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Habitat loss and fragmentation are the greatest threats to biodiversity worldwide.  

Fragmentation impacts landscape configuration, resulting in a larger number of patches that are 

smaller in size and further apart from one another.  Island biogeography and metapopulation 

theory predict populations in these remnant patches should be smaller, have higher extinction 

rates, and be less likely to receive immigrants from other populations.  However, empirical data 

frequently do not conform with these theoretical predictions, leading to assertions that this model 

is too simplistic to describe distributions and dynamics of fragmented populations.  However, 

others believe that landscape configuration effects have been poorly tested and modeled to date.  

In this dissertation, I use breeding bird data collected in a fragmented forest landscape to explore 

this lack of congruence between theory and reality.  I first test the hypothesis that heterogeneity 

in the detectability of mobile species due to temporary emigration from sample sites can produce 

biased estimates of metapopulation rates.  Next, I test for idiosyncrasies in the effects of forest 

loss and fragmentation on species belonging to different ecological trait groups.  Lastly, I 

examine whether fragmentation actually reduces the functional connectivity of landscapes for 

species identified as fragmentation-sensitive. 



 

 

Dynamic occupancy models are popular for estimating metapopulation dynamic rates 

(colonization and extinction) from repeated presence/absence surveys of unmarked animals.  

This approach assumes closure among repeated samples within primary periods, allowing 

estimation of dynamic rates between these periods.   However, the impact of temporary 

emigration (reversible changes in sampling availability) on dynamic rate estimates has not been 

tested.  In Chapter 2, I use simulated data to investigate the degree to which temporary 

emigration could mislead researchers interested in quantifying metapopulation rates.  I then 

compared results from three avian point count datasets to evaluate the likelihood that temporary 

emigration confounds estimates of dynamics for 19 species under a popular sampling protocol.  

Simulated experiments indicated that when secondary periods were open to temporary 

emigration, presence of dynamics was identified ≥ 95.1% of the time, and dynamic rate estimates 

were accurate.  However, dynamic rates were biased when secondary periods were closed to 

temporary emigration.  In empirical datasets, dynamic occupancy models had greater support 

than closed models for all species when secondary sampling periods occurred in immediate 

succession (i.e., 3 samples within 10 minutes); however, my results suggest that this is because 

these estimates were heavily influenced by temporary emigration.  When counts within a primary 

period were separated by 24-48 hours, I found evidence of dynamics for less than half of these 

species.  I recommend an alternative sampling approach that allows accurate estimation of 

dynamic rates when temporary emigration is of no interest, and introduce a novel model for 

estimating both processes simultaneously in rare cases where they are both of biological interest.  

Concern for violating the occupancy modeling closure assumption has led to widespread 

recommendations that samples within primary periods be conducted extremely close in time.  

However, these results indicate this is not the best approach when interest is in quantifying 



 

 

dynamic rates.  While dynamic occupancy models provide estimates of ‘colonization’ and 

‘extinction,’ these values do not inherently represent dynamics unless temporary emigration has 

been explicitly modeled or accounted for with sampling design.  Naivete to this fact can result in 

incorrect conclusions about biological processes. 

While theory predicts that fragmentation should negatively influence biodiversity, 

empirical support of this idea is weak in terrestrial systems.  However, tests of fragmentation 

effects are typically confounded with landscape composition and potentially obscured by 

imperfect detection.  In Chapter 3, I used multi-species occupancy models and a mensurative 

experimental design to test competing hypotheses about how forest fragmentation influences 

distributions of breeding forest bird species and communities.  During the breeding seasons of 

2011-2013, we recorded over 80,000 bird detections in 202 forest fragments using a sampling 

design that isolated the effects of patch size per se from the effects of forest amount (2 km), 

edge, local vegetation, and sample area.  I modeled the effects of these covariates on 

distributions of individual species categorized by ecological trait groups (i.e., forest, forest 

interior, or forest edge).  Though my results indicated little effect of patch size on total species 

richness, increasing patch size tended to have a positive effect on interior species, and a negative 

effect on edge species.  The effects of total forest amount were much more variable, and actually 

had a negative influence on many species, particularly cavity nesters.  My results do not support 

theoretical predictions that forest patch size should positively influence bird species richness.  

However, composition of bird communities does shift toward edge species from interior species 

with decreasing patch size.  Maintaining large forest patches is thus critical for supporting forest 

interior species, which tend to be of greater conservation concern. 



 

 

Maintenance of metapopulations requires movement of dispersers among resource 

patches.  The degree to which a landscape facilitates or impedes such movements is defined as 

functional connectivity.  Habitat fragmentation may reduce the functional connectivity of a 

landscape, but empirical linkages between distribution patterns and movement ability are 

lacking.  In Chapter 4, I use experimental translocations to test whether forest fragmentation 

impedes movement of two species identified as fragmentation-sensitive in Chapter 3: Wood 

Thrush (Hylocichla mustelina) and Ovenbirds (Seiurus aurocapilla).  I also tested for behavioral 

changes in translocated birds and evaluated whether fragmentation effects differed between 

behavioral modes.  Over two breeding seasons, we translocated 35 Wood Thrush and 19 

Ovenbirds (1-1.2 km) across landscapes spanning a fragmentation gradient and recorded their 

movement paths using VHF transmitters and receivers.  Eighty-seven percent of individuals 

returned successfully, taking as long as 72.2 hours. Movement patterns of 96% of successful 

birds indicated two distinct behavioral modes: exploring, characterized by short, undirected 

movements and course reversals; and homing, characterized by large, fast steps towards their 

home territories.  Forest composition and configuration had no effect on homing time or path 

straightness for either species.  However, at a finer scale, I found that both preferred to take steps 

that minimized their exposure to non-forested gaps.  My results demonstrate that movement 

limitation could drive or exacerbate fragmentation sensitivity for these birds.  Further, while 

fragmentation effects did not differ between behavioral modes, my results highlight the need to 

link the dichotomous behaviors of translocated animals with natural movement processes.  

Despite this knowledge gap, results from our study suggest that maintaining contiguous habitat 

or corridors may improve functional connectivity for fragmentation-sensitive birds. 
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INTRODUCTION 

 

 

Habitat loss and degradation are considered the greatest threats to biodiversity worldwide 

(Pimm & Raven 2000, Pereira et al. 2010, Rands et al. 2010), and one major impact of habitat 

destruction is fragmentation, the breaking apart of contiguous habitat (Fahrig 2003).   The 

process of fragmentation usually alters the configuration of the remnant habitat, resulting in 

smaller habitat patches, an increase in the number of patches, and increased distance between 

those patches (Fahrig 2003).  Early developments in island biogeography (MacArthur & Wilson 

1967) and metapopulation (Levins 1969) theory have historically framed the way ecologists 

conceptualize fragmented landscapes: as patchy distributions of resources bounding 

subpopulations that are characterized by idiosyncratic population parameters (Fretwell & Lucas 

1970, Wiens 1976, Pulliam 1988, Pulliam & Danielson 1991, Hanski 1991, 1998, Fahrig & 

Merriam 1994).  These theories predict that patch occupancy rates for individual species should 

decrease as a function of fragmentation due to demographic processes.  Smaller patches should 

contain smaller populations that are more likely to go extinct due to stochastic events, and less 

likely to be re-colonized from other patches due to isolation. 

 Yet, whether fragmented habitat patches can or should be viewed analogously to islands 

remains controversial.  For instance, it is the basis of a decades long debate over whether large 

patches have greater conservation value than small patches (Terborgh 1974, Diamond 1975, May 

1975, Wilson & Willis 1975, Simberloff & Abele 1976, Fahrig 2013,2015, Hanski 2015).  

Increased patchiness can actually have positive effects on population demography by creating 

temporary refuges from predators (Huffaker 1958), promoting coexistence of competitive 

species (Levins & Culver 1971), and spatially spreading the risk of extinction (Den Boer 1968).  
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Fragmentation also increases landscape heterogeneity, which can promote biodiversity.  Not only 

does it lead to more diversity of habitat types, but also to heterogeneity in biophysical properties 

around the edges of remnant habitat (Ries et al. 2004, Fischer & Lindenmayer 2007, Fletcher et 

al. 2007).  Finally, unlike in island-ocean systems, terrestrial landscapes are often characterized 

by biotic and abiotic gradients, and the assumption of homogeneity within patch or matrix 

habitat is likely poor in many cases (Austin 1985, McIntyre & Barrett 1992, Wiens 1994, 

McIntyre & Hobbs 1999, Manning et al. 2004, Fischer & Lindenmayer 2006). 

 Results from empirical studies on fragmentation effects are mixed.  Experimental efforts 

reveal strong, consistent negative impacts on abundance, richness, connectivity, ecosystem 

services, and ecosystem function (reviewed by Haddad et al. 2015).  Results from observational 

studies, on the other hand, tend to demonstrate little congruency between theory and reality 

(Fahrig 2003, 2013, 2017, Prugh et al. 2008, Betts et al. 2014).  For instance, in their review of 

patch size and isolation effects, Prugh et al. (2008) found that both were poor predictors of 

species occupancy patterns across taxa.  In another review of landscape scale studies, Fahrig 

(2017) actually concluded that fragmentation rarely has significant effects on species distribution 

patterns, and when it does, they are typically positive.  This has led some researchers to 

recommend dropping the patch-island paradigm in favor of a suite of alternative theoretical 

models (McIntyre & Barrett 1992, Wiens 1994, Baguette 2004, Manning et al. 2004, Fischer & 

Lindenmayer 2006, Didham et al. 2012, Fahrig 2013, Mendenhall et al. 2014). 

 Nonetheless, debate over the importance of patch configuration in promoting 

conservation continues (Fahrig 2013, Hanski 2015, Fahrig 2015), in large part due to widespread 

assertions that configuration effects have been poorly tested.  For instance, despite repeated calls 

to design studies that disentangle the effects of fragmentation from loss, most still fail to do so 
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(Fahrig 2003, Hadley & Betts 2016).  Thus, while some argue that fragmentation has no effect 

on species distributions beyond habitat loss (Fahrig 2003, 2013), others contend that this has not 

been settled (Hanski 2015, Hadley & Betts 2016).  Even studies with well-designed sampling 

schemes often fail to acknowledge heterogeneity in the way species perceive landscapes (Betts et 

al. 2014).  Theoretically, two species should never have identical niches (Gause 1934), and 

species’ perceptions of the landscape should be more important than human perceptions in 

conservation planning (McIntyre & Hobbs 1999).  Thus, others hypothesize that poorly defined 

patch delineations explain the lack of generalizable results (Betts et al. 2014). 

In addition, most fragmentation studies rely on richness as a response variable (Fahrig 

2013), ignoring heterogeneity in the way fragmentation affects individual species, and in 

detectability among species (Kéry & Royle 2008, Zipkin et al. 2009, Iknayan et al. 2014, 

Yamaura et al. 2016).  Treating all species equally may mask life history characteristics that 

could be linked to fragmentation sensitivity (Bender et al. 1998, Henle et al. 2004, Ewers & 

Didham 2006), and neglecting to account for imperfect detection can produce demonstrably 

biased results (e.g., Boulinier et al. 1998, Gu & Swihart 2004, Kéry et al. 2008).  Further, 

multiple processes can impact detection probability, including temporary changes in sampling 

availability (temporary emigration; Nichols et al. 2009).  Studies attempting to quantify 

metapopulation dynamics in fragmented systems often fail to acknowledge this (Betts et al. 

2008, Rota et al. 2009, Gould et al. 2012, McClure & Hill 2012, Otto & Roloff 2012), and it is 

unclear how that impacts estimates of dynamic rates. 

 Thus, many questions remain about the impact of fragmentation per se on animal 

distribution patterns.  Birds are excellent study organisms for answering such questions in 

terrestrial systems.  Birds can be identified both visually and aurally, and because they utilize 
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song in territorial displays and mate attraction, distributional information about a large number of 

species can be gathered with relatively little effort.  In addition, birds can be used as indicators of 

habitat condition (Bock & Webb 1984, Canterbury et al. 2000), quality (Powell & Powell 1986), 

and community assemblages for multiple taxonomic groups (Fleishman et al. 2005, Roberge & 

Angelstam 2006).  Yet most importantly, many North American bird species are in decline 

(Robbins et al. 1989, Askins 1993, James et al. 1996, Holmes & Sherry 2001, Sauer & Link 

2002, Lloyd-Evans & Atwood 2004), and habitat loss and fragmentation have been implicated as 

major causes (Andrén 1994, Robinson et al. 1995, Donovan & Flather 2002).  Thus, it is critical 

that we develop effective tools for sampling and modeling bird distributions in order to 

implement effective conservation and management strategies in disturbed systems. 

In this dissertation, I use occupancy models and translocation experiments to investigate 

the effects of fragmentation on breeding forest bird communities in southern Indiana.  In Chapter 

2, I explore the impacts of temporary changes in sampling availability on estimates of 

colonization and extinction rates from dynamic occupancy models (MacKenzie et al. 2003).  

Because theory predicts that fragmentation should influence these rates, it is imperative that we 

develop sound sampling and modeling techniques to appropriately test these predictions.  In 

Chapter 3, I test for the effects of patch size (an indicator of fragmentation) on species 

distribution patterns while accounting for the confounding effects of habitat amount, edge 

distance, vegetation heterogeneity, and sample area.  I used a sampling scheme that accounts for 

temporary emigration, and analyzed the data using community occupancy models (Kéry & Royle 

2008, Zipkin et al. 2009, Iknayan et al. 2014) to quantify detection rates (and factors influencing 

them) in all species of interest.  I then compared the effects of landscape features among species 

in different ecological trait groups (i.e., forest, forest interior or forest edge specialists).  This 
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approach explicitly acknowledges heterogeneity in species perceptions of the landscape, and 

highlights traits linked to fragmentation sensitivity.  In Chapter 4, I use translocation experiments 

to test the hypothesis that fragmentation reduces the functional connectivity of a landscape for 

species identified as fragmentation sensitive.  Because, the translocation process itself can impact 

animal behavior, I also test for behavioral shifts in homing birds, and whether landscape 

connectivity differs between behavioral modes.  Collectively this work represents a substantial 

step forward in our understanding of how and why fragmentation influences animal distributions, 

and how to construct appropriate sampling and modeling schemes for identifying those effects.  
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DISTINGUISHING DISTRIBUTION DYNAMICS FROM TEMPORARY EMIGRATION 

USING DYNAMIC OCCUPANCY MODELS 

 

INTRODUCTION 

Many ecological studies rely on presence-absence surveys to identify species distribution 

patterns and how they vary in space and time.  Failing to account for individuals that are present 

but undetected leads to underestimated distributions, biased estimates of colonization and 

extinction probabilities, and poor parameterization of resource use models (e.g., Moilanen 2002, 

Tyre et al. 2003, Gu & Swihart 2004, Kéry et al. 2005, MacKenzie 2005).  This realization led to 

development of a landmark occupancy modeling framework (MacKenzie et al. 2002, Tyre et al. 

2003) wherein occupancy and detection probability can be simultaneously estimated from 

repeated samples of sites that are assumed closed to changes in occupancy.  Since its inception, 

there has been an explosion in use and development of these models to meet numerous 

estimation needs (Bailey et al. 2014). 

 Because the closure assumption is one of the most important and criticized requirements 

of occupancy models, much effort has been dedicated to identifying and modeling closure 

violations.  In the strictest interpretation of closure, it is assumed that presence of the species 

within spatially discrete sampling units does not change between repeated sampling occasions, 

resulting in an instantaneous “snapshot” of a species’ distribution (MacKenzie & Royle 2005, 

Latif et al. 2016).  Several recent studies have demonstrated that common sampling protocols for 

birds (Rota et al. 2009, McClure & Hill 2012), salamanders (Otto et al. 2013), anurans (Kendall 

et al. 2013), and insects (Bried & Pellet 2012) violate the closure assumption, leading some to 

consider abandoning the method altogether (Hayes & Monfils 2015, Hutto 2016). 
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Under this strict interpretation, there are two processes that could cause closure 

violations, the first stemming from temporary changes in sampling availability.  A site may be 

considered used (even if not occupied at some instant) if one or more individuals have non-zero 

probability of being exposed to sampling (MacKenzie & Royle 2005, Nichols et al. 2008, Latif et 

al. 2016).  Temporary emigration occurs when all individuals using the site are unavailable for 

sampling at an instant, and violates the closure assumption when changes in availability occur 

between sampling visits.  Often this arises from a mismatch between the spatial scales of 

sampling units and animal territories (Nichols et al. 2009, Chandler et al. 2011, Efford & 

Dawson 2012).  For example, if spatially discrete avian point count stations are considered sites, 

individual territories may only partly overlap the sample space resulting in species presence 

during only some sampling occasions (Nichols et al. 2009; Fig. 2.1).  Similar spatial mismatches 

can result from any stationary sampling of mobile organisms, such as camera, net, or hair snare 

trapping (Kendall et al. 1997, Chandler et al. 2011, Efford & Dawson 2012).  However, 

temporary emigration can also arise when at least one individual is spatially present, but 

otherwise unavailable for detection (Kendall et al. 1997, O’Donnell et al. 2015, Kéry & Royle 

2016), for example, due to vertical migration into burrows or below the water surface 

(O’Donnell et al. 2015).  Critically, in each of these scenarios, temporary emigration is a 

reversible process that results in changes to the occupancy state, but not site use. 

Several methods have been proposed for accommodating availability changes in 

occupancy models.  Researchers have made use of multiple detection methods or sampling time 

scales to simultaneously estimate occupancy and use (Nichols et al. 2008, Mordecai et al. 2011).  

When site occupancy changes in a non-Markovian way between samples, others recommend 

simply relaxing the closure assumption and re-interpreting the occupancy parameter as 
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probability of site use (MacKenzie et al. 2004, MacKenzie & Royle 2005, Latif et al. 2016).  In 

these cases, the detection parameter is also re-interpreted as the product of the probability of 

availability (pa; the complement of the temporary emigration rate) and probability of detection 

given availability (pd; Kendall 1999, Nichols et al. 2009).  Yet because the number of used sites 

will always be greater than or equal to the number of occupied sites, site use rates are often 

considered inferior estimates of a species’ distribution (MacKenzie 2005, MacKenzie & Royle 

2005, Latif et al. 2016).  Thus, others recommend conducting repeated samples simultaneously, 

or over extremely short time intervals, creating estimates of occupancy not confounded by 

temporary emigration (MacKenzie & Royle 2005, MacKenzie 2005, Rota et al. 2009, Kendall et 

al. 2013). 

Distribution dynamics can also result in closure violations.  We define distribution 

dynamics (henceforth, dynamics) as distributional shifts resulting from dispersal or other 

demographic processes (i.e., births, deaths) that lead to unused sites becoming used, or vice 

versa.  In occupancy models, dynamics can also be accommodated by reducing the interval 

between sampling periods, or acknowledged by altering the interpretation of occupancy.  

Alternatively, MacKenzie et al. (2003), developed a dynamic occupancy model that explicitly 

estimates dynamic rates by utilizing Pollock’s robust sampling design (Pollock 1982).  This 

model assumes site closure over repeated secondary sampling periods nested within primary 

periods, between which dynamic rates are modeled as colonization and extinction.  Since 

development, dynamic occupancy models have been used to test the predictions of island 

biogeography and metapopulation theory (Ferraz et al. 2007, Pellet et al. 2007), validate 

metapopulation models (Ozgul et al. 2006), identify source and sink populations (Kerbiriou et al. 

2012, Peterman et al. 2013, Fisher et al. 2014), estimate population growth rates (Kéry et al. 
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2010, Kerbiriou et al. 2012), and model biological invasions (Yackulic et al. 2012, Fisher et al. 

2014). 

Inherent in each of these applications of the dynamic occupancy model is an implicit 

assumption that the rates modeled between primary periods represent shifting distributions, 

rather than temporary changes in sampling availability.  Yet there is nothing explicit in the model 

itself that guarantees this.  Combining a dynamic occupancy model with a sampling window that 

ensures complete site closure within primary periods, means that both dynamics and temporary 

emigration only occur between primary periods.  Therefore, both processes may influence 

colonization and extinction estimates (Fig. 2.1).  Numerous recent studies have taken this type of 

sampling approach.  For instance, Otto et al. (2013) estimated salamander extinction rates from 

secondary periods occurring within 24 hours.  In more extreme cases, estimates of amphibian 

(Gould et al. 2012) and avian (Rota et al. 2009, Betts et al. 2008, McClure & Hill 2012, Otto & 

Roloff 2012) dynamic rates were generated from secondary periods occurring within minutes of 

one another.  In these scenarios, dynamics may not be distinguishable from temporary 

emigration (Fig. 2.1); yet tests comparing static and dynamic occupancy models, and the 

colonization and extinction estimates generated by dynamic models, are frequently assumed to 

represent distribution dynamics (Rota et al. 2009, Betts et al. 2008, Gould et al. 2012, McClure 

& Hill 2012, Otto & Roloff 2012).  While some authors have acknowledged this potential 

confounding (Betts et al. 2008, Rota et al. 2009), there has been no evaluation of how temporary 

emigration might impact model results.  Here we use simulated and empirical data to test the 

hypothesis that failing to account for temporary emigration via sampling design results in 

misleading comparisons of static and dynamic occupancy models, and biased estimates of 

distribution dynamics.  We then provide recommendations for unbiased sampling and modeling 
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schemes for estimating dynamic rates of unmarked populations in the presence of temporary 

emigration. 

 

MATERIALS AND METHODS 

Simulated Data 

 We simulated presence/absence datasets under two different robust-design sampling 

scenarios (Pollock 1982), one where the strict closure assumption is met within primary periods 

(occupancy scenario), and one where primary periods were closed to dynamics, but availability 

changes could occur between secondary samples (use scenario).  The occupancy scenario 

allowed us to evaluate how temporary emigration influences colonization and extinction 

estimates, while the use scenario allowed us to test whether a simple sampling alteration could 

improve those estimates.  Our simulations explicitly assume that availability changes occur over 

finer time scales than dynamics, and that the researcher is interested in estimating dynamic rates, 

rather than changes in sampling availability. 

 Each simulated dataset contained 500 sites and nine sampling occasions, where three 

secondary samples were nested within each of three primary periods.  We simulated initial site 

use from a Bernoulli distribution with probabilities of ψ0 = 0.3 or 0.7.  We simulated dynamics as 

transitions in site use between primary sampling periods to represent distributional shifts.  

Transitions from used to unused were simulated from a Bernoulli distribution with probabilities 

of ε0 = 0.0, 0.2, or 0.4.  Transitions from unused to used were simulated similarly with 

probabilities of γ0 = 0.0, 0.09, 0.17, 0.47, or 0.93, where γ0 was calculated so the site use rate 

remained constant across primary periods.  We use ψ0, ε0, and γ0 to distinguish probability of site 
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use and probability of changes in site use from the occupancy (ψ), extinction (ε), and 

colonization (γ) notation used in dynamic occupancy models (MacKenzie et al. 2003). 

 Given a site was used, we simulated sampling availability from a Bernoulli distribution 

with probabilities of pa = 0.5, or 0.8.  In occupancy sampling scenarios, availability could only 

change every third visit, allowing instantaneous estimates of the species’ distribution within 

primary periods.  Thus, the occupancy state of a site could change between subsequent primary 

periods via changes in availability, even if the site was used during both.  In the use scenarios, 

availability was simulated independently on each sampling occasion.  Finally, given that the 

species was available for sampling, detection during each secondary period was simulated from a 

Bernoulli distribution with probabilities of pd = 0.5 or 0.8.  We generated 1000 datasets for each 

combination of 24 parameter values under each sampling scenario using R (v. 3.1.2). 

 We fit static (MacKenzie et al. 2002) and dynamic (MacKenzie et al. 2003) occupancy 

models to each of the respective 24,000 datasets using the unmarked R package (v. 0.10-6; Fiske 

& Chandler 2011).  Static models assumed no occupancy changes between any visits and open 

models allowed distributions to change every third visit.  Because multiple studies (e.g., Rota et 

al. 2009, McClure & Hill 2012) compare static and dynamic occupancy models to test for 

evidence of dynamics, we compared model pairs with a common approach (Self & Liang 1987, 

Rota et al. 2009, Dail & Madsen 2011).  Static occupancy models are special cases of their 

dynamic counterparts where dynamic parameters are constrained to be zero.  To test for 

dynamics, we calculated a test statistic as T = -2ln(Λ), where 𝛬 is the ratio of the maximized 

likelihood for the static model to that of the dynamic model.  Because the null hypothesis is that 

the dynamic parameters are on the boundaries of their parameter spaces, this test does not meet 

the likelihood ratio test regularity conditions.  Instead, this test statistic asymptotically 
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approaches a mixture 𝜒0
2, 𝜒1

2, and 𝜒2
2 distributions with mixing proportions equal to 0.5-δ, 0.5, 

and δ, with δ calculated from the dynamic model’s Hessian matrix (Self & Liang 1987, Dail & 

Madsen 2011).  When δ could not be estimated (< 1% of comparisons), it was fixed at 0.5 to 

minimize the probability of rejecting the null (static) model.  We accepted a P-value of < 0.05 as 

evidence for dynamic distributions. 

  For each parameter combination under each sampling scenario we calculated the 

percentage of correct models selected.  Again, we assumed interest is in quantifying dynamics, 

so the dynamic model was deemed “incorrect” when the simulation parameters γ0 and ε0 equaled 

zero.  We compared estimates of occupancy, colonization, extinction, and detection with the 

simulation parameters, and specifically compared estimates of colonization and extinction with 

those used to simulate dynamics (γ0 and ε0).  We estimated bias by subtracting the simulation 

parameter from each estimate and averaging these values over all 1000 datasets.  We calculated 

variance among the estimates themselves, and mean squared error (MSE) as the sum of the 

variance and the squared bias.  We disregarded parameter estimates from models with non-

invertible Hessian matrices (< 2% of fitted models).  Full simulation and analysis code is 

provided in Appendix B. 

 

Dynamic Multi-Scale Occupancy Model 

 When a researcher is interested in quantifying temporal dynamics in both use and 

occupancy, the simple design-based solution simulated above (‘use’ scenarios) would not be 

sufficient.   At present, we are unaware of any models that explicitly estimate both temporary 

emigration and dynamic rates simultaneously.  Thus, we developed one that relies on an 

extension of Pollock’s robust design (Pollock 1982) to include tertiary sampling periods closed 
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to both temporary emigration and dynamics, and secondary periods closed only to dynamics.  

Note that sampling considerations for this model are nearly identical to those described in the use 

sampling scenario above.  In both cases, all secondary samples within a primary period must be 

closed to dynamics, but open to changes in availability.  Thus, this model provides no benefit for 

estimating dynamic rates.  Instead, it imposes additional burden by requiring more frequent 

sampling within secondary periods to estimate ‘availability’, and ‘detection given availability’ 

separately, rather than estimating their product as a single parameter (Nichols et al. 2009, 

Schmidt et al. 2013).  Use of this model is thus unnecessary in most cases, but we refer interested 

readers to Appendix C for full model development and testing. 

