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Learning to recognize objects is a fundamental and essential step in human perception

and understanding of the world. Accordingly, research of object discovery across di-

verse modalities plays a pivotal role in the context of computer vision. This field not

only contributes significantly to enhancing our understanding of visual information but

also offers a plethora of potential applications, like augmented reality, e-commerce, and

robotics, particularly in industrial manipulation scenarios.

We first address the task of discovering objects from still images regardless of any pre-

defined categories. We introduce a novel variational relaxation approach tailored to the

task. By framing it as an optimization problem for piecewise-constant segmentation, this

technique enables direct training of a fully convolutional network (FCN) for predicting

object labels on each pixel. Applying our approach to the instance segmentation task

achieved results almost as good as mask R-CNN without depending on a two-stage

framework. Note that the training of the network does not depend on the category label,

enabling our approach to discover objects unbounded by predefined categories.

Next, we extend our exploration to video sequences, focusing on the task of unsupervised

video object segmentation. Here, we aim to discover and track objects within videos.

Noticing that single-frame object proposals often fail to obtain a good proposal due

to motion blur, occlusion, and other reasons, our approach involves refining key frame



proposals using a Multi-proposal graph constructed from proposals initially generated

in nearby frames and then propagated to the key frame. We then compute the maxi-

mal cliques within this graph, which contains proposals that represent the same object.

Pixel-level voting is performed within each clique to generate the key frame proposals

that could be better than any of the single-frame proposals. Then a semi-supervised

VOS algorithm subsequently tracks these key frame proposals across the entire video,

showcasing the potential for precise and robust object tracking in dynamic visual envi-

ronments.

We further explore into the domain of Vision-Language, where we seek to identify objects

associated with a specific textual context. In this multifaceted context, we tackle the in-

tricate challenge of content moderation (CM), which assesses multimodal user-generated

content to detect material that is illegal, harmful, or insulting. We present a novel CM

model to address the asymmetric in semantics between vision and language. Our model

features an innovative asymmetric fusion architecture that not only fuses the common

knowledge in both modalities but also leverages the unique information present in each

modality. Additionally, we introduce a novel cross-modality contrastive loss to capture

knowledge that arises exclusively in multimodal context, which is crucial for addressing

harmful intent that may emerge at the intersection of these modalities.
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Chapter 1: Introduction

Infants and toddlers derive implicit theories to explain the actions of objects and the

behavior of people; these theories form the foundation for causal learning and more so-

phisticated understanding of the physical and social worlds. [Johnson, 2010]

1.1 Motivation

Observing and analyzing the physical objects and artifacts that make up our environment

is an intuitive way for humans to learn about the physical world, and it is a process that

begins at an early age. When humans encounter a new scene, they rapidly divide it into

distinct regions, each representing a separate object, within milliseconds. Afterward,

with another less than milliseconds, they focus their attention on objects that pique

their interest to ascertain their identity and relationships. A computer vision system

that can recognize objects in digital images or videos from the real world, acting as an

artificial offset of human perception, makes it possible for businesses to solve customer

needs without too many human interactions in areas such as robotics, medical imaging,

autonomous vehicles, and security and surveillance.

Before the advent of deep learning, object recognition, which aims at identifying and clas-

sifying objects or patterns within an image or a visual scene, has already been a primary

task and has been applied in lots of areas, such as face recognition [Jain and Li, 2011],

traffic sign recognition [Stallkamp et al., 2012], handwriting recognition [Lorigo and

Govindaraju, 2006], etc. It relies on traditional computer vision techniques and hand-

crafted features to localize or segment objects of interest in an image. However, these

traditional approaches were effective to some extent because the handcrafted features

had limitations in handling variations in object appearance, occlusion, and large-scale

datasets. The breakthrough of deep learning since the mid-2000s brought significant

improvements in task accuracy and ignited the research interest in tackling more com-

plex challenges, such as instance segmentation (Fig. 1.1), which involves the precise
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Figure 1.1: A suite of challenging computer vision tasks related to object recognition has
been discussed. Prior to the deep learning era, object recognition primarily encompassed
image classification and object detection [Russakovsky et al., 2015]. Recently, with the
success of deep learning, more and more research interests focused on more challenging
tasks, including instance segmentation.

categorization and segmentation of objects.

Motivated by the important role of objects in the cognition system, this thesis focuses

on the challenge of object discovery and comprehension within digital scenes, offering

efficient deep-learning solutions. The initial step is to swiftly and accurately identify

objects in a static image. Once this goal is achieved, we proceed to classify these objects

to decipher their semantic significance. In scenarios where the image is part of a video

sequence, we extend our capabilities to track objects across frames, addressing video ob-

ject segmentation. Finally, we explore to uncover intricate relationships between objects

and facilitate the analysis of the semantics of the scene itself, such as identifying whether

an image has been created with the intent of provoking specific groups.

The first part of this work aims to discover objects in static images, irrespective of any

pre-defined categories. In this research area, many prior studies [Chen et al., 2020b,

Joon Oh et al., 2017, Li et al., 2014] have dealt with discovering the salient objects in an

image in the form of binary segmentation, where salient objects are typically the large

central objects. In contrast, our objective is to discover all objects present in the image

and separate them, regardless of their saliency. Our focus is on improving both speed and

segmentation quality under the successful fully convolutional network (FCN) architecture

[Long et al., 2015]. To achieve this, we introduce an innovative variational strategy that
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re-frames the task as an optimization problem for piecewise-constant segmentation. This

approach enables direct training of an FCN to predict object labels on each pixel. Once

objects are identified, we proceed to extract each object from the image to predict its

category. As a result, we obtain both object and category labels at the pixel level,

effectively addressing the instance segmentation task.

Although deep learning methods have substantially improved segmentation accuracy,

there remains a limitation in the model’s capabilities. Segmentation results remain

highly dependent on image quality, posing challenges in segmenting objects with blurred

boundaries, significant occlusions, or out-of-focus, which are common in videos. However,

considering the difference between detecting objects in videos from detecting them in

static images, the temporal dimension, poses a chance to find clues from the video to

identify objects. We observe that in the temporal neighbors of such problematic frames,

where objects are observed at different timestamps, object boundaries can be clearer and

occlusions are reduced. As a result, better segments can be obtained in these neighboring

frames. We propose a novel methodology to improve the precision of object proposals on

sampled key frames, thereby achieving superior video object segmentation throughout a

sequence.

As mentioned above, humans possess the ability to discern relationships between objects

in a scene and extract the semantics of the scene itself. It’s important to note that

human perceives the world through many channels, such as visual information gathered

by the eyes or auditory information received through the ears. Humans can naturally

align and fuse the information collected from multiple channels and grasp the essential

concepts for a deeper understanding of the world. Inspired by the way humans perceive

scenes, we explore the domain of Vision-Language (VL), which entails integrating rich

inputs from the linguistic domain to reveal objects associated with the textual context,

ultimately leading to a holistic scene understanding. Within this multifaceted context,

we tackle the intricate challenge posed by the content moderation task, characterized

by its semantic disparities between two domains. We introduce an innovative asym-

metric fusion architecture designed to not only combine shared knowledge from both

modalities but also harness their unique information. Additionally, we present a novel

cross-modality contrastive loss with the purpose of capturing knowledge that uniquely

emerges in multi-modal contexts. This component is critical as some harmful intent may
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only be conveyed through the intersection of both modalities.

1.2 Research Goals and Contributions

1.2.1 Research Goals

The main research goals of this thesis include:

· Develop an instance segmentation algorithm designed to predict instance labels for

objects within an image, that provides a detailed understanding of object bound-

aries and distinctions.

· Develop an algorithm aimed at enhancing segmentation quality, specifically target-

ing problematic frames within a video. This algorithm will be applied to various

video-related tasks, including unsupervised video object segmentation (UVOS) and

video instance segmentation (VIS), with the goal of improving overall segmentation

performance.

· Develop a VL algorithm designed for the task of content moderation (CM), which

is capable of assessing the harmfulness of content by fusing information extracted

from both detected objects in an image and the accompanying sentence.

1.2.2 Contributions

We summarize the key contributions (comprehensive discussion in the individual chap-

ters) as follows:

· Propose an instance segmentation algorithm that relaxes instance segmentation

into a variational problem with a novel variational objective that includes a permutation-

invariant component. It leads to an end-to-end training framework with an FCN

directly predicting continuous instance labels on the image (Section 3).

· Propose a method to refine key frame proposals using temporal information. We

reason about key frame proposals through a graph built with the object probability

masks initially generated from nearby frames and then propagated to the key

frame. This graph computes maximal cliques, each representing a candidate object.
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Allowing multiple proposals within the clique to vote for the key frame proposals

results in improved key frame proposals, potentially surpassing the quality of the

single-frame proposals (Section 4).

· Present a novel modular framework that can integrate with any instance segmen-

tation and semi-supervised VOS algorithm to address the UVSO task and VIS task

(Section 4).

· Present a novel fusion transformer architecture to fuse different modalities asym-

metrically, which exists in the CM task. It is designed to enhance the unique knowl-

edge in each modality while effectively fusing the information from the asymmetric

semantic levels. Based on it, we design a novel contrastive loss to squeeze out

the distinct semantic that only exists in multimodality, which is critical as some

harmful intent may only be conveyed through the intersection of both modalities

(Section 5).

1.3 Thesis overview

This thesis is organized into several chapters through our efforts in achieving the research

goal. Each of the main ideas corresponds to a published or submitted paper. In some

sections, we extend our published results to connect related topics and show additional

applications of our work.

We begin with describing prior work most relevant to this thesis in Chapter 2, including

a survey of the literature covering the topic areas: FCN, Transformer, Vision-Language,

and Maximal Clique.

In Chapter 3, we introduce our first work targeting an instance segmentation task.

We propose Deep Variational Instance Segmentation (DVIS), that employs an FCN to

predict continuous instance labels on the image, all within an end-to-end system. To

allow the training with permutation-invariant ground truth in instance segmentation, we

propose a variational relaxation of the task as minimizing an optimization function for a

piecewise-constant segmentation problem. It extends the classical Mumford-Shah vari-

ational segmentation algorithm to be able to handle the permutation-invariant ground

truth. Experiments on PASCAL VOC 2012 and the MSCOCO 2017 dataset show that
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the DVIS efficiently tackles the instance segmentation task.

In Chapter 4, we explore the enhancement of object segmentation accuracy in scenarios

where a single frame suffers from poor quality. Our solution Maximal Cliques on Multi-

frame Proposal Graph (MCMPG), is a novel, lightweight framework that can seamlessly

integrate an instance segmentation algorithm and a VOS algorithm, thereby enhancing

the performance within UVOS/VIS tasks. MCMPG leverages maximal cliques within a

graph of object proposals initially generated from adjacent frames and then propagated

to key frame. By reasoning over multiple similar proposals within a maximal clique,

we achieve significant improvements in object proposals. These enhancements, in turn,

lead to improved overall sequence segmentation performance when coupled with a semi-

supervised VOS algorithm that tracks these key frame proposals throughout the entire

video. We conduct comprehensive testing on DAVIS-UVOS 2017 and YouTube-VIS 2019

datasets, employing a variety of instance segmentation methods and VOS methods. The

results consistently demonstrate that our approach consistently outperforms the baseline

w/o MCMPG and competing methods.

In Chapter 5, we delve into the realm of achieving a holistic understanding of a scene

by incorporating linguistic information to focus on the relevant objects. We present a

cutting-edge CM model, Asymmetric Mixed-Modal Moderation (AM3), which addresses

both multimodal and unimodal CM tasks. Unlike conventional VL models that seek to

establish a unified understanding of the vision and language modalities, AM3 is strate-

gically designed for asymmetric fusion. It features a novel asymmetric fusion architec-

ture and introduces a pioneering cross-modality contrastive loss, both of which serve to

enhance the unique information within each modality while effectively integrating infor-

mation from asymmetric levels. Furthermore, we leverage unimodal image/text datasets

in the pretraining phase to incorporate domain-specific knowledge and improve model

performance. This approach relaxes the constraint of requiring both modalities to be

present, allowing us to harness domain-specific unimodal data for training. Our model’s

effectiveness is substantiated through experiments conducted across 7 multimodal and

unimodal CM benchmarks

Finally, we conclude in chapter 6 with insights for possible future research directions and

applications based on the research presented in this thesis.
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Chapter 2: Related Work

In the chapter, we introduce fields most relevant to this thesis.

2.1 Fully Convolutional Networks

Fully Convolutional Networks (FCNs)[Chen et al., 2016, Long et al., 2015, Noh et al.,

2015, Ronneberger et al., 2015] are an extension of traditional Convolutional Neural

Networks (CNNs). In traditional CNNs, which consist of both convolution layers and

fully connected (FC) layers, the primary application is tasks such as image classification.

Fig. 2.1(a) illustrates this process: an input image is downsized and processed through

the convolution layers and FC layers, ultimately outputting a single predicted label for

the input image.

In contrast, FCNs replace all FC layers with convolution layers, this modification em-

powers FCNs to efficiently analyze entire images and perform pixel-wise classification or

segmentation. Fig. 2.1(b) demonstrates this difference: the output is no longer a single

label but rather a label map, typically with a smaller size than the input image due

to pooling. FCNs utilize upsampling technologies to generate a pixel-wise output. To

enhance output quality, various methods have been introduced. DeconvNet[Noh et al.,

2015] incorporates deconvolution and unpooling layers to improve downsized features.

Deeplab [Chen et al., 2016] introduces ”atrous convolution” for denser feature extraction

while preserving the size of the receptive field. U-Net [Ronneberger et al., 2015] extends

the FCN architecture with an encoder and decoder, where the decoder upsamples the

feature map followed by 2x2 convolution (up-convolution) that halves the number of fea-

ture channels a concatenation with the cropped feature map from the down-convolution

path. FCNs are known for their ability to process images of arbitrary size and maintain

spatial details, making them well-suited for tasks demanding precise spatial localization.

They played a pivotal role in numerous computer vision applications, including semantic

segmentation, instance segmentation, and even tasks that require real-time processing,
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like autonomous driving and medical image analysis. In this thesis, Sections 3 and 4

build upon the FCN architecture to develop novel methods.

(a)

(b)

Figure 2.1: Visualization1of (a) Image classification using a CNN. (b) Semantic segmen-
tation using an FCN.

2.2 Vision-Language Models: Leveraging Transformers

The transformer architecture, introduced in 2017 by Vawani et al. [Vaswani et al.,

2017], has become the foundation for a wide range of state-of-the-art models in natural

language processing (NLP), such as GPT [Dale, 2021, van Dis et al., 2023], BERT [De-

vlin et al., 2018, Tenney et al., 2019], and T5 [Roberts et al., 2020]. At its core, the

transformer employs a novel self-attention mechanism, which assesses the significance

of various elements within a sequence during processing. This design allows transform-

ers to effectively capture dependencies and relationships among elements, regardless of

1The figures are sourced from https://towardsdatascience.com/review-fcn-semantic-segmentation-
eb8c9b50d2d1

https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1
https://towardsdatascience.com/review-fcn-semantic-segmentation-eb8c9b50d2d1
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their positions within the sequence. This inherent parallelism sets transformers apart

from traditional recurrent neural networks (RNNs) and convolutional neural networks

(CNNs), providing them with a notable advantage. Moreover, the transformative im-

pact of the transformer extends beyond NLP, finding applications in various domains,

including Vision-Language (VL) tasks.

VL tasks represent a pioneering approach to artificial intelligence. It leverages both image

and text inputs to bridge that gap between human perception and machine comprehen-

sion. In recent years, there has been a surge in the popularity of VL models designed to

tackle a wide range of VL tasks. These tasks include applications like visual captioning,

visual question answering, image-text retrieval, content recommendation, content gen-

eration, and more. Building on the remarkable success of transformer models in NLP,

researchers naturally ventured into applying them to VL tasks. Wherein BERT has been

widely adopted, leading to an explosion of Bert-based multimodal architectures [Alayrac

et al., 2022, Chen et al., 2020a, Huang et al., 2020, Kim et al., 2021, Su et al., 2019].

These models are designed to process and generate information from both textual and

visual inputs, enabling them to comprehend and describe the scene in a more human-like

manner.

2.3 Maximal Cliques

A maximal clique in graph theory is a fundamental concept that plays a crucial role in

understanding the connections between nodes or vertices within a graph. In essence,

a maximal clique is a subset of vertices within a graph where every pair of vertices is

connected by an edge, and this subset cannot be expanded further by adding an adjacent

vertex without violating the clique’s property.

The utility of maximal clique algorithms extends across diverse domains, including image

segmentation. For instance, [Felzenszwalb and Huttenlocher, 2004] and [Ma and Latecki,

2012] have introduced graph-based segmentation methods that employ maximal cliques

to identify connected components within the graph. [Achanta et al., 2012] and [Uijlings

et al., 2013] leverage maximal clique-based region grouping to efficiently generate super-

pixels and object proposals, showcasing the versatility and effectiveness of this concept

in image analysis.
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Chapter 3: Instance Segmentation

In this chapter, we introduce a novel approach for object discovery in static images

ignoring the category information. This step is pivotal in achieving a comprehensive

scene understanding. After effectively segmenting each individual object, we utilize ROI

Align[He et al., 2017] to extract each object and include an image classification method

to predict the category of these objects. As a result, we tackle the instance segmentation

task, which involves segmenting an image into distinct regions by identifying different

object instances, even when they share the same semantic label.

