
AN ABSTRACT OF THE THESIS OF

Leonard Frank Klosinski for the M.A. in Mathematics

(Name) (Degree) (Department)

Date thesis is presented May 2, 1963 ^^

Title THE ENUMERATION OF STRINGS OF A GIVEN LENGTH IN AN

N-ARY NON-ASSOCIATIVE NON-COMMUTATIVE ALGEBRA

Abstract approved
dviajor professor)

In his book on abstract algebra, Nathan Jacobson

poses and solves the problem of finding the number of

ways of inserting parentheses in a string of given length

with binary operators. We continue the work of Jacobson

and go beyond it in that we no longer consider one binary

operator but general n-ary operators chosen from a given

set of p n-ary operators. Furthermore, the algebra we

consider is neither associative nor commutative. We

thus obtain a count of the number of strings of given

length where the strings contain any of the given p n-ary

operators.

Redacted for privacy



THE ENUMERATION OF STRINGS

OF A GIVEN LENGTH IN AN N-ARY

NON-ASSOCIATIVE NON-COMMUTATIVE ALGEBRA

by

LEONARD FRANK KLOSINSKI

A THESIS

submitted to

OREGON STATE UNIVERSITY

in partial fulfillment of

the requirements for the

degree of

MASTER OF ARTS

June 196 3



APPROVED s

Professor of Mathematics

In Charge of Major

Chairman of Department of Mathematics

Dean of Graduate School

Date thesis is presented May 2, 1963

Typed by Ola Gara

Redacted for privacy

Redacted for privacy

Redacted for privacy



DEDICATION

To those who believed.



TABLE OF CONTENTS

Page

CHAPTER Io Introduction = . « . . . . . . „ . „ „ 1

CHAPTER II. The Counting Problem . . . . . . . „ 6

BIBLIOGRAPHY . . . ... „ . . „ „ . . . . . „ . „ 26



THE ENUMERATION OF STRINGS

OF A GIVEN LENGTH IN AN N-ARY

NON-ASSOCIATIVE NON-COMMUTATIVE ALGEBRA

CHAPTER I

INTRODUCTION

The digital computer has come of age; it is an

indispensable scientific tool; it is a highly sophisti

cated instrument.

Sophisticated! It is a big word, but it is appro

priate to use just such a word to describe the maze of

wires, cores, tubes and transistors that make up the

computer of today. But what does sophisticated mean?

At one time the word was reserved for descriptions of

man. A man was sophisticated if he attended the opera.

Some time later, sophistication meant knowing when and

with what volume to applaud the diva. But sophistication

always called for, and still calls for, greater refinement

in manners.

Mathematicians then applied the word to the solution

of problems. A solution, they said, is sophisticated if

it uses ingenious and powerful methods to achieve its end.



And today, we say a computer is sophisticated. As

with man, sophistication requires refinements; and the

computer has indeed undergone a considerable number of re

finements since the days of mechanical relays. The mathe

matician can also call the computer sophisticated since it

is so designed or programmed that it uses highly ingenious

methods to arrive at solutions.

While this high degree of sophistication put Colonel

Glenn into orbit, raised the premium on our insurance

policies, and helped the businessman and scientist in in

numerable ways, it has also carried along new and more dif

ficult problems.

Let us assume that in order to complete a calcula

tion this expression must be evaluated

3 2
ax + bx + ex + d.

Since our computer is sophisticated, our problem will be

written in a special language such as FORTRAN, ALGOL, or

ALCOM, and fed into the computer. At this point, automa

tic procedures take over. Let us assume the problem is

solved using the following calculations and steps:

ex



x2

bx2

x3

ax ^

ax 3 + bx2

3 2
(ax + bx ) + ex

((ax3 + bx2) + ex) + do

It is seen that this procedure involves five multiplica

tions and three additions.

Suppose that using a different language or a dif

ferent means of interpreting the language leads to the

following calculations and steps.

x

ax

ax + b

x(ax + b)

x(ax + b) + c

x(x(ax + b) + c)

x(x(ax + b) + c) + d.