 

Empirical Case Study 

  In the summer of 2014, we established 193 point count stations (≥ 200 m apart) in the 

central hardwoods region of southern Indiana.  We used a popular sampling protocol (e.g., Betts 

et al. 2008, Rota et al. 2009, McClure & Hill 2011, Otto & Roloff 2012) where trained observers 

conducted three 3:20 point counts during each of three 10-minute site visits (9 total point 

counts).  We recorded all birds within 50 m, and counts took place between sunrise and 10:00 am 

from 16 June to 16 July in suitable weather conditions (i.e., no rain and minimal wind).  For 

clarity, we will refer to 10-minute site visits as visits and repeated 3:20 point counts within each 

visit as intervals. The first two visits to each station were conducted within two mornings of each 

other, and the third visit was conducted 15 to 19 (median 17) days after the first. 

 This sampling scheme was designed under three assumptions.  First, because repeated 

intervals within a visit occurred over 10 minutes, it is reasonable to assume complete site closure 

within visits.  Second, because survey sites were stationary (50 m radius circles), but birds are 
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mobile, availability changes could occur between site visits due to individuals moving in and out 

of the sample space (Fig. 2.1).  Lastly, dynamic rates should be approximately zero over the 24-

48 hour period between our first and second site visits, but changes in site use may occur over 

the 19 days between the first and third visits (Rota et al. 2009, McClure & Hill 2012).  Using 

these assumptions, we constructed three unique presence/absence datasets from the point count 

data (Fig. 2.2) and label them with the processes being modeled by dynamic occupancy model 

colonization and extinction parameters. 

 The first dataset treated the first and third visits as primary periods, and intervals as 

secondary periods (visit two ignored).   Multiple researchers have compared static and dynamic 

occupancy models fit to data collected analogously, and concluded there was evidence for 

within-breeding season territorial changes in bird communities (e.g., Betts et al. 2008, Rota et al. 

2009, McClure & Hill 2012).  Analyzing this dataset allowed us to replicate such results.  Under 

our assumptions, both dynamics and temporary emigration (TE) could only occur between 

primary periods, and we refer to this as the confounded TE/dynamics dataset. 

 The second dataset was similar to the first, except that the first and second visits were 

considered primary periods (visit three ignored).  Under our assumptions, any closure violations 

detected could be explained primarily by changes in availability.  Thus, analyzing this dataset 

allowed us to evaluate the impacts of temporary emigration on tests of within-breeding season 

territorial shifts.  We refer to this as the isolated TE dataset. 

 The final dataset combined all three visits and ignored the repeated intervals.  We treated 

the first two visits as a single primary period containing two secondary periods.  The third visit 

was a unique primary period containing only one secondary period.  While the first two datasets 

were designed to generate estimates of instantaneous occupancy within primary periods (by 
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assuring complete site closure), this dataset is designed to estimate site use within primary 

periods (by allowing availability changes between secondary samples).  Thus, the temporary 

emigration rate should be estimated with detection in the dynamic occupancy model (Nichols et 

al. 2009), and colonization/extinction estimates should only be influenced by distribution 

dynamics.  We refer to this as the isolated dynamics dataset. 

 We limited analyses to the 19 species detected on > 20% of sample sites (Appendix A, 

Table A1).  Using the approach described above, we tested for distribution dynamics in each of 

these 57 datasets (three per species) by comparing static occupancy models that assumed site 

closure over all samples (MacKenzie et al. 2002) to dynamic occupancy models allowing 

colonization and extinction between primary periods (MacKenzie et al. 2003).  In each model, 

time of day and observer were included as covariates for detection probability, but for simplicity, 

initial occupancy, colonization, and extinction were modeled as constants.  All analyses were 

conducted using the unmarked package (v. 0.10-6) in R (v. 3.1.2). 

 

RESULTS 

Simulated Data 

 In the use sampling scenarios, site closure tests performed very well.  Where distribution 

dynamics did not occur, the static occupancy models were appropriately selected ≥ 95.1% of the 

time (Table 2.1), and when dynamics were present, the dynamic occupancy model was selected 

≥ 97.2% of the time (Appendix A, Table A2).  In both cases, the estimates of initial occupancy 

approximated ψ0 while detection estimates approximated papd.  Accordingly, dynamic parameter 

estimates were highly accurate and precise estimates of the dynamic rates. 
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 When secondary sampling periods were closed to availability changes (occupancy 

scenarios), site closure tests and dynamic parameter estimates resulted in misleading conclusions 

about dynamic rates.  Where dynamics were absent, the closed models were appropriately 

selected ≤ 1.3% of the time (Table 2.1), and when dynamics were present, the dynamic model 

was selected 100% of the time (Appendix A, Table A2).  In both cases, estimates of initial 

occupancy tended to approximate ψ0pa while the detection estimate approximated pd.  However, 

the dynamic occupancy models tended to underestimate γ0 and overestimate ε0. 

 

Dynamic, Multi-Scale Occupancy Model 

  By augmenting the dynamic occupancy model to include tertiary sampling periods, we 

were able to estimate temporary emigration and dynamic rates simultaneously (Appendix C).  

This extended model performed well under simulated sampling scenarios that involved three 

primary, three secondary, and three tertiary periods (Appendix C, Table C1).  However, dynamic 

rate estimates showed no accuracy improvements over those generated by combining use 

sampling with a dynamic occupancy model, as described above.  Therefore, we chose not to 

pursue further testing. 

 

Empirical Case Study 

 Results from the analysis of our confounded TE/dynamics and isolated TE datasets were 

very similar.  The null hypothesis (i.e. that closure could be assumed among site visits) was 

rejected for all 19 species using both datasets (P < 0.02; Appendix A, Table A1).  That is, the 

dynamic occupancy models had greater support for all species even when the interval between 

primary sampling periods was limited to 24-48 hours.  Estimates of extinction probability from 
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the confounded TE/dynamics datasets tended to be greater than the estimates from the isolated 

TE datasets (Fig. 2.3), as might be expected if multiple processes influenced the former but not 

the latter.  However, estimates of detection, initial occupancy, and colonization were similar 

between these models.  Therefore, in most cases, the parameter estimates generated by dynamic 

models were extremely similar when primary periods were separated by two days versus 17 

days.  This suggests that the colonization and extinction estimates were heavily influenced by 

temporary emigration when all secondary samples occurred within 10 minutes. 

 In contrast, we only found evidence for closure violations for nine species using the 

isolated dynamics datasets (Appendix A, Table A1).  That is, for most species there was no 

evidence for dynamics over the ~17 day period when the effects of temporary emigration were 

excluded.  Though some parameter estimates from isolated dynamics models had poor precision 

due to a smaller number of secondary periods, strong patterns emerged.  Estimates of detection 

and extinction tended to be greater, while initial occupancy tended to be lower in models fit to 

the confounded TE/dynamics datasets than when fit to the isolated dynamics datasets (Fig. 2.4).  

In our simulation study, we saw a similar pattern when we compared the occupancy and use 

scenarios (Appendix A, Table A2).  This supports our assumption that the colonization and 

extinction parameters from the isolated dynamics models are likely quantifying changes in site 

use between primary periods, while estimates generated from the other two datasets are likely 

measuring changes in instantaneous occupancy. 

 

DISCUSSION 

 Concern about overestimating species distributions due to closure assumption violations 

has led to widespread recommendations that secondary samples be conducted extremely close in 
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time (MacKenzie & Royle 2005, MacKenzie 2005, Rota et al. 2009, Kendall et al. 2013).  This 

enables instantaneous estimates of species occupancy patterns, which are valuable for generating 

a snapshot of the species’ distribution at a moment in time.  However, as our simulations 

demonstrate, this may be a poor sampling approach for quantifying distributional shifts.  When 

instantaneous occupancy is estimated within primary periods, dynamic occupancy models 

estimate colonization and extinction rates as changes in instantaneous occupancy, which can be 

influenced by both distribution dynamics and temporary emigration; naiveté to this fact could 

mislead interpretations of the biological process being modeled. 

Results from our empirical data analysis demonstrate how this problem could emerge in 

observational studies.  By varying the temporal duration between primary and secondary periods, 

we demonstrated that colonization and extinction estimates generated using a popular avian 

sampling technique are potentially heavily influenced by temporary emigration.  Nevertheless, 

numerous studies have interpreted these dynamic rates as evidence of within-season dispersal 

(e.g., Betts et al. 2008, Rota et al. 2009, McClure & Hill 2012, Otto & Roloff 2012).  Indeed, 

Rota et al. (2009) thoroughly considered the influence temporary emigration had on their results, 

and concluded that it was likely not the process being modeled between their 10-minute primary 

periods.   Yet, our results indicate temporary emigration may be the only process being modeled 

between primary periods for some species.  Note, that sequential surveys may additionally 

violate the assumption that detections are independent (MacKenzie et al. 2002), which could also 

explain the inflated detection and deflated occupancy estimates observed under this protocol 

(Fig. 2.4).  Regardless of the mechanism, this sampling approach is poorly adapted for modeling 

distribution dynamics. 
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Designing sampling schemes for dynamic occupancy modeling requires a more nuanced 

consideration of the closure assumption; researchers must also consider the biological process 

being modeled by the colonization and extinction parameters.  In cases where temporary 

emigration is the only process occurring between primary periods (e.g. in our isolated TE 

datasets), models that explicitly estimate this parameter (Nichols et al. 2008, Mordecai et al. 

2011) may be more appropriate than the dynamic occupancy model.  Estimating temporary 

emigration rates directly may be valuable for designing survey protocols (Riddle et al. 2010), or 

for generating instantaneous occupancy estimates (Nichols et al. 2008).  Yet, for many research 

questions, interest lies in distributional changes in space use rather than short-term, reversible 

changes in availability.  Applications of dynamic occupancy models for quantifying dispersal 

(Betts et al. 2008, Rota et al. 2009), metapopulation dynamics (Ferraz et al. 2007, Pellet et al. 

2007), or source/sink rates (Kerbiriou et al. 2012, Peterman et al. 2013) all seek colonization and 

extinction estimates representing distribution dynamics.  In these cases, temporary emigration is 

a nuisance parameter that should be accounted for to estimate dynamics accurately. 

As demonstrated in Appendix C, by extending the dynamic occupancy model to include 

tertiary sampling periods, rates of dynamics and temporary emigration can be estimated 

simultaneously.  However, for all parameters to be identifiable, the model requires collecting 

additional data (tertiary samples) that contribute no information to dynamic rate estimates.  

Therefore, when researchers wish to estimate distribution dynamics, and temporary emigration is 

of no interest, we strongly recommend adjusting the sampling design rather than fitting a more 

complex model.  Nevertheless, the model performed well in initial simulations, and we 

encourage further testing to more thoroughly explore its utility and limitations. 
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As we and others (e.g., Kendall 1999, Schmidt et al. 2013) have demonstrated, dynamic 

rates can be isolated simply by designing studies to estimate site use within primary periods, 

rather than instantaneous occupancy.  This approach requires estimating detection probability as 

papd, and therefore that the probability the species is available for sampling is random and 

independent during each secondary period (MacKenzie 2005, Nichols et al. 2009).  Where there 

is a spatial mismatch between the size of sample sites and the space used by targeted individuals 

(e.g., Fig. 2.1), this means allowing time for spatial redistribution of individuals such that their 

locations during two sampling events are uncorrelated (Fig. 2.5).  Spatial autocorrelation in such 

within-home range locations should decrease over time, but the length of time required to 

achieve statistical independence will be longer for slower moving species (Swihart & Slade 

1985).  When the sampling technique itself is destructive or induces a “trap response” (e.g., Otto 

et al. 2013), the duration between samples may need to be further extended to ensure that 

availability on each sampling occasion is not negatively influenced by a previous sampling 

event.  Indeed, in all situations, increasing the time between samples should reduce correlation in 

availability (e.g., the likelihood that an animal is vocalizing); yet critically, the total time interval 

within a primary period must be sufficiently short that dynamic rates are negligible.  Otherwise, 

these processes will also be estimated as a component of detection probability (Kendall 1999, 

Rota et al. 2009). 

 Importantly, these recommendations assume a study system in which temporary 

emigration occurs over a finer time scale than distribution dynamics, and that the two are 

sufficiently distinguishable (Fig. 2.5).  Designing an appropriate sampling scheme thus requires 

substantial knowledge about the study system and species.  In our empirical study of territorial 

breeding birds, we assumed 24-48 hour periods were long enough to ensure independence among 
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successive individual bird locations within territories, yet short enough that dynamic rates were 

negligible.  Although we did not evaluate this assumption in the field, a two-day period should 

allow ample movement for highly vagile species like birds, while substantial changes in site use 

are unlikely.  In other sampling scenarios, however, these processes may not be uniquely 

identifiable, even with a robust sampling design.  For instance, Kendall et al. (1997) noted that 

non-nesting birds could be considered temporary emigrants when sampling techniques focus on 

nesting individuals (e.g., Spendelow & Nichols 1989).  However, the temporal scale of mating 

and nest-building may not be distinguishable from that of changes in population distributions.  

Similarly, for species with poorly defined territories or home ranges, temporary emigration and 

dynamics may not be biologically distinct processes.  Future work should identify appropriate 

temporal sampling scales for different species and sampling techniques to help separate 

temporary emigration from dynamic rates. 
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Table 2.1.  A comparison of static and dynamic occupancy models fit to simulated presence-

absence survey data where distribution dynamics were absent.  For each set of simulation 

parameters, we generated 1000 datasets.  In use sampling, availability was independent during 

each sampling period.  As a result, the static models were chosen the majority of the time.  In 

occupancy sampling, availability could only change between primary periods, and the dynamic 

models were selected nearly 100% of the time.  Metrics provided are on the original parameter 

scale. 
 

 Simulation parameters % open Occ (ψ)      Det (p)       Colonization (γ)               Extinction (ε)          

 ψ0 pa pd γ0 ε0 selected Mean Var Mean Var Mean/Bias Var MSE Mean/Bias Var MSE 

 

Use scenarios               

 0.3 0.5 0.5 0.00 0 3.9 0.30 0.00 0.25 0.00       --- --- ---       --- --- --- 

 0.3 0.5 0.8 0.00 0 4.1 0.30 0.00 0.40 0.00       --- --- ---       --- --- --- 

 0.3 0.8 0.5 0.00 0 4.9 0.30 0.00 0.40 0.00       --- --- ---       --- --- --- 

 0.3 0.8 0.8 0.00 0 3.3 0.30 0.00 0.64 0.00       --- --- ---       --- --- --- 

 0.7 0.5 0.5 0.00 0 3.8 0.70 0.00 0.25 0.00       --- --- ---       --- --- --- 

 0.7 0.5 0.8 0.00 0 4.2 0.70 0.00 0.40 0.00       --- --- ---       --- --- --- 

 0.7 0.8 0.5 0.00 0 4.7 0.70 0.00 0.40 0.00       --- --- ---       --- --- --- 

 0.7 0.8 0.8 0.00 0 3.7 0.70 0.00 0.64 0.00       --- --- ---       --- --- --- 

                   

Occupancy scenarios 

 0.3 0.5 0.5 0.00 0 100 0.16 0.00 0.47 0.00       0.07 0.00 0.01       0.39 0.00 0.15 

 0.3 0.5 0.8 0.00 0 100 0.15 0.00 0.80 0.00       0.09 0.00 0.01       0.49 0.00 0.24 

 0.3 0.8 0.5 0.00 0 98.7 0.26 0.00 0.46 0.00       0.03 0.00 0.00       0.08 0.00 0.01 

 0.3 0.8 0.8 0.00 0 99.9 0.24 0.00 0.78 0.00       0.05 0.00 0.00       0.15 0.00 0.02 

 0.7 0.5 0.5 0.00 0 100 0.35 0.00 0.50 0.00       0.26 0.00 0.07       0.48 0.00 0.24 

 0.7 0.5 0.8 0.00 0 100 0.35 0.00 0.80 0.00       0.27 0.00 0.07       0.50 0.00 0.25 

 0.7 0.8 0.5 0.00 0 99.6 0.58 0.00 0.47 0.00       0.17 0.00 0.03       0.11 0.00 0.01 

 0.7 0.8 0.8 0.00 0 100 0.56 0.00 0.80 0.00       0.25 0.00 0.06       0.19 0.00 0.04 
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Figure 2.1.  When practitioners of dynamic occupancy models ensure complete site closure 

within primary periods, changes in sampling availability stemming from temporary emigration 

may not be distinguishable from distributional changes in territory locations.  In the two 

scenarios depicted, there is some probability of detecting the species during both samples in the 

first primary period, but no possibility of detecting it during either sample in the second.  Yet 

only in the bottom scenario does the actual distribution of the species change. 
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Figure 2.2.  A schematic outlining the structure of the three occupancy datasets constructed from 

repeated point counts at 193 locations in southern Indiana in the summer of 2014.  Circles 

represent 10-minute site visits, some of which were split into 3:20 subintervals.  Circles, and 

circle parts shaded similarly were included in the same primary period.  Datasets were designed 

to quantify either distribution dynamics, temporary emigration (TE), or both between primary 

periods. 
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Figure 2.3. A comparison of the parameter estimates generated by open occupancy models fit to 

the confounded TE/dynamics and isolated TE empirical datasets for 19 forest-breeding 

songbirds.  Error bars represent 95% Wald confidence intervals and the dashed line indicates no 

difference in estimates.  Most parameter estimates were similar under this sampling scheme 

when primary periods were separated by 2 days versus 17 days. 
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Figure 2.4. A comparison of the parameter estimates generated by open occupancy models fit to 

the confounded TE/dynamics and isolated dynamics datasets for nine forest-breeding songbirds.  

Error bars represent 95% Wald confidence intervals and the dashed line indicates no difference 

in estimates. Detection and extinction estimates tended to be larger, while initial occupancy 

estimates tended to be lower in the confounded TE/dynamics models. 
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Figure 2.5. To quantify distribution dynamics independently from temporary emigration, 

secondary samples should be spaced far enough apart in time that probability of availability is 

independent on each repeated visit, but true changes in site use are negligible.  In (a), the gray 

box represents the maximum length of a primary sampling period, and three secondary samples 

are spaced so that probability of availability is independent on each occasion.  If samples are 

conducted closer together in time, dynamic rates will be confounded by temporary emigration.  If 

secondary samples occur outside of the gray box, dynamic rates will be confounded with 

detection probability.  In (b), temporary emigration and dynamics occur at similar rates, and the 

two processes cannot be distinguished using Pollock’s (1982) robust sampling design. 
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RESPONSE TO FRAGMENTATION BY AVIAN COMMUNITIES IS MEDIATED BY 

SPECIES TRAITS 

 

 

INTRODUCTION 

The notion that the size of an environmental patch should influence community structure 

and composition has been one of the most persistent and controversial doctrines in landscape 

ecology and fragmentation research (Haila 2002, Laurance 2008, Fahrig 2013).  Rooted in island 

biogeography (IBT; MacArthur & Wilson 1967) and metapopulation theory (Levins 1969), 

smaller fragments are hypothesized to support smaller populations, which results in higher 

extinction probabilities (Hanski 1998, Hanski & Ovaskainen 2002) and lower colonization rates 

(Gilpin & Diamond 1976, Lomolino 1990) than larger patches.  Yet empirical studies tend to 

report weak or inconsistent patch size effects on distributions of diverse taxonomic groups 

(Debinski & Holt 2000, Prugh et al. 2008).  This juxtaposition of theory and reality has been the 

catalyst for an unresolved debate about whether larger habitat patches have greater conservation 

value than small patches (Laurance 2008, Fahrig 2013, Hanski 2015, Fahrig 2015).  While some 

argue that the disagreement is trivial (Didham et al. 2012), science examining the effects of 

landscape composition and configuration on biodiversity shapes land-use policy (Fahrig 2017), 

and influences land acquisition and management strategies (Villard & Metzger 2014, Hadley & 

Betts 2016). 

Central to the debate is whether the reduction in patch size per se – stemming from 

landscape fragmentation – has any influence on species distribution patterns beyond what can be 

explained by the habitat lost.  Unfortunately, because patch size and habitat amount tend to be 

highly correlated (Andrén 1994, Fahrig 2003, Didham et al. 2012), their independent effects are 

rarely discernable, despite repeated calls to separate them (Fahrig 2003, Hadley & Betts 2016).  
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Yet evidence is mounting that habitat loss has a much greater influence on biodiversity than 

fragmentation per se.  While habitat loss tends to have strong negative effects (Andren 1994, 

Trzcinski et al. 1999, McGarigal & Cushman 2002, Fahrig 2003, 2013, 2017), patch size effects 

tend to be weak (Debinski & Holt 2000, Prugh et al. 2008), and dependent on landscape context 

(Andren 1994, Betts et al. 2006, Villard & Metzger 2014, Bartlett et al. 2016). 

Even where patch size effects do seem to exist, evidence suggests they can often be 

explained by a sample area effect (Cam et al. 2002, Fahrig 2013), or variability stemming from 

edge effects (Ries et al. 2004, Fletcher et al. 2007).  As a result, many researchers have criticized 

the patch-matrix habitat model as overly simplistic, and questioned whether the debate should be 

abandoned (Baguette 2004, Manning et al. 2004, Fahrig 2013, Mendenhall et al. 2014).  In fact, 

Fahrig (2013) provided evidence that patch size per se has no influence on species distribution 

patterns beyond the amount of habitat it contributes to the local landscape.  These results suggest 

there may be no conservation value in large habitat patches beyond the fact that they contain 

more habitat. 

Theoretical predictions about patch size effects relate to species richness (MacArthur & 

Wilson 1967), and consequently most patch-size studies examine species richness (Fahrig 2013).  

This approach typically ignores species identities, and may paint an incomplete picture about 

how patch size influences communities (Kéry & Royle 2008, Zipkin et al. 2009, Iknayan et al. 

2014).  For instance, treating all species equivalently can mask important trait groupings that 

could predict sensitivity to fragmentation (Bender et al. 1998, Henle et al. 2004, Dondina et al. 

2017).  Niche theory (Grinnell 1917, Hutchinson 1957) emphasizes that habitat requirements 

differ among species, and studies acknowledging this tend to find habitat specialists are more 

sensitive to fragmentation effects than habitat generalists (Bender et al. 1998, Cook et al. 2002, 
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Betts et al. 2007, Püttker et al. 2013, Carrara et al. 2015, Dondina et al. 2017; but see Fahrig 

2017).   

Additionally, richness summaries typically ignore variability in detection probability 

among species, sites, and surveys (Kéry & Royle 2008, Zipkin et al. 2009, Iknayan et al. 2014).  

While comparisons between richness metrics that do, and do not explicitly model detectability 

are lacking (Iknayan et al. 2014), ignoring such factors can produce demonstrably biased or 

misleading results (e.g., Boulinier et al. 1998, Kéry et al. 2008).  For example, detectability is 

often associated with conspecific (Dorazio 2007) or heterospecific (e.g., Bailey et al. 2009) 

abundance; thus, richness metrics that fail to account for that may disproportionately represent 

common species (Zipkin et al. 2009) at the expense of the rare or cryptic species of greater 

conservation concern (Samu et al. 2008). 

During the breeding seasons of 2011-2013, we sampled bird communities in 202 unique 

forest fragments in southern Indiana.  We used a mensurative experimental design (Hadley & 

Betts 2016) that isolated the effects of patch size per se from the effects of confounding variables 

such as habitat amount, edge, local vegetation, and sample area.  Here, we use those data to 

compare four hypotheses about the influence of landscape composition and configuration on 

breeding bird distribution patterns.  The random sample hypothesis posits that distributions are 

only influenced by habitat variables at the scale of the animal territory (Haila 1983).  The 

landscape composition hypothesis states that distributions are influenced by the amount of 

habitat at broader spatial scales (Fahrig 2003, 2013), while the landscape fragmentation 

hypotheses implies a linear decline with decreasing patch size, beyond what can be explained by 

habitat loss (Villard et al. 1999).  Finally, the fragmentation threshold hypothesis posits that 
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patch size only influences distributions below critical thresholds in landscape habitat amount 

(Andrén 1994, Betts et al. 2006). 

We analyzed the data using a community occupancy modeling approach (Kéry & Royle 

2008, Zipkin et al. 2009, Iknayan et al. 2014) that allowed us to test these hypotheses for all 

species of interest, while accounting for imperfect detection.  In addition, we grouped species 

according to ecological traits a priori and tested the hypotheses that 1) interior forest specialists 

are negatively associated with decreasing patch size, 2) forest edge specialists are positively 

influenced by decreasing patch size, and 3) the effects of patch size on forest generalists are 

weak or non-existent.  This study represents one of the most comprehensive efforts to 

disentangle the independent effects of habitat amount and fragmentation per se, shining new light 

on an age-old debate.  

 

MATERIALS AND METHODS 

Sampling Design 

 Our study area spanned approximately 1.6 million ha of land in the central hardwoods 

region of southern Indiana (Fig. 3.1).  The area is dominated by corn and soybean agriculture and 

remnant tracts of temperate broadleaf and mixed forests.  Mean annual rainfall is approximately 

119 cm (Indiana State Climate Office 2002), and mean annual temperatures range from 6° C in 

winter to 18° C in summer (National Climatic Data Center 2011).  Dominant tree species include 

oaks (Quercus spp.), hickories (Carya spp.), tulip poplar (Liriodendron tulipifera), white ash 

(Fraxinus americana), American beech (Fagus grandifolia), maples (Acer spp.) and black 

walnut (Juglans nigra).  Dominant understory shrubs include spicebush (Lindera benzoin), 

multiflora rose (Rosa multiflora), and berry bushes (Rubus spp.). 
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 The United States Department of Defense (DoD) operates two large military installations 

in the region, Naval Surface Warfare Center Crane (NSWCC), and Big Oaks National Wildlife 

Refuge (BONWR).  Both installations encompass large contiguous forest tracts surrounded by 

forest plots that vary substantially in size, isolation, and ownership.  In the spring of 2011 we 

used ArcMap (v. 9.3.1) to digitize the boundaries of all mature forest patches on lands owned by 

the DoD, Indiana Department of Natural Resources, U.S. Forest Service, and The Nature 

Conservancy that were within 50 km of NSWCC or BONWR boundaries.  Patch delineations 

were based on aerial images collected for the National Agriculture Imagery Program (USDA 

2010); we considered patches discrete if separated by canopy gaps greater than 30 m.  We also 

separated patches if connected by forest corridors narrower than 100 m, as these would not be 

wide enough to contain territories for most targeted species (Rodewald 2015). 

We removed patches that were not accessible within 250 m of a road to help standardize 

edge distances of sampling points in large and small patches.  We then classified patches into 

five size categories: 1) 1-3 ha, 2) 3-10 ha, 3) 10-20 ha, 4) 20-100 ha, and 5) > 100 ha.  We 

randomly placed up to three potential point count stations in category 1, 2, or 3 patches while 

ensuring a minimum distance of 50 m from the nearest edge, and 250 m between any two points.  

For patches >20 ha, random point placement often resulted in inaccessible sampling locations.  

For these, we randomly located a single accessible point 50 m from the patch edge as the 

beginning of a 4 or 5 point transect (with 250 m spacing) stretching toward the patch interior.  

We then centered a 2 km radius circle on each point and quantified the proportion of the circle 

dominated by mature forest (forest amount) using the National Land Cover Database (NLCD; 

Fry et al. 2011).  We chose this radius because it is likely to include the spatial extent relevant to 

habitat use (Mitchell et al. 2001), natal dispersal (Bowman 2003), and extra-territorial 
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movements (Norris & Stutchbury 2001) for most the species we examined.  We calculated mean 

forest amount values among the points within a patch, and classified patches into four forest 

amount categories; 1) 0-40%, 2) 40-60%, 3) 60-80%, and 4) 80-100%.  We attempted to 

randomly select 10 patches from each of the resulting 20 size-by-amount patch groupings.  When 

there were not enough patches available in a group (e.g., size > 100 ha, amount < 40%), we 

moved the transect starting locations, or chose patches from other groupings that were close in 

size and amount.  Although not completely random, these decisions were based on aerial 

imagery, and are unlikely to have introduced bias because we had no a priori knowledge about 

species composition or forest structure on the ground.  In all, we selected 490 point count 

stations for sampling in 202 unique forest patches. 