3.1 Introduction

Instance segmentation is developed from semantic segmentation, which aims to clas-

sify each pixel in an image into one of several predefined object categories such as car

or person. Witnessed rapid development in semantic segmentation [Chen et al., 2016,

Jaderberg et al., 2015, Long et al., 2015, Noh et al., 2015], i.e., instance segmenta-

tion [Everingham et al., 2010, Hariharan et al., 2011, Lin et al., 2014] takes the task a

step further by not only classifying pixels but also identifying individual object instances

of the same class. It is more challenging, because (1) different instances may have similar

appearances if they belong to the same category; (2) the number of instances is often

unknown during prediction; and (3) labels of the instances are permutation-invariant,

i.e., randomly permuting instance labels in the training set ground truth should not

change the learning outcome (Fig. 3.1).

For such permutation-invariant instance labels, one cannot directly train the model using

conventional objectives such as the cross-entropy (CE) loss. One popular strategy is to

combine detection and segmentation into a two-stage approach. One network generates

object proposals, while another one classifies and refines each proposal [Arnab and Torr,

2017, Chen et al., 2018a, Dai et al., 2016a, Hariharan et al., 2014, He et al., 2017, Li et al.,

2016, Liu et al., 2018, Romera-Paredes and Torr, 2016, Uhrig et al., 2018]. To ensure all
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(a) Input Image (b) GT (c) Real-valued Predicted Labels

Figure 3.1: (a): An example from PASCAL VOC [Everingham et al., 2010] with 8
bottles. (b) Ground truth. Labels of the bottles can be either 1 to 8 or 8 to 1. (c) Our
approach solves a variational relaxation of the problem and predicts real-valued labels
on the image (best in color)

instances are segmented, these methods often need to generate a significant amount of

proposals (1, 000− 3, 000 per image), and many are based on a sliding window approach

that is similar to a complete search on a low-resolution image with anchor boxes. These

proposals are verified with an object classifier and a smaller but still significant amount

(200−2, 000) is sent to the second stage for classification and refinement. To improve the

efficiency, some recent works remove the anchor boxes by directly dividing the output

image into a regular grid cell and segmenting the object that is centered in each cell

[Chen et al., 2019, Wang et al., 2019b, 2020c, Xie et al., 2020]. However, they still

require a significant amount of proposals. Another alternative solution is the search-

free approach, which does not explicitly generate object proposals. Most methods learn

to predict surrogates for instance labels for each pixel, and then use heuristic post-

processing procedures to segment each instance [Bai and Urtasun, 2017, Kirillov et al.,

2016, Liu et al., 2017, Uhrig et al., 2016, Zhang et al., 2015, 2016].

We note that the goal of instance segmentation is to generate piecewise constant predic-

tions on each pixel that match with a given ground truth. This resonates with the classic

and elegant variational principle introduced to computer vision almost three decades

ago. Such variational methods, originated from the Mumford-Shah model [Mumford

and Shah, 1989], parse an image into meaningful sub-regions by finding a piecewise

smooth approximation. These approaches were traditionally limited to simple problems
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such as image restoration and active contours, mainly because of the difficulties at that

time in estimating nonlinear functions from an image. However, they could be inher-

ently appealing in a deep network setting, since these variational objectives work with

real-valued inputs and outputs. e.g., the Mumford-Shah functional, that are naturally

differentiable.

We believe such variational approaches could be very powerful when combined with

deep learning since they enable us to solve deep learning problems that are difficult for

conventional objective functions such as cross-entropy. On the other hand, parametrizing

variational approaches with a deep network enables them to model complex functions

originating from an image. It also allows them to generalize to testing images. In

this paper, we propose deep variational instance segmentation (DVIS), which is a fully

convolutional neural network (FCN) that directly predicts instance labels – a piecewise-

constant function, with each constant sub-region corresponding to a different instance.

A novel variational objective is proposed to accommodate the permutation-invariant

nature of the ground truth in instance segmentation, which leads to end-to-end training

of the network.

With this proposed approach, we are directly gazing at instances from a top-down FCN

viewpoint without the need to generate bounding box proposals using search protocols.

Our approach outperforms the other search-free instance segmentation methods on the

PASCAL VOC dataset [Everingham et al., 2010, Hariharan et al., 2011] and it is the

first search-free method tested on the MS-COCO dataset [Lin et al., 2014], obtaining

a performance close to these search-based methods, but with significantly faster speed.

3.2 Related Work

Instance segmentation identifies every single instance at the pixel level. We group the

approaches tackling the task as search-based and search-free methods. Most search-

based approaches are anchor-based, they break the task into two cascaded sub-tasks:

the first one generates region proposals with carefully designed anchor boxes, e.g., with

a region proposal network (RPN) [Ren et al., 2015]. Another network classifies and

refines each proposal. This architecture solves the counting problem by adopting non-
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Figure 3.2: The proposed deep variational instance segmentation (DVIS): An FCN is
trained to directly output real-valued instance labels, using a novel variational framework
we proposed that combines a binary loss function, a permutation-invariant loss function,
and regularization terms. During inference, we discretize the predicted instance map into
several instances. After classification and verification, we output the final segmentation
with both semantic and instance labels (best viewed in color)

maximum suppression (NMS) [Dai et al., 2016b, He et al., 2017, Huang et al., 2019,

Liu et al., 2016, Redmon and Farhadi, 2018, Ren et al., 2015] or determinant point

processes (DPP) [Azadi et al., 2017, Lee et al., 2016] to remove overlapping detections.

Besides RPN, [Uijlings et al., 2013] uses selective search to generate proposals, [Pont-

Tuset et al., 2017a] uses a network to generate region proposals in the form of a binary

mask. However, such a search-base process is inherently slow, as many different propos-

als with various sizes and aspect ratios need to be generated and scored, which might

be unacceptable in realistic application scenarios where engineers are striving to obtain

real-time performance. [Chen et al., 2018a, Liu et al., 2018, Uhrig et al., 2018] integrate

instance-related features into the second stage in the anchor-based architecture. The

global context information encoded in these features can help refine the final segmenta-

tion. Recently, [Bolya et al., 2019a,b] proposed to use a network to learn mask prototypes
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from the input image and combine these prototypes to generate the final mask for each

detected instance. But they still search with anchor boxes of different scales and shapes

hence generating significantly more proposals than ours. To reduce the redundancy of

the anchor boxes, [Chen et al., 2019, Wang et al., 2019b, 2020c, Xie et al., 2020] directly

predict instance mask centered on each pixel in the output image. Instances that might

share the same centers are predicted at different scales from the FPN network [Lin et al.,

2017].

We focus our literature review more on search-free methods that are directly relevant to

our work. Some search-free approaches focus on exploring instance-aware and learning

them using an FCN. [Bai and Urtasun, 2017, Ren and Zemel, 2016, Romera-Paredes and

Torr, 2016] predict the energy of the watershed transform, [Uhrig et al., 2016] predicts the

direction on each pixel to the object center, [Kirillov et al., 2016] predicts instance-level

boundary score, and [Liu et al., 2017] attempts to locate instance segment breakpoints to

separate each instance. However, these approaches do not directly generate an instance

prediction and hence need to resort to a significant amount of heuristic post-processing

such as template matching [Uhrig et al., 2016], MultiCut[Kirillov et al., 2016] or recurrent

neural network[Ren and Zemel, 2016, Romera-Paredes and Torr, 2016].

[Fathi et al., 2017, Kong and Fowlkes, 2018] are search-free approaches based on the met-

ric learning idea. [Kong and Fowlkes, 2018] learns to map pixels to a multi-dimensional

embedding space using pairwise associative loss. [Fathi et al., 2017] formulates it using

metric learning. The network is trained to enforce pixels from the same instance to

be close to each other while pixels from different instances are far away in the learned

feature space. These approaches have not employed binary terms as in ours. Hence,

in the embedding space generated by these methods, the background (stuff categories

such as water, grass, etc.) is no different than “yet another instance” and the separation

between foreground and background is usually weak, hence these methods require more

post-processing and depend on semantic segmentation to distinguish background and

foreground, our foreground/background binary term directly suppresses output on the

background pixels and outputs a cleaner instance map.
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3.3 DVIS

3.3.1 The Mumford-Shah Model

The Mumford-Shah model is an energy-based model introduced in 1989 [Mumford and

Shah, 1989] for image segmentation. It relaxes the task to a continuous energy mini-

mization problem that computes the optimal piecewise-smooth approximation of a given

image. Let I denote an observed image on a bounded domain Ω ⊂ R2 to be segmented.

We define Î as an approximation of I and C ⊂ Ω, the set of edges delineating the

boundaries of different objects. the Mumford-Shah functional is:

F (Î , C) =

∫
Ω

(Î(x, y)− I(x, y))2dxdy + µ

∫
Ω\C
|∇Î|2dxdy + ν|C|, (3.1)

where µ, ν are non-negative parameters, Ω\C is the set of non-edge pixels, |C| is the

number of pixels in C. Minimizing the above functional essentially seeks to optimize

for a piecewise smooth function (ideally constant inside each segment) which may be

non-smooth on the edges/boundaries. The first term drives Î to be close to I. The

second term imposes smoothness prior inside each segment Ω\C and protects from

under-segmentation. The last term encourages shorter object contours to avoid over-

segmentation. By adjusting the parameters µ, ν, it can optimally segment the given

image.

The Mumford-Shah functional was well-regarded as a solid variational model that has

been analyzed aplenty [Chan et al., 2006, Grady and Alvino, 2008, Pock et al., 2009,

Strekalovskiy and Cremers, 2014, Vese and Chan, 2002, Xu et al., 2011]. It appropriately

regularizes on the length of object boundaries while capable of modeling multiple objects

within the same image. However, because the first term is usually only enforcing the

approximation to be close to the input image function, it was traditionally only utilized

in superpixel segmentation and active contours [Morar et al., 2012, Vese and Chan,

2002].

From unsupervised to supervised setting. We note the similarity between the

unsupervised Mumford-Shah model and the supervised instance segmentation problem.

Both optimize for a piecewise-constant function, where each piece corresponds to one
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object instance and the number of pieces in the image is unknown. Both enforce con-

stancy within each piece and a short boundary length would also be an ideal prior for

instance segmentation, albeit to our knowledge we have never previously seen an ap-

proach that incorporates that. The second term in the MS-model is a common pairwise

term that enforces piecewise-constancy, similar to those used in metric-learning-based

instance segmentation methods [Fathi et al., 2017, Kong and Fowlkes, 2018]. Previous

work [Strekalovskiy and Cremers, 2014, Xu et al., 2011] have shown that the second and

third terms can be combined as a robust loss on the pairwise term (see Sec. 3.3.3 for

more details).

The main difficulty of extending this variational approach to solve the instance segmen-

tation problem lies in utilizing the matching potential
∫

(Î(x, y) − I(x, y))2dxdy, where

a simple MSE or CE loss would not suffice for instance segmentation because of the

permutation-invariance of ground truth labels. However, there is one ground truth label

that remains the same throughout the whole dataset: the background label. Thus, a new

variational formulation is needed. In the next subsection, we propose a novel variational

formulation that solves the instance segmentation problem.

3.3.2 Deep Variational Instance Segmentation

As discussed above, we relax the supervised instance segmentation to a continuous energy

minimization problem. We first note that the ground truth label GT in instance segmen-

tation usually has two distinct aspects: 1) when the label of a pixel is 0, then the pixel is

background; 2) when the label of a pixel is larger than 0, then the label is permutation-

invariant, i.e. one can switch labels of different objects (e.g. between object 3 and 5)

without affecting their actual meaning. Hence, when defining a variational functional

for instance segmentation, both of these components need to be considered.

We define a variational functional for instance segmentation as:
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F (f, C) =

∫
Ω

Lb

(
f(x, y), I[GT (x,y)=0]

)
dxdy︸ ︷︷ ︸

Binary Loss

+µ

∫
Ω

∥∇f∥2dxdy + ν|C|︸ ︷︷ ︸
Regularization

+

∫
Ω

|f −Round(f)|dxdy︸ ︷︷ ︸
Quantization

+

∫
Ω

∫
Ω

Lpi

(
|f(x1, y1)− f(x2, y2)| , I[GT (x1,y1)̸=GT (x2,y2)]

)
dx1dy1dx2dy2︸ ︷︷ ︸

Permutation Invariant Loss

(3.2)

where f denotes the continuous-valued label map predicted by our network, an FCN with

parameters ω. Round(·) is the operation rounding to the nearest integer. Lb compares

the instance label with the binarized ground truth label that indicates object/background

and Lpi denotes the permutation-invariant loss function which compares the difference

between two-pixel labels |f(x1, y1)− f(x2, y2)| with I[GT (x1,y1)̸=GT (x2,y2)], which indicates

whether the ground truth labels at these pixels are different. Using Lpi, the exact values

of the ground truth labels no longer play a role in the loss. The smoothness and minimal

edge length terms are the same as in Mumford-Shah. We incorporate an additional

quantization term, which drives the output label value to be closer to integers.

Training on this variational functional enables us to learn f from a training set with

instance-level ground truth and generalize it onto unseen testing images. This improves

over traditional variational segmentation which does not have learning capabilities. Note

that in our permutation-invariant loss Lpi, we would in principle integrate over all pixel

pairs within the image that are not boundaries, instead of only in a small neighborhood as

in the traditional conditional random field (CRF) approaches. This is because instance

segmentation is an inherently non-local problem: due to occlusion the same instance

can be separated into several pieces in 2D that are possibly very far away from each

other, hence, only local consistency is not enough. Empirically we have also found that

if we only enforce local consistency, we may have small, smooth changes in the predicted

instance labels f that could add up to a significant amount and lead to changing instance

labels within the same instance.

In practice, we discretize Lb on all the pixels, and discretize the integral Lpi on sampled

pixel pairs. Either stratified sampling or random sampling of pixel pairs can be used. In

stratified sampling, we sample all the immediate neighbors in the 4-neighborhood of a
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pixel and reduce the sampling density for further away pixel pairs. In random sampling,

we randomly select pixel pairs across the whole image for computing the integral on Lpi.
We have found that on smaller resolutions, stratified sampling is efficient whereas when

resolutions are very large, random sampling is more efficient.

Also note that there is a significant difference between variational approaches such as

ours and CRF approaches, although both employ matching (unary) and regularization

(pairwise) terms. In CRFs, the labels come from a discrete set, while in variational

approaches the labels are relaxed to be continuous themselves. It is difficult for a CNN

to simulate the full CRF inference process and one would have to resort to a recurrent

network [Zheng et al., 2015], increasing the complexity of the model. On the other hand,

our variational formulation eq.(3.2) would only require an FCN to simultaneously handle

images with an undetermined amount of objects, since it predicts labels as continuous

real-valued numbers. since it predicts labels as continuous real-valued numbers.

3.3.3 Loss Functions

As a variational approach, our output f values are continuous. Hence, loss functions

would be more similar to regression loss functions. Here we mostly utilize variants of the

robust Huber loss function Lh(v, θ) = v2

2θ if v < θ and v − θ
2 otherwise. We set θ = 0.1

throughout the work.

Binary Loss: Our first Lb seeks to separate a labeled instance from “stuff” classes

such as road, water, sky, etc. which would not have individual instances in them and

are usually labeled as background in instance segmentation tasks. Thus, Lb drives seg-

mentation to be non-positive in background pixels and sufficiently positive in foreground

pixels. Let GT (x, y) = 0 on the background pixels and GT (x, y) > 0 on the foreground

pixels, the binary loss is computed as:

Lb(f(x, y), GT (x, y)) =

Lh(ReLU(f(x, y))) if GT (x, y) = 0

Lh(ReLU(m1 − f(x, y))) if GT (x, y) > 0
(3.3)

where ReLU(x) = max(x, 0) is the commonly used ReLU activation function, and m1 is a

parameter of the loss function to separate foreground from background. With this loss, on
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foreground pixels, when f(x, y) ≥ m1, the loss will be 0, this accommodates foreground

objects taking different f(x, y) values. On background pixels, once f(x, y) ≤ 0, the loss

will be 0. In experiments, we set m1 = 2. We formulate the term as regression with the

robust Huber loss, instead of as binary classification with the CE loss. This is because

the regression loss can obtain exactly 0 when the label value ≥ m1 in the foreground

and ≤ 0 in the background, whereas the CE loss tends to push to positive/negative

infinity.

Permutation Invariant Loss: We use Lpi to enforce similarity between ground truth

instance labels and predicted instance labels, taking into account that the ground truth

labels are permutation-invariant. Let p1 and p2 be two pixels from a neighborhood and

their ground truth as GTp1 , GTp2 , respectively, the relative loss is computed by:

fd = |ReLU(f(x1, y1))−ReLU(f(x2, y2))| (3.4)

Lpi (fd, GT (x1, y1), GT (x2, y2))) =

Lh(fd), if GT (x1, y1) = GT (x2, y2)

Lh(m2 − fd), if GT (x1, y1) ̸= GT (x2, y2)
(3.5)

where m2 is a parameter used to adjust the margin between predicted labels from differ-

ent instances. We set m2 = 1 in practice. Hence, there is no loss if the difference between

predicted labels on two pixels is more than 1, which indicates that the two pixels belong

to different instances. On the other hand, if the two pixels belong to the same instance,

the loss is 0 only when their predicted labels are the same.

Regularization: Mumford-Shah regularization is helpful for obtaining sharper bound-

aries. We have noticed that without such regularization the predicted label map tends

to change more smoothly at object boundaries, creating intermediate values that do not

belong to any object which makes post-processing more difficult. There has been a signif-

icant amount of work on optimizing the Mumford-Shah term. We follow [Strekalovskiy

and Cremers, 2014] to discretize Mumford-Shah as a robust loss function:

LMS(f(x, y)) = min(µ∥∇f(x, y)∥2, ν) (3.6)

which is equivalent to the original Mumford-Shah formulation. [Strekalovskiy and Cre-

mers, 2014] then solves the formulation using a primal-dual algorithm, but in our case,
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we do not need to exactly solve the optimization problem since optimization is never

exact with a deep network. Hence we just use a simple quasi-convex robust loss function

as in the Cauchy loss:

L′MS(f(x, y)) = log
(
(f(x, y)− f(x, y + 1))2 + (f(x, y)− f(x + 1, y))2 + 1

)
(3.7)

Note one way to approach proper Mumford-Shah regularization is to anneal the loss

gradually towards a Welsch loss function as in [Barron, 2019], which we did not do

because the difference is very minor.

