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Chapter 1 – Introduction

Robots are created to help humans. As the complexity and capabilities of robots

have increased, they are being used in ever more diverse situations, with latest re-

search focusing on the introduction of robots to the home environment and disaster

scenarios. With these new environments comes new challenges. These challenges

include interacting with human made objects and executing tasks normally re-

served for humans. To complete these tasks, the robot needs to be dexterous and

smart enough for handling the complexity and variety of tasks and objects.

In order to increase the dexterity and capabilities of service robots, several

multi-degree of freedom robotic hands have been developed such as the Shadow

hand, Sarah hand, Barrett Hand, iRobot, and Sandia hand (see Fig. 1.1). But

using the hands is not straight forward since objects can be used for a variety of

tasks and handled a variety of ways. Even humans, who are adept at grasping

objects, have instances where they drop objects, despite being able to detect if a

grasp is secure, loose, or slipping. Robots have yet to catch up to the capabilities

of humans, and still have issues trying to incorporate a variety of information such

as tactile, visual, and memory, in order to make a logical choice on the proper

grasp to execute.

The traditional approach used to select a grasp choice has been to use grasp

metrics. These are numerical computations which define certain parameters about
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(a) (b) (c) (d)

Figure 1.1: Example robotic hands (a) Sarah (b) Shadow (c) iRobot (d) Sandia.

the grasp such as the amount of the object enclosed by the grasp, the minimum

force the grasp can resist, and the alignment of the hand with the object. However,

even when the object shape and location are known, these metrics still have poor

performance during execution. Recent research has demonstrated that by includ-

ing multiple metrics in the grasp planner, the grasp performance can be further

improved, showing that the grasping domain is complex and multidimensional [1].

For the grasp planner to be robust even in the presence of sensing and perception

errors, it needs to be able to combine the various metrics in order to account for

complex interactions of metrics and grasp success rate.

While human intuition was used to create the individual metrics, manually

combining the metrics to create a comprehensive and accurate grasp planner is

infeasible due to the large number of variables involved. Due to the complexities

in the grasping process, and the multitude of grasping metrics, we would like to

have an automated method for both identifying the key qualities which define a

stable grasp, and for incorporating them into an aggregate metric.

Chapter 2 explains the machine learning method which is used to examine
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some of the grasp metrics and their performance as well as the performance of the

learned grasp planner. Chapter 3 shows some of the results when the learned grasp

planner is used to plan new grasps or improve existing grasps. Chapter 4 provides

final comments about the machine learning technique, how it can be improved,

and how it can be utilized in a robotic application.
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Chapter 2 – Evaluating the Efficacy of Grasp Metrics for

Utilization in a Gaussian Process Based Grasp Predictor

With the goal of advancing the state of automatic robotic grasping, we present a

novel approach that combines machine learning techniques and rigorous validation

on a physical robotic platform in order to develop an algorithm that predicts the

quality of a robotic grasp before execution. After collecting a large grasp sample

set (522 grasps), we first conduct a thorough statistical analysis of the ability of

grasp metrics that are commonly used in the robotics literature to discriminate

between good and bad grasps. We then apply Principal Component Analysis and

Gaussian Process algorithms on the discriminative grasp metrics to build a classi-

fier that predicts grasp quality. The key findings are as follows: (i) several of the

grasp metrics in the literature are weak predictors of grasp quality when imple-

mented on a physical robotic platform; (ii) the Gaussian Process-based classifier

significantly improves grasp prediction techniques by providing an absolute grasp

quality prediction score from combining multiple grasp metrics. Specifically, the

GP classifier showed a 66% percent improvement in the True Positive classification

rate at a low False Positive rate of 5% when compared with classification based on

thresholding of individual grasp metrics.
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2.1 INTRODUCTION

Developing automatic algorithms that enable robots to grasp objects robustly is

fundamentally important to the field of robotics, since it would pave the way for

the use of robots in domestic and outdoor environments and not just in structured

industrial settings. Recognizing this need, a variety of approaches based on physics

force modeling [2, 3], machine-learning based techniques [4], and human-inspired

grasping [5] have been developed for the automatic generation and prediction of

robotic grasp success prior to execution. While significant progress has been made,

recent results show that even the best of these autonomous grasp generation meth-

ods has a failure rate of 23% when implemented on a physical robot [1]. Such a

high failure rate shows the complexity of the robotic grasping problem. This may

be attributed to the difficulty in modeling non-linear effects such as contact fric-

tion, slip, compliance, and object movement due to disturbances during grasping.

In order to overcome the challenges of modeling these effects, researchers have

developed metrics with the intention of capturing the properties that make a grasp

secure and robust even in the presence of such uncertainty. For example, the

physics-based grasp metrics “epsilon” and “volume” were developed using grasp

wrench-space computations based on the magnitude and direction of generalized

forces applied by the gripper to evaluate the grasp stability [3]. Another example

is “grasp energy”, which measures the average distance between potential grip-

per contact points and the object to determine the extent to which the object is

enveloped by the hand [6].
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Surveys of grasping literature [7, 8, 9, 10, 11, 12, 13] list as many as 24 grasp

metrics which have been developed, mostly based on kinematic models (see Ta-

ble 2.1 for a list of some of them). While some metrics, like finger spread, apply

only to three finger grippers, the majority of metrics are applicable to other mul-

tifinger grippers [14, 15] and even the human hand [16]. However, each grasp

metric individually captures only a small aspect of what makes a good grasp. As

was found in [17, 18], slight variations in hand placement relative to the object

can significantly change the metric value and grasp performance. In addition to

variable sensitivity is the issue of correlation. The metrics are often calculated

from dependent variables (such as finger contact location) which are based on the

independent variables (such as hand pose, orientation, finger spread, and object

type). Adjusting one independent variable could affect multiple dependent vari-

ables causing correlation among the various metrics.

In order to capture broader aspects of grasping and potentially improve grasp

prediction performance, researchers have also developed aggregate grasps metrics

that merge the evaluation signals from several individual metrics up to as many as

nine metrics [19]. For example, weighted sums of epsilon, volume, and energy have

been used simultaneously as a quality measure in the open source grasp planning

and evaluation software GraspIt! [20] (also see [2, 21, 22, 23, 17] and Table 2.1 for

other examples).

However, there are three key problems with the state of the art. First, most

of the grasp metrics have been evaluated through simulation only [1], with lim-

ited validation of these metrics on physical robots [24, 19, 25]. Second, current
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methods have largely failed to account for the interactions or correlations between

the grasp metrics [19, 16] which can lead to erroneous grasp quality prediction if

unaccounted for. Third, most metrics only provide a measure of relative grasp

quality, thus making it difficult to assess the grasp performance in absolute terms

prior to execution. Ideally, we would like to know the probability of success for a

grasp.

Given the state of grasp generation and grasp quality prediction algorithms,

this paper uses machine learning techniques and rigorous validation on a phys-

ical robotic platform to develop an absolute grasp quality prediction algorithm.

This paper’s key contributions are: (i) An evaluation of individual grasp metrics

commonly used in the robotics literature. (ii) The development of a data-driven

approach to use a state-of-the-art classification algorithm to predict grasp quality

and quantitatively compare its performance with prediction using current grasp

metrics individually.

2.2 BACKGROUND

In this research, we use a Gaussian Process as our machine learning algorithm

because it can model the non-linear relationship among the grasp metrics as well

as create a non-linear decision surface between good and bad grasps. In addition,

Gaussian Processes also provides the variance of its predictions, thereby providing

a measure of the confidence or uncertainty regarding the prediction. This learning

algorithm allows us to generate an estimate of the absolute grasp quality at a
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desired false positive rate, rather than a relative quality measure which current

techniques provide. Other machine learning methods that can deal with the non-

linear nature of the grasp space could also be used, but exploring all of them is

not within the scope of this paper.