Our study design achieved one of our primary goals of minimizing point-level correlation 

between patch size and forest amount (Pearson’s correlation, r = 0.22), allowing us to separate 

their independent effects on occupancy patterns.  While others have argued that focal patch 

studies such as ours do not truly test fragmentation effects (McGarigal & Cushman 2002, Fahrig 

2003, 2017), these are ideal for distinguishing among the relative effects of within-patch, patch, 

and landscape variables (Thornton et al. 2011).  Moreover, theory (MacArthur & Wilson 1967, 

Levins 1969, Hanski 1998) predicts that the size of the patch itself should influence distribution 

patterns, rather than the mean size of the patch in a landscape.  Finally, focal patch size should be 

a reasonable proxy for fragmentation given that these variables tend to be highly correlated at the 

landscape scale (Andrén 1994, Fahrig 2003, Didham et al. 2012). 
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Bird and Vegetation Sampling 

 Trained observers conducted three avian point counts per year (2011, 2012, and 2013) at 

each station between 29 May and 18 July.  Repeated visits to a single site within a year were 

separated by approximately two weeks, and surveys were conducted between sunrise and 1030 in 

suitable weather conditions (i.e., no rain and minimal wind).  Each count lasted 10 minutes and 

observers recorded all birds seen or heard within 50 m, though birds seen flying overhead were 

excluded. 

 Because our points fell along a gradient in edge distances, and because edge effects can 

substantially alter vegetation characteristics (Ries et al. 2004, Fletcher et al. 2007) we conducted 

two or three local vegetation surveys at each point count station.  We sampled vegetation in 2011 

and 2013 at all sites, and a third time in 2012 in cases where the site had been visibly disturbed.  

During each survey we established one 5 m radius circle (subplot) centered on the point count 

station itself, and another centered 30 m from the point count station in a randomly chosen 

cardinal direction.  Within each subplot we recorded: an ocular estimate of shrub cover; canopy 

cover using 10 samples from a vertical viewing tube (Emlen 1967); tree basal area using a 2 

basal-area factor forester’s prism (Cruise Master, Forestry Suppliers, Jackson, MS) at the center 

of the plot; and leaf litter depth and vertical foliage density (VFD) from four points on the 

periphery of the subplot (one in each cardinal direction).  We estimated VFD as the proportion of 

¼ m sections of a 5 m retractable painter’s pole (Mr. LongArm #6618, A & M Products, Pleasant 

Hill, MO) contacted by live vegetation.  We averaged all variables across the two subplots in 

each year. 
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Data Analyses 

 We were not explicitly interested in the effects of any particular local vegetation variable 

on bird communities, but rather in accounting for the potential confounding effects of local 

variability.  To that end, we conducted a principal component analysis (PCA) on our 5 local 

vegetation metrics to reduce the number of covariates in our models.  We treated each year-by-

point combination as a unique observation in the PCA, and results from the 2011 vegetation 

survey were applied to 2012 for sites where vegetation was not sampled that year.  The first three 

principal components represented 77% of the total variance (Appendix A, Table A3) and we thus 

chose these to represent local vegetation in our models. 

 Over the three breeding seasons, we recorded over 80,000 detections of 114 unique bird 

species (Appendix A, Table A4).  We processed these data by removing all species that do not 

breed in the region (i.e., transient migrants), and those species poorly sampled by the point count 

methodology (i.e., raptors, waterbirds, swifts and swallows, nocturnal and crepuscular species, 

hummingbirds, and game birds).  We classified the remaining 74 species into four ecological 

trait groups: forest interior specialists (8), forest edge specialists (21), forest generalists (23), and 

habitat generalists (22).  We made classifications a priori based on previous studies (e.g., Lynch 

& Whigham 1984, Robbins et al. 1989, Villard 1998), and by consultation with the Birds of 

North America species accounts (Rodewald 2015).  For habitat generalists (i.e., species regularly 

occurring outside of forest), forest amount and forest patch sizes are not biologically relevant 

metrics of available habitat, and we had no other a priori reason to expect these metrics would 

influence generalist distribution patterns.  Thus, we excluded these species from further analyses. 

 We fit a temporally-dependent, Bayesian community occupancy model to the point count 

data for the remaining, 52 forest-associated, species.  Community occupancy models estimate 
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species-specific occupancy and detection parameters within a hierarchical framework where 

estimates are related through community-level hyperparameters (Kéry & Royle 2008, Zipkin et 

al. 2009).  The full advantages of such a modeling approach are detailed elsewhere (Kéry & 

Royle 2008, Royle & Dorazio 2008, Zipkin et al. 2009, Iknayan et al. 2014), but we chose this 

approach for three primary reasons.  First, it allows explicit modeling of detection probabilities.  

Second, we could include all rare species in the analysis because the community 

hyperparameters borrow information from more common species (Royle & Dorazio 2008, 

Zipkin et al. 2009, Iknayan et al. 2014).  Lastly, we were interested in the community 

hyperparameters estimates themselves to summarize differences in mean response between trait 

groups. 

 In our model yhijklm represents the observed detection information, taking a value of 1 if 

species i in trait group h was detected in patch j at site k during survey m of year l, and 0 

otherwise.  We assumed yhijklm ~ Bernoulli (Zhijkl * phijklm) where Zhijkl represents the true species-

specific occurrence state, and phijklm represents the species-specific probability of detection at the 

site during the sampled time.  While detection probability can vary within a single year, this 

model assumes sites are closed to changes in occupancy within a breeding season (about 7 weeks 

in our study).  This assumption is standard in occupancy modeling, and is likely reasonable for 

most of our breeding species (Chapter 2).  We assumed that Zhijkl ~ Bernoulli (ψhijkl), and 

incorporated covariate effects on occupancy (ψhijkl) and detection (phijklm) probabilities into the 

model on the logit scale. 

 We expected detection probability for most species would decline with increasing Julian 

date (JULIAN), and that increasing tree basal area (TREE) would reduce the ability of observers 

to see and hear birds.  Thus, we modeled detection probabilities as 
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𝑙𝑜𝑔𝑖𝑡(𝑝ℎ𝑖𝑗𝑘𝑙𝑚) = 𝛼0ℎ𝑖 + 𝛼1ℎ𝑖𝐽𝑈𝐿𝐼𝐴𝑁𝑗𝑘𝑙𝑚 + 𝛼2ℎ𝑖𝑇𝑅𝐸𝐸𝑗𝑘𝑙 

 

We modeled occupancy probability as a function of the local vegetation principal components 

(PC1, PC2, and PC3), edge distance (EDGE), log-transformed patch size (SIZE), amount of 

forest within 2 km (AMNT), and an interaction between SIZE and AMNT.  To account for 

autocorrelation between points within the same patch, we also included a unique patch effect 

(PATCH) for each trait group in each year.  For the first year, we specified the occupancy model 

as 

 

𝑙𝑜𝑔𝑖𝑡(𝜓ℎ𝑖𝑗𝑘1) = 𝛽0ℎ𝑖 + 𝑃𝐴𝑇𝐶𝐻ℎ𝑗1 + 𝛽1ℎ𝑖𝑃𝐶1𝑗𝑘1 + 𝛽2ℎ𝑖𝑃𝐶2𝑗𝑘1 + 𝛽3ℎ𝑖𝑃𝐶3𝑗𝑘1 + 𝛽4ℎ𝑖𝐸𝐷𝐺𝐸𝑗𝑘

+ 𝛽5ℎ𝑖𝑆𝐼𝑍𝐸𝑗𝑘 + 𝛽6ℎ𝑖𝐴𝑀𝑁𝑇𝑗𝑘 + 𝛽7ℎ𝑖𝑆𝐼𝑍𝐸𝑗𝑘𝐴𝑀𝑁𝑇𝑗𝑘 

 

In subsequent years, we assumed that the covariate effects remained constant, but that occupancy 

probability was dependent on occupancy in the previous year.  Thus, for l > 1, 

 

𝑙𝑜𝑔𝑖𝑡(𝜓ℎ𝑖𝑗𝑘𝑙) = 𝛾0ℎ𝑖 + 𝛾1ℎ𝑖𝑍ℎ𝑖𝑗𝑘(𝑙−1) + 𝑃𝐴𝑇𝐶𝐻ℎ𝑗𝑙 + 𝛽1ℎ𝑖𝑃𝐶1𝑗𝑘𝑙 + 𝛽2ℎ𝑖𝑃𝐶2𝑗𝑘𝑙 + 𝛽3ℎ𝑖𝑃𝐶3𝑗𝑘𝑙

+ 𝛽4ℎ𝑖𝐸𝐷𝐺𝐸𝑗𝑘 + 𝛽5ℎ𝑖𝑆𝐼𝑍𝐸𝑗𝑘 + 𝛽6ℎ𝑖𝐴𝑀𝑁𝑇𝑗𝑘 + 𝛽7ℎ𝑖𝑆𝐼𝑍𝐸𝑗𝑘𝐴𝑀𝑁𝑇𝑗𝑘 

 

where γ1hi is a species-specific autologistic parameter (Royle & Dorazio 2008); this term 

represents the change in the occupancy intercept if the site was occupied the previous year.  We 

chose this model specification over a dynamic model that estimates colonization and extinction 
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rates (e.g., MacKenzie et al. 2003) because we were not explicitly interested in distributional 

changes through time but rather community structure in each year.  We standardized all 

covariates with a mean of zero and standard deviation of one before inclusion to assist with 

model convergence.  Although SIZE and EDGE did have a relatively strong positive relationship 

(r = 0.62), the Pearson’s correlation coefficient between all other variable pairs was weak (|r| < 

0.25; Appendix A, Table A5). 

 We expected that species in the same trait group would respond to occupancy covariates 

similarly.  However, we did not expect random patch effects or detection covariates to vary 

systematically between these groups.  Thus, we specified parameter-specific hyperdistributions 

for the effects of each covariate in the following way: 

 

𝜃ℎ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝜃,ℎ, 𝜎𝜃,ℎ
2 ),      𝑓𝑜𝑟 𝜃 = 𝛽0 − 𝛽7, 𝛾0, 𝑎𝑛𝑑 𝛾1 

𝜃ℎ𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝜃, 𝜎𝜃
2),     𝑓𝑜𝑟 𝜃 = 𝛼0 − 𝛼2 

𝑃𝐴𝑇𝐶𝐻ℎ𝑗𝑙~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑝𝑎𝑡𝑐ℎ
2 ) 

  

Because our initial model indicated only weak support for a significant SIZE-by-AMNT 

interaction for most species, we also fit a second model as described above that excluded this 

interaction term.  We fit both models in JAGS (Plummer 2003) using the jagsUI v 1.4.2 package 

(Kellner 2016) within the R v 3.1.2 programming language.  We specified vague priors for all 

community hyperparameters; μ values were distributed normally with a mean of 0 and variance 

of 1000; σ2 values had a uniform (0, 5) distribution.  For each model we ran three MCMC chains 

for 400,000 iterations with a burn-in of 200,000 and thinned by 100.  This left us with 6,000 
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estimates from the posterior distribution across all chains.  We assessed model convergence by 

visually inspecting traceplots, and ensuring the Gelman-Rubin statistic for all monitored 

parameters was less than 1.1 (Gelman et al. 2004).  The full model specification, including a 

description of our model fit assessment, is found in Appendix D. 

We evaluated support for our hypotheses for each species and each trait group mean 

based on 95% posterior credible intervals for the landscape variables (SIZE and AMNT).  We 

deemed effects significant if the intervals did not overlap zero.  Because SIZE and AMNT were 

only weakly correlated, we interpreted a significant SIZE effect as support for the landscape 

fragmentation hypothesis, and a significant AMNT effect as support for the landscape 

composition hypothesis.  A significant SIZE*AMNT term supported the fragmentation threshold 

hypothesis, and the random sample hypothesis was supported if credible intervals overlapped 

zero for all landscape terms. 

 Because all species are detected imperfectly, point-level species richness could not be 

directly observed.  As a result, our model does not explicitly examine the relationship between 

richness and covariates.  Following Zipkin et al. (2009), we instead inferred these relationships 

by examining predicted species richness as an emergent value from the model.  For each of the 

6,000 posterior draws, we first calculated predicted probability of occupancy for each species by 

varying the values of SIZE or AMNT, and holding all other covariates constant at their means.  

We then calculated predicted richness for the entire community and for each trait group 

separately by summing these values at each iteration, resulting in 6,000 estimates of predicted 

richness for each SIZE or AMNT value. 
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RESULTS 

We found very little support for the fragmentation threshold hypothesis.  The SIZE-by-

AMNT interaction term was only significantly negative for a single species (Hooded Warbler).  

For 46 species (88%), this term was non-significant, and for five species (10%) it was 

significantly positive, indicating that fragmentation effects increase with increasing habitat 

amount (Appendix A, Fig. A1).  We found no evidence for lack of fit in the model that included 

the interaction term (p = 0.571), nor in the model that excluded this term (p = 0.568).  In fact, the 

posterior distributions for all parameters shared between the two models were nearly identical 

(Appendix A, Fig. A1).    Therefore, we present the results from the more parsimonious model 

below.  Full results from this model are presented in Appendix A, Tables A6 and A7. 

Based on our criteria, we found evidence for the random sample hypothesis (i.e., no 

significant SIZE or AMNT effect) for one interior species (13%), 11 edge species (52%), and 8 

forest generalists (35%).  Note, however, that we had very few detections for most of these 

species, resulting in large posterior credible intervals for the effects of SIZE and AMNT (Fig. 

3.2).  At the fine scale, one or more local habitat covariates (edge distance, PC1, PC2, or PC3) 

influenced the probability of occupancy for 26 (50%) species (Appendix A, Table A6).  In fact, 

the estimates of the effects of edge distance confirmed our trait group classifications.  On 

average, probability of occupancy was greater at points further from the edge for interior 

specialists, and greater at points close to the edge for edge specialists; for all 23 forest 

generalists, the credible intervals for the edge distance effect overlapped zero (Fig. 3.2). 

Our test of the landscape fragmentation hypothesis revealed substantial differences in the 

response by ecological trait groups.  The estimate of the mean patch size effect was significantly 

positive for interior specialists, significantly negative for edge specialists, and approximately 
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zero for habitat generalists (Fig. 3.2), supporting our hypotheses about how fragmentation 

influences these groups.  Indeed, 78% of species that were significantly positively associated 

with patch size were interior specialists, and 86% that were significantly negatively associated 

with patch size were edge specialists.  These results were also reflected in emergent patterns of 

species richness.  Predicted richness values increased with patch size for interior specialists, and 

decreased with patch size for edge specialists. We saw no strong trend for forest generalists or 

for all species combined (Fig. 3.3). 

Support for the landscape composition hypothesis was much more variable within trait 

groups.  Credible intervals for the average effect of forest amount overlapped zero for all groups 

(Fig. 3.2).  Nevertheless, a much greater proportion of interior species were significantly 

positively associated with forest amount (50%), when compared to the generalist (13%) and edge 

(14%) groups.  Surprisingly, 16 total species were significantly negatively associated with the 

amount of forest within 2 km, including over half of the forest generalists.  Of these 16 species, 

11 (69%) are obligate primary (Downy Woodpecker, Hairy Woodpecker, Red-bellied 

Woodpecker, Red-headed Woodpecker, and Northern Flicker) or secondary (Carolina 

Chickadee, Prothonotary Warbler, Tufted Titmouse, White-breasted Nuthatch, Carolina Wren, 

and Great Crested Flycatcher) cavity nesters (Rodewald 2015).  Again, these results were 

reflected in emergent richness patterns; while predicted richness of interior species increased 

with increasing forest cover, predicted richness of edge specialists, forest generalists, and all 

species combined was actually greatest at low forest cover values (Fig. 3.3). 
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Detection Probability 

Detection probability, and the factors influencing it, varied widely among species.  

Although we initially assumed detection probabilities would not systematically differ among 

ecological trait groups, interior specialists did tend to be more detectable.  The average detection 

intercept for interior specialists was 2.5 times larger than the average intercept for forest 

generalists, and over 4 times larger than the average intercept for edge specialists (Fig. 3.4).  In 

addition, detectability of 31 species (60%) was significantly influenced by at least one modeled 

covariate (Appendix A, Table A7).  The effects of tree basal area tended to be weak and 

insignificant, (posterior community mean = 0.02; 95% CI = -0.02, 0.06) while the effects of 

Julian date tended to be strong and negative (posterior community mean = -0.16; 95% CI = -

0.26, -0.06). 

 

DISCUSSION 

In this study, we tested for the independent effects of patch size and habitat amount on 

the distribution of forest breeding birds while accounting for the confounding effects of, edge 

distance, sample area, and imperfect detection.  Although we found little evidence for the 

fragmentation threshold hypothesis, both the landscape composition and landscape 

fragmentation hypotheses were supported for numerous species.  These results bolster the 

growing body of research highlighting the importance of landscape features in driving species 

distribution patterns.  Moreover, our results unequivocally demonstrate that patch size per se has 

a significant influence on the distribution pattern of many species, beyond the amount of forest it 

contributes to the local landscape.  Although our results show that species richness varies little 
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with patch size, community composition changes in ways that can be predicted by general 

ecological traits. 

 We found that the average patch size effect was significantly positive for interior 

specialists, significantly negative for edge specialists, and approximately zero for forest 

generalists (Fig. 3.2).  Bender et al. (1998) identified a similar pattern in their review of patch 

size effects on animal densities and pointed out that the amount of habitable area is 

overestimated for interior species at low patch sizes, and for edge species at large patch sizes.  

Our results may have been driven by a similar geometric pattern, because the size of a 

contiguous habitable interior patch would increase with forest patch size, while small patches 

have a greater edge-to-area ratio.  This prompted us to test whether interior and edge species 

distributions were positively associated with core patch size and edge patch size, respectively.  

However, our results did not differ markedly from the model presented, likely because all three 

measures of patch size were highly correlated (Appendix A, Fig. A2).  A more adequate test 

would require defining habitat uniquely for each species (Fahrig 2013, Betts et al. 2014, Hanski 

2015), which was beyond the scope of this study. 

 Contrary to the results from other studies (Andren 1994, Trzcinski et al. 1999, McGarigal 

& Cushman 2002, Fahrig 2003, 2013, 2017), we did not find that a reduction in the amount of 

forest cover was overwhelmingly detrimental to bird distributions in our study area.   In fact, we 

found the opposite pattern for many species, particularly cavity nesters (Fig. 3.2).  We speculate 

that availability of cavity trees is somehow inversely related to forest cover in our study region.  

Tree mortality tends to be greater near forest edges (e.g., Esseen et al. 1994), and it is possible 

that landscapes with lower forest cover tended to have greater edge-to-area ratios.  Regardless of 

the mechanism, failure to account for the distribution of cavity trees at the landscape scale likely 
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meant that forest cover was a poor measure of habitat amount, even for many of our forest 

generalist species. 

Similar to others, we did not find that total species richness increased with increasing 

patch size (Fahrig 2013).  Such evidence has led to calls to dismiss patch size as a useful 

landscape metric because it does not conform with island biogeography (MacArthur & Wilson 

1967) or metapopulation theory (Levins 1969, Hanski 1998).  Yet the pattern of our results 

implies that equating ‘forest’ with ‘habitat’ was likely imprecise for most species.  Thus, our 

study does not constitute a rigorous, ‘species-centered’ test of these ideas (Fahrig 2013, Betts et 

al. 2014, Hanski 2015).  Unfortunately, designing multi-species studies that both account for 

idiosyncrasies in habitat requirements, and minimize correlation between composition and 

configuration variables for all species would require an extraordinary financial and logistical 

effort.  Thus, while our results do not conform with established theory, they do have practical 

implications for conservation and land management; forest patch size per se influences the 

distribution of many species, particularly interior and edge specialists. 

Fahrig (2017) recently noted that the vast majority (76%) of significant fragmentation 

effects found in the literature are positive.  That is, the distributions of individual species are far 

more likely to increase, rather than decrease, with fragmentation.  We found a similar pattern, yet 

our results notably contrast with one of Fahrig’s (2017) main conclusions that “there is no 

justification for assigning lower conservation value to a small patch than to an equivalent area 

within a large patch…”  We fit a linear model to compare conservation concern scores (NABCI 

2016) among our ecological trait groups; we found that occupancy probability was not only 

higher for interior species in large forest patches, but members of this group also tend to be of 

significantly greater conservation concern than forest edge (t = 2.92, p = 0.005) or generalist (t = 
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2.81, p = 0.007) species (Fig. 3.5).  Indeed, the ratio of interior to edge specialists in our study 

region may help explain the overwhelming majority of positive fragmentation effects; if species 

that prefer edge habitat are simply more common, one would expect to find positive effects of 

reduced patch size more often. 

There are numerous potential mechanisms that could explain the sensitivity of interior 

specialists to forest patch size.  Villard (1998) cautions against confusing interior preference with 

area sensitivity, and these potential drivers are notably confounded in our habitat classifications, 

which we based on previously observed patterns.  Studies that document active edge avoidance 

are rare (Villard 1998), and apparent sensitivity to patch size could be driven by edge-interior 

vegetation or microclimatic gradients, or by densities of predators, prey, or nest parasites 

(reviewed by Stratford & Robinson 2005).  Although we did not attempt to isolate the 

mechanism driving patch sensitivity, our results clearly demonstrate that larger forest patches do, 

in fact, have greater conservation value for many species.  

 Finally, our results demonstrate the benefit of a hierarchical approach to modeling 

community structure, rather than focusing exclusively on richness.  In our study, species which 

tended to be negatively associated with patch size (edge specialists) also tended to have lower 

probabilities of detection than those positively associated with patch size (interior specialists, 

Fig. 3.4).  In other words, when patch sizes were large, we were likely detecting a greater 

proportion of the species in the community during a survey than when patch size was small.  

Failing to account for this could have resulted a biased relationship between patch size and 

species richness, resulting in a more positive association.  This implies that variability in 

detection rates may not explain the general lack of empirical support for fragmentation effects 

(Fahrig 2013, 2017).  Regardless, modeling occupancy probabilities for each species individually 
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allowed us to not only identify shifts in community composition, but also to account for the 

potential confounding effects of imperfect detection. 

Those who argue for abandoning the patch-island paradigm in fragmentation research do 

so on the grounds that patch boundaries and matrix characteristics do not conform with existing 

theory.  That is, larger patches do not tend to have higher species richness as predicted by IBT 

(e.g., Fahrig 2013, Mendenhall et al. 2014), boundaries between patches and matrix are blurry 

and do not delineate demographically distinct units as required in a metapopulation framework 

(Baguette 2004, Manning et al. 2004, Fahrig 2013), and the amount of habitat is vastly more 

important than the size of any given patch (Andren 1994, Trzcinski et al. 1999, McGarigal & 

Cushman 2002, Fahrig 2003, 2013, 2017).  Yet some species require large forest patches in order 

to have any habitat available to them at all.  A conservation strategy focused on maintaining 

large forest patches will not necessarily be beneficial for all or even most species (Fahrig in).  

Yet given that core forest area has become extremely scarce worldwide (Haddad et al. 2015), and 

that many species of conservation concern depend upon it, protecting large forest patches may 

provide additional benefit above and beyond the conservation of habitat amount. 
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Figure 3.1. A map of the study region in which we conducted breeding bird point counts 

between 2011 and 2013.  Gray areas represent forest cover (National Land Cover Database; Fry 

et al. 2011), and the darker gray areas highlight the 202 unique forest patches sampled.  We 

designed our study to minimize correlation between patch size and the amount of forest within 2 

km at the point level.  Thus, we sampled A) large patches with low forest amount, B) large 

patches with high forest amount, C) small patches with low forest amount, and D) small patches 

with high forest amount.  Larger patches (A and B) contained more point count stations to ensure 

we sampled the gradient in edge distance.  
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Figure 3.2. Posterior means and 95% credible intervals for the effects of a) edge distance, b) 

amount of forest within 2 km, and c) log-transformed patch size on probability of occupancy for 

breeding forest bird communities.  Species were divided into three ecological trait groups 

(interior specialist, forest generalist, or edge specialist), and the mean effect of the covariate on 

members of each group was estimated along with individual effects.  Within each trait group, 

species are listed from most common (top) to least common, or equivalently, from most 

influential on the group mean estimate, to least.  Note that all covariates were standardized with a 

mean of 0 and standard deviation of 1 prior to model fitting. 
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Figure 3.3. Predicted richness (± 95% credible intervals) of breeding forest birds occupying a 50 

m radius forest plot varies as a function of forest patch size (left) local forest cover (right), and 

ecological trait group.  Predicted richness values were calculated from each of 6,000 draws from 

the posterior distributions of a community occupancy model, and represent the sum of the 

predicted occupancy probabilities of species when all other local and landscape variables are 

held constant at their means. 
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Figure 3.4. The inverse logit (and 95% credible interval) of the average detection probability 

intercept for species classified as edge specialists (n = 21), forest generalists (n = 23), and 

interior specialists (n = 8).  The values plotted are the means of the posterior distributions from a 

community occupancy model in which detection intercepts represent the probability of detecting 

the species at a site with average tree basal area, sampled on the mean Julian date. 
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Figure 3.5. The distribution of conservation concern scores for 52 species classified as edge 

specialists, forest generalists, or interior specialists (NABCI 2016).  Results from a linear model 

indicated that interior specialists, which tend to be positively associated with forest patch size, 

are also of greater conservation concern than forest edge (t = 2.92, p = 0.005) or generalist (t = 

2.81, p = 0.007) species. 

  



52 
 

 

FOREST GAPS REDUCE LANDSCAPE CONNECTIVITY FOR FRAGMENTATION-

SENSITIVE BIRDS IN MULTIPLE BEHAVIORAL STATES 

 

INTRODUCTION 

Habitat loss and fragmentation pose major threats to biodiversity worldwide (Rands et al. 

2010, Haddad et al. 2015).  Such alterations can reduce the functional connectivity of a 

landscape (i.e., the propensity for movement; Taylor et al. 1993) by decreasing the size of 

remnant patches and increasing the distance between them (Fahrig 2003), or by altering the 

quality and utility of the intervening matrix (Ricketts 2001, Kennedy & Marra 2010).  

Metapopulation theory predicts that maintaining functional connectivity is critical for ensuring 

species persistence in fragmented systems (Hanski 1998, Hanski & Ovaskainen 2002).  Thus, 

understanding how animal movements are influenced by landscape structure is one of the most 

important challenges facing ecologists (Taylor et al. 1993, Bélisle 2005). 