Finally, the quantization term minimizes the distance between the output label and its

nearest integer. The gradient of this term is back-propagated from the first f . Since the

operation round(·) is piecewise-constant, its gradient is 0). This term helps to create a

sufficient margin between different label values, making post-processing easier.

In summary, we relax a supervised instance segmentation to a deep variational minimiza-

tion problem. With our formulation, the proposed variational problem can be tackled

by training an FCN to optimize these loss functions and output the real-valued ap-

proximation of instance segmentation labels. Through directly optimizing on instance

segmentation, our proposed approach has the advantage of generating different labels for

different objects while having the capability of capturing multiple scattered parts, e.g.

of an occlude sofa as a single object (Fig. 3.2).

3.4 Experiments

3.4.1 Implementation Details

FCN for Instance Segmentation: An encoder-decoder FCN network is adapted to

solve instance segmentation with our variational loss. We employ ResNet-50 and ResNet-

101 with output stride 8 as our base network and its output is then upsampled by 2 using

a decoder network similar to the upsampling branch in FPN[Lin et al., 2017] to generate

higher resolution output. The last layer of the FCN network outputs the real-valued

label map as one output channel, which is then used to compute our variational loss

eq. (3.2) and backpropagation. We remove negative label outputs by adding a ReLU
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activation on the FCN output. Note we did not employ multiple output heads as in

FPN.

Training: We scale the input image to 513×513 for PASCAL and with the minimum

edge equal to 700 for COCO (preserving the height-to-width ratio). The window size

for computing relative loss is set to 128 throughout all experiments. We initialize the

backbone network with the pre-trained weights for the semantic segmentation task on

PASCAL and the pre-trained weights for the object detection task on COCO.

Permutation-Invariant Loss: Given an input image in size H × W and the FCN

with a downsampling factor d, the output size would be H
d ×

W
d × 1. The number

of pixel pairs is a huge number HW
d2
× HW

d2
. In our model, with the binary loss to

separate background and foreground, it suffices to only consider the pixel pairs located

on instances, which reduces the number of pixel pairs that need to be computed. Then

we utilize the stratified sampling to sample pairs to compute the permutation-invariant

loss. Given a pixel (x, y) and the window size w, we sampled all pixels inside the

center area with distance c(c < r) and we selected the rest pixels with a dilation rate

of ’r’, similar to dilated convolutions [Chen et al., 2016]. The base setting we use is

w = 129, c = 8, r = 8.

Discretization to instance segmentation: After we obtain the real-valued instance

labels, we apply the mean-shift segmentation algorithm on it with different bandwidths,

0.9 and 0.4 to discretize it to two different label maps. Because m2 is fixed to 1, the

bandwidth of 0.9 works well to separate objects the network believe is different. And

when the network does not learn to separate the instances well enough, bandwidth 0.4

helps to segment the objects. these two bandwidth proves to be enough to generate all

instance segments, which are then verified in the next module.

Classification and Verification: We utilize a classification network to verify the seg-

ments. It first takes CNN features from the bounding box of each predicted instance from

the FCN with ROIAlign [He et al., 2017], and concatenates it with the predicted binary

mask for the instance. We then run a small convolutional network with 7 layers that

will classify each predicted instance into the pre-defined semantic categories. Besides,

we have an IoU head [Huang et al., 2019] that attempts to predict the Intersection-Over-

Union between the predicted instance with the ground truth instance that best matches
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it, using a Huber regression loss. Finally, we reject false positive instances by thresh-

olding the weighted sum of predicted confidences on the semantic classification and the

predicted IOU. Note that we are only verifying on average 5 − 15 segments per image,

which is significantly less than previous approaches (Table 3.6), hence the overhead of

this stage is very small (Table 3.5). Hence, this classification step does not impact our

speed advantage over search-based methods.

3.4.2 Datasets

We evaluate the proposed approach for instance segmentation on the challenging PAS-

CAL VOC dataset [[Everingham et al., 2010]] on the val split and the SBD split [[Hari-

haran et al., 2011]], as well as the COCO dataset [[Lin et al., 2014]].

PASCAL VOC 2012 consists of 20 object classes and one background class. It has been

the benchmark challenge for segmentation over the years. The original dataset contains

1,464, 1,449, and 1,456 images for training, validation, and testing. It is augmented by

extra annotation from [[Hariharan et al., 2011]], resulting in 10,582 training images. The

metric we use to evaluate PASCAL is average precision (AP) with pixel intersection-

over-union (IoU) thresholds at 0.5, 0.6, 0.7, 0.8, and 0.9 averaged across the 20 object

classes. As there is no ground truth on the testing set, we use the val set to test.

PASCAL SBD is a different split on the PASCAL VOC dataset. In order to compare

with [[Bolya et al., 2019a, Li et al., 2016]], we train a separate model on SBD’s training

set and evaluate its 5,732 validation images.

COCO is a very challenging dataset for instance segmentation and object detection. It

has 115,000 images and 5,000 images for training and validation, respectively. 20,000

images are used as test-dev from the split of 2017. There are 80 instance classes for

instance segmentation and object detection challenges. There are more objects in each

image than in PASCAL VOC. We train our model on the train 2017 subset and run

prediction on val 2017 and test-dev 2017 subsets respectively. We adopt the public

cocoapi to report the performance metrics AP , AP50, AP75, APS , APM , and APL.
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3.4.3 Comparison to the state-of-the-art

Results on PASCAL VOC and SBD are shown in Table 3.1 and Table 3.2 respec-

tively. Our approach significantly outperforms search-free approaches SGN and Embed-

ding [Kong and Fowlkes, 2018, Liu et al., 2017] on all mAP thresholds. The latter two

are state-of-the-art metric learning approaches. Besides, on the SBD dataset, we also

outperformed well-regarded anchor-based approaches DIN and FCIS [Arnab and Torr,

2017, Li et al., 2016] significantly (Table 3.2). The recent YOLACT [Bolya et al., 2019a]

achieved slightly better results than ours on mAP at 50% IoU, however, our approach

is significantly better than it at 70% IoU, which requires more precise segmentation of

each object. We note that 50% IoU is a quite low standard for segmentation since there

can still be a significant amount of segmentation errors at this threshold. Our better

performance at a higher threshold shows that our variational approach is capable of seg-

menting objects more precisely, especially on objects of non-rectangular shapes. Some

proposal-free approaches such as DWT take each connected component as an instance,

hence they do not work well for many PASCAL VOC objects which are separated into

several parts with occlusions. We significantly outperformed SGN which is known to be

superior to DWT. Qualitative results are shown in section 3.5.

Table 3.1: AP r result on the PASCAL VOC 2012 val. set.
Method backbone architecture mAP r AP r

avg

0.5 0.6 0.7 0.8 0.9

DIN[Arnab and Torr, 2017] PSPNet(Resnet-101) anchor-based 61.7 55.5 48.6 39.5 25.1 46.1

SGN[Liu et al., 2017] PSPNet(Resnet-101) 61.4 55.9 49.9 42.1 26.9 47.2
DML[Fathi et al., 2017] DeepLab-v2(Resnet-101) 62.1 53.3 41.5 - - -

Embedding[Kong and Fowlkes, 2018] DeepLab-v3(Resnet-101) search-free 64.5 - - - - -
DVIS Resnet-50-FCN 68.4 63.3 58.1 49.1 33.7 54.5
DVIS DeepLab-v3(Xception 65) 70.3 68.0 60.2 50.6 33.7 56.6

Table 3.2: AP r result on the PASCAL SBD val. set.
Method backbone architecture mAP r AP r

avg

0.5 0.6 0.7 0.8 0.9

DIN [Arnab and Torr, 2017] PSPNet(Resnet-101) anchor-based 62.0 - 44.8 - - -
FCIS[Li et al., 2016] Resnet-101-C5 65.7 - 52.1 - - -

YOLACT[Bolya et al., 2019a] Resnet-50-FPN search-based 72.3 56.2

DVIS Resnet-50-FCN search-free 70.0 67.0 61.0 49.1 27.8 55.0
DVIS DeepLab-v3(Xception 65) 70.5 68.5 62.9 55.2 34.5 58.3

Results on COCO are shown in Table 3.3 and Table 3.4. One can see that with a

search-free algorithm, we obtain performances very close to the two-stage mask R-CNN,
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trailing mainly on small objects, where a complete search over all pixels would under-

standably help. We outperform the state-of-the-art anchor-based approach YOLACT on

AP with multiple settings on both the val-2017 and test-dev 2017 datasets. YOLACT-

700 results are only available on test-dev hence we compare with YOLACT-550 on val.

The authors have a more recent improvement, YOLACT++ where they used deformable

convolutions which is orthogonal to our contributions and could be applied in our case

to further improve performance. Moreover, in Table 3.4, speed analysis on a V100 GPU

(all post-processing included) is shown in the column FPS. Our method runs faster than

all other baselines under the same backbone. The ResNet50 DVIS runs at 38.0 fps and

has AP = 32.6%. Qualitative results are shown in section 3.5.

Table 3.3: AP r result on COCO’s val 2017 set
Method backbone architecture AP AP50 AP75 APS APM APL FPS

PANet[Liu et al., 2018] Resnet-101-FPN 37.6 59.1 40.6 20.3 41.3 53.8 -
Mask R-CNN[Chen et al., 2019] Resnet-101-FPN anchor-based 36.5 58.1 39.1 18.4 40.2 50.4 11.1

YOLACT-550[Bolya et al., 2019a] Resnet-50-FPN 30.0 - - - - - 44.9

SOLO-800[Wang et al., 2019b] Resnet-50-FPN 36.0 57.5 38.0 - - - 12.1
SOLO-800[Wang et al., 2019b] Resnet-101-FPN search-based - - - - - - 10.4
PolarMask-800[Xie et al., 2020] Resnet-101-FPN 29.1 49.5 29.7 - - - 12.3

DVIS-700 Resnet-50-FCN search-free 32.6 53.4 35.0 13.1 34.8 48.1 38.0
DVIS-700 Resnet-101-FCN 35.7 58.0 37.5 14.7 38.6 50.6 30.4

Table 3.4: AP r result on COCO’s test-dev 2017 set
Method backbone architecture AP AP50 AP75 APS APM APL FPS

PANet[Liu et al., 2018] Resnet-50-FPN 36.6 58.0 39.3 16.3 38.1 53.1 -
FCIS[Li et al., 2016] Resnet-101-C5 anchor- 29.5 51.5 30.2 8.0 31.0 49.7 9.5

Mask R-CNN[He et al., 2017] Resnet-101-FPN based 35.7 58.0 37.8 15.5 38.1 52.4 13.5
YOLACT-700[Bolya et al., 2019a] Resnet-101-FPN 31.2 50.6 32.8 12.1 33.3 47.1 28.7

SOLO-800[Wang et al., 2019b] Resnet-50-FPN search- 36.8 58.6 39.0 15.9 39.5 52.1 12.1
SOLO-800[Wang et al., 2019b] Resnet-101-FPN based 37.8 59.5 40.4 16.4 40.6 54.2 10.4
PolarMask-800[Xie et al., 2020] Resnet-101-FPN 32.1 53.7 33.1 14.7 33.8 45.3 12.3

DVIS-700 Resnet-50-FCN search- 30.3 48.6 33.0 11.0 33.2 46.1 38.0
DVIS-700 Resnet-101-FCN free 32.9 52.6 34.6 12.5 36.7 48.1 30.4

3.4.4 Ablation Study

Inference cost. We report the total number of float point operations (FLOPs) needed

to compute instance segmentation with our approach compared with the state-of-the-art

on the COCO val2017 set. Table 3.5 shows that our model requires significantly less
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computation than YOLACT[Bolya et al., 2019a], the state-of-the-art in inference speed,

due to the fact that we have much fewer segments to work on (see also next paragraph

and Table 3.6). We also present breakdowns of DVIS timings, where it can be seen that

the majority of our computation is within the FCN network itself. Besides the network,

the mean shift grouping and the classification module together only require about an

extra 2% in terms of FLOPs.

Table 3.5: Number of FLOPs on the COCO
val 2017 set

Method backbone image size
550 700

YOLACT[Bolya et al., 2019a] Resnet-50-FPN 61.59 G 98.89 G
YOLACT[Bolya et al., 2019a] Resnet-101-FPN 86.05 G 137.70 G

DVIS Resnet-50-FCN 38.49 G 60.94 G
DVIS Resnet-101-FCN 66.24 G 106.35 G

Breakdown for Postprocessing time on DVIS (ResNet-101)

Mean Shift Grouping - 94.79 M 124.42 M
Classification Module Resnet-101-FCN 1.54 G 2.44 G

Table 3.6: Number of candidates
inputted to post-processing

Method No.

FCIS[Li et al., 2016] 2,000
PANet[Liu et al., 2018] 1,000

Mask R-CNN[He et al., 2017] 1,000
YOLACT[Bolya et al., 2019a] 200
SOLO[Wang et al., 2019b] 500
PolarMask[Xie et al., 2020] 3000

DVIS@ PASCAL VOC 4.15
DVIS@ COCO 14.83

Number of Candidates in Post-Processing. We compare the average number of

candidates from our discretization process with previous one or two-stage instance seg-

mentation algorithms in Table 3.6. All the search-based (even anchor-free) algorithms [Li

et al., 2016, Liu et al., 2018, Xie et al., 2020] send over 200 proposals to their second

stage. SOLO [Wang et al., 2019b] selects top-500 and YOLACT [Bolya et al., 2019a]

selects top-200 proposals for post-processing. Meanwhile, we only average about 5− 15

segments per image sent to the classification module, further illustrating that our search-

free FCN network has already precisely located the instances, thanks to the variational

framework.

How many labels can DVIS predict? We investigate an interesting question, which

is how many distinct objects can our framework predict. With multiple objects in the

scene, the network has to be able to “see” all the objects, in order to assign them different

values. Fig. 3.3 shows the number of candidate segments inputted to post-processing on

the PASCAL VOC and MS-COCO dataset, which showed that our number of candidates

is usually slightly higher than the number of objects. This showed that DVIS could detect

enough objects for each image, and also did not generate an overabundance of candidate
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segments.

Figure 3.3: Number of Objects DVIS predicted vs. number of objects in the image on
Pascal VOC(the left column) and COCO (the right column). The figures are (from top
to bottom): histogram of the number of ground truth objects in the dataset and the
number of discretized instances over the number of GT objects. Note that by using 2
sets of thresholds we are capable of detecting more objects than the maximal prediction
value. And the number of candidate segments is only slightly more than the number of
objects in the images

Window size for computing relative loss We show an ablation study to verify that

it is indeed necessary for the permutation-invariant loss to compare pixel labels with a

large spatial displacement. The ablation study is done on the PASCAL VOC dataset.

We compared results where we limit the permutation-invariant loss to pixel pairs that

are close by, with ranges of 8, 16, 32, 64, and 128 pixels tested respectively. Table 3.7

shows that a large window size significantly improves our performance.
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Table 3.7: AP r result on PASCAL VOC val. set for different window size taken for the
permutation-invariant loss

Method mAP r AP r
avg

0.5 0.6 0.7 0.8 0.9

range 8 63.98 57.74 50.54 36.48 14.23 44.59
range 16 63.38 57.55 49.72 37.49 14.09 44.45
range 32 65.4 59.7 51.4 39.8 15.7 46.4
range 64 68.21 62.82 56.73 49.34 33.5 54.1
range 128 70.3 68.0 60.2 50.6 33.7 56.6

Regularization and Quantization Since the Mumford-Shah regularization term and

the quantization term mostly work on improving the boundaries, their impact on the

interior of the object is relatively small. Unfortunately, the commonly used IoU metric

is almost exclusively focused on the interior and ignores small differences in the bound-

aries. Hence to illustrate the use of the MS-regularization, we compute the F1-measure,

a semantic contour-based score from [Csurka et al., 2013], to depict the effect of the

Mumford-Shah regularization.

P c
i =

1

C

∑
c=1∼C

1

M

∑
k=1∼M

[d(zi,k, GT c
i ) < θ]

Rc
i =
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∑
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∑
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2 · P c
i ·Rc

i

Rc
i + P c

i

Where i, c,m indicates the m-th object in image i with class c. θ is the distance error

tolerance. The [·] is the Iversons bracket notation. M is the number of objects with

class c in image i. C is the total number of supported categories. N is the number of

images.

From Table 3.8, the model trained with LMS is 2% better than the model w/o LMS

at 1 distance error tolerance, which shows it improves significantly performance near

the boundary. The model trained with adding quantization has equivalent performance

to the model without it and it has a higher score with larger distance error tolerance
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since this term can increase the margin between different instances and the detected

instances are better shaped. Fig. 3.4 shows some visual examples, the predicted instance

map is smoother, both inside the instances and in the background. Besides, instance

boundaries are sharper with LMS . Different instances are better separated from each

other by adding quantization.

Table 3.8: semantic contour F1-score on PASCAL VOC val.

θ 1 5 10

w/o LMS 21.6 59.1 69.6
w/ LMS 23.5 59.6 69.9

w/ quantization and LMS 23.3 60.2 71.7

Influence of the IoU head We run an ablation study to identify how the classification

confidence Scls and the predicted IoU Siou affect the results. The weighted sum is

computed as α∗Siou +(1−α)∗Scls with α = [0, 1]. Fig. 3.5 shows that it achieves better

mAP at 70% ∼ 90% IoU as α increases, which means the predicted IoU can detect more

objects in higher quality.

