMG metrics in conjunction with

inertial metrics can be used to recognize fine-grained motor activities. Additional con-

text for physical tasks can be provided by the human-body pose metric estimated using
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IMUs. Hand-based tactile tasks can be detected using contact forces; however, instru-

menting fingertips with gloves may render the metric infeasible for certain task domains

and environments. A suitable alternative is to measure acceleration at the dorsal side of

the hand using accelerometer sensors. Therefore, the suitable sensor suite to recognize the

gross, fine-grained motor, and tactile tasks correspond to a wearable inertial-based motion

tracking system (e.g., Xsens MTw Awinda [207]) that measures the inertial metrics at

various body parts, and can also uses the measurements to compute the human-body pose

metric. Pairing the motion tracking system with a wearable forearm sEMG measurement

sensor (e.g., Myo Armband [239]) can enable a task recognition algorithm to differentiate

highly articulated fine-grained motions.

Visual tasks are best detected using fixation, saccade, and scanpath metrics captured

via eye tracking. The lookahead fixation metric may be used to provide additional context

if the tasks involve hand-eye coordination. The cognitive tasks are best detected using

EEG metrics (i.e., power spectral density or event-related); however, EEG signals are

erratic and vulnerable to physical movements. Pupil dilation, blink latency, and blink

rate metrics are hypothesized to be suitable alternatives for detecting cognitive tasks.

Therefore, a wearable eye-tracker (e.g., Pupil Core eye-tracker) capable of measuring the

aforementioned metrics can be employed to detect both visual and cognitive tasks, although

further research is required to confirm the efficacy of pupil dilation and blink metrics toward

detecting cognitive activities. Physiological metrics (e.g., HRV with at least 30 seconds of

data) may also be used as substitute metrics to detect cognitive tasks.

None of the reviewed metrics detect speech tasks reliably due to the lack of sufficient

research [102]. Among the reviewed metrics, keywords and transcripts are the only metrics

that provide task appropriate context necessary for detecting speech-reliant tasks [6, 102],

but at the cost of being highly domain-specific and requiring natural language processing

(e.g, word-spotting and speech recognition). The manual effort required to extract sensitive

keywords for each task along with the added privacy concerns discourage the use of these

metrics. The other evaluated speech-related metrics (e.g., speech rate, voice intensity, pitch,

and utterance length) are untested for task detection, but can potentially contribute to task

identification based on the speech patterns associated with the tasks. Further, these metrics

are not domain-specific and offer better anonymity by deemphasizing natural language

processing. Finally, spectrogram and MFCCs measured from a wearable microphone can

detect auditory events reliably.
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2.3 Task Recognition Algorithms Evaluation

Over one hundred task recognition algorithms across different activity components and

task domains were identified and reviewed. The algorithms are evaluated using the fol-

lowing criteria: sensitivity, suitability, generalizability, composite factor, concurrency, and

anomaly awareness. The evaluation criteria and the corresponding requirements were cho-

sen in order to assess an algorithm’s viability for detecting tasks in a human-robot teaming

domain. Directly comparing task recognition algorithms is challenging, as there exists no

established criteria for comparing and evaluating them. The classifications compare the

algorithms by activity components with similar tasks. An algorithm may require addi-

tional evidence in order to assess a particular criterion, if there is insufficient information

to classify the algorithm or if the algorithm was not developed in a practical setting.

2.3.1 Evaluation Criteria

Sensitivity refers to an algorithm’s ability to detect tasks reliably. An algorithm’s sensitiv-

ity is classified as High if the algorithm detects tasks with ≥ 80% accuracy, while Medium

if the algorithm’s accuracy is ≥ 70%, but < 80%, and Low if the accuracy is < 70%. The

accuracy thresholds were chosen by fitting a skewed Gaussian curve on the reviewed task

recognition algorithms’ accuracies.

An algorithm’s suitability evaluates its feasibility for detecting tasks in various phys-

ical environments (i.e., structured vs. unstructured). An algorithm’s suitability can be

classified as conforming or non-conforming. An algorithm conforms if it can detect tasks

independent of the environment; thus, the suitability criterion is dependent on the incor-

porated task recognition metrics. An algorithm is conforming if it incorporates wearable,

reliable metrics, and is non-conforming otherwise.

Generalizability represents an algorithm’s ability to identify tasks across individuals.

The generalizability criterion depends on the achieved accuracy, given the algorithm’s

validation method. An algorithm conforms if it achieves ≥ 80% accuracy with leave-

one-subject-out cross-validation or in-the-wild validation. The leave-one-subject-out cross-

validation approach reports the average accuracy obtained by training the algorithm re-

peatedly on all but one participant’s data and validating using the left-out participant’s

data. The in-the-wild validation approach reports the average accuracy obtained by vali-

dating on a new set of participants typically recruited after the algorithm’s development,
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in order to assess the algorithm’s ecological validity and real-world performance.

The composite factor criterion determines whether an algorithm can detect tasks com-

posed of multiple atomic tasks. If a detected task incorporates two or more atomic ac-

tivities, then the algorithm conforms with the composite task criterion. Typically, long-

duration tasks that incorporate multiple action sequences per task are composite in nature.

Many HRT scenarios require humans to perform two or more tasks concurrently. At

each time step, tasks involving direct human interaction can be identified as foreground

tasks, while all other active tasks can be classified as background tasks. Concurrency

determines if the algorithm can detect tasks executed simultaneously. Concurrency has

multiple forms: (i) a task may be initiated prior to completing a task, such that a portion

of the task overlaps with the prior task (i.e, interleaved tasks), and (ii) multiple tasks

performed at the same time (i.e., simultaneous tasks) [11, 165]. An algorithm conforms if

it can detect at least one form of concurrency.

Anomaly Awareness determines an algorithm’s ability to detect an out-of-class task

instance, which arises when an algorithm encounters sensor data that does not correspond

to any of the algorithm’s learned tasks. An algorithm conforms with anomaly awareness if

it can detect out-of-class instances.

Most task recognition algorithms can only detect a predefined set of atomic tasks and

are unable to detect concurrent tasks or out-of-class instances [47, 146]. Thus, unless identi-

fied otherwise, the reviewed algorithms do not conform with composite factor, concurrency,

and anomaly awareness.

2.3.2 Overview of Task Recognition Algorithm Categories

Task recognition algorithms typically incorporate supervised machine learning to identify

the tasks from the sensor data. These algorithms can be grouped into several categories

based on feature extraction, ability to handle uncertainty, and heuristics. Three common

data-driven task recognition algorithm categories exist in the literature.

Classical machine learning relies on features extracted from raw sensor data to learn

a prediction model. Classical approaches are suitable when there is sufficient domain

knowledge to extract meaningful features, and the training dataset is small.

Deep learning avoids designing handcrafted features, learns the features automatically

[73], and is generally suitable when a large amount of data is available for training the

model. Deep learning approaches leverage data to extract high-level features, while simul-
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taneously training a model to predict the tasks.

Probabilistic graphical models utilize probabilistic network structures (e.g., Bayesian

Networks [54], Hidden Markov Models [44], Conditional Random Fields [265]) to model

uncertainties and the tasks’ temporal relationships, while also identifying concurrent, com-

posite tasks. The data-driven models’ primary limitations are that they i) cannot be

interpreted easily, and ii) may require a large amount of training data to be robust enough

to handle individual differences across humans and generalize across multiple domains.

Knowledge-driven task recognition models exploit heuristics and domain knowledge to

recognize the tasks using reasoning-based approaches (e.g., ontology and first-order logic

[231, 257, 260]). Knowledge-driven models are logically elegant and easier to interpret, but

do not have enough expressive power to model uncertainties. Additionally, creating logical

rules to model temporal relations becomes impractical when there are a large number of

tasks with intricate relationships [39, 161].

2.3.3 Cognitive Tasks

Cognition describes mental processes, including reasoning, awareness, perception, knowl-

edge, intuition, and judgment [138], as such, most tasks require some cognitive capability.

For instance, although tasks, such as reading, writing, watching videos predominantly

involve visual, fine-grained motor, or tactile components, they also entail a cognitive com-

ponent. Therefore, it is impractical to disregard the cognitive task elements, but classifying

all such tasks as cognitive is also infeasible. Thus, only those algorithms that explicitly

mention identifying the tasks’ cognitive aspect are reviewed. The evaluation of the reviewed

cognitive task recognition algorithms is presented in Table 2.2.

2.3.3.1 Classical Machine Learning

EEG potentials, obtained by placing non-invasive electrodes on humans’ scalp, are the pri-

mary electrophysiological metrics used to detect cognitive tasks. Features (e.g., amplitude

and power spectral density) extracted from the EEG frequency bands (i.e., alpha (8-12

Hertz), beta (13-30 Hertz), theta (4-8 Hertz), and delta (< 4 Hertz)) can be used to train

classical machine learning algorithms [75, 133, 188]. Reading is the most widely detected

cognitive task using EEG sensing. A k-Nearest Neighbors classifier distinguished between

reading and non-reading tasks (e.g., drawing, watching a video and listening to music), as
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Table 2.2: Cognitive task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

Decision trees [97]
∧

C NC NC NC NC

Ensemble [75]
∧

NC NC NC NC NC

k-Nearest Neighbors [133]
∏

NC NC NC NC NC

[138]
∧

NC NC NC NC NC
SVM

[50]
∧

NC NC NC NC NC

Deep Learning

[286]
∧

NC NC NC NC NC
CNN

[238]
∧

NC C NC NC NC

CNN + LSTM [234]
∧

NC NC NC NC NC

well as distinguishing reading different kinds of document, using a wearable EEG sensor

[133].

EOG is the other electrophysiological metric employed for detecting cognitive tasks [50,

138]. The efficacy of different EOG features in detecting cognitive tasks was investigated

[50]. Three features (i.e., adaptive autoregressive parameters, wavelet coefficients and

Hjorth parameters) were extracted from a laboratory-developed two-channel EOG signal

acquisition device. These features were used independently and in combinations to train

a Support Vector Machine (SVM) classifier to detect eight cognitive tasks (e.g., reading,

writing, copying a text, web browsing, watching a video, playing an online game, and word

search).

Several other algorithms combine data from multiple sensing modalities to improve

cognitive task recognition accuracy [75, 97, 138]. For example, combining blink rate and

head motion by fusing the eye gaze data with acceleration data improved a decision tree

classifier’s accuracy in detecting four cognitive tasks (e.g., reading, solving a math problem,

watching a video and talking) [97]. The Codebook algorithm recognized six cognitive tasks

(e.g., reading a printed page, watching a video, engaging conversation, writing handwritten

notes and sorting numbers) by clustering the subsequences sampled from a data sequence

based on similarity [138]. The resulting cluster centers act as the set of codewords (i.e.,

codebook). A SVM classifier was trained to classify the histogram reflecting the codeword
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frequency to predict the tasks.

Classical machine learning algorithms typically have high sensitivity ; however, the in-

corporated metrics (i.e., EOG and EEG) are unreliable and cannot accommodate individual

differences. Therefore, the algorithms’ suitability and generalizability are non-conforming.

The composite factor and concurrency are non-conforming as well.

2.3.3.2 Deep Learning

Recent deep learning advances facilitate detecting cognitive tasks using EEG potentials

acquired from off-the-shelf, wireless, wearable EEG devices. Most EEG wearable devices

(e.g., [1–3]) record prefrontal EEG signals, which are correlated to a human’s intellectual,

emotional and cognitive states [234]. A deep EEG network detected three cognitive tasks

(e.g., reading, speaking, and watching a video) using data collected from a wearable EEG

sensor’s [2] two prefrontal EEG channels [234]. The hybrid deep learning algorithm incor-

porated a Convolutional Neural Network (CNN) to populate the feature maps from raw

EEG potentials, followed by a Long Short-Term Memory (LSTM) network for modeling

the temporal state of the EEG feature maps. Most existing EEG-based algorithms focus on

application-specific classification algorithms, which may not translate to other domains. A

transferable EEG-based cognitive task recognition algorithm that can adaptively support

varying EEG channels as input and operate on a wide range of cognitive applications was

developed [286]. The algorithm combined deep reinforcement learning with an attention

mechanism to extract robust and distinct deep features.

Detecting cognitive tasks with fewer EEG sensors in an unconstrained, natural envi-

ronment is a challenging task due to low signal-to-noise ratio, lack of baseline availability,

change of baseline due to domain environment and individual differences, as well as un-

controlled mixing of various tasks [238]. A deep learning algorithm [238] revealed that

the backward sensor selection [26] technique can reduce the sensor suite significantly (i.e.,

from nine probes to three) without compromising accuracy. Two deep neural networks,

a deep belief network and a CNN, were trained using the EEG power spectral density to

distinguish between listening and watching tasks.

Similar to the classical machine learning approaches, the deep learning algorithms also

tend to have high sensitivity, but incorporate EEG metrics that suffer from low-signal-to-

noise and individual differences; therefore, the algorithms’ suitability and generalizability

are non-conforming. Additionally, none of reviewed algorithms conform with the concur-
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rency and composite factor.

2.3.3.3 Discussion

Generally, cognitive tasks can be classified with > 80% accuracy; therefore, the algorithms’

typically have high sensitivity. Excluding Ishimaru et al.’s [97] decision tree classifier,

none of the other algorithms conform with suitability, as the metrics employed were EEG

or EOG. Thus, none of the discussed algorithms are appropriate for detecting cognitive

tasks for the intended HRT domain. Given (a) that cognitive and visual tasks are closely

associated, and (b) the efficacy of multimodality sensing [97], it is hypothesized that a

classical machine learning algorithm that incorporates eye gaze metrics (e.g., pupil dilation,

blink latency, blink rate) and cognitive workload sensitive physiological metrics (e.g., HRV)

will be viable for detecting cognitive tasks.

2.3.4 Speech Tasks

Verbal communication plays a key role in task performance (e.g., assigning tasks, shar-

ing or confirming important information, and reporting task completion), especially in

a dynamic environment [290]. Speech-reliant task recognition in a highly dynamic envi-

ronment (e.g., trauma resuscitation [24]) encounters several challenges (e.g., inconsistent

verbal reports between tasks) the potentially succinct and non-grammatical nature of ver-

bal communication, overlapping multi-person speech, and interleaved verbal exchanges due

to multi-tasking [103]. Only two speech task recognition algorithms were identified, their

classifications are cited in Table 2.3.

Table 2.3: Speech task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Deep Learning

Attention [78]
∏

NC NC NC NC NC

CNN [6]
∨

NC NC NC NC NC
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2.3.4.1 Deep Learning

Little research exists on speech-reliant task recognition [102], with the existing algorithms

being based on deep learning (e.g., [6, 78]). A text-based task recognition algorithm em-

ployed a verbal transcript derived from a medical team’s communication as input to predict

ten trauma resuscitation tasks [78]. The algorithm used both speech and ambient sounds

for task prediction. A multimodal attention network was applied to process the transcribed

spoken language and the ambient sounds in order to predict the tasks. The main limitation

was reliance on manually generated transcripts, which is infeasible for a contemporaneous

task recognition system [5]. Automatic transcript generation requires a computationally ex-

pensive speech recognition tool. Additionally, poor audio quality caused by distant talking,

ambient noise, succinct and non-grammatical speaking can increase an automatic speech

recognition tool’s error rate; thus, the algorithm’s performance in real-world scenarios is

expected to be lower than the cited result [78].

An alternative speech-reliant task recognition algorithm depended only on one keyword

to detect trauma tasks [6]. The speech-reliant algorithm used one representative keyword

per utterance as input to a deep neural network, in addition to the ambient sounds. This

keyword was determined by calculating the most frequent words list for each task based on

the premise that frequently occurring words for particular tasks can serve as features for

the neural network’s task prediction. Word-spotting tools (e.g., [65, 262]) can extract key-

words efficiently, reducing the reliance on traditional speech recognition. The deep learning

architecture consisted of an audio network, a keyword network, and a fusion network. The

audio network adapted a modified VGGish deep network [249] to extract features from the

audio spectrogram, while the keyword network extracted important verbal features from

the keyword list. The fusion network concatenated the output of both networks to predict

the speech-reliant tasks.

The use of speech to recognize tasks is an under-developed area. The reviewed algo-

rithms had low to medium sensitivity (e.g., [6, 78]). The algorithms’ suitability criterion

was classified as non-conforming, because the incorporated metrics are domain and task

specific. Both algorithms’ are non-conforming with generalizability, composite factor, con-

currency and anomaly awareness.
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2.3.4.2 Discussion

Verbal communication in a highly dynamic setting (e.g., trauma medical team [290]) occurs

at a high level (e.g., discussing task plans and intentions) and at a low level (e.g., coor-

dinating, executing and reporting task completion) [102]. Identifying speech patterns and

keywords during verbal communication can detect the tasks, as well as track their progress

(i.e., preparing-performing-reporting). Incorporating verbal exchanges (e.g., transcripts

[78] or keywords [6]) in tandem with the audio stream increased the accuracy by at least

15% in both algorithms, indicating that speech patterns and keywords can serve as differ-

entiators for speech-reliant tasks. The algorithms’ main limitations are that the metrics

are highly domain-specific and require natural language processing, along with substantial

manual effort to identify task specific sensitive keywords (see Section 2.2). Therefore, the

algorithms cannot be readily transferred across domains. A suitable alternative may in-

volve modifying the algorithm to use the audio stream in conjunction with speech workload

metrics (e.g., speech rate, voice intensity, and voice pitch) instead of verbal exchanges.

2.3.5 Auditory Tasks

Auditory task recognition involves identifying characteristic ambient sounds in order to

detect tasks in an environment [144, 181]. Auditory task recognition algorithms typically

employ microphone sensors to detect sound events. Individual classifications for each au-

ditory task detection algorithm by its category are provided in Table 2.4.

2.3.5.1 Classical Machine Learning

Auditory task detection algorithms that incorporate MFCCs typically use classical ma-

chine learning (e.g., [256], [279]), while deep learning algorithms incorporate spectrograms

(e.g., [82, 91, 144, 159]). A Random Forest (RF) based voting algorithm, Non-Markovian

Ensemble Voting, used MFCCs to recognize characteristic sounds produced by twenty-two

ADL tasks [256]. The predictions were refined over time by collecting consensus via voting

from past and future predictions.

A wearable acoustic sensor, BodyScope, worn around the neck classified several ADL

tasks [279]. The BodyScope sensor contained a microphone surrounded by a stethoscope

chest piece for sound amplifications in order to exploit the sounds that occurred at a
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Table 2.4: Auditory task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

RF [256]
∧

NC C NC NC NC

SVM [279]
∏

NC NC NC NC NC

Deep Learning

[144]
∧

C C NC NC NC

[91]
∧

RE RE NC NC NC

[159]
∨

NC NC NC NC NC

[82]
∏

C NC NC C NC
CNN

[233]
∏

RE NC NC NC NC

human’s mouth and throat regions to recognize the tasks. For instance, when a person

speaks to someone, they generate vocal sounds, while eating and drinking produce chewing,

sipping, and swallowing sounds. Several time- and frequency-domain features (e.g., zero-

crossing rate and MFCCs) were used to train an SVM classifier.

Both algorithms achieved > 70% accuracy during an in-the-wild study; therefore, the

algorithms’ sensitivity is medium to high. Although the metrics used were reliable, the

ensemble voting algorithm incorporated an environmentally embedded microphone, while

the BodyScope sensor suffers from non-reproducibility; therefore, the algorithms’ suitability

is classified as non-conforming. Finally, the algorithms’ composite factor and concurrency

are classified as non-conforming.

2.3.5.2 Deep Learning

Deep learning algorithms can leverage the time, frequency, and amplitude information in

an audio signal’s spectrogram to extract the spatio-temporal features. Most auditory task

detection deep learning algorithms (e.g., [82, 144, 159]) leverage transfer learning. These

algorithms fine-tune the existing VGGish model [91] (i.e., pre-trained on the YouTube Audio

Set [67]) with additional layers to detect the target auditory tasks. The VGGish model

used a log Mel spectrogram as input to output a 128-dimensional neural network feature

vector for every second of an audio sample. A transfer learning framework detected fifteen
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ADLs (e.g., talking, watching television, brushing, shaving, and listening to music) from

the audio recorded using an off-the-shelf smartphone [159]. A five-layer CNN was added

to the VGGish’s feature vector to predict the ADL tasks.

Polyphonic event detection algorithms recognize multiple auditory tasks occurring si-

multaneously [38], typically via deep neural networks. A VGGish-based algorithm stacked

multiple binary classifiers to the feature vector [82], while others have developed various

recurrent and hybrid deep neural networks to detect polyphonic sound events [31, 32, 204].

Audio augmentation can be exploited by deep learning to improve the recognition rate.

Augmenting the original audio with a set of deformations (e.g., time stretching, pitch

shifting, dynamic range compression, and background noise mixing) improved a CNN’s

classification accuracy significantly on a range of environmental sound classification tasks

[233]. Ubicoustics, a real-time, auditory task recognition algorithm was trained by incor-

porating various augmentation techniques to simulate the sounds that resemble real-world

audio samples [144].

Deep learning algorithms tend to outperform classical machine learning approaches in

terms of accuracy. Thus, deep learning algorithms, especially the VGGish-based models

[82, 144, 159], are the most suited for detecting auditory tasks, primarily due to their

feature extraction capability and the availability of abundant audio datasets [67, 181].

Most algorithms are validated by splitting all the available data randomly into training

and validation datasets; therefore, the algorithms’ generalizability criteria either require

additional evidence, or are non-conforming. All evaluated algorithms are non-conforming

for the composite factor and anomaly awareness criteria.

2.3.5.3 Discussion

Most auditory task detection algorithms typically have medium to high sensitivity (e.g.,

[82, 91, 144, 256, 279]). The algorithms’ suitability criterion depends on whether the

microphone is worn or embedded in the environment. The algorithms’ generalizability

criteria either require additional evidence or are non-conforming. The polyphonic detection

algorithms conform with concurrency; therefore, a deep polyphonic detection algorithm

(e.g., [82]) is recommended for the intended HRT domain, as it is more likely to contain

multiple, simultaneous sound sources [38]. None of the reviewed algorithms conform with

composite factor and anomaly awareness.
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2.3.6 Visual Tasks

Eye movement is closely associated with humans’ goals, tasks, and intentions, as almost all

tasks performed by humans involve visual observation. This association makes oculography

a rich source of information for task recognition. Fixation, saccades, blink rate, and scan-

paths are the most commonly used metrics for detecting visual tasks [30, 174, 253], followed

by EOG potentials [98, 99, 168]. Visual tasks typically occur in office or desktop-based en-

vironments, where the participants are sedentary. The classifications of the reviewed visual

task recognition algorithms are presented by algorithm category in Table 2.5.

Table 2.5: Visual task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

Auto-context model [174]
∧

C RE NC NC NC

[140]
∧

C C NC NC NC
Decision trees

[97]
∧

C NC NC NC NC

k- Nearest Neighbors [98]
∏

NC NC NC NC NC

RF [253]
∏

C NC NC NC NC

[116]
∧

C NC NC NC NC

[30]
∏

C NC NC NC NCSVM
[168]

∧
NC C NC NC NC

Deep Learning

CNN [100]
∨

NC NC NC NC NC

CNN + LSTM [99]
∨

NC NC NC NC NC

Graph CNN [139]
∨

C NC NC NC NC

Encoder-Decoder [182]
∧

C C NC NC NC

2.3.6.1 Classical Machine Learning

Classical machine learning using eye gaze metrics (e.g., saccades, fixation, and blink rate)

for visual task recognition was pioneered by Bulling et al. [30]. Statistical features (e.g.,

mean, max, variance) extracted from the gaze metrics, as well as the character-based

representation to encode eye movement patterns were used to train a SVM classifier to
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detect five office-based tasks. The algorithm’s primary limitation is that the classification is

provided at each time instance t independently and does not integrate long-range contextual

information continuously [174]. A temporal contextual learning algorithm, the Auto-context

model, overcame this limitation by including the past and future decision values from the

discriminative classifiers (e.g., SVM and k-Nearest Neighbors) recursively until convergence

[174].

Low-level eye movement metrics (e.g., saccades and fixations) are versatile and easy to

compute, but are vulnerable to overfitting, whereas high-level metrics (e.g., Area-of-Focus)

may offer better abstraction, but require domain and environment knowledge [253]. These

limitations can be mitigated by exploiting low-level metrics to yield mid-level metrics that

provide additional context. The mid-level metrics were built on intuitions about expected

task relevant eye movements. Two different mid-level metrics were identified: shape-based

pattern and distance-based pattern [253]. The shape-based pattern metrics were based

on encoding different combinations of saccade and scanpath, while distance-based pattern

metrics were generated using consecutive fixations. The low- and mid-level metrics were

combined to train a RF classifier to detect eight office-based tasks, including five desktop-

based tasks and three software engineering tasks.

Various algorithms were developed focused solely on detecting reading tasks using clas-

sical machine learning (e.g., [116, 140]). The complexity of the reading task varied across

algorithms. Reading detection can be as rudimentary as classifying active reading or not

[140], or as complex as distinguishing between reading thoroughly vs. skimming text [116].

Based on feature mining, existing reading detection algorithms can be categorized into

two methods: i) Global methods that mine eye movement metrics over an extended period

(> 30s) to build a reading detector (e.g., [30, 99, 174, 253]), and ii) Local methods that

extract the metrics within a narrow temporal window (< 3s) (e.g., [25, 126]). Global

methods result in better accuracy, but do not detect reading in real-time, due to longer

window sizes, while local methods allow for (near) real-time reading detection, but have

low accuracy [116].

Classical machine learning algorithms (e.g., [30, 98, 140, 174, 253]) have medium to high

sensitivity. Most algorithms conform with the suitability criterion, while rarely conforming

with the generalizability criterion. All algorithms are non-conforming for the concurrency

and composite factors, making them unsuitable for the intended HRT domain.
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2.3.6.2 Deep Learning

Recent deep learning algorithms leverage CNNs to detect visual tasks directly using raw 2D

gaze data obtained via wearable eye trackers. GazeGraph [139] algorithm converted 2D eye

gaze sequences into a spatial-temporal graph representation that preserved important eye

movement details, but rejected large irrelevant variations. A three-layered CNN trained

on this representation detected various desktop and document reading tasks. An encoder-

decoder based CNN detected seven mixed physical and visual tasks by combining 2D gaze

data with head inertial metrics [182].

Several other algorithms apply deep learning techniques using EOG potentials to detect

reading task [99, 100]. Two deep networks, a CNN and a LSTM, were developed to

recognize reading in a natural setting (i.e., outside of the laboratory). Three metrics (i.e.,

blink rate, 2-channel EOG signals, and acceleration) from wearable EOG glasses were used

to train the deep learning models.

Obtaining datasets at a large scale is difficult due to high annotation costs and human

effort, while lack of labeled data inhibits deep learning methods’ effectiveness. A sample

efficient, self-supervised CNN detected reading task [100] using less labeled data. The

self-supervised CNN employed a “pretext” task to bootstrap the network before training

it for the actual target task. Three reading tasks (i.e., reading English documents, reading

Japanese documents, both horizontally and vertically), as well as a no reading class, were

detected by the self-supervised network. The pretext task recognized the transformation

(i.e., rotational, translational, noise addition) applied to the input signal. The pretext pre-

training phase initialized the network with good weights, which were fine-tuned by training

the network on the target task (i.e., reading detection task) dataset.

The deep learning algorithms (e.g., [99, 100, 139]) typically tend to have low sensitivity.

Further, the EOG deep learning algorithms do not conform with suitability, as the employed

metrics are unreliable due to susceptibility to noise introduced by facial muscle movements

[138]. These limitations discourage the use of deep learning for visual task recognition.

2.3.6.3 Discussion

None of the existing algorithms detected visual tasks within the targeted HRT context.

The two classical machine learning algorithms: i) Auto-context model [174] and ii) Srivas-

tava et al.’s [253] algorithm appear to be more appropriate for detecting visual tasks. Both
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algorithms had > 70% accuracies across a range of visual tasks and employed eye gaze

metrics; thus, conforming with suitability and partially with sensitivity. The algorithms’

generalizability criterion requires additional evidence, as the former’s validation scheme is

unclear, while the latter does not have sufficient accuracy. None of the reviewed algorithms

conform with the concurrency and composite factor criteria. The encoder-decoder algo-

rithm [182] is also a viable alternative, as it achieved > 80% with leave-one-subject-out

cross-validation using eye gaze metrics.

2.3.7 Gross Motor Tasks

Gross motor tasks occur across multiple task categories (e.g., ADL, fitness, and, industrial).

A high-level overview of the reviewed algorithms with regard to the evaluation criteria is

presented by algorithm category in Table 2.6.

2.3.7.1 Classical Machine Learning

Most gross motor task recognition algorithms incorporate classical machine learning using

inertial metrics, often measured at central body locations [47], (e.g., chest [28, 55, 147, 155],

waist [10, 14, 33, 135, 145, 224, 273, 283], and thighs [28, 68, 70, 129, 273, 277]). Generally,

inertial metrics measured at upper peripheral locations (e.g., forearms and wrists) are not

well suited for detecting gross motor tasks [130].

Algorithms may also combine inertial data with physiological metrics (e.g., ECG, heart

rate, respiration rate, or skin temperature [107, 119, 192, 205, 206]). Physiological data

can increase recognition accuracy by improving context. For example, adding heart rate

discriminated between intensity levels (e.g., running and running with weights [192]). Lara

and Labrador [147] demonstrated that physiological data can improve recognition accuracy

by means of structural feature extraction [198]. However, physiological metrics may disrupt

real-time task recognition, because they are not sensitive to sudden changes in physical ac-

tivity. Further, adding heart rate did not improve activity recognition [258], because heart

rate remains high after performing physically demanding activities (e.g., running), even

when the individual was lying or sitting. HRV may overcome this limitation. The sensi-

tivity of HRV decreases when < 30 seconds or > 2 mins of data is used for classification

[85]. These algorithms extract time- and frequency-domain features and employ conven-

tional classifiers (e.g., SVM [107, 205], Decision Trees [206, 258], RF [10, 192], Logistic
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Table 2.6: Gross motor task recognition algorithms evaluation overview by Sensitivity
(Sens.), Suitability (Suit.), Generalizability (Genr.), Composite Factor (Comp.), Concur-
rency (Conc.), and Anomaly Awareness (Anom.). Sensitivity is classified as Low (

∨
),

Medium (
∏
), or High (

∧
), while other criteria are classified as conforming (C), non-

conforming (NC), or requiring additional evidence (RE).

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

Artificial neural network [119]
∧

C NC NC NC NC

[206]
∧

C C NC NC NC
Decision trees

[258]
∨

C NC NC NC NC

Ensemble [192]
∧

C C NC NC NC

[130]
∧

NC C NC NC NC
k-Nearest Neighbors

[137]
∧

NC RE NC NC NC

Logistic regression [147]
∧

C NC NC NC NC

Plurality voting [224]
∧

C NC NC NC NC

RF [10]
∧

C C NC NC NC

Recurrent neural network [22]
∧

NC NC NC NC NC

Relevance vector machines [107]
∧

C NC NC NC NC

[205]
∧

C C NC NC NC

[131]
∧

NC C NC NC NCSVM
[245]

∨
NC NC NC NC NC

Deep Learning

[43]
∧

C C NC NC NC

[12]
∧

C NC NC NC NC

[95]
∧

C C NC NC NCCNN

[151]
∧

C NC NC NC NC

LSTM [96]
∧

C NC NC NC NC

[57]
∧

NC RE NC NC NC

[212]
∧

C NC C NC NCCNN + LSTM
[40]

∏
C NC C NC NC

CNN + Gated Recurrent [276]
∧

C NC C NC NC

Transformer [53]
∧

C NC NC C NC

Probabilistic Graphical Model

Bayesian network [288]
∨

C NC C C NC

Conditional random field [94]
∧

NC RE NC NC NC

Gaussian mixture model [261]
∏

NC NC NC NC NC

[104]
∧

NC RE NC NC NC
Hidden Markov model

[125]
∏

NC NC NC NC NC

Knowledge-driven

Dynamic time warping [52]
∧

NC RE NC NC NC

Principal component analysis [209]
∧

C NC NC NC NC

Trigger-based [200]
∧

NC RE NC C NC
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Regression [147]).

Classical machine learning algorithms involving vision-based metrics leverage optical

flow extracted from stationary cameras for gross motor task recognition (e.g., [131, 137]).

Activity specific motion descriptors derived from optical flow are used as features to train a

machine learning classifier (e.g., SVM [131] or k-Nearest Neighbors [137]). The algorithms

are typically evaluated using the publicly availableWeizmann [74] or KTH Actions datasets

[245].

Generally, classical machine learning-based gross motor task detection algorithms typi-

cally have high sensitivity, primarily due to the atomic and repetitive nature of gross motor

tasks. These algorithms conform with suitability when the metrics incorporated are wear-

able and reliable [10, 107, 119, 147, 192, 205, 206, 224, 258], and are non-conforming

otherwise [130, 131, 137, 245]. Overall, the algorithms conform with generalizability,

as they typically achieved high accuracy using a leave-one-subject-out cross-validation

[10, 130, 131, 192, 205, 206]. All evaluated algorithms are non-conforming for the con-

currency, composite factor, and anomaly awareness criteria.

2.3.7.2 Deep Learning Methods

Classical machine learning algorithms require handcrafted features that are highly problem-

specific, and generalize poorly across task categories [230]. Additionally, those algorithms

cannot represent the composite relationships among atomic tasks, and require significant

human effort to select features and sensor data thresholding [230]. Comparative studies

indicate deep learning algorithms outperform classical machine learning when large amount

of training data is available [71, 230, 248].

Deep learning algorithms involving inertial metrics typically require little to no sen-

sor data preprocessing. A CNN detected eight gross motor tasks (e.g., falling, running,

jumping, walking, ascending, and descending a staircase) using raw acceleration data [43].

Although inertial data preprocessing is not required, it may be advantageous in some situ-

ations. For example, a CNN algorithm transformed the x, y, and z acceleration into vector

magnitude data in order to minimize the acceleration’s rotational interference [151]. The

acceleration signal’s spectrogram, which is a three dimensional representation of changes

in the acceleration signal’s energy as a function of frequency and time, was used to train

a CNN model [12]. Employing the spectrogram improved the classification accuracy and

reduced the computational complexity significantly [12]. Other deep learning algorithms
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combine inertial data with physiological metrics to improve the classifier’s effectiveness

(e.g., ECG, and photoplethysmogram [178]).

Most recent algorithms leverage publicly available huge benchmark datasets (e.g., [227,

229]) to build deeper and more complex task recognition models. Deep learning algorithms

combine CNNs with sequential modeling networks (e.g., LSTM [40, 212], Gated Recurrent

Units [276]) to detect composite gross motor tasks from inertial data. The DEBONAIR

algorithm [40] incorporated multiple convolutional sub-networks to extract features based

on the input metrics’ dynamicity and passed the sub-networks’ feature maps to LSTM

networks to detect composite gross motor tasks (e.g., vacuuming, nordic walking, and rope

jumping). The AROMA algorithm [212] recognized atomic and composite tasks jointly

by adopting a CNN + LSTM architecture, while InnoHAR algorithm [276] combined the

Inception CNN module with Gated Recurrent Units to detect composite gross motor tasks.

Several other algorithms draw inspiration from natural language processing to detect gross

motor task transitions [259] and concurrency [53] by utilizing bi-directional LSTMs and

Transformers, respectively. Bi-directional LSTMs concatenate information from positive as

well as negative time directions in order to predict tasks, whereas Transformers incorporate

self-attention mechanisms to draw long-term dependencies by focusing on the most relevant

parts of the input sequence.

RFID indoor localization is common for task recognition (e.g., [52, 57, 94]). The RFID’s

received signal strength indicator and phase angle metrics are used to determine the relative

distance and orientation of the tags with respect to the associated embedded environment

readers [242]. The two common task identification methods are: i) tag-attached, and ii)

tag-free [57]. DeepTag [57] introduced an advanced RFID-based task recognition algorithm

that identified tasks in both tag-attached and tag-free scenarios. The deep learning-based

algorithm used a preprocessed received signal strength indicator and phase angle informa-

tion that combined a CNN with LSTMs in order to predict seven ADL tasks. Generally, the

gross motor task recognition algorithms involving indoor localization have high sensitivity,

but do not conform with suitability and composite factor.

Deep learning algorithms’ increased network complexity and abstraction alleviates most

of the classical machine learning algorithms’ limitation, resulting in high sensitivity, espe-

cially when the data is abundant [71, 230]; however, caution must be exercised to not

overfit the algorithms. Deep learning algorithms can achieve high classification accuracy

on multi-modal sensor data without requiring special feature engineering for each modal-

ity. For example, a hybrid deep learning algorithm trained using an 8-channel sEMG and
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inertial data detected thirty gym exercises (e.g., dips, bench press, rowing) [62]. Deep

learning algorithms rarely validate their results via leave-one-subject-out cross-validation,

as in most cases the algorithms are validated by splitting all the available data randomly

into training and validation datasets; therefore, the algorithms’ generalizability criteria

either requires additional evidence, or is non-conforming.

2.3.7.3 Probabilistic Graphical Models

Algorithms’ task predictions are not always accurate, as there is always some uncertainty

associated with the predictions, especially when tasks overlap with one another, or share

similar motion patterns (e.g., running vs. running with weights). Additionally, humans

may perform two or more tasks simultaneously, which complicates task identification when

using classical and deep learning methods that are typically trained to predict only one

task occurring at a time. Probabilistic graphical task recognition algorithms are adept at

managing these uncertainties, and have the ability to model simultaneous tasks.

Probabilistic graphical models can detect gross motor tasks across various metrics (e.g.,

indoor localization [94], sEMG [261], inertial [122, 152], human-body pose [104], optical

flow [125], and object detection [288]). Hidden Markov Models are the most widely utilized

probabilistic graphical algorithm for gross motor task recognition (e.g., [104, 122, 125,

152]), because Hidden Markov Model’s sequence modeling properties can be exploited

for continuous task recognition [122]. Hidden Markov Models also allow for modeling

the tasks hierarchically [152], and can distinguish tasks with intra-class variances and

inter-class similarities [122]. Other probabilistic models (e.g., Gaussian Mixture Models

[261]) can also detect gross motor tasks. A probabilistic graphical model, the Interval-

temporal Bayesian Network, unified Bayesian network’s probabilistic representation with

interval algebra’s [11] ability to represent temporal relationships between atomic events

[288] to detect composite and concurrent gross motor tasks. The algorithm’s sensitivity

and generalizability are low and non-conforming, respectively. The algorithm’s suitability

is non-conforming, as it employed vision-based metrics. Finally, the algorithm’s composite

factor and concurrency conform.
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2.3.7.4 Knowledge-Driven Algorithms

Gross motor rule-based task recognition algorithms incorporate template matching or

thresholding to recognize tasks. A Dynamic Time Warping [235] based algorithm de-

tected free-weight exercises by computing the similarity between Doppler shift profiles of

the reflected RFID signals [52]. A principal component analysis thresholding algorithm de-

tected ambulatory task transitions by analyzing the motion artifacts in ECG data induced

by body movements [208, 209].

Rule-based algorithms can detect concurrent tasks, if the rules are relatively simple to

derive using the sensor data. A multiagent algorithm [200] detected up to seven gross motor

atomic tasks (e.g., dressing, cleaning, and food preparation). The algorithm detected up

to two concurrent tasks using environmentally-embedded proximity sensors.

Rule-based systems are ideal for gross motor task detection when the sensor data is

limited and can be comprehended in a relatively straightforward manner. For example,

the prior rule-based multiagent algorithm detected concurrent tasks, as it was easy to form

the rules using the proximity sensor data. Rule-based algorithms are unsuitable when the

sensor data cannot be interpreted easily (i.e, instances of high dimensionality), or when

there are a large number of tasks that have intricate relationships.

2.3.7.5 Discussion

Most machine learning based algorithms can detect gross motor tasks reliably with accept-

able suitability and generalizability when the tasks are atomic and non-concurrent with

repetitive motions (e.g., [10, 43, 205, 206]). The human-robot teaming domain often in-

volves composite tasks that may occur concurrently. None of the existing gross motor task

detection algorithms satisfy all the required criteria for the intended domain.

The interval-temporal algorithm [288] is the preferred approach for gross motor task

detection. The algorithm can detect concurrent and composite tasks, but had low sensi-

tivity and is non-conforming for suitability and generalizability, which can be attributed

to the vision-based metrics and low-level Bayesian network’s poor classification accuracy.

However, the algorithm is independent of the metrics [288], as it operates hierarchically,

utilizing the low-level atomic event predictions. Therefore, a modified version more suited

to the intended domain may incorporate a classical machine learning algorithm (e.g., RF

[10]) or a deep network (e.g., CNN [43]), depending on the amount of data available, to
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detect the low-level atomic tasks using inertial metrics. The interval-temporal algorithm

can be used to detect the composite and concurrent gross motor tasks.

2.3.8 Fine-Grained Motor Tasks

Fine-grained motor tasks often involve highly articulated and dexterous motions that can

be performed in multiple ways. The execution and the time taken to complete the tasks

differ from one human to the other. These aspects of fine-grained motor tasks can create

ambiguity in the sensor data, making it difficult for the algorithms to detect such tasks;

therefore, a wide range of methods adopting various sensing modalities exist for detecting

fine-grained tasks accurately. The evaluation criteria for each reviewed fine-grained task

recognition algorithm by algorithm category is provided in Table 2.7.