 Unfortunately, progress in this field has been hampered due to disagreements over how to 

define and measure functional connectivity (Bélisle 2005), and the complexities of analyzing 

spatial movement data (Kadoya 2009).  Further, comparative studies are complicated by 

heterogeneity at the level of both the species and the individual.  Species can vary in terms of 

perceptual ranges (Lima & Zollner 1996), inclination to explore (e.g., Greenberg 1983, Mettke-

Hoffman & Gwinner 2004), or the way they perceive landscapes (Betts et al. 2015); all of these 

factors can influence the propensity for movement.  At the individual level, idiosyncrasies in past 

experiences, as well as localized predator densities, food availability, and habitat quality can alter 

the motivation or willingness to move (Bélisle 2005, Betts et al. 2015).  This implies that just 

because an individual chooses not to move between two patches, does not mean it is incapable of 

doing so.  As such, observational studies are likely to be inadequate for quantifying functional 



53 
 

 

connectivity, and there is a need to utilize experimental procedures to properly evaluate if an 

individual can move among habitat patches (Bélisle 2005, Betts et al. 2015). 

In recent years, researchers have used translocation experiments to help standardize some 

of these variables among experimental trials (Bélisle 2005).  By translocating territorial 

individuals across landscapes, the researcher can provide motivation to move towards a specific 

destination (i.e., their home territory).  This minimizes the influence of individual experiences on 

the propensity to move in different landscapes, and allows for comparison of the movements of 

different species in the same landscape (Betts et al. 2015).  This technique has proved useful for 

evaluating connectivity for a wide variety of taxonomic groups (see Betts et al. 2015). 

Importantly, these studies rely on an assumption that behaviors and choices exhibited by 

translocated individuals reflect those made by conspecifics under natural conditions (Volpe et al. 

2014, Betts et al. 2015).  Volpe et al. (2014) demonstrated that translocated hummingbirds made 

similar habitat choices to individuals moving within their territories.  However, numerous other 

studies have shown that exposure to novel environments can substantially alter movement 

behavior.  For instance, longer movements and altered trajectories have been documented in 

spatially relocated insects (Heidinger et al. 2009, Watts et al. 2012), mammals (Jacquot & 

Solomon 1997), reptiles (Reinert & Rupert 1999, Rittenhouse et al. 2007) and birds (Kesler et al. 

2012, Kemink & Kesler 2013).  Further, several studies have documented behavioral shifts in 

movement patterns of translocated individuals; this indicates that the translocation itself may 

induce induces atypical behaviors (Heidinger et al. 2009).  Translocated animals often transition 

from exploratory movements immediately post-release to either directional homing, or patterns 

resembling those of residents (Reinert & Rupert 1999, Tsoar et al. 2011, Kesler et al. 2012, 
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Watts et al. 2012).  Thus, experimental translocations may provide the opportunity to investigate 

limitations to functional connectivity under multiple behavioral states.   

Habitat loss and fragmentation have been implicated as a major cause of population 

decline for many North American bird species (Andrén 1994, Robinson et al. 1995, Donovan & 

Flather 2002).  Because both migrants and residents exhibit some propensity for homing (e.g., 

Keiser et al. 2005, Kennedy & Marra 2010) there has been a rise in use of translocation 

experiments to examine the role of functional connectivity in these declines.  Results from these 

studies highlight the importance of maintaining land cover (Bélisle et al. 2001, Gobeil & Villard 

2002, Castellón & Sieving 2006, Hadley & Betts 2009), corridors and stepping stones (Castellón 

& Sieving 2006, Gillies et al. 2011, Vergara et al. 2013), and permeable matrix (Gobeil & 

Villard 2002, Kennedy & Marra 2010) for improving connectivity.  However, many of these 

studies relate landscape features to measures of homing success or homing time (e.g., Bélisle et 

al. 2001, Gobeil & Villard 2002, Kennedy & Marra 2010), limiting inference that can be drawn 

about particular movement barriers.  Though technological (Bridge et al. 2011) and statistical 

(Jonsen et al. 2005, Fortin et al. 2011) advancements have improved our ability to evaluate fine-

scale movement decisions (e.g., Hadley & Betts 2009, Castellón & Sieving 2006, Gillies et al. 

2011, Vergara et al. 2013, Volpe et al. 2014), variation in behavior exhibited by translocated 

birds has largely been ignored. 

In this study, we use experimental translocations to evaluate the effects of forest 

fragmentation on multi-scaled movement patterns of Ovenbirds (Seiurus aurocapilla) and Wood 

Thrush (Hylocichla mustelina) in southern Indiana.  Previously collected data in our study region 

indicated that the distributions of both species are limited by decreasing patch size and forest 

cover (Chapter 3), and our study seeks to test the hypothesis that these patterns could be 
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explained by movement limitation.  If true, we would expect that movements should be more 

constrained as fragmentation increases, leading to longer, more tortuous homing paths, with 

individuals showing reluctance to cross forest gaps.  We additionally test the hypothesis that our 

focal species exhibit multiple behavioral modes in their movement patterns, and evaluate 

whether the effects of fragmentation on movement differ between these modes.  These results 

will be valuable for helping land managers to understand if, when, and how promoting functional 

connectivity may be beneficial to fragmentation-sensitive species. 

 

MATERIALS AND METHODS 

Study Species and Sites 

 During the breeding seasons of 2011-2013 we conducted avian point counts in 202 forest 

patches across southern Indiana to evaluate the effects of forest loss and fragmentation on 

breeding bird distributions (Chapter 3).  Results indicated that forest interior specialists tended to 

be particularly sensitive to these landscape variables, and thus we chose two of these species to 

evaluate how landscape structure limits connectivity.  Ovenbird distributions were heavily 

limited by forest cover, and showed greater sensitivity to patch size than any of the other 51 

species examined.  Wood Thrush were similarly influenced by patch size, but showed no 

response to decreasing forest cover.  Thus, a comparison of these two species also provided the 

opportunity to qualitatively relate distribution patterns to movement processes. 

 We chose two properties in southern Indiana, USA for our experimental translocations 

(Fig. 4.1).  Naval Surface Warfare Center Crane (hereafter Crane) is owned by the Department of 

Defense, and provides operational support and weapons storage for the U.S. military.  Crane 

spans over 25,000 ha, and is dominated by large, contiguous tracts of forest.  Glendale Fish and 
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Wildlife Area (hereafter Glendale) is owned by the Indiana Department of Natural Resources, 

and focuses on providing hunting and fishing opportunities.  Glendale spans just over 3,000 ha, 

which are dominated by small forest fragments interspersed with active and fallow agricultural 

fields.  Annual rainfall averages 119 cm (Indiana State Climate Office 2002) in the region, and 

temperatures average between 6° C in winter to 18° C in summer (National Climatic Data Center 

2011).  Dominant trees in these temperate hardwood forests include tulip poplar (Liriodendron 

tulipifera), white ash (Fraxinus americana), American beech (Fagus grandifolia), black walnut 

(Juglans nigra), and various species of oak (Quercus spp.), hickory (Carya spp.), and maple 

(Acer spp.). 

 We chose specific landscapes for our translocation experiments that spanned the range of 

forest cover and fragmentation represented in the region.  We overlaid a grid with a grain of 2 

km2 on each property and eliminated all cells that were inaccessible due to private property 

rights or safety concerns.  Within the remaining cells, we quantified the number of unique forest 

patches and the proportion of forest cover.  We then used a stratified random design to select 17 

landscapes that spanned the combination of the two gradients.  Forest cover in the selected 

landscapes ranged from 39% to 93% (mean = 66%) and the number of patches ranged from 2 to 

55 (mean = 21.47). 

 

Translocations and Tracking 

 During the breeding seasons of 2015 and 2016 we conducted initial surveys of each 

landscape to locate breeding, territorial male Wood Thrush and Ovenbirds.  When we located 

individuals, we conducted behavioral observations to confirm breeding behavior.  Individuals 

were only considered for a translocation experiment if we found evidence of breeding; thus 
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translocated birds had motivation to return home. Evidence of breeding constituted either the 

presence of a nest, or that individuals were found singing on the same territory for three 

consecutive days.  We were concerned that birds living in highly fragmented systems may have 

lower initial fitness than those in more contiguous areas, inhibiting us from separating the effects 

of initial fitness from landscape structure on movement patterns (Bélisle 2005, Betts et al. 2015).  

To limit this confounding, we attempted to translocate two birds (from the same patch, where 

possible) of the same species in each landscape; one individual was challenged by having to 

cross multiple large gaps to return home (fragmentation treatment), while the other had 

predominantly contiguous forest between the release site and its home territory (control 

treatment; Fig. 4.1).  In cases where we were unable to identify two conspecifics in the same 

landscape, we assigned the single individual to the fragmentation treatment to maximize the 

information we could gather on gap crossing behavior. 

 Once breeding was confirmed, we chose release sites to (1) ensure one fragmentation 

treatment and one control treatment per species in the landscape (where possible), (2) maintain 

standard translocation distances of 1-1.2 km, (3) assure likely homing routes avoided 

inaccessible private or military lands, and (4) minimize travel time between capture and release 

sites, limiting the stress on translocated birds.  Target birds were captured using mist nets and 

conspecific playback.  Once captured, we measured the bird’s mass and tarsus length to assess 

body condition, and affixed a USGS aluminum bands and unique set of color bands to the legs.  

We then attached a 0.7 g Pip Ag376 VHF transmitter (Biotrack Ltd., Wareham, UK) using a leg 

loop harness (Rappole & Tipton 1991), and translocated the bird to its pre-determined release 

site.  Mean time between capture and release was 59.85 minutes. 



58 
 

 

 After release, trained technicians tracked movements of translocated birds continuously 

using handheld TRX-1000S telemetry receivers (Wildlife Materials, Inc., Murphysboro, IL) for 

four days, or until the bird returned home (i.e., when it was recorded within 100 m of its capture 

location).  Birds that did not return home within four days were located daily, and deemed a 

homing failure if they did not return by the tenth day.  Logistical constraints prevented us from 

tracking birds between sundown and sunrise, and during 2015, between approximately 1200 h 

and 1600 h.  Technicians were instructed to stay within 50 m of the bird at all times and record 

GPS and directional compass bearings every 20 minutes, or more frequently when birds were 

moving quickly.  In some instances, technicians were unable to stay within 50 m, and instead 

recorded an estimated distance to the bird based on telemetry receiver strength calibrated through 

field tests.  GPS points were discarded if the distance estimate was >100 m due to accuracy 

concerns.  In all, we translocated 36 Wood Thrush and 19 Ovenbirds, though one Wood Thrush 

dropped its transmitter soon after release and was excluded from all analyses. 

 

Behavioral Change Point Analysis 

 Based on previous literature (e.g., Kesler et al. 2012), we expected that movements for 

translocated birds might occur in two phases, the first comprised of exploratory foraging and 

orientation movements, and the second comprised of directed homing movements once the 

individual had recovered from translocation stress and become reoriented (Kemink & Kesler 

2013).  To test for and separate these two potential phases, we conducted a behavioral change 

point analysis (BCPA) on the temporal series of persistence velocities for each individual 

(Gurarie et al. 2009).  Persistence velocity (Vp), is a measure of the tendency and magnitude of 

movements to persist in the same direction (Gurarie et al. 2009), and thus should be useful for 
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separating these two phases.  We defined a step for each bird as the incremental movement made 

between two subsequently recorded GPS points, and characterized it by time t, representing the 

time at which the step endpoint was recorded.  We calculated persistence velocity for each step 

as 

𝑉𝑝𝑡 = 𝑉𝑡 ∗ cos (𝜃𝑡) 

where Vt represents the speed of the movement, and θt represents the angular change in 

trajectory from the previous step.  For each bird, which took a total of T steps, we iteratively split 

the time series at every Vpt, and fit the following autocorrelated time series model to each half of 

the data: 

𝑉𝑝𝑖,𝑗 = µ𝑖 + 𝜌
𝑖

𝜏𝑖,𝑗(𝑉𝑝𝑖,𝑗−1 − µ𝑖) + 𝜀𝑖,𝑗 

𝜀𝑖,𝑗~𝑁 (0, 𝜎𝑖
2 (1 − 𝜌

𝑖

2𝜏𝑖,𝑗)) 

Here, µ represents the mean persistence velocity, and ρ represents the autocorrelation between 

two observations, which decreases exponentially as a function of the time interval between them 

(τ).  The subscript i = 1,2 represents the behavioral mode, and j = 1, 2, …, t when i = 1, and j = 

t+1, t+2, …, T when i = 2. 

 For each iteration, we recorded the likelihood of the model, and chose the value of t 

where the likelihood was maximized as the most likely behavioral change point (Gurarie et al. 

2009).  While BCPA can be used to identify multiple behavioral shifts (e.g., Gurarie et al. 2016), 

we chose to split the data for each individual into only two periods (i.e., one change point) to 

objectively identify the most likely point at which individuals switched from exploring to 

homing.  Once we had identified the most likely BCP, we fit a null model to the data that 

assumed all parameters (µ, ρ, and σ) were identical on both sides of the BCP, along with seven 
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additional models that allowed one, two, or three of the parameters to vary.  We compared 

among these models using AICc, and concluded there was no evidence for a behavioral change if 

the null model had the most support. 

 We then pooled steps taken by all individuals to test for differences in step length, step 

speed, turning angle, and deviation angle between the exploratory and homing phases.  We 

measured deviation angle as the angular difference between the step trajectory and a direct line 

path towards the capture location.  We compared log-transformed step length and step speed 

using linear mixed effects models that included a random intercept for ‘individual’.  Because 

angular data have circular distributions, we compared the distribution of turning and deviation 

angles between behavioral modes using a Kolmogorov-Smirnov test.  All analyses were 

conducted in R (v. 3.3.3), and mixed effects models were fit using the lme function in the nlme 

package (Pinheiro et al. 2017). 

 

Landscape Effects on Movement 

 We analyzed the effects of fragmentation on movement at two spatial scales representing 

movement paths and step-level decisions.  We defined the bird’s path as the entirety of the route 

taken from the time it was released until it returned home.  In all path- and step-level analyses, 

we chose to use only data from the individuals that successfully homed for three reasons.  First, 

identifying BCPs to distinguish between exploratory and homing movements did not make sense 

for birds that did not home.  Second, we could not be certain that individuals that failed to home 

were motivated to so.  Lastly, some unsuccessful individuals were predated or dropped their 

transmitters, and the precise timing of those events was unclear. 
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Path-Level Analyses 

 At the path level, we identified the local landscape to which each individual was exposed 

by drawing an ellipse using the capture and release locations as foci.  The minor axis was 500 m 

wide, and the major axis was 1.4 times the distance between the capture and release sites (Fig. 

4.1).  Local landscapes encompassed, on average, 90.4% of all points recorded on an individual.  

We used ArcMap v. 10.2.2 (ESRI, Redlands, CA) to digitize all forest in the region by 

referencing aerial images from the National Agriculture Imagery Program (USDA 2014).  

Within each ellipse, we quantified landscape composition as the proportion covered by digitized 

forest (PROP.FOR), and fragmentation by the number of unique forest patches (PATCHES).  

PROP.FOR ranged from 0.52 to 0.96, with a mean value of 0.78.  PATCHES ranged from 1 to 

25 with a mean of 8.82.  The Pearson’s correlation between PROP.FOR and PATCHES was -

0.66. Because other studies have found that translocated birds tend to follow riparian corridors 

(Gillies & St. Clair 2008, Volpe et al. 2014), we also quantified the total length of rivers and 

streams within each ellipse using the USGS National Hydrography Dataset. 

 We evaluated the effects of fragmentation on bird homing time and path straightness for 

the entire homing process, and in each of the behavioral phases separately.  We chose not to 

model homing success because most translocated individuals returned successfully, and thus 

there was little variability to explore.  We calculated straightness by dividing the length of the 

straight-line path between the start and end points by the total distance traveled.   Start and end 

points for total path straightness were the release and capture sites, respectively.  The end point 

for the exploring phase, and starting point for the homing phase was the spatial location where 

the BCPA indicated the bird’s behavior changed. 
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 For each response variable, we used a two-stage model building approach.  We began 

with a null model (homing time responses) or one that included the number of steps recorded 

(straightness responses).  In the first stage, we tested for effects of covariates unrelated to 

fragmentation, but that have potential to influence homing (Bélisle 2005, Betts et al. 2015): body 

condition (CONDITION), the ratio of body size to tarsus length; total time from capture to 

release (CAPTIVITY); and total river/stream length in the local landscape (RIPARIAN).  We 

compared the null model to models containing these covariates individually.  Due to our small 

sample sizes, we wanted to minimize the number of explanatory variables, and thus we created a 

baseline model for stage two comprised of variables that improved the null model by greater than 

two AICc units (Burnham & Anderson 2002).  In stage two, we compared the baseline model 

with four additional models containing linear predictors for 1) PATCHES, 2) PROP.FOR, 3) 

additive effects of PATCHES and PROP.FOR, and 4) additive effects of PATCHES and 

PROP.FOR plus their interaction. 

 

Step-Level Analyses 

 At the step level, we used step selection functions to model movement decisions 

conditional on the bird’s location at each moment in time (Fortin et al. 2005).  Following 

precedence (Gillies et al. 2011, Volpe et al. 2014), we eliminated all steps where start and end 

points were recorded over 20 minutes apart, or that were less than 25 m in length.  This helped 

ensure that steps represented relatively straight line movements, and were not dominated by 

telemetry error, respectively.  This left us with 372 exploring and 382 homing steps for Wood 

Thrush, and 286 exploring and 260 homing steps for Ovenbirds.  For each used step, we 

generated 20 unused steps by randomly drawing independent turning angles and step lengths.  
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The distributions from which we drew these values differed between behavioral modes, and were 

constructed uniquely for individuals based on the mean distribution of all other individuals.  We 

ensured that all unused steps were realistic by mandating endpoints landed in forest. 

 We then used mixed conditional logistic regression (Duchesne et al. 2010) to model 

factors influencing the probability of taking a step given the options available.  Because we had 

multiple steps for each bird, the effects of all explanatory variables were modeled with random, 

individual-specific regression coefficients.  We assumed that the distance from a step endpoint to 

the capture site (CAPDIST) would have substantial influence on movement decisions.  Thus, we 

began with a null model that only included CAPDIST and an interaction between CAPDIST and 

behavioral mode (BEHAV).  Once again, we used a two-stage model-building process.  In the 

first stage, we compared the null model to models that included distance from the step endpoint 

to the nearest river or stream (RIPDIST) with and without an interaction between RIPDIST and 

BEHAV.  We compared among these initial three models for each species using AICc, and chose 

the top model as the baseline for stage two. 

In stage two, we identified three variables to characterize steps in terms of exposure to 

non-forested habitat.  These included the number of forest gaps in the step (GAPS), the 

proportion of the step contained in forest (FOR%), and the total distance of forest gaps in the 

step (GAPDIST).  We also quantified the forested proportion of a 50 m radius circle around the 

step start points (FOR50) to evaluate whether landscape context influences movement decisions.  

We chose 50 m to reasonably approximate the birds’ perceptual range, as the median length of 

used steps was 45.84 m.  We constructed five competing models (Table 4.1) for each exposure 

variable and compared them using AICc.  Because all exposure variables were highly correlated 

(Pearson’s correlation: |r| > 0.7), we chose not to include them in any models simultaneously. 
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RESULTS 

 Of the 35 Wood Thrush we translocated, 32 (91%) returned home.  Of those that did not, 

all made some attempt to home.  One refused to cross a road gap of approximately 500 m, while 

the other two returned within several hundred meters of their capture sites.  Of the 19 

translocated Ovenbirds, 15 (79%) returned home.  Two of those that did not home were predated 

at approximately 70 hours post-release.  One refused to cross the same 500 m road gap as the 

Wood Thrush, and one made no substantial directional movements toward home in 10 days.  

Among all birds that returned, homing times ranged between 3.1 and 72.2 hours, and Wood 

Thrush tended to return more rapidly than Ovenbirds (Fig. 4.2). 

  

Behavioral Change Point Analysis 

 The BCPA identified two distinct movement phases for 45 of the 47 birds that homed 

successfully (see Table A8 and Figs. A3, A4 in Supplementary material).  Both Wood Thrush 

that did not exhibit dichotomous behavior appeared to start homing immediately after release, 

skipping the exploring phase (Fig. A3).  However, rather than assume all movements for these 

birds represented homing, we chose to exclude their data from all analyses that required 

behavioral classification. 

 The proportion of the time spent in the exploring phase ranged from 0.23 to 0.89, and 

averaged 0.46 and 0.47 for Wood Thrush and Ovenbirds, respectively.  Movement steps during 

the exploring phase were significantly shorter and slower than during homing for both species 

(Table 4.2).  In addition, the distribution of turning (Wood Thrush, D = 0.11, p < 0.01; Ovenbird, 

D = 0.09, p = 0.01) and deviance (Wood Thrush, D = 0.08, p < 0.01; Ovenbird, D = 0.09, p = 

0.01) angles significantly differed between phases.  Exploratory movements had more random 
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orientations, and consisted of a large amount of course reversal.  Homing movements tended to 

be straighter and oriented towards the bird’s capture location (Fig. 4.3). 

 

Path-Level Analyses 

 Neither number of patches, nor forest cover improved the baseline model for any 

response variable of either species (Table 4.3; see Tables A9 and A10 for parameter estimates).  

Thus, there was little evidence for an effect of landscape composition or configuration on 

homing time or path straightness in any behavioral mode.  The baseline model for Wood Thrush 

homing time did include body condition (Table A9), though counterintuitively, its effect was 

positive.  That is, birds in better condition took longer to home once they entered the homing 

phase.  The baseline models for Ovenbird total return time and path straightness during homing 

included captivity time.  Parameter estimates indicated that longer captivity times led to 

increased return times and more tortuous routes (Table A9).  For all other response variables, the 

null model was selected. 

 

Step-Level Analyses 

  At the step level, distance from the step endpoint to the nearest stream was was included 

in all exposure models for Ovenbirds, but not for Wood Thrush (see Table A11 for full step level 

modeling results).  On average, individual Ovenbirds did not prefer steps near streams (Z = -

0.93, p = 0.352), but the variability among individuals was significant (Z = 3.11, p = 0.002), 

indicating birds differed greatly in their fidelity to riparian zones.  We found strong evidence that 

both species were deterred from choosing steps that increased exposure to non-forested habitat.  

The effects of GAPS and GAPDIST were both negative, while the effects of FOR% were 
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positive in every model in which they were included (Table A11).  Further, the baseline model 

had the least support when compared to the 15 exposure models for both species (Table 4.4).  

However, we found little evidence that the effects of exposure on step selection differed between 

behavioral modes, or with landscape context.  In nearly every case, the model assuming a 

constant effect of each exposure variable had greater support than model allowing the effect of 

the variable to change with behavior or context (Table 4.4). 

Of the three exposure variables, GAPS appeared to have the greatest influence on step 

selection.   The relative influence (i.e., summed AICc weights of models including the covariate) 

of GAPS on step selection was 0.72 for Wood Thrush and 0.94 for Ovenbirds; the relative 

influence of the other two exposure variables was ≤ 0.2 for both species.  The top model for both 

species included only GAPS, in addition to the baseline covariates (see Table 4.5 for parameter 

estimates).  

 

DISCUSSION 

Uncovering the mechanisms driving fragmentation sensitivity is the first step in 

developing conservation and management schemes (Lindenmayer et al. 2008, Hadley & Betts 

2016).  Previous research has demonstrated that the distribution patterns of both Wood Thrush 

and Ovenbirds are both limited by forest loss and fragmentation (Chapter 2).  Here, we found 

strong gap-crossing reluctance in both species, and this effect was stronger in the more 

fragmentation-sensitive Ovenbird.  These results suggest potential mechanisms driving or 

exacerbating fragmentation sensitivity.  These species may be purposefully choosing habitat 

surrounded by contiguous forest so that they can more easily (1) upgrade their territories through 

breeding dispersal, or (2) increase their fitness through access to mates or extra-pair copulations 
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(Banks et al. 2007).  Alternatively, fragmentation may disrupt metapopulation dynamics by 

rendering small, isolated fragments inaccessible.  Theory predicts that small patches should have 

higher extinction rates (MacArthur & Wilson 1967, Hanski 1998), and forest gaps could prevent 

dispersers from recolonizing unused patches or rescuing dwindling populations (Brown & 

Kodrick-Brown 1977).  Of course, other explanations of the observed distribution patterns exist.  

For instance, these species may avoid fragmented landscapes due to altered biophysical 

properties in the remnant forest (e.g., Ries et al. 2004).  Thus, while our results are consistent 

with the hypothesis that movement limitation may drive fragmentation sensitivity, we cannot 

exclude other alternatives. 

Interestingly, the negative effects of gaps on fine-scale movement decisions did not scale 

up to the path level, as we saw no effects of forest cover or fragmentation on homing time and 

path straightness.  We also saw no evidence that gap-crossing probability differed as a function 

of landscape context (i.e., forest within 50 m).  We posit that these results reflect the high 

motivation to home  induced by our experimental translocations, as homing failure would result 

in loss of a partner, territory, and potentially offspring.  For many individuals, avoiding gaps was 

not an option in order to home successfully.  In fact, we often observed that when birds 

encountered a forest gap, they would move along its edge for several steps before eventually 

crossing out of necessity.  It is possible then, that the birds in our sample may have preferred 

routes that avoid gaps (e.g., Hadley & Betts 2009), but that given limited options for such 

avoidance, the most direct line home was the best choice. 

Our results thus highlight several important questions regarding the nature of observed 

movement patterns, and their relationship to natural behavior.  First, it is unclear how motivation 

interacts with inclination to cross barriers.  Numerous studies have demonstrated that forest 
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specialist birds tend to be reluctant, though willing, to cross gaps when motivated (e.g., Castellón 

& Sieving 2006, Gillies & St. Clair 2010, Gillies et al. 2011, Ibarra-Macias et al. 2011).  

However, the hesitation we observed at forest boundaries could translate into complete refusal to 

cross those gaps in the absence of strong motivation.  If true, then the results of studies such as 

ours would have the tendency to overestimate landscape functional connectivity. 

Volpe et al. (2014) showed similarities between movement decisions of translocated and 

non-translocated hummingbirds.  However, the relationship between movement behaviors of 

translocated versus dispersing animals remains untested.  Gap crossing may in fact be common 

for forest-dependent birds moving in familiar habitats if it increases access to resources or extra-

pair copulations (Norris & Stutchbury 2001, Fraser & Stutchbury 2004, MacIntosh et al. 2011).  

Yet birds moving in novel environments may be more reluctant to expose themselves to adverse 

conditions (Gillies et al. 2011).  There is thus a critical need to compare results from 

translocation experiments to movement behaviors of dispersing animals to evaluate their utility 

for understanding metapopulation processes. 

Translating information from translocation studies into useful management strategies 

requires an understanding of how well the data represent true biological processes (Betts et al. 

2015).  Our results demonstrate a clear dichotomy in the movement behaviors of translocated 

birds, suggesting that such data may capture information about multiple processes 

simultaneously.  Though we found no difference in the effects of fragmentation on movement 

patterns between these behavioral modes, this may not always be the case.  If animals are more 

willing to move in certain contexts (e.g., Gillies et al. 2011) it may not be prudent to assume 

uniformity in the way landscape connectivity is perceived among behavioral modes (e.g., Hadley 

& Betts 2009, Castellón & Sieving 2006, Gillies et al. 2011, Vergara et al. 2013, Volpe et al. 
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2014).  Further examination of what processes these behavioral modes represent will be critical 

to understanding how functional connectivity differs among times of year and life stages. 