This procedure requires only three multiplications and

three additions. Thus it is faster, less expensive, and

therefore, more desirable, and, from one point of view,

more sophisticated.



4

We have seen two methods for solving the same prob

lem; others may exist. One or more of the methods are

better, i.e., faster, more accurate, than the others. We

would like to know the best method, and in order to know

this we must know all the methods.

Very briefly, let us look at another problem. In

general, because of the finite length of registers in a

computer, and the consequent roundoff, it is true that on

a computer

(ab)/c j£ a(b/c) .

Which of (ab)/c or a(b/c), if any, is better? Which is

more accurate? Which is faster?

The questions that have been posed are important in

both computer design and computer language. The answer

to these questions is not trivial, and the problem is more

than choosing one or two procedures out of a set of known

methods; for, in general, we do not know all the methods.

What is the best procedure for forming the sum of

a+b+c+d+e?

Is it

(((a + b) + c) + d) + e

or

((a + (b + c) ) + d) + e



or

a + (b + (c + (d + e)) )

or perhaps some other method? This last problem gives a

hint to a more basic question, and that is: how many

distinct methods of summing five elements exist?

With a little time and patience, it is seen that

there are fourteen methods. But suppose there are twelve

elements or twenty or seventy-five; how many distinct meth

ods are there? Or if, in the place of binary operators,

we are concerned with ternary operators, or some other

type of operator, what then?

While this paper does not solve the problem of find

ing a best method, in general, it is a start on the prob

lem of evaluation of a string with arbitrary but fixed

operators. Before the optimalization, comes the count

ing problem. And it is precisely this problem that we

solve in the following pages.



CHAPTER II

THE COUNTING PROBLEM

The introduction has given us a glance at one of the

problems the automatist must face. Now, however, we leave

the realm of the computer and turn to the abstract mathe

matical problem. Applications, though never completely

out of sight, are put aside; the idiosyncrasies of the

real world are forgotten, and we step through the looking

glass into pure mathematics. We do this in order that our

results should not seem narrow or restrictive, and because

we believe the theoretical aspect of the subject carries

its own appeal.

With this in mind, our problem becomes that of find

ing the number of strings of length k in an n-ary, non-

associative, non-commutative algebra.

As with any subject, a question of terminology quick

ly arises. We give some answer to that question by defin

ing a string as an algebraic expression containing ele

ments and operators composed in a meaningful manner. By

length, we mean the total number of elements and operators

occurring in the string. Thus



a + b

has length three, and

a + b-c/d

has length seven.

The last of the new terms introduced is form. A form

is an equivalence class of strings. Two strings are said

to have the same form if, when written in Lukasiewicz

notation, an element occurs in the second string whenever

an element occurs in the first string and an operator oc

curs in the second string whenever an operator occurs in

the first string.

To further answer the question of terminology, we

introduce the notation

Lk(Pn)

to mean the number of strings of length k with p n-ary

operators. We further define the symbol

Z(rn, s)

to be the set of strings of length r + s with r spaces for

n-ary operators and s spaces for elements. Note that the

symbols r and rn will be used interchangeably; the latter

symbol will be used primarily to emphasize the type of

operator under consideration.



With these definitions at our disposal, let us now

consider strings with one ternary operator, that is,

strings in Z(r_, s). For simplicity, the ternary operation

on a, b and c will be written as

abc.

Further

(abc)de

will mean the operation is first performed on a, b, and c,

and then on (abc), d, and e. Similar meanings will apply

if there are more than five elements.

The first question that arises asks what values r

and s may have, or what is similar, what values can k take

on? It is immediately obvious that k cannot take on all

values. For example, if k were 2, we would be looking for

a string in Z(r3, s) such that

r + s = 2.

The various possibilities for r and s are

0 12

2 10.

None of these combinations gives a string which has mean

ing.



9

Since we are concerned with strings of positive

length, the smallest value of k is 1. A string of length

1 would contain one element and no operators, and would be

of the form

a.