2.3.8.1 Classical Machine Learning

Classical machine learning algorithms are suitable for detecting fine-grained motor tasks

only when the tasks are short in duration, atomic, or repetitive [88]. Among the classical

machine learning algorithms, k-Nearest Neighbors (e.g., [127, 130, 137]), RF (e.g., [88, 156,

269]), and SVM (e.g., [176, 185, 216]) are the most popular choices for fine-grained motor

task detection.

Several classical machine learning algorithms use egocentric wearable camera videos for

detecting ADL tasks (e.g., [66, 176, 216]). Image processing techniques (e.g., histogram

of orientation or spatial pyramids) are used to detect objects and conventional machine

learning algorithms recognize the tasks from the detected objects. These algorithms may

also incorporate saliency detectors [176], or depth information [66]) to identify the objects

being manipulated. Temporal motion descriptive features from optical flow can also be

used for recognizing fine-grained tasks. A k-Nearest Neighbors algorithm classified the fine-

grained motor tasks [137] based on a histogram constructed using the motion descriptors

from optical flow.

Forearm sEMG signals can detect tasks that are difficult for a vision-based algorithm to

differentiate when using the same conventional classifiers. A comparison between an sEMG

(i.e., Myo armband [239]) and a motion capture sensor revealed that the former had higher

efficacy in recognizing fine-grained motions (e.g., grasps and assembly part manipulation

tasks) [130]. The classifiers with the sEMG data detected the minute variation in the
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Table 2.7: Fine-grained motor task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

Ensemble [185]
∧

C C C NC NC

[127]
∧

C C NC NC NC

[130]
∨

NC NC NC NC NCk-Nearest Neighbors
[137]

∨
NC NC NC NC NC

[269]
∧

NC C NC NC NC

[156]
∧

NC RE C NC NCRF
[88]

∨
NC NC C NC NC

[143]
∧

NC C NC NC NC

[216]
∨

NC NC NC NC NC

[176]
∨

NC NC NC NC NCSVM

[287]
∨

NC NC NC NC NC

Deep Learning

[142]
∧

C C NC NC C

[157]
∧

NC RE C NC NC

[154]
∨

NC NC C NC NC

[171]
∏

NC NC C NC NC
CNN

[34]
∧

NC NC NC NC NC

[264]
∧

NC NC NC NC NC
CNN + LSTM

[62]
∨

NC NC NC NC NC

LSTM [66]
∨

NC NC NC NC NC

LSTM bi-directional [291]
∧

NC C C C NC

[179]
∧

C NC C NC NC
Residual + Attention

[8]
∏

C NC C NC NC

Transformer [289]
∧

C C NC NC NC

Probabilistic Graphical Model

[165]
∧

C RE C C NC

[274]
∧

NC NC NC NC NC

[60]
∧

NC RE NC NC NCBayesian network

[92]
∨

C NC NC NC NC

Conditional random field [58]
∨

NC NC C NC NC

[183]
∧

C C NC NC NC
Gaussian mixture model

[184]
∧

C C NC NC C

Hierarchical latent SVM [163]
∧

NC C C C NC

Temporal memory [282]
∧

C C NC NC NC

Markov chains [232]
∧

NC NC C C NC

Probabilistic Neural [272]
∧

C NC NC NC NC

Temporal graph [161]
∧

C RE C C NC
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muscle associated with each grasp, resulting in significantly higher recognition accuracy

than using the motion capture data.

Some classical machine learning algorithms that use a single IMU can classify fine-

grained motor ADL tasks (e.g., eating and drinking [282]), and assembly line activities

(e.g., hammering and tightening screws [127]). This approach is suitable for tasks involving

a single hand (i.e., the dominant) when the number of recognized tasks is small (e.g., < 5).

For instance, five assembly line tasks were recognized using a wrist worn IMU’s accelera-

tion and angular velocity data [127]. The associated time- and frequency-domain features

were used to train a k-Nearest Neighbors algorithm to classify the tasks. A two-stage

classification approach using acceleration metrics obtained by a wrist-worn accelerometer

recognized eating and drinking [282]. However, when the tasks are composite or larger in

number, the algorithms augment the IMU with different sensing modalities. Algorithms

typically combine IMU with sEMG metrics measured at upper peripheral locations (e.g.,

the forearms and wrists) in order to capture highly articulated motions [130]. Increasing

sensing modalities provides more task context, enabling an algorithm to discriminate a

broader set of tasks.

A system attempted to recognize twenty-three composite clinical procedures by using

metrics from two Myo armbands and statically embedded cameras [88]. The Myo’s sEMG

and inertial metrics were combined with the camera’s human body pose metric to train a RF

classifier with majority voting. Many clinical procedures require multiple articulated fine-

grained motions that range from < 10 seconds (s) to > 60s to complete. Long-duration fine-

grained procedures are difficult to detect due to intra-class variability, inter-class similarity,

and individual differences among participants. The video provided contextual information

that improved the procedure recognition accuracy by alleviating intra-class variance and

inter-class similarity.

A multi-modal framework, incorporating five inertial sensors, data gloves, and a bio-

signal sensor detected eleven atomic tasks (e.g., writing, brushing, typing) and eight com-

posite tasks (e.g., exercising, working, meeting) [185]. A hybrid ensemble approach com-

bined classifier selection and output fusion. The sensors’ inputs were initially recognized

by a Naive Bayes selection module. The selection module’s task probabilities chose a set of

task-specific SVM classifiers that fused their predictions into a matrix in order to identify

the tasks.

Classical machine learning algorithms’ classification accuracies range between 45% -

65%; thus, they generally have low sensitivity. The algorithms’ suitability criterion depend
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on the metrics employed. The composite factor and generalizability criteria also vary across

algorithms, as they depend on the tasks detected and the validation methodology. Overall,

most algorithms are non-conforming for the concurrency and composite factors, making

them unsuitable for detecting fine-grained motor tasks for the intended HRT domain.

2.3.8.2 Deep Learning

The ambiguous, convoluted sensor data from fine-grained motor tasks causes the feature

engineering and extraction to be laborious. Deep learning algorithms overcome this lim-

itation by automating the feature extraction process. There are three different types of

deep learning algorithms for fine-grained motor task recognition: i) Convolutional, ii) Re-

current, and iii) Hybrid. Convolutional algorithms typically incorporate only CNNs to

learn the spatial features from sensor data for each task and distinguish them by compar-

ing the spatial patterns (e.g., [34, 142, 154, 157, 171]). Recurrent algorithms detect the

tasks by capturing the sequential information present in the sensor data, typically using

memory cells (e.g., [66, 291]). Hybrid algorithms extract spatial features and learn the

temporal relationships simultaneously by combining convolutional and recurrent networks

[57, 62, 264].

Deep learning algorithms using egocentric videos from wearable cameras combine object

detection with task recognition. A CNN with a late fusion ensemble predicted the tasks

from a chest-mounted wearable camera [34] by incorporating relevant contextual informa-

tion (e.g., time and day of the week) to boost the classification accuracy. Two separate

CNNs were combined together to recognize objects of interest and hand motions [171]. The

networks were fine tuned jointly using a triplet loss function to recognize fine-grained ADL

tasks with medium to high sensitivity.

Analyzing changes in body poses spatially and temporally can provide important cues

for fine-grained motor task recognition [163]. An end-to-end CNN network exploited cam-

era images for estimating fifteen upper body joint positions [193]. The estimated joint

positions permitted discriminating features to recognize tasks. The CNN architecture had

two levels: i) fully-convolutional layers that extracted the salient feature, or heat maps, and

ii) fusion layers that learned the spatial dependencies between the joints by concatenating

the convolutional layers. The CNN-estimated joint positions served as input to train a

multi-class SVM that predicted twelve ADL tasks with high sensitivity.

Hybrid deep learning algorithms are becoming increasingly popular for task recognition
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across metrics [57, 62, 264]. An optical flow-based algorithm [264] leveraged deep learn-

ing to extract temporal optical flow features from the salient frames, and incorporated a

multilayer LSTM to predict the tasks using the temporal optical flow features. Another

hybrid deep learning algorithm [62] trained on the sEMG and inertial metrics detected

assembly tasks. The algorithm’s CNN layers extracted spatial features from the merics at

each timestep, while the LSTM layers learned how the spatial features evolved temporally.

Hybrid algorithms can provide excellent expressive and predictive capabilities; however,

these algorithms’ performance relies heavily on the size of the training dataset [62]. Other

hybrid deep learning algorithms combine IMU with spectrogram metrics to improve the

classifier’s effectiveness (e.g., [160, 187]).

A CNN-based algorithm incorporated inertial metrics from an off-the-shelf smartwatch

to detect twenty-five atomic tasks (e.g., operating a drill, cutting paper, and writing)

[142]. A Fourier transform was applied to the acceleration data to obtain the correspond-

ing spectrograms. The CNN identified the spatial-temporal relationships encoded in the

spectrograms by generating distinctive activation patterns for each task. The algorithm

also rejected (i.e., detected) unknown instances.

Deep learning algorithms can recognize concurrent and composite fine-grained motor

tasks directly from raw sensor data using complex network architectures, provided suf-

ficient data is available [199, 291]. Human task trajectories are continuous in that the

current task depends on both past and future information. A deep residual bidirectional

LSTM algorithm [291] detected the Opportunity dataset’s composite tasks by incorporat-

ing information from positive as well as negative time directions. The dataset contains five

composite ADLs (e.g., relaxation, preparing coffee, preparing breakfast, grooming, clean-

ing) involving a total number of 211 atomic events (e.g., walking, sitting, lying, opening

doors, reaching for an object). Several metrics, including acceleration and orientation of

various body parts, and three-dimensional indoor position were gathered.

Recent deep learning algorithms leverage attention mechanisms to model long-term

dependencies from inertial data [8, 179, 219, 289]. The ResNet-SE algorithm [179] classified

composite fine-grained motor tasks on three publicly available datasets. The algorithm

incorporated residual networks to address loss degradation, followed by a squeeze-and-

excite attention function to modulate the relevance of each residual feature map. The

Multi-ResAtt algorithm [8] incorporated residual networks to process inertial metrics from

IMUs distributed over different body locations, followed by bidirectional Gated Recurrent

Units with attention mechanism to learn time-series features.
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Generally, deep learning algorithms are highly effective at detecting atomic fine-grained

motor tasks, but their ability to detect composite and concurrent tasks reliably is indeter-

minate. The latter may be due to insufficient ecologically-valid concurrent, composite task

recognition datasets available publicly. Utilizing generative adversarial networks [158, 270]

to expand datasets by producing synthetic sensor data may alleviate the issue.

2.3.8.3 Probabilistic Graphical Models

Bayesian networks are the most common probabilistic graphical models for fine-grained

motor task detection (e.g., [60, 92, 165, 274]), followed by Gaussian Mixture Models (e.g.,

[183, 184]). Many such algorithms augment the inertial data with a different sensing

modality (e.g., [92, 183, 184, 274]) in order to provide more task context, which enables

discriminating a broader set of tasks. Recognition of up to three day-to-day early morning

tasks [183] augmented with a microphone, resulted in the recognition of six tasks [184].

The intended HRT domain requires multiple sensors to detect tasks belonging to differ-

ent activity components, although adding new modalities arbitrarily may deteriorate the

classifier performance [62].

Hierarchical graphical models detect composite tasks by decomposing them into a set of

smaller classification problems. Fathi et al.’s [58] meal preparation task detection algorithm

decomposed hand manipulations into numerous atomic actions, and learned tasks from a

hierarchical action sequence using conditional random fields. Another hierarchical model

that operated at three levels of abstraction detected concurrent, composite tasks using

body poses [163].

Identifying the causality (i.e., action and reaction pair) between two events allows for

easier human interpretation, and for modeling far more intricate temporal relationships

[161]. A graphical algorithm incorporated the Granger-causality [76, 77] test for uncovering

cause-effect relationships among atomic events [161]. The algorithm employed a generic

Bayesian Network to detect the atomic events. A temporal causal graph was generated

via the Granger-causality test between atomic events. Each graph represented a particular

task instance. The graph nodes represented the atomic events and directed links with

weights represented the cause-effect relationships between the atomic events. An artificial

neural network is trained using these graphs as inputs to predict the concurrent, composite

tasks. The algorithm was evaluated on the Opportunity [229] and OSUPEL [29] datasets,

indicating that the algorithm is independent of the metrics.
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Overall, probabilistic graphical models typically have high sensitivity for detecting fine-

grained motor tasks. The algorithms, especially hierarchical (e.g., [163]) and the Granger-

causality based temporal graph [161], are independent of the metrics due to data abstrac-

tion; therefore, their suitability is classified as conforming. Most task recognition algorithms

are susceptible to individual differences (see Table 2.7). Even those that conform with gen-

eralizability may experience a significant decrease in accuracy when classifying an unknown

human’s data [142]; thus, the generalizability criterion requires additional evidence. Algo-

rithms can only identify tasks reliably for humans on which they were trained, suggesting

that online and self-learning mechanisms are needed to accommodate new humans [272].

The composite factor and concurrency vary across algorithms, but are conforming over-

all. The anomaly awareness criterion is classified as non-conforming, as most probabilistic

graphical models do not detect out-of-class tasks.

2.3.8.4 Discussion

Classical machine learning algorithms are unreliable for detecting fine-grained motor tasks

due to poor sensitivity and generalizability. Deep learning algorithms can detect the atomic

fine-grained motor tasks reliably, but not concurrent, composite tasks. Moreover, deep

learning typically requires a large number of parameters, very large datasets and can be

difficult to train [163]. Deep learning’s automatic feature learning capability prohibits

exploiting explicit relationships among tasks and semantic knowledge, making it difficult

to detect concurrent, composite fine-grained motor tasks. Probabilistic graphical models

offer some suitable alternatives; however, none of the existing algorithms satisfy all the

required criteria for the intended domain.

The Granger-causality based temporal graph algorithm [161] and the three-level hier-

archical algorithm [163] are the most suitable for fine-grained motor task detection given

all the other algorithms. Both algorithms have high sensitivity and can detect concurrent

and composite tasks. The Granger-causality algorithm conforms with suitability, but re-

quires additional evidence to substantiate its generalizability. The hierarchical algorithm

conforms with generalizability, but is non-conforming with suitability, as it employed a

vision-based system for estimating human-body pose metric. However, the metric can be

estimated using a series of inertial motion trackers [56]; therefore, a human-robot teaming

domain friendly version of both algorithms can be developed theoretically.
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2.3.9 Tactile Tasks

Tactile interaction occurs when humans interact with objects around them (e.g., keyboard

typing, mouse-clicking and finger gestures). Individual classifications for each tactile task

algorithm by its category are provided in Table 2.8.

Table 2.8: Tactile task recognition algorithms’ evaluation overview.

Category

Algorithm
Paper Sens. Suit. Genr. Comp. Conc. Anom.

Classical Machine Learning

Decision trees [109]
∧

NC C NC NC NC

Ensemble [35]
∧

C C NC NC NC

SVM [93]
∧

NC RE NC NC NC

Voting [247]
∧

NC NC NC NC NC

Deep Learning

CNN [48]
∧

NC NC NC NC NC

CNN + LSTM [223]
∧

NC NC NC NC NC

Probabilistic Graphical Model

Gaussian mixture model [111]
∧

NC C NC NC NC

Hidden Markov model [285]
∧

NC NC NC NC NC

[42]
∧

NC NC NC NC NC
Naive Bayes classifier

[41]
∧

NC NC NC NC NC

2.3.9.1 Classical Machine Learning

Most classical machine learning algorithms incorporate inertial metrics measured at the

fingers or dorsal side of the hand. These approaches typically detect finger gestures and

keystrokes depending on the measurement site (e.g., [35, 109, 166, 247]). Several of these

approaches employ multiple ring-like accelerometer devices worn on the fingers (e.g., [109,

247, 292]). The time- and frequency-domain features (e.g., minimum, maximum, standard

deviation, energy, and entropy) extracted from the acceleration signals were used to train

classical machine learning algorithms (e.g., decision tree classifier and majority voting)

to detect finger gestures (e.g., finger rotation and bending) and keystrokes. Although

these approaches incorporated inertial metrics, none conform with suitability due to lack
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of reproducibility (i.e., the ring-like sensor is not commercially available) and wearing a

ring-like device may hinder humans’ dexterity, impacting task performance negatively.

Inertial metrics from the dorsal side of the hand detected seven office tasks (e.g., key-

board typing, mouse-clicking, writing) [35]. Time- and frequency-domain features extracted

from the acceleration signals were used to train an ensemble classifier. The algorithm

achieved high accuracy (> 90%) in an in-the-wild evaluation. Most misclassifications oc-

curred during transitions between tasks, implying that inertial-based tactile task recogni-

tion may be susceptible to task transitions due to signal variations. The high error rates

during transitions can lead to lower classification accuracy, especially when tasks switch

frequently.

Classical machine learning algorithms’ generally have high sensitivity. The algorithms’

are typically non-conforming for the suitability criterion, as many supporting research

efforts focus on developing and validating new sensor technology for sensing tactility, rather

than detecting tactile tasks (e.g., [101, 113, 201]). The generalizability criteria also vary

across algorithms, as they depend on the validation methodology. Finally, the algorithms

are non-conforming for the concurrency and composite factors, making them unsuitable

for detecting tactile tasks for the intended HRT domain.

2.3.9.2 Deep Learning

Several publicly available sEMG-based hand gesture datasets (e.g., [13, 16, 112]) support

deep learning algorithms to detect tactile hand gestures (e.g., [48, 223]). A hybrid deep

learning model consisting of two parallel paths (i.e., one LSTM path and one CNN path)

was developed [223]. A fully connected multilayer fusion network combined the outputs of

the two paths to classify the hand gestures.

Recognizing tactile tasks is an under-developed area of research, as the tasks are nu-

anced and often overshadowed by fine-grained motor tasks. Generally, deep learning al-

gorithms have high sensitivity ; however, the incorporated sEMG metrics with a random

dataset split for validation cause them to not conform with the suitability and generaliz-

ability criteria.
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2.3.9.3 Probabilistic Graphical Model

Probabilistic graphical models for tactile task recognition typically involve simple algo-

rithms (e.g., Hidden Markov Models [285], Gaussian Mixture Models [111], and Bayesian

Networks [41, 42]) when compared to the prior gross motor and fine-grained motor chapters

(see Chapters 2.3.7 and 2.3.8), as the tasks detected are inherently atomic (e.g., hand and

finger gestures). sEMG signals are one of the most frequently used metrics for detecting

hand and finger gestures (e.g., [42, 48, 223, 285]). Chen et al.’s [42] gesture recognition

algorithm pioneered the use of sEMG signals. Twenty-five hand gestures (i.e., six wrist

actions and seventeen finger gestures) were detected using a 2-channel sEMG placed on the

forearm. A Bayesian classifier was trained using the mean absolute value and autoregres-

sive model coefficients extracted from the sEMG. The algorithm was extended to include

two accelerometers, one placed on the wrist and the other placed on the dorsal side of the

hand [41].

Overall, probabilistic graphical models tend to have high sensitivity for detecting tac-

tile tasks. Most algorithms are susceptible to individual differences and incorporate sEMG

metrics; thus, the algorithms are non-conforming for the suitability and generalizability cri-

teria. Additionally, the algorithms are non-conforming for the concurrency and composite

factors, as the evaluated tactile tasks are inherently atomic.

2.3.9.4 Discussion

All data-driven algorithms can detect tactile tasks with > 80% accuracy [35, 41, 93, 109,

111, 223, 247, 285] primarily because the detected tasks (i.e., finger and hand gestures) were

atomic; therefore, the algorithms have high sensitivity. Except for the office-based tactile

task classifier [35] none of the existing algorithms conform with suitability, because either

the sensors incorporated were commercially unavailable for reproducibility, or the metrics

employed were unreliable. All the algorithms are non-conforming with the concurrency

and composite factor criteria, because tactile tasks are rarely composite or concurrent.

Finally, none of the algorithms detect out-of-class instances; therefore, they do not conform

with anomaly awareness. A recommended tactile task detection algorithm to support the

intended domain is the interval-temporal algorithm [288], or the Granger-causality based

temporal graph [161] with the inclusion of inertial metrics measured at the dorsal side of

the hand to capture the tactile component, along with the fine-grained motor component.
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2.3.10 Summary

The goal is to develop a recognition algorithm that can identify tasks performed by HRTs

working in unstructured, dynamic environments. HRTs often perform a wide range of

tasks, such that the set of all tasks performed by human teammates may involve com-

binations of all activity components. Thus, an overall task recognition model capable of

detecting tasks with multiple different activity components is desired. None of the reviewed

algorithms meet all the criteria necessary to achieve the goal, due to identifying tasks with

a limited set of activity components and the algorithms’ limitations with regard to the

evaluation criteria: sensitivity, suitability, generalizability, composite factor, concurrency,

and anomaly awareness.

Two algorithms, Grana et al.’s [75] and Ishimaru et al.’s [97], come the closest by

identifying four activity components. The former identified a gross motor task, while the

latter identified a fine-grained motor task in addition to detecting visual, cognitive, and

auditory tasks. Both algorithms failed to satisfy all the required evaluation criteria. Most

other algorithms detected tasks involving at most two activity components: gross and fine-

grained motor, fine-grained motor and tactile, or visual and cognitive tasks. None of the

reviewed algorithms detected tasks across all seven activity components.

Several algorithms conform with sensitivity, suitability, and generalizability. Other than

the cognitive and speech task recognition algorithms, there exists at least one algorithm

that can detect tasks reliably while conforming with suitability and generalizability for

each individual activity component. Although, suitable alternatives were identified for

both the cognitive and speech components (see Chapters 2.3.3.3 and 2.3.4.2). Existing

algorithms are highly limited in satisfying the other three criteria: concurrent, composite,

and anomaly awareness.

The ability to recognize the human’s composite tasks is crucial for the intended domain.

Thirteen algorithms, all of which were either gross or fine-grained motor task recognition

algorithms, attempted to detect composite tasks. Eight algorithms detected tasks with

high accuracy, while only three [161, 165, 185] managed to detect tasks with high accuracy

using reliable metrics from wearable sensors. A similar trend was observed for concurrency

detection. Eight algorithms attempted to detect concurrent tasks, seven of which belonged

to the gross or fine-grained motor categories. Five of those algorithms detected tasks with

high sensitivity, while only two [161, 165] satisfied the sensitivity and suitability criteria.

Only two algorithms [142, 184] conform with anomaly awareness. The remaining al-
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gorithms’ primary limitation for anomaly awareness was the assumption that humans will

not perform tasks outside the predefined set, which is not the case for the intended domain.

Therefore, there remains a need for a task recognition algorithm that can detect out-of-

class instances reliably. Such an algorithm can draw from existing novelty and anomaly

detection research (e.g., [37, 136, 175, 203, 214]). This dissertation focuses on identifying

tasks performed by HRTs working in unstructured, dynamic environments. The devel-

oped multi-dimensional task recognition algorithm detected concurrent, composite tasks

across all activity components using reliable metrics obtained from unobtrusive wearable

sensors.
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Chapter 3: Multi-Dimensional Task Recognition Algorithm

An adaptive human-robot teaming system needs an algorithm capable of detecting the tasks

performed by the human teammates in order to adapt interactions and autonomy levels

intelligently. Existing task recognition algorithms are not viable for an adaptive system, as

they only detect tasks from a subset of activity components and rarely detect concurrent,

composite tasks (see Chapter 2.3.10); thus, the algorithms are unable to provide the neces-

sary information. Further, the adaptive system cannot rely on environmentally embedded

sensors, as HRTs are often required to operate in dynamic, unstructured environments.

This chapter introduces a multi-dimensional task recognition algorithm employing wear-

able sensors that in the future can be utilized by an adaptive human-robot teaming system.

3.1 Task Terminology

The tasks performed by HRTs can be classified into three categories hierarchically:

• Atomic tasks are singular, sometimes simple actions or activities that may last only

for a short period of time. These tasks cannot be further subdivided and may consist

of one or more activity components. These tasks represent the lowest level task in

the hierarchical decomposition.

• A composite task aggregates multiple atomic tasks into a more complex task. These

tasks represent the majority of mid-level tasks within a hierarchical decomposition.

A composite task may encompass sub-composite tasks (i.e., a smaller composite task)

if the composite task requires multiple series of coordinated tasks. For example, using

a Walkie-Talkie is a composite task that can be subdivided into two sub-composite

tasks: i) listening to the information, and ii) responding to the information, where

each sub-composite task requires its own set of coordinated actions, and the latter

sub-composite task’s execution is contingent on several factors (e.g., the information’s

relevance to the human teammate, or the ongoing mission, or a combination of both).

• A mission task is a distinct assignment that forms an integral part of a broader goal

or objective. For instance, removing debris to clear a roadblock is a mission task
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that forms a vital part of post-tornado disaster response efforts. Mission tasks are

often associated with the military, space exploration, emergency response, and other

complex operations, where a series of coordinated atomic and composite tasks are

required to complete the mission task successfully. These tasks represent the highest

level task in a hierarchical decomposition.

HRTs often perform a wide variety of tasks during a mission, such that the set of all

tasks (i.e., atomic and composite) performed by human teammates may involve combi-

nations of all activity components. Thus, an overall task recognition algorithm capable

of detecting atomic and composite tasks with multiple different activity components is

desired. This dissertation presents a multi-dimensional task recognition algorithm that

utilizes wearable sensors for identifying atomic and composite tasks that encompass mul-

tiple activity components performed by humans in unstructured, dynamic environments.

It is also important to note that this dissertation focuses only on detecting atomic and

composite tasks. Detecting mission tasks is outside the scope of this dissertation.

3.2 Algorithm Overview

An overview of the multi-dimensional task recognition architecture is provided in Fig-

ure 3.1. The task recognition algorithm hinges on incorporating reliable metrics obtained

from wearable sensors. A selected set of task recognition metrics (see Chapter 3.3) ob-

tained from the wearable sensors are filtered (see Chapter 3.4) before being fed into the

multi-dimensional task recognition algorithm (see Chapter 3.5). The filtered metrics are

channeled appropriately to the individual component task detection algorithms (i.e., cog-

nitive, speech, auditory, visual, gross motor, fine-grained motor, and tactile) as shown in

Figure 3.1. These algorithms are developed independently (see Chapter 3.5) using their

respective metrics to detect the corresponding atomic tasks contributing to the associated

activity component. The Fusion algorithm (see Chapter 3.6) consolidates the predictions

from the individual component algorithms in order to create a list of atomic tasks for

the Composite and Concurrent task recognition algorithm. Additionally, the Fusion algo-

rithm learns how the atomic task detections from different components are related to each

other in order to account for prediction inconsistencies between the individual algorithms.

The vector-encoded atomic task detections from the Fusion algorithm serve as input to

the Composite and Concurrent task detection algorithm (see Chapter 3.7) that employs a
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temporal convolutional network to detect the concurrent, composite tasks.

3.3 Metrics Selection

The task recognition metrics are chosen based on their sensitivity, versatility, and suitability

(see Chapter 2.2), and the available sensors. The mapping between the sensors, associated

metrics, and the task activity components are provided in Table 3.1.

Table 3.1: The wearable sensors and the corresponding metrics incorporated by the multi-
die task recognition algorithm. NOTE: Grey cells represent the metric’s association with
the corresponding activity component.

Sensor Metric Cognitive Speech Audio Visual Gross motor Fine-grained motor Tactile

HRV
Heart rate
Respiration rate

BioHarness

Postural magnitude

Fixations
Saccades
Pupil dilation
Blink latency

Pupil Core

Blink rate

Voice intensity
Voice pitch
Speech rate
MFCCs

Microphone

Spectrogram

Reed decibel meter Noise level

Xsens Inertial

Inertial
Myo Armband

sEMG

The cognitive tasks are detected using the blink rate, blink latency, pupil dilation, and

HRV metrics. The HRV metric is derived from Biopac’s measured ECG signal.

the speech-reliant tasks are detected using the MFCCs and the speech-based metrics,

while the auditory tasks are detected by combining the spectrogram and the noise level

metrics. The noise level is acquired using a REED R8080 decibel meter, while the acoustic

(i.e., spectrogram and MFCCs) and speech-based metrics (i.e., speech rate, pitch, and

voice intensity) are calculated from a 44100 KHz dual-channel audio signal captured by

a Shure PGX1 microphone. The chosen metrics are filtered and combined individually

using separate task detection algorithms (see Chapter 3.5) for each activity component to

recognize the atomic tasks.

The visual tasks are detected using fixations and saccades in conjunction with the head

movement captured using the Xsens’ forehead inertial data (as indicated in Figure 3.2).
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The eye gaze metrics, fixations, and pupil dilations are measured via the Pupil Core and

Neon eye trackers from Pupil Labs. The other eye gaze metrics (e.g., saccades, blink rate,

and blink latency) are derived from the eye tracker’s measured eye gaze signals.

Figure 3.2: Xsens motion tracker locations

The gross motor tasks are detected by combining the inertial metrics measured at the

lower and upper body positions (i.e., waist, shoulders, biceps, thighs, calves, and ankles)

with the physiological metrics (i.e., heart rate, respiration rate, and postural magnitude).

The Xsens MTw Awinda motion capture system [207] measures inertial data (i.e., acceler-

ation and angular velocities) using seventeen IMU-based motion trackers worn at various

body parts, as depicted in Figure 3.2. The physiological metrics are provided by the Biopac

BioHarness™.

The Myo armband sensor measures the forearm sEMG and inertial data [239]. The

tactile tasks are detected using the Xsens’ inertial data measured at the dorsal side of the

hand (see Figure 3.2) as well as the Myos’ forearm sEMG data. The fine-grained motor

task detection uses the Myos’ forearm inertial data and the Xsens’ inertial data measured

on the wrists (highlighted in Figure 3.2) in addition to the metrics used for tactile task

detection.
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3.4 Metrics Filtering

The individual component task detection algorithms combine the respective metrics to

detect the atomic tasks for each activity component. Noisy sensor readings may generate

inaccurate detections; thus, metrics are filtered before being incorporated into the task

detection algorithms.

The inertial, sEMG, heart rate, respiration rate, postural magnitude, and noise level

metrics are smoothed using a moving average filter to improve the algorithms’ general-

izability and to remove or reduce unwanted signal artifacts. The HRV metric does not

require any filtering.

The eye tracker’s raw gaze data contains Gaussian noise with a slowly changing mean

[197]. The high frequency noise is caused by inconsistent measurements, while the low

frequency noise is due to a drift caused by pupil size changes and head movements [197].

The eye tracker implements a dispersion-based fixation detector [236] internally to convert

the noisy raw gaze data into a series of fixations. The pupil dilation, blink rate and blink

latency metrics does not require any filtering.

The microphone’s audio stream is converted from a stereo audio signal into a mono

audio signal. The acoustic and speech metrics are extracted by segmenting the mono

signal into overlapping audio windows based on different window sizes. The segmented

audio windows are decomposed with a short-time Fourier transform at 10 milliseconds

intervals looking back over 25 milliseconds of Hann audio frames to yield a 100-length

spectrogram [82, 91, 144, 159]. The resulting linear spectrogram is converted into a 64-bin

log-scaled Mel spectrogram. The MFCCs are obtained by transforming the log-scaled Mel

spectrogram using discrete cosine transformation.

The speech metrics (i.e., voice intensity, pitch, and speech rate) are derived using the

metric extraction process employed in the real-time speech workload estimation algorithm

[61, 87]. The metrics are calculated by decomposing the segmented windows into shorter

audio frames and examining the frames at 10ms intervals looking back over 25ms of audio.

3.5 Individual Task Detection Algorithms

The individual component task detection algorithms combine the respective metrics de-

scribed in Chapter 3.3 to detect the corresponding atomic tasks. Each individual task

detection algorithm employs a different machine learning technique to predict the atomic
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task based on the incorporated metrics and the component’s analyzed sensitivity, as pro-

vided in Chapter 2.3. A tw-second sliding window is applied to each sensor stream for each

metric. The duration tw required to segment the metrics is referred to as window size,

while the stride duration ts between each window (i.e., “the sliding action”) is referred to

as step size. The percentage of sensor data overlapping between two consecutive sliding

windows can be determined using step size and window size (Equation 3.1).

overlap % =
tw − ts
tw

∗ 100 (3.1)

The window and step sizes vary across the metrics depending on the metrics’ sensitivity and

sampling rate, as well as the individual algorithms. For example, inertial metrics are usually

segmented into short-duration windows (i.e., ≤ 5s), while the HRV metric typically requires

at least thirty seconds of data in order to be sensitive to changes [86, 106, 107, 205, 258].

3.5.1 Cognitive Task Detection

The cognitive task recognition algorithm incorporates HRV, pupil dilations (left and right

eyes), blink latency, and blink rate due to their correlation with mental workload and task

difficulty [79, 86, 253]. Three time-based features: mean, standard deviation (std. dev.),

and slope are extracted from the HRV, pupil dilations, and blink latency metrics. The

mean and std. dev. capture the metrics’ response to cognitive variations, while the slope

captures the metrics’ directional shift. A total of thirteen features, including the three

time-based features extracted from HRV, pupil dilations, and blink latency metrics, as well

as blink rate, are used to train a RF classifier to detect the cognitive tasks. A set of window

sizes tw = {5s, 10s, 15s, 30s, 60s} with a 50% overlap are analyzed (see Chapter 4.2.1)

[86, 106, 107, 205, 258]. Larger window sizes are used, because the HRV metric requires

longer durations to be sensitive to changes.

3.5.2 Speech-Reliant Task Detection

The speech-reliant task detection algorithm incorporates the MFCCs metrics [256] and the

three speech metrics (i.e., voice intensity, pitch, and speech rate) extracted from the Shure

microphone headset (see Chapter 3.4). The microphone’s speech audio is segmented into

overlapping audio windows. Various window sizes (i.e., tw = {1s, 3s, 5s, 10s, 15s}) with
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a 50% overlap are investigated [61]. The algorithm employs a deep learning architecture

(Figure 3.3) that consists of two parallel networks: i) a speech network and ii) a MFCC

network. Incorporating speech patterns from the speech-based metrics in tandem with the

audio stream can serve as key differentiators for detecting speech-reliant tasks and increase

recognition accuracy (see Chapter 2.3.4.2) [6, 102].

Figure 3.3: Speech-reliant task detection algorithm. The MFCCs and the speech-based
metrics extracted from the microphone are fed into the MFCC and speech network, respec-
tively. The output features from the networks are concatenated to detect the speech-reliant
tasks.

The speech network’s input layer consists of five neurons corresponding to the five

features extracted from the segmented audio windows: voice intensity mean, voice intensity

std. dev., pitch mean, pitch std. dev., and speech rate. The input layer is followed by two

hidden layers with 128 and 64 neurons with Rectified Linear Units (ReLU) activation,

respectively.

The MFCC network’s input layer consists of forty neurons corresponding to the mean

and std. dev. of the twenty MFCCs extracted per audio window. Two ReLU-activated

hidden layers with 128 and 64 neurons, respectively, are added to the input layer. The

output hidden layers from the speech and MFCC networks are concatenated and fed as

input to another hidden layer with 64 neurons and ReLU activation is used to generate

a high-level feature representation for the final output classification layer with softmax
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activation. The ADAM optimizer [123] with a learning rate of 0.0005 is used for training

the algorithm.

3.5.3 Auditory Task Detection

The auditory task detection algorithm incorporates the noise level metric obtained from

the REED decibel meter and the log-Mel spectrogram metrics extracted from an ambient

microphone (see Chapter 3.4). The algorithm employs a deep learning architecture (Figure

3.4) that consists of two parallel networks: i) a spectrogram network and ii) a noise network.

Figure 3.4: Auditory task detection algorithm. The log-scaled Mel spectrograms extracted
from an ambient microphone are passed through three CNN layers, with 32 feature maps
each. The CNN-generated convolutional features are flattened and concatenated with the
noise level features and passed to a fully connected neural network to predict the tasks at
the output layer.

The spectrogram network consists of three CNN layers with 32 feature maps each, as

illustrated at the bottom of Figure 3.4. Each feature map is formed by convolving a 1× 3

filter over each layer with ReLU activation [190]. Max pooling of size 1 × 2 is applied to

reduce the feature representation at each layer, and a 50% dropout is applied after max

pooling to avoid overfitting. The convolutional features from the CNNs are flattened into

a 1-dimensional vector.

The noise network incorporates three time-based features (i.e., mean, std. dev., and the
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slope) extracted from the noise level metric as input. The extracted input noise features

are passed to a hidden layer with 32 ReLU-activated units, as depicted in Figure 3.4.

The output hidden layers from the spectrogram and noise networks are concatenated and

fed as input to another hidden layer with 32 ReLU-activated neurons. This hidden layer

activation generates a high-level feature representation for the final output classification

layer with softmax activation. The ADAM optimizer [123] with a learning rate of 0.0005

is used for training the algorithm. Various window sizes (i.e., tw = {1s, 3s, 5s, 10s, 15s})
with a 50% overlap are investigated.

3.5.4 Visual task detection

The visual task recognition algorithm employs a multimodal approach, incorporating fea-

tures extracted from the eye tracker’s fixations, saccades, and the Xsens’ forehead iner-

tial metrics. The fixation and saccade gaze features capture the eye movements’ spatio-

temporal characteristics [253], while the inertial features provide additional context asso-

ciated with the head movements [97, 138].

Initially, the participants’ eye movements are analyzed by clustering the fixations and

saccades separately using K -means clustering (N = 10 clusters resulted in the best classifier

performance). The fixation fx, fy coordinates gathered across all participants are grouped

into 10 clusters (Figure 3.5a), as were the saccades by grouping the saccadic distances

(δx, δy) in the x⃗ and y⃗ axes (Figure 3.5b). Both clusters are used for constructing the

fixation and saccade histograms during feature extraction.

Three different types of feature sets are extracted per sliding window: fixation, saccadic,

and inertial. The fixation features are the fixation rate, fixation histogram, as well as mean,

std. dev., and slope of the fixation duration and dispersion [30, 253]. The fixation dispersion

is the angle (degrees) measured between a fixation’s centroid and the two farthest points

dispersed away from the centroid, while the fixation histogram is given by the frequency of

the N = 10 fixation clusters. The saccadic features are the saccade length’s mean, std. dev.

and slope, as well as the saccadic histogram, which is given by the frequency of the N =

10 saccadic clusters. Finally, the inertial features consist of the accelerations’ and angular

velocities’ mean, std. dev., and slope.

The extracted features are fed into a RF classifier with 100 decision trees, and a max

depth of 500, where the parameters are chosen based on classifier performance. The window

size has a significant effect on the number of fixations and saccades available for feature
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(a) Fixation Cluster (b) Saccade Cluster

Figure 3.5: Eye movements are analyzed by clustering the fixations and saccades separately, using
K -means clustering (N = 10).

extraction [253]. Smaller time windows allow for near real-time detection, but have poor

accuracy, while longer windows have access to more information, resulting in better accu-

racy [30, 116, 120, 140, 174, 253]; thus, various window sizes tw = {5s, 10s, 15s, 30s, 60s}
with a 50% overlap are investigated.

3.5.5 Gross Motor, Fine-Grained Motor, and Tactile Task Detection

Three wearable sensors are incorporated for detecting gross motor, fine-grained motor, and

tactile tasks: i) the Xsens MTw Awinda motion capture system [207] that measures the

IMU metrics using seventeen IMUs worn on various body parts, as depicted in Figure 3.2,

ii) a Myo forearm sensor that measures sEMG and IMU data [239], and iii) the Biopac

BioHarness™ that measures physiological metrics (i.e., heart rate, respiration rate, and

postural magnitude). The signal dimension of the sliding windows varies across metrics

and is given by: Number of Channels x (tw * sampling rate), where Number of Channels

represents the metrics sampled by the sensor, and sampling rate is the rate at which the

metrics are obtained from the sensor. For example, the IMU’s 3s window dimension is

6-channel IMU (i.e., three axes’ acceleration and angular velocities) x (3s x 40 Hz) = 6 x
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120. The windows are normalized by:

ˆ
s
I/E
k =

s
I/E
k − µI/E

σI/E
, (3.2)

where s
I/E
k is either the 6-channel IMU, or the 8-channel sEMG sensor data window, µI/E

and σI/E are the IMU’s or sEMG’s mean and std. dev., respectively. The normalized data

windows from the Xsens and Myo sensors serve as input to the algorithm. The algorithm

employs a deep learning architecture that incorporates CNNs, where each network extracts

features from the Xsens’ and Myos’ IMU and sEMG metrics.

Figure 3.6: The task recognition algorithm, where CNNs extract features from the Xsens
IMU trackers and Myos’ forearm IMU and sEMG metrics. The three CNN layers have
32 feature maps each. The CNN-generated convolutional features are concatenated and
passed to a fully-connected neural network to predict the tasks at the output layer.

The CNNs are three layers deep, with each layer consisting of 32 feature maps, as

illustrated at the bottom of Figure 3.6. Each feature map is formed by convolving a 1 x
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3 filter over each layer with ReLU as the activation function [190]. Max pooling of size

2 x 2 is applied to reduce the feature representation at each layer, and a 50% dropout

is applied after max pooling to avoid overfitting. The convolutional outputs from the

CNNs are flattened into a 1-dimensional vector in row-major order before being stacked

(i.e., concatenated) to form a combined feature vector (indicated under the Concatenation

operation in Figure 3.6). The concatenated feature vector is subsequently passed to a

fully-connected neural network layer consisting of 32 neurons with ReLU activation. A

50% dropout is applied to the fully-connected layer to ensure the neurons do not rely on

the features from any single network; thus, enabling the neurons to learn more robust

features. Finally, the fully-connected layer is passed to an output softmax layer (see Figure

3.6) that computes the tasks’ class scores. The number of tasks to be detected determined

the number of neurons in the output layer. The deep learning model is trained to minimize

cross-entropy loss. The ADAM optimizer [123] with a learning rate of 0.0005 is used to train

the algorithm. Implementing separate CNNs permitted comparing the metrics’ efficacy for

detecting the tasks without altering the network dimensions.