Predict instance map on unseen categories Because our DVIS method learns to

segment instances directly from instance-level ground truth, it can recognize ’objectness’

for unseen categories by relating them to seen ones. We test it by running the model

trained on PASCAL VOC train set on images containing unseen categories from the

DAVIS challenge [[Pont-Tuset et al., 2017c]]. Examples are shown in Fig. 3.6, which

shows DVIS can recognize ’objectness’ and segment the instances.

3.5 Quanlitative Results

We show some qualitative results on the PASCAL VOC dataset in Fig. 3.7 and the MS-

COCO dataset in Fig. 3.8 and Fig. 3.9. We also show some failure cases in Fig. 3.10.

In those failure cases, our method fails to predict a good instance map when the scene

becomes too crowded.

Note that part of the reason the algorithm is failing on those crowded scenes may be

because of the way COCO is labeled. As can be seen in Fig. 3.10, among all the persons
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RGB image without LMS with LMS with quantization and LMS

Figure 3.4: This figure shows the predicted instance map from the model trained w/o
or w/ the Mumford-Shah regularization, where the previous one is smoother inside the
instances and the background and there is less noise along instances’ boundaries
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Figure 3.5: Ablation study on how the IoU score affects the instance segmentation on
PASCAL VOC val.

in the scene, only some are labeled as persons while some are not. We hypothesize this

confuses our algorithm more than the anchor-based algorithms, since our permutation-

invariant loss looks globally at all pixel pairs, whereas anchor box-based methods only

analyze locally within each box. It would be interesting if we ran the algorithm on a

dataset where instances are more consistently labeled.

3.6 Conclusion

In this Chapter, we proposed deep variational instance segmentation (DVIS), which re-

laxes instance segmentation into a variational problem with a novel variational objective

that includes a permutation-invariant component. Such a variational objective leads to

an end-to-end training framework with an FCN directly predicting real-valued instance

labels on the image. During inference time, we discretize the predicted continuous la-

bels and utilize a small CNN to categorize them into semantic categories, as well as

reject false positives. Experiments have shown that the proposed approach improves
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RGB image GT predicted instance map

Figure 3.6: Predicted instance map on unseen categories from DAVIS challenge [[Pont-
Tuset et al., 2017c]].
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over the state-of-the-art in search-free instance segmentation approaches, especially on

higher overlap thresholds, while being much faster. Such performance shows that our

model is effective and efficient in capturing the global shape information in objects and

segmenting objects with higher precision.

DVIS showed a distinct philosophical difference from most search-based algorithms in

that it inherently processes the entire image with a single global glance. Most search-

based algorithms look carefully at each local region to locate small objects, whereas DVIS

directly gazes at the entire image and extracts objects in one shot. Hence, DVIS might be

missing out on some small objects, as our COCO results have shown. However, we argue

that there are plenty of applications e.g. in robotics where segmenting the prominent

objects quickly and accurately is of the utmost importance, rather than an exhaustive list

of small and far-away objects. In those scenarios, the fast global approach of DVIS would

make more sense since it deals with a significantly smaller amount of object candidates.

In the future, we will further explore variants of the top-down instance segmentation

paradigm from DVIS to improve its performance on small objects.
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Figure 3.7: Examples from Pascal VOC 2012 val subset. From left to right: Image,
Ground Truth, Predicted Instance Map, Final Instance Segmentation from DVIS(best
viewed in color)
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RGB image GT Predicted Instance Map final Seg.

Figure 3.8: This figure shows qualitative results on COCO val2017 set, part(1)
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RGB image GT Predicted Instance Map final Seg.

Figure 3.9: This figure shows qualitative results on COCO val2017 set, part (2)
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RGB image GT Predicted Instance Map final Seg.

Figure 3.10: Examples of inaccurate predicted instance maps with crowded objects on
the COCO val2017 set
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Chapter 4: Unsupervised Video Object Segmentation

In our first work, we developed a model capable of segmenting objects within images.

However, the accuracy of segmentation is contingent upon the quality of the image,

making it particularly challenging to accurately delineate objects with blurred bound-

aries, significant occlusions, or those that were out of focus. These issues are especially

prevalent in videos.

In this chapter, we delve into our second work, focused on tackling the Unsupervised

Video Object Segmentation (UVOS) task. UVOS involves the discovery of objects within

individual frames and the consistent assignment of coherent object IDs to these objects

throughout the entire sequence. To address these challenges, we introduce a frame-

work designed to enhance segmentation quality by leveraging information from nearby

frames. By incorporating a Video Object Segmentation (VOS) algorithm to track the

refined object segmentation across the entire video, we provide a solution for the UVOS

task.

4.1 Introduction

For robots to operate safely and reliably in dynamic environments or ‘in-the-wild’, they

must be able to discover novel unseen objects with no supervision from continuous video

streams. Robots can be pre-trained to understand what general objects may look like,

but once deployed in the field, it would be very difficult to supply them with additional

annotations and they are left on their own to recognize objects from novel categories.

Hence, the capability of unsupervised object discovery from new videos, which more

commonly is called Unsupervised Video Object Segmentation (UVOS)[Caelles et al.,

2019], is an important research problem.

In the related problem of semi-supervised Video Object Segmentation (VOS), the first

frame annotation is provided to the algorithm, which tracks and segments each object

throughout the rest of the video. Most recent works typically utilize space-time trans-
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Figure 4.1: Illustration of the proposed MCMPG for object proposal refinement using
a key frame clip with size 5 ( ”judo” from DAVIS 2017 val set). On the left side:
the first row is the RGB frames within the local window (the key frame g(k) is the
central frame highlighted in the red border). The second row is the segmentation of the
object (the left person in ”judo”) on each frame. The third row shows the proposals
propagated to the key frame. On the right side: the first image is the voting of the
object proposals inside a maximal clique on the MP-Graph, which is created with all
propagated object proposals initially generated on the key frame clip. The second image
is the final binarized object mask we obtained.

formers like STM [Oh et al., 2019] which properly match the visual features in a new

frame with previous frames using a deformable attention model. This helps the systems

track objects across significant motion, deformation, and occlusion.

Hence, a simple and natural idea to address the UVOS problem in prior work is to

identify object proposals on a few key frames and then utilize a semi-supervised VOS

algorithm to track them [Luiten et al., 2020]. Usually, instance segmentation algorithms

such as Mask-RCNN [He et al., 2017] are utilized to identify object proposals in those

key frames. However, for VOS to work well, the starting frame usually needs to be

annotated with high precision, because wrongly annotated regions in this frame, serving

as ground truth, could lead to significant drift in subsequent frames. Similarly, a missing

part from the annotation might be missed forever because the tracker thinks it belongs

to the background instead of the object. Hence, achieving high segmentation accuracy

at those key frames is essential for better UVOS performance.
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However, single-frame instance segmentation is often noisy and does not always provide

the required precision for tracking. In this work, we aim to solve the novel task of im-

proving the segmentation quality on key frames. The idea is to take into account

object proposals from nearby frames and use them to jointly reason about the segmen-

tation in the key frame, which allows segmentations from different frames to cancel out

the noise in each other. Through experiments, we show that refining key frame proposals

before long-term tracking leads to significantly better UVOS performance.

Our approach builds a Multi-frame Proposal Graph (MP-Graph) using object proposals

initially generated in a local window around each key frame, and then locates maximal

cliques in this graph from which the final segmentation on the key frame is generated.

Each clique in the graph consists of multiple segments that correspond to the same object,

hence jointly reasoning among all of them may generate more precise segmentations.

Fig. 4.1 shows an example, where the segmentation of the object is poor on the key

frame, meanwhile, none of the segmentations from the five frames are perfect. However,

their joint voting produces a segmentation very close to the ground truth.

Once better key frame segmentations are obtained, one can use any VOS algorithm to

propagate them to the entire video and use a sequence non-maximum suppression (NMS)

approach to filter out redundant objects. Our approach is lightweight and fast and thus

adds little computational overhead to the VOS algorithms used for tracking key frame

proposals. We also show that our improved key frame segmentations benefit a similar

problem of Video Instance Segmentation (VIS), where it is required to classify the tracked

object instances to a known set of categories, extending image instance segmentation to

the video domain.

We validate our approach through extensive experiments providing quantitative and

qualitative analysis on both tasks. Experiments on the DAVIS-UVOS and Youtube-

VIS benchmark show that the better key frame segmentations from our approach lead

to state-of-the-art performance. Notably, our approach outperforms the state-of-the-art

[Lin et al., 2021] in UVOS that jointly trains the proposal generation model and the STM

model. Not needing joint training is a significant advantage of our model – this makes

it future-proof because it can be then plugged in seamlessly to any future VOS models

that achieve better performance without a cumbersome re-training process.
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To summarize, our main contributions are,

• We propose to solve the novel task of improving key frame segmentations using

nearby frames.

• We propose Maximal Cliques on Multi-Frame Proposal Graph (MCMPG), which

utilizes maximal cliques over a graph of object proposals from the local window.

Reasoning over the multiple similar proposals within these maximal cliques yields

better object proposals. MCMPG is modular, lightweight, and fast, enabling it to

be plugged into any VOS/VIS algorithms that track object proposals to improve

their performance on the UVOS/VIS tasks.

• UVOS with improved key frame segmentations from MCMPG outperforms all

SOTA methods on the DAVIS-UVOS validation and test-dev set. MCMPG also

significantly improves the performance of the Video Instance Segmentation Task

on the Youtube-VIS 2019 validation set.

4.2 Related Work

Image Instance Segmentation. As introduced in Section 3, the task is to produce

pixel-level predictions for each object instance in a frame. Top-down [He et al., 2017,

Huang et al., 2019, Liu et al., 2018] approaches such as Mask-RCNN [He et al., 2017] and

its follow-ups adopt the ‘detect-then-segment’ paradigm. These two-stage approaches are

accurate but relatively slow due to the exhaustive search process.

To overcome these drawbacks, bottom-up methods [De Brabandere et al., 2017, Liu et al.,

2017, Newell et al., 2016] view the problem as ‘label-then-cluster’ where the model learns

an affinity function to group pixel embeddings belonging to the same object instance.

Single-stage algorithms [Wang et al., 2020b,c, Xie et al., 2020, Yuan et al., 2020] simplify

computational-heavy post-processing, and in particular, SOLO [Wang et al., 2020b] and

SOLOv2 [Wang et al., 2020c] segment the object instances by locations without using

bounding boxes or metric learning. DETR [Carion et al., 2020] inspires End-to-End

transformer-based models [Cheng et al., 2021a, 2022, Dong et al., 2021, Thawakar et al.,

2022b, Wang et al., 2021a]. The most recent Mask2Former [Cheng et al., 2022] uses

masked attention to achieve state-of-the-art performance in the instance segmentation
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task.

Semi-Supervised Video Object Segmentation. Video Object Segmentation (VOS)

can be applied to acquire pixel-level segmentations of primary objects in the scene given

unconstrained videos. Depending on the level of supervision, they can be categorized

as semi-supervised (one-shot), interactive, and unsupervised (zero-shot). Early work

[Caelles et al., 2017, Cheng et al., 2017, Perazzi et al., 2017] fine-tuned a pretrained

network at test-time using multiple data augmentations on the mask of each object from

the first frame. They are usually very slow due to the excessive test-time fine-tuning.

Their performance under occlusion and appearance changes is also limited due to the

overfitting to the appearance of the first frame. Later approaches improved speed and

accuracy through metric learning [Chen et al., 2018b, Voigtlaender et al., 2019], guided

propagation [Oh et al., 2018, 2019, Yang et al., 2018] and transformer-type networks

[Cheng et al., 2021b, Li et al., 2020b, Nguyen and Li, 2021, Oh et al., 2019, Seong et al.,

2020, Wu et al., 2020].

Unsupervised Video Object Segmentation. Early work utilizes motion patterns

such as clustering object motion trajectories [Brox and Malik, 2010, Fragkiadaki et al.,

2012, Xie et al., 2019] or CNN-based spatio-temporal grouping [Dave et al., 2019, Xie

et al., 2019]. Some combine appearance with optical flow for enhanced features [Cheng

et al., 2017, Lu et al., 2019, Zhou et al., 2020], or use optical flow alone [Tokmakov et al.,

2017]. A common drawback to these methods lies in their inability to be generalized to

videos that have static objects, large motion blur, or cluttered backgrounds.

For multi-object VOS, learning appearance models of all the object proposals have been

previously explored [Li et al., 2013, Wu et al., 2015]. Currently, the ‘track-by-detect’

[Garg and Goel, 2021, Luiten et al., 2020, Ventura et al., 2019, Wang et al., 2019a]

paradigm is popular where an object discovery framework generates object proposals via

Mask-RCNN [He et al., 2017] and then these objects are tracked consistently through

a video sequence. UnOVOST [Luiten et al., 2020] pruned tracklets from proposals into

long-term tracks via visual similarity. Most recently, [Zhou et al., 2021a] proposed a

novel instance segmentation, tracking, and re-identification network. In AGNN [Wang

et al., 2019a], mask proposals over a video sequence were aggregated via graph neural

networks. Similar works optimizing cliques for VOS have also been proposed [Koh et al.,
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2018, Ma and Latecki, 2012]. Our work uses cliques for refining the key frame segment

instead of VOS, hence very different from the approaches above.

Video Instance Segmentation. The VIS task was proposed in MaskTrack R-CNN

[Yang et al., 2019] which adds a tracking head to Mask RCNN and an external memory

to store and associate features of object instances across multiple frames. This track-

ing paradigm is extended in [Bertasius and Torresani, 2020, Cao et al., 2020]. STEM-

seg [Athar et al., 2020] models video clips as 3D space-time volumes to predict masks

by clustering learned embeddings. An application of graph neural networks is seen in

VisSTG [Wang et al., 2021b]. Transformer-based techniques have become increasingly

successful [Hwang et al., 2021, Thawakar et al., 2022a, Wang et al., 2021c, Wu et al.,

2022b] applying cross-attention to process video clips. Mask2Former is extended to VIS

[Cheng et al., 2022] by directly making predictions on the entire video sequence. On-

line VIS methods also exist, but they usually have lower accuracy due to not observing

the entire sequence [Han et al., 2022, Wu et al., 2022a]. Propose-Reduce [Lin et al.,

2021] introduces an alternative paradigm of ”segment-then-propagate” to benefit from

the progress made in VOS tasks. As object mask propagation is sensitive to its segmen-

tation on the reference frame, this method generates instance proposals on multiple key

frames and then reduces redundant sequences of the same instances using non-maximum

suppression. Note that our work is different from [Lin et al., 2021] in that our focus

is to present a modular approach that improves key frame proposals (before long-term

tracking) without requiring any joint training.

4.3 MCMPG

MCMPG aims to generate the key frame proposals with higher quality by creating

a multi-frame proposal graph and finding its maximal cliques. Afterward, any semi-

supervised VOS algorithm can be used to track each instance proposal to the beginning

and end of the sequence. Sequence NMS can then be used to remove duplicate segments.

The architecture of using MCMPG to perform UVOS is shown in Fig. 4.2.
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Figure 4.2: Illustration of using the proposed MCMPG algorithm for the UVOS task.
The proposed MCMPG is used to refine the proposals on the key frame from its key
frame clip, which includes the key frame and its neighboring frames. Afterwards, an
off-the-shelf semi-supervised VOS algorithm can track these proposals bidirectionally
through the whole sequence to obtain the final unsupervised video object segmentation.
MCMPG includes 3 steps: 1) Discover objects on each frame in the key frame clip; 2)
Propagate the proposals to the key frame; 3) Create the MP-Graph from the propagated
proposals and locate its maximal cliques. By combining proposals within these maximal
cliques, we can obtain refined key frame segmentations and subsequently improve the
performance of the UVOS task. (Best viewed in color)

4.3.1 Problem Definition

Given a set of RGB frames I = {It}T−1
t=0 where It ∈ R3×h×w and T is the total number of

frames, the goal is to produce a sequence of consistent segmentation masks S = {Mt}T−1
t=0

for each of the m objects in the video. where Mt ∈ Rm×h×w represents the masks for

all of the objects.

4.3.2 Proposal Refinement on Key Frames

As we argued in the introduction, the quality of the generated key frame proposals

is crucial for successful unsupervised video object segmentation. However, as Fig. 4.1

shows, even state-of-the-art instance segmentation approaches can generate bad segments
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in some frames due to motion blur, occlusion, and object poses that are very different

from the training set. In this section, we introduce our main contribution, MCMPG ,

that improves key frame proposals by joint reasoning from multiple frames.

Key Frame Selection. For a T -frame video, K key frames {Ig(0),··· ,Ig(K−1)
} can be

selected with fixed intervals: g(k) = k max(⌊T/K⌋), 1), k = 0, · · · ,K − 1.

In contrast to [Lin et al., 2021] that uses the segments in the key frames directly as key

frame proposals to track, we select a key frame clip to generate the key frame proposals.

Here, the key frame clip on a key frame Ig(k) is ICg(k) = {Ii|i = g(k) − H−1
2 , · · · , g(k) +

H−1
2 }. It contains the key frame itself and its H − 1 neighbors from a local window

centered around the key frame.

Proposal Generation and Propagation. With the key frame clip ICg(k), we first

discover objects in each frame individually. Then we propagate all the object segments

SI
i to the key frame g(k) by using the same semi-supervised VOS algorithm that we

used in a later stage (in Fig. 4.2). The set of propagated proposals is denoted as Sg(k) =

{Sg(k)
i |i = g(k)− H−1

2 , · · · , g(k)+ H−1
2 }, where S

g(k)
i ∈ RLi×h×w is the probability masks

of Li proposals that are segmented in frame i and then propagated to the key frame

g(k). This set can be used to create the multi-frame proposal graph which is introduced

below.