Immediately after release, translocated birds exhibited exploratory behavior, 

characterized by short, undirected movements and frequent returns to their release sites (Table 

4.2, Fig. 4.3).  Similar behaviors have been demonstrated by other species translocated to novel 

environments (e.g., Reinert & Rupert 1999, Tsoar et al. 2011, Kesler et al. 2012).  In their study 

of Tuamotu Kingfishers (Todiramphus gambieri gertrudae), Kesler et al. (2012) noted that these 

movement patterns resembled those made by post-natal dispersing juveniles.  Vega Rivera et al. 

(1998) also noted a high frequency of exploratory forays by juvenile Wood Thrush, described as 

a > 300 m movement from a dispersal site followed by a return.  This pattern was not noted, 

however, until after birds had arrived at a dispersal site, as much as 5 km from their natal 

territories.  Thus, the relationship between the exploratory movements we observed and juvenile 

dispersal patterns is speculative and requires further testing. 

Eventually, most birds in our study exhibited homing behavior, in which they appeared to 

recognize where they were, and take larger, faster steps oriented towards home (Table 4.2, Fig. 

4.3).  These behaviors may thus more closely reflect movement decisions made by adults moving 

or dispersing in familiar areas (Gillies et al. 2011).  Yet while we found both species exhibited 

reluctance to cross gaps, adults often do not.  For instance, MacIntosh et al. (2011) found that 

territorial Wood Thrush regularly crossed forest gaps, and Bayne & Hobson (2001) found no 

effect of fragmentation on dispersal of adult Ovenbirds.  However, these studies did not compare 

fine-scale movement decisions in the context of available options.  It is possible that these adult 

birds also prefer to avoid gaps in their natural movements when given the choice, but this too 

requires further study. 
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Because the translocation procedure influences movement behavior, and studies linking 

translocation and natural movements are lacking, it is unclear how well these results translate to 

conservation planning.  Future studies should compare natural and translocation movements 

across species that span a gradient in fragmentation sensitivity to truly test whether 

metapopulation processes drive these patterns.  Nevertheless, we have demonstrated a clear link 

between fragmentation sensitivity and gap crossing behavior in two territorial birds.  Preliminary 

evidence thus suggests that maintaining contiguous habitat, or corridors between habitat patches 

(Castellón & Sieving 2006, Gillies et al. 2011, Vergara et al. 2013) can improve the functional 

connectivity of fragmented landscapes for sensitive species. 
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Table 4.1. Competing models developed to evaluate the effects of exposure to non-forested 

habitat on step selection decisions by translocated Wood Thrush and Ovenbirds.  We developed 

these five models and compared them for each of three exposure variables separately: total 

number of forest gaps in the step; proportion of the step contained in forest, and total distance of 

forest gaps in the step.  FOR50 is the forested proportion of a 50 m radius circle around the step 

start point, and BEHAV represents behavioral mode (exploring versus homing). 

 

Model Hypothesis 

  

Exposure Exposure influences step decisions 

  

Exposure + Exposure*BEHAV 

The effect of step exposure differs among behavioral 

modes 

  

Exposure + Exposure*FOR50 

The effect of step exposure changes with landscape 

context 

  

Exposure + Exposure*BEHAV + 

Exposure*FOR50 

The effect of step exposure differs among behavioral 

modes and changes with landscape context 

  

Exposure + Exposure*BEHAV + 

Exposure*FOR50 + Exposure*BEHAV*FOR50 

The effect of step exposure changes with landscape 

context, and that change differs among behavioral modes  
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Table 4.2.  Results from linear mixed effects models testing for differences in median step 

distance and speed between exploratory and homing phases for translocated Wood Thrush and 

Ovenbirds. 

 

Species Exploring (95% CI) Homing (95% CI) df t-value p-value 

       

Wood Thrush      

 Distance 20.20 (17.19, 23.73) 38.92 (32.98, 45.93) 1937 13.65 < 0.001 

 Speed 1.96 (1.60, 2.40) 5.05 (4.12, 6.21) 1937 16.36 < 0.001 

       

Ovenbird      

 Distance 20.54 (18.11, 23.30) 30.08 (26.40, 34.28) 1397 6.39 < 0.001 

 Speed 1.82 (1.41, 2.35) 3.37 (2.59, 4.37) 1397 7.89 < 0.001 
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Table 4.3.  A comparison of models that explore effects of forest loss and fragmentation on 

homing time and path straightness of translocated Wood Thrush and Ovenbirds.  In each model 

table, the baseline model was chosen in a previous step (Table A9) to determine whether effects 

of body condition (CONDITION) or captivity time (CAPTIVITY) should be included.  For each 

response variable, this baseline model had greater support than models that built on it with 

covariates for forest cover (PROP.FOR) and number of patches (PATCHES) in the local 

landscape.  All models of straightness included a covariate for number of recorded steps.  

Parameter estimates for these models can be found in Table A10. 

 
Species Response Model DF LogLik AICc Delta AICc Weight 
        
Wood Thrush       

 Total time      

  NULL 2 -36.37 77.15 0.00 0.45 

  PATCHES * PROP.FOR 5 -33.27 78.85 1.70 0.19 

  PATCHES 3 -36.26 79.38 2.23 0.15 

  PROP.FOR 3 -36.32 79.49 2.34 0.14 

  PATCHES + PROP.FOR 4 -35.82 81.12 3.97 0.06 

 Exploring time      

  NULL 2 -108.25 220.95 0.00 0.54 

  PATCHES 3 -108.10 223.12 2.17 0.18 

  PROP.FOR 3 -108.20 223.32 2.37 0.17 

  PATCHES + PROP.FOR 4 -107.57 224.74 3.79 0.08 

  PATCHES * PROP.FOR 5 -107.16 226.82 5.87 0.03 

 Homing time      

  CONDITION 3 -100.37 207.67 0.00 0.41 

  PROP.FOR 4 -99.57 208.74 1.07 0.24 

  PATCHES 4 -99.60 208.79 1.12 0.23 

  PATCHES + PROP.FOR 5 -99.45 211.40 3.73 0.06 

  PATCHES * PROP.FOR 6 -98.11 211.87 4.20 0.05 

 Total straightness      

  NULL 3 21.49 -36.11 0.00 0.46 

  PROP.FOR 4 22.12 -34.77 1.34 0.24 

  PATCHES 4 21.93 -34.37 1.74 0.19 

  PATCHES + PROP.FOR 5 22.14 -31.97 4.14 0.06 

  PATCHES * PROP.FOR 6 23.43 -31.51 4.60 0.05 

 Exploring straightness      

  NULL 3 20.75 -34.58 0.00 0.60 

  PATCHES 4 20.85 -32.10 2.48 0.17 

  PROP.FOR 4 20.80 -32.00 2.58 0.17 

  PATCHES + PROP.FOR 5 20.85 -29.20 5.38 0.04 

  PATCHES * PROP.FOR 6 21.36 -27.08 7.50 0.01 

 Homing straightness      

  NULL 3 13.82 -20.71 0.00 0.61 

  PROP.FOR 4 13.85 -18.09 2.62 0.17 

  PATCHES 4 13.82 -18.04 2.67 0.16 

  PATCHES + PROP.FOR 5 13.85 -15.20 5.51 0.04 

  PATCHES * PROP.FOR 6 14.66 -13.67 7.04 0.02 
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Table 4.3 (Continued) 

 
Species Response Model DF LogLik AICc Delta AICc Weight 
        
Ovenbird       

 Total time      

  CAPTIVITY 3 -10.99 30.17 0.00 0.58 

  PATCHES + PROP.FOR 5 -8.12 32.92 2.75 0.15 

  PROP.FOR 4 -10.48 32.95 2.78 0.15 

  PATCHES 4 -10.71 33.42 3.25 0.11 

  PATCHES * PROP.FOR 6 -7.83 38.17 8.00 0.01 

 Exploring time      

  NULL 2 -61.95 128.89 0.00 0.56 

  PATCHES 3 -61.23 130.63 1.74 0.23 

  PROP.FOR 3 -61.94 132.05 3.16 0.12 

  PATCHES + PROP.FOR 4 -60.66 133.33 4.44 0.06 

  PATCHES * PROP.FOR 5 -59.08 134.82 5.93 0.03 

 Homing time      

  NULL 2 -60.74 126.47 0.00 0.69 

  PATCHES 3 -60.72 129.62 3.15 0.14 

  PROP.FOR 3 -60.73 129.65 3.18 0.14 

  PATCHES + PROP.FOR 4 -60.67 133.35 6.88 0.02 

  PATCHES * PROP.FOR 5 -60.61 137.89 11.42 0.00 

 Total straightness      

  NULL 3 13.49 -18.80 0.00 0.76 

  PATCHES 4 13.51 -15.02 3.78 0.11 

  PROP.FOR 4 13.51 -15.01 3.79 0.11 

  PATCHES + PROP.FOR 5 13.51 -10.36 8.44 0.01 

  PATCHES * PROP.FOR 6 14.19 -5.88 12.92 0.00 

 Exploring straightness      

  NULL 3 8.89 -9.60 0.00 0.65 

  PROP.FOR 4 9.43 -6.87 2.73 0.17 

  PATCHES 4 9.41 -6.81 2.79 0.16 

  PATCHES + PROP.FOR 5 9.49 -2.32 7.28 0.02 

  PATCHES * PROP.FOR 6 9.82 2.86 12.46 0.00 

 Homing straightness      

  CAPTIVITY 4 8.46 -4.93 0.00 0.81 

  PATCHES 5 8.71 -0.76 4.17 0.10 

  PROP.FOR 5 8.51 -0.36 4.57 0.08 

  PATCHES + PROP.FOR 6 9.32 3.86 8.79 0.01 

  PATCHES * PROP.FOR 7 9.36 11.28 16.21 0.00 
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Table 4.4. Results from mixed conditional logistic regression models evaluating factors influencing movement decisions of 

translocated Wood Thrush and Ovenbirds.  We designed these models to test how step choice was influenced by number of gaps 

(GAPS), gap distance (GAPDIST), the proportion of the step in forest (FOR%), and whether these effects were mediated by 

landscape context (FOR50) and behavioral mode (BEHAV).  BEHAV was an indicator variable equal to one if the step occurred 

during the exploring phase. 

 

Species Model DF LogLik AICc 

Delta 

AICc Weight 
       
Wood Thrush      

 GAPS 7 -2235.47 4485.09 0.00 0.46 

 GAPS + GAPS*FOR50 9 -2234.58 4487.41 2.32 0.14 

 GAPDIST 7 -2236.71 4487.57 2.48 0.13 

 GAPS + GAPS*BEHAV 9 -2235.21 4488.67 3.58 0.08 

 FOR% + FOR%*FOR50 9 -2235.59 4489.43 4.33 0.05 

 GAPS + GAPS*BEHAV + GAPS*FOR50 11 -2233.96 4490.27 5.18 0.03 

 GAPDIST + GAPDIST*FOR50 9 -2236.11 4490.47 5.37 0.03 

 GAPDIST + GAPDIST*BEHAV 9 -2236.18 4490.59 5.50 0.03 

 FOR% 7 -2239.14 4492.43 7.34 0.01 

 FOR% + FOR%*BEHAV + FOR%*FOR50 11 -2235.47 4493.29 8.20 0.01 

 GAPDIST + GAPDIST*BEHAV + GAPDIST*FOR50 11 -2235.47 4493.29 8.20 0.01 

 GAPS + GAPS*BEHAV + GAPS*FOR50 + GAPS*BEHAV*FOR50 13 -2233.86 4494.22 9.13 0.00 

 GAPDIST + GAPDIST*BEHAV + GAPDIST*FOR50 + GAPDIST*BEHAV*FOR50 13 -2234.63 4495.74 10.65 0.00 

 FOR% + FOR%*BEHAV + FOR%*FOR50 + FOR%*BEHAV*FOR50 13 -2234.79 4496.06 10.97 0.00 

 FOR% + FOR%*BEHAV 9 -2238.97 4496.18 11.09 0.00 

 Baseline† 5 -2244.45 4498.97 13.88 0.00 
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Table 4.4 (Continued) 

 

Species Model DF LogLik AICc 

Delta 

AICc Weight 
       
Ovenbird       

 GAPS 9 -1594.41 3207.16 0.00 0.57 

 GAPS + GAPS*BEHAV 11 -1593.27 3209.04 1.87 0.22 

 GAPS + GAPS*FOR50 11 -1593.96 3210.41 3.25 0.11 

       

 FOR% 9 -1597.01 3212.35 5.19 0.04 

 GAPS + GAPS*BEHAV + GAPS*FOR50 13 -1593.35 3213.38 6.21 0.03 

 FOR% + FOR%*BEHAV 11 -1596.66 3215.82 8.65 0.01 

 FOR% + FOR%*FOR50 11 -1596.92 3216.34 9.18 0.01 

 GAPS + GAPS*BEHAV + GAPS*FOR50 + GAPS*BEHAV*FOR50 15 -1592.73 3216.37 9.21 0.01 

 GAPDIST 9 -1599.82 3217.98 10.82 0.00 

 FOR% + FOR%*BEHAV + FOR%*FOR50 13 -1596.59 3219.87 12.70 0.00 

 GAPDIST + GAPDIST*BEHAV 11 -1598.88 3220.25 13.08 0.00 

 GAPDIST + GAPDIST*FOR50 11 -1599.69 3221.87 14.71 0.00 

 GAPDIST + GAPDIST*BEHAV + GAPDIST*FOR50 + GAPDIST*BEHAV*FOR50 15 -1595.75 3222.40 15.24 0.00 

 FOR% + FOR%*BEHAV + FOR%*FOR50 + FOR%*BEHAV*FOR50 15 -1596.21 3223.33 16.17 0.00 

 GAPDIST + GAPDIST*BEHAV + GAPDIST*FOR50 13 -1598.65 3223.98 16.82 0.00 

 Baseline†† 7 -1613.19 3240.59 33.42 0.00 

              

 

†All models for Wood Thrush contained linear effects of CAPDIST and CAPDIST*BEHAV 

††All models for Ovenbirds contained linear effects of CAPDIST, CAPDIST*BEHAV, and RIPDIST 
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Table 4.5. Parameter estimates from the top step-level models explaining movement decisions of translocated Wood Thrush and 

Ovenbirds.  Variables include distance from the step endpoint to home (CAPDIST) or the nearest stream (RIPDIST), number of 

gaps in the step (GAPS), and an indicator variable for behavioral mode (BEHAV) equal to one if the step occurred during 

exploring.  We modeled all effects with random, bird-specific coefficients.  Thus, we report the estimated mean effect size, and 

estimated standard deviation in effect size among individuals. 

 
    Mean   SD 

Species Variable Est SE Z p lcl ucl  Est SE Z p lcl ucl 
               
               
Wood Thrush              

 CAPDIST -2.10 0.29 -7.24 0.00 -2.66 -1.53  0.78 0.32 2.45 0.01 0.16 1.40 

 CAPDIST*BEHAV 0.07 0.77 0.09 0.93 -1.45 1.58  2.55 0.71 3.61 0.00 1.17 3.94 

 GAPS -0.23 0.08 -3.02 0.00 -0.39 -0.08  0.21 0.08 2.49 0.01 0.04 0.37 
               

Ovenbird              

 CAPDIST -4.67 0.52 -9.01 0.00 -5.68 -3.65  0.70 0.64 -1.10 0.27 1.96 0.56 

 CAPDIST*BEHAV 2.64 0.81 3.25 0.00 1.05 4.23  0.35 1.61 0.21 0.83 2.82 3.51 

 RIPDIST -0.13 0.13 -0.98 0.33 -0.38 0.13  0.39 0.13 3.02 0.00 0.14 0.65 

 GAPS -0.47 0.12 -3.89 0.00 -0.71 -0.23  0.17 0.20 0.83 0.41 0.23 0.56 
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Figure 4.1. Locations of field sites (Naval Surface Warfare Center Crane and Glendale Fish and 

Wildlife Area) used for experimental translocations of Ovenbirds and Wood Thrush in southern 

Indiana.  Crane was dominated by large contiguous forest tracts, separated by small road gaps 

(A), while Glendale was a more heterogeneous mix of forest and agricultural fields (B).  We 

chose multiple landscapes on each site and attempted to translocate two conspecifics from the 

same forest patch across local landscapes (ellipses) that varied in terms of the amount of forest 

and number of forest patches. 
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Figure 4.2. Kaplan-Meier homing success curves for translocated Wood Thrush and Ovenbirds.  

Tick marks on the curves indicate censored data (i.e., birds that were predated or that we stopped 

following after 10 days). 
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Figure 4.3. A comparison of the distribution of turning and deviation angles between exploring 

and homing phases for translocated Wood Thrush (WOTH) and Ovenbirds (OVEN).  Deviation 

angles were more concentrated around zero for both species during homing, indicating directed 

movement towards capture locations.  Turning angles were concentrated near π and -π radians 

during exploring, indicating a large amount of course reversal.  Test statistics and p-values 

represent results from a Kolmogorov-Smirnov test examining whether the data come from the 

same distribution. 
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CONCLUSION 

 

 

Island biogeography (MacArthur & Wilson 1967) and metapopulation (Levins 1969, 

Hanski 1998) theory predict fragmentation should negatively impact species distribution patterns 

by increasing patch extinction rates and decreasing colonization rates.  Thus, one of the original 

goals of this dissertation was to test the effects of forest patch size on breeding bird colonization 

and extinction rates.  Because many of the species we sampled are migratory, I expected 

landscape structure to have little influence on inter-annual distribution shifts, and instead planned 

to model dynamics within breeding seasons.  Thus, I employed a widely used sampling protocol 

(as described in Chapter 2) intended to allow estimation of distributional shifts between 10-

minute primary sampling periods.  Rather than make assumptions about the biological process 

being modeled using this protocol, I found in Chapter 2 that our estimates of colonization and 

extinction were heavily influenced by temporary changes in sampling availability.  

Unfortunately, the implication of this was that I was unable to confidently estimate within-season 

dynamic rates with the data we collected.  Nonetheless, these findings represent an important 

step forward in our understanding of how to appropriately sample and model dynamic 

distributions of unmarked animals. 

 Despite this setback, I was still able to test for the effects of fragmentation on species 

distribution patterns.  To date, our work in Chapter 3 represents one of the most comprehensive 

efforts to disentangle the independent effects of fragmentation from habitat loss.  Moreover, 

these results contribute to a growing body of knowledge indicating that fragmentation tends to 

have strong negative effects on interior specialists, and positive effects on edge specialists 

(Bender et al. 1998, Henle et al. 2004).  Though this may seem intuitive, it is a critical step 
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towards viewing landscapes from the species’ perspectives (Betts et al. 2014), and reconciling 

theory and reality.  Fragmentation of forest habitat likely increases connectivity among habitats 

preferred by edge specialists; measures of forest patch size and amount are thus poor explanatory 

variables for testing fragmentation effects on these species.  Future work should focus on 

redefining patch and matrix boundaries for edge specialists to truly evaluate how fragmentation 

influences this group. 

 Our patch size measurements were likely much more relevant for forest interior and 

forest generalist species.  As our results demonstrated, interior specialists tended to be 

particularly sensitive to fragmentation, while forest generalists were not.  However, we note that 

these species were assigned to habitat groupings based predominantly on distribution patterns 

observed in other studies.  In most cases, it remains to be tested whether these patterns indicate 

choice, habitat quality, or true sensitivity to metapopulation processes (Villard 1998).  This 

distinction has important implications for conservation efforts for fragmentation sensitive 

species; if these species are able to access fragmented patches, and either choose not to settle, or 

have poor success, then local habitat may drive distributions (i.e., random sample hypothesis) 

and management efforts could focus on improving within-patch characteristics.  However, if 

sensitivity is driven by colonization and extinction dynamics, then the focus should be on 

conserving large patches and improving landscape connectivity. 

 In Chapter 4, we took a step towards identifying why interior specialists exhibit 

sensitivity to fragmentation.  Using experimental translocations, we found that both Wood 

Thrush and Ovenbirds show reluctance to cross forest gaps.  In fact, Ovenbirds were both more 

reluctant to cross gaps, and more limited by fragmentation (in terms of their distribution) than 

Wood Thrush.  Because we did not replicate across multiple fragmentation-sensitive and 
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fragmentation-resilient species we cannot infer beyond these species to others having similar 

traits; we would need to conduct similar experiments with many more species to truly test for a 

relationship between distributions and movement behavior.  Nonetheless, our results suggest a 

potential link between distribution patterns and dispersal limitation that should be addressed in 

future work. 

 During the field work associated with Chapter 4, we noticed that translocated birds were 

exhibiting peculiar behavior in which they would move very little, sometimes for days at a time, 

before eventually making large, quick movements homeward.  In many cases, individuals 

covered over 90% of the distance home in less than 10% of their travel time (Figs. A3 and A4).  

These observations led us to explicitly test for behavioral shifts, and our study now represents 

one of the first to do so for translocated birds or any other animals.  These results have raised 

important questions about the relationship between the behavior of translocated animals and 

those moving under natural conditions.  Further, these results highlight the need to consider that 

movement patterns of translocated individuals may not be uniform, and thus may reflect multiple 

natural (or unnatural) behavioral phases or life stages.  Unfortunately, we did not have the ability 

to link these behavioral modes to those exhibited by non-translocated individuals, and this is a 

critical area for future research.  Until we can clearly link these behaviors with true biological 

processes, the application of the results from translocation experiments to conservation will be 

speculative. 

 Despite thousands of studies investigating the ecological ramifications of habitat 

fragmentation (Hadley & Betts 2016), there are still many questions left to answer.  Ultimately, 

the most important lesson I learned from this dissertation may be that our understanding of the 

impacts of fragmentation on animal distribution patterns is heavily dependent on methodology 
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and human perspective.  It is true that theory implies fragmentation should negatively impact 

species distribution patterns.  However, our understanding of whether fragmentation influences 

any particular species depends both on the species, and what is being fragmented.  Truly testing 

theoretical predictions will likely require more intensive methods of quantifying species-specific 

habitat (e.g., Shirley et al. 2013, Betts et al. 2014).  Yet our results show that fragmentation of 

forests does affect the distribution (both positively and negatively) and movement patterns of 

many species.  Given the extent to which forests are influenced by fragmentation worldwide, 

(Haddad et al. 2015), we hope these findings will help generate practical approaches to 

conservation and management. 
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APPENDIX A: SUPPLEMENTARY TABLES AND FIGURES 

Table A1. The 19 species for which site closure was evaluated under 3 different sampling 

scenarios (confounded TE/dynamics, isolated TE, and isolated dynamics).  The data were based 

on repeated visits to 193 point count locations in southern Indiana in the summer of 2014. 

 
 

  Naïve Occ. closure test p-values       

Species Scientific name* occupancy confounded TE dynamics 

 
 

Red-bellied Woodpecker  Melanerpes carolinus  0.37  < 0.001 0.006  0.01  

Downy Woodpecker  Picoides pubescens 0.53  < 0.001 < 0.001 0.36  

Eastern Wood-Pewee  Contopus virens  0.44  < 0.001 0.01  0.18   

Acadian Flycatcher  Empidonax virescens  0.92  < 0.001 < 0.001 < 0.001   

Yellow-throated Vireo  Vireo flavifrons  0.25  < 0.001 < 0.001 0.31   

Red-eyed Vireo   Vireo olivaceus  0.88  < 0.001 < 0.001 0.02   

Carolina Chickadee  Poecile carolinensis  0.44  < 0.001 < 0.001 0.63   

Tufted Titmouse   Baeolophus bicolor  0.60  < 0.001 < 0.001 0.07   

White-breasted Nuthatch  Sitta carolinensis  0.48 < 0.001 < 0.001 0.17   

Blue-gray Gnatcatcher  Polioptila caerulea  0.79  < 0.001 < 0.001 < 0.001   

Wood Thrush   Hylocichla mustelina  0.69  < 0.001 < 0.001 0.07   

Ovenbird   Seiurus aurocapilla  0.41  < 0.001 < 0.001 < 0.001   

Kentucky Warbler   Geothlypis Formosa  0.41  < 0.001 < 0.001 0.01   

Hooded Warbler   Setophaga citrina  0.28  < 0.001 < 0.001 0.27   

Eastern Towhee   Pipilo erythrophthalmus  0.38  < 0.001 < 0.001 0.79   

Scarlet Tanager   Piranga olivacea  0.47  < 0.001 < 0.001 0.03   

Northern Cardinal   Cardinalis cardinalis  0.42  < 0.001 < 0.001 0.03   

Indigo Bunting   Passerina cyanea  0.22  < 0.001 < 0.001 0.17   

Brown-headed Cowbird  Molothrus ater  0.69  < 0.001 < 0.001 0.03   

 
 

*Citations for scientific names can be found on Avibase (http://avibase.bsc-eoc.org/). 
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Table A2. A comparison of static and dynamic occupancy models fit to simulated presence-

absence survey data where distribution dynamics were present.  For each set of simulation 

parameters, we generated 1000 datasets.  In use scenarios, availability for sampling was 

independent during each sampling period.   Thus, the detection estimates tend to approximate 

papd, the occupancy parameters approximate the rate of site use (ψ0), and the colonization and 

extinction parameters provided accurate and precise estimates of dynamic rates.  In occupancy 

sampling, availability for sampling could only change every third visit (between primary 

periods).  Here, the detection estimates tend to approximate pd, the occupancy parameters 

approximate the instantaneous occupancy rate (ψ0pa), and the colonization and extinction 

parameters overestimate dynamic rates because they are confounded with temporary emigration.    

Metrics provided are on the original parameter scale. 
 