The gross motor task detection algorithm combines the Bioharness’ heart rate, respi-

ration rate, and posture magnitude metrics with the upper and lower-body Xsens IMU

data (i.e., waist, shoulders, thighs, calves, and feet). The Xsens has a 40 Hz sampling rate.

Several window sizes (i.e., tw = {1s, 2s, 3s, 5s, 10s}) with a 50% overlap (i.e., ts = 0.5∗ tw)
were analyzed [35, 43, 95]. The Bioharness’ physiological metrics rely on time-based fea-

tures (i.e., mean, std. dev., and slope) [192, 205]. The mean and std. dev. capture the

metrics’ response to the tasks, while the slope captures the metrics’ directional shift. The

Bioharness’ low sampling rate (i.e., 1 Hz) and the analyzed shorter window sizes made it

difficult for CNNs to extract meaningful features. For example, the physiological metrics’

signal dimension for a 3s window is: 3 metrics x (3s x 1 Hz) = 3 x 3, which is too small

to be convolved across the three CNN layers. Thus, the time-based features (mean, std.

dev., and slope) extracted from the physiological metrics are combined with the Xsens IMU

convolutional features at a later stage in the deep learning algorithm.

The fine-grained task recognition algorithm combines the Xsens IMU data from the

wrists and hands of both arms, with the Myos’ forearm IMU and 8-channel sEMG data.

The Myos have a 100 Hz sampling rate. Five window sizes tw = {1s, 2s, 3s, 5s, 10s} with

a 50% overlap were analyzed.

Four metrics are incorporated for tactile task detection: the left- and right-hand Xsens

IMU, and the left and right forearm 8-channel Myo sEMG. The sensor data are segmented
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into various window sizes (tw = {0.5s, 1s, 1.5s, 2s, 3s}) with 50% overlap. Smaller window

sizes were used due to the tactile tasks’ shorter durations [62, 127, 130].

3.6 Fusion Algorithm

The individual component algorithms’ predictions need to be fused in order to identify

the set of all atomic tasks that are required as input for the Composite and Concurrent

task detection algorithm. While the seven individual task detection algorithms are trained

independently, assuming no interaction between component tasks, many of these tasks are

interconnected. For instance, responding to a message over Walkie-Talkie involves the

auditory task of listening to information, coupled with the cognitive task of processing

the information. Similarly, picking up the Walkie-Talkie in the fine-grained motor com-

ponent precedes the tactile task of pressing and holding it. Additionally, the individual

task recognition algorithms employ different machine learning techniques that incorporate

various metrics and sliding windows; therefore, the time to predict the atomic tasks (i.e.,

prediction time) differs across the algorithms. For example, the cognitive task recognition

algorithm with a window size tw = 30s and 50% overlap provides atomic task detections

every 15 seconds (i.e., ts = 0.5 ∗ tw), while the tactile task recognition algorithm with a

window size tw = 1s provides detections every half a second. Thus, a Graphical Neu-

ral Network (GNN) based Fusion algorithm was developed to leverage the relationships

between components and accommodate time differences between individual algorithms,

thereby consolidating task detections across all seven components.

GNNs are a class of deep learning models specifically designed to process and analyze

structured data represented as graphs [240]. Unlike conventional neural networks that

operate on grid-like data structures (e.g., images or sequences), GNNs handle complex

relationships and dependencies between elements within a graph. A graph can be illustrated

as G = (V, E), where V = {v1, v2, ..., vN} is a set of N nodes, and E = {e1, e2, ..., eM} is

a set containing M edges. The nodes in a graph can represent entities (e.g., HRTs, robots,

or tasks), while the edges capture relationships or interactions between these entities. An

adjacency matrix A ∈ RN×N is a sparse representation of a graph G, where the adjacency

matrix elements Ai,j denote the relationship (i.e., weight) between nodes vi and vj . The

higher the weights, the stronger the relationship between the pairs of nodes.

GNNs typically operate on non-directed graphs; therefore, A is a symmetric matrix

(i.e., Ai,j = Aj,i). GNNs leverage this graph structure to learn and reason about the data.
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GNNs update the representation of each node iteratively by aggregating information from

its neighboring nodes. A GNN’s learning process involves two steps: i) message passing,

and ii) node aggregation. During message passing, each node receives messages about

the neighboring nodes’ features via the edges. The messages are formed by convoluting a

weight matrix W over neighboring nodes’ features, a process known as graph convolutional

filtering. The W is a learnable parameter optimized during the GNN training phase. The

node aggregation step computes an updated feature representation for each node by sum-

ming or averaging the received messages at each node. Activation functions (e.g., ReLU

and sigmoid) are applied to the updated feature representation to capture the non-linear

relationship between the nodes. This process is repeated over multiple graph convolutional

layers, which is analogous to the layers in a conventional neural network. The aggrega-

tion step allows nodes to capture and incorporate features from their local neighborhood,

enabling them to learn rich representations that encode both local and global information.

Constructing the graph Gf required for the fusion algorithm to consolidate the

atomic task detections is non-trivial. The graph Gf has seven nodes Vf =

{vc, vs, va, vv, vgm, vfm, vt}, where each node represents one of the seven activity compo-

nents. The vc, vs, va, vv, vgm, vfm, vt nodes correspond to the cognitive, speech, auditory,

visual, gross motor, fine-grained motor, and tactile activity components, respectively. The

corresponding adjacency matrix Af is formed by taking the absolute values of Pearson’s

correlation coefficients between the activity components as:

Af
i,j =

∣∣∣∣∣
∑K

k=1(w
k
i − µi)(w

k
j − µj)√∑K

k=1(w
k
i − µi)2 ∗

∑K
k=1(w

k
j − µj)2

∣∣∣∣∣ , (3.3)

where wk
i and wk

j are the respective workload values assigned to the ith and jth components

when performing the kth task. µi and µj are the ith and jth components’ mean workload

values across all tasks. The workload values indicate the task’s difficulty level for each com-

ponent. The tasks’ workload values are determined a priori by a human task performance

modeling tool (e.g., IMPRINT Pro [186]).

The GNN algorithm extracts features from the graph nodes using the graph convolu-

tional filter operation repeatedly over multiple layers in order to predict the atomic tasks.

A typical GNN contains L graph filtering layers with L − 1 activation layers. The graph

filtering and activation at the lth layer is denoted as hl(·) and αl(·), respectively. This

learning process can be denoted as:
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Z(l) = hl (A
f ,H(l−1))

Z(l) = Af ∗H(l−1) ∗W (l−1)

H(l) = αl(Z
(l)) ,

(3.4)

where Af ∈ RN×N denotes the adjacency matrix (i.e., graph structure), N = 7 is the

number of nodes in the graph Gf , indicating the seven activity components. The operator

h(·, ·) is the graph convolutional filter that takes the H(l−1) ∈ RN×dl−1 node feature and

graph structure Af as input, and outputs the new node feature H(l) ∈ RN×dl at each

layer. The parameter W (l) ∈ Rdl×dl+1 is the weight matrix learned at the lth layer. H(0)

is the GNN fusion algorithm’s input layer, where each node vi in the Gf graph is described

by a feature vector H
(0)
vi ∈ Rdvi .

The GNN Fusion algorithm is formulated as a multi-label classification problem [263]

that predicts multiple mutually non-exclusive labels (i.e., ≥ 0 atomic tasks may be present

at any given instant). The GNN fusion algorithm’s inputs H
(0)
vi are the class probabil-

ities from the individual algorithms’ task detections. The class probabilities represent

the associated classification confidence of the algorithms’ detected tasks. The number of

tasks detected by the individual task recognition algorithms varies across components (i.e.,

Rdvi ̸= Rdvj ); therefore, the class probabilities from the individual task recognition algo-

rithms are projected into a 3-D latent space using a single hidden layer neural network,

such that the class probabilities’ dimensions across the seven components are equal (i.e.,

Rdvi = Rdvj = R3). The latent transformed class probabilities from the seven activity com-

ponents are input to a three-layered GNN, whose graph structure is given by Af . The first

layer H(0) ∈ R7×3 consists of three node features per component, while the subsequent

layers (i.e., H(1) & H(2)) contain 32 node features each. All three layers are followed

by a ReLU activation to model non-linearity. The final GNN layer H(2) is collapsed (i.e.,

flattened) and passed to a fully connected layer with 32 neurons with ReLU activation to

form the GNN feature vector. This feature vector is connected to seven softmax layers,

component output layers, in order to predict the seven activity components’ atomic tasks.

The number of neurons at each component output layer will equal the number of atomic

tasks detected by that respective component. The GNN fusion algorithm is trained end-to-

end to minimize the joint cross-entropy loss. The ADAM optimizer [123] with a learning

rate of 0.0005 is used to train the algorithm.
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3.7 Composite and Concurrent Task Detection Algorithm

Composite and concurrent tasks typically consist of multiple atomic tasks occurring in

parallel or sequentially over a period of time. Understanding such tasks requires capturing

the temporal dependencies between the atomic tasks. A Temporal Convolutional Network

[17, 148] based algorithm is proposed to detect the concurrent, composite tasks.

The Fusion algorithm predicts the atomic tasks as a vector-encoded list at regular time

intervals across the seven components, which can be denoted by xt = [xt1 , xt2 , ..., xtK ]
⊺.

xti is the i
th component’s atomic task at time t. K denotes the seven activity components.

A series of all atomic tasks predicted over a time period T can be denoted as a matrix:

X =< x1,x2, ...,xt, ...,xT > , (3.5)

where the T columns correspond to the time intervals, K rows correspond to the seven

activity components, and each element xti corresponds to the ith component’s atomic

task at time t. Each time series X can be associated with one or more composite tasks.

The Composite and Concurrent task detection algorithm’s objective is to predict these

composite tasks given the time series X as input. Formally, a sequence modeling network

is any function

f : X T 7−→ YT ∋ ŷ0, . . . , ŷT = f(x0, . . . , xT )

that satisfies the causal constraint of yt being dependent only on the current and previous

inputs x0, . . . , xt, and not on any future inputs xt+1, . . . , xt+j . The sequence modeling

network aims to learn the function f that minimizes the expected loss between the actual

outputs and the predictions.

The Temporal Convolutional Network (TCN) is based on two convolutional principles:

i) Causality, and ii) Dilation. Causality indicates that the output at any time step depends

on the current and past inputs only, not future inputs, which is crucial for tasks like time

series prediction where future data is unavailable. TCN employs 1-D causal convolutions,

where output at time t is convolved only with elements from time t and earlier in the

previous layer, with adequate zero padding to keep subsequent layers the same length as

the previous layers [17]. A simple causal convolution cannot achieve a long effective history

size without an extremely deep network or very large filters; therefore, the 1-D causal

convolutions are dilated to enable an exponentially large receptive field [280]. Dilated
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Figure 3.7: A dilated causal convolution with filter size f = 3, and dilation factors d =
1, 2, 4 increasing at each depth level. The effective sequence history at each layer is (f −
1)× d, allowing the larger dilation at the top level to capture a wider range of inputs. The
image is adapted from Bai et al.[17].

convolutions inflate the filter by inserting holes between the filter elements; thus, allowing

the network to have a larger receptive field without increasing the number of parameters.

A common strategy for TCN dilated convolutions is to increase the dilation rate d with the

depth of the network (i.e., d = 2l, where l is the network’s depth), as depicted in Figure

3.7.

The TCN-based composite and concurrent task recognition algorithm, depicted in Fig-

ure 3.8, takes the time series X of size K × T , where K = 7 is the number of activity

components, and T is the overall window size that looks back over all the atomic tasks

predicted across components over this period of time (see Equation 3.5). The encoder

network converts the individual components’ discrete atomic tasks into a continuous value

by projecting them onto a 3-D latent space. The latent atomic values are passed through

three TCN blocks with each block consisting of two 1-D dilated causal CNNs with ReLU

activation. Each dilated causal CNN consists of 32 feature maps that are formed by con-

volving a filter of size f and dilation rate d, as shown in Figure 3.8. The dilation rate

is increased exponentially at each level in order to expand the algorithm’s receptive field.

The TCN blocks also incorporate residual connections [83] to facilitate the flow of informa-

tion through the network [280] in order to alleviate the vanishing gradient problem. The

decoder network flattens the TCN blocks’ output into a 32-D feature vector. Finally, the
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Figure 3.8: TCN composite and concurrent task recognition. The time series X of size
K-components × T is passed as input to an encoder, which transforms the time series’s
discrete atomic tasks into a continuous value in latent space. The encoded value is passed
3 TCN blocks, each consisting of two 1-D dilated causal convolutions with ReLU activation
and a residual connection. The filter size f is set to 3, but the dilation rate d is increased
exponentially at each level. The TCN blocks’ output is passed through a decoder network
to predict the C composite tasks.

decoded feature vector is passed to an output sigmoid layer to predict multiple mutually

non-exclusive C composite tasks (i.e., multi-label classification), as composite tasks can

occur concurrently for a given series X. The TCN algorithm is trained to minimize a

weighted cross-entropy loss function. The ADAM optimizer [123] with a learning rate of

0.0005 is used to train the algorithm.

3.8 Summary

The developed individual task recognition and fusion algorithms incorporated reliable task

recognition metrics obtained from wearable sensors to detect the atomic tasks from the

contributing activity components. The algorithm is later extended to detect the concur-

rent, composite tasks using the TCN architecture. Two human-subjects evaluations, one

supervisory-based and one peer-based, were conducted to assess the developed algorithms’

capabilities. The experimental design and the algorithms’ performance for the two evalu-

ations are provided in Chapters 4 and 5.
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Chapter 4: Supervisory-Based Experimental Analysis

A mixed-subjects supervisory human subjects evaluation was designed to manipulate par-

ticipants’ workload, based on the density of tasks. This evaluation design served two

purposes, one to evaluate the ability to predict workload accurately (as a part of another

effort) and to develop algorithms for detecting tasks accurately.

4.1 Experimental Design

The evaluation manipulated tasks, task density (i.e., workload), and the task density

ordering as independent variables, see Table 4.1. The task environment is the NASA

Multi-Attribute Task Battery-II (MATB-II) [46, 237], which simulates a supervisory-based

human-machine team. The task density variable (i.e., workload levels) manipulated the

number of tasks initiated during a specific time period. The workload was elicited by in-

creasing and decreasing the NASA MATB-II tasks’ frequency in three levels: i) Low or

Underload (UL), ii) Medium or Normal load (NL), and iii) High or Overload (OL). The

task density ordering (i.e., workload ordering) variable ensured that each task density (i.e.,

workload) transition (i.e., UL-NL, OL-UL) occurred exactly once. Participants completed

a single 52.5-minute trial using an adapted NASA MATB-II version, where the trial con-

sisted of seven consecutive 7.5-minute task density conditions. Three task density orderings

were used:

• O1: UL-NL-OL-UL-OL-NL-UL

• O2: NL-OL-UL-OL-NL-UL-NL

• O3: OL-UL-OL-NL-UL-NL-OL.

4.1.1 Task Environment

The supervisory task environment consisted of a modified version of the NASA MATB-II

[46, 237], whose mission required a human operator to supervise a simulated remotely



71

Table 4.1: The independent variables for the supervisory-based evaluation

Type Variable

within-subjects
Tasks
Task density (i.e., workload)

between-subjects Task density ordering

piloted aircraft. The NASA MATB-II mission consists of four composite tasks: tracking,

system monitoring, resource management, and communication request. These composite

tasks are composed of multiple atomic tasks and activity components. The original NASA

MATB-II required participants to remain stationary, but real-life HRT scenarios require

movement throughout the environment. The NASA MATB-II was modified to physically

separate each NASA MATB-II task; thus, requiring participants to walk between two sets

of tasks, walking task. This physical layout is depicted in Figure 4.1.

Figure 4.1: Physical Layout of the Modified NASA MATB-II. NOTE: PA and PB are the
points between which participants walked back and forth to complete the tasks associated
with the displays.

The modified version of the NASA MATB-II was coded using Python and PyGame

in order to provide control over the task environment. Each NASA MATB-II task had a
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computer monitor dedicated to it, where the computer monitors were stationed such that

the participant was unable to visually see no more than two composite tasks simultaneously.

This visual hindrance ensured that participants walked around the environment to complete

the overall task objective. The required equipment (e.g., joystick or a keyboard) to complete

each task was placed in front of the respective computer monitor. The table surfaces were

approximately 4 feet from the floor. Participants were free to tilt the computer monitors

up or down in order to accommodate height differences. The evaluation occurred in an

empty conference room at an off-campus facility.

The tracking composite task, depicted in Figure 4.2a, required participants to keep the

circle with a blue dot in the middle of the cross-hairs using a joystick and operated in

two modes: automatic and manual. The automatic mode tracked the circle automatically

without any participant input, while manual mode required the participant to track the

circle physically using a joystick. The tracking composite task is composed of four atomic

activity components: i) visual tracking, ii) cognitive association, iii) fine-grained joystick

tracking, and iv) tactile joystick tracking. The UL condition, or low task density, required a

total of 45s of manual tracking, with the remaining time for the condition being automated.

The OL condition, high task density, had two 12s manual tracking sessions every minute,

while the NL condition had one 20s session every minute, as determined using an Improved

Performance Research Integration Tool (IMPRINT) Pro model [89].

The system monitoring composite task, shown in Figure 4.2b, required monitoring two

colored lights and four gauges. If the green (L5) or the red light (L6) turned on, the value

was out of range and required resetting. The four gauges had a randomly moving indicator,

up and down, that typically remained in the middle. Participants reset a gauge if it was

out of range (i.e., the indicator was too high or too low). The lights and gauges were reset

by pressing the corresponding number key on the top row of the keyboard. The system

monitoring task consists of four atomic tasks: i) visually inspecting the lights and gauges,

ii) cognitive evaluation, iii) fine-grained keyboard usage, and iv) tactile keyboard stroke.

The UL condition had only one out-of-range instance for the entire 7.5-minute session, OL

had fifteen instances per minute, and NL had five instances per minute.

The resource management composite task included six fuel tanks (A-F) and eight fuel

pumps (1-8), shown in Figure 4.2c. The arrow by the fuel pump’s number indicated the

direction fuel was pumped. Participants were to maintain the fuel levels of Tanks A and

B by turning the fuel pumps on or off. Fuel Tanks C and D had finite fuel levels, while

Tanks E and F had an infinite fuel supply. A pump turned red when it failed, during
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(a) Tracking r (b) System Monitoring

(c) Resource Management (d) Communications

Figure 4.2: The NASA MATB-II Tasks



74

which it is unable to pump fuel. This composite task incorporates four atomic tasks: i)

visual inspection, ii) cognitive evaluation, iii) fine-grained keyboard usage, and iv) tactile

keyboard stroke. It is important to note that the fine-grained and tactile atomic tasks

overlap between the system monitoring and resource management tasks, as the atomic

tasks share similar motions and IMPRINT Pro model values; however, the number of

atomic tasks involved and the order in which they appear differ. This composite task

also operated in automatic and manual modes. The automatic mode maintained the tank

levels by manipulating the pumps automatically without any participant input, while the

manual mode required the participant to maintain the tank levels by toggling the pumps

on or off by pressing the numbers (1-8) corresponding to the eight pumps using the number

pad on the keyboard. The UL condition had 2 minutes of manual resource management

with zero pumps failing, while the remaining time for the condition was automated. The

OL condition had the resource management task on manual mode for the entire 7 min 30

seconds, with two or more pumps failing, while the NL condition had 3 min and 30 seconds

of manual mode with at most two pumps failing every minute.

The communications composite task required listening to air traffic control requests for

radio changes. The communication request was similar to: “NASA 504, please change your

COM 1 radio to frequency 127.550.” The original MATB communications task required

no speech, but a required verbal response was added. An example response is: “This is

NASA 504 tuning my COM 1 radio to frequency 127.550.” Participants were to change the

specified radio to the specified frequency by selecting the desired radio and using arrows

to change the radio’s frequency, as depicted in Figure 4.2d. Communications not directed

to the participants’ aircraft, as indicated by the call sign, were to be ignored.

The communication composite task can be decomposed further into two subtasks, com-

munication request and communication response. The communication request subtask is

composed of a single atomic task, the auditory communication request, while the com-

munication response composite task is composed of five atomic tasks: i) visually locating

the radio channels, ii) fine-grained mouse usage, iii) tactile mouse press, iv) a cognitive

conversational element, and v) speech verbal response. The UL condition contained a to-

tal of one auditory communications request with one communication response task, the

OL contained three auditory communications requests with at least two communication

response tasks every minute, and the NL contained up to two auditory communications

requests with only one communication response task per minute.

Finally, participants were required to walk around the tables to the other set of stations
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(i.e., from PA to PB and vice-versa, as shown in Figure 4.1) whenever a ping sound occurred.

Participants were free to move between the tasks at any time, but the ping sound enforced

a mandatory transition to the other set of workstations. The walking task is a trivial

case, containing only a gross motor component. The UL condition contained two walking

requests, the OL condition incorporated seven walking requests per minute, and NL had

two requests per minute.

Task timings and occurrences were chosen such that the correct workload condition, or

task density, was elicited. The IMPRINT Pro tool was used to model the tasks for each

workload level and ordering prior to conducting the evaluation. The IMPRINT Pro tool

provided anchors to choose the correct workload difficulty value for a task. The anchor

values are not normalized across components; thus, the association between a task and

the workload value allocated varies significantly across the components. For example, a

conversation is anchored to a speech workload value of 4.0, while keyboard typing is set to

a fine-grained motor value of 7.0. The mapping between IMPRINT Pro’s anchor values

and tasks is provided in Table 4.2. The workload values for each NASA MATB-II task

were chosen based on IMPRINT Pro’s anchors. The chosen anchor values for the tasks by

activity component are provided in Table 4.3.

The atomic tasks identified for each activity component are summarized in Table 4.4.

The Null task associated with each activity component indicates an absence of the other

atomic tasks. The detected tactile and fine-grained motor tasks may appear identical, but

were not. The tactile interaction focused on a sense of touch, while the fine-grained motor

movements involved the motion of wrists and hands for reaching and manipulating objects.

For example, the fine-grained motor mouse use task involved grasping and manipulating

the mouse, while the tactile mouse click task involved pressing the button. Essentially, the

evaluated MATB-II task environment created a strong association between the activity

components with some shared similar tasks, which may not be true in other domains.

4.1.2 Hypotheses

Five hypotheses were formed to evaluate the proposed individual task detection and fusion

algorithms’ ability to detect tasks correctly:

• H1: Each individual task detection algorithm’s accuracy will increase, as the window

size increases, before reaching a point of diminishing returns.
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Table 4.2: Mapping between Anchor values and Tasks

(a) Gross Motor

Value Task description

1.0 Walking (even terrain)
2.0 Walking (uneven terrain)
3.0 Jogging (even terrain)
3.5 Heavy lifting
5.0 Jogging (uneven terrain)
6.0 Complex climbing

(b) Fine-grained Motor

Value Task description

2.2 Discrete actuation (button)
2.6 Continuous adjustment (dial)
4.6 Tracking
5.5 Discrete adjustment
6.5 Writing
7.0 Keyboard typing

(c) Tactile

Value Task description

1.0 Alerting
2.0 Simple discrimination
4.0 Complex symbolic information

(d) Auditory

Value Task description

1.0 Detect sound
2.0 Orient to sound
3.0 Interpret speech (simple)
4.2 Verify audio feedback
6.0 Interpret speech (complex)
6.6 Discriminate sound
7.0 Interpret sound patterns

(e) Visual

Value Task description

1.0 Register/Detect
3.0 Inspect/Check
4.0 Locate
4.4 Track
5.0 Read
6.0 Scan/Search monitor

(f) Cognitive

Value Task description

1.0 Simple association
1.2 Alternative selection
3.0 Conversation
4.6 Evaluate (single aspect)
5.0 Rehearsal
6.0 Evaluate (multiple aspects)
7.0 Estimation/Calculation

(g) Speech

Value Task description

2.0 Simple (1 -2 words)
4.0 Complex (sentence)
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Table 4.3: IMPRINT Pro anchor values for the modified NASA MATB-II tasks.

Task Gross Motor
Fine-grained
motor

Tactile Visual Cognitive Auditory Speech

Tracking 0.0 4.6 2.0 4.4 1.2 0.0 0.0

System
monitoring

0.0 2.2 2.0 3.0 4.6 0.0 0.0

Resource
management

0.0 2.2 2.0 6.0 6.0 0.0 0.0

Communication 0.0 0.0 0.0 0.0 1.0 6.0 0.0

Communication
response

0.0 2.6 2.0 4.0 3.0 0.0 4.0

Walking 1.0 0.0 0.0 0.0 0.0 1.0 0.0

Table 4.4: Atomic tasks identified for each activity component when using the modified
NASA MATB-II task environment.

Activity Component Atomic tasks

Gross motor Walking, Null

Fine-grained motor Joystick tracking, Keyboard usage, Mouse usage, Null

Tactile Joystick tracking, Keyboard stroke, Mouse clicks, Null

Visual Tracking, Inspect, Locate, Null

Cognitive Association, Evaluation, Conversation, Null

Auditory COMM request, Walk ping, Null

Speech COMM verbal response, Null
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• H2: Each individual task detection algorithm will detect tasks with ≥ 80% classifi-

cation accuracy for at least one of the analyzed window sizes.

• H3: The fusion algorithm’s joint task optimization will improve the atomic task

detection accuracy to ≥ 80% across all seven components.

• H4: The TCN-based composite and concurrent task recognition algorithm’s overall

accuracy will increase with the window size before reaching a point of diminishing

returns.

• H5: The TCN-based algorithm will detect composite tasks occurring concurrently

with ≥ 80% accuracy.

4.1.3 Metrics

The objective and subjective metrics were collected throughout the experiment. The ob-

jective metrics include the BioHarness’ heart rate, HRV, respiration rate and posture mag-

nitude, the Xsens’ whole body inertial data (see Figure 3.2), the Myos’ forearm inertial

and sEMG data, the Pupil Core’s pupil dilation, eye gaze, blink duration, and blink fre-

quency, as well as the noise level and speech-based metrics (see Chapter 3.3). Accuracy

was the primary dependent variable for assessing the algorithms’ performance, while the

confusion matrices compared the individual task recognition algorithms’ accuracies and

misclassifications by tasks.

The task recognition algorithms combined the incorporated metrics in 2k − 1 ways

to analyze the metrics’ impact, where k was the number of metrics incorporated. The

gross motor algorithm incorporated four lower-body IMU metrics and the Bioharness’

physiological features, which resulted in a total of thirty-one (25 − 1 = 31) gross motor

metric combinations. The fine-grained motor algorithm incorporated the Xsens’ hand

and wrist IMUs, as well as the Myos’ forearm sEMG and IMU, resulting in fifteen (24 −
1 = 15) metric combinations. These fifteen combinations were investigated across three

handedness configurations: i) left-only that incorporated all four metrics from the left

arm, ii) right-only that incorporated all four metrics from the right arm, and iii) both that

incorporated all four metrics from both the arms, which resulted in a total of forty-five fine-

grained motor metric data set combinations. Similarly, the tactile algorithm incorporated

the Xsens’ hand IMU and Myos’ forearm metrics across three handness configurations,
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resulting in nine combinations. The handedness analysis was not applicable to the other

activity components. The visual and cognitive components incorporated three metrics each;

thus, seven combinations each, while the speech component had two metrics, resulting in

three combinations. The ambient audio was not recorded for this evaluation; therefore,

the auditory component did not incorporate the spectrogram metric, so it only had one

combination.

The subjective measure consisted of verbal in-situ workload ratings. The in-situ work-

load ratings required the participant to rate six demand channels (i.e., auditory, visual,

speech, gross and fine-grained motor, tactile, and cognitive) from 1 (little to no demand) to

5 (extreme demand). The subjective metrics were not used in the experimental analyses.

The physically separated NASA MATB-II collected task performance metrics. The

IMPRINT Pro model assumed all tasks were performed, even though actual participants

may have missed one or more tasks, which can confound task labeling. The performance

metrics reduce this confound and generate better ground truth data. The tracking task’s

performance was measured as the error in pixels between the center of the cross-hairs and

the center of the object (Figure 4.2a). The system monitoring task’s performance was

determined by response time and failure rate. Response time was the number of seconds a

participant took to click on a light or gauge, once the respective light or gauge went out of

range. Failure rate represented the number of out of range lights and gauges that were not

corrected. The resource management task’s performance was determined by the amount

of time (in seconds) fuel Tanks A and B were out of range (i.e., the fuel levels were not

between 2,000 and 3,000 units). The number of failed communication requests (i.e., the

participant failed to respond or the number of times the radio was tuned to the wrong

frequency) determined the communications task performance.

4.1.4 Procedure

The participants completed a consent form and a demographic questionnaire upon arrival,

after which participants were fitted with a BioPac Bioharness BT, Xsens Mtw Awinda

motion trackers, a Pupil Core eye tracker, two Myo devices, and a Shure Microphone. A

tutorial video described the NASA MATB-II tasks and how to accomplish the tasks. The

tutorial video was followed by a 10-minute training session during which participants gained

familiarity with the task environment, after which the 52.5-minute trial occurred. The

training session cycled through the five tasks with each task occurring for one minute and
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repeated the cycle one additional time. Participants completed a post-session questionnaire

upon finishing the trial. In-situ workload ratings were verbally administered at 6 minutes

into the trial and every 7.5 minutes after the initial rating.

4.1.5 Participants

Sixty-four participants (37 male, 24 female, and 3 non-binary) completed the experiment.

The mean age was 29.80 (std. dev. = 10.24) with a range from 18 to 60. Thirty-four held a

high school degree, fourteen held an undergraduate degree, fourteen held a master’s degree,

and five held a doctorate. Participants indicated the number of hours they use a desktop

or laptop per week, as computer experience may impact task performance. The majority

of participants (forty-five) indicated that they use computers for more than eight hours

per week. Participants rated their video game skill level on average as 4.75 (std. dev. =

2.62) on a Likert scale (1-little to 9-expert). Thirty-four participants did not drink any

caffeine the day of the experiment, while twenty-six participants drank at most 16 oz., and

six participants drank more than 16 oz. Participants exercised on average 4.51 (std. dev. =

1.81) hours a week. Participants slept an average of 7.12 (std. dev.= 1.25) hours the night

before the experiment and an average of 7.53 (std. dev. = 1.24) hours two nights prior.

Participants rated current fatigue levels as 3.00 on average (std. dev. = 1.50) on a Likert

scale from 1 (little to no) to 9 (extreme). Participants’ dominant arm information was not

gathered during the study; thus, the results are presented in terms of participants’ left- vs.

right-handed, rather than dominant vs. recessive arm. However, the general population is

right-hand dominant for complex manual tasks [69, 215]; thus, 80-90% of the participants

were assumed to be right-handed.

4.2 Results

The task recognition algorithms are validated using the leave-one-subject-out cross-

validation scheme, where the average accuracy is reported by training the algorithm repeat-

edly on all, but one participant’s data and validating using the left-out participant’s data

[81]. The confusion matrices compare the individual task recognition algorithms’ accura-

cies and misclassifications by tasks. A Friedman’s analysis of variance by ranks test is used

to determine statistical significance in accuracies between results. Significant results were

further analyzed using the Wilcoxon signed-rank test to identify the specific significant dif-
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ferences. The non-parametric statistical tests ensured that the outcomes were unaffected

by the accuracy distribution across participants. Cohen’s d measured the effect sizes.

4.2.1 Cognitive Task Recognition

The cognitive task recognition algorithm incorporated thirteen features extracted from

HRV, pupil dilations (left and right eyes), and blink metrics (see Chapter 3.5.1). The

features were fed into a RF classifier that was trained to predict one of the four cognitive

tasks: i) Association, ii) Conversation, iii) Evaluation, and iv) Null (described in Chapter

4.1.1) for each window. The evaluated window sizes tw = {5s, 10s, 15s, 30s, 60s} with a

50% overlap inform the impact of the window size on the algorithm’s performance.

Figure 4.3: Cognitive task recognition accuracy % (mean (std. dev.)) by window size.

The RF algorithm’s accuracy decreased slightly from 5s (32.80%) to 15s (32.68%),

before increasing and achieving its peak accuracy at the 60s window size (34.09%), as

shown in Figure 4.3. The Friedman’s test indicated that there was no significant difference

between window sizes (χ2(4, 60) = 4.32, p = 0.36).

The RF algorithm’s confusion matrices for the evaluated window sizes were analyzed to

identify the best-performing window size (see Figure 4.4). None of the evaluated window

sizes detected the cognitive tasks reliably. Most window sizes classified three out of the four

tasks with approximately 30% accuracy. All five window sizes had higher misclassification

rates for the Evaluation task, which was confused with the Association and Null tasks.

Among the five window sizes, the 15s window size variant had the lowest confusion rate.
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Figure 4.4: The cognitive task recognition confusion matrices when HRV, pupil dilation,
and blink rate metrics are incorporated for the evaluated window sizes.

Table 4.5: Cognitive task recognition accuracy (mean % (std. dev.)) by the incorporated
metrics using 15s window size RF algorithm aggregated across participants. The highest
accuracy is highlighted in Bold.

Metrics Accuracy

HRV 26.52 (4.41)
Pupil dilation 31.11 (7.38)
Blink 28.74 (5.20)

HRV + Pupil dilation 31.44 (7.07)
HRV + Blink 29.46 (6.60)
Pupil dilation + Blink 32.27 (7.91)

HRV + Pupil dilation + Blink 32.68 (6.74)
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The incorporated metrics can impact the RF algorithm’s performance. Using the 15s

window size, the RF algorithm was trained by combining the metrics in several com-

binations. A total of seven combinations were evaluated by incorporating the metrics

individually and by combining two and three metrics at a time (see Table 4.5).

The highest individual metric accuracy (31.11%) was achieved by the pupil dilation

metrics, while the HRV metric had the lowest accuracy (26.52%). The Wilcoxon signed-

rank test revealed that the pupil dilation metrics’ accuracy was significantly higher than

the HRV (p < 0.01) and blink (p = 0.02) metrics, while the HRV metrics’ accuracy

was significantly lower than the pupil dilation (p < 0.01) and blink (p = 0.04) metrics’

accuracies.

The highest accuracy (32.27%) when incorporating two metrics was achieved when

the pupil dilation and blink metrics, while the lowest accuracy (29.46%) was recorded

when the HRV and blink metrics were combined. The Wilcoxon signed-rank test revealed

that the accuracy when combining the pupil dilation and blink metrics was significantly

higher (p = 0.03) than the HRV and blink metrics combination, but was not significant

otherwise. The test also revealed that the pupil dilation and blink combination’s accuracy

and the accuracy of all three metrics combined did not differ significantly. Generally, adding

additional metrics to pupil dilation did not affect the algorithm’s accuracy significantly.

4.2.1.1 Discussion

Hypothesis HC
1 predicted that the RF algorithm’s accuracy will increase, as the window

size increases before reaching a point of diminishing returns, which was not supported. The

algorithm’s poor classification performance can be attributed to the selected metrics’ (i.e.,

HRV, pupil dilation, blink) features that may not be suitable for cognitive task recognition,

especially if tasks change frequently.

Hypothesis HC
2 predicted that the RF algorithm will detect tasks with ≥ 80% clas-

sification accuracy for at least one of the window sizes, which was not supported. The

algorithm’s accuracy when predicting the tasks, regardless of the window size, was only

5% to 10% better than randomly guessing the tasks. Labeling cognitive tasks is non-trivial

and highly uncertain, as it is difficult to determine when exactly the human began the

mental processes prior to executing a task. This uncertainty in cognitive task labeling may

have also exacerbated the poor performance.

The performance analysis by metrics indicated that pupil dilation was the most useful
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metric and incorporating additional metrics did not improve the algorithm’s performance.

The incorporated metrics may not be responsive enough to identify cognitive changes

within a short duration (i.e., reactive), such that the tasks can be detected before task

switching. Assuming the tasks occur for a prolonged period of time is a poor assumption

for real-time, dynamic, and uncertain domains; therefore, other metrics that conform with

the reactivity criterion in addition to all the other criteria must be investigated in order

to develop more accurate cognitive task recognition. An alternative is to detect cognitive

tasks indirectly based on the other atomic component task detections using the GNN-based

fusion algorithm (see Chapter 4.2.8).

4.2.2 Speech Task Recognition

The speech-reliant task detection algorithm incorporated the MFCCs’ mean and std. dev.

and the five features extracted from the speech-based metrics. The features were fed into

a deep learning algorithm to predict two tasks: i) COMM response and ii) Null (described

in Chapter 4.1.1). Five window sizes (tw = {1s, 3s, 5s, 10s, 15s}) with a 50% were used

to evaluate the impact of the window size on algorithm’s performance; however, the 15s

window size had no instances for the COMM response task, as participants spoke for < 15s

for all COMM requests received. Therefore, the 15s window is excluded from the analysis.

It must also be noted that the evaluated domain contained simple speech (< 1second) in

the in-situ subjective ratings given by the participants (see Chapter 4.1.1). However, the

in-situ ratings were not included in this analysis, due to the lack of data annotation.

Figure 4.5: Speech-reliant task recognition accuracy by window size when incorporating
the speech-based and MFCC metrics.
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The average time taken to verbally respond to the COMM request was 3.07 (std. dev. =

1.52) seconds, with the shortest and longest COMM response being 1.01 and 8.15 seconds,

respectively. The algorithm’s accuracy increased with window size until the 3s window

and decreased for the 5s and 10s window sizes. The Friedman’s test indicated that the

accuracies varied significantly between window sizes (χ2(3, 32) = 19.56, p < 0.01). The

Wilcoxon signed-rank test indicated that the 10s window size’s accuracy was significantly

lower than the others with a large effect size (p < 0.01, 1.90 < Cohen’s d < 2.44), while the

1s and 3s window sizes’ accuracies were significantly higher than the 5s and 10s window

sizes with a medium to large effect size (p < 0.01, 0.31 < Cohen’s d < 2.44). No other

differences were significant. The confusion matrices between the 1s, 3s, 5s, and 10s window

sizes (see Figure 4.6) also concur with the statistical analysis in that the 1s, 3s, and 5s

window sizes distinguished the COMM response and Null tasks with ≥ 90% accuracy, with

the 1s and 3s outperforming the rest.

Figure 4.6: The speech task recognition confusion matrices for the 1s, 3s, 5s, and 10s
window sizes.

Table 4.6: Speech-reliant task recognition accuracy (mean % (std. dev.)) by the incorpo-
rated metrics for the 3s window aggregated across participants. The highest accuracy is
highlighted in Bold.

Metrics Accuracy

Speech-based 94.57 (2.07)
MFCCs 94.08 (6.40)
Speech-based + MFCCs 93.57 (9.25)

Using the 3s window size, the algorithm was trained by incorporating the metrics
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individually and by combining them (see Table 4.6). The algorithm trained only on the

speech-based metrics achieved the highest accuracy (94.57%), while combining both speech-

based and MFCCs metrics had the lowest accuracy (93.57%); however, the Friedman’s test

revealed that the metrics’ accuracies did not differ significantly.

4.2.2.1 Discussion

Hypothesis HS
1 predicted that the algorithm’s accuracy will increase, as the window size

increases before reaching a point of diminishing returns. This hypothesis was supported.

The 1s and 3s window sizes appear to be the optimal window size for speech-reliant task

recognition. The average COMM response length was calculated to be ∼3 seconds; there-

fore, the 3s window is recommended for this domain. However, the in-situ ratings were not

included in this analysis, which may alter the results. The in-situ ratings will be analyzed

for a peer-based evaluation in order to determine the optimal window size that can be used

for detecting both simple and complex speech tasks.

HypothesisHS
2 predicted that the algorithm will detect events with ≥ 80% classification

accuracy for at least one of the window sizes. The hypothesis was fully supported, as the

algorithm detected the tasks with high sensitivity (> 80%) regardless of the window size.

The algorithm’s high accuracy can be attributed to the NASA MATB-II task environment’s

limited number of speech tasks and the COMM response was fairly standard complex

speech that did not vary across participants, as it may in other tasks.

The complex speech required participants to utter almost an entire sentence to confirm

the radio frequency change, which may not be the case for real-world scenarios, where

human teammates may communicate in cryptic phrases with fewer words. The peer-based

evaluation included additional simple (speech with fewer words) and complex tasks with

varying complexities, lengths, tones, and syllables to better assess the algorithm’s viability

and the metrics’ impact on the intended domain (see Chapter 5.2.2).

4.2.3 Auditory Task Recognition

The spectrogram metrics, described in Chapter 3.5.3, were not employed for this analysis, as

the ambient audio was not gathered for the supervisory evaluation. A temporary auditory

task recognition algorithm was developed for this evaluation. The algorithm incorporated

three time-based features (i.e., mean, std. dev., and slope) extracted from the noise level
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metric obtained via the decibel meter. The features were fed into a RF classifier [256]

trained to predict one of the three auditory tasks: i) COMM request, ii) Ping (played

to trigger the Walking task), and iii) Null (described in Chapter 4.1.1) for each window.