2.2.1 Gaussian Process

A Gaussian Process (GP) is a non-parametric model that can be used for supervised

learning [26]. Specifically, given a set of n training samplesD = {(x1, y1), . . . , (xn, yn)},

where xi is a feature vector and yi is the output value, the algorithm learns a non-

linear function f(x) that generalizes from the training data in order to predict the

output value y for some new data instance x.

GPs may be thought of as a generalization of a multivariate Gaussian distri-

bution to infinite dimensions, such that any finite subset of the components of

this infinite-dimensional vector is jointly Gaussian. Rather than just modeling a

single function f(x), a GP is a stochastic process that models a distribution over

functions f(x).

In our work, each data instance xi is a grasp, which has k features that corre-

spond to k grasp metrics used to represent it. Table 2.1 shows the k = 12 grasp

metrics used in this paper. We use the GP to predict a continuous output value

between 0 to 1 that represents the probability of the grasp being successful. We use

an open-source GP package known as GPML1 which was implemented in Matlab2.

1http://www.gaussianprocess.org/gpml/code/matlab/doc/
2http://www.mathworks.com/
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Table 2.1: Grasp Metrics

Metric Description Min Max Source
Contact Point Equilateralness of the triangle 0 1 [7]
Equilateralnessa made by the contact points of

the finger tips
Grasp Volumea Volume of the triangular prism 0 669cm3

consisting of the finger tips and
the palm

Finger Extensionb Average finger flexion 0 1
Finger Spreada Amount of spread of the fingers 0 1
Finger Limitc Total flexion of all the fingers 0 1
Parallel Distance between center of mass 0 0.5 [27]
Symmetryb of object and contact point para-

llel to the object principal axis
Perpendicular Distance between center of mass 0 0.5
Symmetryb of object and contact point

perpendicular to the object
principal axis

Object Volume Normalized volume of the object 0 1
Encloseda enclosed by the hand
Skewnessc Alignment of the hand principal 0◦ 180◦ [1]

axis parallel to the object
principal axis

Grasp Wrench Minimum disturbance wrench 0 1 [3, 20]
(Epsilon)a that can be resisted
Grasp Wrench Volume of grasp wrench space 0 26

Volumea

Grasp Energyb Distance of hand sample points −∞ ∞
to object

aLarger = Better grasp; bSmaller = Better grasp; cMid-range = Better grasp

2.3 EXPERIMENTAL METHODS

Our approach includes a combination of grasp generation and evaluation on a phys-

ical robotic platform and machine learning techniques to develop an algorithm for
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grasp quality prediction. An overview of the process used to develop the algorithm,

including intermediate steps to perform dimensionality reduction on the data, is

shown in Fig. 2.1.

2.3.1 Grasp Metric Selection and Evaluation

We selected twelve of the most common kinematic based metrics for evaluation

and testing (see Table 2.1). Other metrics which depend on having force or con-

tact sensors were not included in this study since our Barrett manipulator system

does not have the capabilities to support them (see Fig. 2.3). While we did not

analyze the other metrics, they can easily be included using the same procedure

outlined below to increase the performance with grasping systems that have more

capabilities.

2.3.2 Collection of the Grasp Sample Set

Twenty two human subjects were recruited to provide a total of 522 robotic grasp

examples across nine everyday objects (see Fig. 2.2) using a simulation environment

developed in OpenRAVE [28]. Each human subject commanded the position, ori-

entation, finger spread, and grasp closure of the virtual BarrettHand [29] robotic

hand, and had the option of viewing the grasp from several angles. Subjects used

one of three common human-robot interfaces to grasp and pick up an object, a

gamepad controller, a three-dimensional mouse, and the recently popular “interac-
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Figure 2.1: Flow chart of experimental procedure

tive marker” display [30]. Different human-robot interfaces were utilized to ensure

that the grasp sample set was diverse and that one particular interface did not

skew the grasp examples. Also, the robot hand’s starting location was randomized

between the objects so that a subject would not repeat the same grasp across mul-

tiple objects. When the user finished grasping the object and was satisfied with the

final grasp, both the robot hand’s posture relative to the object’s coordinate frame

and the computed metric scores were recorded. The human-subject experiment

procedure was approved by Oregon State University’s Human Subjects Division.
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Figure 2.2: Nine everyday objects used for grasp generation

Figure 2.3: Shake test setup using WAM and marked reference location for object
placement

2.3.3 Evaluation of the Grasp Sample Set

To determine the quality of the grasps provided by the human subjects, we tested

the example grasps on a BarrettWAM and BarrettHand with standard rubber

fingertips. This process was done in order to validate the predictive capability
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of the metrics, as well as provide ground truth data for the machine learning

algorithm. Foam spacers were added during testing to the box and the soda can to

prevent crushing but allow for minor flexing. The test procedure involved placing

an object on a table at specific reference locations that were accurately measured

and marked on the table (see Fig. 2.3). These locations had a series of evenly spaced

radial and axial lines such that the object centroid could be placed accurately on

the reference point in the correct position and orientation.

Extra care was taken to ensure that all fingers would make contact simultane-

ously and the final grasp would closely resemble simulation. This was performed

by computing the pre-grasp finger posture for each grasp which would place the

fingers at a uniform distance away from the object’s surface but at the desired

finger spread. This is important because if the fingers did not make contact simul-

taneously, they would push away the object resulting in grasps and metric values

that do not match those planned in simulation. We did this to minimize such

effects and ensure that the physical testing results were closely associated to the

generated metric values. Thus, any noise in the grasping process was due to the

precision in positioning of the object and robotic hand.

When grasping the object, the grasp controller used was the default controller

provided by Barrett which closes all of the fingers simultaneously and stops each

finger when a force or torque threshold is exceeded. After the robot hand closed

on the object, the object was lifted and subjected to a series of rigorous distur-

bances. The disturbance was created by rotating the each of the three wrist joints

sequentially from the current joint position to the furthest joint limit and then
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Table 2.2: End-Effector Shake Test Magnitudes

Type Peak Mean
Angular Velocity (rad/s) 41.932 4.67
Linear Velocity (m/s) 87.05 0.4947
Angular Acceleration (rad/s2) 40.76 3.49
Linear Acceleration (m/s2) 86.94 0.44

back to its starting position. This was done so that the object would be subjected

to forces in all of the gripper’s primary axes and would experience translational as

well as rotational forces. The acceleration and velocity magnitudes created by the

disturbances are provided in Table 2.2 and are comparable or greater in magnitude

to disturbances used in evaluation procedures in prior work [1].

Each grasp was tested ten times for a total of 5220 trials, and a binary score (suc-

cess or fail) was recorded for each test. A specific grasp execution was considered

a failure if the object fell or slipped and hit the table during the shake process.

The success and failure binary scores from the ten trials were averaged to compute

a mean performance score for each grasp. A grasp sample was labeled “good” if it

had a performance score greater than or equal to 80%, and labeled “bad” other-

wise. This 80% threshold was based on a realistic consideration of the state of the

art in automatic robotic grasp generation, where one in four automatically gener-

ated grasps failed even in ideal laboratory conditions [1]. However, our algorithms

could easily be extended to higher thresholds of performance.
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2.3.4 Quantitative Evaluation of Grasp Metrics

The grasp metric data was normalized to a mean of 0 as

x(m,sph) =
x(m,n) − xm

σm
, (2.1)

where for a given metricm and n data points, x(m,sph) is the normalized value for

the observation x(m,n) with sample mean xm and sample standard deviation σm.

Normalizing data is important when using dimensionality reduction techniques

such as PCA so that raw metric values with large ranges do not skew the analysis.

Most importantly, normalization does not alter the ability of each metric to predict

grasp quality.