 Simulation parameters % open Occ (ψ)      Det (p)       Colonization (γ)                   Extinction (ε)                      

 ψ0 pa pd γ0 ε0 selected Mean Var Mean Var Mean Var Bias MSE Mean Var Bias MSE 

             

Use scenarios               

 0.3 0.5 0.5 0.09 0.2 97.2 0.30 0.00 0.25 0.00 0.08 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.3 0.5 0.5 0.17 0.4 100 0.32 0.01 0.25 0.00 0.17 0.00 0.00 0.00 0.39 0.01 -0.01 0.01 

 0.3 0.5 0.8 0.09 0.2 100 0.30 0.00 0.40 0.00 0.08 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.3 0.5 0.8 0.17 0.4 100 0.30 0.00 0.40 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

 0.3 0.8 0.5 0.09 0.2 100 0.30 0.00 0.40 0.00 0.09 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.3 0.8 0.5 0.17 0.4 100 0.30 0.00 0.40 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

 0.3 0.8 0.8 0.09 0.2 100 0.30 0.00 0.64 0.00 0.09 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.3 0.8 0.8 0.17 0.4 100 0.30 0.00 0.64 0.00 0.17 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

 0.7 0.5 0.5 0.47 0.2 100* 0.70 0.00 0.25 0.00 0.45 0.01 -0.01 0.01 0.20 0.00 0.00 0.00 

 0.7 0.5 0.5 0.93 0.4 100† 0.70 0.00 0.25 0.00 0.92 0.01 -0.01 0.01 0.40 0.00 0.00 0.00 

 0.7 0.5 0.8 0.47 0.2 100 0.70 0.00 0.40 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.7 0.5 0.8 0.93 0.4 100 0.70 0.00 0.40 0.00 0.94 0.00 0.01 0.00 0.40 0.00 0.00 0.00 

 0.7 0.8 0.5 0.47 0.2 100 0.70 0.00 0.40 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.7 0.8 0.5 0.93 0.4 100 0.70 0.00 0.40 0.00 0.95 0.00 0.01 0.00 0.40 0.00 0.00 0.00 

 0.7 0.8 0.8 0.47 0.2 100 0.70 0.00 0.64 0.00 0.47 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

 0.7 0.8 0.8 0.93 0.4 100 0.70 0.00 0.64 0.00 0.93 0.00 0.00 0.00 0.40 0.00 0.00 0.00 

 

Occupancy scenarios               

 0.3 0.5 0.5 0.09 0.2 100 0.15 0.00 0.49 0.00 0.10 0.00 0.02 0.00 0.57 0.00 0.37 0.14 

 0.3 0.5 0.5 0.17 0.4 100 0.15 0.00 0.50 0.00 0.12 0.00 -0.05 0.00 0.70 0.00 0.30 0.09 

 0.3 0.5 0.8 0.09 0.2 100 0.15 0.00 0.80 0.00 0.11 0.00 0.02 0.00 0.60 0.00 0.40 0.16 

 0.3 0.5 0.8 0.17 0.4 100 0.15 0.00 0.80 0.00 0.12 0.00 -0.05 0.00 0.70 0.00 0.30 0.09 

 0.3 0.8 0.5 0.09 0.2 100 0.24 0.00 0.49 0.00 0.10 0.00 0.02 0.00 0.32 0.00 0.12 0.02 

 0.3 0.8 0.5 0.17 0.4 100 0.24 0.00 0.50 0.00 0.16 0.00 -0.01 0.00 0.52 0.00 0.12 0.01 

 0.3 0.8 0.8 0.09 0.2 100 0.24 0.00 0.80 0.00 0.11 0.00 0.03 0.00 0.36 0.00 0.16 0.03 

 0.3 0.8 0.8 0.17 0.4 100 0.24 0.00 0.80 0.00 0.16 0.00 -0.01 0.00 0.52 0.00 0.12 0.02 

 0.7 0.5 0.5 0.47 0.2 100 0.35 0.00 0.50 0.00 0.32 0.00 -0.14 0.02 0.60 0.00 0.40 0.16 

 0.7 0.5 0.5 0.93 0.4 100 0.35 0.00 0.50 0.00 0.38 0.00 -0.55 0.31 0.70 0.00 0.30 0.09 

 0.7 0.5 0.8 0.47 0.2 100 0.35 0.00 0.80 0.00 0.32 0.00 -0.14 0.02 0.60 0.00 0.40 0.16 

 0.7 0.5 0.8 0.93 0.4 100 0.35 0.00 0.80 0.00 0.38 0.00 -0.56 0.31 0.70 0.00 0.30 0.09 

 0.7 0.8 0.5 0.47 0.2 100 0.56 0.00 0.50 0.00 0.46 0.00 -0.01 0.00 0.36 0.00 0.16 0.03 

 0.7 0.8 0.5 0.93 0.4 100 0.56 0.00 0.50 0.00 0.66 0.00 -0.27 0.07 0.52 0.00 0.12 0.02 

 0.7 0.8 0.8 0.47 0.2 100 0.56 0.00 0.80 0.00 0.46 0.00 -0.01 0.00 0.36 0.00 0.16 0.03 

 0.7 0.8 0.8 0.93 0.4 100 0.56 0.00 0.80 0.00 0.66 0.00 -0.27 0.07 0.52 0.00 0.12 0.02 

 

Percentages for * and † are based on 997 and 936 comparisons, respectively, because closed 

models could not be fit to some datasets. 
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Table A3.  Results from the principal components analysis of local vegetation variables recorded 

at 490 point count stations in southern Indiana between 2011 and 2013.  We sampled each 

station two or three times, and considered each year-by-point combination a unique observation. 

 

 Variable PC1 PC2 PC3 PC4 PC5 

       

Loadings       

 Tree basal area -0.39 -0.45 0.44 -0.65 0.16 

 % shrub cover 0.57 -0.39 0.08 -0.19 -0.69 

 % canopy cover -0.43 -0.45 0.28 0.69 -0.26 

 Vertical foliage density 0.55 -0.44 0.15 0.24 0.66 

 Leaf litter depth -0.19 -0.50 -0.84 -0.08 0.05 

       

Summary       

 Standard deviation 1.34 1.08 0.95 0.85 0.65 

 Proportion of variance 0.36 0.23 0.18 0.14 0.08 

 Cumulative variance 0.36 0.59 0.77 0.92 1.00 
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Table A4. All species detected at 490 point count stations in southern Indiana during the 

breeding seasons of 2011-2013 in taxonomic order.  Species which do not breed in the region 

and species that are poorly sampled with point count methodology were placed in the “Other” 

habitat group and eliminated from analyses.  The remaining species were classified as forest 

edge specialists (Edge), forest interior specialists (Interior), forest generalists (Forest), or habitat 

generalists (Non-forest).  There was a maximum of 1470 site-year combinations in which each 

species could be detected.  Species detected in 0 site-years were recorded during at least one 

point count survey, but not close enough (within 50 m) to be considered using the site. 

 
Common name Scientific name Habitat group Detected % detected 

     

Canada Goose Branta canadensis Other 3 0.20 

Wood Duck Aix sponsa Other 1 0.07 

Mallard Anas platyrhynchos Other 0 0.00 

Northern Bobwhite Colinus virginianus Non-forest 18 1.22 

Ruffed Grouse Bonasa umbellus Other 1 0.07 

Wild Turkey Meleagris gallopavo Other 25 1.70 

Common Loon Gavia immer Other 0 0.00 

Great Blue Heron Ardea herodias Other 7 0.48 

Great Egret Ardea alba Other 0 0.00 

Green Heron Butorides virescens Other 0 0.00 

Black Vulture Coragyps atratus Other 0 0.00 

Turkey Vulture Cathartes aura Other 6 0.41 

Sharp-shinned Hawk Accipiter striatus Other 0 0.00 

Cooper's Hawk Accipiter cooperii Other 3 0.20 

Red-shouldered Hawk Buteo lineatus Other 16 1.09 

Broad-winged Hawk Buteo platypterus Other 2 0.14 

Red-tailed Hawk Buteo jamaicensis Other 8 0.54 

American Kestrel Falco sparverius Other 0 0.00 

American Coot Fulica americana Other 0 0.00 

Killdeer Charadrius vociferus Other 2 0.14 

American Woodcock Scolopax minor Other 5 0.34 

Mourning Dove Zenaida macroura Non-forest 92 6.26 

Yellow-billed Cuckoo Coccyzus americanus Forest 155 10.54 

Black-billed Cuckoo Coccyzus erythropthalmus Edge 0 0.00 

Eastern Screech-Owl Megascops asio Other 2 0.14 

Great Horned Owl Bubo virginianus Other 1 0.07 

Barred Owl Strix varia Other 4 0.27 

Common Nighthawk Chordeiles minor Other 1 0.07 

Eastern Whip-poor-will Caprimulgus vociferus Other 0 0.00 

Eastern Whip-poor-will Caprimulgus vociferus Non-forest 4 0.27 

Chimney Swift Chaetura pelagica Other 9 0.61 

Ruby-throated Hummingbird Archilochus colubris Other 73 4.97 

Belted Kingfisher Megaceryle alcyon Non-forest 13 0.88 

Red-headed Woodpecker Melanerpes erythrocephalus Forest 32 2.18 

Red-bellied Woodpecker Melanerpes carolinus Forest 638 43.40 

Downy Woodpecker Picoides pubescens Forest 615 41.84 

Hairy Woodpecker Picoides villosus Forest 230 15.65 

Northern Flicker Colaptes auratus Edge 211 14.35 

Pileated Woodpecker Dryocopus pileatus Forest 139 9.46 

Eastern Wood-Pewee Contopus virens Forest 771 52.45 

Acadian Flycatcher Empidonax virescens Interior 1240 84.35 

Least Flycatcher Empidonax minimus Other 2 0.14 

Eastern Phoebe Sayornis phoebe Edge 40 2.72 

Great Crested Flycatcher Myiarchus crinitus Edge 252 17.14 
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Table A4 (Continuted) 

Common name Scientific name Habitat group Detected % detected 

     

Eastern Kingbird Tyrannus tyrannus Non-forest 11 0.75 

White-eyed Vireo Vireo griseus Edge 365 24.83 

Yellow-throated Vireo Vireo flavifrons Edge 335 22.79 

Warbling Vireo Vireo gilvus Forest 16 1.09 

Red-eyed Vireo Vireo olivaceus Forest 1257 85.51 

Blue Jay Cyanocitta cristata Non-forest 252 17.14 

American Crow Corvus brachyrhynchos Non-forest 156 10.61 

Purple Martin Progne subis Other 1 0.07 

Tree Swallow Tachycineta bicolor Other 10 0.68 

Northern Rough-winged Swallow Stelgidopteryx serripennis Other 2 0.14 

Barn Swallow Hirundo rustica Other 0 0.00 

Carolina Chickadee Poecile carolinensis Forest 817 55.58 

Tufted Titmouse Baeolophus bicolor Forest 957 65.10 

White-breasted Nuthatch Sitta carolinensis Forest 754 51.29 

Carolina Wren Thryothorus ludovicianus Edge 696 47.35 

House Wren Troglodytes aedon Edge 9 0.61 

Blue-gray Gnatcatcher Polioptila caerulea Forest 1029 70.00 

Eastern Bluebird Sialia sialis Non-forest 38 2.59 

Veery Catharus fuscescens Other 1 0.07 

Swainson's Thrush Catharus ustulatus Other 1 0.07 

Wood Thrush Hylocichla mustelina Interior 660 44.90 

American Robin Turdus migratorius Non-forest 289 19.66 

Gray Catbird Dumetella carolinensis Edge 205 13.95 

Northern Mockingbird Mimus polyglottos Non-forest 4 0.27 

Brown Thrasher Toxostoma rufum Edge 49 3.33 

European Starling Sturnus vulgaris Non-forest 2 0.14 

Cedar Waxwing Bombycilla cedrorum Non-forest 36 2.45 

Ovenbird Seiurus aurocapilla Interior 258 17.55 

Worm-eating Warbler Helmitheros vermivorum Interior 80 5.44 

Louisiana Waterthrush Parkesia motacilla Interior 91 6.19 

Golden-winged Warbler Vermivora chrysoptera Other 0 0.00 

Blue-winged Warbler Vermivora cyanoptera Edge 37 2.52 

Black-and-white Warbler Mniotilta varia Forest 24 1.63 

Prothonotary Warbler Protonotaria citrea Forest 73 4.97 

Tennessee Warbler Oreothlypis peregrina Other 0 0.00 

Nashville Warbler Oreothlypis ruficapilla Other 1 0.07 

Kentucky Warbler Geothlypis formosa Interior 674 45.85 

Common Yellowthroat Geothlypis trichas Edge 260 17.69 

Hooded Warbler Setophaga citrina Interior 253 17.21 

American Redstart Setophaga ruticilla Forest 25 1.70 

Cerulean Warbler Setophaga cerulea Forest 93 6.33 

Northern Parula Setophaga americana Forest 484 32.93 

Blackburnian Warbler Setophaga fusca Other 0 0.00 

Yellow Warbler Setophaga petechia Edge 5 0.34 

Blackpoll Warbler Setophaga striata Other 1 0.07 

Pine Warbler Setophaga pinus Forest 10 0.68 

Yellow-rumped Warbler Setophaga coronata Other 0 0.00 

Yellow-throated Warbler Setophaga dominica Forest 193 13.13 

Prairie Warbler Setophaga discolor Non-forest 52 3.54 

Black-throated Green Warbler Setophaga virens Forest 1 0.07 

Yellow-breasted Chat Icteria virens Edge 227 15.44 

Eastern Towhee Pipilo erythrophthalmus Edge 904 61.50 

Chipping Sparrow Spizella passerina Edge 38 2.59 
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Table A4 (Continued) 

 
Common name Scientific name Habitat group Detected % detected 

     

Field Sparrow Spizella pusilla Non-forest 36 2.45 

Song Sparrow Melospiza melodia Edge 53 3.61 

Summer Tanager Piranga rubra Forest 283 19.25 

Scarlet Tanager Piranga olivacea Interior 516 35.10 

Northern Cardinal Cardinalis cardinalis Non-forest 1102 74.97 

Rose-breasted Grosbeak Pheucticus ludovicianus Forest 2 0.14 

Blue Grosbeak Passerina caerulea Edge 1 0.07 

Indigo Bunting Passerina cyanea Edge 892 60.68 

Red-winged Blackbird Agelaius phoeniceus Non-forest 15 1.02 

Eastern Meadowlark Sturnella magna Non-forest 2 0.14 

Common Grackle Quiscalus quiscula Non-forest 35 2.38 

Brown-headed Cowbird Molothrus ater Non-forest 979 66.60 

Orchard Oriole Icterus spurius Edge 5 0.34 

Baltimore Oriole Icterus galbula Edge 48 3.27 

House Finch Carpodacus mexicanus Non-forest 0 0.00 

American Goldfinch Spinus tristis Non-forest 172 11.70 

House Sparrow Passer domesticus Non-forest 0 0.00 
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Table A5. Pearson’s correlation coefficients for the six explanatory variables measured at 490 

point count stations between 2011 and 2013.  All variables were included in breeding bird 

community occupancy models.  PC1-3 represent values of local vegetation principal components 

(see Table A3), and forest amount is the proportion of a 2 km radius circle around the point 

count station dominated by forest. 

 
 PC1 PC2 PC3 Edge distance Forest amount Log(patch size) 

       

PC1 1.000 ------- ------- ------- ------- ------- 

PC2 0.000 1.000 ------- ------- ------- ------- 

PC3 0.000 0.000 1.000 ------- ------- ------- 

Edge distance -0.106 -0.080 -0.036 1.000 ------- ------- 

Forest amount 0.052 -0.070 -0.233 0.158 1.000 ------- 

Log(patch size) -0.063 -0.052 -0.109 0.622 0.218 1.000 
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Table A6.  Means and 95% credible intervals for the posterior distributions of covariate effects 

on occupancy probabilities of 52 breeding bird species.  Species were separated into habitat 

groups (edge specialists, forest generalists, or interior specialists), and rows highlighted in bold 

represent the estimated mean effect of the covariate on members of the habitat group.  Within a 

habitat group, species are listed from most common (top) to least common (Table A4).  The 95% 

credible intervals did not overlap zero for those entries marked with an asterisk. 
 

Species Intercept (year = 1) Intercept (year > 1) Autologistic PC1 PC2 

      

Edge community -1.05 (-1.98, -0.22)* -1.95 (-2.77, -1.15)* 2.78 (2.16, 3.64)* 0.20 (0.09, 0.30)* 0.10 (0.02, 0.20)* 

Eastern Towhee 1.17 (0.88, 1.49)* -0.41 (-0.79, -0.04)* 2.51 (1.91, 3.10)* 0.42 (0.29, 0.57)* 0.02 (-0.14, 0.15)  

Indigo Bunting 1.85 (1.46, 2.28)* -0.75 (-1.30, -0.25)* 2.63 (1.96, 3.35)* 0.33 (0.18, 0.48)* 0.11 (-0.03, 0.26)  

Carolina Wren 0.05 (-0.27, 0.39)  0.30 (-0.06, 0.69)  2.22 (1.33, 3.02)* 0.26 (0.13, 0.41)* 0.12 (-0.02, 0.27)  

White-eyed Vireo -0.95 (-1.23, -0.67)* -2.13 (-2.48, -1.80)* 3.05 (2.46, 3.76)* 0.25 (0.14, 0.37)* 0.04 (-0.10, 0.16)  

Yellow-throated Vireo 0.26 (-0.31, 0.93)  -0.33 (-1.09, 0.72)  3.06 (1.80, 5.33)* -0.04 (-0.26, 0.20)  0.06 (-0.13, 0.24)  

Common Yellowthroat -1.03 (-1.39, -0.66)* -2.50 (-2.92, -2.10)* 2.52 (1.87, 3.16)* 0.20 (0.08, 0.33)* 0.14 (0.02, 0.29)* 

Great Crested Flycatcher -0.31 (-0.98, 0.45)  -0.27 (-1.02, 0.77)  2.26 (0.46, 3.87)* 0.03 (-0.20, 0.25)  0.13 (-0.04, 0.33)  

Yellow-breasted Chat -1.04 (-1.41, -0.68)* -2.57 (-2.97, -2.17)* 2.46 (1.82, 3.08)* 0.33 (0.20, 0.47)* 0.15 (0.02, 0.30)* 

Northern Flicker -0.33 (-1.06, 0.49)  -0.16 (-0.85, 0.75)  2.21 (-0.11, 3.95)  0.10 (-0.12, 0.30)  0.01 (-0.25, 0.18)  

Gray Catbird -1.23 (-1.59, -0.86)* -2.68 (-3.12, -2.29)* 2.71 (2.02, 3.48)* 0.18 (0.04, 0.31)* 0.13 (0.00, 0.27)* 

Song Sparrow -3.17 (-3.96, -2.39)* -3.66 (-4.52, -2.89)* 3.65 (2.35, 6.11)* 0.18 (-0.02, 0.37)  0.15 (-0.02, 0.37)  

Brown Thrasher -1.41 (-2.58, -0.07)* -2.37 (-3.60, -1.04)* 2.99 (1.55, 5.24)* 0.25 (0.00, 0.53)* 0.19 (0.01, 0.48)* 

Baltimore Oriole -1.07 (-2.47, 0.60)  -2.48 (-3.68, -1.14)* 3.01 (1.58, 5.24)* 0.20 (-0.05, 0.46)  0.04 (-0.22, 0.23)  

Eastern Phoebe -2.88 (-3.77, -1.78)* -3.41 (-4.22, -2.49)* 3.44 (2.23, 5.65)* 0.17 (-0.04, 0.37)  0.05 (-0.17, 0.22)  

Chipping Sparrow -0.20 (-1.92, 1.95)  -2.37 (-3.94, -0.63)* 2.73 (-0.43, 5.23)  0.19 (-0.09, 0.48)  0.15 (-0.04, 0.43)  

Blue-winged Warbler -2.23 (-3.28, -1.03)* -3.41 (-4.36, -2.36)* 2.68 (1.15, 4.58)* 0.26 (0.05, 0.48)* 0.13 (-0.05, 0.34)  

House Wren -1.52 (-3.88, 1.18)  -1.41 (-3.65, 1.40)  3.07 (1.32, 5.72)* 0.11 (-0.26, 0.43)  0.14 (-0.08, 0.45)  

Orchard Oriole -2.60 (-5.96, 0.31)  -1.85 (-4.07, 0.71)  2.89 (1.07, 5.36)* 0.16 (-0.19, 0.48)  0.11 (-0.13, 0.38)  

Yellow Warbler -1.08 (-3.52, 1.78)  -3.14 (-5.40, -0.40)* 2.66 (0.71, 4.60)* 0.22 (-0.10, 0.56)  0.09 (-0.16, 0.35)  

Blue Grosbeak -2.19 (-5.94, 1.38)  -2.17 (-5.04, 0.66)  2.84 (0.89, 5.13)* 0.18 (-0.17, 0.50)  0.11 (-0.14, 0.37)  

Black-billed Cuckoo -2.22 (-5.74, 1.14)  -3.21 (-6.42, -0.19)* 2.65 (0.47, 4.85)* 0.19 (-0.17, 0.54)  0.10 (-0.14, 0.37)  

      

Forest community 0.11 (-1.29, 1.44)  -1.33 (-2.68, 0.08)  2.93 (1.82, 4.26)* 0.04 (-0.05, 0.12)  -0.12 (-0.20, -0.03)* 

Red-eyed Vireo 2.48 (2.12, 2.88)* 1.51 (0.99, 2.06)* 1.24 (0.63, 1.84)* -0.17 (-0.32, -0.03)* -0.12 (-0.24, 0.01)  

Blue-gray Gnatcatcher 2.02 (1.66, 2.42)* 0.47 (0.01, 0.93)* 1.73 (1.01, 2.49)* 0.13 (0.00, 0.26)* -0.12 (-0.25, -0.00)* 

Tufted Titmouse 2.52 (1.95, 3.22)* 2.24 (1.27, 3.50)* 0.37 (-0.89, 1.52)  0.05 (-0.12, 0.23)  -0.11 (-0.26, 0.04)  

Carolina Chickadee 3.33 (2.28, 4.90)* 1.79 (0.59, 3.14)* 1.10 (-0.62, 3.05)  0.10 (-0.08, 0.31)  -0.13 (-0.29, 0.02)  

Eastern Wood-Pewee 1.07 (0.70, 1.47)* -0.49 (-0.96, -0.07)* 2.70 (1.96, 3.56)* -0.03 (-0.15, 0.09)  -0.15 (-0.29, -0.02)* 

White-breasted Nuthatch 1.04 (0.60, 1.53)* 1.04 (0.38, 1.78)* 1.87 (0.65, 3.51)* -0.10 (-0.27, 0.07)  -0.16 (-0.32, -0.03)* 

Red-bellied Woodpecker 0.75 (0.28, 1.30)* 0.53 (-0.11, 1.20)  1.05 (0.13, 2.14)* 0.03 (-0.12, 0.17)  -0.13 (-0.27, -0.01)* 

Downy Woodpecker 1.84 (1.05, 2.96)* 0.28 (-1.67, 1.93)  2.20 (-0.12, 5.31)  0.10 (-0.08, 0.29)  -0.11 (-0.27, 0.04)  

Northern Parula 0.28 (-0.05, 0.62)  -1.80 (-2.37, -1.32)* 3.15 (2.35, 4.10)* 0.11 (-0.01, 0.23)  -0.03 (-0.16, 0.14)  

Summer Tanager 1.23 (0.54, 2.08)* -2.52 (-5.15, -0.42)* 5.92 (2.49, 10.28)* 0.02 (-0.17, 0.21)  -0.14 (-0.32, -0.00)* 

Hairy Woodpecker -1.96 (-2.66, -1.27)* 1.35 (0.44, 2.81)* 1.25 (-1.14, 5.88)  0.10 (-0.08, 0.32)  -0.15 (-0.34, -0.01)* 

Yellow-throated Warbler -0.16 (-0.70, 0.44)  -2.78 (-4.28, -1.89)* 3.36 (1.83, 5.63)* 0.03 (-0.11, 0.17)  -0.08 (-0.21, 0.07)  

Yellow-billed Cuckoo 4.02 (1.90, 7.77)* -4.56 (-7.15, -2.67)* 4.19 (2.22, 6.85)* 0.07 (-0.11, 0.26)  -0.09 (-0.24, 0.09)  

Pileated Woodpecker 4.01 (1.59, 7.99)* 1.25 (-2.95, 6.47)  3.62 (-0.44, 8.38)  0.03 (-0.22, 0.28)  -0.12 (-0.32, 0.07)  

Cerulean Warbler -1.94 (-2.43, -1.44)* -3.99 (-5.32, -3.11)* 5.24 (3.32, 8.23)* 0.04 (-0.13, 0.20)  -0.13 (-0.29, 0.01)  

Prothonotary Warbler -2.88 (-3.53, -2.25)* -4.53 (-5.69, -3.70)* 4.11 (2.45, 6.50)* 0.01 (-0.16, 0.19)  -0.10 (-0.25, 0.06)  

Red-headed Woodpecker -1.36 (-2.79, 0.62)  -3.46 (-5.15, -1.90)* 2.45 (0.17, 5.11)* 0.05 (-0.15, 0.27)  -0.10 (-0.26, 0.09)  

American Redstart -0.51 (-3.36, 4.62)  -1.23 (-4.30, 4.93)  3.91 (-0.15, 8.39)  0.05 (-0.18, 0.30)  -0.10 (-0.27, 0.10)  

Black-and-white Warbler -3.30 (-4.68, -1.80)* -3.84 (-5.24, -2.39)* 4.19 (1.42, 8.37)* 0.10 (-0.10, 0.34)  -0.11 (-0.27, 0.07)  

Warbling Vireo -3.77 (-4.68, -2.80)* -5.90 (-7.84, -4.45)* 5.16 (2.58, 7.98)* 0.03 (-0.18, 0.25)  -0.13 (-0.31, 0.03)  

Pine Warbler 0.17 (-3.50, 4.95)  -1.12 (-4.65, 4.13)  2.56 (-2.39, 7.65)  0.04 (-0.22, 0.29)  -0.12 (-0.30, 0.07)  

Rose-breasted Grosbeak -3.27 (-8.42, 2.28)  -1.71 (-5.92, 3.74)  3.21 (-1.18, 7.88)  0.05 (-0.21, 0.32)  -0.11 (-0.30, 0.08)  

Black-throated Green Warbler -2.95 (-8.78, 2.81)  -2.96 (-7.35, 3.32)  2.93 (-1.42, 7.49)  0.01 (-0.26, 0.27)  -0.11 (-0.30, 0.07)  

      

Interior community -0.25 (-1.78, 1.27)  -1.85 (-3.58, -0.17)* 3.73 (2.31, 5.38)* -0.02 (-0.36, 0.30)  -0.17 (-0.34, 0.01)  

Acadian Flycatcher 1.88 (1.57, 2.22)* 0.21 (-0.22, 0.63)  3.45 (2.86, 4.08)* -0.27 (-0.40, -0.13)* -0.23 (-0.39, -0.08)* 

Kentucky Warbler 1.62 (1.13, 2.17)* -1.78 (-3.11, -0.86)* 4.54 (3.22, 6.38)* 0.48 (0.27, 0.71)* -0.22 (-0.45, -0.02)* 

Wood Thrush 0.49 (0.14, 0.83)* -0.97 (-1.39, -0.58)* 2.58 (1.93, 3.30)* 0.12 (-0.01, 0.26)  -0.21 (-0.37, -0.06)* 

Scarlet Tanager 0.81 (0.33, 1.34)* -0.20 (-0.82, 0.41)  1.49 (0.41, 2.70)* -0.03 (-0.20, 0.15)  0.03 (-0.18, 0.27)  

Ovenbird -1.47 (-1.89, -1.06)* -3.12 (-3.80, -2.54)* 4.18 (3.11, 5.42)* -0.20 (-0.39, -0.01)* -0.03 (-0.23, 0.22)  

Hooded Warbler -1.61 (-2.00, -1.20)* -3.95 (-4.86, -3.27)* 4.46 (3.36, 5.75)* 0.37 (0.19, 0.55)* -0.23 (-0.45, -0.03)* 

Louisiana Waterthrush -1.27 (-2.30, -0.01)* -0.68 (-1.78, 0.69)  5.30 (2.80, 8.94)* -0.25 (-0.60, 0.08)  -0.22 (-0.55, 0.04)  

Worm-eating Warbler -2.30 (-2.91, -1.67)* -4.36 (-5.71, -3.42)* 3.88 (1.89, 6.56)* -0.41 (-0.70, -0.13)* -0.22 (-0.49, 0.00)  
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Table A6 (Continued) 
 

Species PC3 Edge distance Patch size Forest amount 

     

Edge community 0.05 (-0.05, 0.13)  -0.40 (-0.68, -0.15)* -0.16 (-0.28, -0.04)* -0.08 (-0.33, 0.18)  

Eastern Towhee 0.05 (-0.06, 0.17)  -0.17 (-0.33, -0.00)* -0.17 (-0.33, -0.02)* -0.23 (-0.41, -0.06)* 

Indigo Bunting 0.04 (-0.08, 0.16)  -0.53 (-0.72, -0.35)* -0.16 (-0.31, 0.01)  -0.04 (-0.23, 0.16)  

Carolina Wren 0.08 (-0.03, 0.25)  -0.36 (-0.55, -0.16)* -0.14 (-0.29, 0.03)  -0.73 (-0.94, -0.53)* 