The classifier with 100 decision trees and a max depth of 500 performed the best. The

evaluated window sizes tw = {1s, 3s, 5s, 10s, 15s} with a 50% overlap inform the impact

of the window size on the algorithm’s performance.

Figure 4.7: Auditory task recognition accuracy % (mean (std. dev.)) by window size.

The RF algorithm’s accuracy increased gradually until the 10s window size (77.56%)

and decreased at the 15s window size (61.81%), as depicted in Figure 4.7. The Fried-

man’s test indicated a significant difference in accuracies between window sizes (χ2(4, 60) =

15.27, p < 0.01). The Wilcoxon signed-rank test indicated that the 10s window size’s ac-

curacy was significantly higher than all the other window sizes with a medium to large

effect size within the RF (p < 0.01, 0.55 < Cohen’s d < 0.98), while the 5s window size’s

accuracy was significantly higher than the 1s and 3s window sizes with a small effect size

(p < 0.01, 0.36 < Cohen’s d < 0.47). No other differences were significant.

The RF algorithm’s confusion matrices for the 3s, 5s, and 10s window sizes were ana-

lyzed to identify the best-performing window size (see Figure 4.8). The 1s and 15s window

sizes’ confusion matrices are provided in Appendix A Figure A.1. The confusion matrices

indicated that the algorithm had high classification rates for the COMM and Null tasks,

while the Ping task was consistently confused with the COMM task across all window

sizes. Overall, the RF’s 10s window size had a better classification rate by task.
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Figure 4.8: The RF auditory task recognition confusion matrices for the 3s, 5s, and 10s
window sizes.

4.2.3.1 Discussion

Hypothesis HA
1 predicted that the RF algorithm’s accuracy will increase, as the window

size increases before reaching a point of diminishing returns, which was partially supported.

The 10s window size variant had the best performance, overall and by tasks; thus, it is

the window size for a dynamic task environment when the noise level is the only metric

incorporated by the algorithm to detect the auditory tasks. However, based on the liter-

ature reviewed, the smaller window sizes ≤ 5s are hypothesized to perform better when

the algorithm incorporates spectrogram metrics [82, 144, 159], as it can identify auditory

changes within a short duration, so that a task can be detected before it gets switched.

Hypothesis HA
2 predicted that the RF algorithm will detect events with ≥ 80% clas-

sification accuracy for at least one of the analyzed window sizes, which was not sup-

ported. The less-than-ideal accuracy (i.e., 2% lower than the expected accuracy) can be

attributed to the noise level’s ability to distinguish the auditory tasks purely based on

loudness (i.e., amplitude). The noise level metric fails to capture other characteristic fea-

tures (e.g., event’s frequency and spectral envelope) that are typically used for detecting

auditory tasks [82, 91, 144, 159]. Further, the evaluated domain entailed the experimenter

interrupting the participants for in-situ subjective ratings (see Chapter 4.1.1), which is an

auditory task. However, the in-situ auditory interrupts were not included in this analysis,

which may have skewed the results.

Combining the spectrogram metrics from an ambient microphone with the noise level
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metric can potentially increase the auditory task detection accuracy by providing the al-

gorithm with the characteristic ambient sounds and their associated loudness present in

the task environment. This analysis did not evaluate the actual auditory task recogni-

tion algorithm (Chapter 3.5.3) due to the lack of ambient microphone audio; however, the

peer-based evaluation (see Chapter 5.2.3) incorporated the spectrogram metrics to detect

auditory tasks with varying lengths and noise characteristics.

4.2.4 Visual Task Recognition

The visual task recognition algorithm incorporated features extracted from the eye tracker’s

fixation and saccade metrics, as well as the Xsens’ head motion tracker’s inertial metrics.

The features were fed into a RF classifier that was trained to predict one of the four visual

tasks: i) Tracking, ii) Inspect, iii) Locate, and iv) Null (described in Chapter 4.1.1) for

each window. The evaluated window sizes tw = {5s, 10s, 15s, 30s, 60s} with a 50% overlap

inform the impact of the window size on the algorithm’s performance.

Figure 4.9: Visual task recognition accuracy % (mean (std. dev.)) by window size.

The RF algorithm’s accuracy increased gradually with window size, achieving the high-

est accuracy (61.01%) at the 60s window size (see Figure 4.9). The Friedman’s test revealed

that the accuracies were significantly different between window sizes (χ2(4, 60) = 21.47, p <

0.01). The Wilcoxon’s test indicated that the 5s window size’s accuracy was significantly

lower than all other window sizes with a small to medium effect size (p < 0.01, 0.14 <

Cohen’s d < 0.68), while the 60s window size’s accuracy was significantly higher than all
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other window sizes with a medium effect size (p < 0.01, 0.38 < Cohen’s d < 0.68). No

other differences were significant.

Figure 4.10: The visual task recognition confusion matrices when fixation, saccades, and
inertial metrics are incorporated for 15s, 30s, and 60s window sizes.

The confusion matrices (see Figure 4.10) indicated that the 60s window size variant had

the least confusion rate across most tasks, resulting in up to 5 - 12% increase in the tasks’

accuracies when compared to the 15s and 30s window sizes. All other tasks had similar

confusions and accuracies. Therefore, the 60s window size’s recognition rate by task was

better than the other window sizes. The 5s and 10s window sizes had subpar accuracies

by tasks (see Appendix A Figure A.2).

Table 4.7: Visual task recognition accuracy (mean % (std. dev.)) by the incorporated
metrics for the 60s window RF algorithm aggregated across participants. The highest
accuracy is highlighted in Bold.

Metrics Accuracy

Fixation 39.82 (12.1)
Saccades 48.49 (14.14)
Inertial 53.80 (10.35)

Fixation + Saccades 48.49 (13.51)
Fixation + Inertial 56.14 (10.33)
Saccades + Inertial 60.18 (11.38)

Fixation + Saccades + Inertial 61.01 (11.86)

Using the 60s window size, the RF algorithm was trained by combining the metrics in

several combinations. A total of seven combinations were evaluated by incorporating the
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metrics individually, and by two and three metrics simultaneously as shown in Table 4.7.

The analysis by individual metric found the highest accuracy (53.80%) was attained by

the head inertial metrics, while the fixation metrics had the lowest accuracy (39.82%). The

Wilcoxon signed-rank test revealed that the head inertial metrics’ accuracy was significantly

higher (p < 0.01) than the other two metrics, and the saccade metrics’ accuracy was

significantly higher (p < 0.01) than the fixation metrics.

The highest accuracy (60.18%) when incorporating two metrics simultaneously was

achieved by combining the saccades and head inertial metrics, while the lowest accuracy

(48.49%) was recorded when the fixation and saccades were combined. The Wilcoxon

signed-rank test revealed that the saccades and head inertial combination’s accuracy was

significantly higher (p < 0.01), than the remaining two combinations. The test also revealed

that the saccade and head inertial combination’s accuracy and the accuracy of all three

metrics combined did not differ significantly.

4.2.4.1 Discussion

HypothesisHV
1 predicted that the RF algorithm’s accuracy will increase, as the window size

increases, before reaching a point of diminishing returns. The hypothesis was supported,

as the accuracy continued to increase until the 60s window size. The RF algorithm’s 60s

window size had the best overall performance; thus, it is the recommended window size

using the current metrics for the evaluated supervisory domain.

Hypothesis HV
2 predicted that the RF’s algorithm will detect tasks with ≥ 80% classifi-

cation accuracy for at least one of the window sizes. This hypothesis was not supported, as

the RF algorithm’s maximum accuracy was only ∼60%, regardless of the window size. The

algorithm’s poor performance can be attributed to two factors. First, participants’ eye and

head movement patterns may not have been distinct enough between tasks, indicating that

the multi-tasking nature may have had a negative impact on detection accuracy. Second,

labeling the visual tasks is non-trivial and highly uncertain, as it is difficult to determine

when exactly the participant’s visual processes began prior to task execution. This labeling

uncertainty may have also exacerbated the poor performance.

It is important to determine the incorporated metrics’ ability to detect the tasks reliably.

The selected metrics were inadequate to capture the participants’ visual behavior in a multi-

tasking environment. The per-metric analysis indicated that Xsens’ head motion inertial

data was the most useful, followed by the saccade and fixation metrics. The visual task
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detection analysis determined that the incorporated metrics are less responsive for reliably

detecting tasks in a dynamic, multi-tasking environment (i.e., switching tasks frequently).

Identifying the appropriate window size for each algorithm informs how the metrics

must be segmented, such that the features extracted are representative of the tasks being

detected. The analysis indicated that the incorporated metrics generally require larger

window sizes (> 30s) to assimilate the context needed to detect the visual tasks reliably.

The evaluation data is highly uncertain due to the rapid task switching and accompanied

labeling difficulty; therefore, it was harder for the algorithm to assimilate the required

context at lower window sizes. The 60s window size is recommended, because it is large

enough to provide the algorithm with the required context, amidst the uncertainty.

Visual tasks will have different durations. A short task (e.g., inspection) may require a

smaller window, so that the task is not overshadowed (e.g., confused) by all the unrelated

data; therefore, it may be necessary for the task recognition algorithm to use an adaptive

sliding window method [170, 195]. An adaptive sliding window will permit for expanding

and contracting of the window size, based on the task, which may lead to more accurate

detection.

4.2.5 Gross Motor Task Recognition

The gross motor task recognition algorithm incorporated the Xsens’ pelvis, thighs, calves,

and feet IMU metrics, along with the Bioharness’ physiological metrics. The algorithm

predicted two gross motor tasks: i) Walking and ii) Null. Window sizes, tw = {1s, 2s, 3s,
5s, 10s}, with a 50% overlap, were investigated for analyzing the window size’s impact on

the algorithm’s performance.

Overall, the algorithm’s accuracy increased until the 3s window size (80.97%) and

decreased to 77.49% for the 10s window size when incorporating the physiological and all

four lower-body IMU metrics (see Figure 4.11). The Friedman’s test indicated a significant

accuracy difference between window sizes (χ2(4, 60) = 33.10, p < 0.01). The Wilcoxon

signed-rank test found that the 2s and 3s window size’s accuracies were significantly higher

than the 1s and 10s window sizes (p < 0.01, 0.23 < Cohen’s d < 0.39), and the 5s

window size’s accuracy was significantly higher than the 10s window size (p < 0.01, Cohen’s

d = 0.31). No other differences were significant.

The confusion matrices (see Figure 4.12) indicated that the 2s, 3s, and 5s window sizes

had similar task-wise accuracies. However, the 3s window size performed the best in 30
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Figure 4.11: Gross motor task recognition accuracy by window size when incorporating
the physiological and the four IMU metrics on both legs.

out of the 31 metric combinations, while the 2s performed the best one time. Thus, the 3s

window size consistently outperformed the other window sizes across metric combinations.

The 1s, 5s, and 10s window sizes had poor performances in comparison (see Appendix A

Figure A.3).

Figure 4.12: Gross motor task recognition confusion matrices when incorporating the phys-
iological and four lower-body IMU metrics on both legs for the 2s, 3s, and 5s window sizes.

The incorporated metrics can impact the algorithm’s performance; thus, using the 3s

(i.e., best performing) window size, the algorithm was trained using 31 combinations of

the metrics, as shown in Table 4.8. Interested readers can refer to the metric combinations

results provided in Appendix A Table A.1 for the other window sizes.

The highest individual metric accuracy (80.80%) was achieved by the foot (F) IMU
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Table 4.8: Gross motor task recognition accuracy (mean % (std. dev.)) by the 3s window
size, and incorporated metrics aggregated across participants. NOTE: The highest accu-
racy and the corresponding sensor combination are highlighted in Bold, while the overall
highest accuracy is in Blue.

No. of
sensors

Combination Accuracy (%)

1

Phy 61.80 (8.13)
P 79.65 (8.20)
T 80.33 (7.99)
C 80.56 (7.86)
F 80.80 (7.81)

2

Phy + P 79.98 (7.68)
Phy + T 80.66 (8.34)
Phy + C 81.13 (7.86)
Phy + F 80.65 (8.33)
P + T 80.53 (7.98)
P + C 80.91 (7.83)
P + F 81.22 (7.80)
T + C 80.92 (8.10)
T + F 81.19 (7.66)
C + F 81.18 (7.62)

3

Phy + P + T 80.67 (8.10)
Phy + P + C 80.99 (7.94)
Phy + P + F 80.96 (7.91)
Phy + T + C 81.02 (8.05)
Phy + T + F 80.95 (7.82)
Phy + C + F 80.95 (7.89)
P + T + C 81.26 (7.76)
P + T + F 81.00 (7.41)
P + C + F 81.33 (7.72)
T + C + F 81.16 (7.58)

4

Phy + P + T + C 81.21 (8.18)
Phy + P + T + F 81.09 (7.91)
Phy + P + C + F 80.99 (7.99)
Phy + T + C + F 81.01 (7.91)
P + T + C + F 81.39 (7.54)

5 Phy + P + T + C + F 80.97 (7.89)
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metrics, while the physiological (Phy) metrics had the lowest accuracy (61.80%). The

Wilcoxon signed-rank test revealed that physiological metrics’ accuracy was significantly

lower than the rest (p < 0.01, 2.17 < Cohen’s d < 2.36). No significant difference in

accuracy within the lower body (i.e., foot, calf (C), and thigh (T)) IMU metrics existed,

but significant differences between the pelvis and all other lower body IMU metrics existed

(p < 0.05, 0.08 < Cohen’s d < 0.14) with a very small effect size. The algorithm’s accuracy

increased as the IMU sensors’ displacement from the waist increased (i.e., pelvis < thigh

< calf < foot), indicating that the lowest body point provided the most relevant features

for identifying walking, followed by the subsequent lower body positions. The results are

expected to vary for other gross motor tasks, especially upper-body tasks (e.g., lifting

weights, and bending over).

Similar results were observed when combining two metrics, with the accuracy typically

increasing when combining the lower body IMU metrics. The Phy + P combination’s

accuracy was significantly lower than the rest with a small effect size (p < 0.05, 0.08 <

Cohen’s d < 0.16), while the P + T combination was significantly lower (p < 0.05) than the

Phy + C, P + F, T + F, and C + F combinations. No other differences were significant.

The algorithm reached a saturation point when three or more metrics were combined,

as none of the three or four metric combinations were significantly different, indicating

that combining metrics beyond a certain limit can become excessively redundant and less

meaningful for the evaluated scenario.

4.2.5.1 Discussion

Hypothesis HGM
1 predicted that the gross motor task recognition algorithm’s accuracy will

increase as the window size increases before reaching a point of diminishing returns. This

hypothesis was fully supported. The 3s window size appears to be the optimal window size

for this evaluation’s gross motor task recognition, but may not be applicable for domains

with varied gross motor tasks, including upper body tasks.

Hypothesis HGM
2 predicted that the algorithm will detect tasks with ≥ 80% classi-

fication accuracy for at least one of the evaluated window sizes, which was supported.

Although the algorithm achieved high sensitivity, its accuracy was expected to be > 90%,

as the number of detected tasks was limited and simpler (i.e., Walking). The unexpected

decrease in accuracy can be attributed to confounded task labeling due to participants

missing the scheduled Walking tasks frequently, because they were engaged with the other
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four NASA-MATB composite tasks.

Overall, the algorithm’s accuracy was higher with the IMU metrics, lower with the phys-

iological metrics, and combining the IMU with the physiological metrics did not improve

the accuracy. The evaluated supervisory domain’s gross motor tasks were not complex (i.e.,

walking), but were detected with high sensitivity using only foot IMU metrics. The foot

IMU can be complemented with additional IMU metrics (i.e., pelvis, calf, or thigh) in order

to provide reasonable redundancy for the evaluated domain. Physiological metrics did not

add any value to the supervisory domain; however, they can increase the recognition rate

by improving context with other gross motor tasks. For example, combining IMU with

heart rate can discriminate tasks that have similar motion patterns, but differ in intensity

levels (e.g., running vs. running with weights [192]).

The algorithm’s performance was comparable across the various lower-body IMU met-

rics and their combinations. This indiscernible change in performance can be attributed

to detecting fewer gross motor tasks in the supervisory task environment. A discernible

performance change across metrics is expected for domains that contain a larger number

and more varied gross motor tasks (e.g., squatting, lifting an object, running, shoveling). A

wide variety of gross motor tasks are required to better assess the algorithm’s viability and

the metrics’ impact on the intended HRT domain. Additional IMU metrics (e.g., upper

limb and shoulder positions) may be necessary to detect upper body gross motor tasks

(e.g., lifting an object and shoveling).

4.2.6 Fine-Grained Motor Task Recognition

The fine-grained motor task recognition algorithm incorporated the Xsens IMU on the

hands and wrists of both arms, as well as the two Myos’ forearm IMUs and the 8-channel

sEMGs. The algorithm employed up to eight CNNs, where each network extracted features

pertaining to each metric’s left and right arms. The CNN features were combined to predict

one of the four fine-grained motor tasks: i) Joystick tracking, ii) Keyboard use, iii) Mouse

use, and iv) Null for each window. Five window sizes (tw = {1s, 2s, 3s, 5s, 10s}), and 15

metric combinations for the left, right, and both arms were investigated.

The fine-grained motor algorithm’s accuracy when incorporating all four metrics for

both arms, depicted in Figure 4.13, increased until the 3s window size (68.57%) and de-

creased to 62.09% at the 10s window size. The Friedman’s test indicated a significant

difference in accuracies between the window sizes (χ2(4, 60) = 87.44, p < 0.01). The
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Wilcoxon signed-rank test found the 3s and 5s window size accuracies were significantly

higher than all other window sizes with small to medium effect size (p < 0.01, 0.32 <

Cohen’s d < 0.48), while the 1s and 10s accuracies were significantly lower (p < 0.01) than

the rest. The 2s window size’s accuracy was significantly higher (p < 0.01) than 1s and 10s.

The effect sizes between the 2s, 3s, and 5s accuracies were very small (Cohen’s d < 0.15).

No other differences were significant.

Figure 4.13: Fine-grained motor task recognition accuracy by window size with all four
metrics from both arms.

The confusion matrices (see Figure 4.14) indicated that the 3s window size variant

had less confusion for the Keyboard and Mouse use tasks, resulting in at least a 10%

increase in the tasks’ accuracies when compared to the 5s window size. All other tasks had

similar confusions and accuracies. Therefore, the 3s window size’s task-wise recognition

rate was slightly better than the 5s window size, even though the overall accuracies were

not significantly different.

The results can be generalized to the forty-five fine-grained motor metric combinations

in that the 3s and 5s window sizes’ accuracies were significantly higher than the rest,

followed by the 2s window size. The 1s and 10s window sizes generally performed poorly.

The 3s window size performed the best across 23 of the 45 combinations, as shown in

Table 4.9, while the 5s window size performed the best seventeen times. The 1s, 2s, and

10s window sizes had poor results (see Appendix A A.4).

Understanding the metrics’ impact on each arm is important, as it can minimize the

number of wearable sensors used, and reduce the deep learning algorithm’s trainable pa-

rameters. The algorithm was trained in three handedness variants using the 3s window
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Figure 4.14: Fine-grained motor task recognition 3s and 5s window size confusion matrices
when incorporating all four metrics from both arms.

Table 4.9: Frequency of the best-performing fine-grained motor task recognition algorithm
variants by window size across the forty-five handedness and metric combinations.

Window size
Handedness

1s 2s 3s 5s 10s

Both 0 2 12 1 0

Left 0 1 1 11 2

Right 0 0 10 5 0

Overall 0 3 23 17 2
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size. Incorporating metrics from both arms achieved the highest accuracy (68.57%), while

the left-only metrics had the lowest accuracy (53.90%), and was significantly lower than

the right-only and both metrics (p < 0.01, Cohen’s d > 1.17). The right-only metrics’

accuracy (64.62%) was significantly lower than both metrics (p < 0.01, Cohen’s d = 0.40).

The handedness confusion matrices (see Figure 4.15) indicate that incorporating metrics

from both arms had the least confusion and the best overall accuracy by tasks. The joystick

tracking task had a better recognition rate with the left-only metrics, while the mouse use

task had better accuracy with the right-only metrics, demonstrating that tasks can be arm-

dependent. The Null task had the worst accuracy when incorporating left-only metrics, as

it was often confused with keyboard and mouse use tasks. Keyboard use and Null tasks’

recognition rates were higher with both hands, demonstrating that some tasks require

features from both arms (i.e., the non-dominant arm may provide additional context even

when not essential for the task).

Figure 4.15: Fine-grained motor task recognition confusion matrices for all four metrics
using the Left-only, right-only, and both arms for the 3s window size.

The specific metric combination can impact the algorithm’s performance. A total of

15 combinations were evaluated individually and by combining two or more metrics (see

Table 4.10) with the 3s window size and both handedness combination. Interested readers

can refer to Appendix A Table A.2 for the other independent variable combinations.

The highest individual metric accuracy (68.56%) was achieved by the Xsens hand IMU

metrics. The Friedman’s test found a significant difference across the metrics (χ2(14, 60) =

185.83, p < 0.01). The Wilcoxon signed-rank test revealed that the Wrist (W) and Hand

(H) IMU metrics’ accuracies were significantly higher than all others (p < 0.01, Cohen’s
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Table 4.10: Fine-grained motor task recognition accuracy (mean % (std. dev.)) by the
incorporated metrics using the 3s window size and both handedness combination aggre-
gated across participants. The highest accuracy and corresponding sensor combination are
highlighted in Bold, while the overall highest accuracy across all metrics combinations is
highlighted in Blue.

No. of
sensors

Combination Accuracy (%)

1

Fimu 54.59 (18.51)
H 68.96 (9.26)
W 66.60 (10.66)
Femg 50.04 (16.49)

2

Fimu + H 65.37 (10.63)
Fimu + W 65.05 (12.08)
Fimu + Femg 56.23 (20.33)
H + Femg 69.29 (11.84)
W + H 68.51 (10.94)
W + Femg 68.47 (13.41)

3

Fimu + H + Femg 66.21 (14.25)
Fimu + W + H 67.31 (11.29)
Fimu + W + Femg 66.70 (15.01)
W + H + Femg 70.04 (13.04)

4 Fimu + W + H + Femg 68.57 (14.00)
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d > 0.80), while the Myos’ sEMG metrics’ was significantly lower (p < 0.01). The Myos’

forearm IMU metrics’ accuracy was significantly higher than the sEMG with a small effect

size (p < 0.01, Cohen’s d = 0.26).

Combining the Xsens hand IMU and the Myos’ sEMG (H + Femg) metrics achieved

the highest accuracy (69.29%) when combining two metrics, while the lowest accuracy

(56.23%) was recorded for the Myos’ IMU and sEMG (Fimu + Femg) combination. The

Wilcoxon signed-rank test revealed that the Fimu + Femg combination’s accuracy was

significantly lower than all other combinations with a medium effect size (p < 0.01, 0.52 <

Cohen’s d < 0.78). The H + Femg, W + H, and W + Femg combinations’ accuracies

were significantly higher, but with a smaller effect size than the Fimu + H, and Fimu +

W combinations’ accuracies (p < 0.01, 0.25 < Cohen’s d < 0.35). No other differences

were significant. The W + H + Femg combination achieved the highest overall accuracy

(70.04%), and was significantly higher than any of the other three metric combinations,

but with a small effect size (p < 0.01, 0.22 < Cohen’s d < 0.28).

Overall, the Xsens’ IMU metrics’ performance was significantly better (p < 0.01) than

the Myo’ forearm sEMG and IMU metrics. The algorithm’s performance was the highest

when incorporating the Xsens’ hand or wrist IMU metrics across all combinations. The

Mouse task had the highest recognition rate (82%). Combining sEMG metrics with hand

and wrist metrics improved the recognition rate of most tasks, but reduced the Mouse

task’s recognition rate by 10%. Incorporating the Myos’ forearm IMU metrics decreased

the tasks’ recognition rate across most metric combinations.

4.2.6.1 Discussion

Hypothesis HFM
1 predicted that the fine-grained motor task recognition algorithm’s ac-

curacy will increase, as the window size increases before reaching a point of diminishing

returns, which was fully supported. Overall, the 3s window size performed the best across

most metric and handedness combinations, with the 5s being a close second. Additionally,

the 3s window size had a higher recognition rate and fewer misclassifications by tasks;

therefore, the 3s is the suitable window size for detecting the evaluated supervisory tasks.

Hypothesis HFM
2 predicted that the algorithm will detect tasks with ≥ 80% classifica-

tion accuracy for at least one window size, which was not supported. The 70% maximum

accuracy indicates that detecting fine-grained motor tasks with high sensitivity is difficult.

The algorithm’s poor performance can also be attributed to individual differences. Model-
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ing individual human differences is difficult, but important. Customizing the algorithm for

each individual can reduce the impact of individual differences and yield greater accuracy.

The task recognition algorithm can be customized by retraining the deep learning model

(i.e., updating the weights) with participant-specific data. Specifically, an individualized

algorithm can be created by retraining a generalized algorithm (i.e., trained on every other

participant’s data) by combining the individual participant-specific data from their train-

ing session dataset and validating the individualized model on their trial session dataset

(i.e., transfer learning). This approach will allow the algorithm to learn motion patterns

that are exclusive to each participant.

Suboptimal task recognition due to different task completion times, especially across

activity components is an open problem [18]. An ensemble learning algorithm that makes

predictions over multiple fixed window sizes and fuses the predictions across the window

sizes intelligently to detect the tasks may be required. An adaptive sliding window method

that can expand and contract the window size based on the task may improve accuracy

[170, 194, 195].

Overall, the Xsens’ hand and wrist IMU metrics were the most important, as the metrics

achieved comparable performance even individually. None of the individual Myo metrics

(i.e., sEMG and forearm IMU) detected the tasks reliably. The algorithm’s performance

was significantly higher (up to 8%) when combining the hand and wrist IMU metrics

with the Myos’ forearm sEMG, rather than incorporating them individually. This metric

combination appears to be ideal for detecting the supervisory domain’s fine-grained tasks,

but may not be preferred for all HRT domains.

The handedness analysis revealed that incorporating metrics from both arms was more

important than the right-only metrics, followed by the left-only metrics. The right-only

metrics were expected to outperform the left-only metrics, as over 80% of the global pop-

ulation prefer their right hand for complex tasks [69, 215]. However, the both handedness

configuration results indicate that combining the left arm metrics affected the task recogni-

tion rate positively. This outcome may be attributed to i) about 10−20% of the participants

potentially being left-handed, ii) the evaluation’s multi-tasking nature may have required

participants to use both their arms for certain tasks (e.g., tracking and system monitoring),

and iii) the algorithm may have benefited from the left arm’s metrics providing context,

even when the arm was not engaged in a task.
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4.2.7 Tactile Task Recognition

The tactile task recognition algorithm incorporated inertial metrics provided by the Xsens

sensors on the hands and the forearm 8-channel sEMG from the Myos to train a deep

learning algorithm. The algorithm was trained to predict one of the four tactile tasks: i)

Joystick tracking, ii) Keyboard stroke, iii) Mouse clicks, and iv) Null. Window sizes, tw =

{0.5s, 1s, 1.5s, 2s, 3s}, with a 50% overlap, were investigated for analyzing the window

size’s impact on the algorithm’s performance. Smaller window sizes were used due to the

tactile tasks’ shorter durations.

Figure 4.16: Tactile task recognition accuracy by window size for the IMU and sEMG
metrics with both arms.

The tactile task recognition algorithm when incorporating the hand IMU and fore-

arm sEMG metrics from both arms achieved the highest accuracy (68.06%) with the

1s window size, and decreased gradually to 61.68% for the 3s window size (see Figure

4.16). The Friedman’s test indicated a significant accuracy difference between window

sizes (χ2(4, 60) = 24.09, p < 0.01). The Wilcoxon signed-rank test indicated that the

1s window size’s accuracy was significantly higher than all other window sizes (p < 0.01,

0.17 < Cohen’s d < 0.83), while the 3s window size’s accuracy was significantly lower than

the rest (p < 0.01, 0.54 < Cohen’s d < 0.83). The 1.5s window size’s accuracy was signif-

icantly higher than the 2s and 3s (p < 0.01, 0.34 < Cohen’s d < 0.78). The effect sizes

between the 0.5s, 1s, and 1.5s accuracies were very small (Cohen’s d < 0.24).

The tactile task recognition algorithm’s confusion matrices incorporating the hand IMU

and sEMG metrics from both arms for the 0.5s, 1s, and 1.5s window sizes are provided in

Figure 4.17. The confusion matrices indicated that the 1.5s window size variant had more
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Figure 4.17: Tactile task recognition confusion matrices when IMU and sEMG metrics are
incorporated on Both hands for 0.5s, 1s, and 1.5s window sizes.

confusion for the Keyboard (up to 13%) and Mouse use (up to 7%) tasks when compared to

the 0.5s and 1s window sizes. The confusions and task accuracies between the 0.5s and 1s

variants were similar with no significant differences. Additionally, Table 4.11 demonstrates

that 1s window size performed the best for six out of the nine handedness and metric

combinations, while the 1.5s window size performed the best 3 times. The 0.5s, 2s, and 3s

window sizes had poor performances in comparison (see Appendix A Figure A.5).

Table 4.11: Frequency of the best-performing tactile task recognition algorithm variants
by window size across the nine handedness and metric combinations.

Window size
Handedness

0.5s 1s 1.5s 2s 3s

Both 0 2 1 0 0

Left 0 3 0 0 0

Right 0 1 2 0 0

Overall 0 6 3 0 0

The algorithm was trained in three-handedness variants by incorporating the Xsens’

hand IMU and the Myos’ forearm sEMG metrics using the 1s window size. Incorporating

metrics from both arms achieved the highest accuracy (68.06%), while the left-only metrics

had the lowest accuracy (52.45%). The both arms metrics’ were significantly higher than

the left-only and right-only metrics (p < 0.01, 0.54 < Cohen’s d < 1.39), while the left-only
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metrics were significantly less accurate than the right-only metrics (p < 0.01, 0.85 < Co-

hen’s d < 1.39). The handedness results with other window sizes and metric combinations

are presented in Appendix A Table A.3.

Figure 4.18: Tactile task recognition confusion matrices when hand IMU and sEMGmetrics
are incorporated on Left-only, right-only, and both arms using the 1s window size.

Comparing the confusion matrices by the handedness (see Figure 4.18) shows that

incorporating metrics from both arms provided the best task recognition accuracy (i.e., the

least confusions). Most tasks’ recognition rates increased considerably when incorporating

both metrics. The joystick tracking task had a better recognition rate with left-only metrics,

while the mouse press task’s recognition was better with the right-only metrics.

Table 4.12: Tactile task recognition accuracy (mean % (std. dev.)) by metrics for both arms
with the 1s window size aggregated across participants. NOTE: The highest accuracy is
highlighted in Bold.

Metrics Accuracy

H 64.37 (7.83)

Femg 51.69 (17.53)

H + Femg 68.06 (12.93)

The multimodal combination H + Femg achieved the highest accuracy (68.06%) and

was significantly higher than when using only the hand IMU metrics, or the sEMG metrics

(p < 0.01, 0.34 < Cohen’s d < 1.05). Training the algorithm using only the Femg metrics

resulted in the lowest (51.69%) accuracy (p < 0.01, 0.92 < Cohen’s d < 1.05).
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Figure 4.19: Tactile task recognition confusion matrices when only hand IMU, only Femg,
and Hand IMU + Femg metrics are incorporated on both arms using the 1s window size.

An accuracy comparison by task and metric combination (see Figure 4.19) revealed that

the multimodal combination had the overall best recognition rate across most tasks, and

the sEMG-only combination performed the worst overall. The Hand IMU-only combination

had the best recognition rate (93%) for Mouse use task; however, struggled to detect the

Null task, which was often confused with the Keyboard press and Mouse clicks tasks. The

algorithm trained with the Hand IMU-only metric may have inaccurately classified Null

instances when the human’s hands were resting on the keyboard or mouse, but were not

pressing or clicking. Combining the hand IMU with the sEMG metric increased the Null

task’s recognition rate drastically (28%), indicating that the sEMG metric is extremely

useful at distinguishing subtle tactile actions, especially when there is hardly any change

in position and orientation (e.g., keyboard presses and mouse clicks).

4.2.7.1 Discussion

Hypothesis HT
1 predicted that the tactile task recognition algorithm’s accuracy will in-

crease with window size before reaching a point of diminishing returns, which was fully

supported. Overall, the 1s window size performed the best across most metric and hand-

edness combinations, with the 1.5s being a close second. The recommended window size is

1s given the supervisory domain’s short-duration tactile tasks. An adaptive sliding window

approach may be required for other domains.

Hypothesis HT
2 predicted that the tactile task recognition algorithm will detect tasks
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with ≥ 80% classification accuracy for at least one of the evaluated window sizes, which

was not supported. The results suggested that detecting the extremely short-duration (≤
1s) tactile tasks with high accuracy was difficult.

Overall, the Xsens’ hand IMU metric was the most valuable, as the metric achieved

comparable performance even when incorporated individually. The Myos’ sEMG metric

was best utilized in conjunction with the Xsens’ hand IMU metric, especially to distinguish

between subtle tactile actions (e.g., Null and Mouse press tasks).

4.2.8 GNN Fusion Task Consolidation

The Fusion algorithm refined the components’ atomic task detections by passing each

individual algorithm’s most recent task prediction scores as input to a GNN network to

derive the atomic task predictions across components via joint optimization (see Chapter

3.6). The atomic tasks identified for each activity component are summarized in Table 4.13.

The gross motor component had two atomic tasks, while the fine-grained motor, tactile,

visual, and cognitive components had four atomic tasks each. The auditory and speech

components had three and two atomic tasks, respectively. Thus, the GNN fusion algorithm

consolidated a total of twenty-three atomic task detections and predicted the atomic tasks

based on the seven activity components (i.e., one per component) at any given instance.

Table 4.13: Atomic tasks identified for each activity component when using the modified
NASA MATB-II task environment.

Activity Component Atomic tasks

Gross motor Walking, Null

Fine-grained motor Joystick tracking, Keyboard usage, Mouse usage, Null

Tactile Joystick tracking, Keyboard stroke, Mouse clicks, Null

Visual Tracking, Inspect, Locate, Null

Cognitive Association, Evaluation, Conversation, Null

Auditory COMM request, Walk ping, Null

Speech COMM verbal response, Null

4.2.8.1 Experimental Design

The consolidated atomic detections can be fully correct, partially correct, or fully incorrect

for a given instance. The standard accuracy metric used for the individual component
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analyses does not account for partial correctness and may fail to capture the algorithm’s

performance correctly; therefore, it is modified to account for partial correctness. Accuracy

per instance is calculated as the proportion of the predicted labels that are correct to the

total number (i.e., predicted and true) of labels for a given instance. The parital accuracy

is the average across all instances aggregated across participants (Equation 4.1) [72, 252].

Partial Accuracy =
1

N

N∑
n=1

| xn ∩ x̂n |
| xn ∪ x̂n |

, (4.1)

where xn is a list containing the true atomic labels across the seven components for an

instance n, while x̂n is the list containing the seven predicted atomic task labels for the

instance n.

Table 4.14: The individual algorithms and the corresponding window size and associated
accuracy (mean % (std. dev.)) by component that were employed by the fusion algorithm
for consolidating the atomic predictions.

Component Algorithm Window size Accuracy

Cognitive RF 15s 36.27 (5.03)
Speech Deep learning 3s 93.57 (9.25)
Auditory RF 10s 77.56 (14.82)
Visual RF 60s 61.01 (11.86)
Gross motor Deep learning 3s 80.97 (7.89)
Fine-grained motor Deep learning 3s 68.57 (14.00)
Tactile Deep learning 1s 68.06 (12.93)

Each individual algorithm’s best-performing window size varied across components.

The tactile task recognition algorithm performed the best for the 1s window size, while

the visual task recognition algorithm performed the best for the 60s window size. Other

components’ best-performing window sizes and their corresponding accuracies are summa-

rized in Table 4.14. The GNN fusion algorithm sourced each individual algorithm’s task

predictions from its corresponding best-performing window size as input to jointly optimize

the atomic task detections across components.

The GNN fusion algorithm was evaluated using multiple window sizes tw = {1s, 3s,
5s, 10s, 15s, 30s, 60s} with a one-second stride (i.e., ts = 1s) to inform the window size’s

impact on the GNN fusion algorithm’s performance. The evaluated window sizes reflect the

variability across the best-performing individual task component algorithms’ window sizes,
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with the maximum window size being 60s (i.e., the visual component’s RF algorithm),

while the stride duration was determined using the shortest duration possible to get an

atomic task prediction (i.e., 1s for the tactile component).

4.2.8.2 Results

Overall, the fusion algorithm’s partial accuracy for the 1s window size was 90.56% and

slightly increased until the 60s (92.99%) (see Figure 4.20). The Friedman’s test indicated

a significant difference between window sizes (χ2(6, 60) = 61.51, p < 0.01). The Wilcoxon

signed-rank test found that the 1s window size’s partial accuracy was significantly lower

than all other window sizes with a small effect size (p < 0.01, 0.08 < Cohen’s d < 0.38).

The 3s and 5s window sizes’ accuracies were significantly lower than the 10s, 15s, 30s, and

60s window sizes with a small effect size (p < 0.01, 0.18 < Cohen’s d < 0.31). No other

differences were significant.

Figure 4.20: GNN fusion algorithm’s partial accuracy % by window size aggregated across
participants.

The fusion algorithm predicted seven atomic tasks at any given instance, each per-

taining to one of the seven activity components; therefore, each component’s accuracy

improvements caused by the fusion algorithm can be compared against its correspond-

ing best-performing individual algorithm’s accuracy, as presented in Figure 4.21. Overall,

the GNN fusion algorithm can detect the atomic tasks with ≥ 78% accuracy across all

components. The GNN fusion’s joint atomic task optimization improved the cognitive

component’s task detection the most (from 36% to 78%), followed by the tactile com-

ponent (from 68% to 91%). The gross motor, fine-grained motor, visual, and auditory



110

Figure 4.21: The accuracy (mean % (std. dev.)) comparisons between the individual algo-
rithms and the GNN fusion algorithm by activity components for the evaluated window
sizes. NOTE: Each component’s individual algorithm’s accuracy corresponds to its best-
performing window size’s accuracy.

increased by up to 16−19%, while the speech component’s accuracy increased by 6%. The

GNN fusion’s joint optimization also increased the accuracy variability of activity compo-

nents whose individual algorithm’s accuracies were lower (i.e., fine-grained motor, tactile,

visual, and cognitive) by at least 10%. The Wilcoxon signed-rank test indicated that the

accuracies post GNN fusion’s joint optimization were significantly higher than the corre-

sponding individual algorithm’s accuracies across all components (p < 0.01). Figure 4.21

indicates that the GNN fusion algorithm’s performance was bottlenecked by the visual and

cognitive components. The GNN fusion algorithm’s 15s window size had the best overall

performance, as it achieved the highest improvement for the bottleneck components (i.e.,

visual and cognitive), and ≥ 80% accuracy across all the other components.

Each component’s best-performing individual algorithm’s confusion matrix is compared

against the corresponding confusion matrix obtained using the 15s window size GNN fusion

algorithm in order to analyze the accuracies by task across components pre (indicated as

individual in the respective figures) and post (indicated as fusion in the respective figures)

GNN fusion’s joint optimization (see Figures 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28). The
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confusion matrices indicate that the Null atomic task was detected with near perfection

(i.e., ≥ 97%) across all components. The GNN fusion’s joint optimization increased the

recognition rate of most tasks across components, with the cognitive component attaining

the highest recognition rate improvement by tasks (30− 40%). The GNN fusion algorithm

also reduced the recognition rate for a few tasks (e.g., fine-grained motor joystick and

the visual inspect, locate, and tracking atomic tasks). These misclassifications can be

attributed to the GNN fusion algorithm’s bias toward the Null task, as it accounts for

more than 80% of the data. Overall, the auditory, gross motor, and speech components’

atomic tasks can be detected with ≥ 80% accuracy post GNN fusion’s joint optimization,

while the cognitive, tactile, and fine-grained motor achieve either ≥ 80% or ∼ 80% for most

tasks. The visual component’s non-Null tasks’ recognition rates did not improve over the

individual algorithm’s accuracy. Interested readers can refer to Appendix A Chapter A.6

for the rest of the GNN fusion algorithm’s window sizes’ confusion matrices.

Figure 4.22: Gross motor component’s confusion matrix for its best-performing individual
algorithm (3s window size) vs. GNN fusion algorithm (15s window size).

4.2.8.3 Discussion

The GNN fusion algorithm had a high sensitivity across all window sizes; however, the

partial accuracy may have been artificially inflated due to non-uniform data distribution.
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Figure 4.23: Fine motor component’s confusion matrix for its best-performing individual
algorithm (3s window size) vs. GNN fusion algorithm (15s window size).

Figure 4.24: Tactile component’s confusion matrix for its best-performing individual algo-
rithm (1s window size) vs. GNN fusion algorithm (15s window size).
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Figure 4.25: Visual component’s confusion matrix for its best-performing individual algo-
rithm (60s window size) vs. GNN fusion algorithm (15s window size).

Figure 4.26: Cognitive component’s confusion matrix for its best-performing individual
algorithm (15s window size) vs. GNN fusion algorithm (15s window size).
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Figure 4.27: Auditory component’s confusion matrix for its best-performing individual
algorithm (10s window size) vs. GNN fusion algorithm (15s window size).