A two-tailed t-test (p-value ≤ 0.05) was used to determine if the grasp met-

ric’s values were significantly different between good and bad grasps. A metric

that showed a statistically significant difference between good and bad grasps was

considered to be a good metric which will benefit a grasp planner. In addition,

a simple classifier was built based on thresholding over the grasp metric value to

determine if a grasp was good or bad. Specifically, if the result was greater or

less than a desired threshold value, the grasp was considered a good grasp. These

two methods help provide a baseline of how discriminative a grasp metric is. This

simple classifier was compared with the GP based classifier (see section 2.3.6).
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2.3.5 Dimensionality Reduction Using Principal Component Anal-

ysis and Statistical Testing

Even though multiple grasp metrics are utilized to describe the grasp, it is possi-

ble that the grasp sample data may have smaller intrinsic dimensionality due to

(i) strong correlations between the grasp metrics and (ii) poor predictive ability of

some grasp metrics. In order to deal with the correlated metrics, we use Principal

Component Analysis (PCA) to perform a dimensionality reduction of our data by

reducing the data to only a few dimensions in the full dimensional space [31].

First, those metrics that did not show statistical significance in the t-tests

between good and bad grasps (see section 2.3.4) were eliminated. Then PCA

was applied to all the remaining dimensions and the data variance captured by

the different principal components was analyzed to determine if some principal

components contributed more to the data variance than others.

2.3.6 Building a Gaussian Process-based Classifier for Grasp Qual-

ity Prediction

The high complexity of the grasp space makes it prohibitively difficult to manually

develop a custom, composite metric, and is ideally suited for a machine learning

algorithm to merge the information provided by each metric. In this work, we

utilize a GP with a squared exponential covariance function with an Automatic

Relevance Determination distance measure. Once the desired grasp metrics and
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principal components from PCA were selected (see section 2.3.5), a cross-validation

technique using a randomized 80/20 split, where 80% of the grasp sample set was

randomly chosen to train the GP classifier and the remaining 20% of the grasp

sample set was used to test the classifier [31]. This process was repeated one

hundred times and the average performance of the GP-based classifier using a

threshold was recorded.

The GP-based classifier’s prediction was used to create a receiver operating

characteristic (ROC) curve to analyze performance trade-offs. ROC is a common

tool used in the machine learning community for evaluating a classifier’s perfor-

mance [32]. The ROC curve’s shape indicates how good the classifier is at keeping

False Positive Rates (FPR) low and True Positive Rates (TPR) high. The TPR

represents the success rate of correctly labeling successful grasps and FPR incor-

rectly labeling the unsuccessful grasps as successful. After one hundred iterations

of cross-validation, the area under the curve (AUC) for all the iterations was av-

eraged and the TPR at values of 5%, 10%, and 15% FPR were found. The AUC

value represents the classifier’s robustness by showing its probability to correctly

classify a grasp. An AUC value of 1 indicates perfect performance, and an AUC

value of 0.5 indicates random classification. To benchmark the GP classifier, we

completed a similar ROC analysis for the simple classifiers based on thresholding

on the grasp metrics (see section 2.3.4).
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2.4 RESULTS

Of the 522 grasps in the dataset, 376 (72%) grasps were good (average success

greater than 80%) and the remaining 146 were bad (28%).

2.4.1 Discriminative Ability of Individual Grasp Metrics

Table 2.3 and Fig. 2.4 provide a quantitative analysis of each grasp metric in terms

of two aspects: (i) The statistical significance of each metric to discriminate be-

tween good and bad grasps based on t-tests, (ii) The performance of a simple

classifier built by thresholding on each grasp metric. The table’s rows are sorted

based on increasing t-test p-values, which indicate that only six of the twelve grasp

metrics can individually differentiate between good and bad grasps for this set of

grasps at the p = 0.05 statistical significance level. In Fig. 2.4, the ROC curves

(mean±standard error over one hundred trials) for the best classifiers built by

thresholding individual grasp metrics and the best GP-based classifier are shown.

It is evident that the GP-based classifier performs better than classification using

individual grasp metrics in the regions of low FPR values. Furthermore, classifica-

tion based on all individual grasp metrics, except energy, is only marginally better

than random guessing as shown by the low AUC values and low TPR values in

Table 2.3.
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Table 2.3: Individual Grasp Metric Evaluation

Grasp metric t-test AUC TPR at % Success
p-value value 10% FPR at 10% FPR

*Finger Extension 4.62e-13 0.65 0.24 70.6
*Skewness 2.78e-11 0.65 0.21 67.7
*Grasp Energy 1.67e-10 0.79 0.43 81.1
*Object Volume Enclosed 1.12e-8 0.65 0.24 70.6
*Parallel Symmetry 1.63e-6 0.62 0.14 58.3
*Perpendicular Symmetry 1.80e-6 0.56 0.15 60.0
*Point Arrangement 1.14e-5 0.57 0.13 56.5
*Finger Spread 2.56e-4 0.56 0.13 56.5
*Finger Limit 4.56e-3 0.61 0.12 54.5

Triangle Size 0.28 0.51 0.05 33.3
Epsilon 0.79 0.53 0.12 54.5
Grasp Wrench Volume 0.97 0.52 0.02 16.7
∗p-value < 0.05, which indicates strong discriminative power

2.4.2 Principal Component Analysis of the Grasp Sample Set

The results from performing principal component analysis on all twelve dimen-

sions of the grasping data showed that there is significant information in all of the

components. Specifically, the cumulative variance explained by each additional

principal component increases almost linearly (correlation to a 45◦ slope line is

0.97). However, comparing the AUC values for a GP classifier using varying num-

bers of principal components (PC), the AUC increased from 0.76 with one PC

to 0.82 with four PCs, after which there was no further improvements for adding

additional PCs. While the variance explained data implies that there is significant

information in each PC, the AUC values from the GP shows that more than half
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Figure 2.4: Representative ROCs of several grasp metrics and GP classifier
(mean±standard error over one hundred trials).

of the PCs can be excluded without affecting the performance of the GP classifier.

However, testing would need to be done on a case by case basis to confirm that

some of the PCs could be excluded since the variance explained is insufficient alone

to account for this.

2.4.3 Performance of the GP-based Classifiers

Table 2.4 shows the results from building and testing GP-based classifiers using

all the grasp metrics and using all the principal components derived from subsets

of the statistically significant grasp metrics. The results show that decreasing

the number of grasp metrics used in the PCA process (but using all the principal
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Table 2.4: GP performance using PCA on different number of grasp metrics: TPR
and AUC values

Number of Grasp TPR
Metrics Used FPR FPR FPR AUC

=5% =10% =15%
1 0.11 0.22 0.31 0.65
2 0.08 0.22 0.33 0.71
3 0.20 0.37 0.46 0.78
9 0.38 0.50 0.58 0.81
12 0.32 0.47 0.56 0.80

∗All scores are statistically different (p< 0.05)

components) based on the t-test performance significantly improves the TPR values

of GP-based classifiers at a FPR of 5%. However, at the 10% and 15% FPR

values, the data shows that using nine grasp metrics provides the best TPR values.

Additionally, comparing Table 2.3 to the 10% FPR column of Table 2.4 shows the

significantly improved performance of the GP classifier over simple thresholding of

the individual metrics.

Figure 2.5 presents a visualization of a two-dimensional projection of the clas-

sification surface the GP creates for evaluating grasp quality. This particular GP

is built using all principal components of the top six grasp metrics from Table 2.3.

Despite the non-linearities, it is clear that the GP has been successful in finding

a boundary that divides the good and bad grasp region. Fig. 2.6 shows how the

performance of this classifier improves (measured in terms of AUC values) as the

data set size increases. As expected, the GP-based classifier performs worse than

thresholding using the energy metric for small datasets. However, when the grasp
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Figure 2.5: Visualization of a two dimensional projection of the six-dimensional
surface that the GP creates to predict grasp quality. The “x” indicates good
grasps and “o” indicates bad grasps from the grasp sample set. The filled area
represents the “good” grasp region with success rate greater than 83% and a 10%
FPR classification level.

sample set size goes beyond 300, the GP-based classifier performs better than

energy-based thresholding.