It has been shown above that there exist strings in

Z(l3, 3) and Z(23, 5). Thus we have seen that k can equal

1, 4, 7. And in general, the length of a string with

ternary operators is of the form 3m - 2. Furthermore,

the string is in ZC (m - 1)3, 2m - 1~}*

The proof of the previous statements follows from

these arguments. Since the ternary operators operate one

at a time, let o^ denote the i-th operator in the operat

ing sequence. Note that after a ternary operator is ap

plied to three elements, it reduces the number of the

elements by two.

Suppose there are 2m elements in a string. Then

after o.^ operates on the string with 2m elements, there

remain 2m - 2 elements. After o2 is applied, the length

of the string is again reduced by 2, and 2m - 4 elements

remain. Thus after om_-L operates on the string, there

remain 2m - 2(m - 1) or 2 elements. Another ternary



10

operator cannot be applied since only two elements remain.

And if fewer than m - 1 operators were applied, more than

two elements would remain, and additional ternary opera

tors would be required to give meaning to the string.

Thus by starting with 2m elements, we are left with a

string without meaning.

Assume that there are 2m - 1 elements in the string.

Since each successive application of operators reduces

the number of elements by two, it is clear that after m - ]

operators are applied, there remains but a single element

which is the result of the calculation. If fewer than

m - 1 operators were applied, more than one element would

remain, thereby leaving an expression without meaning.

Thus we see that there must be 2m - 1 elements and

m - 1 operators when we consider strings with ternary

operators. And this by definition says the string is in

zC(m - l)o, 2m - ±2 - Since the length of the string is

k or r + s, we have that

k= (m - 1) + (2m -1) = 3m - 2.

In order to find L-j<.(ln), it will again be necessary

to know what values k, r, and s may assume. It is again

clear that not all values for k are permissable, but which

are?



11

An n-ary operator requires n elements on which to

operate. When it is applied to the n elements, it yields

one element. Thus, if a string has s elements, s > n,

the application of one n-ary operator to the string will

reduce the number of elements by n - 1.

In a string, any number of operators can occur pro

vided there is a sufficient number of elements on which

to operate. Let us consider the string in which m - 1

(m = 1, 2, ..., j) n-ary operators occur. We wish to find

the number of elements required. We write

s = am + b.

Since each n-ary operator reduces the am + b elements by

n - 1, after m - 1 operators are applied, it must be true

that

am + b - (m - 1) (n - 1) =1.

Equating like terms, we have that

a = n - 1

b = -(n - 2) .

Thus we have that

s = (n - l)m - (n - 2)

r = m - 1

and



12

k = C(n - l)m - (n - 2)2 + (m - 1)

= nm - (n - 1) .

Knowing the length of strings is the beginning of the

solution of the problem. But now, the counting problem

begins in earnest. We once more consider strings in

Z(r3, s). The first strings that occur are in Z(03, 1).

The only form of such a string is

a.

If we have t elements, each of the elements could be writ

ten in place of a. Thus our first result is

Li (13) = t.

The next strings to consider are in Z(l3, 3). Once

again only one form is possible and that is

abc.

Since our algebra is non-.commutative, any of the t ele

ments could replace a, any of them could replace b, and

any could replace c. Therefore

L4CL3) = t3.

We point out that in the general case in which there

occur s spaces for elements, any of the given t elements,

because of non-commutativity, can replace any of the ele

ments in the s spaces. Therefore, each form of a string

will have ts meanings.



13

Strings in Z(03, 1) and Z(l3, 3) had but one form.

The number of forms of strings increases as r + s becomes

larger. As examples, strings in Z(23, 5) have three pos

sible forms.

ab(cde)

a (bed) e

(abc)de.

And strings in Z(33, 7) have these twelve forms

ab(cd (efg))

ab(c (def) g)

ab((cde)fg)

a (be(def))g

a(b(cde)f)g

a((bcd)ef)g

a (bed) (efg)

(ab(cde))fg

(a(bcd)e)fg

((abc)de)fg

(abc)d(efg)

(abc) (def)g.

We introduce the symbol f• to mean the number of

forms with i elements. It has been shown that



14

fl " 1

f3 = 1

f5 = 3

f7 = 12

And once f2k_i is found, we immediately have L3K ~(13).