Figure 4.28: Speech component’s confusion matrix for its best-performing individual algo-
rithm (3s window size) vs. GNN fusion algorithm (15s window size).
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All the activity components followed a long-tailed distribution, where certain tasks, typi-

cally the Null task, account for more than 80% of the data, while all the other tasks were

under-represented. The Null tasks were far easier to detect across components, which when

consolidated across all seven components may have biased the fusion algorithm, resulting in

inflated partial accuracy. Nevertheless, the GNN fusion algorithm is a viable candidate to

consolidate the atomic task predictions. The 15s window size is the recommended window

size, as it had the best performance across all components.

Hypothesis H3 predicted that the GNN fusion algorithm’s joint task optimization will

improve the atomic task detection accuracy to ≥ 80% across all seven components, which

was partially supported. The GNN fusion improved the atomic recognition rate for most

tasks across components by leveraging the underlying graphical structure and adjacency

correlation matrix to improve the components’ task detections. However, the high accura-

cies can be attributed to the limited number of atomic tasks per component. A peer-based

evaluation with more tasks per component is required to further evaluate the GNN fusion

algorithm’s ability to consolidate the atomic task detections across multiple domains.

4.2.9 Composite and Concurrent Task Recognition

The TCN-based Composite and Concurrent task recognition algorithm (described Chapter

3.7) incorporated the atomic task time series X as input to predict five composite tasks: i)

Tracking, ii) System monitoring, iii) Resource management, iv) Communication request,

and v) Communication response. The five composite tasks correspond to the evaluated

NASA-MATB tasks, where the communication composite task was split into two subtasks,

communication request and communication response, in order to model the radio request

and any verbal response.

4.2.9.1 Experimental Design

The TCN-based algorithm detected the concurrent composite tasks (i.e., ≥ 1 compos-

ite tasks) by predicting the probability of each composite task for a given atomic task

time series; therefore, the algorithm’s predictions can be fully correct, partially correct, or

fully incorrect. Two dependent variables, exact match ratio and partial accuracy, along

with multi-label confusion matrices were used to evaluate the TCN-based algorithm’s per-

formance. The exact match ratio is the multi-label extension of the standard accuracy
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metric, where an instance is deemed correct if and only if the algorithm predicts all the

composite tasks that are present, and rejects all the composite tasks that are absent for a

given atomic task time series instance (Equation 4.2) [72, 252].

Exact Match Ratio =
1

N

N∑
n=1

yn = ŷn , (4.2)

where yn is a list containing the true composite tasks for the instance n, while ŷn is the

list containing the predicted composite tasks for the time series instance Xn.

The primary limitation of the exact match ratio metric is that it does not distinguish be-

tween completely incorrect and partially incorrect. Therefore, the partial accuracy (Equa-

tion 4.3) metric, modified to account for the composite tasks, is used as a second dependent

variable to evaluate the TCN-based algorithm’s performance.

Partial Accuracy (composite) =
1

N

N∑
n=1

| yn ∩ ŷn |
| yn ∪ ŷn |

, (4.3)

The multi-label confusion matrices account for task concurrency (i.e., ≥ 1 composite

tasks for a given instance) by plotting the confusion matrix for each composite task. Each

confusion matrix’s top-left tile indicates the corresponding composite task’s true negative

instances predicted by the algorithm, the top-right tile indicates false positives, the bottom-

left indicates false negatives, and the bottom-right corresponds to true positives. The

multi-label confusion matrices’ values are normalized to remain between 0 to 1. Ideally,

the TCN algorithm must predict a composite task if it is present (i.e., true positive) and

reject if it is absent (i.e., true negative) for a given instance; therefore, high (≥ 0.8) true

positives and true negatives are expected. Similarly, the algorithm must not predict a

composite task that was not present (i.e., false positive), and not reject a composite task

that was present (i.e., false negative); therefore, the false positives and false negatives are

expected to be very low.

The input time series X’s temporal duration was varied in several window sizes tw =

{1s, 3s, 5s, 10s, 15s, 30s, 60s} with a one-second stride (i.e., ts = 1s) to inform its impact

on the TCN algorithm’s performance. The evaluated window sizes reflect the range of

window sizes examined for the fusion algorithm, while the stride duration was chosen to

match the shortest window size incorporated across all components (i.e., 1s for the tactile).
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4.2.9.2 Results

Overall, the algorithm’s exact match ratio for the 1s window size was 78.64% and gradually

increased until the 60s window size (88.21%) (see Figure 4.29). The exact match ratio’s

std. dev. decreased from 7.77% for the 1s window size to 6.09% for the 15s window size, and

started increasing to 8.44% and 9.87% for the 30s and 60s window sizes, respectively. This

trend in std. dev. indicates that the algorithm’s uncertainty decreased with the increase in

the temporal window size before reaching a threshold beyond which the algorithm is more

accurate, but less precise.

Figure 4.29: TCN composite and concurrent task recognition algorithm’s exact match ratio
% by window size aggregated across participants.

The Friedman’s test indicated a significant difference between window sizes (χ2(6, 60) =

255.70, p < 0.01). The Wilcoxon signed-rank test found that the 60s window size’s exact

match ratio was significantly higher than all other window sizes (p < 0.01, 0.32 < Cohen’s

d < 1.08), while the 1s window size’s was significantly lower than the rest with a large

effect size (p < 0.01, 0.23 < Cohen’s d < 1.08). The 10s window size’s exact match ratio

was significantly higher than the 3s and 5s (p < 0.01, 0.09 < Cohen’s d < 0.23), while the

5s window size’s exact match ratio was significantly higher than the 3s (p < 0.01, Cohen’s

d = 0.14). The 15s window size’s exact match ratio was significantly higher than the 3s, 5s,

and 10s (p < 0.01, 0.26 < Cohen’s d < 0.49), while the 30s window size’s exact match ratio

was significantly higher than the 3s, 5s, 10s, and 15s (p < 0.01, 0.26 < Cohen’s d < 0.72).

The algorithm’s partial accuracy for the 1s window size was 77.16% and continued
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Figure 4.30: TCN composite and concurrent task recognition algorithm’s partial accuracy
% by window size aggregated across participants.

to increase until the 60s window size (97.07%) (see Figure 4.30). Further, the partial

accuracy’s std. dev. decreased gradually from 7.75% for the 1s window size to 2.77% for

the 15s window size, and slightly increased to 3.58% and 3.91% for the 30s and 60s window

sizes, following a trend similar to the algorithm’s exact match ratio. The Friedman’s test

indicated a significant difference in partial accuracy between window sizes (χ2(6, 60) =

369.05, p < 0.01). The Wilcoxon signed-rank test found that the 60s window size’s partial

accuracy was significantly higher than all other window sizes (p < 0.01, 0.42 < Cohen’s

d < 3.22), while the 1s window size’s was significantly lower than the rest with a large

effect size (p < 0.01, 0.96 < Cohen’s d < 3.22). The 10s window size’s partial accuracy

was significantly higher than the 3s and 5s (p < 0.01, 0.81 < Cohen’s d < 1.59), while the

5s window size’s partial accuracy was significantly higher than the 3s (p < 0.01, Cohen’s

d = 0.70). The 15s window size’s partial accuracy was significantly higher than the 3s, 5s,

and 10s (p < 0.01, 0.59 < Cohen’s d < 2.21), while the 30s window size’s partial accuracy

was significantly higher than the 3s, 5s, 10s, and 15s (p < 0.01, 0.70 < Cohen’s d < 2.92).

The results indicated that the algorithm’s performance in terms of both exact match

ratio and partial accuracy increased with the temporal window size. The multi-label con-

fusion matrices were analyzed for 1s, 15s, and 60s window sizes (see Figure 4.31) in order

to understand the differences in performance by tasks between the window sizes. The

1s and 60s window sizes represented the algorithm’s extremes in performance, while the

15s window size presented the trade-off in performance between the two extremes. Other
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window sizes had intermediate performances and the confusion matrices are provided in

Appendix A Figure A.13. The algorithm detected the composite tasks’ absence (i.e., true

negatives) with high accuracy (> 95%) across all three window sizes. The 1s window size’s

true positive rates were 10 − 30% worse than the other window sizes for most tasks. The

15s and 60s window sizes had comparable true positives across four of the five composite

tasks. The 15s window size’s true positive rates were slightly worse for system monitoring

(6%) and resource management (4%) composite tasks.

(a) 1s window size
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(b) 15s window size

(c) 60s window size

Figure 4.31: TCN composite and concurrent task recognition algorithm’s multi-label con-
fusion matrices by tasks for the 1s, 15s, and 60s window sizes.



121

4.2.9.3 Discussion

Hypothesis H4 predicted that the TCN composite and concurrent task recognition algo-

rithm’s accuracy will increase with the window size before reaching a point of diminishing

returns. This hypothesis was only partially supported, as the exact match ratio (%) and

partial accuracy did not reach a saturation point and continued increasing. The results

indicate that the TCN’s dilated causal convolutions benefit from increasing the atomic task

time series’ window size, providing the algorithm with more temporal context; however,

the improvement in algorithm performance comes with a trade-off. The TCN-based deep

learning algorithm’s trainable parameters are directly proportional to the temporal window

size, requiring increased computational resources to train and run the algorithm for larger

window sizes. The 15s window size is recommended over the 60s for detecting composite

tasks in a supervisory-based domain, as it is shorter in duration, contains a lower number

of trainable parameters, and almost mirrors the 60s window size’s performance. Larger

window sizes may be utilized when accuracy is of paramount importance.

Hypothesis H5 predicted that the TCN algorithm will detect composite tasks occurring

concurrently with ≥ 80% accuracy, which was supported for the ≥ 15s window sizes. The

algorithm’s high recognition rate can be attributed to the limited number of composite tasks

investigated. A peer-based evaluation with more composite tasks is required to further

evaluate the TCN algorithm’s ability to detect composite tasks that occur concurrently.

4.3 Summary

Identifying the appropriate window size for each algorithm informs how the metrics must

be segmented, such that the features extracted (i.e., handcrafted or via deep learning)

are representative of the tasks being detected. Hypothesis H1 focused on determining

the optimum window size for the incorporated metrics in order to realize the individual

algorithms’ full potential. The gross motor, fine-grained motor, tactile, and speech task

detection algorithms required smaller windows (< 5s), while the cognitive, visual, and

auditory algorithms required larger window sizes (≥ 10s). Environments with rapid task

switching (e.g., overload condition) will negatively affect the metrics that require larger

window sizes and, thereby the algorithms that incorporate such metrics. Overall, metrics

that require smaller windows are preferred for atomic task recognition, due to their ability

to identify changes within a short duration, such that the atomic tasks can be detected
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before task switching. Thus, further evaluation of the larger window size metrics is required

to assess their viability.

It is important to determine the incorporated metrics’ ability to detect the tasks reli-

ably across multiple activity components; thus, hypothesis H2 focused on evaluating the

individual algorithms’ capability to detect tasks with high sensitivity (≥ 80%). H2 is fully

supported for only the gross motor and speech task components, partially supported by the

auditory component, and is not supported for the fine-grained motor, tactile, visual, and

cognitive task detection components. Additionally, fine-grained motor and tactile tasks are

susceptible to individual differences; therefore, algorithm customization may be required

to improve their sensitivity. The visual and cognitive task detection analysis determined

that the incorporated metrics are less responsive to reliably detect tasks in a dynamic,

multi-tasking environment (i.e., switching tasks frequently).

The individual algorithms’ atomic task detections are not reliable for at least half of the

components. The GNN fusion algorithm bridged this gap by facilitating indirect atomic

task inference for components with subpar accuracy via joint optimization. The GNN

fusion algorithm obtained the most recent atomic task prediction from each component’s

individual algorithm by looking back over a 15s window and optimized those predictions

across components, thereby elevating the components’ atomic task recognition sensitiv-

ity level to ≥ 80%. The TCN algorithm detected the concurrent, composite tasks with

high sensitivity and low uncertainty, given sufficient temporal context about the atomic

tasks; however, increasing the temporal context beyond a threshold can lead to diminishing

returns.

Robots need a holistic understanding of a task’s various activity components in order to

identify what task(s) humans are executing. An important aspect of such understanding

is detecting the human teammates’ tasks across components. The developed individual

task recognition algorithms, along with the GNN fusion and TCN algorithms are viable

candidates for detecting atomic and concurrent, composite tasks across components. These

algorithms are suitable to be incorporated into an adaptive HRT architecture that allows

robots to adapt to the teammate’s state, but with a few limitations. The algorithms’ capa-

bilities can be improved by customizing the algorithm to account for individual differences,

and incorporating adaptive or ensemble sliding window methods to detect tasks of varying

lengths. The task detection algorithms will need to be evaluated in an uncertain, dynamic

peer-based task environment with a wide range of tasks in order to assess its viability

across domains.
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Chapter 5: Peer-Based Experimental Analysis

HRTs involve humans and robots collaborating to achieve tasks under various environ-

mental conditions, requiring the robot teammates to adapt autonomously to a human

teammate’s state. An essential element of such adaptation is the robots’ ability to infer

the tasks performed by their human teammates. The prior supervisory evaluation (see

Chapter 4) demonstrated the multi-dimensional task recognition algorithm’s ability to de-

tect atomic tasks across components, and detect concurrent, composite tasks, but was

limited by the number of included tasks and the evaluated environment. For example, the

supervisory evaluation’s gross motor component only incorporated a walking task. Reliable

HRT task recognition requires the algorithm to detect a broad range of tasks under various

conditions, especially in unstructured, dynamic environments (e.g., post-tornado disaster

response).

A peer-based human subjects evaluation was designed to manipulate a wide variety of

composite tasks across components. A task hierarchy (see Chapter ??) was developed to

define how different tasks relate to one another and to specify how these tasks relate to

the different activity components. Mission tasks are comprised of multiple composite and

atomic tasks, while composite tasks can be further subdivided into multiple sub-composite

and atomic tasks across components. An example mission task is Clearing a pharmacy

of controlled substances, which consists of multiple composite tasks, such as Searching for

an item. This composite task can be further subdivided into sub-composite and atomic

tasks (e.g., walking, visual scanning). Mission tasks that have similar characteristics can

be grouped together, mission groups. For instance, Clearing a pharmacy of controlled

substances and Clearing a pawnshop of dangerous weapons are different mission tasks, but

share similar characteristics and goals.

Human state estimation algorithms that are developed in controlled experimental envi-

ronments struggle to translate to real-world problem domains; thus, the presented experi-

mental design emphasized ecological validity. Ecological validity is defined as the extent to

which results of an evaluation can be generalized to real-life settings [244]. This evaluation

incorporated ecological validity by designing realistic disaster response and civil-support

mission tasks with realistic human-robot teaming dynamics.
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5.1 Experimental Design

A mixed-subjects peer-based user evaluation was designed to assess the multi-dimensional

task recognition algorithm’s ability to detect the concurrent, composite tasks performed by

human teammates in peer-based HRTs operating in unstructured, dynamic environments.

This evaluation served three core purposes that required collecting data incorporating a

broad range of human tasks to facilitate the development of 1) the multi-dimensional

task recognition algorithm, 2) a multi-dimensional workload estimation algorithm to make

accurate estimates for known and unknown mission tasks, and 3) a short-term and long-

term workload predictions algorithms. This evaluation manipulated mission tasks, task

density, workload ordering, and training session type as independent variables. Prior user

evaluations focused on eliminating learning effects, and trained participants on all mission

tasks to be evaluated. This comprehensive training eliminated the existence of unknown

mission tasks and made it impossible to evaluate a workload model’s ability to generalize

to unknown mission tasks. This evaluation introduced the independent variable training

session type, which restricted participants to only training on a subset of mission tasks.

The task environment consisted of a simulated first response scenario, where the HRT

responded to the aftermath of a tornado. Participants were paired with a Pioneer 3DX

robot, and the team was tasked with performing six mission tasks: clearing a pharmacy of

controlled substances, searching an area for suspicious items, sampling hazardous powder

substances, clearing debris from a road, clearing a pawnshop of dangerous weapons, and

sampling hazardous liquid substances.

This evaluation was conducted over two days. Participants completed a one-hour train-

ing session on the first day, where they were trained to perform a subset of the mission

tasks. During the second trial day, the participants completed the full 70-minute trial

composed of seven consecutive 10-minute mission tasks.

Designing a user evaluation that achieves all of these goals is a non-trivial process.

First, this evaluation’s hypotheses, independent and dependent variables relevant to this

dissertation are presented. A high-level overview of the task environment and the HRT

is provided, followed by an explanation of each of the three experimenter’s roles. Next, a

detailed discussion of each mission task is presented, alongside the associated task decom-

position. This task decomposition informed how the mission tasks were decomposed into

composite and atomic tasks, as well as how IMPRINT Pro was utilized, prior to conduct-

ing the evaluation, to verify that the overall workload and each workload component were
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properly manipulated. Lastly, the participant demographics are presented.

5.1.1 Hypotheses

This evaluation supported three dissertations. This dissertation focuses on developing a

multi-dimensional task recognition algorithm capable of accurately detecting tasks across

components and using those detections to detect concurrent, composite tasks performed by

human teammates in uncertain, dynamic environments. The second dissertation focuses

on developing a meta-learning multi-dimensional workload estimation algorithm capable of

accurate estimates for unknown mission tasks across components [250]. Lastly, the third

dissertation focuses on developing workload prediction algorithms to forecast workload

over both short-term (i.e., 30 seconds) and long-term (i.e., 10 minutes) time horizons. It is

important to note that many of the decisions for this evaluation’s experimental design are

influenced by all three dissertations, as a single human-subjects evaluation was created to

collect results to support all three dissertations.

Three hypotheses are formed to evaluate the multi-dimensional task recognition algo-

rithm. Hypothesis H1 states that each individual task detection algorithm will detect the

peer-based atomic tasks with ≥ 80% classification accuracy for at least one of the analyzed

window sizes. Hypothesis H2 predicts that the GNN fusion algorithm will result in highly

sensitive (≥ 80% accuracy) atomic task detection by jointly optimizing the individual al-

gorithms’ atomic task predictions across components. Hypothesis H3 states that the TCN

task recognition algorithm will detect concurrent composite tasks with high sensitivity

(≥ 80% accuracy).

5.1.2 Independent Variables

The mixed-subjects evaluation consisted of two within-subjects independent variables (i.e.,

task, task density) and two between-subjects independent variables (i.e., training session

type, workload ordering), shown in Table 5.1. The within-subjects task variable corre-

sponds to the seven mission tasks a participant performed during the trial session. These

mission tasks mirror realistic tasks performed by different first response groups (e.g., po-

lice, fire, civil support) and belong to four mission task groups: clearing, sampling, debris,

and searching, shown in Table 5.2. The clearing group’s mission tasks required the partic-

ipant and the robot to independently search an area for known objects (e.g., pill bottles,
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fake hand guns) that needed to be collected. There were two mission tasks in the clearing

group, the Pharmacy task and the Pawnshop task. The debris group had one mission task

(i.e., the Debris task), during which the participant and the robot collaborated to clear a

path through a pile of debris. Mission tasks in the sampling group required the partici-

pant to collect samples of various substances by following detailed step-by-step procedures

provided by the robot. This procedure followed strict guidelines for maintaining safe and

sterile sampling procedures by published government standards [167]. The sampling group

consisted of two mission tasks: the Liquid Sampling task, and the Solid Sampling task.

Both mission tasks consisted of a similar procedure, but required the participant to use

slightly different tools to gather liquids vs. solid substances. Lastly, the searching group

consisted of a single task (i.e., the Search task) that required searching an area for danger-

ous, or suspicious objects.

Table 5.1: The independent variables for the peer-based evaluation.

Type Variable Values

within-subjects
Mission tasks

Pharmacy, Pawnshop, Debris, Search,
Solid sampling, Liquid sampling.

Workload (i..e, task density) UL, NL, OL

between-subjects
Training session type Type 1, Type 2

Workload ordering O1, O2, O3

There are two key differences between clearing group mission tasks and the search group

mission tasks. Clearing mission tasks required searching for known objects, whereas the

Search mission task required searching for unknown objects. The participant was expected

to experience increased cognitive and visual workload levels when searching for unknown

objects, as they must evaluate whether an object is dangerous. Searching for known objects

is a simpler identification process. The second difference is the procedure the participant

followed when an item was found. The clearing group mission tasks required bringing the

object to the robot for scanning, whereas the robot explicitly instructed the participant not

to touch any objects that may be potentially dangerous or suspicious during the Search

mission task. The participant was instructed to take a picture of the object, and then

provide a detailed description of the object and the surrounding environment via Walkie-

Talkie to one of the experimenters, who posed as the Incident Commander (see Chapter

5.1.4). Further mission task details are presented in Chapter 5.1.6.

The between-subjects variable training session type was randomly assigned and deter-
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Table 5.2: Mission task groups and corresponding training session types.

Task Group Task Training Session

Clearing tasks
Pharmacy Type 1
Pawnshop Type 2

Debris task Debris Type 1 & 2

Sampling tasks
Liquid Sampling Type 1
Solid Sampling Type 2

Search tasks Search N/A

mined the tasks a participant performed during their training session. Training on only a

subset of mission tasks results in participants encountering unknown mission tasks during

the trial session, which will support the development of task recognition and workload

estimation and algorithms when the tasks are unknown. There were two training session

types, each consisting of one clearing group mission task, one debris group mission task,

and one sampling group mission task (see Table 5.2). Specifically, Type 1 training sessions

involved the Pharmacy, Debris, and Liquid Sampling tasks, and Type 2 training sessions

involved the Pawnshop, Debris, and Solid Sampling tasks. No participant was trained

to perform the Search task, and experienced that task for the first time during the trial

session.

The missions were designed to incorporate a wide range of tasks, eliciting a broad

range of workload levels across all seven components. Each mission task was capped at

ten minutes and the within-subjects task density (i.e., workload levels) was manipulated

by the number of composite/atomic tasks initiated during each mission task (e.g., number

of controlled substances to clear, number of samples to collect). The workload at every

mission task was elicited by increasing or decreasing the corresponding mission’s composite

tasks’ frequency in three levels, each corresponding to a relative workload level (i.e., UL,

NL, and OL). The workload ordering variable had six workload transitions (e.g., UL-

NL, OL-UL), ensuring that each transition occurred exactly once per participant. Each

workload level was experienced for 10 minutes, before transitioning to the next level. Three

between-subjects workload orderings were used:

• O1: UL-NL-OL-UL-OL-NL-UL

• O2: NL-OL-UL-OL-NL-UL-NL

• O3: OL-UL-OL-NL-UL-NL-OL.
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It is also important to note that the workload ordering and task density variables were

manipulated only during the trial session. The training session had participants performing

the Type 1 or Type 2 mission tasks at the NL workload level, with a five-minute break

between each mission task for debriefing. Additionally, the mission tasks occurred in the

same order for every participant during the trial session, and only the workload levels

experienced within each mission task were varied and transitioned every ten minutes.

5.1.2.1 Secondary Tasks

Secondary tasks were included in order to introduce task concurrency, and elevate the

participant’s workload levels via multi-tasking. These secondary tasks are referred to

as Incident Command prompts, and require the participant to listen for and respond to

prompts over a Walkie-Talkie. Two types of Incident Command prompts were utilized.

The first prompt type relayed relevant information to the participant. Example prompts

include: i) “Team 10, a suspicious person has been sighted running south on Anderson

Road with a black bag”, and ii) “Team 10, access to Southtown is now restricted due to

chemical hazards.” Participants were required to acknowledge the prompts upon receiving

the information and verbally relay the information to the robot teammate. Additionally,

participants had to respond only to the prompts directed to their team (i.e., Team 10),

and ignore prompts directed to other teams.

The participant was also asked to memorize a list of ten names during the pre-session

briefing. The names represented two hypothetical task support teams that were working

alongside the participant’s team.

• Team 2 (Relief shelter): Kathy Johnson (Team Lead), Mark Thompson, Bill Allen,

Tammy Hudson, and Matt Smith.

• Team 4 (Triage zone): Mariah Castillo (Team Lead), Liam Watson, Veronica Camp-

bell, John Mckenzie, and Dahlia Young.

Participants were given two minutes to memorize the list just before the session began.

The second prompt type involved questions incorporating these names that were posed

periodically by an experimenter, who posed as the simulated disaster response scenario’s

Incident Commander throughout the trial. An example question was: “Team 10, can

you name someone responsible for setting up the relief shelter?” The accuracy of these
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responses served as a workload metric, as prior work demonstrated that secondary task

accuracy decreases as workload increases [80].

Condition
Time (i.e., minute mark)

0 1 2 3 4 5 6 7 8 9

UL ✓ ✓
NL ✓ ✓ ✓ ✓ ✓
OL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.3: Timing of secondary task questions.

Workload was manipulated by increasing the secondary task frequency (see Table 5.3).

The UL condition had two secondary tasks that were posed at the third and eighth minutes.

Both of these tasks were relevant information relays and no questions were asked related

to the memorized list of names. The NL condition had five total prompts, one every two

minutes. One of the NL prompts was an irrelevant information relay, one was a relevant

information relay, and two were questions about the memorized names. The OL condition

had ten prompts. The first prompt was administered fifteen seconds into the condition,

followed by one every minute thereafter. Two OL prompts were irrelevant information

relays, three were relevant information relays, and five were questions about the memorized

names. The Incident Commander also provided reminders of the remaining time to the

team during the primary tasks by saying “Team 10, you have X minutes left before you

need to move on to your next mission task.” Additional time reminders were given over

the Walkie-Talkie at the 7.5 and 9-minute marks.

5.1.3 Dependent Variables

The dependent variables included physiological metrics collected via wearable sensors, in-

situ workload ratings, secondary task performance, a task timing log, a demographics

questionnaire, and a post-session questionnaire. The wearable sensors were used to collect

various physiological metrics. An experimenter wearing all sensors is shown in Figure 5.1,

these sensors included: BioPac Bioharness BT, Xsens Mtw Awinda, an eye tracker (i.e.,

Pupil Labs Core and Neon), two Myo armbands, two Shure microphones (one unidirec-

tional and one omnidirectional), and a noise meter. The sensors correspond to the activity

components, as presented in Table 3.1.

The Bioharness chest-strap heart rate monitor, worn under the shirt and contacting
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(a) Front View (b) Side View

Figure 5.1: An experimenter wearing all of the sensors.

the skin, produced a range of physiological metrics (e.g., heart rate, HRV, respiration rate,

postural magnitude). The Xsens consisted of 17 motion trackers placed at various locations

on the body, as depicted in Figure 3.2, that measured acceleration and angular velocity for

different body parts (e.g., hands, feet, shoulders) [207]. The Pupil Lab’s eye trackers (i.e.,

Core and Neon) provided ocular metrics (e.g., pupil diameter, blink rate, gaze location).

A pair of Myo armbands were worn around the thickest part of the forearms [239] and

generated an 8-channel sEMG signal, as well as inertial metrics (i.e., acceleration and

angular velocity). The unidirectional microphone captured the participant’s speech, while

the omnidirectional microphone recorded the ambient environmental noise. Lastly, the

noise meter provided a highly accurate measurement of the environmental noises’ decibel

level.

The evaluation used two different eye trackers. The Pupil Core eye tracker required

using an external laptop to record and store the ocular metrics, while the Pupil Neon

required an Android phone to collect the metrics. Initially, the evaluation began with

the Pupil Lab’s Core eye tracker; however, the eye tracker malfunctioned frequently (e.g.,

the laptop shutting down due to overheating and regular software crashes), and failed to
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record the ocular metrics. Only two participants’ sessions were successfully recorded with

the Core tracker. Further investigation into the malfunction and reaching out to Pupil Labs

indicated that the Core eye tracker is not suitable for recording data in a highly dynamic

and mobile scenario. The Core eye tracker was replaced with the Pupil Neon, which was

designed to work in such conditions, beginning with the twenty-fourth participant onward.

A laptop was used for collecting and storing the noise meter data locally. This same

laptop was used to record the ocular metrics from the Pupil Labs Core wearable eye

tracker. The participants who donned the Neon eye tracker had it connected to an Android

mobile phone. The laptop and the Android phone were secured in a backpack, which also

housed the noise meter and omnidirectional microphone. The backpack’s laptop weight

also simulated the additional weight of the respirators worn by civil support personnel.

The backpack was secured with three buckles (i.e., shoulder, chest, and waist) to prevent

sway while performing the tasks, shown in Figure 5.1.

Participants responded to the in-situ subjective workload metrics that required a par-

ticipant to rate their workload levels (i.e., cognitive, visual, speech auditory, gross and fine

motor, and tactile) from 1 (little to no demand) to 7 (extreme demand). The in-situ rating

prompts were provided by the Incident Commander, in person, at the six-minute mark of

every task. It is important to note that all secondary tasks and in-situ workload ratings

were incorporated into the IMPRINT Pro models prior to the evaluation, but were not

used in the experimental analyses for this dissertation.

The last dependent variable was the timing log of composite tasks with associated logged

tasks. Each mission task was decomposed into composite tasks prior to the evaluation when

developing the IMPRINT Pro models in order to ensure that the overall workload, as well as

the individual components’ workload levels, was sufficiently manipulated for each mission

task. This evaluation’s mission tasks allowed the participant to execute composite tasks

(e.g., discovering controlled substances, and moving large boxes) as needed, which led to the

composite tasks occurring at different times within a given mission. An experimenter (i.e.,

the Data Monitor) carefully monitored the participant’s behavior and logged the exact

time the majority of the composite and some sub-composite and atomic tasks occurred

during a given mission.

A precise composite task timing log is necessary to associate the gathered wearable

sensor data with the recorded ground truth labels, and is a robust means of aligning the

IMPRINT Pro model generated results with the actual composite task execution time.

Some composite tasks allow the atomic tasks to be executed in different orders. It is
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important to note that the task logs only captured the composite and some sub-composite

and atomic tasks (i.e., logged tasks), but not all the atomic tasks, as it was not feasible to

log the atomic tasks in such a highly dynamic setting (see Section 5.1.7).

5.1.4 Experimenter Roles

This evaluation required three experimenters, referred to as the Incident Commander, the

Pilot, and the Data Monitor. The Incident Commander primarily acted as the remotely

located officer in charge of the operation, and broadcast secondary task messages over the

Walkie-Talkie. This experimenter was located separately from the participant for the ma-

jority of the trial, but entered the environment to administer the in-situ workload ratings.

The Incident Commander also served as the logistic lead and was responsible for conduct-

ing the setup procedure at the start of each session. The setup procedure included greeting

the participant, administering a consent form, administering a demographics questionnaire,

assisting the participant with the wearable sensors, calibrating the wearable sensors, and

providing participants with their mission objectives.

All the mission tasks, except the Pharmacy task, were prepared by the three experi-

menters prior to the participant’s arrival. The experimenters also ensured that the mission

tasks were prepared to emulate appropriate workload levels depending on the workload

ordering assigned to the participant. The Pharmacy task was prepared by the Pilot and

Data Monitor experimenters while the Incident Commander was assisting the participant

in donning and calibrating the sensors in the Setup room (see Figure 5.2) in order to avoid

biasing the participant when they initially arrived at the facility.

The Pilot was responsible for monitoring the robot’s behaviors, intervening when

needed, executing any necessary Wizard-of-Oz behaviors relative to the robot motions,

and verbal interactions. The verbal interactions were heavily automated, and followed

pre-generated scripts. The Pilot simply hit the enter key, indicating to the robot to move

on to the next phrase in the script. The participants were allowed to ask the robot task-

relevant questions, but irrelevant questions and banter (e.g., “Hey Eve. Got any weekend

plans?”, “Eve, can you tell me a joke?”) were ignored. Most of the task-relevant questions

were anticipated and the robot had a pre-generated response (e.g., “The marker and sticky

notes are located inside the cart”), which was triggered by the Pilot. Nevertheless, par-

ticipants inevitably asked the robot questions for which the pre-generated responses were

insufficient. The Incident Commander occasionally asked the participants to confer with
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the robot, and the participant’s phrasing altered how the robot needed to respond. For

example, the Incident Commander asked the participant how many guns were secured at

the Pawnshop. A participant may phrase the question “Eve, how many guns did we find

at the Pawnshop?”, to which the robot had to respond with a number. A participant may

also phrase the question “Eve, we found 15 guns at the pawnshop right?”, requiring the

robot to respond with a yes or a no. Custom responses were primarily used to resolve these

situations.

The Data Monitor was responsible for monitoring the wearable sensor feeds for any ab-

normalities and carefully monitoring the participants’ actions, logging the tasks performed

by the participants (see Chapter 5.1.7). Monitoring the physiological data streams is nec-

essary to prevent unwanted data loss. The Data Monitor used a Python-built dashboard

interface to monitor the streams for all wearable sensors, except those running on the back-

pack laptop. This interface was capable of notifying the experimenter when a sensor was no

longer collecting data, and enabled the experimenter to restart the sensor remotely. There

were rare occasions where physical intervention was required to resolve an issue, and the

Data Monitor was responsible for these interventions. Precise task logging is necessary for

both task recognition and workload estimation model development, as reliably associating

ground truth workload values with the participant’s actions is paramount to a model’s

performance. A custom command line terminal program was developed using Python to

log the tasks’ start and end times during the mission.

5.1.5 Environment and Robot Overview

The evaluation scenario simulated the aftermath of a tornado that hit a small town in

Arkansas. Participants were paired with a semi-autonomous robot teammate (i.e. Wizard-

of-Oz [115]) to form a disaster response team, Team 10. The team completed a series of

seven mission tasks often performed by different first response groups (e.g., police, fire, civil

support). These mission tasks include all tasks listed in Table 5.2. These mission tasks

were chosen to elicit a diverse set of atomic and composite tasks that covered the breadth of

the first response groups’ capabilities, and used different combinations of the seven activity

components. Further, the mission tasks are representative of real-world disaster response

scenarios. Each mission task lasted approximately 10 minutes.

This evaluation was conducted in an off-campus warehouse facility. A layout of the

warehouse is presented in Figure 5.2, which also shows the mission task locations. Each
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Figure 5.2: Experimental environment map generated by the Pioneer 3DX robot’s LiDAR.
Each task area is labeled with the mission task name and a number i representing the order
in which tasks were completed during the data collection trial. The dotted lines represent
boundaries delineating task areas from transition and out-of-bounds areas, where additional
experimental material was stored. The front door is marked by two lines in the Pharmacy
task area, and the cart’s starting location is marked with a C. The markings Xi indicate
the locations, where the Pilot and Data Monitor were stationed when the participants
performed the mission task i.
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specific mission task (e.g., Pharmacy task) was always performed in the same location,

for both training and trial sessions to maintain environmental consistency. Each area is

labeled with a number corresponding to the order in which tasks were performed on the

trial day, where there was one setup area and seven mission task areas. Further, Figure

5.2 is drawn to scale and a distance reference is located in the lower right-hand corner.

The facility’s front door was located in task area one (i.e., Pharmacy task area), which

was always empty of experimental material when participants arrived to avoid bias. The

Setup area was a room in the facility’s front area where all experimental logistics (e.g.,

putting on sensors, and filling out questionnaires) were conducted. A cart was placed near

the exit of the Pharmacy task area, just outside the dotted line, and contained items the

participant needed in order to perform the mission tasks. The cart location is marked with

a C in Figure 5.2.

All mission task areas were located in large open spaces, except mission task areas

one and five (i.e., Pharmacy and Pawnshop). Both of these clearing group mission task

areas were segmented to create two spaces, so that the participant and the robot searched

each space independently. The Pharmacy task area contained two rooms. The left-hand

room was blocked by overturned shelves, making it inaccessible to the robot; thus, the

participant searched this space. The right-hand room was more open allowing the robot

to navigate freely. The Pawnshop task area contained one room, but was segmented using

overturned shelves that spanned the length of the room, shown in Figure 5.3.

Figure 5.3: Pawnshop task area.

It is important to note that the transition area between the Pharmacy task and Search
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(a) Front View (b) Side View

Figure 5.4: Pioneer 3DX named Eve.

task required the participant walk by two doors, one door leading to the Search task and the

other leading to the final Debris task. The door leading to the Debris task was deliberately

closed during the initial portions of the trial session, to avoid confusing the participant.

The Incident Commander opened this door while the participant performed the Pawnshop

task.

The participant was paired with a semi-autonomous robot teammate to accomplish

their tasks. The Pioneed 3DX robot (see Figure 5.4) teammate was named Eve. The robot

was equipped with a LiDAR, a front-facing RFID reader (Figure 5.4a), a speaker (Figure

5.4b), and a small storage box.

The Robot Operating System (ROS) was used to integrate the robot’s mobility, envi-

ronmental sensing, and interaction capabilities. Two computers on the robot’s back served

as the primary computing resources. A Linux operating system laptop was required to run

ROS, which controlled the robot’s motor functions via ROSARIA. The second Windows-

based computer was required for the RFID reader’s driver software. The RFID receiver was

an 860-960 MHz UHF Gen 2 USB Plug-Play Keyboard Emulation Desktop RFID Reader

from GaoRFID. GaoRFID provides a C# API for interacting with the RFID tags pro-

grammatically, which was leveraged to enable the robot to automatically detect RFID tags

in the environment and then autonomously execute a corresponding appropriate behavior.

An example of such behavior required the robot when a weapon RFID tag was detected
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to seek assistance from the participant by saying “Hey [PARTICIPANT NAME], I think

I found a weapon. Can you help me out?”. A Python wrapper was developed for the C#

API to leverage ROS’ communication capabilities to send RFID information between the

Windows and Linux laptops.

The robot used the Google Text-to-Speech Python package to verbalize all text, and

had a female voice. All communication between the participant and the robot was verbal.

The robot provided task-specific instructions to the participant (e.g., “place the pipette on

the drop cloth”), and asked the participant for help (e.g., “Hey [PARTICIPANT NAME],

I think I found a controlled substance. Can you help me out?”). The participant was

instructed to speak to the robot if they had any questions or if they needed it to perform a

specific duty (e.g., scan an object). The robot was programmed with a set of pre-generated

answers to expected questions (e.g., “Hey Eve. Can you scan this?”) and simple yes or no

answers that were triggered by another experimenter, who acted as the robot’s Pilot. The

Pilot experimenter was co-located with the team, and had a command line terminal for

triggering pre-defined responses and typing custom responses as needed. It is important to

note that the pre-generated responses comprised the bulk of communication between the

participant and the robot.

The LiDAR was primarily used for autonomous navigation, though this was not the

robot’s primary navigation mode. The Pilot remotely controlled the robot within a task,

and the robot autonomously navigated to the starting locations between tasks. The robot’s

LiDAR was used prior to the evaluation to map the warehouse environment, so that the

robot was able to navigate between task areas (shown in Figure 5.2). The Pilot monitored

the robot at all times to ensure it did not crash or run into the participant. Further

information on the Experimenters’ roles is presented in Chapter 5.1.4.

RFID tags were placed in the environment in order to support the robot’s mission task-

relevant autonomous behaviors. The tags were used to represent objects (e.g., controlled

substance containers, and dangerous weapons). Preset verbal responses were triggered

when any RFID tag was sensed, and varied across tasks. For example, the robot notified

the participant about the object, and provided them with task-specific instructions (e.g.,

hold the object in front of the RFID reader, take a picture of the object). Further details

on mission task-specific instructions are presented in Chapter 5.1.6.

The robot also had a small storage box attached to its back into which the participant

placed small items for the robot to transport. The Debris clearing task had a high volume

of small items. The participant was instructed to fill the robot’s box with as many small



138

items as possible, and notify the robot when it was full. The robot transported those items

to the dumping location, where the participant emptied the box.

5.1.6 Mission Tasks

This evaluation consisted of four mission groups (see Table 5.2): clearing, debris, sampling,

and search. These mission groups resulted in six unique mission tasks: 1) Pharmacy task,

2) Pawnshop task, 3) Solid Sampling task, 4) Liquid Sampling task, 5) Debris task, and

6) Search task. The materials required to complete all mission tasks are discussed, each

mission task is described in detail, and a mission task decomposition into composite and

associated atomic tasks is presented. It is important to note all mission tasks contained

a Null task that accounted for the transitory interval or time periods during which the

participant was not actively engaged in any composite or atomic task.

IMPRINT Pro was used to develop workload models for each decomposed mission

task by workload level, prior to conducting the evaluation. IMPRINT Pro allows users to

construct complex task networks, where nodes can be organized sequentially, concurrently,

and hierarchically. The mission task, along with the tasks’ associated composite and atomic

task decomposition were used to construct the IMPRINT Pro workload model. The atomic

task directly maps to IMPRINT Pro’s workload anchor values; however, restricting all

atomic tasks to these anchor values may misrepresent the nature of some composite tasks.

Therefore, some atomic tasks’ workload values had to be extrapolated from the anchor

values to be sufficiently representative.

Atomic tasks were aggregated into the listed composite tasks, which were further ag-

gregated into mission tasks. The frequency of these atomic and composite tasks was ma-

nipulated to reflect the desired task density for a given relative workload condition. It is

important to note that the workload component anchor values are not normalized across

components; thus, the association between a task and the allocated workload value varies

significantly across components. For example, a conversation is anchored to a speech work-

load value of 4.0, while keyboard typing is set to a fine-grained motor value of 7.0. The

mapping between IMPRINT Pro’s anchor values and atomic tasks is provided in the prior

Chapter (see Table 4.2).
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5.1.6.1 Mission Task Materials

Mission tasks primarily had the participants interact with items in the environment; how-

ever, some composite tasks required additional materials. A cart was placed near the exit of

the Pharmacy task area, just outside the dotted line on the right. This location is indicated

by a blue ‘C’ in Figure 5.2. This cart contained all the items the participant needed to

complete each mission task including a permanent marker, sticky notes, a GoPro camera,

six dry sampling kits, and six wet sampling kits. Some mission task areas were separated

by a reasonable distance (e.g., areas five and six). Storing mission task-specific materials in

the environment was not ecologically valid, so participants pulled this cart between tasks

during the training and trial sessions.