2.5 DISCUSSION

Accurately predicting grasp quality is a challenging problem, given the significant

amount of uncertainty in the grasping process and lack of clarity in which grasp

metrics correctly predict grasp performance. Table 2.3 shows that many of the

grasping metrics commonly used in the robotics literature are weak predictors of

grasp quality. However, the t-test procedure proved to be a good method for deter-
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Figure 2.6: Performance of GP and Energy with threshold as data set size increases

mining which grasp metrics were important and may be used to build a classifier

that combines the metrics to improve classification performance.

Using the grasp metrics in Table 2.1, the GP-based classifier (TPR=0.38) signif-

icantly improved over a classifier based on simple thresholding of individual grasp

metrics (energy TPR=0.23) resulting in a 66% improvement in the TPR rate at an

FPR of 5%. This was because the GP-based classifier non-linearly merged the sig-

nals from multiple metrics. The key finding was that the grasp metrics which have

low discriminative ability only serve to introduce noise into the classifier and make

it more difficult for GP to learn the grasp quality function. These metrics had low

discriminative power due to the users’ preference of power grasps over precision

grasps. Some of the objects and grasps were such that the fingers wrapped around

the object, but there was no palm contact when initially created in simulation.
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This resulted in grasps which did not have force closure, and thus had small grasp

wrench values and zero epsilon. However, when executed, these grasps performed

very well as they were able to fully enclose some or all of the object. As such, the

successful grasps had widely varying grasp wrench and epsilon scores, resulting in

their low performance and exclusion from the GP. If different objects and grasps

were selected, then these metrics could prove significant and be reintroduced into

the GP.

As the number of data points used to build the classifier increases, the clas-

sification success rate of the GP classifier also increases (see Fig. 2.6). From the

current data analysis, it is unclear if the GP classifier’s performance has plateaued

when using the full data set. However, it is clear from Fig. 2.5 that the current

data set’s spread can be improved, given the clustering of grasp samples in the

(−2 < PC1 < 2,−1 < PC2 < 4) range. More experiments are needed for exploring

other regions of the grasp space.

Similar experiments have been performed but usually on smaller data sets.

Specifically, ninety grasps were generated across four planar objects and tested a

total of 920 times and were able to achieve an average prediction success rate of

about 76% [19]. Another group tested thirteen novel 3-D objects across 150 trials

and achieved a prediction success rate of 81% across all objects [25]. In our work,

our experiment used 522 grasps on nine objects a total of 5220 trials and was able

to achieve a high TPR at low FPR levels and an overall success rate of 88% (at

5% FPR). A key advantage of our work is the ability to select a desired FPR level

for the prediction performance. However, given the complexity of the grasping
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problem, more grasp examples and validation over more platforms is needed to

improve the grasp predictor’s performance and to find regions of strong or weak

performance.

One key advantage the GP-based classifier offers over the individual metrics is

the significantly higher TPR at a low FPR values. This will significantly reduce

the online computation time required by reducing the number of rejected good

grasps. For example, the online grasp planner GraspIt! searches about seventy

five grasps a second in order to provide about thirty valid grasps [1]. With GP’s

higher TPR, this number can be increased to forty valid grasps which can improve

the grasp performance especially in constrained environments where typical grasps

are not possible. Alternatively, the computation time could be reduced for the

same number of candidate grasps, resulting in better performance for real-time

robotics.

One limitation of this research is the lack of including the dynamics of the

grasping process in the metric computation. While great care was taken to ensure

that the object moved negligibly during the grasping process, additional devel-

opment to include grasping dynamics in grasp quality prediction would further

improve the results as well as open up a new field for making grasp predictions of

flexible and compliant objects. Second, we used a robotic platform commonly used

for both research [33] and development3 to make the results broadly applicable.

However, more testing is needed to transfer the results to other robotic platforms

with differing capabilities.

3www.thearmrobot.com
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Chapter 3 – Improving Robotic Grasping Using a Gaussian Process

Based Grasp Predictor

With the goal of advancing the state of automatic robotic grasping, we present a

novel approach that combines machine learning techniques and rigorous validation

on a physical robotic platform in order to develop an algorithm that predicts the

quality of a robotic grasp before execution. After collecting a large grasp sample

set (522 grasps), we first conduct a thorough statistical analysis of the ability of

grasp metrics that are commonly used in the robotics literature to discriminate

between good and bad grasps. We then apply Principal Component Analysis and

Gaussian Process algorithms on the discriminative grasp metrics to build a clas-

sifier that predicts grasp quality. The resulting classifier is then used to generate

new grasps to validate its performance and compare the results to existing grasp

planners. The key findings are as follows: (i) several of the grasp metrics in the

literature are weak predictors of grasp quality when implemented on a physical

robotic platform; (ii) the Gaussian Process-based classifier significantly improves

grasp prediction techniques by providing an absolute grasp quality prediction score

from combining multiple grasp metrics; (iii) The GP classifier can be used gener-

ate new grasps to improve bad grasp samples by performing a local search to find

neighboring grasps which have improved contact points and higher success rate.

Specifically, the GP classifier showed a 66% percent improvement in the True Pos-
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itive classification rate at a low False Positive rate of 5% when compared with

classification based on thresholding of individual grasp metrics.

3.1 INTRODUCTION

Developing automatic algorithms that enable robots to grasp objects robustly is

fundamentally important to the field of robotics, since it would pave the way for

the use of robots in domestic and outdoor environments and not just in structured

industrial settings. Recognizing this need, a variety of approaches based on physics

force modeling [2, 3], machine-learning based techniques [4], and human-inspired

grasping [5] have been developed for the automatic generation and prediction of

robotic grasp success prior to execution. While significant progress has been made,

recent results show that even the best of these autonomous grasp generation meth-

ods has a failure rate of 23% when implemented on a physical robot [1]. Such a

high failure rate shows the complexity of the robotic grasping problem. This may

be attributed to the difficulty in modeling non-linear effects such as such as con-

tact friction, slip, compliance, and object movement due to disturbances during

grasping.

In order to overcome the challenges of modeling these effects, researchers have

developed metrics with the intention of capturing the properties that make a grasp

secure and robust even in the presence of such uncertainty. For example, the

physics-based grasp metrics “epsilon” and “volume” were developed using grasp

wrench-space computations based on the magnitude and direction of generalized
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forces applied by the gripper to evaluate the grasp stability [3]. Another example

is “grasp energy”, which measures the average distance between potential grip-

per contact points and the object to determine the extent to which the object is

enveloped by the hand [6].

Surveys of grasping literature [7, 8, 9, 10, 11, 12, 13] list as many as 24 grasp

metrics which have been developed, mostly based on kinematic models (see Ta-

ble 2.1 for a list of some of them). While some metrics, like finger spread, apply

only to three finger grippers, the majority of metrics are applicable to other mul-

tifinger grippers [14, 15] and even the human hand [16]. However, each grasp

metric individually captures only a small aspect of what makes a good grasp. As

was found in [17, 18], slight variations in hand placement relative to the object

can significantly change the metric value and grasp performance. In addition to

variable sensitivity is the issue of correlation. The metrics are often calculated

from dependent variables (such as finger contact location) which are based on the

independent variables (such as hand pose, orientation, finger spread, and object

type). Adjusting one independent variable could affect multiple dependent vari-

ables causing correlation among the various metrics.

In order to capture broader aspects of grasping and potentially improve grasp

prediction performance, researchers have also developed aggregate grasps metrics

that merge the evaluation signals from several individual metrics up to as many as

nine metrics [19]. For example, weighted sums of epsilon, volume, and energy have

been used simultaneously as a quality measure in the open source grasp planning

and evaluation software GraspIt! [20] (also see [2, 17, 21, 22, 23] and Table 2.1 for
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other examples).

However, there are three key problems with the state of the art. First, most

of the grasp metrics have been evaluated through simulation only [1], with lim-

ited validation of these metrics on physical robots [19, 24, 25]. Second, current

methods have largely failed to account for the interactions or correlations between

the grasp metrics [16, 19] which can lead to erroneous grasp quality prediction if

unaccounted for. Third, most metrics only provide a measure of relative grasp

quality, thus making it difficult to assess the grasp performance in absolute terms

prior to execution. Ideally, we would like to know the probability of success for a

grasp.