White-eyed Vireo 0.08 (-0.04, 0.22)  -0.39 (-0.61, -0.17)* -0.20 (-0.39, -0.05)* 0.18 (0.01, 0.35)* 

Yellow-throated Vireo 0.03 (-0.14, 0.16)  -0.01 (-0.31, 0.29)  -0.14 (-0.32, 0.07)  0.20 (-0.10, 0.57)  

Common Yellowthroat 0.05 (-0.08, 0.17)  -0.91 (-1.24, -0.59)* -0.11 (-0.27, 0.08)  -0.12 (-0.31, 0.06)  

Great Crested Flycatcher 0.06 (-0.07, 0.21)  0.09 (-0.17, 0.37)  -0.15 (-0.34, 0.06)  -0.59 (-0.91, -0.30)* 

Yellow-breasted Chat 0.04 (-0.09, 0.16)  -0.49 (-0.77, -0.22)* -0.14 (-0.29, 0.04)  -0.14 (-0.33, 0.05)  

Northern Flicker 0.04 (-0.13, 0.18)  0.34 (0.03, 0.66)* -0.22 (-0.51, -0.04)* -0.68 (-1.04, -0.37)* 

Gray Catbird 0.05 (-0.09, 0.17)  -0.49 (-0.77, -0.23)* -0.17 (-0.34, -0.01)* 0.17 (-0.02, 0.36)  

Song Sparrow 0.02 (-0.17, 0.15)  -1.10 (-1.97, -0.45)* -0.22 (-0.50, -0.04)* -0.30 (-0.62, 0.02)  

Brown Thrasher 0.03 (-0.16, 0.16)  -1.02 (-1.81, -0.41)* -0.14 (-0.33, 0.10)  -0.19 (-0.68, 0.21)  

Baltimore Oriole 0.04 (-0.14, 0.17)  -0.75 (-1.39, -0.20)* -0.21 (-0.49, -0.02)* -0.20 (-0.74, 0.23)  

Eastern Phoebe 0.04 (-0.11, 0.19)  -0.19 (-0.61, 0.17)  -0.14 (-0.32, 0.09)  0.28 (-0.06, 0.61)  

Chipping Sparrow 0.03 (-0.16, 0.18)  -0.28 (-0.77, 0.18)  -0.10 (-0.29, 0.21)  0.68 (0.17, 1.31)* 

Blue-winged Warbler 0.05 (-0.12, 0.19)  -0.03 (-0.42, 0.34)  -0.10 (-0.29, 0.18)  0.72 (0.32, 1.20)* 

House Wren 0.04 (-0.15, 0.19)  -0.12 (-0.96, 0.72)  -0.14 (-0.37, 0.12)  -0.49 (-1.19, 0.18)  

Orchard Oriole 0.06 (-0.10, 0.24)  -0.63 (-1.63, 0.18)  -0.17 (-0.44, 0.08)  -0.07 (-0.91, 0.75)  

Yellow Warbler 0.05 (-0.13, 0.21)  -0.61 (-1.65, 0.20)  -0.16 (-0.40, 0.09)  -0.21 (-1.09, 0.60)  

Blue Grosbeak 0.05 (-0.13, 0.21)  -0.46 (-1.48, 0.44)  -0.16 (-0.40, 0.09)  0.15 (-0.73, 1.15)  

Black-billed Cuckoo 0.05 (-0.13, 0.20)  -0.33 (-1.30, 0.62)  -0.15 (-0.40, 0.11)  -0.07 (-1.06, 0.94)  

     

Forest community -0.02 (-0.17, 0.13)  0.06 (-0.04, 0.16)  0.01 (-0.16, 0.19)  -0.30 (-0.61, 0.00)  

Red-eyed Vireo -0.32 (-0.55, -0.11)* 0.11 (-0.03, 0.32)  0.30 (0.06, 0.55)* 0.31 (0.09, 0.54)* 

Blue-gray Gnatcatcher 0.15 (-0.05, 0.35)  0.04 (-0.12, 0.16)  -0.22 (-0.43, -0.02)* -0.35 (-0.57, -0.14)* 

Tufted Titmouse 0.23 (-0.07, 0.53)  0.04 (-0.12, 0.17)  -0.13 (-0.41, 0.14)  -1.01 (-1.44, -0.64)* 

Carolina Chickadee 0.10 (-0.23, 0.44)  0.03 (-0.18, 0.18)  -0.02 (-0.35, 0.31)  -1.17 (-1.73, -0.72)* 

Eastern Wood-Pewee -0.25 (-0.48, -0.04)* 0.09 (-0.04, 0.24)  -0.03 (-0.23, 0.17)  -0.22 (-0.42, -0.03)* 

White-breasted Nuthatch -0.17 (-0.44, 0.09)  0.08 (-0.06, 0.25)  0.16 (-0.10, 0.43)  -0.61 (-0.89, -0.33)* 

Red-bellied Woodpecker 0.02 (-0.20, 0.25)  0.08 (-0.05, 0.23)  0.18 (-0.05, 0.40)  -0.80 (-1.06, -0.55)* 

Downy Woodpecker -0.11 (-0.43, 0.20)  0.03 (-0.17, 0.18)  0.04 (-0.26, 0.34)  -0.41 (-0.76, -0.08)* 

Northern Parula -0.01 (-0.19, 0.17)  0.08 (-0.04, 0.23)  -0.13 (-0.32, 0.06)  -0.07 (-0.26, 0.11)  

Summer Tanager -0.29 (-0.66, 0.05)  0.05 (-0.12, 0.20)  -0.03 (-0.35, 0.29)  -0.50 (-0.99, -0.09)* 

Hairy Woodpecker 0.11 (-0.24, 0.49)  0.06 (-0.11, 0.24)  0.35 (-0.02, 0.77)  -0.41 (-0.83, -0.01)* 

Yellow-throated Warbler -0.04 (-0.30, 0.21)  0.07 (-0.08, 0.21)  -0.17 (-0.41, 0.07)  -0.02 (-0.25, 0.20)  

Yellow-billed Cuckoo 0.17 (-0.15, 0.53)  0.09 (-0.06, 0.28)  0.46 (0.08, 0.87)* -0.80 (-1.24, -0.40)* 

Pileated Woodpecker -0.02 (-0.53, 0.50)  0.08 (-0.11, 0.28)  0.03 (-0.51, 0.59)  -0.47 (-1.62, 0.56)  

Cerulean Warbler -0.24 (-0.53, 0.04)  0.07 (-0.08, 0.23)  -0.09 (-0.37, 0.17)  0.56 (0.26, 0.87)* 

Prothonotary Warbler 0.14 (-0.15, 0.45)  0.05 (-0.14, 0.22)  -0.23 (-0.60, 0.10)  -1.04 (-1.43, -0.68)* 

Red-headed Woodpecker -0.05 (-0.42, 0.30)  0.05 (-0.16, 0.21)  0.02 (-0.39, 0.42)  -0.82 (-1.32, -0.38)* 

American Redstart 0.12 (-0.34, 0.63)  0.06 (-0.14, 0.23)  0.08 (-0.38, 0.56)  0.15 (-0.75, 0.88)  

Black-and-white Warbler -0.21 (-0.61, 0.15)  0.04 (-0.20, 0.19)  -0.22 (-0.62, 0.15)  0.78 (0.28, 1.32)* 

Warbling Vireo 0.10 (-0.26, 0.51)  0.03 (-0.24, 0.18)  -0.37 (-0.89, 0.06)  -0.24 (-0.73, 0.22)  

Pine Warbler 0.06 (-0.43, 0.60)  0.06 (-0.15, 0.25)  0.07 (-0.44, 0.61)  0.29 (-0.92, 1.33)  

Rose-breasted Grosbeak -0.01 (-0.52, 0.52)  0.06 (-0.14, 0.25)  0.02 (-0.54, 0.60)  -0.25 (-1.44, 0.84)  

Black-throated Green Warbler -0.03 (-0.53, 0.49)  0.07 (-0.12, 0.25)  0.11 (-0.44, 0.70)  0.09 (-1.05, 1.36)  

     

Interior community -0.12 (-0.30, 0.03)  0.28 (0.05, 0.51)* 0.46 (0.23, 0.69)* 0.38 (-0.16, 0.93)  

Acadian Flycatcher -0.07 (-0.25, 0.11)  0.26 (0.01, 0.51)* 0.35 (0.11, 0.58)* -0.13 (-0.34, 0.08)  

Kentucky Warbler -0.06 (-0.26, 0.20)  0.25 (-0.02, 0.54)  0.42 (0.14, 0.68)* 0.05 (-0.21, 0.32)  

Wood Thrush -0.03 (-0.20, 0.16)  0.24 (0.03, 0.44)* 0.40 (0.18, 0.60)* -0.04 (-0.22, 0.14)  

Scarlet Tanager -0.22 (-0.48, -0.01)* 0.26 (-0.01, 0.52)  0.54 (0.31, 0.82)* 0.57 (0.34, 0.82)* 

Ovenbird -0.17 (-0.41, 0.04)  0.53 (0.21, 0.93)* 0.71 (0.40, 1.07)* 1.02 (0.72, 1.33)* 

Hooded Warbler -0.20 (-0.46, 0.01)  0.41 (0.17, 0.72)* 0.56 (0.32, 0.81)* 1.12 (0.83, 1.45)* 

Louisiana Waterthrush -0.14 (-0.47, 0.15)  0.21 (-0.16, 0.56)  0.30 (-0.15, 0.68)  -0.23 (-0.81, 0.33)  

Worm-eating Warbler -0.10 (-0.36, 0.15)  0.08 (-0.23, 0.36)  0.45 (0.14, 0.75)* 0.71 (0.36, 1.09)* 
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Table A7. Means and 95% credible intervals for the posterior distributions of covariate effects 

on detection probabilities of 52 breeding bird species.  Species were separated into habitat 

groups (edge specialists, forest generalists, or interior specialists), but we did not expect 

detection covariates to vary systematically among habitat groups.  Therefore, a single mean 

effect of each covariate was estimated for the entire bird community.  The 95% credible intervals 

did not overlap zero for those entries marked with an asterisk. 
 

Species Intercept Julian date Tree basal area 

    

Entire community -2.16 (-2.76, -1.60)* -0.16 (-0.26, -0.06)* 0.02 (-0.02, 0.06)  

    

Edge community -- -- -- 

Eastern Towhee -0.08 (-0.16, 0.01)  0.10 (0.03, 0.17)* -0.11 (-0.19, -0.04)* 

Indigo Bunting -0.29 (-0.37, -0.20)* 0.02 (-0.04, 0.09)  -0.02 (-0.10, 0.06)  

Carolina Wren -0.68 (-0.78, -0.58)* 0.18 (0.10, 0.26)* 0.11 (0.03, 0.19)* 

White-eyed Vireo -0.38 (-0.53, -0.22)* -0.02 (-0.12, 0.09)  -0.16 (-0.28, -0.05)* 

Yellow-throated Vireo -1.87 (-2.10, -1.63)* -0.01 (-0.11, 0.10)  -0.02 (-0.13, 0.09)  

Common Yellowthroat -1.00 (-1.21, -0.79)* 0.29 (0.16, 0.42)* -0.09 (-0.22, 0.03)  

Great Crested Flycatcher -2.08 (-2.38, -1.76)* -0.33 (-0.45, -0.20)* 0.20 (0.07, 0.33)* 

Yellow-breasted Chat -1.01 (-1.22, -0.79)* 0.08 (-0.05, 0.22)  -0.02 (-0.15, 0.10)  

Northern Flicker -2.28 (-2.57, -1.91)* 0.25 (0.11, 0.38)* 0.06 (-0.07, 0.18)  

Gray Catbird -0.95 (-1.20, -0.71)* -0.11 (-0.25, 0.03)  -0.08 (-0.23, 0.06)  

Song Sparrow -1.84 (-2.43, -1.31)* -0.01 (-0.26, 0.24)  0.02 (-0.16, 0.21)  

Brown Thrasher -3.25 (-3.96, -2.42)* -0.48 (-0.76, -0.21)* -0.07 (-0.27, 0.10)  

Baltimore Oriole -3.34 (-4.13, -2.36)* -0.65 (-0.96, -0.36)* 0.02 (-0.16, 0.19)  

Eastern Phoebe -2.02 (-2.99, -1.22)* -0.60 (-0.92, -0.29)* 0.01 (-0.18, 0.20)  

Chipping Sparrow -3.85 (-4.66, -2.89)* -0.67 (-1.00, -0.36)* -0.01 (-0.19, 0.16)  

Blue-winged Warbler -2.71 (-3.64, -1.77)* -0.78 (-1.15, -0.45)* -0.07 (-0.27, 0.11)  

House Wren -5.13 (-6.34, -3.55)* -0.50 (-0.99, -0.05)* 0.03 (-0.16, 0.23)  

Orchard Oriole -5.23 (-6.68, -3.29)* -0.26 (-0.77, 0.25)  0.02 (-0.17, 0.22)  

Yellow Warbler -5.15 (-6.64, -3.26)* -0.19 (-0.70, 0.31)  0.02 (-0.19, 0.22)  

Blue Grosbeak -6.29 (-8.37, -3.89)* -0.05 (-0.64, 0.55)  0.01 (-0.19, 0.21)  

Black-billed Cuckoo -6.58 (-9.28, -3.87)* -0.15 (-0.75, 0.45)  0.02 (-0.19, 0.22)  

    

Forest community -- -- -- 

Red-eyed Vireo 0.76 (0.68, 0.83)* 0.02 (-0.04, 0.09)  0.08 (0.00, 0.15)* 

Blue-gray Gnatcatcher -0.14 (-0.23, -0.05)* -0.51 (-0.58, -0.44)* 0.03 (-0.04, 0.10)  

Tufted Titmouse -0.52 (-0.61, -0.44)* -0.05 (-0.11, 0.02)  -0.00 (-0.07, 0.07)  

Carolina Chickadee -0.99 (-1.08, -0.89)* -0.02 (-0.09, 0.05)  -0.00 (-0.07, 0.07)  

Eastern Wood-Pewee -0.54 (-0.64, -0.44)* 0.11 (0.04, 0.18)* 0.05 (-0.04, 0.13)  

White-breasted Nuthatch -0.93 (-1.04, -0.81)* 0.18 (0.11, 0.25)* 0.04 (-0.04, 0.12)  

Red-bellied Woodpecker -0.92 (-1.06, -0.78)* -0.14 (-0.22, -0.07)* 0.10 (0.01, 0.19)* 

Downy Woodpecker -1.32 (-1.45, -1.17)* 0.04 (-0.04, 0.12)  0.06 (-0.02, 0.15)  

Northern Parula -0.87 (-1.00, -0.72)* -0.17 (-0.27, -0.08)* 0.05 (-0.05, 0.15)  

Summer Tanager -2.15 (-2.35, -1.94)* -0.01 (-0.13, 0.10)  0.02 (-0.09, 0.13)  

Hairy Woodpecker -2.20 (-2.46, -1.91)* 0.06 (-0.07, 0.19)  0.01 (-0.11, 0.12)  

Yellow-throated Warbler -1.76 (-2.07, -1.44)* -0.15 (-0.29, -0.01)* 0.03 (-0.11, 0.17)  

Yellow-billed Cuckoo -2.54 (-2.76, -2.31)* 0.17 (0.02, 0.33)* 0.02 (-0.11, 0.15)  

Pileated Woodpecker -3.32 (-3.51, -3.10)* -0.20 (-0.36, -0.04)* 0.06 (-0.06, 0.20)  

Cerulean Warbler -1.82 (-2.20, -1.44)* -0.58 (-0.81, -0.37)* -0.04 (-0.21, 0.13)  

Prothonotary Warbler -1.38 (-1.80, -0.95)* -0.30 (-0.52, -0.07)* 0.04 (-0.12, 0.20)  
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Table A7 (Continued) 
 

Species Intercept Julian date Tree basal area 

    

Red-headed Woodpecker -3.05 (-3.98, -2.13)* -0.13 (-0.44, 0.18)  0.07 (-0.11, 0.25)  

American Redstart -4.26 (-5.40, -2.64)* -0.49 (-0.86, -0.14)* -0.04 (-0.24, 0.13)  

Black-and-white Warbler -2.63 (-3.76, -1.55)* -0.50 (-0.88, -0.14)* -0.03 (-0.23, 0.16)  

Warbling Vireo -1.53 (-2.53, -0.67)* 0.13 (-0.26, 0.54)  0.11 (-0.08, 0.33)  

Pine Warbler -5.12 (-6.40, -2.93)* -0.08 (-0.53, 0.36)  0.06 (-0.13, 0.26)  

Rose-breasted Grosbeak -5.66 (-8.00, -2.25)* -0.33 (-0.92, 0.23)  -0.00 (-0.20, 0.20)  

Black-throated Green Warbler -5.69 (-8.39, -2.12)* -0.08 (-0.66, 0.48)  0.02 (-0.18, 0.21)  

    

Interior community -- -- -- 

Acadian Flycatcher 1.36 (1.27, 1.44)* -0.13 (-0.21, -0.05)* 0.04 (-0.04, 0.11)  

Kentucky Warbler -0.95 (-1.06, -0.84)* -0.01 (-0.09, 0.07)  -0.07 (-0.16, 0.01)  

Wood Thrush -0.48 (-0.60, -0.36)* 0.24 (0.16, 0.33)* 0.14 (0.04, 0.23)* 

Scarlet Tanager -1.12 (-1.27, -0.98)* 0.10 (0.01, 0.19)* 0.09 (-0.02, 0.19)  

Ovenbird -1.10 (-1.27, -0.92)* -0.64 (-0.78, -0.50)* 0.10 (-0.02, 0.23)  

Hooded Warbler -0.67 (-0.86, -0.48)* -0.09 (-0.21, 0.03)  -0.06 (-0.19, 0.07)  

Louisiana Waterthrush -3.12 (-3.58, -2.60)* -0.55 (-0.77, -0.35)* -0.04 (-0.20, 0.11)  

Worm-eating Warbler -1.76 (-2.21, -1.31)* -0.43 (-0.65, -0.21)* 0.05 (-0.12, 0.22)  
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Table A8.  Full results from the behavioral change point analysis for 47 translocated Wood 

Thrush and Ovenbirds that successfully homed.  For each bird, we iteratively split the time series 

of persistence velocities at each step and fit a segmented, autocorrelated time series model and 

compared the likelihoods among these models.  We chose a break time corresponding to the 

most likely model.  Using that value, we then fit eight models that allowed 0, 1, 2, or 3 of the 

model parameters to differ on the two sides of the break point.  The models were defined as: 

Model 0 – all parameters equal; Model 1 – µ1 ≠ µ2; Model 2 – σ1 ≠ σ2; Model 3 – ρ1 ≠ ρ2; Model 

4 – only ρ1 = ρ2; Model 5 – only σ1 = σ2; Model 6 – only µ1 = µ2; and Model 7 – all parameters 

differ.  We compared these using AICc, and concluded there was no evidence for a behavioral 

change if Model 0 had the most support. 

 

Species ID 

Home 

time (hr) Steps 

Break 

time (hr) Model DF LogLik AICc 

Delta 

AICc Weight 

           
Wood Thrush         

 1 3.12 9 1.60 0 4 -20.33 68.66 0.00 1.00 

     1 5 -15.20 100.40 31.74 0.00 

     3 5 -17.27 104.54 35.88 0.00 

     4 6 -9.35 114.70 46.05 0.00 

     2 5 -28.00 126.00 57.34 0.00 

     5 6 -15.67 127.34 58.68 0.00 

     7 7 -9.23 144.46 75.80 0.00 

     6 6 -66.40 228.80 160.14 0.00 
           

 2 4.92 21 2.03 2 5 -56.82 128.25 0.00 0.70 

     6 6 -56.76 132.52 4.27 0.08 

     4 6 -56.86 132.72 4.47 0.08 

     3 5 -59.28 133.17 4.93 0.06 

     1 5 -59.37 133.35 5.10 0.05 

     0 4 -62.66 136.17 7.92 0.01 

     5 6 -59.31 137.61 9.36 0.01 

     7 7 -56.80 137.79 9.54 0.01 
           

 3 4.95 34 2.35 2 5 -122.83 257.97 0.00 0.60 

     6 6 -122.53 260.43 2.46 0.18 

     4 6 -122.55 260.46 2.49 0.17 

     7 7 -122.25 263.17 5.21 0.04 

     1 5 -131.05 274.41 16.44 0.00 

     3 5 -131.30 274.91 16.94 0.00 

     5 6 -130.98 277.32 19.35 0.00 

     0 4 -138.05 285.59 27.62 0.00 
           

 4 5.75 38 3.77 3 5 -125.61 263.22 0.00 0.26 

     2 5 -125.62 263.24 0.03 0.26 

     1 5 -125.88 263.76 0.54 0.20 

     6 6 -125.20 265.29 2.08 0.09 

     4 6 -125.56 266.01 2.80 0.07 

     5 6 -125.62 266.13 2.92 0.06 

     0 4 -129.10 267.49 4.27 0.03 

     7 7 -125.17 268.34 5.13 0.02 
           

 5 6.58 46 2.80 2 5 -132.32 276.22 0.00 0.40 

     4 6 -131.04 276.36 0.14 0.38 

     6 6 -132.34 278.95 2.73 0.10 

     7 7 -131.02 279.15 2.93 0.09 

     1 5 -135.58 282.74 6.52 0.02 

     3 5 -136.54 284.65 8.43 0.01 

     5 6 -135.57 285.40 9.18 0.00 

     0 4 -139.36 287.75 11.53 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Wood Thrush         

 6 6.60 30 5.38 4 6 -76.22 168.45 0.00 0.77 

     7 7 -75.64 170.88 2.43 0.23 

     2 5 -88.94 190.61 22.16 0.00 

     1 5 -89.80 192.33 23.88 0.00 

     5 6 -91.62 199.25 30.80 0.00 

     0 4 -96.26 202.27 33.82 0.00 

     6 6 -93.49 202.98 34.54 0.00 

     3 5 -95.16 203.05 34.61 0.00 
           

 7 6.70 36 5.60 4 6 -99.46 214.02 0.00 0.82 

     7 7 -99.39 217.09 3.07 0.18 

     1 5 -139.33 290.80 76.78 0.00 

     5 6 -139.32 293.76 79.74 0.00 

     3 5 -144.09 300.33 86.31 0.00 

     0 4 -147.80 304.98 90.96 0.00 

     2 5 -155.62 323.39 109.37 0.00 

     6 6 -163.62 342.36 128.34 0.00 
           

 8 7.10 34 6.28 4 6 -92.85 201.06 0.00 0.65 

     7 7 -91.81 202.28 1.22 0.35 

     1 5 -108.23 228.76 27.70 0.00 

     5 6 -109.97 235.29 34.23 0.00 

     3 5 -120.34 252.98 51.92 0.00 

     0 4 -123.63 256.74 55.69 0.00 

     6 6 -137.67 290.69 89.64 0.00 

     2 5 -139.20 290.71 89.65 0.00 
           

 9 7.45 14 1.43 0 4 -23.95 61.61 0.00 0.69 

     1 5 -22.40 64.79 3.18 0.14 

     3 5 -22.63 65.26 3.65 0.11 

     4 6 -18.83 66.45 4.84 0.06 

     2 5 -26.84 73.68 12.07 0.00 

     5 6 -22.70 74.19 12.58 0.00 

     7 7 -18.29 78.59 16.97 0.00 

     6 6 -40.62 110.04 48.43 0.00 
           

 10 7.62 24 2.42 2 5 -71.20 156.16 0.00 0.34 

     1 5 -71.57 156.89 0.73 0.24 

     3 5 -71.71 157.17 1.01 0.21 

     6 6 -70.70 159.00 2.84 0.08 

     4 6 -70.93 159.45 3.29 0.07 

     5 6 -71.54 160.68 4.52 0.04 

     0 4 -76.29 162.93 6.78 0.01 

     7 7 -70.53 163.07 6.91 0.01 
           

 11 8.63 71 5.95 4 6 -216.85 447.06 0.00 0.77 

     7 7 -216.85 449.53 2.47 0.23 

     2 5 -284.71 580.37 133.31 0.00 

     1 5 -286.05 583.05 135.99 0.00 

     5 6 -286.18 585.72 138.66 0.00 

     3 5 -288.02 586.99 139.93 0.00 

     0 4 -291.84 592.31 145.25 0.00 

     6 6 -310.35 634.06 187.00 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Wood Thrush         

 12 9.08 42 6.63 4 6 -120.24 255.03 0.00 0.81 

     7 7 -120.24 257.99 2.95 0.19 

     2 5 -132.26 276.29 21.26 0.00 

     6 6 -132.26 279.07 24.04 0.00 

     1 5 -149.32 310.41 55.38 0.00 

     5 6 -149.32 313.19 58.16 0.00 

     3 5 -154.64 321.04 66.01 0.00 

     0 4 -158.26 325.66 70.63 0.00 
           

 13 9.25 32 2.67 2 5 -91.80 196.11 0.00 0.69 

     4 6 -91.79 199.23 3.13 0.14 

     6 6 -91.81 199.27 3.16 0.14 

     7 7 -91.76 202.60 6.50 0.03 

     1 5 -99.40 211.30 15.19 0.00 

     3 5 -99.50 211.50 15.40 0.00 

     5 6 -99.58 214.80 18.70 0.00 

     0 4 -104.12 217.83 21.73 0.00 
           

 14 9.52 67 5.15 4 6 -236.58 486.62 0.00 0.78 

     7 7 -236.58 489.13 2.52 0.22 

     1 5 -257.43 525.88 39.26 0.00 

     5 6 -257.47 528.39 41.77 0.00 

     3 5 -258.97 528.96 42.35 0.00 

     0 4 -262.68 534.03 47.41 0.00 

     6 6 -272.46 558.37 71.75 0.00 

     2 5 -274.03 559.08 72.47 0.00 
           

 15 9.88 45 3.45 4 6 -134.62 283.57 0.00 0.72 

     7 7 -134.62 286.44 2.87 0.17 

     2 5 -138.59 288.80 5.23 0.05 

     1 5 -139.28 290.17 6.60 0.03 

     6 6 -138.59 291.51 7.94 0.01 

     5 6 -139.28 292.88 9.31 0.01 

     3 5 -141.89 295.41 11.84 0.00 

     0 4 -146.68 302.40 18.83 0.00 
           

 16 10.97 42 9.57 4 6 -101.02 216.59 0.00 0.75 

     7 7 -100.62 218.74 2.15 0.25 

     1 5 -162.22 336.21 119.62 0.00 

     5 6 -166.37 347.28 130.69 0.00 

     2 5 -169.62 351.00 134.42 0.00 

     3 5 -170.92 353.61 137.02 0.00 

     0 4 -173.15 355.44 138.86 0.00 

     6 6 -328.92 672.38 455.79 0.00 
           

 17 19.62 68 7.25 4 6 -176.32 366.06 0.00 0.65 

     7 7 -175.69 367.32 1.25 0.35 

     2 5 -211.33 433.66 67.60 0.00 

     6 6 -213.04 439.50 73.44 0.00 

     1 5 -247.34 505.69 139.63 0.00 

     3 5 -248.46 507.91 141.85 0.00 

     5 6 -247.56 508.55 142.49 0.00 

     0 4 -251.71 512.07 146.01 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Wood Thrush         