MP-Graph (Multi-frame Proposal Graph). On the proposal set Sg(k) from one

key frame clip, we create an undirected graph where each propagated proposal in Sg(k)

is one vertex in the graph, and an edge is created between a pair of vertices if their

Intersection-over-Union (IoU), Eq.(4.1)) is larger than t0.

IoU(S
g(k)
i,o1

, S
g(k)
j,o2

) =
S
g(k)
i,o1
∩ S

g(k)
j,o2

S
g(k)
i,o1
∪ S

g(k)
j,o2

(4.1)

where S
g(k)
i,o1

, S
g(k)
j,o2

are two propagated proposals from the temporal frame i and j to the

key frame g(k) so that their IoU is measured in the same key frame.

We name the graph as the Multi-frame Proposal Graph given that its nodes are prop-

agated proposals from different temporal frames and its edges are created based on the



45

Algorithm 1 Key frame Proposal Generation and Refinement

Input : key frame and its neighbours {Ii|i = g(k)− H
2 , · · · , g(k) + H

2 }
Output: Instance Proposals S in the key frame
for i← g(k)− H

2 to g(k) + H
2 do

SI
i ← InstanceSegmentation(Ii) S

g(k)
i ← Propagate(Si, {Ii · · · Ig(k)})

G = MP-Graph(Sg(k)) Cliques = G.maximalCliques()
for C ∈ Cliques do

Sc ← combine(C, S(g(k))) // Eq.4.2

Sk ← ∪Sc

return Sk

spatial IoU computed in the same time frame g(k). After the MP-Graph is created, we

adopt the maximal clique algorithm [Bron and Kerbosch, 1973] to generate the final key

frame instance proposals to be tracked (See Fig. 4.3).

Key Frame Proposals. In an undirected graph, a clique is a complete sub-graph

in which every two vertices are adjacent. A maximal clique is a clique that cannot be

extended by including any more adjacent vertex. The largest maximal clique is called

a maximum clique. Accordingly, in the MP-Graph, a maximal clique is a subset of

propagated proposals which all significantly overlap each other.

Given a maximal clique C that contains n propagated proposals {Oi|i = 0, · · · , n−1}, n ≤
H, its corresponding key frame object proposal SC is computed as:

SC = (
1

n

∑
i=0,···n−1

Oi) ≥ t1 (4.2)

where t1 is a threshold that can be set to a small value (0.2 in the experiments) without

introducing noise in the segmentation. Notably, the algorithm can retrieve the object

proposals even when the segmentation on the key frame is poor. In the example presented

in Fig.4.1, the segment of the person on the left is noisy on frame g(k) due to serious

motion blur, exhibiting low confidence in detecting the person’s left hand and high

confidence in detecting the left leg. Conversely, the propagated proposals from g(k) + 1

and g(k) + 2 exhibit high confidence in detecting the left hand and low confidence in

detecting the left leg. In contrast, the propagated proposal from g(k) − 2 mistakenly
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Figure 4.3: An example of Multi-frame Proposal Graph. Propagated segments are con-
nected based on their IoU on the key frame, then one segment is generated from each
clique (Best viewed in color)

includes a portion of another person. The maximal clique, consisting of the proposals

propagated from g(k)−2, g(k), g(k)+1, and g(k)+2, effectively captures information on

all parts of the person and accurately segments the individual without errors involving

another person.

4.3.3 Using MCMPG in the UVOS task

Once we have MCMPG-refined proposals on K key frames, we can use any VOS al-

gorithm to track the proposals through the video, and use sequence NMS to remove

duplicates. An example architecture to use MCMPG for the UVOS task is shown in

Fig. 4.2.

Sequence propagation. After the key frame proposals are obtained, any off-the-shelf

semi-supervised VOS method can be used to track all the objects from the key frame

bidirectionally through the video sequence. In this way, we can always plug in state-

of-the-art VOS algorithms for better performance. The propagation results from each

key frame {Sk|k = 0, · · · ,K − 1} are then concatenated together as Ŝ ∈ RT×N×h×w,

assuming we segment N objects in total after the tracking stage.
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Sequence Score. Define St
i and Ct

i as the ith object proposal and its objectness score

at time t, respectively. Define a tracked object sequence Ŝo = {Ŝt
o, Ŝ

1
o , ..., Ŝ

T−1
o } where

Ŝt
o represents the tracked mask at time t. The score of Ŝo is computed by:

Scoreo =
1

T

∑
t=0,··· ,T−1

max
i

(IoU(Ŝt
o, S

t
i )C

t
i ) (4.3)

where we use the objectness of per-frame proposals St
i and its IoU with Ŝt

o to obtain the

score of Ŝt
o. This helps us to generalize to SOLOv2 which does not allow recomputing

objectness on a new mask Ŝt
o that comes from tracking. The sequence score for each

object sequence is used in Sequence NMS for removing duplicate object sequences that

are detected in different key frames. It is also used to rank object sequences in the

case where the algorithm is allowed to output only a fixed number of detections. Our

sequence NMS follows [Lin et al., 2021] which removes overlapping tracks by running the

traditional NMS algorithm with the tracking scores and the sequence IoU.

4.4 Experiments

4.4.1 Implementation Details

In the experiments, key frame proposals with areas smaller than 10 pixels are discarded.

And except ablations, the number of key frames K is set to 2 on DAVIS and 8 on

Youtube-VIS, the size of key frame clip H = 3, threshold t0 = 0.5, t1 = 0.2.

4.4.2 Object proposal quality with MCMPG.

The DAVIS 2017 [Pont-Tuset et al., 2017b] benchmark is used for video multi-object

segmentation with high-quality masks for salient objects. It consists of 60 sequences

used for training and 30 for validation. We provide a comparison of the object proposals

quality with and without MCMPG on the key frames evaluated against the ground truth

objects on the DAVIS 2017 val set. MCMPG improves the key frame proposals by 3.7%

in terms of mIoU as shown in Table 4.1. This significant improvement in the quality of

the key frame proposal is the main driver of the performance in downstream tasks.
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Table 4.1: Quality of the key frame proposals on DAVIS 2017 val.

w/ MP-Graph w/o MP-Graph

mIoU (%) 79.2 75.5

4.4.3 Unsupervised Video Object Segmentation

Dataset. Besides DAVIS 2017, DAVIS 2019 [Caelles et al., 2019] is an extension of

DAVIS 2017 for the UVOS task. It has the same training and validation set as DAVIS

2017 and 30 new sequences in its test-dev set. To demonstrate that our proposed MP-

Graph is network-agnostic and can work with a wide range of object discovery models,

we show experimental results with both SOLOv2 [Wang et al., 2020c] and Mask-RCNN

instance segmentations from [Lin et al., 2021]. SOLOv2 model is initialized with COCO

pre-trained weights. We then finetune its kernel branch and feature branch for 10 epochs,

then the FPN for 5 epochs, and finally the ResNet-101 backbone blocks from the last

block to the first block for 5 epochs per block. Similarly, for the tracker, we show exper-

imental results with both STM [Oh et al., 2019] and STCN[Cheng et al., 2021b].

Metric. We follow the standard evaluation settings [Perazzi et al., 2016]: the perfor-

mance is reported in terms of region similarity J , boundary accuracy F , and the overall

metric J&F . The evaluation scores on the test-dev set are obtained from the evaluation

server of the DAVIS 2019 challenge.

Results on DAVIS 2017 val. In Table 4.2, we compare our approach with state-of-the-

art unsupervised video multi-object segmentation methods on the DAVIS 2017 dataset.

The common baselines from published works are included: AGS [Wang et al., 2020a],

MATNet [Zhou et al., 2020], AGNN [Wang et al., 2019a], Stem-Seg [Athar et al., 2020],

UnOVOST [Luiten et al., 2020], Target-Aware [Zhou et al., 2021a], and Propose-Reduce

[Lin et al., 2021]. As shown in Table 4.2, on DAVIS 2017 val, our approach achieves

the highest overall results across most metrics. Prior methods such as UnOVOST and

MATNet are computationally expensive and also need to compute optical flow for motion

estimation. Our work requires only RGB frames as input and outperforms the previ-

ous best method Propose-Reduce [Lin et al., 2021] by 1.7% in terms of J & F-Mean

when using the same segmentation method and the same ResNeXt-101 backbone. With

the more complex ResNeXt-101 backbone, we outperform [Lin et al., 2021] by 7.8%.
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Note that by utilizing frames next to the key frames, our approach may be thought of

as utilizing more frames than [Lin et al., 2021]. However, the ablation study in [Lin

et al., 2021] shows that more key frames do not further help their performance on this

dataset, which shows the importance of MCMPG in terms of combining and refining the

proposals.

In Table 4.2, we also adopt the Mask-RCNN module from [Lin et al., 2021] to compute the

key frame proposals. This approach without the MP-Graph achieves a score 1.7% higher

than [Lin et al., 2021] since we adopt a separate STM model to perform tracking. Adding

MP-Graph improves another 1.7% over this baseline, which shows the effectiveness of

MCMPG even with the same object proposal algorithm as [Lin et al., 2021]. MCMPG can

be plugged into any tracking algorithm. In order to show this, we report the performance

of MCMPG with STCN [Cheng et al., 2021b] as well.

Results on DAVIS 2019 test-dev. We evaluate the proposed approach MCMPG on

DAVIS 2019 test-dev set shown in Table 4.3. Our approach achieves the state-of-the-art

result in terms of J & F-Mean at 61.2. Compared with the previous state-of-the-art

Target-Aware [Zhou et al., 2021a], our approach improves significantly on the boundary

F-metric, which shows that our proposals cover object boundaries significantly better.

Here we do not test the ResNeXt-101 backbone for a fair comparison with prior work,

which also does not use this more complex backbone.

Table 4.2: Quantitative video multi-object segmentation results on DAVIS 2017 val.
Methods Instance Seg. backbone J & F Mean J -Mean J - Recall J - Decay F -Mean F - Recall F - Decay

AGS [Wang et al., 2020a] - ResNet-101 57.5 55.5 61.6 7.0 59.5 62.8 9.0
MATNet [Zhou et al., 2020] - ResNet-101 58.6 56.7 65.2 -3.6 60.4 68.2 1.8
AGNN [Wang et al., 2019a] - ResNet-101 61.1 58.9 65.7 11.7 63.2 67.1 1.2
STEm-Seg [Athar et al., 2020] - ResNet-101 64.7 61.5 70.4 -4.0 67.8 75.5 1.2
UnOVOST [Luiten et al., 2020] - ResNet-101 67.9 66.4 76.4 -0.2 69.3 76.9 0.0
Target-Aware [Zhou et al., 2021a] - ResNet-101 65.0 63.7 71.9 6.9 66.2 73.1 9.4
Propose-Reduce [Lin et al., 2021] Mask-RCNN ResNet-101 68.3 65.0 - - 71.6 - -
Propose-Reduce [Lin et al., 2021] Mask-RCNN ResNeXt-101 70.6 67.2 - - 73.9 - -

MCMPG + STM (w/o MP-Graph) Mask-RCNN ResNeXt-101 70.0 67.1 73.0 -1.1 72.3 80.0 0.9
MCMPG + STM (w/ MP-Graph) Mask-RCNN ResNeXt-101 71.7 68.9 74.6 -4.9 75.8 83.2 -2.1

MCMPG + STCN (w/o MP-Graph) Mask-RCNN ResNet-101 73.6 70.2 77.5 -2.3 77.1 83.4 0.2
MCMPG + STCN (w/ MP-Graph) Mask-RCNN ResNet-101 76.8 73.8 81.9 -1.2 79.2 85.5 1.9

MCMPG + STM (w/o MP-Graph) SOLOv2 ResNet-101 71.2 68.2 76.5 -2.2 74.0 81.2 0.9
MCMPG + STM (w/ MP-Graph) SOLOv2 ResNet-101 72.5 69.0 77.3 -3 76.1 83.3 5.3

MCMPG + STM (w/o MP-Graph) SOLOv2 ResNeXt-101 72.7 69.9 76.6 -3.7 75.5 82.7 -1.1
MCMPG + STM (w/ MP-Graph) SOLOv2 ResNeXt-101 78.4 75.4 83.9 0.05 81.4 88.9 0.04
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Table 4.3: Quantitative video multi-object segmentation results on DAVIS 2019 test-dev.
Methods Backbone J & F Mean J -Mean J - Recall J - Decay F -Mean F - Recall F - Decay

PDB [Song et al., 2018] ResNet-50 40.4 37.7 42.6 4.0 43.0 44.6 3.7
AGS [Wang et al., 2020a] ResNet-101 45.6 42.1 48.5 2.6 49.0 51.5 2.6
UnOVOST [Luiten et al., 2020] ResNet-101 58.0 54.0 62.9 3.5 62.0 66.6 6.6
Target-Aware [Zhou et al., 2021a] ResNet-101 59.8 56.0 65.1 7.8 63.7 68.4 11.0

MCMPG + STM (w/MP-Graph) ResNet-101 61.2 56.1 63.5 -0.2 66.4 71.9 -0.5

4.4.4 Video Instance Segmentation

Video Instance Segmentation (VIS). Different from UVOS which segments salient

object instances, VIS aims at discovering and segmenting all object instances of pre-

defined object categories from videos. It requires predictions for both object segmenta-

tion and object categories. Usual VIS approaches contain a category classification head

to predict the category score.

We adapt MCMPG to the VIS domain by adopting the Mask-RCNN module from [Lin

et al., 2021] to generate object segments and the category scores on each frame as dif-

ferent settings. Meanwhile, STM [Oh et al., 2019] is used to propagate object segments

generated on frames in a key frame clip to the key frame and to track key frame proposals

bidirectionally throughout the videos. We also test our approach to the task by utilizing

the latest transformer-based method, Mask2Former-VIS from [Cheng et al., 2022], as the

single-frame object discovery network.

Dataset. YouTube-VIS 2019 [Yang et al., 2019] is a large-scale dataset for VIS with

objects in multiple categories. It contains 2, 283 high-resolution YouTube videos for

training and 302 for validation, covering 4,883 unique object instances out of 40 cate-

gories. We use this dataset to examine the performance of our model in more challenging

scenarios.

Metrics. YouTube-VIS adopts the standard evaluation metrics in image instance seg-

mentation, average precision (AP), and average recall (AR), to evaluate performance. It

follows COCO evaluation [Lin et al., 2014] to compute AP by averaging it over multiple

intersection-over-union (IoU) thresholds from 50% to 95% at step 5%.

Results on YouTube-VIS 2019 val. We compare our approach with state-of-the-art

video VIS approaches on the YouTube-VIS 2019 benchmark. As shown in Table 4.4, our
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approach achieves consistent improvements with all different backbones and instance

segmentation methods. Specifically, adding the MP-Graph achieves at least 1.0% higher

over the baseline without the MP-Graph, which shows the effectiveness of the MCMPG.

Note that the results on the YouTube-VIS are significantly affected by the accuracy of the

object categorization, which is orthogonal to our contribution to improving the key frame

segmentation. Hence, our AP@50 is not necessarily the best, since this metric is mainly

affected by classification accuracy, but our higher AP and higher AP@75 indicate better

segmentation quality our approach achieves. Compared with SeqFormer [Wu et al.,

2022b], our AP is higher, but AP@50 and AP@75 are both slightly lower. This shows

that we very likely have achieved significantly better performance in the AP regimes even

higher than 75% IoU, greatly indicating the strong segmentation quality our approach

provides.

Table 4.4: Results on YouTube-VIS 2019 val.
Methods Instance Seg. backbone AP AP@50 AP@75 AR@1 AR@10

SipMask [Cao et al., 2020] - ResNet-50 33.7 54.1 35.8 35.4 40.1
STEm-Seg [Athar et al., 2020] - ResNet-101 34.6 55.8 37.9 34.4 41.6
Target-Aware [Zhou et al., 2021a] - ResNet-101 37.1 57.1 40.9 34.8 43.2
Propose-Reduce [Lin et al., 2021] - ResNet-101 43.8 65.5 47.4 43.0 53.2
Propose-Reduce [Lin et al., 2021] - ResNeXt-101 47.6 71.6 51.8 46.3 56.0

MCMPG (w/o MP-Graph) Mask-RCNN ResNet-101 43.4 64.4 48.9 45.0 57.1
MCMPG (w MP-Graph) Mask-RCNN ResNet-101 44.6 64.2 49.5 46.4 58.5

MCMPG (w/o MP-Graph) Mask-RCNN ResNeXt-101 47.4 70.6 52.3 47.5 60.0
MCMPG (w MP-Graph) Mask-RCNN ResNeXt-101 48.4 70.4 52.7 48.6 60.1

Transformer-based methods

SeqFormer[Wu et al., 2022b] - ResNet-101 49.0 71.1 55.7 46.8 56.9
Mask2Former[Cheng et al., 2022] Mask2Former-VIS ResNet-101 49.2 72.8 54.2 - -

MCMPG(w/o MP-Graph) Mask2Former-VIS ResNet-101 48.5 65.7 53.0 43.7 54.0
MCMPG(w MP-Graph) Mask2Former-VIS ResNet-101 50.5 70.3 55.0 45.0 55.8

4.4.5 Ablation studies

We conduct ablation studies on the DAVIS 2017 val to validate the effectiveness of the

proposed MCMPG in different settings and discuss the challenge in the task.