Several methods for learning grasps have been tried including support vector

machines (SVM), Bayesian networks (BN), and neural networks [34, 35, 36]. These

methods learn off of a small set of the grasp space, usually limited to two or three

constraints such as hand approach vector, finger joint configuration, eigengrasps,

or contact point symmetry, in order to create a more robust grasp planner. The

problem is that these approaches require information about each object and ini-

tial grasp examples. Generalization of grasp information to new objects is not

always straightforward, and often requires new grasp examples and retraining of

the algorithm.

Because the learning approach is still new and requires a lot of data, there

is still active research in human grasping controls for robots [37, 38]. However,

pure teleoperation can be a significant burden to the user if the task is sufficiently

difficult. By increasing the amount of autonomy of the robot for difficult tasks,
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the user burden can be reduced and the success rate and time of completion im-

proved [39]. One way that the level of autonomy can be increased, is to reduce the

amount of human input to high level commands only. Since grasping directions

are often confined based upon the object and the task required [35], the user can

provide grasp direction or task information, while the robot decides the low level

details of contact point location and grasp pose. Grasps chosen this way then can

be optimized by the robot, in order to find a neighboring good grasp [40, 41].

Given the state of grasp generation and grasp quality prediction algorithms,

this paper uses machine learning techniques and rigorous validation on a phys-

ical robotic platform to develop an absolute grasp quality prediction algorithm.

This paper’s key contributions are: (i) An evaluation of individual grasp metrics

commonly used in the robotics literature. (ii) The development of a data-driven

approach to use a state-of-the-art classification algorithm to predict grasp quality

and quantitatively compare its performance with prediction using current grasp

metrics individually. (iii) Use of the learned algorithm to optimize a grasp which

is initially provided by the user in order to create a successful grasp once executed

on the robot.

3.2 BACKGROUND

In this research, we use a Gaussian Process as our machine learning algorithm

because it can model the non-linear relationship among the grasp metrics as well

as create a non-linear decision surface between good and bad grasps. In addition,
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Gaussian Processes also provides the variance of its predictions, thereby providing

a measure of the confidence or uncertainty regarding the prediction. This learning

algorithm allows us to generate an estimate of the absolute grasp quality at a

desired false positive rate, rather than a relative quality measure which current

techniques provide. Other machine learning methods that can deal with the non-

linear nature of the grasp space could also be used, but exploring all of them is

not within the scope of this paper.

3.2.1 Gaussian Process

A Gaussian Process (GP) is a non-parametric model that can be used for supervised

learning [26]. Specifically, given a set of n training samplesD = {(x1, y1), . . . , (xn, yn)},

where xi is a feature vector and yi is the output value, the algorithm learns a non-

linear function f(x) that generalizes from the training data in order to predict the

output value y for some new data instance x.

GPs may be thought of as a generalization of a multivariate Gaussian distri-

bution to infinite dimensions, such that any finite subset of the components of

this infinite-dimensional vector is jointly Gaussian. Rather than just modeling a

single function f(x), a GP is a stochastic process that models a distribution over

functions f(x).

In our work, each data instance xi is a grasp, which has k features that corre-

spond to k grasp metrics used to represent it. Table 2.1 shows the k = 12 grasp

metrics used in this paper. We use the GP to predict a continuous output value
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between 0 to 1 that represents the probability of the grasp being successful. We use

an open-source GP package known as GPML1 which was implemented in Matlab2.

3.3 EXPERIMENTAL METHODS

Our approach includes a combination of grasp generation and evaluation on a phys-

ical robotic platform and machine learning techniques to develop an algorithm for

grasp quality prediction. An overview of the process used to develop the algorithm,

including intermediate steps to perform dimensionality reduction on the data, is

shown in Fig. 3.1.

3.3.1 Grasp Metric Selection and Evaluation

We selected twelve of the most common kinematic based metrics for evaluation

and testing (see Table 3.1). Other metrics which depend on having force or con-

tact sensors were not included in this study since our Barrett manipulator system

does not have the capabilities to support them (see Fig. 3.3). While we did not

analyze the other metrics, they can easily be included using the same procedure

outlined below to increase the performance with grasping systems that have more

capabilities.

1http://www.gaussianprocess.org/gpml/code/matlab/doc/
2http://www.mathworks.com/
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Table 3.1: Grasp Metrics

Metric Description Min Max Source
Contact Point Equilateralness of the triangle 0 1 [7]
Equilateralnessa made by the contact points of

the finger tips
Grasp Volumea Volume of the triangular prism 0 669cm3

consisting of the finger tips and
the palm

Finger Extensionb Average finger flexion 0 1
Finger Spreada Amount of spread of the fingers 0 1
Finger Limitc Total flexion of all the fingers 0 1
Parallel Distance between center of mass 0 0.5 [27]
Symmetryb of object and contact point para-

llel to the object principal axis
Perpendicular Distance between center of mass 0 0.5
Symmetryb of object and contact point

perpendicular to the object
principal axis

Object Volume Normalized volume of the object 0 1
Encloseda enclosed by the hand
Skewnessc Alignment of the hand principal 0◦ 180◦ [1]

axis parallel to the object
principal axis

Grasp Wrench Minimum disturbance wrench 0 1 [3, 20]
(Epsilon)a that can be resisted
Grasp Wrench Volume of grasp wrench space 0 26

Volumea

Grasp Energyb Distance of hand sample points −∞ ∞
to object

aLarger = Better grasp; bSmaller = Better grasp; cMid-range = Better grasp

3.3.2 Collection of the Grasp Sample Set

Twenty two human subjects were recruited to provide a total of 522 robotic grasp

examples across nine everyday objects (see Fig. 3.2) using a simulation environment
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Figure 3.1: Flow chart of experimental procedure

developed in OpenRAVE [28]. Each human subject commanded the position, ori-

entation, finger spread, and grasp closure of the virtual BarrettHand [29] robotic

hand, and had the option of viewing the grasp from several angles. Subjects used

one of three common human-robot interfaces to grasp and pick up an object, a

gamepad controller, a three-dimensional mouse, and the recently popular “interac-

tive marker” display [30]. Different human-robot interfaces were utilized to ensure

that the grasp sample set was diverse and that one particular interface did not

skew the grasp examples. Also, the robot hand’s starting location was randomized

between the objects so that a subject would not repeat the same grasp across mul-

tiple objects. When the user finished grasping the object and was satisfied with the

final grasp, both the robot hand’s posture relative to the object’s coordinate frame
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Figure 3.2: Nine everyday objects used for grasp generation

Figure 3.3: Shake test setup using WAM and marked reference location for object
placement

and the computed metric scores were recorded. The human-subject experiment

procedure was approved by Oregon State University’s Human Subjects Division.
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3.3.3 Evaluation of the Grasp Sample Set

To determine the quality of the grasps provided by the human subjects, we tested

the example grasps on a BarrettWAM and BarrettHand with standard rubber

fingertips. This process was done in order to validate the predictive capability

of the metrics, as well as provide ground truth data for the machine learning

algorithm. Foam spacers were added during testing to the box and the soda can to

prevent crushing but allow for minor flexing. The test procedure involved placing

an object on a table at specific reference locations that were accurately measured

and marked on the table (see Fig. 3.3). These locations had a series of evenly spaced

radial and axial lines such that the object centroid could be placed accurately on

the reference point in the correct position and orientation.

Extra care was taken to ensure that all fingers would make contact simultane-

ously and the final grasp would closely resemble simulation. This was performed

by computing the pre-grasp finger posture for each grasp which would place the

fingers at a uniform distance away from the object’s surface but at the desired

finger spread. This is important because if the fingers did not make contact simul-

taneously, they would push away the object resulting in grasps and metric values

that do not match those planned in simulation. We did this to minimize such

effects and ensure that the physical testing results were closely associated to the

generated metric values. Thus, any noise in the grasping process was due to the

precision in positioning of the object and robotic hand.