We proceed to search for fov_i'

Let us look at the placement of parentheses in a

string with 2k - 1 elements

ala2a3*",a2k-2a2k-l'

and assume we know the values for f^, i < 2k - 1.

Since it is desired to find f„, ,, there would not be

any meaning if we placed the parentheses thus:

(ala2a3-•-a2k-2a2k-l)•

Before deciding how to place parentheses, consider how a

ternary operator works. It operates on three elements and

reduces them to one element. When a certain number of

operators is applied to the string with 2k - 1 elements,

the string is reduced to one element. Note that the step

of obtaining that final element is the application of a

ternary operator to three elements. Thus the 2k - 1 ele

ments must first be reduced to three elements, and this is

what we wish to consider. In what various ways can the

2k - 1 elements be grouped into three groups, each group



15

containing an odd number of elements? The first group can

have one element, three elements, five and so on up to

2k - 3 elements. The second and third groups can also

contain one, three and so on up to 2k - 3 elements. The

only requirement is that the sum of the elements in the

three groups be 2k - 1. The following table gives us

some of the possible groupingst

Group 1

1

1

Group 2 Group 3

2k

2k

2k

2k

2k - 13.

It is important to notice that there is a symmetry

among the groups, and that the groups can be permuted.

Thus the above table, with the columns interchanged, will

be repeated in a complete listing.

Let us look at two cases. The first case will have

the grouping (1, 1, 2k - 3)s

ala2(a3"°°a2k-l)'

There are f^ possible forms for the elements in the first

group, f^ forms for the elements in the second group, and



16

f2k-3 forms for the elements in group three. Since the

forms the elements in any group take are independent of the

forms the elements take in any other group, the total num

ber of forms for

ala2(a3°*'a2k-l)
is

flflf2k-3°

Consider the grouping (3, 3, 2k - 7)s

(a1a2a3)(a4a5a6)(a7...a2k_1).

In the first group there are f3 possible forms, in the

second f3, and in the third f2k-7* BY the same reasoning

as above, the total number of forms is

f3f3f2k-7°

Since the two groupings are exclusive, that is, the

grouping (3, 3, 2k - 7) cannot occur at the same time as

the grouping (1, 1, 2k - 3), we have that the total num

ber of forms for the two groupings is

flflf2k-3 + f3f3f2k-7"

We continue this process for all possible groupings

and we have that

f2k-l = flflf2k-3 + flf3f2k-5 + flf5f2k-7

+ ... + fif2k-5f3 + V2k-3fl + f3flf2k-5



17

+ f3f3f2k-7 + ••• + f3f2k-5f1

+ ••• + f2k-3flfl-

At this point, we have f_, _. written as a recursion

formula. An explicit formula is desired, but first let

us consider the search for a recursion formula in the case

of n-ary operators.

As with strings in Z(0-., 1) and Z(l_, 3), strings in

Z(0 , 1) and in Z(l , n) have but one form. The forms for
n' n'

such strings are respectively

and

12 n

From previous investigations, it is known that there occur

no strings with less than n elements but more than one

element. Then using the f. notation, we have that

fl = 1

fn = 1-

The arguments that follow in finding the recursion

formula for f, ,v, , »N are similar to those used to
(n-l)k- (n-2)

find f2v_i i-n the case of ternary operators.

Assuming we know the values for f^, i < (n - 1) k -

(n - 2), where i has the form (n - l)m - (n - 2), consider



18

the placing of parentheses in a string with (n - l)k -

(n - 2) elements:

ala2a3°°°a(n-l)k-(n-2)°

In the step immediately prior to the application of the

last n-ary operator, the (n - l)k - (n - 2) elements are

grouped into n groups. It is clear that the number of

elements in each group has the form (n - l)m - (n - 2)»

Each group can have 1, n, 2n - 1 or x elements where x is

of the proper form provided that the sum of the elements

in the n groups is (n - l)k - (n - 2). As an example, we

list three possible groupings in the following table.