5.1.6.2 Pharmacy Task

The Pharmacy task was a clearing mission task, and required searching a collapsed phar-

macy for any controlled substances. These substances came in multiple containers (e.g.,

loose pills in bags, unmarked bottles, and boxes). All controlled substances corresponded

to one of three categories: 1) opioids, 2) stimulants, and 3) benzodiazepines.

Table 5.4: Clearing mission group’s task density by workload condition.

Workload
Condition

Analysis Time Number of Items

UL 60 seconds 5 items

NL 15 seconds 10 items

OL 1 second 30 items

The participant was informed that the robot was equipped with a specialized “scanner”

to analyze the drug type; however, the robot autonomously selected a random classifica-

tion after a pre-determined wait time, shown in Table 5.4. The participant placed the

discovered item in front of the robot’s scanner for classification (see Figure 5.5). The

robot instructed the participant to place the item in one of the three storage bins once

scanning was complete, where each bin corresponded to a controlled substance category

(e.g., opioids). Empty pill casings represented the controlled substances placed throughout

the environment, along with empty pill bottles and boxes corresponding to uncontrolled

substances (e.g., vitamins) to serve as clutter. If the participant asked the robot to scan
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an uncontrolled substance container, the robot informed the participant that this item did

not need to be collected and to continue their search.

Figure 5.5: Pharmacy task, where the
robot is scanning a bottle.

The participant and their robot teammate

searched the environment independently, but

collaborated on item analysis, classification, and

storage. The participant was responsible for

areas inaccessible to the robot, and the robot

searched areas where it moved freely. RFID

tags were placed near the controlled substances

in the open areas to enable the robot to search

and discover items independently. The robot

verbally requested the participant’s assistance

upon discovering a relevant item. The partici-

pant held the item in front of the robot’s scan-

ner, and after the pre-determined wait time, the

robot verbally communicated the box in which to store the item (e.g., “Stimulant. Box

2”). The task transitioned at the ninth minute when the Incident Commander asked the

participant to count the number of containers in each bin, write the count for each bin on

a sticky note, and place the sticky note on the bin. The task was completed when all three

bins were counted and labeled.

The Pharmacy task can be decomposed into two atomic tasks and six composite sub-

tasks: i) Null, ii) Walking to and from the robot, iii) Using Walkie-Talkie to communicate,

iv) Searching for controlled substances, v) Waiting for the robot to analyze the substances,

vi) Assisting the robot to pick up the discovered items, vii) Dropping off items at their

respective storage bins, and viii) Counting all items and writing the number on a sticky

note.

The robot provided instructions on how to perform the Pharmacy task during the

trial for untrained participants. The robot explicitly associated the Pharmacy task with

the other clearing mission task (i.e., Pawnshop task) on which the participants trained,

informing them that 1) they were responsible for searching the cluttered room, 2) the

robot was responsible for the open area, and 3) the analysis/classification procedure was

similar.

Task density was manipulated by altering the time taken by the robot teammate to

“analyze” the containers, and the total number of items that needed to be secured (see
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Table 5.4). The robot took 60 seconds to analyze the item during the UL condition, and

required the team to secure five containers. The robot required 15 seconds to analyze

an item during the NL condition, and the team needed to secure 10 containers. Finally,

the OL condition had the robot analyze an item for 1 second, and the team to secure

30 containers. Additionally, task density for all tasks included secondary tasks. The UL

condition had two secondary tasks that were posed at the third and eighth minutes. The

NL condition had five total prompts, one every two minutes, and the OL condition had

ten prompts, one every minute. More information on these secondary tasks is provided in

Chapter 5.1.2.

5.1.6.3 Pawnshop Task

The Pawnshop task was the other clearing mission task, and required searching a cluttered

pawnshop to identify and collect fake guns, bullets, and grenades. Generally, this task was

similar to the Pharmacy task, but was conducted in a single room. The mission task area

included more inaccessible areas that the participant searched, while the robot teammate

searched more open areas (depicted in Figure 5.3). The participant brought any discovered

weapons to the robot to be scanned for fingerprints, then items were deposited in a storage

bin corresponding to whether or not fingerprints were detected. The appropriate storage

bin was verbally communicated by the robot (e.g. “Fingerprints detected, Box 1”). The

scan times varied by workload condition and were the same as the Pharmacy task, as shown

in Table 5.4. RFID tags were placed throughout the environment to enable the robot to

search and locate items independently. The task transitioned at the ninth minute when the

Incident Commander asked the participant to count the number of items with and without

fingerprints, write the number of items in each bin on separate sticky notes, and place each

note on their respective bins. The task was completed after both bins were labeled.

The robot provided instructions on how to perform the Pawnshop task during the

trial session for the untrained participants. The robot explicitly associated the Pawnshop

task with the Pharmacy task, informing the participants that 1) they were responsible

for searching areas blocked by shelves, 2) the robot was responsible for the open area,

and 3) the analysis/classification procedure was similar. The only differences were the

dropping-off and counting pertained to weapons instead of pill containers.
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5.1.6.4 Solid Sampling Task

Figure 5.6: Solid Sampling task.

The Solid Sampling task belongs to the sampling

mission group, and required the participant to col-

lect samples of several solid “hazardous” substances.

These substances were composed of colored sand

or flour, and were located in containers (e.g., clear

plastic storage containers, glass jars, film canister)

throughout the environment. The team was in-

formed that the robot was sent a list of substance lo-

cations, and the robot led the participant to the first

sampling location upon arriving at the task area.

Samples were located on elevated surfaces (e.g., ta-

ble and turned-over trash can), as well as on the floor

(see Figure 5.6). The cart contained all the neces-

sary sampling kits. Each dry sampling kit contained two sandwich-sized zip-lock plastic

bags, one four-ounce glass sample jar, one stainless steel scoopula, and two alcohol wipes.

The kit was wrapped in a diaper to maintain sterility and protect the kit from breakage.

A permanent marker was also placed in the cart.

Figure 5.7: Step-by-step procedure to safely collect solid samples.

The robot asked the participant to describe the hazardous material’s appearance in

detail. The robot verbally confirmed that the participant’s description was recorded and

proceeded to provide a step-by-step procedure for how to sample the hazardous substance

safely, shown in Figure 5.7. Each box in this figure represents a single instruction. The

robot presented the instructions one at a time, and the participant was trained to ver-
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bally confirm it was ready to move on to the next step (e.g., “Next”). This procedure

followed strict guidelines for maintaining safe and sterile sampling procedures by published

government standards [167].

Table 5.5: Sampling mission group’s task density by workload condition.

Workload
Condition

Number of Samples Time Stalling Dialog?

UL 1 sample Yes

NL 3 samples No

OL 5 samples No

The Solid Sampling task can be decomposed into one atomic task and eight composite

tasks. These were: i) Null, ii) Using Walkie-Talkie, iii) Walking with cart between the

sample locations, iv) Describing the sample, v) Unpacking the kit, which involves fetching

the Solid Sampling kit from the cart and laying it next to the hazard, vi) Sampling the

contaminant according to the robot’s instructions, vii) Writing the code and the current

time provided by the robot, viii) Packing the kit by wrapping the diaper with all the items

and placing it in the cart, and finally ix) Incident Commander stalling the participant to

gather information pertaining to prior tasks.

The Incident Commander stalling served as a means of controlling task density, while

maintaining ecological validity. Generally, task density was manipulated by changing the

total number of solids that required sampling (see Table 5.5). The UL condition consisted

of one solid sample task, which takes approximately 3 minutes on average to complete.

Prior work controlled task density by instructing participants to only begin sampling the

next substance when they heard a ping [80]. Utilizing pings introduces artificial constraints

on the participant’s behavior, preventing them from performing their task and reducing

the experiment’s ecological validity. This evaluation used a dialog between the Incident

Commander and the participant at the start of this task to both delay the execution of

the primary task objective and to maintain realism. This dialog asked participants to

report more specific information about a prior task (i.e., the Search task). The dialog

also consisted of numerous pauses, as the Incident Commander often “needed to confer

with another team”, to ensure that workload remained in the UL range. Overall, this

dialog lasted approximately 4-5 minutes depending on the level of detail provided by the

participant. If a participant completed their task early, then they were instructed to hold

their position and wait for further instructions. The NL and OL conditions did not require
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this precollection dialog. The NL condition consisted of three samples and the OL condition

consisted of five samples.

5.1.6.5 Liquid Sampling Task

Figure 5.8: Liquid sampling task.

The Liquid Sampling task belongs to the sampling

task group, and was very similar to the Solid Sam-

pling task. The participant’s and robot’s roles were

identical to that of the Solid Sampling task. The

primary difference was that this task required sam-

pling “hazardous” liquids, instead of solids (see Fig-

ure 5.8). A similar highly structured protocol, based

on government requirements, was used to ensure the

sterile and safe collection of hazardous liquids [167].

The specific steps required for each liquid contami-

nant sample collection are presented in Figure 5.9.

Figure 5.9: The steps completed for each liquid contaminant sample collected in the liquid
contaminant sampling task.

Hazardous liquids were all different colored water, either stored in an open plastic

container or spilled onto an overturned barrel. The participant was equipped with a cart

that contained the required pre-assembled liquid sampling kits, labeled “wet”. These kits

contained two sandwich-sized zip-lock plastic bags, one four-ounce glass sample jar, one

plastic pipette, one plastic drop cloth, and an alcohol wipe. The drop cloth was placed

under the sampling area to catch potential spillage. The kits were wrapped in a diaper

to maintain sterility and protection from breakage. Task density was manipulated in an

identical manner to the Solid Sampling task (see Table 5.5). The only difference from the
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solid sampling task related to task density was the UL stalling dialog pertained to the

Pawnshop task, rather than the Search task. The Pawnshop task was chosen, because it

was difficult to create meaningful questions about the prior task (i.e., Debris task).

5.1.6.6 Debris Task

Figure 5.10: Participant moving a large
object, as the robot moved small objects.

The debris task required clearing a debris field,

containing numerous large and small objects ob-

structing the path forward. The team moved

the objects to a marked location near the de-

bris field (see Figure 5.10). The large ob-

jects included cardboard boxes (weighing 20 to

25 lbs), chairs, and buckets with hardened ce-

ment (weighing around 30 lbs). The small ob-

jects were approximately 3 to 8-inch styrofoam

blocks. The participant was trained to load

the robot’s box with as many small objects as

possible, and then to pick up a large object as

the robot transported the small objects to the

dumping location. This pattern was repeated

until the entire field was clear. The participant was also instructed to prioritize a path

through the debris, as it may be impossible to move all the debris within the 10-minute

time limit (e.g., OL condition).

The debris task consisted of two atomic tasks and five composite tasks: i) Null, ii)

Walking back the debris field, iii) Using Walkie-Talkie, iv) Moving large objects to the

dumping location, v) Loading the robot’s box with small debris, vi) Unloading the robot’s

box, and vii) the Incident Commander stalling the participant about a prior task. The

Incident Commander’s stalling dialogue pertaining to the Solid Sampling task was employed

to control the UL workload levels.

The task density was manipulated by varying the total number of large objects that

needed to be cleared, as well as the number of trips made by the robot (see Table 5.6).

Further, there was only enough small debris to require the robot to take approximately

20 total trips. Trip numbers varied based on how full the robot’s box was and if the

participant elected to carry some small debris themselves. The UL condition required the
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Table 5.6: Debris mission group’s task density by workload condition.

Workload
Condition

Number of
large objects

Number of
robot payloads

Stalling Dialog?

UL 10 10 Yes

NL 20 20 No

OL 40 20 No

participants to move 10 large objects, and reduced the amount of small debris even further

for the robot to make approximately 10 trips. The NL condition consisted of 20 large

objects, and enough small debris for the robot to make approximately 20 trips. The OL

condition consisted of 40 large objects, and sufficient small debris for the robot to make

20 trips. Therefore, the OL condition shifted the majority of work onto the participant,

requiring them to move two large objects for every robot transported payload.

5.1.6.7 Search Task

The Search task required the team to conduct an exhaustive inspection of an environment

for potentially dangerous or suspicious items. No participants were trained to perform

this task; thus, the robot provided instructions on the team’s goal and responsibilities

upon discovering the task. The robot explained that the team needed to deviate from its

original plan, and investigate the Search task area. The robot stated that the participant

was to search the area independently, and verbally communicate if a potentially dangerous

item was discovered. The robot also informed the participant that they were to use the

GoPro camera in the cart and instructed the participant on how to take pictures using the

GoPro. When the participant found a potentially suspicious item, the robot instructed the

participant to take pictures of the items.

The Search task area was an open space on the larger side of the warehouse (see Figure

5.2). A trash can, wooden crate, rolled-over plastic barrel, bulletin board, two plastic

pallets, metal shelving units, and several cardboard boxes were present in the environment,

shown in Figure 5.11. The red circles in this Figure represent the location of potentially

dangerous items. These Dangerous items consisted of a fake pipe bomb, containers labeled

“Danger. Hazardous Waste”, notices on a bullet board detailing a rendezvous location,

instructions for building a pipe bomb, and information on C4 explosives. These items were

chosen as they are obviously dangerous or suspicious, enabling the participant to more
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Figure 5.11: Search task area, where dangerous/suspicious items are outlined in red.

easily identify and evaluate them.

The team began inspecting the environment and discussed whether any discovered items

were suspicious. RFID tags were placed throughout the environment enabling the robot

to discover items independently; thus, either teammate was able to determine whether

the team needed to investigate an item. Items that were deemed dangerous or suspicious

triggered a dialog. First, the robot verbally informed the participant they were sending

the item’s location to Incident Command. Next, the robot asked the participant to take

a picture of the object with the GoPro camera and report the item to Incident Command

via the Walkie-Talkie. The Incident Commander asked follow-up questions based on the

desired task density (see Table 5.7). These questions asked the participant to either evaluate

the physical appearance of the object, estimate whether the object was an explosive, and

assess if there were any flammable or dangerous chemicals nearby. Given the Search mission

task’s objectives, it can decomposed into two atomic tasks and four composite tasks: i)

Null, ii) Walking through the environment, iii) Using Walkie-Talkie, iv) Searching for

suspicious items, v) Taking pictures of suspicious items, and vi) Describing the suspicious

item to Incident Command via the Walkie-Talkie.

The task density was controlled by manipulating the total number of items to be in-
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Table 5.7: Search mission group’s task density by workload condition.

Workload
Condition

Number of items Number of Questions

UL 3 items 1 question items

NL 5 items 2 questions

OL 10 items 2 question + clarification

vestigated and the number of Incident Commander follow-up questions the participant

responded to upon reporting an item, shown in Table 5.7. The team was required to find

three items in the UL condition, the NL condition had five items, and the OL condition

had ten items. Further, the UL condition asked one follow-up question, the NL condition

asked two follow-up questions, and the OL condition asked two follow-up questions and

prompted the user to provide additional details if the answers were too short (i.e., <10 sec-

onds). Additionally, secondary questions were incorporated into the tasks, and secondary

task density was manipulated based on workload conditions.

5.1.7 Task Decomposition

The six mission tasks and the accompanied secondary tasks can be decomposed into a total

of twenty-one composite tasks and two atomic tasks, as summarized in Table 5.8. Mission

tasks within a task group (see Table 5.2) were closely associated with one another; therefore,

several composite and atomic tasks were shared across multiple missions. Specifically, two

atomic tasks (i.e., Null and Walking) and the Using Walkie-Talkie composite task were

shared across most mission tasks, while the Incident Command stalling, and Searching

composite tasks were shared across three mission tasks (see 5.8). The Null task was a

placeholder to account for the transitory intervals between tasks, as well as to indicate the

absence of all other composite tasks.

Each of the twenty-one composite tasks can be decomposed into sub-composite tasks

and atomic tasks by incorporating different combinations of the seven activity components.

An accurate composite task decomposition is required to detect the atomic and composite

tasks reliably. This dissertation relies on precise knowledge of when exactly the sub-

composite tasks and atomic tasks occurred within each composite task to associate the

gathered wearable sensor data with the corresponding tasks to train the machine learning

algorithms.



149

Table 5.8: The mission and secondary tasks by the corresponding atomic and composite
tasks. NOTE: Grey cells represent the composite (or atomic) task’s association within the
corresponding mission task. The atomic tasks are highlighted in Blue.

Mission TasksComposite and
Atomic Tasks Pharmacy Pawnshop Solid Sampling Liquid Sampling Debris Search

Null

Walking

Using Walkie-Talkie

Incident command
stalling

Searching

Robot analyzing

Assisting robot

Drop-off item

Counting items

Walking with cart

Describe sample

Unpacking kit

Sampling

Write sample code

Packing kit

Moving heavy item

Loading

Unloading

Taking picture

Describe
suspicious item

Secondary Tasks

Incident command
secondary prompt

Incident command
reminder

In-situ ratings
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Moreover, certain composite tasks can allow for the sub-composite or the atomic tasks

to be executed in different orders, or even permit omitting some sub-composite or atomic

tasks, contingent on the scenario and the human teammate’s current state. For example,

the Using Walkie-Talkie composite task typically requires the participant to detach the

Walkie-Talkie from their waist buckle, raise the Walkie-Talkie to the mouth, before pressing

the button to speak; however, it is possible to press the button to speak prior to detaching

the Walkie-Talkie, or press the button to speak without detaching the Walkie-Talkie at all.

Therefore, accurately labeling the low-level atomic tasks during their execution becomes

more complex in such a highly dynamic environment.

An intermediate task state, logged task, and a task decomposition based on task logging

is presented. Logged tasks refer to tasks that are recorded reliably and systematically.

These logs typically include the execution time, duration length, and task description.

Logged tasks represent a compromise between the theoretically possible hierarchical task

decomposition and the practicality needed to label decomposed tasks during the evaluation.

Each of the twenty-one composite tasks was decomposed coarsely into its logged task

constituents by aggregating the atomic tasks that were not labeled individually.

• The Using Walkie-Talkie composite task was composed of three logged task con-

stituents: i) a fine-grained motor and tactile component of reaching out and grasping

the Walkie-Talkie, ii) a tactile pressing and holding the Walkie-Talkie, and iii) con-

versing with the Incident Command that encompassed an auditory Incident Com-

mand communication component, a cognitive conversation component, and v) speech

Incident Command information response component.

• The Incident Command stalling task’s decomposition was similar to the Using

Walkie-Talkie task, but had cognitive memory recall element instead of the con-

versation aspect.

• The Searching composite task was composed of two logged task constituents: i)

searching constituent that encompassed gross motor walking, visual scanning the en-

vironment, and cognitive evaluating the items, and ii) picking up items that included

a gross motor bending over, fine-grained motor picking up items during the Pharmacy

and Pawnshop missions, as well as clearing the wooden crate and trash can during

the Search mission task, and tactile grasping items.

• TheWaiting for the robot to analyze composite task entailed four logged constituents:
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i) gross motor bending or squatting, ii) tactile holding of the item, iii) speech scan

request to the robot, and iv) auditory analyzing item prompt from the robot.

• Assisting the robot composite task’s decomposition was identical to the Searching

task, but also included an auditory assist request from the robot.

• Drop-off item incorporated three logged constituents: i) visual locate to identify the

box, ii) gross motor walking and bending over, and iii) tactile holding item.

• Counting the items to write on sticky notes consisted of four constituents: i) visually

locating the items, ii) cognitive counting of items, iii) fine-grained motor and tactile

writing, and iv) auditory request from the robot to report to the Incident Command

after writing the count.

• The Walking with cart composite task had only one logged constituent, which was a

combination of gross motor walking and tactile holding the cart.

• Describing the sample substance was composed of three logged constituents: i) audi-

tory description request from the robot, ii) examining the sample that encompassed

visual inspection and cognitive evaluation, and iii) providing speech sample descrip-

tion to the robot.

• The Unpacking and packing the sampling kits tasks were composite twins in that they

entailed identical constituents, but differed in the order in which the constituents

occurred. These two composite tasks comprised: i) fine-grained motor and tactile

packaging, ii) visually inspecting the contents, and iii) cognitive association.

• The Sampling composite task consisted of two logged constituents: i) listening audi-

tory sampling instructions from the robot and cognitive processing of the informa-

tion, and ii) visual coordination, as well as fine-grained motor and tactile sampling

to gather the substance.

• Writing the sampling code and time involved two logged constituents: i) auditory

sample code and time information and the accompanied cognitive processing of the

information, and ii) fine-grained motor and tactile writing.

• Moving heavy item task encompassed: i) tactile lifting heavy object, and ii) gross

motor carrying heavy object and walking.
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• Loading the robot’s box contained four logged tasks: i) visual locating small debris,

ii) gross motor bending over, iii) fine-grained motor picking up items to deposit in

the robot’s box, and iv) tactile grasping the small debris items.

• Unloading the robot’s box task’s decomposition was identical to the loading task, but

did not include the visual component.

• The Taking pictures composite task comprised: i) fine-grained motor reaching out

for GoPro, ii) tactile pressing the shutter button, and iii) cognitive association.

• Describing a suspicious item encompassed four logged constituents tasks: i) examin-

ing the suspicious item that encompassed visual inspection and cognitive evaluation,

ii) a fine-grained motor and tactile component of reaching out and grasping the

Walkie-Talkie, iii) a tactile pressing and holding the Walkie-Talkie to communicate

with the Incident Commander, and iv) speech suspicious item information to the

Incident Commander.

• The Incident Command secondary prompt included: i) auditory secondary prompt

from the Incident Commander, ii) cognitive memory recall, and iii) speech prompt

response either to the robot or the Commander.

• The Incident Command reminder had one logged constituent that included an audi-

tory time reminder from the Commander, and cognitive processing of the remaining

time information.

• The In-situ ratings task comprised: i) auditory in-situ probe from the Commander,

ii) cognitive evaluating the workload levels, and ii) speech in-situ response to the

Commander.

5.1.7.1 Summary

Several logged tasks were shared across multiple composite tasks; however, the order in

which the logged tasks occurred and their duration distinguished the composite tasks from

one another. The individual task recognition algorithms developed in Chapter 3.5 were

evaluated to recognize the logged tasks for each task relevant activity component. This

intermediate level was the lowest hierarchical level for which reliable ground truth task
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Table 5.9: The logged tasks identified for each activity component across all composite
tasks. The Null task associated with each activity component indicates an absence of the
other tasks.

Activity Component Logged tasks

Gross motor Walk, Bend over, Carry large object, Null

Fine-grained motor Package, Pick, Reach, Sample, Write, Null

Tactile Grasp, Hold, Lift, Package, Press, Sample, Write, Null

Visual Coordination, Inspect, Locate, Scan, Null

Cognitive Association, Conversation, Count, Evaluation, Process, Recall, Null

Auditory

Robot’s analyze prompt, Robot’s assist request, Robot’s sample
description request, Robot’s sampling instructions, Robot’s request
to report to Incident Command, Incident Command communication,
Incident Command reminder, In-situ probe, Secondary prompt, Null

Speech
Sample description, Suspicious item information, Incident Command
information, Scan request, Secondary response, In-situ response, Null

labeling during the evaluation (i.e., task execution time and duration) was obtained. It is

worth noting that these individual algorithms can detect the actual atomic tasks without

loss of generality, provided the atomic tasks’ reliable ground truth data is available. The

logged tasks identified for each activity component (see Table 5.9) across the twenty-one

composite tasks can be summarized as follows:

• The Gross motor activity component had a total of four logged tasks: i) Walking,

ii) Bending over to pick the items, or to hold the items in front of the robot, iii)

Carrying large object while clearing debris, and iv) Null.

• The fine-grained motor activity component contained six logged tasks: i) Packaging

the kits, ii) Picking up items, iii) Reaching out for Walkie-Talkie and GoPro, iv)

Sampling the contaminants, v) Writing, and vi) Null.

• The tactile activity components included eight logged tasks: i) Grasping items, ii)

Holding items and cart, iii) Lifting heavy objects, iv) Packaging the kits, v) Pressing

the Walkie-Talkie or GoPro, vi) Sampling the contaminants, vii) Writing, and viii)

Null.

• The visual activity component entailed five logged tasks: i) Coordination while sam-

pling the contaminant, ii) Inspecting the contaminants, or suspicious items, iii) Lo-
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cating known items (e.g., pills and weapons in the storage bins, small debris) iv)

Scanning the environment for pills, weapons, or suspicious items, and v) Null.

• The cognitive activity component consisted of seven logged tasks: i) a cognitive As-

sociation task for less mental workload tasks (e.g., taking a picture, unpacking, and

packing sampling kits), ii) Conversation when interacting verbally with the robot or

Incident Command, iii) Counting the number of pills and weapons, iv) Evaluation

for assessing contaminants and suspicious items, v) Recalling information from mem-

ory when responding to Incident Command’s interrupts and secondary prompts, vi)

Processing information provided by the robot or Incident Command, and finally, vii)

Null

• The auditory activity component comprised ten logged tasks: i) the robot’s prompt

for analyzing items, ii) the robot’s assistance request, iii) the robot’s sample’s descrip-

tion request, iv) the robot’s sampling instructions, v) the robot’s request to report

to the Incident Commander after a task was completed, vi) Incident Commander’s

reminder, vii) Incident Commander’s communication, viii) Secondary prompt from

the Incident Commander, ix) In-situ probes, and x) Null.

• The speech activity component included seven logged tasks: i) providing Sample

description to the robot, ii) Suspicious item description and providing contextual

information to the Incident Commander, iii) Information to the Incident Commander,

iv) Scan request to the robot, v)Secondary prompt response, vi) in-situ response, and

vii) Null

5.1.8 Procedure

This evaluation was conducted over two days. The first day consisted of a 30-minute

training session to familiarize the participants with the robot, and help them understand

the robot’s role. The second day consisted of the full 70-minute trial session.

5.1.8.1 Training Session

Upon arrival, the Incident Commander greeted the participant, introduced the participant

to the other experimenters, and began explaining the session. First, the participant was

informed of the session’s duration (i.e., 2 hours), the pariticipant’s financial compensation,
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and that they were allowed to stop at any time for any reason. The participant read

and signed the consent form, followed by completing a demographic questionnaire. The

Incident Commander then began assisting the participant with donning the wearable sen-

sors, which included: BioPac Bioharness BT, Xsens Mtw Awinda, Pupil eye tracker (i.e.,

Core or Neon), two Myo armbands, two Shure microphones (one unidirectional and one

omnidirectional), and a noise meter.

The sensor donning process began with the Incident Commander demonstrating how

to wear the Bioharness BT using a set of posters mounted to the wall, after which the

Incident Commander left the Setup room with the blinds closed to allow the participant to

put on the sensor. The Incident Commander entered the room and verified verbally that

the sensor was put on properly. Two Xsens foot inertial trackers were duct-taped onto

the participant’s shoes. Xsens sensors for the calves, thighs, and waist Xsens sensors were

secured using the provided velcro straps. The chest and shoulder Xsens sensors were tapped

onto the participant’s clothes using fabric-friendly paper tape. The participant put on a

backpack and secured it tightly using the chest and waist buckles. The participant donned

the two Myo sEMG sensors on the forearms that were calibrated prior to putting on each

arm’s bicep and wrist Xsens sensors. The Xsens hand sensors were tucked into a pair of

Xsens gloves that the participant put on. The participant donned a uni-directional Shure

microphone headset to capture their speech responses, while the omnidirectional Shure

microphone was attached to the backpack to gather the ambient noise. The participant

wore the Pupil Labs eye tracker (either Core or Neon), followed by the Xsens headband

that housed the head inertial sensor.

The Incident Commander calibrated the Xsens and the two microphones, before con-

necting the eye tracker to its associated data collection device (i.e., Core was connected

to a laptop, while the Neon was connected to an Android phone). The Core eye tracker

was calibrated using the laptop, while the Neon did not require any calibration. The noise

meter was then connected to the laptop and started its data collection process. Finally,

the laptop along with the noise meter (and Android Phone) were secured in the backpack.

The Data Monitor verified the sensor calibration and began collecting the Bioharness,

Myo, Xsens, and microphone data wirelessly on the dashboard laptop. Additionally, a

Walkie-Talkie was strapped onto the backpack’s waist buckle to facilitate the participant’s

communication with the Incident Commander.

Once the sensors were calibrated, the Incident Commander began explaining the train-

ing session. The participant was informed that they were training to be a member of a
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human-robot disaster response team (Team 10) who were responding to a natural disaster

(e.g., tornado). The participant was informed that they were going to be working along-

side a fully autonomous robot teammate. The Incident Commander explained that the

participant was responsible for responding to messages over the Walkie-Talkie. The partic-

ipant was tasked with ignoring messages not pertaining to Team 10, repeating informative

messages directed at Team 10 to the robot, and answering questions Incident Command

posed to their team (see Chapter 5.1.2).

The participant was informed that in-situ workload ratings questions were going to be

asked during the training sessions. The concept of workload, as well as each individual com-

ponent’s contribution toward overall workload, was explained in detail. Any questions the

participant had about these concepts were answered by the Incident Commander. Lastly,

participants were given two minutes to memorize a list of names, and were instructed that

the Incident Commander will be asking questions about this list during the session (see

Chapter 5.1.2). If the participant was randomly assigned a Type 1 training session, they

exited the Setup room, where the Incident Commander began explaining the responsibil-

ities for both the robot and the participant for the Pharmacy task. If the participant

was randomly assigned a Type 2 training session, they were escorted to the door of the

Pawnshop (see Figure 5.2).

The participant was instructed to ask the Pilot and Data Monitor if they had any

questions during the task, as these two experimenters were co-located with the participant

at all times (refer Figure 5.2). The Pilot and Data Monitor provided feedback during the

training task if the participant engaged in any obviously incorrect behavior (i.e., unsafe

sampling practices).

The participant was trained on each assigned mission task for ten minutes. All training

tasks were conducted at the normal workload condition level. The in-situ workload ratings

were verbally administered at the six-minute mark, which allowed the participant to learn

the meaning of the components’ definitions, and become familiar with answering questions

during the mission tasks. Participants debriefed with experimenters after each mission

task to verify that participants fully understood their responsibilities, to allow the exper-

imenters to provide feedback, and to answer any questions participants had. Participants

immediately proceeded to the next training mission task area after this debriefing period,

and the Incident Commander began explaining the roles and responsibilities for the next

mission task. The training session concluded after all three mission tasks were completed.

Participants who were assigned Type 1 training performed the Pharmacy mission task,
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followed by the Debris mission task (marked as number 6 in Figure 5.2) and the Liquid

Sampling task, while Type 2 participants were first trained on the Pawnshop mission task,

followed by the Debris mission task (marked as number 4 in Figure 5.2) and the Solid

sampling mission task.

The Incident Commander verbally confirmed if the participant felt sufficiently trained

on how to conduct all three mission tasks with their robot partner. No explicit competency

test was conducted. The Pilot and Data Monitor observed the participants and assessed

their ability to perform the mission tasks. Generally, a single run through each mission

task was sufficient for the participant to achieve proficiency. Corrections rarely needed to

be made, and feedback from the Pilot and Data Monitor was sufficient to curb all incorrect

mission task execution behaviors. If a participant felt they needed more training on a

particular task, then another run through that task was offered. It is important to note

that no participant was trained to perform the Search task, as it was the sole completely

untrained task during the trial session.

Lastly, the participant was escorted to the Setup room, and all wearable sensors were

removed in the reverse order of how they were donned, starting with the headband and eye

tracker. A final post-session questionnaire was administered and the participant received

their $20 financial compensation.

5.1.8.2 Trial Session

The trial session occurred at least two days after, and typically, within one week of the

training session; however, four participants had scheduling complications and were unable

to return for over two weeks. These participants were asked to verbally explain each of

the tasks they were trained to perform. If the explanation was insufficient, the Pilot and

Data Monitor demonstrated how to perform that task. Each trial session was a total of

two hours long, where the experiment required 70 minutes. The trial session was composed

of seven tasks presented in the same order for all participants, but with varied workload

levels, where each individual task required 10 minutes. The participant was randomly

assigned a workload ordering, which determined the relative workload condition for each

task. Mission tasks were completed in the same location, as shown in Figure 5.2.

The participant completed the demographic questionnaire upon arrival, after which

they donned the same set of sensors and equipment in the same order as the training day.

The demographics questionnaire was re-administered to gather the relevant caffeine intake
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and sleep-related information. The participant was briefed on their mission objective,

which involved responding to a tornado that hit a town in Arkansas. The roles of the

human teammate, robot teammate, and the Incident Commander remained the same. The

Pilot and the Data Monitor were only tasked with operating the robot and logging the

tasks, respectively, and refrained from providing feedback or assisting the participant at

any point during the trial session. The participant and the robot began the trial in the

Pharmacy task area and proceeded in the order shown in Figure 5.2.

Participants who completed the mission task before the 10-minute time limit were

instructed to report via the Walkie-Talkie to the Incident Commander by the robot. If there

was less than one minute remaining, the Incident Commander instructed the participant

to follow the robot to the next task. If there was more than one minute left, the Incident

Commander instructed the participant to wait. After which, the Incident Commander

instructed the participant to follow the robot to their next task once the 10-minute limit was

reached. Participants that were still performing the task when the time limit was reached

were asked to stop what they were doing immediately, and follow the robot to the next

task. The Pilot and the Data Monitor always followed the participant in close proximity

(10-15 ft) when transitioning to the next mission task to maintain sensor connectivity with

the dashboard laptop. The Pilot and Data Monitor remained stationed at the vantage

points, marked as Xi in Figure 5.2, upon reaching the next mission task area.

The robot interacted with the participant upon arrival at the Search task area, and

informed them the team needed to deviate from their plan. The robot asked the participant

to report this deviation to the Incident Commander, and then provided the participant with

the team’s goal and the participant’s responsibilities. Further details on this interaction

and the Search mission task are provided in Chapter 5.1.6.7. The participant and their

robot teammate proceeded to perform the remaining mission tasks. Any questions that

the participants had regarding a mission task were answered by the robot.

The participant was interrupted at times with the secondary tasks in order to introduce

concurrency, and to serve a secondary workload metric. Further details on these secondary

tasks are provided in Chapter 5.1.2. In-situ workload ratings were verbally administered

six minutes into the trial and every ten minutes after the initial rating. The trial concluded

at the seventieth minute, or when the team finished sampling all the liquid contaminants,

whichever occurred earlier. The Pilot and Data Monitor verified that the sensor data was

saved, and the Incident Commander entered the environment to escort the participant

back to the Setup area to remove all the wearable sensors. The participant completed the
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post-session questionnaire, and then was presented with their $40 financial compensation.

5.1.9 Participants

Thirty-six participants (18 male, 17 female, and 1 non-binary) completed the full experi-

ment (i.e., training and trial sessions). Participants were screened to ensure that they were

at least 18 years old, no more than 65 years old, did not have a pacemaker or permanent

metal installation in the chest area, were not pregnant, did not wear glasses, and did not

have trouble lifting 35 lbs. Participants who completed both the training and trial sessions

received a total of $60 compensation.

The mean age was 28.78 (std. dev. = 10.82), with a range from 18 to 60. Thirteen

participants held a high school degree, ten held an undergraduate degree, eight held a

master’s degree, and five held a doctorate. Participants indicated the number of hours they

use a desktop or laptop per week, as computer experience may impact task performance.

The majority of participants (twenty-four) indicated that they use computers for more than

eight hours per week. Participants also indicated if they received training on any of the

following: life-guard, first-responder, civil support, or paramedic, as this experience can

impact their knowledge for performing some tasks. Twenty-eight participants had no prior

training in these fields, while eight participants did have prior training. Fifteen participants

did not have any caffeinated drinks the day of the experiment, while fifteen participants

drank at most 16 oz., three participants drank between 17 and 32 oz, and one participant

drank more than 32 oz. Participants were also asked how many hours they exercise per

week. Participants exercised on average 4.81 (std. dev. = 2.91) hours a week. Participants

slept an average of 7.45 (std. dev. = 1.04) hours the night before the experiment and an

average of 7.35 (std. dev. = 1.03) hours two nights prior. Participants rated their current

fatigue levels using a Likert scale from 1 (little to no) to 9 (extreme) as 2.91 on average

(std. dev. = 1.36).

5.2 Results

The task recognition algorithms were validated using the leave-one-subject-out cross-

validation scheme, where the average accuracy is reported by training the algorithm re-

peatedly on all, but one participant’s data and validated using the left-out participant’s

data [81]. Each task component algorithm is analyzed for multiple window sizes in order
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to determine the window size’s impact on the respective algorithms’ performance.

The 70-minute trial sessions were composed of seven 10-minute mission tasks, where the

participants switched from one task to the other without any break in between missions.

This continued mission execution resulted in a long-tailed distribution across components,

where a few tasks account for majority of the data and all other tasks are under-represented.

A good example of a long-tail distribution was the Pharmacy mission’s fine-grained motor

tasks, where participants were in constant motion, regularly picking items from the floor,

but only wrote the count of different items at the very end of the mission task; therefore,

the picking items task account for most of the Pharmacy’s fine-grained motor dataset (i.e.,

majority task), while the writing task instances were few (i.e., minority task). Training

machine learning algorithms on such imbalanced datasets can bias the algorithm; there-

fore, the majority logged tasks’ instances were randomly downsampled across components

in order to ensure that the individual task recognition algorithms’ accuracies were not

artificially inflated due to dataset imbalance.

A random averaging downsampling method was employed, where the average number

of task instances within each component, excluding the Null task, was calculated across

all mission tasks for each participant. If a participant’s count for a specific task was

higher than the calculated average (i.e., one of the majority tasks), the count for that

task was randomly downsampled to the average. Conversely, if a participant’s count for a

particular task was lower than the average (i.e., one of the minority tasks), the count for

that task was not downsampled. The Null task’s count was excluded from calculating the

average across all components to prevent inflating the average count artificially for each

participant. This procedure was iterated for all the logged tasks within each component,

and the task instances before and after the downsampling process are detailed in the

respective component’s results section below.

It is important to note that the downsampling process applied solely to the individual

task recognition algorithms and not to the GNN fusion and TCN composite and concurrent

task recognition algorithms. This distinction arises, because the latter two are multi-

label classification algorithms (i.e., predicting more than one class) that take as input

the individual algorithms’ task predictions or the atomic task series across components.

Consequently, downsampling tasks from any single component necessitates downsampling

the entire atomic task series or task predictions across all components, which is impractical.

Therefore, the downsampling process was not implemented for the GNN fusion and TCN

composite and concurrent task recognition algorithms.
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The individual task recognition algorithms’ classification accuracy was the primary

dependent variable for assessing the performance, while the confusion matrices compared

the individual task recognition algorithms’ accuracies and misclassifications by tasks (see

Chapter 4.2). Cohen’s d measured the effect sizes. The Friedman’s analysis of variance

by ranks test was used to determine statistical significance in accuracies between results.

Significant results were further analyzed using the Wilcoxon signed-rank test to identify

the specific significant differences. The non-parametric statistical tests ensured that the

outcomes were unaffected by the accuracy distribution across participants.

5.2.1 Cognitive Task Recognition

The cognitive task recognition algorithm incorporated thirteen features extracted from

HRV, pupil dilations (left and right eyes), and blink metrics (see Chapter 3.5.1). The

features were fed into a RF classifier that was trained to predict one of the seven cognitive

tasks: i) Association, ii) Conversation, iii) Count, iv) Evaluate, v) Process, vi) Recall,

vii) Null (described in Chapter 5.1.7). The cognitive tasks’ data distribution before and

after the downsampling process is presented in Table 5.10. The evaluated window sizes

tw = {5s, 10s, 15s, 30s, 60s} with a 50% overlap inform the impact of the window size

on the algorithm’s performance. It is also important to note that the analysis presented

is only based on the twelve participants for whom the eye tracker data was gathered (see

Chapter 5.1.3). Additionally, seven of those twelve participants did not have any instances

of the Association cognitive task for the 60s window size; therefore, the 60s window size is

excluded from the analysis.

Table 5.10: The mean (std. dev.) and the cumulative task instances for the cognitive
component before and after downsampling, aggregated across participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Association 329.20 (112.06) 3292 312.60 (88.18) 3126
Conversation 231.10 (51.55) 2311 231.10 (51.55) 2311
Count 79.90 (26.50) 799 79.90 (26.50) 799
Evaluate 1057.30 (226.62) 10573 459.50 (83.85) 4595
Process 557.60 (230.21) 5576 422.00 (90.71) 4220
Recall 513.80 (218.09) 5138 400.70 (112.57) 4007
Null 2363.00 (493.92) 23630 459.50 (83.85) 4595
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Figure 5.12: Cognitive task recognition accuracy % mean (std. dev.) by window size using
the HRV, pupil dilation, and blink metrics.

The cognitive task recognition algorithm’s accuracy increased with the window size, as

depicted in Figure 5.12. The algorithm’s accuracy for the 5s window size was 20.61% and

increased gradually up to 23.16% for the 30s window size; however, the Friedman’s test

identified no significant differences in accuracies between the window sizes (χ2(3, 11) =

3.36, p = 0.33).