When grasping the object, the grasp controller used was the default controller
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provided by Barrett which closes all of the fingers simultaneously and stops each

finger when a force or torque threshold is exceeded. After the robot hand closed

on the object, the object was lifted and subjected to a series of rigorous distur-

bances. The disturbance was created by rotating the each of the three wrist joints

sequentially from the current joint position to the furthest joint limit and then

back to its starting position. This was done so that the object would be subjected

to forces in all of the gripper’s primary axes and would experience translational as

well as rotational forces. The acceleration and velocity magnitudes created by the

disturbances are provided in Table 3.2 and are comparable or greater in magnitude

to disturbances used in evaluation procedures in prior work [1].

Each grasp was tested ten times for a total of 5220 trials, and a binary score (suc-

cess or fail) was recorded for each test. A specific grasp execution was considered

a failure if the object fell or slipped and hit the table during the shake process.

The success and failure binary scores from the ten trials were averaged to compute

a mean performance score for each grasp. A grasp sample was labeled “good” if it

had a performance score greater than or equal to 80%, and labeled “bad” other-

wise. This 80% threshold was based on a realistic consideration of the state of the

art in automatic robotic grasp generation, where one in four automatically gener-

ated grasps failed even in ideal laboratory conditions [1]. However, our algorithms

could easily be extended to higher thresholds of performance.
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Table 3.2: End-Effector Shake Test Magnitudes

Type Peak Mean
Angular Velocity (rad/s) 41.932 4.67
Linear Velocity (m/s) 87.05 0.4947
Angular Acceleration (rad/s2) 40.76 3.49
Linear Acceleration (m/s2) 86.94 0.44

3.3.4 Quantitative Evaluation of Grasp Metrics

The grasp metric data was “spherized” or rescaled to a mean of 0 as

x(m,sph) =
x(m,n) − xm

σm
, (3.1)

where for a given metricm and n data points, x(m,sph) is the normalized value for

the observation x(m,n) with sample mean xm and sample standard deviation σm.

Normalizing data is important when using dimensionality reduction techniques

such as PCA so that raw metric values with large ranges do not skew the analysis.

Most importantly, normalization does not alter the ability of each metric to predict

grasp quality.

A two-tailed t-test (p-value ≤ 0.05) was used to determine if the grasp met-

ric’s values were significantly different between good and bad grasps. A metric

that showed a statistically significant difference between good and bad grasps was

considered to be a good metric which will benefit a grasp planner. In addition,

a simple classifier was built based on thresholding over the grasp metric value to

determine if a grasp was good or bad. Specifically, if the result was greater or
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less than a desired threshold value, the grasp was considered a good grasp. These

two methods help provide a baseline of how discriminative a grasp metric is. This

simple classifier was compared with the GP based classifier (see section 3.3.6).

3.3.5 Dimensionality Reduction Using Principal Component Anal-

ysis and Statistical Testing

Even though multiple grasp metrics are utilized to describe the grasp, it is possi-

ble that the grasp sample data may have smaller intrinsic dimensionality due to

(i) strong correlations between the grasp metrics and (ii) poor predictive ability of

some grasp metrics. In order to deal with the correlated metrics, we use Principal

Component Analysis (PCA) to perform a dimensionality reduction of our data by

reducing the data to only a few dimensions in the full dimensional space [31].

First, those metrics that did not show statistical significance in the t-tests

between good and bad grasps (see section 3.3.4) were eliminated. Then PCA

was applied to all the remaining dimensions and the data variance captured by

the different principal components was analyzed to determine if some principal

components contributed more to the data variance than others.
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3.3.6 Building a Gaussian Process-based Classifier for Grasp Qual-

ity Prediction

The high complexity of the grasp space makes it prohibitively difficult to manually

develop a custom, composite metric, and is ideally suited for a machine learning

algorithm such as GP to merge the information provided by each metric. In this

work, we utilize a GP with a squared exponential covariance function with an

Automatic Relevance Determination distance measure. Once the desired grasp

metrics and principal components from PCA were selected (see section 3.3.5), a

cross-validation validation technique using an randomized 80/20 split, where 80%

of the grasp sample set was randomly chosen to train the GP classifier and the

remaining 20% of the grasp sample set was used to test the classifier [31]. This

process was repeated one hundred times and the average performance of the GP-

based classifier using a threshold was recorded.

The GP-based classifier’s prediction was used to create a receiver operating

characteristic (ROC) curve to analyze performance trade-offs. ROC is a common

tool used in the machine learning community for evaluating a classifier’s perfor-

mance [32]. The ROC curve’s shape indicates how good the classifier is at keeping

False Positive Rates (FPR) low and True Positive Rates (TPR) high. The TPR

represents the success rate of correctly labeling successful grasps and FPR incor-

rectly labeling the unsuccessful grasps as successful. After one hundred iterations

of cross-validation, the area under the curve (AUC) for all the iterations was av-

eraged and the TPR at values of 5%, 10%, and 15% FPR were found. The AUC
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value represents the classifier’s robustness by showing its probability to correctly

classify a grasp. An AUC value of 1 indicates perfect performance, and an AUC

value of 0.5 indicates random classification. To benchmark the GP classifier, we

completed a similar ROC analysis for the simple classifiers based on thresholding

on the grasp metrics (see section 3.3.4).

3.3.7 Gaussian Process Based Grasp Improvement

Once the Gaussian process based classifier is generated, it can then be used to

evaluate the performance of new grasps. If the grasp predicted success rate is

high, it can be executed. If low, then either a new grasp must be generated, or

the provided grasp can be improved. This section gives more detail about how the

GP classifier is used to guide a selected grasp into a more desirable configuration

which has higher predicted and actual performance.

3.3.7.1 Calculation of Grasp Score

First, a seed grasp must be generated, either from human example, or based upon

environment or kinematic constraints. The metric scores of the grasp are calculated

and transformed into PC space and the performance of the grasp is then predicted

by the GP classifier. If the grasp score is low, then it can be improved by slightly

altering the grasp so that the calculated metric values place the grasp in a nearby

region in the GP PCA space which has better performance.
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As previously mentioned in Section 3.1, the metrics are calculated from several

dependent variables. Because of this, slight variations in the end-effector location

can have large effects on the calculated metric values. This means that there is

no direct mapping between the end-effector location and the metric scores, which

prevents direct back-computation from the PCA space to the end-effector space.

In order to find a grasp which matches the desired metric values, a forward search

must be done where the end-effector is perturbed first, then the metric values

calculated to determine the GP prediction score.

After the GP score is calculated, the GP surface plot with the resulting grasp

score are displayed to the user using Matplotlib [42] (see Fig. 3.4). For more

complex surfaces, the plot can be used to select a region of better performance

to drive the grasp search algorithm towards. This approach helps to avoid the

problem that a gradient search has, namely that of finding local maximums which

are suboptimal. If the surface is simple, then a grasp search solely based on GP

predicted score is adequate enough.

3.3.7.2 Grasp Search Protocol

In order to improve the grasp performance, an optimization algorithm is used

to perturb the grasp to improve the GP prediction score. We then repeat this

process until the grasp cannot be improved any further or until the desired grasp

performance is obtained (see Algorithm 1).
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Figure 3.4: Plot showing PC1 and PC2 of GP surface with color levels for predicted
score and shading based on uncertainty. Current grasp location with GP predicted
value shown.