Group

1

n

n

Group

2

2n-l

Group

3

Group

4

Group

n-1

1

1

Group

n

(n-1) (k-l)-(n-2)

(n-1) (k-2)-(n-2)

(n-1) (k-4)-(n-2)

Each grouping can be written as an n-tuple. We de

fine two n-tuples (x1# x2, ... , xr) , (y]_, y2> ••• > Yn)

to be different if the y^'s are not merely a permutation

of the x^'s. In order to have a complete listing of all

possible groupings, we first consider all different



19

n-tuples. We then extend the set of different n-tuples to

include the permutations of each n-tuple, throwing out

those permutations which leave the n-tuple unchanged.

This extended set of n-tuples then gives a complete list

ing of all groupings.

We proceed to investigate two casess the first with

the grouping Cl,1,1,1, ... , 1, (n-1)(k-1)-(n-2)U and the

second with the grouping Cn,l, (n-1)(k-2)-(n-2), 1, ... ,

a

A string in the first grouping will appear as

(ax) (a2) (a3) (a4) ...(a^) Unan+1. .-a (n„D k„ (n„2) ).

(The parentheses are placed around the single elements

merely to emphasize that the single element is a group.)

The elements in group 1 have f-j_ forms. Likewise the ele

ments in each of the next n-2 groups have f-, forms. The

elements in the n-th group have f, •> \ n -, \ i -,\ forms.
in-±;lk-ij-(n-2)

Since the form that the elements take in any group is in

dependent of the form elements in another group take, the

total number of forms for the above grouping is

flflflfl°°°flf(n-1)(k-1)-(n-2)*

The second grouping yields a string of this appear

ance



20

(a1a2...an)(an+1)(an+2...a(n+1)kra(2n+5))

{a(n+l)k-(2n+4))°-°^a(n-l)k-(n-2)) °

With this grouping, group 1 has fR forms, group 2 has f,

forms, group 3 has f(n_-jj /^o) -(n-2) forms • and groups 4

to n each have f1 forms. The total number of forms for the

second grouping then is

fnflf(n-l) (k-2)-(n-2)fl"-fr

The two groupings are, however, exclusive, and thus

the total number of forms for the two groupings is the sum

of the number of forms for each grouping.

When all the possible groupings are considered, each

grouping is exclusive of the other groupings. Then we

have that f(n_i) k-(n-2) ^s e<3ual to the sum of the number

of forms for each groupings

f(n-l)k-(n-2) = 2 fi fi fi •••fi
12 3 n

where ilf i2, i3, ... , in is an n-tuple in the extended

set; furthermore, the summation is over every n-tuple in

the extended set.

Returning to the case of ternary operators, we next

let

f = f(x)

and



f - f,x + f,x3 + fnx5 +
1 J D

Cubing both sides gives

. - 2k-l ^
+ f2k-lX + •

21

f3 = f1f1f1x3 + (f1f]_f3 + f1f3f1 + f3fifi)x5

+ (flflf5 + flf3f3 + flf5fl + f3flf3

+ V/x + f5fifi)x7 + — •
We then apply the recursion formula to the above to obtain

f = f_x + f5x + f_x + ...

and it follows that

f - f,x.

Since f, = 1

fJ = f - x.

Then by Lagrange's formula for the reversion of a

series, we have that

f = x_

i!

d
i-1

-df
.i-1

(1 - f2)"1

which, when written explicitly, is

f = x + ~ 2-3 + 5
x 5-6(40

21
+

f=0

+
2k-l

x

(2k - 1) !
(2k - 1) ...(3k - 3) (2m - 2)

(k - 1) !

Equating coefficients, we obtain

(3k.- 3):
'2k-l (2k - lj !(k - 1) S

+



22

We now have the number of forms of strings with 2k - 1

elements. Since each element can be replaced by any of

the given t elements, our final result is

n \ (3k - 3) : 2k-1L3k-2U3) (2k _ d ;(k _ 1} . t

Only the general case, the case with n-ary operators,

remains. As previously, the method for finding

•^(n-l)k (n-2) f°H°ws that for finding f„, ,.