The evaluated RF algorithm’s confusion matrices for the four incorporated window

sizes were analyzed to identify the recognition rates by tasks (see Figure 5.13). The algo-

rithm was heavily biased toward predicting the Evaluate, Process, Recall, and Null tasks,

resulting in higher misclassification rates for the Association, Conversation, and Count

tasks across window sizes. The algorithm’s bias can be attributed to the RF algorithm not

learning anything particularly useful from the input features and predicting tasks purely

based on how the data was distributed. The long-tailed data distribution caused the Eval-

uate, Process, Recall, and Null tasks’ instances to account for most of the cognitive data,

as they occurred often. Comparatively, the Association, Conversation, and Count tasks’

instances were lower, given their sporadic occurrences. For example, Evaluate was the

most prominent cognitive task throughout the Pharmacy and Pawnshop missions, while

the Count task only occurred at the very end of these missions.
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Figure 5.13: Cognitive task recognition confusion matrices for the incorporated window
sizes.
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5.2.1.1 Discussion

Hypothesis HC
1 predicted that the RF algorithm will detect tasks with ≥ 80% classification

accuracy for at least one of the window sizes, which was not supported. The algorithm’s

accuracy when predicting the tasks, regardless of the window size, was only 5% to 10%

better than randomly guessing the tasks. The algorithm’s poor classification performance

was primarily due to the low-data regime, as the required metrics were available from

only twelve participants. The low-data regime was further perpetuated by the long-tail

distribution, causing the RF algorithm to be biased toward certain tasks.

None of the evaluated window sizes are suitable for detecting cognitive tasks in a peer-

based environment. A viable alternative is to infer cognitive tasks indirectly based on the

other component task detections via the GNN-based fusion algorithm.

5.2.2 Speech Task Recognition

The speech-reliant task detection algorithm incorporated the MFCCs’ mean and std. dev.

and the five features extracted from the speech-based metrics. The features were fed into a

deep learning algorithm to predict seven tasks: i) Information to the Incident Commander,

ii) In-situ response, iii) Suspicious item description, iv) Sample description, v) Scan request,

vi) Secondary response, and vii) Null (described in Chapter 5.1.7). The speech tasks’ data

distribution before and after the downsampling process is presented in Table 5.11. Five

window sizes (tw = {1s, 3s, 5s, 10s, 15s}) with a 50% were used to evaluate the impact

of the window size on algorithm’s performance; however, the 10s and 15s window size had

no instances for the Scan request and Sample description tasks, as participants spoke for

< 10 seconds for these tasks. Therefore, the 10s and 15s window sizes are excluded from

the analysis.

The algorithm’s accuracy increased and peaked for the 3s window size (47.19%) and

dropped at the 5s window size (43.64%) (see Figure 5.14). The Friedman’s test indicated

a significant accuracy difference between window sizes (χ2(4, 14) = 15.86, p < 0.01). The

Wilcoxon signed-rank test found that the 3s window size’s accuracy was significantly higher

than all other window sizes with a large effect size (p < 0.01, 0.77 < Cohen’s d < 1.80),

while the 1s window size’s accuracy was significantly lower than the rest (p < 0.01, 0.77 <

Cohen’s d < 1.80). Other accuracy differences were not significant.

The 3s window size’s confusion matrix, depicted in Figure 5.15, was analyzed to under-
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Table 5.11: The mean (std. dev.) and the cumulative task instances for the speech compo-
nent before and after downsampling, aggregated across participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Request robot to scan 152.94 (28.10) 5353 152.94 (28.10) 5353
Describe sample to robot 336.69 (113.96) 11784 335.74 (111.99) 11751
Provide information to IC 1690.26 (676.01) 59159 699.94 (104.43) 24498
Describe suspicious item to IC 434.43 (203.53) 15205 433.77 (202.39) 15182
Response to secondary prompt 1058.03 (300.55) 37031 679.86 (108.11) 23795
Response to in-situ probe 535.63 (141.38) 18747 516.74 (120.57) 18086
Null 12679.40 (1264.13) 443779 699.94 (104.43) 24498

Figure 5.14: Speech-reliant task recognition accuracy % mean (std. dev.) by window size
using the MFCCs and speech-based metrics.
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Figure 5.15: Speech-reliant task recognition confusion matrix for the 3s window size.
NOTE: IC refers to Incident Commander.

stand the confusion and misclassification rate between tasks. Other window sizes’ confusion

matrices are provided in Appendix B Figure B.1, as the 3s window size’s performance was

significantly better with a large effect size. The algorithm had the highest accuracy (80%)

by task for the Scan request prompt, and the lowest (32%) for the Secondary response

prompts. The confusion matrix indicated that the verbal interactions (i.e., Scan request

and Sample description) pertaining to the robot were detected with ≥ 50% accuracy, while

a majority of the speech-based interactions with the Incident Commander (i.e., Information

to the Incident Commander, Suspicious item description, and Secondary response) were

detected with ≤ 40% accuracy. The Secondary response, Suspicious item description, and

Information to the Incident Commander had the highest number of confusions among the

tasks. The Secondary response task was often confused with the Null (21%) and the Infor-

mation to the Incident Commander (18%) tasks, while the Suspicious item description was

often misclassified as Information to the Incident Commander task (33%). The confusion

between the Secondary response vs. Null tasks can be attributed to participants neglecting

to answer the secondary prompts at times, while confusion among the Secondary response,

Information to the Incident Commander, and the Suspicious item description tasks can be
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attributed to inter-task similarities that were further exacerbated by the common mode of

communication (i.e., over Walkie-Talkie).

5.2.2.1 Discussion

HypothesisHS
1 predicted that the algorithm will detect the speech-reliant tasks with ≥ 80%

classification accuracy for at least one of the window sizes, which was not supported. The

algorithm had a severe drop in performance between the two evaluations. The supervi-

sory evaluation (see Chapter 4.2.2) only had two speech-reliant tasks (i.e., COMM verbal

response and Null), which can be basically reduced to detecting speech vs. mute. The peer-

based evaluation increased the number of tasks to include events containing both complex

(almost an entire sentence) and simple speech (≤ 3 words). The increased number of tasks,

and inter-task similarities led to the algorithm’s subpar classification performance.

Both evaluations indicated that larger window sizes are detrimental to speech-reliant

task detection, as they can completely mask simple speech events, especially in an uncer-

tain, dynamic environment, where human teammates may communicate in cryptic phrases

with fewer words. The 3s window size is the recommended window size, as it demonstrated

the ability to detect both complex and simple speech events with varying lengths, tones,

and syllables across evaluations.

5.2.3 Auditory Task Recognition

The auditory task recognition algorithm combined the Mel spectrogram metrics obtained

from an omnidirectional microphone with the time-based noise level features from a decibel

meter to train a deep learning network. The algorithm predicted ten auditory tasks: i) the

robot’s analyze prompt, ii) the robot’s assist request, iii) the robot’s sample description

request, iv) Incident Command communication, v) Incident Command reminder, vi) In-

situ probe, vii) the robot’s prompt to report to the Incident Commander, viii) robot’s

sampling instructions, ix) Incident Commander’s secondary prompt, and x) Null. The

auditory tasks’ data distribution before and after the downsampling process is presented

in Table 5.12. The evaluated window sizes tw = {1s, 3s, 5s, 10s, 15s} with a 50% overlap

inform the impact of the window size on the algorithm’s performance.

The algorithm’s accuracy increased gradually and peaked at the 5s window size

(47.96%), before it dropped at the 10s (44.17%) and 15s (31.59%) window sizes (see Figure
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Table 5.12: The mean (std. dev.) and the cumulative task instances for the auditory
component before and after downsampling, aggregated across participants. NOTE: IC
refers to Incident Commander.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Robot’s analyze prompt 289.42 (108.72) 10419 289.42 (108.72) 10419
Robot’s assist request 359.00 (79.60) 12924 359.00 (79.60) 12924
Robot’s sample description request 245.75 (93.36) 8847 245.75 (93.36) 8847
Robot’s report to IC prompt 309.58 (75.67) 11145 309.58 (75.67) 11145
Robot’s sampling instructions 1274.75 (421.45) 45891 762.36 (65.91) 27445
IC communication 2174.58 (888.94) 78285 764.11 (70.73) 27508
IC reminder 498.31 (119.83) 17939 497.42 (117.86) 17907
IC’s secondary prompt 1165.47 (338.48) 41957 747.58 (71.94) 26913
Experimenter’s in-situ probe 593.11 (154.73) 21352 582.25 (141.99) 20961
Null 11611.06 (935.29) 417998 765.50 (68.30) 27558

Figure 5.16: Auditory task recognition accuracy by window size when incorporating the
spectrogram and noise level metrics.
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5.16). The Friedman’s test indicated a significant accuracy difference between window sizes

(χ2(4, 17) = 55.48, p < 0.01). The Wilcoxon signed-rank test found that the 5s window

size’s accuracy was significantly higher than all other window sizes with a large effect size

(p < 0.01, 0.74 < Cohen’s d < 3.64), while the 15s window size’s accuracy was significantly

lower than the rest (p < 0.01, 1.01 < Cohen’s d < 3.64). The 3s and 10s window sizes’

accuracies were significantly higher than the 1s and 15s window sizes (p < 0.01, 2.16 <

Cohen’s d < 2.62). No other differences were significant.

Figure 5.17: Auditory task recognition confusion matrix for the 5s window size. NOTE:
IC refers to Incident Commander.

The 5s window size’s confusion matrix, depicted in Figure 5.17, was analyzed to under-

stand the confusion and misclassification rate between tasks. Other window sizes’ confusion

matrices are available in Appendix B Figure B.2, as the 5s window size clearly outperformed

the rest. The algorithm had the highest task accuracy (80%) for the robot’s sample descrip-

tion request prompt event, and the lowest (14%) for the Incident Commander’s secondary

prompts. The confusion matrix indicated that all five of the robot’s prompts (i.e., robot’s

sample description, sampling instructions, prompt to analyze item, assistance request, and

prompt to report to the Incident Commander) were detected with ≥ 50% accuracy, with

two tasks exceeding ≥ 75%. The algorithm had a high misclassification rate when detect-
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ing the Incident Commander’s auditory tasks (i.e., Incident Commander’s communication

requests, reminders, in-situ probes, and secondary prompts). The Incident Commander’s

secondary prompts, communication, and Null events’ had the highest number of confusions

among the tasks. The secondary prompts were often misclassified as the Incident Com-

mander’s communication or reminders, while the Incident Commander’s task was often

confused with the reminders.

5.2.3.1 Discussion

Hypothesis HA
1 predicted that the algorithm will detect tasks with ≥ 80% classification

accuracy for at least one of the window sizes, which was only supported for the Robot’s

sample description request task. The algorithm’s performance was underwhelming even

when incorporating the spectrogram metrics in addition to the noise level metrics.

The supervisory evaluation only had three tasks (i.e., Radio message, Ping, and Null),

but each had distinct sound characteristics, which were recognized with ∼80% accuracy

only using the noise level metric (see Chapter 4.2.3). The peer-based evaluation increased

the number of tasks to include events with varying durations; however, all of these events

were purely conversational, either from the robot or the Incident Commander. The high

similarity between these conversational events led to the algorithm’s subpar classifica-

tion performance. For example, the Incident Commander’s communications, reminders,

and secondary prompts, started with the same phrase “Incident Command to Team 10,

. . . ”. Additionally, intermittent auditory tasks (e.g., in-situ probes and secondary prompts)

sometimes overlapped with the robot’s prompts. For example, secondary prompts often

coincided when the robot was providing sampling instructions during the liquid and solid

sampling missions.

Auditory task detection algorithms must have the ability to identify acoustic changes

within a short span, especially in a highly dynamic setting, so that the event can be detected

before it switches; therefore, smaller window sizes are preferred. 5s is the recommended

window size to detect auditory tasks, as it had one of the highest accuracies across evalua-

tions. The 10s window size performed the best for the supervisory; however, the algorithm

was not trained with the spectrogram metrics for the supervisory evaluation, and had a

limited number of tasks, in terms of variety and duration. The 5s window size choice is

also supported by literature in that algorithms that incorporate the spectrogram metric

perform well with smaller window sizes [82, 144, 159].
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Auditory tasks are independent of the human teammate, as the existence of ambient

noise characteristics is identified from sounds in audio recordings. The developed algorithm

assumed that only one auditory task occurred at any given instant; however, two or more

auditory tasks may occur together (i.e., secondary prompts overlapping with the robot’s

sampling instructions). Thus, a polyphonic auditory detection algorithm may be required

[31, 32, 204].

5.2.4 Visual Task Recognition

The visual task recognition algorithm incorporated features extracted from the eye tracker’s

fixations and saccades metrics, as well as the Xsens’ head motion tracker’s inertial metrics.

The features were fed into a RF classifier that was trained to predict one of the five

visual tasks: i) Coordination, ii) Inspect, iii) Locate, iv) Scan, and v) Null (described

in Chapter 5.1.7) for each window. The visual tasks’ data distribution before and after

the downsampling process is presented in Table 5.13. The evaluated window sizes tw =

{5s, 10s, 15s, 30s, 60s} with a 50% overlap inform the impact of the window size on

the algorithm’s performance. It is important to note that the analysis presented is only

based on the twelve participants for whom the eye tracker data was available due to the

mentioned issues with the eye tracker system (see Chapter 5.1.3).

Table 5.13: The mean (std. dev.) and the cumulative task instances for the visual compo-
nent before and after downsampling, aggregated across participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Coordination 558.25 (148.69) 6699 558.25 (148.69) 6699
Inspect 715.58 (129.75) 8587 712.33 (121.52) 8548
Locate 1477.83 (112.94) 17734 906.58 (77.68) 10879
Scan 884.17 (101.12) 10610 846.08 (82.35) 10153
Null 2736.25 (214.52) 32835 906.58 (77.68) 10879

The visual algorithm’s accuracy did not increase with the window size, as depicted in

Figure 5.18. The algorithm’s accuracy for the 5s window size was 43.42% and remained

relatively the same across window sizes. The Friedman’s test identified no significant

differences in accuracies between the window sizes (χ2(4, 12) = 2.87, p = 0.58).

The incorporated window sizes’ confusion matrices were analyzed to identify the best-

performing window size (see Figure 5.19). The algorithm had the highest classification rate
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Figure 5.18: Visual task recognition accuracy % mean (std. dev.) by window size using the
fixation, saccades, and inertial metrics.

for the Coordination and Scan tasks (≥ 50%), while the other tasks’ classification rates

were between 30−40% across window sizes. The Coordination task was often confused with

the Inspect task and vice-versa, while the Locate and Scan tasks were often misclassified

as each other. Additionally, the Inspect, Locate, and Scan tasks were frequently confused

with the Null task, and vice-versa. The Coordination and Inspect tasks’ classification rates

increased with window size, while the Locate and Scan tasks’ classification rates decreased

with window size.

The window sizes’ performances were highly polarized in that the smaller window sizes

(i.e., the 5s and 10s) had higher misclassification rates for the Coordination and Inspect

tasks, but lower misclassification rates for the Locate and Scan tasks. Contrarily, the larger

window sizes (i.e., the 30s and 60s) had lower misclassification rates for the Coordination

and Inspect tasks, but higher misclassification rates for the Locate and Scan tasks. The

15s window size provided an optimal classification trade-off across tasks.

5.2.4.1 Discussion

Hypothesis HV
1 predicted that the RF algorithm will detect tasks with ≥ 80% classification

accuracy for at least one of the window sizes, which was not supported. The algorithm’s

subpar classification performance was primarily due to the low-data regime, as the required

visual metrics were available from only twelve participants. The polarizing performance

differences between window sizes indicated that a universal window size to reliably detect

visual peer-based tasks does not exist and that the window size required to assimilate the
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Figure 5.19: Visual task recognition confusion matrices for the incorporated window sizes.
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context necessary to detect a task largely depends on the tasks’ duration. Among the

analyzed window sizes, the 15s is the recommended window size, as it presents a balanced

performance across tasks; however, given the uncertain and dynamic nature of peer-based

scenarios, visual tasks will have varied durations. Therefore, an adaptive sliding window

or an ensemble window prediction method may be required to detect visual tasks.

5.2.5 Gross Motor Task Recognition

The gross motor task recognition algorithm incorporated the Xsens’ pelvis, shoulders,

biceps, calves, and feet IMU metrics, as well as the Bioharness’ physiological (i.e., heart

rate, respiration rate, and posture magnitude) metrics. The algorithm predicted four gross

motor tasks: i) Bend, ii) Carry, iii) Walk, and iv) Null. The gross motor tasks’ data

distribution before and after the downsampling process is presented in Table 5.14. The

Xsens’ thigh IMU metrics were replaced with the bicep and shoulder IMUs, as the prior

evaluation (Chapter 4.2.5) indicated that incorporating more than two lower-body IMU

metrics was unnecessarily redundant. The bicep and shoulder IMUs were incorporated to

capture the upper-body tasks (i.e., Bend and Carry). Window sizes, tw = {1s, 2s, 3s, 5s,
10s}, with a 50% overlap, were investigated for analyzing the window size’s impact on the

algorithm’s performance.

Table 5.14: The mean (std. dev.) and the cumulative task instances for the gross motor
component before and after downsampling, aggregated across all missions and participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Bend 4500.24 (1403.90) 153008 3144.59 (920.93) 106916
Carry 985.38 (369.64) 33503 985.38 (369.64) 33503
Walk 3953.74 (1256.84) 134427 3144.59 (920.93) 106916
Null 7155.29 (1865.16) 243280 3144.59 (920.93) 106916

Overall, the algorithm’s accuracy increased until the 5s window size (59.68%) and

decreased to 58.01% for the 10s window size when incorporating the physiological and IMU

metrics (see Figure 5.20). The Friedman’s test indicated a significant accuracy difference

between window sizes (χ2(4, 36) = 35.98, p < 0.01). The Wilcoxon signed-rank test found

that the 1s window size’s accuracy was significantly lower than all other window sizes

(p < 0.01, 0.23 < Cohen’s d < 0.47). The 5s window size’s accuracy was significantly
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Figure 5.20: Gross motor task recognition accuracy by window size when incorporating
the physiological and the IMU metrics on both limbs, shoulders, and pelvis.

higher than the 2s and 10s window sizes with a small effect size (p < 0.01, 0.18 < Cohen’s

d < 0.25), while the 3s window size’s accuracy was significantly higher than the 2s (p < 0.01,

Cohen’s d = 0.16). No other differences were significant.

Figure 5.21: Gross motor task recognition confusion matrices when incorporating the phys-
iological and IMU metrics for the 2s, 3s, 5s, and 10s window sizes.

The 2s, 3s, 5s, and 10s window sizes’ confusion matrices were analyzed to identify

the best-performing window size (see Figure 5.21). The 1s window size’s confusion matrix

appears in Appendix B Figure B.3, as it was significantly lower than the rest. The confusion

matrices indicated that the 10s window size variant had high sensitivity for the Null task,
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but had a high misclassification rate for the Bend task. The three smaller window sizes

(i.e., 2s, 3s, and 5s) had similar accuracies by tasks with each variant recognizing all four

tasks with ≥ 50% accuracy. Among the three window sizes, the 3s had the most balanced

accuracy across tasks. The 2s window size had a slightly higher confusion rate for the

Null task, whereas the 5s window size had a higher confusion rate for the Bend and Carry

task than the 3s window size. Generally, the Bend, Carry, and Null tasks were often

misclassified as Walk, while the Walk task was often confused with the Null task. For

example, the 3s window size’s confusion matrix indicates that the Bend, Carry, and Null

tasks were confused with the Walk for 17%, 23%, and 14% of the time, respectively, while

the Walk task was wrongly misclassified as Null for 19% of the time. Similar observations

can be made for other window sizes as well.

5.2.5.1 Discussion

Hypothesis HGM
1 predicted that the algorithm will detect tasks with ≥ 80% classification

accuracy for at least one window size, which was not supported. The algorithm’s subpar

performance can be attributed to three factors: low-data regime, inter-task similarity, and

intra-task variability. Increasing the task variety (from two to four), while simultaneously

decreasing the participant count (from sixty to thirty-six) caused a low-data regime that

negatively impacted the algorithm’s ability to detect the tasks accurately.

The included tasks suffered from inter-task similarity, where the tasks shared similar

motion patterns. For example, the Carry task’s motion patterns overlapped with the Walk

task considerably, causing increased confusion between the two tasks. A similar observation

can be made for the Null task, where the participants were supposed to do nothing, but

moved occasionally.

Individual differences among participants resulted in the same task being performed

differently. For example, participants were informed to lift the heavy object when per-

forming the Carry task; however, there were instances where participants pushed, slid,

and at times threw the heavy objects when clearing the debris, to keep up with the time

pressure. This intra-task variability further exacerbated the confusion rate between tasks.

The 3s window size performed the best across both supervisory (see Chapter 4.2.5) and

peer-based evaluations. Therefore, it appears to be the optimal window size for detecting

gross motor tasks for the intended domain, as it offers the best trade-off between a long

enough window that extracts features representative of the tasks, and short enough to



177

identify the logged tasks before task switching.

5.2.6 Fine-Grained Motor Task Recognition

The fine-grained motor task recognition algorithm incorporated the Xsens IMU on the

hands and wrists of both arms, as well as the two Myos’ forearm IMU and the 8-channel

sEMG. The algorithm employed eight CNNs, where each network extracted features per-

taining to each metric’s left and right arms. The CNN features were combined to predict

one of the six fine-grained motor tasks: i) Package, ii) Pick, iii) Reach, iv) Sample, v) Write,

and vi) Null for each window. The fine-grained motor tasks’ data distribution before and

after the downsampling process is presented in Table 5.15. Five window sizes (tw = {1s,
2s, 3s, 5s, 10s}) were investigated.

Table 5.15: The mean (std. dev.) and the cumulative task instances for the fine-grained
motor component before and after downsampling, aggregated across participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Package 922.47 (405.30) 31364 922.47 (405.30) 31364
Pick 4072.91 (1348.68) 138479 1775.35 (517.13) 60362
Reach 1714.09 (558.55) 58279 1520.09 (457.28) 51683
Sample 1455.88 (589.51) 49500 1426.94 (562.74) 48516
Write 721.94 (262.97) 24546 721.94 (262.97) 24546
Null 7709.94 (2166.63) 262138 1775.35 (517.13) 60362

The fine-grained motor algorithm’s accuracy did not increase with the window size when

incorporating all four metrics for both arms, as depicted in Figure 5.22. The algorithm’s

accuracy for the 1s window size was 37.65% and remained relatively the same across window

sizes. The Friedman’s test identified no significant differences in accuracies between the

window sizes (χ2(4, 25) = 8.42, p = 0.08).

The incorporated window sizes’ confusion matrices were analyzed to understand the

misclassification rate between tasks and the window sizes’ impact on the tasks’ accuracies

(see Figure 5.23). Overall, the algorithm had the highest classification rate (≥ 60%) for

the Reach task, and was the lowest for Write (≤ 21%) and Null tasks (≤ 15%) across

all window sizes. The Sample and Package tasks were often confused with one other, as

these two tasks were neighboring tasks, occurring one after the other. The Write task was

frequently confused with all the other tasks (excluding the Null task), because most tasks
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Figure 5.22: Fine-grained motor task recognition accuracy % mean (std. dev.) by window
size with all four metrics from both arms.

either precede or follow the Write task. For example, the Write task is preceded by the

Pick task and followed by the Reach task during the Clearing missions, while it is preceded

by the Sample and followed by the Package tasks during the Sampling missions. It is also

important to note that some tasks are highly sensitive to changes in window size. For

example, the Sample tasks’ classification rate increased with the increase in window size,

while the Package tasks’ rate was progressively worse. Another observation is that the

Reach task’s classification rate increased from 60% to 81% until the 5s window size and

dropped to 70%. Overall, the 3s and 5s window sizes had higher classification rates and

lower confusion across tasks when compared to the rest of the window sizes.

5.2.6.1 Discussion

Hypothesis HFM
1 predicted that the algorithm will detect tasks with ≥ 80% classification

accuracy for at least one of the window sizes, which was not supported. The significant

drop in the algorithm’s accuracy for detecting the peer-based tasks is two-fold. Firstly, the

volume of the dataset did not increase proportionately to the increase in the number of

fine-grained motor tasks detected. Additionally, the task downsampling procedure to avoid

algorithm bias further reduced the data points available per task. These two attributes

effectively created a low-data regime, resulting in poor algorithm optimization. Lastly, most

misclassifications occurred during transitions between tasks, implying that inertial-based
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Figure 5.23: Fine-grained motor task recognition confusion matrices for the incorporated
window sizes.
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task recognition algorithms may be susceptible to task transitions due to signal variations

[35]. The high confusion rates during transitions led to lower classification accuracy, as

tasks switched frequently.

Overall, the 3s and 5s window sizes performed the best across both evaluations. The 3s

is preferred over the 5s window size for detecting fine-grained motor tasks for the intended

domain, due to its shorter duration. However, the tasks will have different durations and

are highly sensitive to changes in window size. A short task (e.g., Package) may require a

smaller window (≤ 3s) so that it is not confused with other tasks, while a long-duration

task (e.g., Sample) may require a larger window (≥ 5s) to have sufficient context; therefore,

it may be necessary to use an adaptive sliding window method [170, 195] to expand and

contract the window size, based on the task. An ensemble learning algorithm may also

be leveraged, where the algorithm makes predictions over multiple fixed window sizes and

fuses the predictions across the window sizes intelligently to detect the tasks.

5.2.7 Tactile Task Recognition

The tactile task recognition algorithm incorporated inertial metrics provided by the Xsens

sensors on the hands and the forearm 8-channel sEMG from the Myos to train a deep

learning algorithm. The algorithm was trained to predict one of the eight tactile tasks:

i) Grasp, ii) Hold item, iii) Lift, iv) Package, v) Press, vi) Sample, vii) Write, and viii)

Null. The tactile tasks’ data distribution before and after the downsampling process is

presented in Table 5.16. Window sizes, tw = {0.5s, 1s, 1.5s, 2s, 3s}, with a 50% overlap,

were investigated for analyzing the window size’s impact on the algorithm’s performance.

The shorter window sizes were chosen in order to be consistent with the prior supervisory

evaluation (see Chapter 4.2.7).

The tactile algorithm’s accuracy increased from 28.28% for the 0.5s window size to

31.76% for the 1s, but remained relatively the same beyond the 1s window size (see Figure

5.24). The Friedman’s test identified a significant difference in accuracies between the

window sizes (χ2(4, 22) = 29.16, p < 0.01). The Wilcoxon signed-rank test found that

the 0.5s window size’s accuracy was significantly lower than all other window sizes with a

medium to large effect size (p < 0.01, 0.56 < Cohen’s d < 0.94). No other differences were

significant.

The 1s, 1.5s, 2s, and 5s window sizes’ confusion matrices were analyzed to identify the

best-performing window size (see Figure 5.25). The 0.5s window size’s confusion matrix is
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Table 5.16: The mean (std. dev.) and the cumulative task instances for the tactile compo-
nent before and after downsampling, aggregated across participants.

Tasks
Before Downsampling After Downsampling

Mean (std. dev.) Cumulative Mean (std. dev.) Cumulative

Grasp 8483.00 (3056.92) 288422 3751.06 (1163.45) 127536
Hold item 4222.85 (1538.16) 143577 3645.03 (1266.81) 123931
Lift 2034.26 (827.14) 69165 2034.26 (827.14) 69165
Package 1918.82 (892.17) 65240 1917.32 (888.15) 65189
Press 5104.47 (2287.71) 173552 3369.35 (1146.07) 114558
Sample 3014.62 (1319.11) 102497 2930.21 (1223.50) 99627
Write 1495.59 (591.78) 50850 1495.59 (591.78) 50850
Null 8114.94 (2689.90) 275908 3751.06 (1163.45) 127536

Figure 5.24: Tactile motor task recognition accuracy % mean (std. dev.) by window size
with the Xsens’ hand IMU and Myos’ SEMG metrics from both arms.
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Figure 5.25: Tactile task recognition confusion matrices for the 1s, 1.5s, 2s, and 3s window
sizes.
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provided in Appendix B Figure B.4, as its overall accuracy was significantly lower than the

rest. The algorithm had the highest classification rate for the Lift task (≥ 66%), and the

lowest for the Null task (≤ 5%), followed by the Write task (≤ 14%). All four window sizes

had lower misclassification rates for the Hold item, Lift, Package, and Press tasks, while

the other tasks had higher confusion rates. The Hold item task was often confused with

the Press task and vice-versa. The Sample and Write tasks were often misclassified as the

Package task, while the Grasp task was confused with the Lift task. The Grasp and Hold

item tasks’ classification rates increased with window size, while the Lift task’s classification

rate decreased with window size. The Press task’s rate increased until the 2s window size,

but dropped at the 3s window size. Other tasks’ classification rates were unaffected by the

change in window size. These observations indicate that some tactile tasks are sensitive

to changes in window size, while others tend to be unaffected. Overall, the 1.5s and 2s

window sizes’ had lower misclassification rates for most tasks when compared to the 1s and

3s window sizes’ misclassification rates.

5.2.7.1 Discussion

Hypothesis HT
1 predicted that the algorithm will detect tasks with ≥ 80% classification

accuracy for at least one of the window sizes, which was not supported. The algorithm’s

subpar performance for peer-based evaluation was primarily due to the low-data regime,

caused by the increase in the number of tasks detected; however, the inter-task similarities

(e.g., Hold item vs. Press) and task transitions (e.g., Sample vs. Write vs. Package) also

had a significant impact.

The results from both evaluations suggested that detecting tactile tasks with high

accuracy was difficult. The 1s window size was the recommended window size for the

supervisory domain, with the 1.5s being a close second. The peer-based evaluation indicates

that both 1.5s and 2s window sizes performed well. Thus, the 1.5s window size is the ideal

trade-off for detecting tactile tasks across domains. Shorter window sizes were a logical

choice for the supervisory domain, as most of the supervisory tactile interactions were

momentary; however, the peer-based evaluation revealed that an adaptive sliding window

or an ensemble learning approach is imperative to detect tactile tasks reliably, since tasks

are sensitive to changes in window size.
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5.2.8 GNN Fusion Task Consolidation

The Fusion algorithm refined the task recognition components’ logged task detections

by passing each component’s individual algorithm’s most recent task prediction scores as

input to a GNN network to derive the logged task predictions across components via joint

optimization (see Chapter 3.6). It is important to emphasize that the fusion algorithm

optimized the components’ logged task constituents, rather than the atomic tasks. The

logged task constituents serve as a representation of the atomic tasks, demonstrating the

fusion algorithm’s ability to optimize the task detections across components in a highly

dynamic, uncertain peer-based HRT task environment. This approach was necessitated

by the availability of reliable ground truth data only for the logged task constituents.

Nevertheless, the GNN fusion algorithm can jointly optimize the actual atomic tasks across

components without sacrificing generality, provided the atomic tasks’ reliable ground truth

data is available (see Chapter 5.1.7).

The logged tasks identified for each activity component are summarized in Table 5.17.

The gross motor component had two four tasks, the fine-grained motor had six, and the

tactile had eight tasks. The visual and auditory components had five and ten tasks logged

tasks, respectively, while the cognitive and speech components had seven tasks each. Thus,

the GNN fusion algorithm consolidated forty-seven logged task detections and predicted

the tasks based on the seven activity components (i.e., one per component) at any given

instance.

Table 5.17: Logged tasks identified for each activity component across all mission and
secondary tasks.

Component Logged tasks

Gross motor Walk, Bend over, Carry large object, Null

Fine-grained motor Package, Pick, Reach, Sample, Write, Null

Tactile Grasp, Hold, Lift, Package, Press, Sample, Write, Null

Visual Coordination, Inspect, Locate, Scan, Null

Cognitive Association, Conversation, Count, Evaluation, Process, Recall, Null

Auditory

Robot’s analyze prompt, Robot’s assist request, Robot’s sample
description request, Robot’s sampling instructions, Robot’s request
to report to Incident Command, Incident Command communication,
Incident Command reminder, In-situ probe, Secondary prompt, Null

Speech
Sample description, Suspicious item information, Incident Command
information, Scan request, Secondary response, In-situ response, Null
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5.2.8.1 Experimental Design

The consolidated logged detections can be fully correct, partially correct, or fully incorrect

for a given instance. Therefore, accuracy per instance is calculated as the proportion of the

predicted labels that are correct to the total number (i.e., predicted and true) of labels for

a given instance. The parital accuracy, which is the average across all instances aggregated

across participants (Equation 4.1), is used as the dependent variable to assess the fusion

algorithm’s overall performance.

Table 5.18: The individual algorithms and the corresponding window size and associated
accuracy (mean % (std. dev.)) by component from the prior section that were employed
by the fusion algorithm for consolidating the peer-based logged predictions.

Component Algorithm Window size Accuracy

Cognitive RF 15s 21.95 (4.31)
Speech Deep learning 3s 47.19 (4.91)
Auditory Deep learning 5s 47.95 (4.56)
Visual RF 15s 45.65 (4.52)
Gross motor Deep learning 3s 58.78 (8.59)
Fine-grained motor Deep learning 3s 37.68 (4.46)
Tactile Deep learning 1.5s 32.13 (5.12)

The peer-based evaluation’s results indicate that the optimal window size differed for

each individual algorithm across components (see Chapters 5.2.5 - 5.2.2). The tactile task

recognition algorithm demonstrated its best performance with a window size of 1.5 seconds,

while the visual task recognition algorithm excelled at 15s window size. The most effective

window sizes for the remaining components, along with their respective accuracies, are

outlined in Table 5.18. The GNN fusion algorithm utilized task predictions from each

individual algorithm based on their respective best-performing window sizes to jointly

optimize the logged task detections across components.

The GNN fusion algorithm was assessed using various window sizes tw = 1s, 3s, 5s,

10s, 15s, employing a one-and-half-second stride (i.e., ts = 1.5s) to inform the window

size’s impact on the GNN fusion algorithm’s performance. The evaluated window sizes en-

compass the range of window sizes used in the best-performing individual task component

algorithms. The maximum window size, 15s, was utilized for the visual and cognitive com-

ponents. The stride duration was determined by selecting the shortest duration required to

make a logged task prediction, which amounted to 1.5 seconds for the tactile component.
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5.2.8.2 Results

Overall, the fusion algorithm’s partial accuracy for the 1s window size was 87.01% and

dropped to 83.02% at the 3s window size, and remained relatively the same until the

15s window size (see Figure 5.26). The Friedman’s test indicated a significant difference

between window sizes (χ2(4, 36) = 13.40, p < 0.01). The Wilcoxon signed-rank test found

that the 1s window size’s partial accuracy was significantly higher than all other window

sizes with a medium effect size (p < 0.01, 0.56 < Cohen’s d < 0.89). No other differences

were significant. A detailed examination revealed that the 1s variant exhibited a notable

bias towards predicting the Null task for the visual and cognitive components. This bias

inflated the 1s variant’s overall accuracy, primarily due to the high frequency of instances

associated with this task. Consequently, when considering the bias associated with the 1s

window size, the fusion algorithm’s partial accuracies did not show significant variations

across window sizes.

Figure 5.26: GNN fusion algorithm’s partial accuracy % by window size aggregated across
participants.

The fusion algorithm predicted seven logged tasks simultaneously, each associated with

one of the seven activity components; therefore, each component’s accuracy improve-

ments achieved by the fusion algorithm can be compared against its corresponding best-

performing individual algorithm, as illustrated in Figure 5.27. Overall, the GNN fusion

algorithm can detect the logged tasks with ≥ 60% accuracy across all components. The

components’ accuracies improved by 30 − 40%, with the visual component experiencing
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the most substantial improvement (40%) and tactile being the least improved component

(30%). The GNN fusion’s joint optimization also led to an increase in accuracy variability

for activity components with a larger number of tasks (i.e., fine-grained motor, tactile,

auditory, and speech) by 10 − 18%. The Wilcoxon signed-rank test indicated that the

accuracies post GNN fusion’s joint optimization were significantly higher than the corre-

sponding individual algorithm’s accuracies across all components (p < 0.01). Figure 5.27

indicates that the fine-grained motor, tactile, and cognitive components bottlenecked the

GNN fusion algorithm’s performance. The GNN fusion algorithm’s 5s window size had

the best overall performance, as it achieved the highest improvement or the second highest

across most components.

Figure 5.27: The accuracy (mean % (std. dev.)) comparisons between the individual algo-
rithms and the GNN fusion algorithm by activity components for the evaluated window
sizes. NOTE: Each component’s individual algorithm’s accuracy corresponds to its best-
performing window size’s accuracy.
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Figure 5.28: Gross motor component’s confusion matrix for its best-performing individual
algorithm (3s window size) vs. GNN fusion algorithm (5s window size).

Figure 5.29: Fine motor component’s confusion matrix for its best-performing individual
algorithm (3s window size) vs. GNN fusion algorithm (5s window size).
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Figure 5.30: Tactile component’s confusion matrix for its best-performing individual algo-
rithm (1.5s window size) vs. GNN fusion algorithm (5s window size).

Figure 5.31: Visual component’s confusion matrix for its best-performing individual algo-
rithm (15s window size) vs. GNN fusion algorithm (5s window size).
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Figure 5.32: Cognitive component’s confusion matrix for its best-performing individual
algorithm (15s window size) vs. GNN fusion algorithm (5s window size).

The confusion matrix of each component’s best-performing individual algorithm is com-

pared against the corresponding confusion matrix derived from the 5s window size GNN

fusion algorithm. This comparison analyzes the task accuracies across components pre

(indicated as individual in the respective figures) and post (indicated as fusion in the re-

spective figures) GNN fusion’s joint optimization (see Figures 5.28, 5.29, 5.30, 5.31, 5.32,

5.33, 5.34). The confusion matrices indicate that the Null task was detected with near per-

fection (i.e., ≥ 91% accuracy) across all components. The GNN fusion’s joint optimization

increased the recognition rate for most tasks across components by 7−36%, with the gross

motor, visual, and speech components attaining the highest recognition rate improvement

by tasks. The GNN fusion algorithm also led to a decrease in the recognition rate for

a majority of the cognitive tasks, along with a few tactile and auditory tasks (e.g., the

tactile’s lift task and the auditory’s Incident Commander secondary prompt task).

Both the fine-grained motor and tactile components’ Sample and Write tasks contin-

ued to be misclassified as Package and Sample, respectively, even after the GNN fusion’s

joint optimization (see Figures 5.29 and 5.30). These instances of confusion highlight that

inertial-based task recognition algorithms are susceptible to task transitions. While the
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Figure 5.33: Auditory component’s confusion matrix for its best-performing individual
algorithm (5s window size) vs. GNN fusion algorithm (5s window size). Reminder: R-AP :
Robot’s analyze prompt, R-AR: Robot’s assist request, R-SD : Robot’s sample description
request, R-RI : Robot’s report to Incident Commander prompt, R-SI : Robot’s sampling
instructions, I-CM : Incident Commander’s communication, I-RM : Incident Commander’s
reminder, I-SP : Incident Commander’s secondary prompt, E-IP : Experimenter’s in-situ
probe, and N : Null.
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Figure 5.34: Speech component’s confusion matrix for its best-performing individual al-
gorithm (3s window size) vs. GNN fusion algorithm (5s window size). Reminder: R-SR:
Requesting robot to scan an item, R-DS : Describing sample to the robot, I-IN : Providing
information to the Incident Commander, I-SI : Describing a suspicious item to the Inci-
dent Commander, I-SR: Responding to Incident Commander’s secondary prompt, E-IR:
Responding to experimenter’s in-situ probe, and N : Null.
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fusion algorithm improves the tasks’ recognition rate, there are limits to its effectiveness

in preventing such occurrences. A similar trend was observed for the auditory component,

where the Incident Commander’s secondary prompts were still misclassified as reminders

and communications, even after joint optimization, likely due to the high similarity be-

tween these conversational events (see Figure 5.33). The cognitive component’s individual

algorithm exhibited a strong bias toward predicting the Evaluate, Process, Recall, and

Null tasks in its pre-fusion predictions, which led to elevated misclassification rates for the

Association, Conversation, and Count tasks (as shown in Figure 5.32). The fusion algo-

rithm’s joint optimization improved the recognition rates of the Process and Recall tasks,

but compromised the accuracy for other cognitive tasks due to the bias toward the Null

task. Interested readers can refer to Appendix B Chapter B.5 for the rest of the GNN

fusion algorithm’s window sizes’ confusion matrices.

Overall, most of the gross motor, visual, speech, and auditory components’ tasks were

detected with ≥ 80% or ∼ 80% accuracy post GNN fusion’s joint optimization. The fine-

grained motor and tactile components’ tasks achieved intermediate accuracy, ranging from

50− 85% for most tasks, while the cognitive tasks were not detected reliably.

5.2.8.3 Discussion

The GNN fusion algorithm demonstrated high sensitivity across all window sizes; however,

it is important to note that the partial accuracy may have been artificially boosted due to

the long-tailed data distribution. Across all activity components, a long-tailed distribution

was observed, where specific tasks, particularly the Null task, constituted over 80% of the

data, while other tasks were under-represented. This dominance of Null tasks influenced

the fusion algorithm when aggregated across all seven components, potentially leading to

an inflated partial accuracy.

Hypothesis H2 predicted that the GNN fusion algorithm’s joint task optimization will

improve the atomic task detection accuracy to ≥ 80% across all seven components, which

was only partially supported. The fusion algorithm’s effectiveness hinges on the accuracy

of the individual algorithms’ predictions. Although the fusion algorithm can reduce a

majority of misclassifications across components, those that remained cannot be avoided

entirely and were perpetuated by task transitions (e.g., fine-grained motor and tactile),

and inter-task similarities (e.g., auditory). Furthermore, the cognitive task detections

made by the fusion algorithm were unreliable, due to the subpar predictions generated by
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the cognitive component’s individual task recognition algorithm.