Key frame Count and Key frame Clip Size. In Table 4.5, we illustrate the effec-

tiveness of MCMPG on combining and refining the proposals using different numbers of

key frames and keyframe clip size on DAVIS 2017 val. With MP-Graph (H = 3/5/7),

better segments that are obtained from merging proposals in the same clique lead to
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performance improvement at every setting of key frames, which validates that the pro-

posed approach provides significant performance improvement as discussed in the paper.

Also, we observe that the performance is robust to different numbers of key frames and

satisfactory with just 2 key frames, not requiring an excessive amount of key frames to

obtain good performance on this dataset.

Table 4.5: Ablation study on DAVIS 2017 val on the influence of the number of key
frames K and the size of key frame clip H in terms of J & F-Mean.

H
HHH

HHK
H

1 3 5 7

1 - baseline 71.3 73.8 74.7 74.2
2 72.7 78.4 77.6 77.0
3 72.1 78.2 77.5 76.9
4 72.4 77.9 77.2 76.3
5 71.9 76.5 76.3 74.2

Objects from unseen categories and different sizes. Instance segmentation algo-

rithms (usually pre-trained on COCO) can detect objects in unseen categories if they

resemble the shapes or textures of seen categories. In order to show this, we manually

located 18 objects from non-COCO categories and 48 objects from COCO categories

in DAVIS val. Table 4.6 shows that MCMPG performs well on objects of unseen cate-

gories. It also includes a breakdown of our results based on object sizes. Objects smaller

than 4100 pixels (1% of the DAVIS image resolution 480p) are considered small. Our

performance is indeed lower on small objects which are harder to track and refine.

Table 4.6: Ablation Study on DAVIS 2017 val for unseen / seen categories and instances
in different sizes

type of objects No. of objects J & F-Mean J -Mean F-Mean
unseen categories 18 77.5 75.0 79.9

seen categories 48 78.7 75.5 82.0
small objects 11 63.8 61.4 66.2
large objects 55 81.3 78.2 84.4

all 66 78.4 75.4 81.4

Different strategies of proposal generation from MP-Graph. One simple baseline

is to use the connected components from MP-Graph as the proposals. We test it on the

DAVIS UVOS task shown in Table 4.7, and it results in a J & F-Mean of 72.0% on the val



53

set, significantly worse than our 78.4% and even worse than the result without MCMPG

(72.7%). We also compare the proposal quality in terms of mIoU, which drops 0.7% from

the object segmentation on the key frame itself. This is because connected components

can easily introduce extra noise from the neighboring frames’ segmentation.

We also attempted to construct a 3-layer Graph Convolutional Network (GCN) to learn

how to generate refined proposals from MP-Graph. The input graph to the network has

the same edges as MP-Graph, with each node representing one pixel instead of a whole

object mask as in MP-Graph. Each node has two features: ”mask score on the pixel” and

”objectness score”. The network performs binary classification. GCN is applied to all

pixels individually and updates each pixel with the pixels in the same location from their

adjacent objects in MP-Graph. Finally, the NMS algorithm is used to eliminate duplicate

proposals after all pixels are updated. It should be noted that the network is relatively

small, with only 354 parameters. As demonstrated in Table 4.7, the mIoU on proposals

is 2.6% better, and the J & F-Mean is 2.4% better than without MP-Graph.

Table 4.7: Different strategies to obtain the key frame proposals on DAVIS 2017 val.

Methods mIoU (%) J & F Mean

MCMPG w/ MP-Graph 79.2 78.4
w/o MP-Graph 75.5 72.7

connected-component w/ MP-Graph 74.8 72.0
GCN w/ MP-Graph 77.1 75.1

4.4.6 Run-Time Analysis.

We report the run-time of each module in MCMPG in Fig. 4.4. The results are generated

by using an NVIDIA Tesla V100 GPU. It shows that the process of generating proposals

and improving them with the MP-Graph is very lightweight and takes minimal time to

run. The most time-consuming part of the system is the semi-supervised VOS module.

A limitation of using MCMPG in the UVOS/VIS tasks is that the VOS algorithm needs

to track objects starting from multiple key frames.

In the STM algorithm, the encoder takes the object mask as input. Hence, with each new

object mask, the backbone has to be run again, which is quite sub-optimal, especially

for our approach which requires running tracking on a significantly larger amount of
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proposals than the regular semi-supervised VOS task for which STM was designed.

Figure 4.4: Run-time (in seconds) of MCMPG on DAVIS-UVOS 2017 val with 2 key
frames. Note that MCMPG is fast (only 8.7% or 2.9% of the running time for STCN
and STM VOS models, respectively) while improving the final tracking performance
significantly. The bottleneck of the speed comes from an external tracking algorithm such
as STM which requires re-running the backbone network for each proposal. Alternatively,
one could use a newer tracking algorithm such as STCN where all the proposals can share
the same backbone features, which would make the system much faster.

STCN [Cheng et al., 2021b] proposed to replace the memory encoder in STM with a

lightweight encoder that does not require the mask as input. This improved both the

speed and performance on the VOS task. For us, it implied that we will only need to

run the encoder once. Thus, the speed of our system will be significantly faster without

compromising performance if the system utilizes an STCN-type encoder, which we believe

will be standard in the future. In Fig. 4.4, running UVOS on MCMPG proposals with

STCN turns out to be at least 2.2× faster than STM.

4.4.7 Online UVOS with MCMPG

Here, we explore the online UVOS with MCMPG considering its value for tasks that

require real-time understanding and tracking of objects within video streams, including

robots.

In Fig.4.5, we illustrate the online setting with MCMPG for the task of UVOS. In the

initial frame, we utilize MCMPG to segment objects. Then, we designate frames as key

frames with a specified interval of step. For non-key frames, we adopt a VOS model,

where each object has its own memory, to propagate objects forward. On key frames, we

first generate object proposals using MCMPG and then merge them into the tracking
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Figure 4.5: Online MCMPG : We segment objects in the initial frame using MCMPG and
then track these objects until the next key frame. On key frames, we merge image-level
segmentation from MCMPG with tracking results from VOS to incorporate new objects.

result. Consistent IDs are assigned to object segments matching previously tracked

objects, while new IDs are assigned to those that have no previous matches.

Merging. We adopt a greedy solution to merge the MCMPG segmentation St with

tracked objects Ŝt
o at time t. We first compute IoU between each pair of objects, one

from St and one from Ŝt
o. Then we check the MCMPG segmentation in the decreasing

order based on their objectness score. If a proposal St
i from St has an IoU larger than

0.5 with an object in Ŝo, it is matched and we use St
i as the output mask for the matched

object considering the objects from near future is more accurate in most scenarios. If

the IoU is less than 0.5, we add St
i as a new object.

Object Memory. We introduce two variables: No and Nf , to manage the object

memory’s maximum size, to specify the maximum number of objects to track and the

maximum number of temporal frames to record. When there is a need to add a new object

and the object memory is already full, we delete the inactive object that disappeared

earliest from memory. Additionally, when key frames are encountered or when a fixed

frame interval is reached, the object memory is updated. If the memory size exceeds the

maximum temporal size, we delete the memory associated with the earliest frame.
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Figure 4.6: Labeled objects in the training set.

(a)

(b)

Figure 4.7: Results of applying online MCMPG to robot manipulation tasks.

We apply the online setting to a robot application [Huang et al., 2023] focused on reason-
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ing about object permanence. For segmentation, we utilize the SOLOv2 model [Wang

et al., 2020c], and for temporal propagation, we employ the STM model [Oh et al.,

2019]. To refine the SOLOv2 model, we annotate a total of 175 images for the object

and environment segments. The environment segments encompass elements such as the

robot arm, table, and shelf. The annotated objects are visually presented in Fig.4.6.

We augment these annotations with data from the YCB-Video dataset [Xiang et al.,

2017], resulting in a training dataset comprising 1174 images and 7105 object masks.

To prevent potential dataset imbalances, we downsample the YCB-Video dataset. The

segmentation model then underwent finetuning with a learning rate of 1e−6 over 100

epochs. Two illustrative examples from this use case are presented in Fig.4.7.

4.5 Quanlitative Results

We show the qualitative segmentation results of our approach on DAVIS-UVOS on

DAVIS 2017 val. in Fig. 4.8, The segmentation results are overlayed on the input RGB

sequence where different colors are used to indicate different object instances. Some qual-

itative segmentation results of our approach on DAVIS-UVOS 2019 test-dev are shown

in Fig.4.9. Some qualitative segmentation results of our approach on YouTube-VIS 2019

val are shown in Fig.4.10.

4.6 Conclusion

In this chapter, we studied the task of refining key frame object proposals. We intro-

duce a novel algorithm that aggregates object proposals in a local window, based on

maximal cliques on a graph built from all proposals propagated to the key frame. The

improved key frame proposals enable more robust and accurate propagation through a

video sequence. Experiments demonstrate that the mask proposal refinement provides

significant performance improvements over state-of-the-art methods in the DAVIS-UVOS

and Youtube-VIS benchmarks across different backbones and instance segmentation al-

gorithms. In the future, we would like to pursue applications of this algorithm in realistic

object discovery tasks, such as in robotics and autonomous driving applications.
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Figure 4.8: Qualitative results on three sequences from the DAVIS 2017 val set. We
show frames that are sampled from challenging scenarios such as fast motion, background
clutter, occlusions, and multi-object interaction
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Figure 4.9: Qualitative results on sequences from DAVIS 2019 test-dev
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Figure 4.10: Qualitative results on sequences from YouTube-VIS 2019 val
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Chapter 5: Multimodal Understanding: Bridging Vision and

Language

In this chapter, we take the concept of object discovery a step further by applying it to

Vision-Language tasks, introducing new challenges related to identifying relationships

between objects detected in images and leveraging objects that are contextually relevant

to textual information. This extension leads us to the domain of content moderation

(CM), where we propose an innovative model designed to efficiently fuse knowledge in

an asymmetric manner.

5.1 Introduction

With the proliferation of multimodal social media and online gaming, user-generated

content followed by recent AI-generated content (e.g., via DALL-E[Ramesh et al., 2022],

GPT-3[Brown et al., 2020], ChatGPT[van Dis et al., 2023]) can spread across the internet

at a faster rate than ever. While this enables free speech and facilitates information

exchange, it comes with the risk of misuse for fake news [Nakamura et al., 2019, Vosoughi

et al., 2018] and hate speech [Davidson et al., 2017, Schmidt and Wiegand, 2017].

Leaving harmful content on social platforms can lead to harmful consequences, but mod-

erating the tremendous amount of user/AI-generated content on the platforms manually

is infeasible due to the large scale and can be harmful to the mental health of human

moderators. Therefore, automated content moderation (CM) systems are necessary.

There has been extensive research on text-based content moderation [Vosoughi et al.,

2018, Waseem and Hovy, 2016, Waseem et al., 2017]. Recently, there is a study on

image-based pornographic content classification and sexual object detection tasks [Phan

et al., 2022]. As social platforms allow the use of different modalities, unsafe multimodal

content may evade detection by existing unimodal content moderation systems. Hence,

multimodal harmful content detection benchmarks [Gomez et al., 2020, Kiela et al., 2020]

have emerged followed by works [Das et al., 2020, Zhu, 2020] aiming to automatically
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Vision Language

Vision + 
Language

LOVE THE WAY 
YOU SMELL TODAY

Figure 5.1: An example of a mean meme from Hateful Memes[Kiela et al., 2020] for
illustrative purposes. The unimodal vision and language are both benign while the
multimodal meme is sarcastic and mean. This is not an actual example of the CM
dataset ⋆, which is hateful and would be distasteful to show here.

detect unsafe multimodal content, including child abuse material, violence, hate speech,

sexual content, cyberbullying content, and disinformation [Banko et al., 2020].

One important form of multimodal content online is memes, which are a combination of

image and short text. Understanding memes is a multimodal vision language (VL) task.

As noted in previous studies [Gomez et al., 2020], offensive terms by themselves may not

necessarily signify hate. It is the overall context that determines whether the intent is

harmful or not. Fig. 5.1 shows an example of a mean meme, where the text by itself is

just a compliment and the image also seems benign. However, when combining the two

modalities the meme becomes sarcastic and mean. This example is for illustrative pur-

pose only. For actual examples which are indeed hateful, please refer to supplementary.

To combat the spread of harmful VL content such as hateful memes on social platforms,

different VL datasets have been constructed: Facebook proposed a Hateful Memes Chal-
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lenge and constructed a corresponding dataset [Kiela et al., 2020], which contains memes

designed to evade detection by unimodal methods. MMHS150K [Gomez et al., 2020],

a large-scale image-text pair dataset originated from Twitter postings, is proposed to

benchmark hate speech detection in multimodal publications.

In this work, we approach multimodal (image + text) harmful content detection and

propose a novel mixed-modal (a mix of multimodality and unimodality) CM model,

Asymmetric Mixed-Modal Moderation (AM3). Image and text are intrinsically different

in the information they convey: text is more structured and semantically at a higher

level (usually describing the main components of an image while overlooking the sub-

tle details, especially the background). On the other hand, image is unstructured: it

is composed of pixels that can provide more low-level details of the context. For ex-

ample, an image caption is likely to focus on the foreground or the objects of interest

in the image. It may contain semantic details like the color or shape of the objects,

but is unlikely to cover all the details, especially those in the background. We call this

asymmetry in semantics of VL content. To address this asymmetry, we propose a

novel fusion transformer architecture that attempts to maintain the unique knowledge

in each modality while fusing the information from the asymmetric semantic levels. As

shown in Fig. 5.1, the knowledge learned from the joint multimodality should contrast

that from each unimodality due to this asymmetry in semantics. Sometimes this subtle

missing part in unimodality is the determinant for content moderation decisions. We

name the discrepancy in the information conveyed by multimodality and each unimodal-

ity asymmetry in modalities. To tackle this challenge, we propose a novel contrastive

loss between the representation learned from multimodality versus each unimodality. In

order to learn domain-specific knowledge, we mix multimodal dataset with additional

unimodal CM datasets in pretraining, similar to [Li et al., 2021b]. We call this asym-

metry in data as either modality may be missing in the data, so that the conventional

multimodality (each sample contains both modalities) setup becomes mixed-modality

(mix of multimodality and unimodality, where each sample may contain both modalities

or each unimodality). By including the unimodal CM dataset in pretraining, AM3 learns

the domain-specific knowledge which helps the model adapt to the downstream tasks.

Hence, the downstream CM task performance is improved.

We summarize the main contributions of work below,
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• Asymmetry in semantics: We propose a novel fusion transformer architecture to

fuse different modalities asymmetrically. It enhances the unique knowledge in each

modality while effectively fusing the information from the asymmetric semantic

levels.

• Asymmetry in modalities: We design a novel contrastive loss to squeeze out

the distinct knowledge that only exists in multimodality, which is essential in mul-

timodal content moderation.

5.2 Related Work

Harmful Content Detection. As social media platforms have grown, so have the chal-

lenges of content moderation. These challenges have pushed platforms toward automated

content moderation as a necessary tool for detecting harmful content. Initially, most of

the works are on text [Baly et al., 2018, Das et al., 2020]. In [Davidson et al., 2017], 25K

Tweets are collected and annotated based on whether they contain hate speech keywords

or have implicit hate. Logistic regression and SVM are tested to automatically detect

hate speech. Besides web crawling data, a large scale machine generated dataset of toxic

and benign text statements is provided in [Hartvigsen et al., 2022] using GPT-3 [Brown

et al., 2020]. These labels are then validated by human annotators, and over 95% of the

generated toxic labels are legitimately toxic. Over time, images and videos have gained

more attention as visual contents are easier to consume and more popular to spread. A

large scale dataset for pornographic visual content classification is given in [Phan et al.,

2022]. In [Soldner et al., 2019], videos of conversations are collected as a benchmark for

deception detection. Recently, multimodal harmful content detection has attracted more

attention. Facebook proposed a Hateful Memes Challenge [Kiela et al., 2020], where each

image is associated with a short text. The winner of the challenge [Zhu, 2020] outper-

forms the other competitors significantly by leveraging external labels such as race, age,

and entity. Following the same practice, DisMultiHate [Lee et al., 2021] further improves

the performance by disentangling target entities in multimodal memes. Hate-CLIPper[?]

proposes a method of intermediate fusion to alleviate the ambiguity alignment between

image and text representations. The importance of each modality in the Hateful Memes

dataset and the robustness of SOTA multimodal classfication algorithms are investigated
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in [Ma et al., 2022].

Vision-Language Pretraining. Recent years have witnessed rapid progress in vision-

language pretraining (VLP) where vision and language modalities are jointly encoded

using a fusion model. The success of BERT [Vaswani et al., 2017] inspired many follow-

up multimodal fusion models, such as VL-bert[Su et al., 2019], VinVL[Zhang et al.,

2021], SimVLM [Wang et al., 2021d], and OFA [Wang et al., 2022], where the text

features are concatenated with vision features from image encoder and then fused by

BERT or its variants. Besides the masked language modelling (MLM) loss used in

BERT pretraining, various loss functions targeting multimodal feature fusion are used,

e.g., image-text matching (ITM) loss, region-of-interest (RoI) classification loss. Most of

these works learn the joint representation of vision and language through a symmetric

feature encoding and fusion process. For example, VL-BERT[Su et al., 2019] constructs

the multimodal inputs symmetrically where every multimodal feature map has the same

components, i.e., text embedding, visual embedding, segment embedding, and positional

embedding. Each text embedding is associated to the visual embedding of the entire

image while each RoI visual embedding is associated with a dummy text embedding.

This simple symmetric architecture enables the fusion of multiple modalities. However,

each text token only contains a subset of the entire image. Linking the entire image

embedding to it may introduce noise that decreases the performance. On the other hand,

the dummy text embedding does not contain any meaningful information. VinVL[Zhang

et al., 2021] simply concatenates text embeddings with the object label embeddings as

well as RoI visual embeddings before feeding into the fusion transformer. It assumes

that the text embeddings and the visual embeddings share the same (symmetric) level

of knowledge and processes them equally.