Let

f = f(x)

and

(1) f = f.x + f xn + f_ .x2""1 + ...
In 2n-l

, f v(n-l)k-(n-2) ,
+ f(n-l)k-(n-2)X + ... .

Raising both sides to the n-th power gives

(2) fn= flflfl...flXn

+ (fififi"-fifn + fifi* **flfnfl + •••

+ f f1f1...f.)x2n"1 + (f,f, .. .f,f., ,
nil 1 1 1 1 2n-l

11 1 2n-l 1 2n-l 11 1

+ f,f,...f-.f f + f,f,...f,f f,f + ...
11 Inn 11 Inln

+ f f f, . . . f,) x *" + . . . .
n n 1 1



23

Before using the recursion formula to simplify the

above expression, let us look at the coefficient of

x(n-l)k-(n-2) in (2). It is

Vf. f. f. .. .f.
(—* 1, 1_ 1- 1

12 3 n

or perhaps there are more or fewer terms? Let us assume

the term

fi f, fi ...f,
31 J2 ^3 ^n

is missing, where j + j +j + ...+j = (n - l)k
12 3 n

- (n-2) .

j •
Since f • is the coefficient of x x in (1) , the product

Ji

31 ^2 33 Jn (n-l)k-(n-2)
XXX. ..X = x v

and therefore

f . f . f. ...f.
D, D^ D, D
12 3 n

does occur in (2) as the coefficient of x (n--'-' ^-(n_2) .

Similarly, there can be no terms not in

Tf. f. f. ...f. as coefficients of x(n-1) k-(n-2) in (2)
11 12 13 n

Then applying the recursion formula to (2), we ob

tain

n n 2n-l
f =fx +f~ nx +...

n 2n-l



and further

^ (n-l)k-(n-2) ^
(n-l)k~(n-2)

f = f - X.

24

We again use the Lagrange formula for the reversion

of a series, and obtain

f = *i d1"1 (l -. f^y1
il i-1

Ldf f=0

Expanding, we have (3)

n 2n-l

f = x + 2L. (n - 1) !n + •——.-—
n! (2n - 1)!

(2n - 2)I(2n - 1)2n +
21

+
x

(n-l)k-(n-2)

C(n - l)k - (n - 2)]j
Ck(n - 1) - (n - l)Ill

(k - 1) I

[k(n - 1) - (n - 2)3...Ck(n - 1) - (n + k) 3 J + ... .

Equating the coefficients of x* in (1) and (3)

we arrive with

(nk - n) I
x(n-l)k-(n-2) ~ C(n - l)k - (n - 2)3! (k - 1)1

It follows immediately that

nk-(n-l)Un; " £(n - l)k - (n - 2)U:(k - 1)1

(n-l)k-(n-2)



25

The last case we consider is that in which we are

given not one n-ary operator, but a set of p n-ary opera

tors. It is evident that each of the k - 1 spaces for

operators can be filled by any of the given p operators.

Thus, the final result

T fn x _ (nk-n) ! (n-l)k-(n-2) k-1
nk-(n-l) "V " C(n-1) k-(n-2) 31 (k-1) ! Z p

We have completed the problem which we set out to

solve. But before leaving it, let us point out some

extensions. In this investigation, our strings con

tained only n-ary operators. It would be possible to

consider strings with n,-ary , n„-ary , ... , n -ary oper

ators . Then, of course the non-associativity and non-

commutativity conditions can be dropped.

The problem grows in complexity. But the challenge

it presents is a most inviting one.



26

BIBLIOGRAPHY

Copson, E. T. An introduction to the theory of func
tions of a complex variable. Oxford, Clarendon Press
1960. 448 p.

Hartman, Philip H. The Lukasiewicz parenthesis-free
notation for algebraic expressions, and its applica
tion in a Boolean algebraic compiler. Corvallis,
Oregon, Oregon State University, Department of
Mathematics, July 10, 1962. 36 p.

Jacobson, Nathan. Lectures in abstract algebra.
Vol. 1. Toronto, D. Van Nostrand, 1951. 217 p.