Algorithm 1 Grasp Search Protocol

m = seed grasp(s)

Sm = GP predicted success rate for all m

Goal = GP target

while Sm1 < Goal do

for all i in m do

for j in (1,2,...,20) do

Cn = mi + (∆pose,∆spread)

end for

end for

Sn = GP success rate for all Cn

m = best 4 grasps

Sm = GP success rate for all m

end while
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First, a seed grasp must be generated, either from human example, or based

upon environment or kinematic constraints. For each seed grasp, twenty new candi-

date grasps are generated by adding random offsets to the translation, orientation,

and finger spread of the end-effector. Next, the new performance metrics are cal-

culated for each candidate grasp, and the grasps are ranked based upon predicted

performance and distance to the target goal. If the goal has been reached, then

the optimization algorithm finishes and returns the best performing grasp. If the

target is not reached, then the top four candidate grasps are then used as the seed

grasps for the next round of optimization. Since there are now four seed grasps,

there will be a total of eighty candidate grasps for the next round of optimization

testing. Once the optimization routine is finished, the final grasp pose is then

executed on the robot in order to compare the predicted success rate to the actual

success rate.

3.4 RESULTS

Of the 522 grasps in the dataset, 376 (72%) grasps were good (average success

greater than 80%) and the remaining 146 were bad (28%).

3.4.1 Discriminative Ability of Individual Grasp Metrics

Table 3.3 and Fig. 3.5 provide a quantitative analysis of each grasp metric in terms

of two aspects: (i) The statistical significance of each metric to discriminate be-
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tween good and bad grasps based on t-tests, (ii) The performance of a simple

classifier built by thresholding on each grasp metric. The table’s rows are sorted

based on increasing t-test p-values, which indicate that only six of the twelve grasp

metrics can individually differentiate between good and bad grasps for this set of

grasps at the p = 0.05 statistical significance level. In Fig. 3.5, the ROC curves

(mean±standard error over one hundred trials) for the best classifiers built by

thresholding individual grasp metrics and the best GP-based classifier are shown.

It is evident that the GP-based classifier performs better than classification using

individual grasp metrics in the regions of low FPR values. Furthermore, classifica-

tion based on all individual grasp metrics, except energy, is only marginally better

than random guessing as shown by the low AUC values and low TPR values in

Table 3.3.

3.4.2 Principal Component Analysis of the Grasp Sample Set

The results from performing principal component analysis on all twelve dimen-

sions grasping data showed that there is significant data in all of the components.

Specifically, the cumulative variance explained by each additional principal com-

ponent increases almost linearly (correlation to a 45◦ slope line is 0.97). However,

comparing the AUC values for a GP classifier using varying numbers of principal

components (PC), the AUC increased from 0.76 with one PC to 0.82 with four

PCs, after which there was no further improvements for adding additional PCs.

While the variance explained data implies that there is significant data in each
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Table 3.3: Individual Grasp Metric Evaluation

Grasp metric t-test AUC TPR at % Success
p-value value 10% FPR at 10% FPR

*Finger Extension 4.62e-13 0.65 0.24 70.6
*Skewness 2.78e-11 0.65 0.21 67.7
*Grasp Energy 1.67e-10 0.79 0.43 81.1
*Object Volume Enclosed 1.12e-8 0.65 0.24 70.6
*Parallel Symmetry 1.63e-6 0.62 0.14 58.3
*Perpendicular Symmetry 1.80e-6 0.56 0.15 60.0
*Point Arrangement 1.14e-5 0.57 0.13 56.5
*Finger Spread 2.56e-4 0.56 0.13 56.5
*Finger Limit 4.56e-3 0.61 0.12 54.5

Triangle Size 0.28 0.51 0.05 33.3
Epsilon 0.79 0.53 0.12 54.5
Grasp Wrench Volume 0.97 0.52 0.02 16.7
∗p-value < 0.05, which indicates strong discriminative power

PC, the AUC values from the GP shows that more than half of the PCs can be

excluded without affecting the performance of the GP classifier. However, testing

would need to be done on a case by case basis to confirm that some of the PCs

could be excluded since the variance explained is insufficient alone to account for

this.

3.4.3 Performance of the GP-based Classifiers

Table 3.4 shows the results from building and testing GP-based classifiers using

all the grasp metrics and using all the principal components derived from subsets

of the statistically significant grasp metrics. The results show that decreasing
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Figure 3.5: Representative ROCs of representative grasp metrics and GP classifier
(mean±standard error over one hundred trials).

the number of grasp metrics used in the PCA process (but using all the principal

components) based on the t-test performance significantly improves the TPR values

of GP-based classifiers at a FPR of 5%. However, at the 10% and 15% FPR

values, the data shows that using nine grasp metrics provides the best TPR values.

Additionally, comparing Table 2.3 to the 10% FPR column of Table 3.4 shows the

significantly improved performance of the GP classifier over simple thresholding of

the individual metrics. Furthermore, at the 5% FPR level, the GP classifier has a

true positive rate of 38%, which means that 38 out of 43 grasps will be successful,

for an overall success rate of 88%. This is better than other similar work which

had an overall success rate of 81% [25].

Figure 3.6 presents a visualization of a two-dimensional projection of the clas-
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Table 3.4: GP performance using PCA on different number of grasp metrics: TPR
and AUC values

Number of Grasp TPR
Metrics Used FPR FPR FPR AUC

=5% =10% =15%
1 0.11 0.22 0.31 0.65
2 0.08 0.22 0.33 0.71
3 0.20 0.37 0.46 0.78
9 0.38 0.50 0.58 0.81
12 0.32 0.47 0.56 0.80

∗All scores are statistically different (p< 0.05)

Figure 3.6: Visualization of a two dimensional projection of the a six-dimensional
surface that the GP creates to predict grasp quality. The “x” indicates good
grasps and “o” indicates bad grasps from the grasp sample set. The filled area
represents the “good” grasp region with success rate greater than 83% and a 10%
FPR classification level.
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Figure 3.7: Performance of GP and Energy with threshold as data set size increases

sification surface the GP creates for evaluating grasp quality. This particular GP

is built using all principal components of the top six grasp metrics from Table 3.3.

Despite the non-linearities, it is clear that the GP has been successful in finding

a boundary that divides the good and bad grasp region. Fig. 3.7 shows how the

performance of this classifier improves (measured in terms of AUC values) as the

data set size increases. As expected, the GP-based classifier performs worse than

thresholding using the energy metric for small datasets. However, when the grasp

sample set size goes beyond 300, the GP-based classifier performs better than

energy-based thresholding.
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(a) (b)

Figure 3.8: Example grasp (a) before (b) after optimization.

3.4.4 Grasp Improvement Results

Using fifteen grasps which had predicted success rates below the 80% threshold,

we used the GP classifier previously constructed to perform a search in an attempt

to improve the predicted success rate. After searching, the final grasps were tested

and the success rates and predicted scores were compared for the grasps both before

and after improvement. From the comparison, there was a 50% improvement in

the predicted success rate and a 40% improvement in the overall success rate (see

Table 3.5). Of the fifteen grasps tested, five had an improved GP score higher

than the 80% threshold which was determined to be a successful grasp. Of these

five, all were ultimately successful when executed on the robot showing that the

GP classifier can not only correctly classify, but can be used to improve grasp

performance from a previous bad seed grasp.
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Table 3.5: GP grasp improvement performance using fifteen different grasps

GP Score Success Rate
Object Before After Before After

soap bottle 0.56 1 3 10
soda 0.57 1 4 10
soda 0.78 1 0 10

soap bottle 0.52 0.94 0 10
cup 0.53 0.84 0 10

spool 0.46 0.75 0 10
bottle 0.63 0.75 0 10
bottle 0.54 0.75 2 0
cd case 0.55 0.62 2 0
pitcher 0.36 0.62 0 1

box 0.31 0.62 0 0
remote 0.53 0.54 4 2
remote 0.53 0.54 0 2
remote 0.41 0.54 0 5
remote 0.41 0.54 0 0
average 0.47 0.74 1 5.33

3.5 DISCUSSION

Accurately predicting grasp quality is a challenging problem, given the significant

amount of uncertainty in the grasping process and lack of clarity in which grasp

metrics correctly predict grasp performance. Table 3.3 shows that many of the

grasping metrics commonly used in the robotics literature are weak predictors of

grasp quality. However, the t-test procedure proved to be a good method for deter-

mining which grasp metrics were important and may be used to build a classifier

that combines the metrics to improve classification performance.