Recent works on VL foundation models show that dual-encoder architectures can learn

strong representation through contrastive objectives on large scale noisy image-text pairs

[Pham et al., 2021, Radford et al., 2021, Yuan et al., 2021]. Florence [Yuan et al., 2021]

developed a unified contrastive objective [Yang et al., 2022] in VLP that enables the

model to be adapted for a wide range of vision and VL tasks. Flamingo [Alayrac et al.,

2022] utilizes an 80B-parameter language model frozen in training and fused with a

vision encoder. The huge capacity of Flamingo enables the state-of-the-art performance

for few-shot learning.
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Our method shares numerous ideas of the previous works mentioned above. However,

we pivot to looking at the multimodal content moderation task from an asymmetric

angle, both in architecture and data, and target mixed-modality (both multimodal and

unimodal) downstream CM tasks. We exploit the discrepancy in vision, language, and

multimodal VL pairs, to improve the model capability and training.

5.3 AM3
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Figure 5.2: Architecture overview. It shows an example of the pretraining of AM3 with
a (T, I) input. For text inputs, we sum up text embeddings, positional embeddings, and
segment embeddings. Visual inputs consist of text embeddings from detected objects’
category labels, the feature map from the vision encoder, positional embeddings, and
segment embeddings. The positional embeddings of visual inputs are computed based
on object bounding boxes so that they are permutations invariant to object order.

In this section, we introduce a novel fusion transformer architecture pre-trained on both

VL datasets and unimodality datasets. To tackle the asymmetry in the semantics of CM

VL content, we construct vision and language embeddings differently to encourage the

model to capture essential knowledge in each modality. Meanwhile, we follow [Zhang

et al., 2021] to utilize the object labels from detection as anchors to bridge the language

with the corresponding image RoI features. Due to the asymmetry in modality, there is

unique knowledge that only exists in the intersection of both modalities. To drive the
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model to obtain an understanding of this, we introduce a novel contrastive loss, Cross-

modality Contrastive Loss, as part of our pre-training tasks. We use an asymmetric

mix of multimodal datasets as well as domain-specific unimodal datasets in pretrain-

ing, where a domain-specific classification loss is included to improve downstream task

performance.

5.3.1 Model Architecture for Asymmetry in Semantics

Fig. 5.2 illustrates the overview architecture of AM3. The model takes mixed modality

input: (T, I), (T ), or (I), where T represents the text if it exists, and I is the image

if it exists. Unlike previous works that try to unify the feature encoding process from

both vision and language modalities, we construct the text inputs and visual inputs to

the fusion transformer asymmetrically. T is first tokenized through a tokenizer and then

fed to a token embedding layer whose outputs are added to positional embeddings and

segment embeddings to generate the sequence of linguistic embeddings of text w. The

image I is processed as follows: we first use an object detection model to detect objects

existing in the image. We also include a bounding box for the entire image (so the

bounding box becomes the shape of the image) without an object category associated.

For each object, its category label will go through the same token embedding layer as

the text input to obtain its text embedding. Its bounding boxes are transferred to the

positional embeddings of the RoI through a linear layer. This makes the positional

embeddings permutation invariant to the input order of the objects. The visual feature

of each RoI is encoded through a feature extractor. We then sum up the text embeddings

of object labels, positional embeddings from object bounding boxes, the features from

the RoIs, and segment embeddings to obtain the sequence of visual embeddings v. The

concatenated pair of (w, v) is fused through a fusion transformer.

5.3.2 Cross-modality Contrastive Loss for Asymmetry in Modali-

ties

Cross-modality Contrastive Loss. Due to the asymmetry in modalities, the ca-

pability of learning the unique knowledge only existing in the intersection of different

modalities is critical to content moderation tasks, as demonstrated in Fig. 5.1. Therefore,
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Figure 5.3: (a): Modified attention mask for contrastive learning. Attention between
image tokens (including CLS-I) and CLS-T tokens are masked out, and vice versa. (b):
Visualization of the 3 CLS tokens from Hateful Memes after t-SNE[Gisbrecht et al., 2015]
reduction.

we propose the cross-modality contrastive loss, as given in Equation(5.1):

Lcon = max(0, cos (fV L, fV )) + max(0, cos (fV L, fL)) (5.1)

where cos(·) is the cosine similarity function. fV L, fV , and fL are the CLS output tokens

from the fusion transformer for image + text, image only, and text only, respectively.

As shown in Fig. 5.2, 3 CLS tokens are added to the fusion transformer input. The

CLS token is designed to summarize the multimodal knowledge from all tokens while

the CLS-I and CLS-T tokens only extract information for vision and language tokens,

respectively. By summing up the similarity between fV L vs. fV , and fV L vs. fL in the

contrastive loss, we push the joint multimodal representation away from the unimodal

representations, for the asymmetry in modality, forcing the model to learn the distinct

semantic knowledge only in the intersection of both modalities. Fig. 5.3(a) illustrates how

the attention mask is modified to compute the multimodal and unimodal representations:

the attention between CLS and CLS-I/CLS-T as well as between CLS-I and CLS-T

tokens are masked out to prevent information leak among different representations. The
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attention between the CLS-T token and all image tokens are also masked out, and vice

versa. In this way, as displayed in Fig. 5.3(b), the CLS output token summarizes the

fused information learned from both modalities while CLS-I and CLS-T only contain

unimodal information in vision and language, respectively.

Binary classification on domain-related datasets. To help the model effectively

adapt to the new domain (CM in our case) when porting a generic model to a specific

domain, we include a domain-specific classification loss (Ldomain) in our pretraining

objectives. We collect several content moderation related unimodality datasets discussed

in Sec.5.4.1 into the pretraining corpus. When an input is from these datasets, its CLS

output token is projected through a linear layer to predict if the input is harmful or not.

We show that this domain-specific classification loss improves downstream performance

on CM benchmarks. The domain-specific classification loss is:

Ldomain = −EfV L
[logP (cd|fV L)] (5.2)

where cd is the domain category label and fV L is the fusion transformer output of the

CLS token. In our experiment, we set cd = 1 for harmful inputs while cd = 0 for safe

ones. For inputs from generic multimodal VL datasets, we set cd = −1 so that they are

ignored in the domain-specific classification task.

As shown in Fig. 5.2, there are 3 additional pretraining objectives for multimodal fusion:

the Masked Language Modeling loss (Lmlm on the text tokens similar to [Huang et al.,

2020, Kim et al., 2021, Su et al., 2019, Zhang et al., 2021], the Image-Text Maching loss

(Litm) which is computed on the CLS token of joint modalities same as [Huang et al.,

2020, Kim et al., 2021], and the Masked RoI classification loss (Lroi-cls) similar to [Su

et al., 2019].

Lmlm = −Ef[logP (tm|f)] (5.3)

Litm = −EfV L
[logP (c|fV L)] (5.4)

Lroi−cls = −Ef[logP (cv|f)] (5.5)
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Overall, our pretraining objective consists of terms as in Equation(5.6):

Loss = α Lcon + β Lmlm + γ Litm + λ Lroi-cls + ω Ldomain (5.6)

where α, β, γ, λ, and ω are coefficients to balance the various objectives. We set λ to

0.2 and all the other coefficients to 1 throughout the experiments.

5.4 Experiments

In this section, we first introduce the implementation details. We then discuss the

results on downstream CM tasks. Finally, we show an ablation study on the proposed

method.

5.4.1 Implementation Details

Pretraining. As shown in Fig. 5.2, following [Li et al., 2020a], we use pretrained

FasterRCNN[Ren et al., 2015] for object detection, but other object detection models,

like Yolo [Redmon et al., 2016], can be used as well. We use DaViT[Ding et al., 2022]

as the vision encoder, which encodes the RoIs detected by FasterRCNN into vision em-

beddings. Both FasterRCNN and DaViT are frozen during training. We use BERTbase

(Layers = 12, Hidden size = 768, Attention heads = 12) for text embedding and fu-

sion transformer. The model is initialized with pretrained BERTbase parameters and

optimized using the AdamW optimizer with a base learning rate of 10−5 and weight

decaying of 10−2. The learning rate was warmed up for 100 training steps and then

decayed linearly to zero for the rest of the training. We use a probability of 0.15 in MLM

and Masked RoI classification random masking and 0.5 in ITM random replacing. We

assign segment tokens ‘C’ to all visual features. For captions, we set segment tokens to

‘A’, while for questions and answers, we use ‘A’ and ‘B’, respectively. We pretrain the

model for 500K steps with a batch size of 6144 on 72 NVIDIA V100 GPUs.

Pretraining corpus: We construct our pretraining corpus based on three types of

datasets: generic VL multimodal datasets, CM language datasets, and a CM vision

dataset.
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• Generic VL multimodal datasets. We build our corpus from image caption-

ing and visual question-answer datasets, including COCO [Lin et al., 2014], Con-

ceptual Captions (CC3M) [Sharma et al., 2018], SBU captions [Ordonez et al.,

2011], Flickr30k [Young et al., 2014], CC12M [Changpinyo et al., 2021], Open-

Images [Kuznetsova et al., 2020], GQA [Hudson and Manning, 2019], and VG-QAs

datasets. Following [Zhang et al., 2021], machine-generated captions are used for

the Open-Images dataset, while captions and question-answer segments are used

as text inputs for the other datasets.

• CM language datasets. We use 4 language datasets in CM domain: Toxi-

Gen [Hartvigsen et al., 2022], Jigsaw [Zaheri et al., 2020], HateXplain [Mathew

et al., 2021], and ImplicitHate [ElSherief et al., 2021], where we preprocess data

so each sample has a harmful or safe label. We use train sets in pretraining for

ToxiGen, Jigsaw, and HateXplain to avoid data leakage. For text samples without

images, we pad [PAD] to vision embeddings. A text classification head predicts

the label using the domain-specific classification objective.

• CM vision dataset. We use LSPD (Large-Scale Pornographic Dataset) [Phan

et al., 2022] image dataset for CM vision task. Similar to the CM language datasets,

we use the train set with binary annotation for pretraining and pad [PAD] tokens

to the text inputs for the fusion transformer. We use an image classification head

to predict binary labels using the same classification objective.

Downstream finetuning. All the CM downstream tasks introduced in Sec.5.4.2 are

formulated as classification tasks. The output token on CLS from the fusion transformer

is fed into the classification head and trained with cross-entropy loss. Hyperparameters

including batch size, learning rate, and training epochs are searched for each task. All

classification heads are implemented with an MLP consisting of 2 linear layers and 1

ReLU layer.

Downstream inference. In each task(Sec. 5.4.2), we utilize the finetuning model and

take the classification result from the CLS token as output, the model is named as AM3.

On the downstream tasks, we conducted 5 experiments with random seeds, reporting

their mean and standard variation across the multiple fine-tuning models. On CM VL

tasks, we assessed the model’s ability to learn cross-modal knowledge using the best
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model with unimodal input as AM3-text and AM3-image respectively. Additionally,

we combine the two unimodal results by taking the maximum classification probability

as the predicted outcome and refer to it as AM3-max.

5.4.2 Downstream Datasets

To validate the effectiveness of AM3, we adapt the pre-trained model over the content

moderation tasks in different modalities.

For CM VL tasks, we adopted Hateful Memes, MMHS150K, and Fakeddit datasets.

• Hateful Memes [Kiela et al., 2020]. The Hateful Memes dataset consists

of more than 10,000 memes, some of which are specially designed so that the

text phrases and images are benign when considered separately, but hateful when

combined. Therefore, the typical unimodal methods cannot yield good performance

on them. To compare with prior works[Lee et al., 2021, Zhu, 2020], we use 2

different setups: (1) we finetune our model on the train set and evaluate on the

dev seen set. (2) We finetune our model on the combination of train and dev

unseen sets and evaluate on the test unseen set. The task uses the Area under

Receiver Operating Characteristic curve (AUROC) and accuracy metrics.

• MMHS150K [Gomez et al., 2020] The MMHS150K dataset is based on Twitter

data consisting of both images and text. We perform binary classification to decide

whether a sample is hate or non-hate. We finetune the train and val sets and

evaluate on the test set using F1-score, AUROC, and accuracy metrics.

• Fakeddit[Nakamura et al., 2019]. The Fakeddit dataset is a large-scale multi-

modal fake news dataset that consists of over 1 million submissions from Reddit,

a social news and discussion website where users can post submissions on various

subreddits. 2-way, 3-way, and 6-way labels are provided for each sample. We fol-

low the official dataset partition to only use multimodal samples. We focus on the

2-way classification and finetune our model on the train set. We compute accuracy

on the val and test sets.

For CM text tasks, we use ToxiGen, HateXplain, and Jigsaw datasets.
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• ToxiGen [Hartvigsen et al., 2022]. ToxiGen is a machine-generated dataset

using the massive pretrained language model GPT-3[Brown et al., 2020]. The

dataset is designed to focus on creating hard-to-classify implicit abusive content in

13 minority groups. We use its train and test sets. The objective of the task is to

predict if each sample is toxic or not and it is evaluated with AUROC.

• HateXplain [Mathew et al., 2021]. The HateXplain dataset is constructed by

collecting posts from Twitter and Gab for research on Explainable Hate Speech

Detection. The task is evaluated using AUROC, accuracy, and F1-score.

• Jigsaw [Sahoo et al., 2022]. The Jigsaw dataset is created using comments from

Civil Comments for researchers to develop models to recognize toxicity and mini-

mize this type of unintended bias with respect to mentions of identities, including

gender, sexual orientation, and religious identity. We use the train and test-public

splits for training and testing, respectively. AUROC is computed for evaluation.

We use LSPD for CM vision task.

• LSPD [Phan et al., 2022]. LSPD is constructed for visual pornography classi-

fication with 5 categories: porn, hentai, drawing, sexy, and non-porn. We followed

the porn/non-porn binary classification approach as [Phan et al., 2022], where the

classes ’Hentai’ and ’Porn’ are grouped as ’porn’, while all other classes were la-

beled ’non-porn’ in the binary setting. To evaluate algorithms, accuracy, precision,

and recall are measured.

Table 5.1: Comparisons to the state-of-the-art methods on Hateful Memes.

Dev seen Test unseen
Method AUROC Accuracy AUROC Accuracy

ERNIE-VIL[Yu et al., 2021] 78.7 69.0 - -
Uniter[Chen et al., 2020a] 78.0 68.6 79.1 74.1
VILLA[Gan et al., 2020] 78.5 71.2 80.0 75.1
VL-BERT[Su et al., 2019] 78.8 71.4 79.5 74.5
DisMultiHate[Lee et al., 2021] 82.8 75.8 - -

AM3-text(Ours) 59.1 65.2 62.2 64.1
AM3-image(Ours) 44.8 63.0 60.3 63.1
AM3-max(Ours) 56.7 64.3 64.0 64.5
AM3(Ours) 83.18(±0.19) 75.98(±0.67) 83.35 (± 0.23) 76.95(±0.36)
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Table 5.2: Comparisons to the state-of-the-art methods on MMHS150K.

Method AUROC Accuracy

TKM[Gomez et al., 2020] 73.1 68.2
SCM[Gomez et al., 2020] 73.2 68.5
FCM[Gomez et al., 2020] 73.4 68.4

AM3-text(Ours) 72.7 68.3
AM3-image(Ours) 52.0 52.5
AM3-max(Ours) 72.2 67.7
AM3(Ours) 74.2 (±0.09) 68.57(±0.79)

Table 5.3: Comparisons to the state-of-the-art methods on Fakeddit.

Method Val acc. Test acc.

BERT+ResNet50[Nakamura et al., 2019] 89.3 89.1
MVAE+[Li et al., 2021a] - 90.1
MDID[Kirchknopf et al., 2021] 90.8 91.0
EMAF[Li et al., 2021a] - 92.3

AM3-text(Ours) 82.23 82.41
AM3-image(Ours) 76.2 75.9
AM3-max(Ours) 83.1 83.3
AM3(Ours) 93.04(±0.21) 93.2(± 0.11)

5.4.3 Result Analysis

Performance comparison on VL tasks: (1) Results on the Hateful Memes comparing

to the state-of-the-art approaches are shown in Table 5.1. We compare to the challenge

winner’s solutions discussed in [Zhu, 2020]: ERNIE-Vil[Yu et al., 2021], UNITER[Chen

et al., 2020a], VILLA[Gan et al., 2020], and VL-BERT[Su et al., 2019], where the results

are reproduced in [Lee et al., 2021]. We also compare to the state-of-the-art solution,

DisMultiHate[Lee et al., 2021]. Furthermore, comparing to the baselines: AM3-text,

AM3-image, and AM3-max, the AM3 is at least 30% better in terms of AUROC score,

which verifies the efficiency of cross-modality understanding in the finetuned model. We

adopt the same data augmentation method proposed in [Zhu, 2020]: we use Google

Vision Web Entity Detection[LLC, 2021] to generate entity tags of each image used as

part of the text input. (2) The MMHS150K result is shown in Table 5.2. We compare

to the Feature Concatenation Model (FCM), the Spatial Concatenation Model (SCM),

and Texual Kernels Model (TKM) discussed in [Gomez et al., 2020], where they are all
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CNN + RNN models. It is worth noting that the AM3-text achieves a 72.7 AUROC

score, indicating that the dataset predominantly relies on its text modality. Merely con-

sidering the maximum classification probability to combine the image modality results

leads to a decrease in performance. (3) The Fakeddit result is shown in Table 5.3. In

[Nakamura et al., 2019], the authors of the Fakeddit dataset utilize BERT and ResNet50

to encode language and vision, respectively, and then use max-pooling to fuse the mul-

timodal features. MAVE[Khattar et al., 2019] is enhanced with BERT in [Li et al.,

2021a], which is denoted as MAVE+ in the table. EMAF[Li et al., 2021a] is set up with

BERTlarge uncased (Layers = 24, Hidden size = 1024, Attention heads = 16), which

is computationally more expensive than our method. The AM3 outperforms unimodal

results, AM3-text, AM3-image, and AM3-max,by at least 12.0% in terms of accuracy.