The GNN fusion algorithm is a viable option for consolidating atomic task predic-

tions across the supervisory (see Chapter 4.2.8) and peer-based domains. Determining

an ideal window size for the fusion algorithm remains challenging, as different window

sizes performed better for different components. The 5s window size is recommended as

it demonstrated the most favorable overall performance across components. Future work

must investigate incorporating adaptive or ensemble window size prediction methods for

the fusion algorithm.

5.2.9 Composite and Concurrent Task Recognition

The TCN-based Composite and Concurrent task recognition algorithm (as detailed in

Chapter 3.7), utilized the atomic task time series X as input to predict a set of twenty-one

composite tasks, each involving multiple activity components. The breakdown of these

tasks can be found in Chapter 5.1.7. Eighteen of the twenty-three composite tasks stem

from the six mission tasks, while the remaining three are associated with secondary tasks

(see Table 5.8).

The TCN-based algorithm identified concurrent composite tasks (i.e., ≥ 1 composite

tasks at any given instance) by estimating the probability of each composite task’s existence

for a given atomic task time series. The algorithm’s composite task predictions are classified

into three categories: fully correct, partially correct, or fully incorrect. Two dependent

variables, exact match ratio (Equation 4.2) and partial accuracy (Equation 4.1), along with

multi-label confusion matrices were employed to assess the performance of the TCN-based

algorithm.

The input time series X’s temporal duration was varied using different window sizes

tw = 1s, 3s, 5s, 10s, 15s, with a one-and-half second stride (i.e., ts = 1.5s) to inform its

impact on the TCN algorithm’s performance. The evaluated window sizes span the range

examined for the fusion algorithm, while the stride duration was set to match the shortest

window size used across all components.

Overall, the algorithm’s exact match ratio for the 1s window size was 80.30% and gradu-

ally increased until the 15s window size (86.89%) (see Figure 5.35). The exact match ratio’s

std. dev. was relatively low (< 3%) across window sizes, indicating that the algorithm’s

accuracy increases with window size, while maintaining the precision level. The Friedman’s

test indicated a significant difference between window sizes (χ2(4, 36) = 122.42, p < 0.01).
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Figure 5.35: TCN composite and concurrent task recognition algorithm’s exact match ratio
% mean (std. dev.) by window size aggregated across participants.

The Wilcoxon signed-rank test found that the 15s window size’s exact match ratio was sig-

nificantly higher than all other window sizes (p < 0.01, 0.30 < Cohen’s d < 2.82), while the

1s window size’s was significantly lower than the others with a large effect size (p < 0.01,

0.48 < Cohen’s d < 2.82). The 10s window size’s exact match ratio was significantly higher

than the 3s and 5s (p < 0.01, 0.99 < Cohen’s d < 1.67), while the 5s window size’s exact

match ratio was significantly higher than the 3s (p < 0.01, Cohen’s d = 0.86).

Figure 5.36: TCN composite and concurrent task recognition algorithm’s partial accuracy
% mean (std. dev.) by window size aggregated across participants.
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The algorithm’s partial accuracy for the 1s window size was 76.75%, which gradually

increased until the 15s window size (92.20%) (see Figure 5.36). The partial accuracy’s std.

dev. was relatively low (< 3%) across window sizes, following a similar trend to the algo-

rithm’s exact match ratio. The Friedman’s test indicated a significant difference between

window sizes (χ2(4, 36) = 141.67, p < 0.01). The Wilcoxon signed-rank test found that

the 15s window size’s partial accuracy was significantly higher than all other window sizes

(p < 0.01, 1.07 < Cohen’s d < 6.80), while the 1s window size’s was significantly lower than

the rest, with a very large effect size (p < 0.01, 1.55 < Cohen’s d < 6.80). The 10s window

size’s partial accuracy was significantly higher than the 3s and 5s (p < 0.01, 2.25 < Cohen’s

d < 3.81), while the 5s window size’s partial accuracy was significantly higher than the 3s

(p < 0.01, Cohen’s d = 1.77). The results indicated that the algorithm’s performance in

terms of both exact match ratio and partial accuracy increased with the temporal window

size, with the 15s window size significantly outperforming the rest.
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(a) Multi-label confusion matrices for the composite tasks that were shared across missions.

(b) Multi-label confusion matrices for the Pharmacy and Pawnshop missions’ composite
tasks.
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(c) Multi-label confusion matrices for the Solid and Liquid sampling missions’ composite
tasks.

(d) Multi-label confusion matrices for the Debris mission’s composite tasks.
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(e) Multi-label confusion matrices for the Search mission’s composite tasks.

(f) Multi-label confusion matrices for the Secondary composite tasks.

Figure 5.37: The TCN algorithm’s 15s window size variant’s multi-label confusion matrices
grouped by mission and secondary tasks aggregated across participants.
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The composite tasks’ multi-label confusion matrices were analyzed for the 15s window

size by clustering the composite tasks by missions (see Figure 5.37). The TCN-based

algorithm detected the composite tasks’ absence (i.e., true negatives) (> 98%) and presence

(i.e., true positives) (≥ 83%) with high sensitivity across all mission and secondary tasks.

Among the composite tasks, the Drop-off item and Assisting robot had relatively lower

true positive rates of 83% and 88%, respectively (as shown in Figure 5.37b), which can be

attributed to the tasks’ shorter duration as compared to the rest. Similarly, the Packing

and Unpacking kit composite tasks also exhibited lower true positive rates (as seen in Figure

5.37c) due to their shared underlying atomic task patterns. Most of the other composite

tasks had true positive rates of 95% or higher.

Other window sizes had intermediate performances and the confusion matrices are

provided in Appendix B Chapter B.6.

5.2.9.1 Discussion

Hypothesis H3 states that the TCN task recognition algorithm will detect concurrent

composite tasks with ≥ 80% accuracy, which was supported for the ≥ 5s window sizes.

The results demonstrate the algorithm’s ability to detect composite tasks reliably for the

peer-based domain. The algorithm’s exact match ratio (%) and partial accuracy did not

reach a saturation point and continued increasing, which indicates that the TCN’s dilated

causal convolutions benefit from the increased temporal context as the window size expands.

The 15s window size is the recommended window size for detecting concurrent composite

tasks for the peer-based domain, as it is relatively shorter in duration, contains a lower

number of trainable parameters, and exceeds the expected performance.
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Chapter 6: Conclusion

HRTs collaborating to achieve tasks under various conditions, especially in unstructured,

dynamic environments will require robots to adapt autonomously to a human teammate’s

state. An essential element of such adaptation is the robot’s ability to infer the human

teammate’s current tasks, since understanding human’s actions and their effects on the

world provides the robot with the necessary context for assisting the human. Existing

task recognition algorithms can detect tasks involving at most four activity components.

This dissertation developed a multi-dimensional task recognition algorithm to detect tasks

across contributing components: cognitive, visual, speech, auditory, gross motor, fine-

grained motor, and tactile. The developed algorithm fused the components’ individual

task predictions intelligently in order to recognize the concurrent, composite tasks. The

algorithm’s performance was validated using data collected from supervisory-based and

peer-based human-machine teaming evaluations, demonstrating that the developed task

recognition algorithm can be applied across task domains and teaming roles.

6.1 Cross HRT-Role Discussion

This dissertation examined three hypotheses to analyze the multi-dimensional task recog-

nition algorithm’s ability to detect atomic and composite tasks reliably across two HRT

domains. The outcomes of these hypotheses are outlined in Table 6.1. Overall, the indi-

vidual task recognition algorithms’ accuracy and reliability in detecting each component’s

atomic (or logged) tasks were lower. Several factors contributed to this underperformance:

task transitions, inter-task similarity, intra-task variability, and individual differences. The

algorithm’s performance for the peer-based evaluation was exacerbated by the increased

number of tasks and low-data regime.

Identifying sensitive metrics is of paramount importance; however, even more critical

is segmenting those metrics effectively using appropriate window sizes to ensure they en-

compass sufficient information for task detection. The analyses revealed that a universal

window size for task detection does not exist, as the optimal window size varied between

components. For example, algorithms that incorporated inertial metrics (e.g., gross motor,
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Table 6.1: Overall hypotheses summary. NOTE: ✓, − , and ✗ indicate full support, partial
support, and no support, respectively.

Hypothesis Component
Evaluation

Supervisory Peer-based

Individual algorithms will detect tasks
with ≥ 80% classification accuracy.

Gross motor ✓ ✗

Fine-grained motor ✗ ✗

Tactile ✗ ✗

Visual ✗ ✗

Cognitive ✗ ✗

Auditory − ✗

Speech ✓ ✗

The GNN fusion algorithm’s joint task
optimization will improve the atomic
task detection accuracy to ≥ 80% across
all seven components.

N/A ✓ −

The TCN task recognition algorithm
will detect concurrent composite
tasks with ≥ 80% accuracy.

N/A ✓ ✓

fine-grained motor, and tactile) demonstrated superior performance with smaller windows

(≤ 5s), while those reliant on eye tracking metrics (e.g., visual) necessitated larger win-

dows (≥ 10s). Additionally, within each component, the optimal window size fluctuated

depending on the task’s duration, and the dynamic characteristics of the task environment,

as detailed in Chapter 5.2. Overall, determining the optimal window size for a component

hinges on several factors (e.g., the incorporated metrics, the tasks being detected, and the

intended task environment’s dynamicity). An alternative approach is to avoid using a fixed

sliding window size methodology and instead opt for adaptive or ensemble sliding window

methods to improve the individual task recognition algorithms’ performance.

Each component’s individual algorithm provided task predictions independently; how-

ever, both supervisory and peer-based evaluations revealed that the components’ task pre-

dictions are highly correlated. The GNN fusion algorithm leveraged this interdependency

to improve the atomic task predictions across components. The fusion algorithm played

a crucial role in compensating for the individual algorithms’ subpar performance via joint

optimization. However, it is important to note that the joint optimization’s effectiveness is

contingent on the individual algorithms’ performance, as demonstrated in Chapter 5.2.8,

where although each component’s recognition rate increased significantly, three out of the
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seven components’ accuracy did not meet the ≥ 80% threshold.

Nevertheless, the fusion algorithm serves as a crucial link between the independent

individual task recognition algorithms and an adaptive HRT system by providing reliable,

accurate atomic task predictions. For example, a workload estimation algorithm may

utilize these atomic predictions to inform each component’s workload estimates, or use this

information to generate a more accurate overall workload estimate by assigning weights

to each component’s workload levels based on the atomic task predictions. This refined

overall estimate can enable the adaptive HRT system to make more informed decisions

about how an adaptation will affect the human teammate.

The TCN-based algorithm detected the concurrent, composite tasks with high sensi-

tivity across both evaluated domains, provided sufficient temporal context was available.

Composite tasks typically require a longer duration to complete, as they involve a sequence

of coordinated atomic and sub-composite tasks performed across components. Detecting

both composite and atomic tasks simultaneously can enable an adaptive system to under-

stand the specific composite task the human is currently engaged in, as well as gauge their

progress towards completing it. This insight can be extremely useful for projecting the

human teammate’s future workload levels. An adaptive system can leverage this informa-

tion to optimize the team’s task priorities and allocations, maximizing the team’s overall

performance and collaboration.

6.1.1 Multi-Dimensional Task Recognition Algorithm Evaluation

This dissertation established six criteria for evaluating task recognition algorithms: sen-

sitivity, suitability, generalizability, composite factor, concurrency, and anomaly awareness

(see Chapter 2.3). While each component’s individual task recognition algorithm fell short

of the expected 80% accuracy threshold, the GNN fusion’s joint optimization resulted in

≥ 80% accuracy for all seven components’ supervisory tasks and four out of the seven

components’ peer-based tasks. Thus, the developed multi-dimensional task recognition

algorithm demonstrated medium to high sensitivity in detecting tasks across components.

The algorithm conformed to the suitability criterion by incorporating sensors that are not

environmentally embedded for task detection. The algorithm only partially conformed

to the generalizability criterion, as it did not achieve the 80% accuracy threshold for all

peer-based tasks, despite being evaluated using the leave-one-subject-out cross-validation.

Finally, the multi-dimensional task recognition algorithm conformed to the composite fac-
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tor and concurrency criteria, but did not meet the anomaly awareness criterion, as it did

not detect out-of-class instances.

The developed multi-dimensional composite task recognition architecture is viable for

detecting atomic and composite tasks across components. These algorithms can be inte-

grated into an adaptive HRT system, enabling robots to adapt to the state of their human

teammates; however, it is important to acknowledge the limitations. Chapter 6.2 summa-

rizes the dissertation’s contribution to the field, while Chapter 6.3 outlines the drawbacks

and addresses measures to overcome them as future research directions.

6.2 Contributions

This dissertation resulted in three contributions to the field, each of which are summarized

below:

1. This dissertation is the first to recognize tasks across the seven activity components

using wearable sensors viable for unstructured dynamic domains. Two algorithms

[75, 97] come the closest by identifying tasks across four activity components, but

none detected tasks belonging to all seven activity components using wearable sen-

sors. The multi-dimensional task recognition algorithm detected tasks across human-

robot teaming paradigms by identifying and incorporating metrics that are sensitive,

versatile, and suitable to employ across unstructured task environments. Multiple

task environments were used to validate the algorithm’s ability to detect tasks in

representative domains. These environments comprised a diverse set of tasks with

varying complexity levels, demonstrating that the algorithm was not constrained to

a specific task environment.

2. The developed fusion algorithm combines the task detections across the seven com-

ponents using GNNs to infer the atomic tasks indirectly for components with subpar

task recognition accuracy. Robots need a holistic understanding of tasks’ specific in-

dividual task recognition components to detect them accurately, since different tasks

require different combinations of the activity components. The fusion algorithm can

enable a system to leverage its understanding of an individual’s complete task en-

gagement state across components to intelligently target adaptations based on this

knowledge (note, adaptation was outside the scope of this dissertation).
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3. This dissertation is the first to develop a task recognition algorithm that utilizes wear-

able sensors for identifying composite tasks involving multiple activity components.

A small number of composite task recognition algorithms exist, but are typically

limited to detecting composite tasks containing only gross and fine-grained motor

components (e.g., [161, 165, 185]). HRTs often perform a wide variety of tasks in-

volving combinations of all activity components.

Further, the developed composite task recognition can detect concurrent composite

tasks. Existing task recognition literature typically assumes that an individual only

performs one task at a time, which is not the case for many HRT scenarios, where the

human may perform two or more tasks concurrently. A robot’s ability to recognize

the human’s concurrently occurring composite tasks is a key requirement for realizing

a successful HRT collaboration for unstructured and dynamic environments. This

dissertation integrated a concurrency detection method into the task recognition

algorithm to detect concurrent, composite tasks.

6.3 Future Work

The use of HRTs in unstructured and dynamic domains will not become feasible until

humans can collaborate with robots as effectively as they do with other humans. Developing

such a collaborative human-robot teaming architecture requires a robot to understand an

individual’s multi-dimensional task state and adapt to changing conditions accordingly.

The developed multi-dimensional task recognition algorithm is a step toward realizing

such human-robot collaboration. This research effort can be advanced to the next level

by pursuing multiple future directions, many of which address the current algorithm’s

limitations. An overview of potential future research directions is presented in Table 6.2.

6.3.1 Adaptive Metric Segmentation

Most existing task recognition algorithms segment the sensor data into temporal chunks

using a fixed window size that are the inputs to the machine learning algorithms. A

short-duration task (e.g., Locate and Scan visual tasks) may require a smaller window

size, so that the task is not overshadowed (e.g., confused) by unrelated data, while a long-

duration task (e.g., Coordination visual task) may require a larger window size to provide

sufficient context. Therefore, it may be necessary for a task recognition algorithm to use
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Table 6.2: An Overview of the Future Research Directions

Future Research Directions

Adaptive Metric Segmentation

Out-of-class Task Recognition

Customized Recognition Models

Concurrent Atomic Task Detection

Modeling Task Transitions

Algorithmic Expansion to Detect Mission Tasks

Sensor Minimization Analysis

Real-Time Deployment Onboard a Robot

an adaptive sliding window approach [170, 194, 195]. This approach will permit expanding

and contracting the window size based on the task, which may lead to more accurate

detection. An ensemble learning algorithm may also be leveraged, where the algorithm

makes predictions over multiple fixed window sizes and fuses the predictions across the

window sizes intelligently to detect the tasks.

6.3.2 Out-of-Class Task Recognition

Due to the dynamic nature of certain task environments, humans will not always perform

tasks that are known to the algorithm, which are called out-of-class tasks. Misclassifica-

tion of an out-of-class task can result in a robot adapting its behavior incorrectly, causing

more harm than good. Existing task recognition algorithms rarely detect anomalous in-

stances and those that do require unknown negative examples during training for detecting

out-of-class instances [142, 184], which may not be always available. An out-of-class task

detection algorithm that can detect anomalous task instances automatically, without re-

quiring training on negative task examples will be crucial for appropriate robot behavior

adaptation in unstructured, dynamic domains [153].

6.3.3 Customized Recognition Models

Individual differences (e.g., strength levels, fatigue, training, expertise) result in humans

performing the same task differently, often leading to different steps, step orderings, or

completion times that can result in one task being mapped to multiple different sensor read-

ings. Robots cannot adapt well in real-time due to these individual differences, which is a
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foundational problem in collaborative HRTs that is exacerbated in unstructured, dynamic

environments. Modeling these inconsistencies caused by individual human differences is

challenging, but critical for future HRTs’ mission success. Humans must train with their

robot teammates, so that like humans, the robots can also develop customized models of

their human teammates and adapt to changing conditions. While there have been some

advances for addressing such individual differences, the existing approaches only consid-

ered gross motor and fine-grained motor tasks [9, 63, 164, 251], but not composite tasks

involving multiple activity components. Transfer learning algorithms can be leveraged to

customize the generalized task recognition algorithm to accommodate individual differ-

ences . Using such customized task recognition models can allow robots to autonomously

adapt to their human teammates more accurately and effectively. The resulting system

will enable improved team collaboration for complex domains (e.g., disaster response).

6.3.4 Concurrent Atomic Task Detection

The multi-dimensional task recognition algorithm assumed a task decomposition for which

a human teammate can only be involved in one atomic task per activity component for

any given instance. This assumption does not hold in general because an atomic task

may actually involve multiple activity components (e.g., Talking over a Walkie-Talkie task

requires tactile and speech components). Further, this assumption does not hold when the

atomic tasks are influenced by extraneous factors independent of the human teammates.

For instance, two or more auditory tasks may occur simultaneously (i.e., secondary prompts

overlapping with the robot’s sampling instructions). Therefore, algorithmic extensions that

can accommodate such overlapping atomic tasks across components may be required.

6.3.5 Modeling Task Transitions

Inertial-based task recognition algorithms (e.g., gross motor, fine-grained motor, and tactile

tasks) are vulnerable to signal variations, leading to challenges in detecting task transitions

[35]. Modeling task transitions as a separate task group to indicate that a human teammate

is transitioning from one task to the other can potentially mitigate this issue. Algorithms

capable of detecting task transitions can be augmented with the existing multi-dimensional

task recognition algorithm to inform task switching, so that appropriate robot behaviors

can be adapted.



208

6.3.6 Algorithmic Expansion to Detect Mission Tasks

The existing multi-dimensional task recognition algorithm has a restricted scope that solely

identifies atomic and composite tasks; however, accurately identifying the mission task is

pivotal for pairing a human teammate with an appropriate robot counterpart. This scenario

is particularly important for teams operating with heterogeneous robot teammates, where

each robot teammate can be tailored to specific mission requirements. For instance, drone

agents are well-suited for surveillance missions, whereas unmanned ground vehicles excel

at terrestrial activities (e.g., clearing roadblocks and debris).

6.3.7 Sensor Minimization Analysis

HRTs will engage in a diverse set of tasks, involving differing combinations of activity com-

ponents [20, 21]; therefore, adopting a multimodal approach that integrates metrics from

various sensors is crucial. However, incorporating more than three metrics per activity

element may lead to redundancy for some types of tasks and potentially hinder overall

performance, as demonstrated in the supervisory-based evaluation. Thus, it is imperative

to optimize input metrics to achieve the highest task recognition rate, while minimizing

the number of multi-modal wearable sensors required for a wide range of tasks. Identifying

the most pertinent metrics and sensors is essential to reducing the necessary number of

wearable sensors. A sensor minimization and handedness analysis must be conducted for

the peer-based evaluation in order to understand how certain design parameters (e.g., in-

corporated multimodal wearable metrics and handedness) affect the activity components’

task recognition. The insights gained from this analysis will be invaluable in the devel-

opment of task recognition algorithms for detecting HRT tasks in dynamic and uncertain

environments.

6.3.8 Real-Time Deployment Onboard a Robot

The multi-dimensional task recognition algorithm’s ability to detect tasks has only been

validated post-hoc. A system capable of recognizing the tasks in real-time across all seven

components has never been demonstrated. A real-time human teammate’s task state esti-

mation system that runs onboard a robot must be designed and deployed.
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Appendix A: Supervisory Evaluation Supplementary Results

The supervisory evaluation results that were not featured in the main chapter are de-

tailed in Appendix A. This supplementary section encompasses the confusion matrices for

each component’s individual algorithm, along with those for the GNN fusion and TCN

concurrent and composite task recognition algorithms.

A.1 Auditory Task Recognition

Figure A.1: The RF auditory task recognition algorithm’s confusion matrices for the 1s
and 15s window sizes.
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A.2 Visual Task Recognition

Figure A.2: The visual task recognition confusion matrices when fixation, saccades, and
inertial metrics are incorporated for 5s and 10s window sizes.

A.3 Gross Motor Task Recognition

Figure A.3: Gross motor task recognition confusion matrices when incorporating the phys-
iological and four lower-body IMU metrics on both legs for the 1s and 10s window sizes.
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Table A.1: Gross motor task recognition accuracy (mean % (std. dev.)) by window size,
and incorporated metrics aggregated across participants for the supervisory evaluation.
NOTE: The highest accuracy and the corresponding sensor combination are highlighted in
Bold. The accuracy when incorporating all metrics is highlighted in Blue, while the overall
highest accuracy is in Red.

No. of
sensors

Combination
Window size

1s 2s 3s 5s 10s

1

Phy 51.39 (3.45) 61.61 (6.41) 61.80 (8.13) 59.70 (9.35) 51.18 (4.32)
P 77.53 (7.54) 79.40 (7.81) 79.65 (8.20) 79.25 (7.74) 76.82 (8.25)
T 78.61 (7.05) 79.69 (7.77) 80.33 (7.99) 80.16 (7.84) 77.47 (8.89)
C 78.17 (7.17) 80.12 (7.48) 80.56 (7.86) 80.15 (7.80) 77.63 (8.10)
F 78.49 (7.22) 80.18 (7.70) 80.80 (7.81) 80.31 (7.57) 76.86 (8.31)

2

Phy + P 77.64 (7.61) 79.54 (7.74) 79.98 (7.68) 79.68 (7.56) 77.16 (8.34)
Phy + T 78.67 (7.05) 80.49 (7.70) 80.66 (8.34) 80.12 (7.48) 77.51 (9.28)
Phy + C 78.53 (6.91) 80.42 (7.70) 81.13 (7.86) 80.00 (7.90) 77.92 (7.89)
Phy + F 78.79 (7.19) 80.54 (7.70) 80.65 (8.33) 80.42 (7.46) 78.12 (8.15)
P + T 78.69 (7.21) 79.97 (7.62) 80.53 (7.98) 80.16 (7.86) 77.66 (7.71)
P + C 78.70 (7.24) 80.33 (7.77) 80.91 (7.83) 80.53 (7.56) 77.44 (7.94)
P + F 79.15 (7.36) 80.76 (7.89) 81.22 (7.80) 80.44 (7.76) 77.94 (8.48)
T + C 78.60 (7.25) 80.55 (7.79) 80.92 (8.10) 80.19 (7.50) 78.24 (8.05)
T + F 79.32 (7.13) 80.70 (7.89) 81.19 (7.66) 80.51 (7.55) 78.00 (9.48)
C + F 78.61 (7.27) 80.27 (7.68) 81.18 (7.62) 80.47 (7.53) 77.42 (9.43)

3

Phy + P + T 78.67 (7.24) 80.26 (7.97) 80.67 (8.10) 80.38 (7.61) 77.53 (8.54)
Phy + P + C 78.75 (7.23) 80.71 (7.98) 80.99 (7.94) 80.53 (7.51) 77.84 (8.25)
Phy + P + F 78.88 (7.52) 80.91 (8.00) 80.96 (7.91) 80.30 (7.79) 77.70 (8.05)
Phy + T + C 78.79 (7.08) 80.72 (7.89) 81.02 (8.05) 80.23 (7.93) 78.13 (7.79)
Phy + T + F 79.27 (7.25) 80.79 (8.07) 80.95 (7.82) 80.42 (7.65) 77.75 (8.02)
Phy + C + F 78.90 (7.20) 80.74 (7.66) 80.95 (7.89) 80.36 (7.72) 77.72 (7.74)
P + T + C 78.76 (7.25) 80.74 (7.62) 81.26 (7.76) 80.38 (7.40) 77.55 (8.87)
P + T + F 79.42 (7.16) 81.05 (7.65) 81.00 (7.41) 80.33 (7.34) 76.82 (8.36)
P + C + F 78.98 (7.17) 80.68 (7.67) 81.33 (7.72) 80.45 (7.26) 77.22 (9.08)
T + C + F 79.05 (7.21) 81.00 (7.59) 81.16 (7.58) 80.11 (7.46) 77.13 (8.78)

4

Phy + P + T + C 78.81 (7.46) 80.57 (8.10) 81.21 (8.18) 80.23 (7.42) 77.49 (8.35)
Phy + P + T + F 79.16 (7.52) 80.70 (7.94) 81.09 (7.91) 80.58 (7.46) 78.25 (8.62)
Phy + P + C + F 78.86 (7.45) 80.91 (7.77) 80.99 (7.99) 80.36 (7.78) 77.75 (8.01)
Phy + T + C + F 79.27 (7.19) 80.85 (7.62) 81.01 (7.91) 80.23 (7.73) 78.07 (8.48)
P + T + C + F 79.28 (7.28) 80.98 (7.47) 81.39 (7.54) 79.90 (7.36) 75.95 (8.47)

5 Phy + P + T + C + F 79.15 (7.55) 80.90 (7.77) 80.97 (7.89) 80.19 (7.60) 77.49 (9.53)
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A.4 Fine-Grained Motor Task Recognition

Figure A.4: Fine-grained motor task recognition 1s, 2s and 10s window size confusion
matrices when incorporating all four metrics from both arms.
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Table A.2: Fine-grained motor task recognition accuracy (mean % (std. dev.)) by window
size, handedness, and incorporated metrics aggregated across participants for the supervi-
sory evaluation. NOTE: The highest accuracy and the corresponding sensor combination
are highlighted in Bold. The accuracy when incorporating all metrics is highlighted in
Blue, while the overall highest accuracy is in Red.

No. of
sensors

Handedness Combination
Window size

1s 2s 3s 5s 10s

1

Both

Fimu 51.14 (16.04) 52.19 (17.47) 54.59 (18.51) 49.18 (17.27) 47.05 (15.54)
H 61.26 (8.54) 65.24 (9.57) 68.56 (9.26) 68.24 (8.90) 65.60 (9.55)
W 60.53 (9.41) 64.44 (10.62) 66.60 (10.66) 66.69 (9.46) 64.55 (10.52)
Femg 49.17 (15.18) 50.51 (16.38) 50.04 (16.49) 46.61 (15.06) 40.50 (11.19)

Left

Fimu 38.68 (9.35) 39.90 (10.80) 40.34 (11.00) 42.75 (12.86) 43.52 (12.57)
H 48.11 (6.83) 51.64 (8.09) 53.08 (8.38) 55.39 (8.88) 53.46 (8.06)
W 50.18 (7.13) 52.64 (7.88) 54.97 (8.35) 56.56 (8.39) 57.51 (8.76)
Femg 33.78 (9.34) 34.56 (9.74) 34.21 (9.14) 33.77 (9.92) 31.96 (8.41)

Right

Fimu 48.48 (15.97) 49.76 (16.93) 49.85 (16.92) 48.19 (16.50) 44.23 (12.75)
H 56.19 (7.66) 59.39 (9.74) 61.53 (9.77) 62.98 (9.50) 58.69 (10.48)
W 57.99 (10.00) 60.77 (10.28) 62.85 (10.86) 62.48 (10.79) 59.81 (12.67)
Femg 45.16 (13.90) 47.10 (15.41) 46.94 (15.70) 45.40 (15.81) 37.67 (10.62)

2

Both

Fimu + H 59.21 (11.37) 62.62 (10.84) 65.37 (10.63) 64.91 (10.03) 60.37 (10.31)
Fimu + W 59.36 (11.18) 64.33 (11.85) 65.05 (12.08) 64.51 (11.68) 59.39 (9.84)
Fimu + Femg 55.76 (19.65) 56.67 (20.37) 56.23 (20.33) 51.05 (18.36) 47.21 (16.09)
H + Femg 65.16 (11.50) 68.11 (12.19) 69.29 (11.84) 68.34 (11.55) 65.66 (9.23)
W + H 62.23 (9.31) 66.18 (10.58) 68.51 (10.94) 68.07 (9.08) 64.80 (8.86)
W + Femg 64.50 (12.75) 67.75 (13.01) 68.47 (13.41) 66.90 (11.38) 62.82 (10.74)

Left

Fimu + H 43.13 (8.12) 47.32 (8.00) 49.28 (9.12) 52.26 (9.79) 51.15 (8.64)
Fimu + W 47.07 (7.56) 50.67 (8.16) 51.92 (8.23) 54.17 (9.04) 50.94 (8.36)
Fimu + Femg 40.42 (10.67) 40.12 (10.76) 40.85 (11.40) 42.42 (13.25) 41.53 (13.06)
H + Femg 48.52 (8.16) 51.25 (8.78) 52.55 (9.20) 54.24 (8.28) 50.76 (8.81)
W + H 51.16 (7.32) 54.47 (7.72) 56.37 (8.55) 57.50 (8.44) 54.42 (8.69)
W + Femg 50.55 (7.50) 53.22 (8.29) 55.05 (9.20) 56.19 (9.26) 52.97 (7.34)

Right

Fimu + H 54.34 (10.96) 58.78 (11.75) 58.75 (12.04) 59.48 (10.18) 56.71 (10.45)
Fimu + W 56.38 (10.39) 59.41 (11.35) 59.91 (10.94) 59.86 (11.42) 57.86 (9.88)
Fimu + Femg 51.40 (17.87) 52.69 (19.19) 53.86 (19.44) 49.53 (18.73) 45.88 (16.17)
H + Femg 58.34 (10.46) 61.96 (10.91) 62.98 (11.98) 63.38 (11.51) 60.90 (12.42)
W + H 59.67 (8.89) 62.53 (9.28) 63.52 (10.60) 64.04 (9.76) 59.63 (10.92)
W + Femg 60.15 (11.03) 64.35 (11.12) 65.77 (12.10) 64.77 (12.06) 59.60 (12.48)

3

Both

Fimu + H + Femg 61.45 (16.01) 62.59 (14.75) 66.21 (14.25) 65.86 (12.63) 61.25 (11.53)
Fimu + W + H 61.03 (10.59) 65.35 (11.14) 67.31 (11.29) 66.94 (10.07) 61.99 (9.66)
Fimu + W + Femg 61.81 (15.67) 66.04 (15.98) 66.70 (15.01) 64.83 (13.70) 58.84 (12.02)
W + H + Femg 66.68 (11.80) 69.52 (12.15) 70.04 (13.04) 69.25 (10.54) 63.75 (9.75)

Left

Fimu + H + Femg 45.58 (8.76) 46.84 (8.21) 49.47 (9.51) 51.83 (8.56) 49.63 (7.96)
Fimu + W + H 48.31 (8.05) 51.39 (8.48) 53.74 (8.64) 54.47 (9.40) 51.21 (8.45)
Fimu + W + Femg 47.06 (8.07) 50.66 (8.50) 52.60 (9.10) 53.19 (8.63) 46.74 (7.82)
W + H + Femg 50.99 (7.56) 54.80 (7.94) 56.38 (9.45) 56.65 (9.75) 52.60 (9.10)

Right

Fimu + H + Femg 57.51 (13.55) 60.71 (13.48) 61.64 (13.12) 60.36 (13.62) 58.60 (12.36)
Fimu + W + H 58.00 (9.37) 61.31 (10.34) 61.98 (10.73) 62.75 (10.06) 58.90 (9.93)
Fimu + W + Femg 58.17 (14.24) 61.63 (13.51) 63.16 (12.81) 62.33 (12.72) 56.89 (12.29)
W + H + Femg 61.32 (10.88) 65.06 (11.13) 67.38 (11.16) 66.00 (11.47) 60.00 (12.24)

4
Both Fimu + W + H + Femg 64.68 (14.95) 66.89 (14.84) 68.57 (14.00) 66.02 (12.08) 62.09 (10.93)

Left Fimu + W + H + Femg 49.08 (7.73) 51.27 (7.72) 53.90 (9.75) 52.88 (9.29) 50.06 (8.53)

Right Fimu + W + H + Femg 58.44 (13.73) 63.06 (13.19) 64.62 (12.48) 62.86 (12.10) 58.22 (11.39)
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A.5 Tactile Task Recognition

Figure A.5: Tactile task recognition confusion matrices when IMU and sEMG metrics are
incorporated on Both hands for 2s and 3s window sizes.

Table A.3: Tactile task recognition accuracy (mean % (std. dev.)) by window size, hand-
edness, and incorporated metrics aggregated across participants for the supervisory evalu-
ation. NOTE: The highest accuracy when incorporating a single metric is highlighted in
Bold, while the overall highest accuracy is in Blue.

No. of
sensors

Handedness Combination
Window size

0.5s 1s 1.5s 2s 3s

1

Both
H 62.00 (8.36) 64.37 (7.83) 65.18 (7.22) 64.15 (8.08) 60.03 (12.45)
Femg 51.56 (15.68) 51.69 (17.53) 47.66 (15.54) 41.06 (13.51) 36.78 (16.71)

Left
H 49.48 (8.97) 52.38 (9.90) 51.47 (10.20) 50.92 (9.70) 46.66 (10.60)
Femg 34.68 (9.68) 35.96 (10.95) 33.32 (9.90) 30.55 (9.73) 29.17 (10.62)

Right
H 55.10 (8.69) 58.29 (8.76) 58.88 (9.66) 58.81 (10.92) 57.02 (16.79)
Femg 46.46 (13.94) 46.53 (16.27) 43.70 (13.86) 38.88 (13.23) 34.14 (11.69)

2
Both H + Femg 66.52 (13.72) 68.06 (12.93) 67.45 (11.53) 65.24 (10.78) 61.68 (14.11)

Left H + Femg 50.39 (9.84) 52.45 (8.95) 49.39 (10.73) 49.15 (9.70) 43.63 (14.73)

Right H + Femg 61.16 (11.86) 61.14 (12.79) 61.26 (12.94) 58.29 (11.33) 53.42 (15.62)
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A.6 GNN Fusion Task Recognition

Figure A.6: Gross motor component’s confusion matrices post GNN fusion algorithm’s
consolidation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.7: Fine-grained motor component’s confusion matrices post GNN fusion algo-
rithm’s consolidation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.8: Tactile component’s confusion matrices post GNN fusion algorithm’s consoli-
dation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.9: Visual component’s confusion matrices post GNN fusion algorithm’s consoli-
dation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.10: Cognitive component’s confusion matrices post GNN fusion algorithm’s con-
solidation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.11: Auditory component’s confusion matrices post GNN fusion algorithm’s con-
solidation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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Figure A.12: Speech component’s confusion matrices post GNN fusion algorithm’s consol-
idation for the 1s, 3s, 5s, 10s, 30s, and 60s window sizes.
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A.7 Composite and Concurrent Task Recognition

(a) 3s window size

(b) 5s window size
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(c) 10s window size

(d) 30s window size

Figure A.13: TCN composite and concurrent task recognition algorithm’s composite task’
multi-label for the 3s, 5s, 10s, and 30s window sizes.
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Appendix B: Peer-Based Evaluation Supplementary Results

Peer-based evaluation results that were not presented in the main chapter are provided

in Appendix B. These results encompass the confusion matrices for each component’s

individual algorithm, along with the confusion matrices for the GNN fusion and TCN

concurrent and composite task recognition algorithms.

B.1 Speech Task Recognition

Figure B.1: Speech-reliant task recognition confusion matrix for the 1s and 5s window
sizes. Reminder: R-SR: Requesting robot to scan an item, R-DS : Describing sample to
the robot, I-IN : Providing information to the Incident Commander, I-SI : Describing a
suspicious item to the Incident Commander, I-SR: Responding to Incident Commander’s
secondary prompt, E-IR: Responding to experimenter’s in-situ probe, and N : Null.
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B.2 Auditory Task Recognition

Figure B.2: Auditory task recognition confusion matrix for the 1s, 3s, 10s and 15s window
sizes. Reminder: R-AP : Robot’s analyze prompt, R-AR: Robot’s assist request, R-SD :
Robot’s sample description request, R-RI : Robot’s report to Incident Commander prompt,
R-SI : Robot’s sampling instructions, I-CM : Incident Commander’s communication, I-RM :
Incident Commander’s reminder, I-SP : Incident Commander’s secondary prompt, E-IP :
Experimenter’s in-situ probe, and N : Null.
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B.3 Gross Motor Task Recognition

Figure B.3: Gross motor task recognition confusion matrices when incorporating the phys-
iological and IMU metrics for the 1s window size.

B.4 Tactile Task Recognition

Figure B.4: Tactile task recognition confusion matrices when IMU and sEMG metrics are
incorporated on Both hands for the 0.5s window size.
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B.5 GNN Fusion Task Recognition

Figure B.5: Gross motor component’s confusion matrices post GNN fusion algorithm’s
consolidation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.6: Fine-grained motor component’s confusion matrices post GNN fusion algo-
rithm’s consolidation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.7: Tactile component’s confusion matrices post GNN fusion algorithm’s consoli-
dation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.8: Visual component’s confusion matrices post GNN fusion algorithm’s consoli-
dation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.9: Cognitive component’s confusion matrices post GNN fusion algorithm’s con-
solidation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.10: Auditory component’s confusion matrices post GNN fusion algorithm’s con-
solidation for the 1s, 3s, 10s, and 15s window sizes.
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Figure B.11: Speech component’s confusion matrices post GNN fusion algorithm’s consol-
idation for the 1s, 3s, 10s, and 15s window sizes.
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B.6 Composite and Concurrent Task Recognition

B.6.1 1s Window Size

(a) Multi-label confusion matrices for the composite tasks that were shared across missions.

(b) Multi-label confusion matrices for the Pharmacy and Pawnshop missions’ composite
tasks.
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(c) Multi-label confusion matrices for the Solid and Liquid sampling missions’ composite
tasks.

(d) Multi-label confusion matrices for the Debris mission’s composite tasks.
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(e) Multi-label confusion matrices for the Search mission’s composite tasks.

(f) Multi-label confusion matrices for the Secondary composite tasks.

Figure B.12: The TCN algorithm’s 1s window size variant’s multi-label confusion matrices
grouped by mission and secondary tasks aggregated across participants.
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B.6.2 3s Window Size

(a) Multi-label confusion matrices for the composite tasks that were shared across missions.

(b) Multi-label confusion matrices for the Pharmacy and Pawnshop missions’ composite
tasks.
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(c) Multi-label confusion matrices for the Solid and Liquid sampling missions’ composite
tasks.

(d) Multi-label confusion matrices for the Debris mission’s composite tasks.
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(e) Multi-label confusion matrices for the Search mission’s composite tasks.

(f) Multi-label confusion matrices for the Secondary composite tasks.

Figure B.13: The TCN algorithm’s 3s window size variant’s multi-label confusion matrices
grouped by mission and secondary tasks aggregated across participants.
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B.6.3 5s Window Size

(a) Multi-label confusion matrices for the composite tasks that were shared across missions.

(b) Multi-label confusion matrices for the Pharmacy and Pawnshop missions’ composite
tasks.
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(c) Multi-label confusion matrices for the Solid and Liquid sampling missions’ composite
tasks.

(d) Multi-label confusion matrices for the Debris mission’s composite tasks.
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(e) Multi-label confusion matrices for the Search mission’s composite tasks.

(f) Multi-label confusion matrices for the Secondary composite tasks.

Figure B.14: The TCN algorithm’s 5s window size variant’s multi-label confusion matrices
grouped by mission and secondary tasks aggregated across participants.
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B.6.4 10s Window Size

(a) Multi-label confusion matrices for the composite tasks that were shared across missions.

(b) Multi-label confusion matrices for the Pharmacy and Pawnshop missions’ composite
tasks.
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(c) Multi-label confusion matrices for the Solid and Liquid sampling missions’ composite
tasks.

(d) Multi-label confusion matrices for the Debris mission’s composite tasks.
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(e) Multi-label confusion matrices for the Search mission’s composite tasks.

(f) Multi-label confusion matrices for the Secondary composite tasks.

Figure B.15: The TCN algorithm’s 10s window size variant’s multi-label confusion matrices
grouped by mission and secondary tasks aggregated across participants.
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