53

Using the grasp metrics in Table 2.1, the GP-based classifier (TPR=0.38) signif-

icantly improved over a classifier based on simple thresholding of individual grasp

metrics (energy TPR=0.23) resulting in a 66% improvement in the TPR rate at an

FPR of 5%. This was because the GP-based classifier non-linearly merged the sig-

nals from multiple metrics. The key finding was that the grasp metrics which have

low discriminative ability only serve to introduce noise into the classifier and make

it more difficult for GP to learn the grasp quality function. These metrics had low

discriminative power due to the users’ preference of power grasps over precision

grasps. Some of the objects and grasps were such that the fingers wrapped around

the object, but there was no palm contact when initially created in simulation.

This resulted in grasps which did not have force closure, and thus had small grasp

wrench values and zero epsilon. However, when executed, these grasps performed

very well as they were able to fully enclose some or all of the object. As such, the

successful grasps had widely varying grasp wrench and epsilon scores, resulting in

their low performance and exclusion from the GP. If different objects and grasps

were selected, then these metrics could prove significant and be reintroduced into

the GP.

As the number of data points used to build the classifier increases, the clas-

sification success rate of the GP classifier also increases (see Fig. 3.7). From the

current data analysis, it is unclear if the GP classifier’s performance has plateaued

when using the full data set. However, it is clear from Fig. 3.6 that the current

data set’s spread can be improved, given the clustering of grasp samples in the

(−2 < PC1 < 2,−1 < PC2 < 4) range More experiments are needed for exploring
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other regions of the grasp space.

Similar experiments have been performed but usually on smaller data sets.

Specifically, ninety grasps were generated across four planar objects and tested a

total of 920 times and were able to achieve an average prediction success rate of

about 76% [19]. Another group tested thirteen novel 3-D objects across 150 trials

and achieved a prediction success rate of 81% across all objects [25]. In our work,

our experiment used 522 grasps on nine objects a total of 5220 trials and was able

to achieve a high TPR at low FPR levels and an overall success rate of 88% (at

5% FPR). A key advantage of our work is the ability to select a desired FPR level

for the prediction performance. However, given the complexity of the grasping

problem, more grasp examples and validation over more platforms is needed to

improve the grasp predictor’s performance and to find regions of strong or weak

performance.

While the GP classifier shows promise to improve bad grasps, only one in three

grasps were able to be improved. The issue is not necessarily with the GP (since

the improved grasps had high success rate), but the search algorithm which was

insufficient for finding a better grasp. One reason why the grasps could not be

improved may be due to the constraints in the end-effector space which would

prevent reaching a target in the grasp space. For example, because of its low

profile, the remote was restricted to precision type grasps and had a low number of

successful grasps. If the grasp space preferred power grasps, then the remote would

have a reduced number of options to achieve a higher performance. Additionally,

the algorithm may have difficulties improving the grasp if neighboring grasps have
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similar poor performance [41]. Because of these issues, some grasps cannot be

improved without drastically altering the grasp, while some objects are inherently

difficult to grasp because of their size or shape.

Because the metrics were designed to be easily generalized to new objects, the

learned GP is in essence a meta-metric which is also well suited for generalization.

This means that the learned GP can be easily transferred to new objects without

the need for more grasp examples or retraining. However, if the object or robotic

hand were to change significantly, such as the contact forces or friction increasing,

then this will result in grasps which reside in a different location in the grasp search

space where grasps would have higher grasp wrench volume and higher success rate.

This does not invalidate previous data, but simply would require more testing if

the new region of the grasp space has not been thoroughly explored before. The

challenge with this method is that an accurate model of the object must be available

for planning, or else the calculation of the metrics will be incorrect. Incomplete

or partial object information would give erroneous data and result in incorrect

prediction scoress.

One key advantage the GP-based classifier offers over the individual metrics is

the significantly higher TPR at a low FPR values. This will significantly reduce

the online computation time required by reducing the number of rejected good

grasps. For example, the online grasp planner GraspIt! searches about seventy

five grasps a second in order to provide about thirty valid grasps [1]. With GP’s

higher TPR, this number can be increased to forty valid grasps which can improve

the grasp performance especially in constrained environments where typical grasps
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are not possible. Alternatively, the computation time could be reduced for the

same number of candidate grasps, resulting in better performance for real-time

robotics.

One limitation of this research is the lack of including the dynamics of the

grasping process in the metric computation. While great care was taken to ensure

that the object moved negligibly during the grasping process, additional devel-

opment to adaptively adjust finger contact points and forces according to object

motion and to include grasping dynamics in grasp quality prediction would further

improve the results as well as open up a new field for making grasp predictions

of flexible and compliant objects [36, 43, 44]. Second, we used a robotic plat-

form commonly used for both research [33] and development3 to make the results

broadly applicable. However, more testing is needed to transfer the results to other

robotic platforms with differing capabilities.

3www.thearmrobot.com
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Chapter 4 – Conclusions

In Chapter 2, we showed that the individual grasp metrics had poor classifica-

tion performance and that the best grasp metric, energy, had a 23% TPR at 5%

FPR for an overall success rate of 82%. In previous work, two grasp metrics,

energy and skewness, were combined to increase the grasp classification perfor-

mance [1]. Since manually combining the metrics across the whole grasp space

can be intractable, we implemented a machine learning method for automatically

identifying the significant metrics to increase grasp prediction performance. Us-

ing this machine learning approach, we were able to create a classifier with 38%

TPR at 5% FPR, an overall success rate of 88%, which is a 6% improvement over

using individual metrics alone. Because the machine learning algorithm is able to

learn the complex dependencies between the metrics, it is able to outperform the

classification performance of the individual metrics.

Furthermore, we were able to provide a correlation between the metric and GP

score, and that of the grasp success rate, providing for an absolute measure for

predicting grasp success rate. Previously, the grasp success rate was unknown until

the grasp is executed on the robot. Using information from previous experiments,

this method is able to provide the user with a success prediction rate to aid in the

decision making process when selecting grasps to execute.

In Chapter 3, we implemented a grasp search algorithm which is able to use the



58

learned machine algorithm to create grasps with a high success rate. We were able

to achieve an average increase in predicted grasp performance of 50%. Testing of

some of the improved grasps showed that we had a 40% increase in success rate

and a 100% TPR at a 10% FPR level for the given data set. While some of the

grasps could not be improved, there are two plausible reasons for this. First, it

could be due to the grasp space, that neighboring grasps have poor performance

or that the amount of grasp examples tested in this region are low. This would

cause the search algorithm to turn up similarly poor performing grasps, or grasps

which have very high uncertainty. Secondly, the grasp search algorithm may not be

optimized so as to be able to search intelligently to find an optimized grasp. It may

have the issue of getting stuck in a locally optimal grasp which does not meet the

global criteria of grasp successfulness. In the first case, more data would need to be

collected in this region of high uncertainty in order to increase the performance of

the classifier. However, in the second case, the search algorithm can be modified so

as to increase the space that it searches and have an intelligent, guided approach,

so as to get out of locally optimal grasps. It is, however, possible for an improved

grasp to not be found due to environment clutter or joint constraints. This would

then necessitate other fixes, such as moving the robot to a better standing location,

or introducing intermediate steps, whereby the robot moves neighboring objects

to make a solid grasp available.

Previous robotic setups required the environment to be highly structured with

objects designed so that they are easy to grasp, and robotic hands designed to

pick up specific objects. For more unstructured environments, grasping and ma-
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nipulation tasks are performed by humans teleoperating the robotic gripper into

position. With this new approach, we hope to increase the level of autonomy of

current robotic systems by creating a grasp planner which is able to successfully

plan grasps without the need for human intervention. With this increased level of

autonomy, the robot can be employed in a wider range of tasks and will be better

equipped to help humans in assisted living conditions, or perform crucial tasks in

disaster areas and locations hazardous to humans.
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