On all three datasets, our proposed method achieves the best performance against pre-

vious state-of-the-art works. This demonstrates the efficacy of the proposed asymmetric

mixed-modal approach. It effectively captures the distinct information that only appears

in the intersection of modalities, which is critical in CM decision-making.

Performance comparison on text tasks: AM3 can also handle unimodal CM tasks.

We first evaluate our approach on the content moderation text tasks. (1) Results on Tox-

iGen Classification are listed in Table 5.4, where we compare to HateBERT[Caselli et al.,

2020] and ToxDectRoBERTa[Zhou et al., 2021b] on the top-k only version of the dataset.

(2) Results on HateXplain dataset are shown in Table 5.5. Adaptive Length Reduction

(AdapLeR)[Modarressi et al., 2022] is a method based on BERT while optimizing infer-

ence speed. BERT, BERT-HateXplain, BERT-MLM, BERT-RP, and BERT-MRP are

different BERT variants discussed in [Kim et al., 2022]. (3) Results on Jigsaw are shown

in Table 5.6, where we compare to the Toxiciology[jig] and Limerobot[jig], the top 2

solutions on the leaderboard. On all three CM text datasets, our approach outperforms

all the state-of-the-art language models, suggesting the efficacy of the proposed method

on mixed-modal (both multimodal and unimodal) downstream CM tasks.

Performance comparison on vision task: Results on the LSPD dataset are presented

in Table 5.8, where we compare them to the outcomes of different methods discussed

in [Phan et al., 2022]. Our approach outperforms previous state-of-the-art methods in

terms of accuracy and obtained the highest recall score. Similar to the CM text datasets,

this shows the capability of our mixed-modal method on downstream CM vision task,
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Table 5.4: Comparisons to the state-of-the-art methods on ToxiGen.

Method AUROC

ToxDectRoBERTa[Hartvigsen et al., 2022] 85.0
HateBERT[Hartvigsen et al., 2022] 88.0

AM3(Ours) 91.52 (± 0.16)

Table 5.5: Comparisons to the state-of-the-art methods on HateXplain.

Method AUROC Accuracy F1

AdaptLeR[Modarressi et al., 2022] - 68.6 -
BERT[Subramaniam et al., 2022] 85.1 68.9 68.2
BERT-HateXplain[Mathew et al., 2021] 85.1 69.8 68.7
BERT-MLM[Kim et al., 2022] 85.4 70.0 67.5
BERT-RP[Kim et al., 2022] 85.3 70.7 69.3
BERT-MRP[Kim et al., 2022] 86.2 70.4 69.9

AM3(Ours) 88.25 (±0.25) 81.17(±0.45) 80.37(±0.42)

Table 5.6: Comparisons to the state-of-the-art methods on Jigsaw.

Method AUROC

Limerobot[jig] 94.7
Toxiciology[jig] 94.7

AM3(Ours) 95.76(±0.27)

benefiting from a richer representation space with the mixed-modality pretraining.

Table 5.7: Ablation study of mixed-modality and cross-modality contrastive loss.

Hateful Memes MMHS150K
Text dataset Vision dataset Cross-modality Contrastive Loss AUROC Accuracy AUROC Accuracy

no no no 80.28(±0.18) 74.28(±0.29) 71.91 (± 0.02) 67.44(±0.05)
no no yes 81.18(±1.0) 74.82(±0.51) 72.76(±0.08) 68.21(±0.05)
no yes no 80.65(±0.2) 73.82(±0.36) 72.52(±0.05) 68.03(±0.09)
no yes yes 81.49(±1.25) 74.98(±0.46) 72.98(±0.13) 68.18(±0.05)
yes no no 82.39(±0.08) 76.38(±0.02) 72.79(±0.21) 68.70(±0.09)
yes no yes 82.65(±0.2) 75.92(±0.17) 73.36(±0.07) 68.62(±0.09)
yes yes no 82.44(±0.23) 75.5(±0.31) 72.85(±0.10) 68.45(±0.07)
yes yes yes 82.94(±0.15) 76.45(±0.36) 73.96(±0.08) 68.73(±0.05)
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Table 5.8: Comparisons to state-of-the-art methods on LSPD for binary classification.

Method Accuray Precision Recall

Mask-RCNN 86.70 98.33 88.00
YOLOv4 92.59 97.03 87.86
SSD 85.32 94.11 85.64
Cascaded Mask RCNN 92.62 95.01 89.95
CNN classifier 87.22 84.86 90.59

AM3(Ours) 92.86(±0.03) 92.85 (±0.15) 92.73(±0.14)

Table 5.9: Ablation study of fusion architecture design.

Hateful Memes MMHS150K
Architecture AUROC Accuracy AUROC Accuracy

archV L−Bert 80.26(±0.38) 75.72(±0.62) 73.31(±0.15) 68.54(±0.06)
archvinV L 80.53(±0.23) 75.49(±0.17) 73.39(±0.12) 68.4(±0.07)

archbbox−position 80.74(±0.29) 75.0(±0.09) 73.43(±0.21) 68.4(±0.11)
AM3(Ours) 82.94(±0.15) 76.45(±0.36) 73.96(±0.08) 68.73(±0.05)

5.4.4 Ablation Studies

We selected Hateful Memes and MMHS150K for the ablation study of different design

choices. To accelerate the analysis, all ablations are performed on a smaller pretrain-

ing corpus (Flickr30k, SBU, and COCO), and we pretrain our model for 50K itera-

tions.

Model Architecture. To understand the effect of our proposed asymmetric fusion

transformer, we create two fusion transformer variants following VL-Bert (archV L−Bert

[Su et al., 2019]) and vinVL (archvinV L [Zhang et al., 2021]), two symmetric fusion de-

signs. Specifically, archV L−Bert constructs the multimodal embeddings symmetrically so

that each text embedding adds to the visual feature of the entire image while each RoI

visual embedding adds to a text embedding of a dummy token. archvinV L creates multi-

modal embeddings for fusion transformer by simply concatenating the text embeddings

from text input and object detection labels, along with visual embeddings. As shown

in Table 5.9, our proposed asymmetric fusion architecture outperforms both symmetric

designs, indicating the efficacy of our asymmetric fusion architecture in response to the

asymmetry in semantics.
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Vision Position Embedding from Bounding Box. To validate the effectiveness of

using bounding boxes for positional embeddings, we created a variant using the counting

index of the tokens for positional embeddings (used in [Su et al., 2019, Zhang et al.,

2021]). As shown in Table 5.9, positional embeddings generated from bounding box

captures the ordering information in image (permutation invariant to the input order).

Therefore, it achieves a better performance.

Cross-modality Contrastive Loss. As shown in Table 5.7, the average baseline scores

on Hateful Memes and MMHS150K are 80.28% and 71.91%, respectively, measured in

terms of AUROC. By adopting the cross-modality contrastive loss, the score is improved

by +1.1% on Hateful Memes and +1.2% on MMHS150K. The significant improvements

show that our approach to the asymmetry in modalities has a strong capability to capture

distinct knowledge from the intersection of different modalities.

Pretraining on Unimodal CM Datasets. Table 5.7 shows the result w/ and w/o the

unimodal CM datasets in the pretraining corpus. Using the CM text datasets improves

the task scores by +2.6% and +1.2% from baseline, respectively. Using the CM image

datasets improves the score by +0.5% and 0.8%, respectively. This shows that intro-

ducing asymmetry in data into the pretraining stage, with the datasets relevant to the

domain, is effective and can improve downstream tasks by a significant margin.

Combination of Cross-modality Contrastive Loss and Unimodal CM Datasets.

As shown in Table 5.7, utilizing the CM text dataset and the CM vision dataset together

leads to further improvement (+0.6% on Hateful Memes and +0.8% on MMHS150K) in

comparison to the best score when using either CM text dataset or CM vision dataset.

Adding cross-modality contrastive loss on top of the unimodal CM text and vision

datasets further improve the performance: when enabling all of these components, we

achieve the highest average AUROC score of 82.94% for Hateful Memes and 73.96% for

MMHS150K. It indicates the efficacy of our proposed method.

5.5 Quanlitative Results

[CONTENT WARNING] This section includes visual examples of hateful content, which

may be offensive to some readers.



79

5.5.1 Successful examples

We show 3 groups of successful examples in Fig. 5.4, 5.5, and 5.6.

• Fig.5.4 presents examples that are not offensive in multimodality but are hateful

on unimodality.

• Fig.5.5 shows the correctly detected offensive examples that are offensive in uni-

modality.

• Fig.5.6 displays the correctly detected offensive examples that are only offensive in

multimodality.

The examples indicate that accurately predicting hate or non-hate is more complex than

just mapping the two modalities. For instance, the text in Fig.5.6(n) and Fig.5.4(e)

conveys similar meanings, one is hateful and the other is non-hate when considering

the objects in the images. Meanwhile, AM3 does not simply learn Adolf (Hitler) as

hateful as shown in Fig.5.4(a). The image in Fig.5.4(h) and the Fig.4(a) in the main

paper are similar and their text are both non-offensive, with the understanding of multi-

modalities in an asymmetric manner, AM3 successfully predict them as non-hate and

hateful. The text in Fig.5.4(c), (d) and (e) seem to be hateful, with accurate detection

and understanding of the objects in the image, the examples turn to be non-hate.

5.5.2 Failure examples

We present some offensive examples that AM3 failed to detect in Fig.5.7. In (a), (b),

and (c), the false prediction is from missing the extended attributes of objects in the

image, such as ’adoption,’ ’poor,’ and ’9.11 attack’. In (d), detecting the gestures ’paper’

and ’rock’ is necessary for correct prediction. However, AM3 does not have detection of

gestures, leading to a false prediction. In (e) and (f), understanding the relationship of

the objects in the image is crucial to classify them as hateful. Improving the method

to address these three problems may further enhance the task.
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Figure 5.4: [CONTENT WARNING] non-hate examples on multi-modalities that AM3
correctly detected.

5.6 Conclusion

In this paper, we present a novel mixed-modal CM model, Asymmetric Mixed-Modal

Moderation (AM3), for both multimodal and unimodal content moderation. We pro-

pose an asymmetric fusion architecture to fuse multimodal knowledge. Furthermore, we

design a novel cross-modality contrastive loss to learn the distinct knowledge that can

only be conveyed when combining both modalities, which is critical for multimodal CM

tasks. Besides using multimodal VL datasets, we also include unimodal CM datasets in

pretraining, which not only relaxes data constraints but also improves downstream task

performance. With extensive experiments, we show AM3 achieves the new state-of-the

art on various multimodal and unimodal CM benchmarks.
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Figure 5.5: [CONTENT WARNING] Hateful examples on uni-modality that AM3 cor-
rectly detected.
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Figure 5.6: [CONTENT WARNING] Hateful examples on multi-modalities that AM3
correctly detected.
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Figure 5.7: [CONTENT WARNING] Hateful examples on multi-modalities that AM3
failed to detect.
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Chapter 6: Conclusion and Future Work

This chapter summarizes the proposed work and describes the methods to improve the

algorithms and future research directions.

6.1 Conclusion

In this dissertation, we have thoroughly explored the realm of object discovery across

various modalities. First, we introduced DVIS, a novel approach that offers a variational

relaxation of instance segmentation. DVIS enables end-to-end training of an FCN for the

direct prediction of continuous object labels. Our experiments on both PASCAL VOC

and MS-COCO datasets showcased its robust performance and its ability to generate

high-quality instance label masks for static images.

Next, we confronted the limitation imposed by image quality on static image segmen-

tation tasks and sought to overcome this challenge. This led to the development of

MCMPG, a method that leverages temporal information to enhance segmentation qual-

ity. Specifically, we employed object proposals initially generated from nearby frames and

then propagated to the key frame to create an MP-Graph. Within this graph, we identi-

fied maximal cliques, resulting in improved object segments on frames with poor quality.

MCMPG proves particularly effective in video segmentation tasks, including UVOS and

VIS, especially when combined with a VOS algorithm to propagate detected objects

throughout the entire video sequence. Our comprehensive experiments, conducted on

the DAVIS-UVOS and YouTube-VIS datasets, yielded compelling evidence of MCMPG’s

effectiveness, consistently delivering improvements across various settings.

In our continued pursuit of object discovery, we took a step forward by extending it to

Vision-Language tasks, thereby introducing a new set of challenges. These challenges

revolved around recognizing relationships among objects identified in images and ef-

fectively utilizing them with contextual significance in textual information. To address

this, we introduced AM3, an innovative asymmetric approach designed to capture unique
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knowledge that exists only in cross-modality settings. Through extensive experiments

on various challenges, AM3 surpassed prior works by a substantial margin, solidifying

its position as a pioneering solution in the field.

6.2 Future work

Object discovery is an expansive research field within computer vision, and the work

discussed here represents only a glimpse into its possibilities. We are committed to

further enhancing the performance of the models introduced for the tasks discussed, as

well as extending these models to address new and unexplored challenges.

For DVIS, we proposed a relaxation of instance segmentation, enabling the training

of an FCN to directly predict instance labels. However, the model does have some

limitations. Firstly, its performance depends on the average number of objects present

in the training set images. Consequently, it may struggle to efficiently separate objects

when the number of objects in an image exceeds its capacity. One potential solution

to this problem is to shift from predicting continuous label values in one dimension to

training the model to predict one-hot labels. These one-hot labels activate different

channels, each corresponding to a distinct object, and piecewise constant optimization

can then be applied to these one-hot predictions to avoid multiple segments on one

object. Another challenge arises from the FCN architecture itself. It is difficult for pixels

representing small objects to maintain their distinctive features after passing through

numerous convolution and pooling layers. This issue leads to inaccurate segmentation

of small objects within an image. To address this problem, we can explore technologies

and techniques that have been developed to enhance the segmentation of small or thin

objects, as demonstrated in recent works like [Ke et al., 2023].

For MCMPG, we leveraged object proposals generated in nearby frames to enhance the

segmentation of the key frame. However, it’s important to note that this technique

may not always improve segmentation, especially when all the nearby frames are in

of inferior quality. An alternative approach to harnessing temporal information is by

using predicted optical flow on the key frame. This can be advantageous, particularly

when historical frames with good quality are available. The predicted optical flow can

help correctly segment different objects in various scenarios. The challenges are how to
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efficiently maintain the optical flow with high-quality frames while avoiding noise from

Low-quality frames. Robust techniques are required to effectively predict optical flow

information.

Finally, for AM3, we introduced an innovative asymmetric fusion architecture to fuse

multimodal knowledge and designed a novel cross-modality contrastive loss to learn to

capture distinct knowledge that only exists in cross-modality. In the work, we demon-

strated its effectiveness in various VL CM tasks as well as unimodal image/text CM

tasks. However, multimodal content can encompass more modalities, such as video and

audio. We believe that the AM3 model presented here can be adapted for CM tasks in

these different modalities as well. Besides, we observed that emphasizing the asymmet-

ric fusion of various modalities has a detrimental impact on the model’s performance in

general VL tasks, such as vision question answering and visual captioning. This presents

an interesting avenue for further research to explore ways to overcome this challenge and

improve model performance in these tasks.
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Felix Soldner, Verónica Pérez-Rosas, and Rada Mihalcea. Box of lies: Multimodal de-
ception detection in dialogues. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 1768–1777, 2019.

Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing Shen, and Kin-Man Lam.
Pyramid dilated deeper convlstm for video salient object detection. In Proceedings
of the European conference on computer vision (ECCV), pages 715–731, 2018.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. com-
puter: Benchmarking machine learning algorithms for traffic sign recognition. Neural
networks, 32:323–332, 2012.

Evgeny Strekalovskiy and Daniel Cremers. Real-time minimization of the piecewise
smooth mumford-shah functional. In European conference on computer vision, pages
127–141. Springer, 2014.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai.
Vl-bert: Pre-training of generic visual-linguistic representations. arXiv preprint
arXiv:1908.08530, 2019.

https://aclanthology.org/W17-1101


102

Arvind Subramaniam, Aryan Mehra, and Sayani Kundu. Exploring hate speech detection
with hatexplain and bert. arXiv preprint arXiv:2208.04489, 2022.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline.
arXiv preprint arXiv:1905.05950, 2019.

Omkar Thawakar, Sanath Narayan, Jiale Cao, Hisham Cholakkal, Rao Muhammad An-
wer, Muhammad Haris Khan, Salman Khan, Michael Felsberg, and Fahad Shahbaz
Khan. Video instance segmentation via multi-scale spatio-temporal split attention
transformer. Proc. European Conference on Computer Vision (ECCV), 2022a.

Omkar Thawakar, Sanath Narayan, Jiale Cao, Hisham Cholakkal, Rao Muhammad An-
wer, Muhammad Haris Khan, Salman Khan, Michael Felsberg, and Fahad Shahbaz
Khan. Video instance segmentation via multi-scale spatio-temporal split attention
transformer. arXiv preprint arXiv:2203.13253, 2022b.

Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. Learning motion patterns
in videos. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3386–3394, 2017.

Jonas Uhrig, Marius Cordts, Uwe Franke, and Thomas Brox. Pixel-level encoding and
depth layering for instance-level semantic labeling. In German Conference on Pattern
Recognition, pages 14–25. Springer, 2016.
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