 18 20.38 66 7.93 7 7 -216.48 448.95 0.00 0.72 

     4 6 -218.67 450.81 1.86 0.28 

     1 5 -249.54 510.11 61.16 0.00 

     5 6 -248.88 511.23 62.27 0.00 

     3 5 -250.85 512.74 63.79 0.00 

     0 4 -255.59 519.85 70.90 0.00 

     6 6 -260.53 534.54 85.59 0.00 

     2 5 -271.32 553.68 104.72 0.00 
           

 19 20.42 65 6.53 4 6 -164.14 341.79 0.00 0.76 

     7 7 -164.05 344.13 2.34 0.24 

     6 6 -177.93 369.37 27.58 0.00 

     2 5 -179.86 370.77 28.98 0.00 

     1 5 -186.92 384.89 43.10 0.00 

     3 5 -187.96 386.97 45.18 0.00 

     5 6 -186.90 387.30 45.51 0.00 

     0 4 -190.64 389.97 48.18 0.00 
           

 20 20.42 45 5.98 3 5 -144.54 300.69 0.00 0.38 

     6 6 -143.75 301.83 1.13 0.21 

     2 5 -145.34 302.31 1.62 0.17 

     5 6 -144.54 303.42 2.73 0.10 

     7 7 -143.78 304.76 4.07 0.05 

     1 5 -146.58 304.79 4.10 0.05 

     4 6 -145.34 305.01 4.32 0.04 

     0 4 -152.38 313.81 13.12 0.00 
           

 21 20.72 84 11.02 4 6 -248.79 510.71 0.00 0.77 

     7 7 -248.79 513.10 2.39 0.23 

     1 5 -359.88 730.55 219.85 0.00 

     5 6 -359.88 732.88 222.18 0.00 

     6 6 -363.43 739.98 229.28 0.00 

     2 5 -366.45 743.70 232.99 0.00 

     3 5 -366.75 744.30 233.59 0.00 

     0 4 -370.78 750.08 239.37 0.00 
           

 22 20.85 89 5.40 4 6 -246.05 505.16 0.00 0.66 

     7 7 -245.55 506.51 1.35 0.34 

     1 5 -305.08 620.90 115.74 0.00 

     5 6 -305.30 623.65 118.49 0.00 

     3 5 -306.90 624.53 119.37 0.00 

     0 4 -309.92 628.32 123.16 0.00 

     2 5 -429.13 869.00 363.84 0.00 

     6 6 -650.61 1314.26 809.10 0.00 
           

 23 21.02 61 11.02 2 5 -188.13 387.40 0.00 0.63 

     4 6 -188.04 389.69 2.29 0.20 

     6 6 -188.82 391.25 3.86 0.09 

     7 7 -188.07 392.34 4.95 0.05 

     1 5 -192.03 395.19 7.79 0.01 

     5 6 -191.35 396.32 8.92 0.01 

     3 5 -192.88 396.90 9.50 0.01 

     0 4 -201.94 412.63 25.23 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Wood Thrush         

 24 21.15 71 8.27 1 5 -137.21 285.36 0.00 0.32 

     2 5 -137.64 286.23 0.87 0.21 

     3 5 -137.77 286.49 1.13 0.18 

     4 6 -137.19 287.74 2.38 0.10 

     5 6 -137.21 287.78 2.41 0.10 

     6 6 -137.65 288.65 3.29 0.06 

     7 7 -137.19 290.22 4.86 0.03 

     0 4 -142.05 292.72 7.35 0.01 
           

 25 21.65 107 11.27 6 6 -388.76 790.37 0.00 0.31 

     7 7 -387.61 790.38 0.01 0.31 

     4 6 -389.00 790.86 0.49 0.24 

     2 5 -390.65 791.91 1.54 0.14 

     3 5 -408.84 828.29 37.92 0.00 

     1 5 -409.65 829.90 39.52 0.00 

     5 6 -408.98 830.81 40.44 0.00 

     0 4 -414.06 836.52 46.15 0.00 
           

 26 22.22 52 5.15 4 6 -139.91 293.77 0.00 0.79 

     7 7 -139.91 296.48 2.71 0.20 

     2 5 -145.93 303.23 9.45 0.01 

     6 6 -145.92 305.78 12.01 0.00 

     1 5 -152.15 315.67 21.90 0.00 

     3 5 -153.23 317.83 24.06 0.00 

     5 6 -152.15 318.26 24.49 0.00 

     0 4 -155.92 320.74 26.97 0.00 
           

 27 23.92 34 7.35 4 6 -73.05 161.46 0.00 0.81 

     7 7 -72.83 164.34 2.88 0.19 

     1 5 -133.04 278.39 116.93 0.00 

     3 5 -134.32 280.95 119.49 0.00 

     5 6 -132.89 281.14 119.68 0.00 

     0 4 -138.51 286.51 125.05 0.00 

     6 6 -150.90 317.16 155.70 0.00 

     2 5 -165.12 342.55 181.09 0.00 
           

 28 35.28 166 10.35 4 6 -388.64 789.82 0.00 0.54 

     7 7 -388.21 791.13 1.31 0.28 

     2 5 -391.22 792.81 2.99 0.12 

     6 6 -390.90 794.33 4.50 0.06 

     1 5 -407.62 825.62 35.79 0.00 

     5 6 -407.52 827.58 37.75 0.00 

     3 5 -408.61 827.61 37.78 0.00 

     0 4 -411.57 831.38 41.56 0.00 
           

 29 40.82 41 20.08 1 5 -54.75 121.32 0.00 0.24 

     2 5 -54.76 121.33 0.01 0.24 

     0 4 -56.45 122.08 0.76 0.16 

     3 5 -55.42 122.66 1.34 0.12 

     4 6 -54.16 122.94 1.62 0.11 

     5 6 -54.75 124.13 2.81 0.06 

     6 6 -54.76 124.15 2.82 0.06 

     7 7 -54.16 125.93 4.61 0.02 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Wood Thrush         

 30 43.93 184 30.08 4 6 -679.15 1370.78 0.00 0.52 

     7 7 -678.15 1370.94 0.16 0.48 

     2 5 -685.66 1381.67 10.89 0.00 

     6 6 -684.65 1381.79 11.01 0.00 

     1 5 -787.14 1584.63 213.85 0.00 

     5 6 -787.20 1586.88 216.11 0.00 

     3 5 -788.84 1588.02 217.24 0.00 

     0 4 -797.03 1602.28 231.50 0.00 
           

 31 45.83 51 20.48 7 7 -133.27 283.28 0.00 0.77 

     4 6 -136.55 287.10 3.83 0.11 

     6 6 -136.64 287.27 4.00 0.10 

     2 5 -140.43 292.25 8.97 0.01 

     1 5 -171.22 353.83 70.55 0.00 

     3 5 -173.19 357.77 74.49 0.00 

     5 6 -173.20 360.40 77.12 0.00 

     0 4 -196.09 401.10 117.82 0.00 
           

 32 69.17 254 44.98 7 7 -649.77 1314.01 0.00 0.65 

     4 6 -651.46 1315.27 1.26 0.35 

     6 6 -662.70 1337.74 23.73 0.00 

     2 5 -666.37 1342.98 28.97 0.00 

     5 6 -762.61 1537.57 223.56 0.00 

     1 5 -763.74 1537.72 223.72 0.00 

     3 5 -766.83 1543.90 229.89 0.00 

     0 4 -773.17 1554.51 240.50 0.00 
           

Ovenbird          
 33 4.57 65 3.22 4 6 -242.09 497.68 0.00 0.67 

     7 7 -241.83 499.70 2.02 0.24 

     2 5 -245.60 502.25 4.57 0.07 

     6 6 -245.44 504.37 6.70 0.02 

     1 5 -263.73 538.51 40.83 0.00 

     3 5 -264.40 539.86 42.18 0.00 

     5 6 -263.54 540.58 42.90 0.00 

     0 4 -268.78 546.25 48.57 0.00 
           

 34 11.75 72 5.12 2 5 -258.07 527.09 0.00 0.46 

     4 6 -257.56 528.45 1.37 0.23 

     6 6 -258.01 529.35 2.26 0.15 

     7 7 -257.50 530.80 3.72 0.07 

     1 5 -260.41 531.76 4.67 0.04 

     3 5 -260.84 532.63 5.54 0.03 

     5 6 -260.42 534.18 7.09 0.01 

     0 4 -264.33 537.27 10.18 0.00 

 35 20.60 84 11.07 4 6 -203.90 420.93 0.00 0.75 

     7 7 -203.80 423.11 2.18 0.25 

     2 5 -239.01 488.81 67.88 0.00 

     6 6 -256.54 526.21 105.28 0.00 

     1 5 -279.48 569.75 148.82 0.00 

     5 6 -283.25 579.62 158.70 0.00 

     3 5 -286.18 583.14 162.22 0.00 

     0 4 -287.55 583.62 162.69 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Ovenbird          

 36 21.23 48 8.70 2 5 -119.18 249.86 0.00 0.46 

     4 6 -118.59 251.33 1.47 0.22 

     6 6 -119.18 252.51 2.65 0.12 

     1 5 -121.17 253.84 3.98 0.06 

     7 7 -118.59 254.12 4.26 0.05 

     3 5 -121.48 254.46 4.60 0.05 

     5 6 -121.17 256.49 6.63 0.02 

     0 4 -124.16 257.30 7.44 0.01 
           

 37 23.07 69 10.00 4 6 -190.06 393.52 0.00 0.78 

     7 7 -190.06 396.02 2.50 0.22 

     1 5 -243.69 498.37 104.86 0.00 

     5 6 -243.74 500.87 107.36 0.00 

     3 5 -245.62 502.21 108.70 0.00 

     0 4 -249.39 507.43 113.92 0.00 

     6 6 -272.90 559.20 165.68 0.00 

     2 5 -276.24 563.46 169.95 0.00 
           

 38 28.27 95 21.55 2 5 -248.22 507.12 0.00 0.55 

     6 6 -248.04 509.07 1.95 0.21 

     4 6 -248.19 509.36 2.24 0.18 

     7 7 -248.01 511.34 4.22 0.07 

     1 5 -259.52 529.74 22.62 0.00 

     3 5 -259.57 529.83 22.71 0.00 

     5 6 -259.56 532.09 24.97 0.00 

     0 4 -263.95 536.36 29.24 0.00 
           

 39 42.95 70 20.67 2 5 -207.30 425.57 0.00 0.50 

     4 6 -206.73 426.84 1.27 0.27 

     6 6 -207.30 427.97 2.40 0.15 

     7 7 -206.73 429.33 3.76 0.08 

     1 5 -212.59 436.14 10.57 0.00 

     3 5 -212.91 436.79 11.22 0.00 

     5 6 -212.60 438.58 13.01 0.00 

     0 4 -215.64 439.92 14.35 0.00 
           

 40 45.45 152 31.90 4 6 -533.14 1078.86 0.00 0.71 

     7 7 -532.92 1080.62 1.75 0.29 

     2 5 -542.11 1094.64 15.77 0.00 

     6 6 -541.65 1095.89 17.02 0.00 

     1 5 -619.55 1249.53 170.66 0.00 

     5 6 -619.44 1251.46 172.60 0.00 

     3 5 -624.25 1258.91 180.05 0.00 

     0 4 -628.13 1264.53 185.66 0.00 
           

 41 45.52 57 21.62 2 5 -155.02 321.27 0.00 0.52 

     4 6 -154.85 323.45 2.18 0.17 

     6 6 -155.02 323.79 2.53 0.15 

     1 5 -157.30 325.83 4.56 0.05 

     7 7 -154.85 326.08 4.81 0.05 

     3 5 -157.51 326.24 4.97 0.04 

     5 6 -157.30 328.35 7.08 0.02 

     0 4 -162.13 333.05 11.78 0.00 
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Table A8 (Continued) 

 

Species ID 
Home 

time (hr) Steps 
Break 

time (hr) Model DF LogLik AICc 
Delta 
AICc Weight 

           
Ovenbird          

 42 46.72 97 12.17 2 5 -295.99 602.65 0.00 0.51 

     6 6 -295.76 604.48 1.83 0.21 

     4 6 -295.78 604.51 1.86 0.20 

     7 7 -295.58 606.45 3.79 0.08 

     1 5 -305.90 622.47 19.82 0.00 

     3 5 -305.96 622.59 19.93 0.00 

     5 6 -305.90 624.75 22.09 0.00 

     0 4 -309.08 626.61 23.96 0.00 
           

 43 50.57 48 22.50 2 5 -107.29 226.07 0.00 0.26 

     1 5 -107.34 226.19 0.11 0.25 

     3 5 -107.39 226.28 0.21 0.24 

     4 6 -107.11 228.37 2.30 0.08 

     6 6 -107.20 228.56 2.49 0.08 

     5 6 -107.31 228.77 2.69 0.07 

     7 7 -107.05 231.05 4.98 0.02 

     0 4 -112.51 234.00 7.93 0.00 
           

 44 66.97 72 21.53 4 6 -204.81 422.94 0.00 0.53 

     2 5 -206.81 424.55 1.61 0.24 

     7 7 -204.75 425.30 2.36 0.16 

     6 6 -206.72 426.78 3.83 0.08 

     1 5 -238.68 488.29 65.34 0.00 

     3 5 -239.49 489.92 66.97 0.00 

     5 6 -238.63 490.60 67.65 0.00 

     0 4 -242.56 493.73 70.79 0.00 
           

 45 67.88 153 16.95 4 6 -468.68 949.95 0.00 0.49 

     2 5 -470.40 951.21 1.26 0.26 

     7 7 -468.67 952.13 2.18 0.16 

     6 6 -470.39 953.36 3.41 0.09 

     1 5 -478.60 967.61 17.66 0.00 

     5 6 -478.58 969.74 19.80 0.00 

     3 5 -480.53 971.48 21.54 0.00 

     0 4 -483.38 975.03 25.09 0.00 
           

 46 70.30 105 51.00 4 6 -322.11 657.10 0.00 0.76 

     7 7 -322.11 659.41 2.30 0.24 

     2 5 -369.32 749.27 92.17 0.00 

     6 6 -368.81 750.50 93.40 0.00 

     1 5 -436.29 883.20 226.10 0.00 

     5 6 -436.29 885.46 228.35 0.00 

     3 5 -440.07 890.75 233.65 0.00 

     0 4 -444.01 896.42 239.32 0.00 
           

 47 72.20 250 57.57 7 7 -606.30 1227.07 0.00 0.57 

     4 6 -608.06 1228.48 1.41 0.28 

     6 6 -609.22 1230.78 3.71 0.09 

     2 5 -610.82 1231.88 4.81 0.05 

     1 5 -895.95 1802.15 575.08 0.00 

     3 5 -896.36 1802.97 575.90 0.00 

     5 6 -895.75 1803.85 576.79 0.00 

     0 4 -901.35 1810.86 583.80 0.00 
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Table A9. Full results from models fit in the first phase of path-level model building.  For each 

response variable, we compared a null model with models that included a single additional 

covariate for body condition (CONDITION), captivity time (CAPTIVITY), or total river/stream 

length in the local landscape (RIPARIAN).  A covariate for number of recorded steps (STEPS) 

was included in all models for straightness.  We retained covariates for the second phase if their 

models were than 2 AICc units lower than the null model. 

 
      AICc results 

Species Response Model DF LogLik AICc Delta AICc Weight 

Wood Thrush Total time      

  CONDITION 3 -35.13 77.11 0.00 0.38 

  NULL 2 -36.37 77.15 0.04 0.38 

  RIPARIAN 3 -36.30 79.45 2.34 0.12 

  CAPTIVITY 3 -36.31 79.47 2.36 0.12 

 Exploring time      

  NULL 2 -108.25 220.95 0.00 0.40 

  CONDITION 3 -107.20 221.32 0.37 0.33 

  CAPTIVITY 3 -107.98 222.88 1.93 0.15 

  RIPARIAN 3 -108.22 223.37 2.42 0.12 

 Homing time      

  CONDITION 3 -100.37 207.67 0.00 0.69 

  NULL 2 -102.95 210.34 2.67 0.18 

  RIPARIAN 3 -102.75 212.42 4.75 0.06 

  CAPTIVITY 3 -102.76 212.44 4.77 0.06 

 Total straightness      

  NULL 3 21.49 -36.11 0.00 0.53 

  CAPTIVITY 4 21.60 -33.72 2.39 0.16 

  CONDITION 4 21.58 -33.68 2.43 0.16 

  RIPARIAN 4 21.49 -33.50 2.61 0.14 

 Exploring straightness      

  NULL 3 20.75 -34.58 0.00 0.53 

  CAPTIVITY 4 21.07 -32.54 2.04 0.19 

  RIPARIAN 4 20.78 -31.96 2.62 0.14 

  CONDITION 4 20.76 -31.92 2.66 0.14 

 Homing straightness      

  NULL 3 13.82 -20.71 0.00 0.43 

  CAPTIVITY 4 14.73 -19.86 0.85 0.28 

  CONDITION 4 14.31 -19.02 1.69 0.18 

  RIPARIAN 4 13.84 -18.08 2.63 0.11 

Ovenbird Total time      

  CAPTIVITY 3 -10.99 30.17 0.00 0.96 

  RIPARIAN 3 -14.97 38.13 7.96 0.02 

  NULL 2 -16.87 38.74 8.57 0.01 

  CONDITION 3 -16.30 40.78 10.61 0.00 

 Exploring time      

  CAPTIVITY 3 -59.70 127.59 0.00 0.54 

  NULL 2 -61.95 128.89 1.30 0.28 

  CONDITION 3 -61.22 130.62 3.03 0.12 

  RIPARIAN 3 -61.84 131.86 4.27 0.06 

 Homing time      

  CAPTIVITY 3 -58.79 125.76 0.00 0.36 

  RIPARIAN 3 -58.84 125.86 0.10 0.34 

  NULL 2 -60.74 126.47 0.71 0.25 

  CONDITION 3 -60.70 129.58 3.82 0.05 

 Total straightness      

  NULL 3 13.49 -18.80 0.00 0.50 

  CAPTIVITY 4 15.05 -18.10 0.70 0.35 

  RIPARIAN 4 13.53 -15.06 3.74 0.08 

  CONDITION 4 13.49 -14.98 3.82 0.07 

 Exploring straightness      

  NULL 3 8.89 -9.60 0.00 0.56 

  CAPTIVITY 4 9.51 -7.01 2.59 0.15 

  CONDITION 4 9.44 -6.88 2.72 0.14 

  RIPARIAN 4 9.39 -6.78 2.82 0.14 

 Homing straightness      

  CAPTIVITY 4 8.46 -4.93 0.00 0.79 

  NULL 3 4.96 -1.74 3.19 0.16 

  CONDITION 4 5.16 1.69 6.62 0.03 

  RIPARIAN 4 4.97 2.06 6.99 0.02 
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Table A9 (Continued) 

 
      Parameter estimates (SE) 

Species Response Model INTERCEPT STEPS CONDITION CAPTIVITY RIPARIAN 

Wood Thrush Total time      

  CONDITION 2.62 (0.13) -- 0.21 (0.13) -- -- 

  NULL 2.62 (0.14) -- -- -- -- 

  RIPARIAN 2.62 (0.14) -- -- -- -0.05 (0.14) 

  CAPTIVITY 2.62 (0.14) -- -- -0.05 (0.14) -- 

 Exploring time      

  NULL 9.24 (1.66) -- -- -- -- 

  CONDITION 9.24 (1.63) -- 2.37 (1.66) -- -- 

  CAPTIVITY 9.24 (1.67) -- -- 1.22 (1.7) -- 

  RIPARIAN 9.24 (1.69) -- -- -- -0.39 (1.71) 

 Homing time      

  CONDITION 9.92 (1.3) -- 3.02 (1.32) -- -- 

  NULL 9.92 (1.39) -- -- -- -- 

  RIPARIAN 9.92 (1.4) -- -- -- -0.87 (1.43) 

  CAPTIVITY 9.92 (1.41) -- -- 0.85 (1.43) -- 

 Total straightness      

  NULL 0.49 (0.02) -0.12 (0.02) -- -- -- 

  CAPTIVITY 0.49 (0.02) -0.12 (0.02) -- 0.01 (0.02) -- 

  CONDITION 0.49 (0.02) -0.12 (0.02) -0.01 (0.02) -- -- 

  RIPARIAN 0.49 (0.02) -0.12 (0.02) -- -- 0 (0.02) 

 Exploring straightness      

  NULL 0.23 (0.02) -0.07 (0.02) -- -- -- 

  CAPTIVITY 0.23 (0.02) -0.07 (0.02) -- 0.02 (0.02) -- 

  RIPARIAN 0.23 (0.02) -0.08 (0.02) -- -- 0.01 (0.02) 

  CONDITION 0.23 (0.02) -0.07 (0.02) 0 (0.02) -- -- 

 Homing straightness      

  NULL 0.64 (0.03) -0.12 (0.03) -- -- -- 

  CAPTIVITY 0.64 (0.03) -0.12 (0.03) -- -0.04 (0.03) -- 

  CONDITION 0.64 (0.03) -0.11 (0.03) -0.03 (0.03) -- -- 

  RIPARIAN 0.64 (0.03) -0.12 (0.03) -- -- 0.01 (0.03) 

Ovenbird Total time      

  CAPTIVITY 3.51 (0.14) -- -- 0.57 (0.14) -- 

  RIPARIAN 3.51 (0.18) -- -- -- -0.36 (0.19) 

  NULL 3.51 (0.2) -- -- -- -- 

  CONDITION 3.51 (0.2) -- 0.21 (0.21) -- -- 

 Exploring time      

  CAPTIVITY 21.04 (3.59) -- -- 7.91 (3.72) -- 

  NULL 21.04 (4.02) -- -- -- -- 

  CONDITION 21.04 (3.97) -- 4.74 (4.11) -- -- 

  RIPARIAN 21.04 (4.14) -- -- -- -1.83 (4.29) 

 Homing time      

  CAPTIVITY 20.17 (3.38) -- -- 6.86 (3.5) -- 

  RIPARIAN 20.17 (3.39) -- -- -- -6.79 (3.51) 

  NULL 20.17 (3.71) -- -- -- -- 

  CONDITION 20.17 (3.84) -- -1 (3.97) -- -- 

 Total straightness      

  NULL 0.36 (0.03) -0.09 (0.03) -- -- -- 

  CAPTIVITY 0.36 (0.03) -0.09 (0.03) -- -0.04 (0.03) -- 

  RIPARIAN 0.36 (0.03) -0.09 (0.03) -- -- 0.01 (0.03) 

  CONDITION 0.36 (0.03) -0.09 (0.03) 0 (0.03) -- -- 

 Exploring straightness      

  NULL 0.22 (0.04) -0.05 (0.04) -- -- -- 

  CAPTIVITY 0.22 (0.04) -0.05 (0.04) -- 0.04 (0.04) -- 

  CONDITION 0.22 (0.04) -0.05 (0.04) 0.04 (0.04) -- -- 

  RIPARIAN 0.22 (0.04) -0.05 (0.04) -- -- -0.04 (0.04) 

 Homing straightness      

  CAPTIVITY 0.51 (0.04) -0.1 (0.04) -- -0.11 (0.04) -- 

  NULL 0.51 (0.05) -0.11 (0.05) -- -- -- 

  CONDITION 0.51 (0.05) -0.12 (0.05) -0.03 (0.05) -- -- 

  RIPARIAN 0.51 (0.05) -0.11 (0.06) -- -- -0.01 (0.06) 
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Table A10. Full results from models fit in the second phase of path-level model building.  In each model table, the baseline model 

was chosen in a previous step (Table A9) to determine whether effects of body condition (CONDITION) or captivity time 

(CAPTIVITY) should be included.  For each response variable, this baseline model had greater support than models that built on it 

with covariates for forest cover (PROP.FOR) and number of patches (PATCHES) in the local landscape. 

 
   Parameter estimates (SE)  AICc results 

Species Response Model INTERCEPT STEPS CAPTIVITY CONDITION PATCHES PROP.FOR 

PATCHES*

PROP.FOR   AICc 

Delta 

AICc Weight 

Wood Thrush             

 Total time            

  NULL 2.62 (0.14) -- -- -- -- -- --  77.15 0.00 0.45 

  PATCHES * PROP.FOR 2.9 (0.18) -- -- -- -0.11 (0.19) -0.1 (0.19) 0.4 (0.18)  78.85 1.70 0.19 

  PATCHES 2.62 (0.14) -- -- -- -0.06 (0.14) -- --  79.38 2.23 0.15 

  PROP.FOR 2.62 (0.14) -- -- -- -- -0.04 (0.14) --  79.49 2.34 0.14 

  PATCHES + PROP.FOR 2.62 (0.14) -- -- -- -0.19 (0.2) -0.18 (0.2) --  81.12 3.97 0.06 

 Exploring time            

  NULL 9.24 (1.66) -- -- -- -- -- --  220.95 0.00 0.54 

  PATCHES 9.24 (1.68) -- -- -- -0.92 (1.71) -- --  223.12 2.17 0.18 

  PROP.FOR 9.24 (1.68) -- -- -- -- -0.54 (1.71) --  223.32 2.37 0.17 

  PATCHES + PROP.FOR 9.24 (1.68) -- -- -- -2.6 (2.42) -2.38 (2.42) --  224.74 3.79 0.08 

  PATCHES * PROP.FOR 10.66 (2.37) -- -- -- -2.18 (2.48) -1.93 (2.48) 2.07 (2.44)  226.82 5.87 0.03 

 Homing time            

  CONDITION 9.92 (1.3) -- -- 3.02 (1.32) -- -- --  207.67 0.00 0.41 

  PROP.FOR 9.92 (1.29) -- -- 3.01 (1.31) -- 1.59 (1.31) --  208.74 1.07 0.24 

  PATCHES 9.92 (1.29) -- -- 2.76 (1.33) -1.59 (1.33) -- --  208.79 1.12 0.23 

  PATCHES + PROP.FOR 9.92 (1.31) -- -- 2.87 (1.36) -0.89 (1.93) 0.96 (1.9) --  211.40 3.73 0.06 

  PATCHES * PROP.FOR 11.88 (1.81) -- -- 2.47 (1.36) -0.45 (1.9) 1.49 (1.89) 2.86 (1.87)  211.87 4.20 0.05 

 Total straightness            

  NULL 0.49 (0.02) -0.12 (0.02) -- -- -- -- --  -36.11 0.00 0.46 

  PROP.FOR 0.49 (0.02) -0.12 (0.02) -- -- -- 0.03 (0.02) --  -34.77 1.34 0.24 

  PATCHES 0.49 (0.02) -0.12 (0.02) -- -- -0.02 (0.02) -- --  -34.37 1.74 0.19 

  PATCHES + PROP.FOR 0.49 (0.02) -0.12 (0.02) -- -- -0.01 (0.03) 0.02 (0.04) --  -31.97 4.14 0.06 

  PATCHES * PROP.FOR 0.46 (0.03) -0.11 (0.02) -- -- -0.01 (0.03) 0.01 (0.03) -0.05 (0.03)  -31.51 4.60 0.05 

 Exploring straightness            

  NULL 0.23 (0.02) -0.07 (0.02) -- -- -- -- --  -34.58 0.00 0.60 

  PATCHES 0.23 (0.02) -0.08 (0.02) -- -- -0.01 (0.02) -- --  -32.10 2.48 0.17 

  PROP.FOR 0.23 (0.02) -0.07 (0.02) -- -- -- 0.01 (0.02) --  -32.00 2.58 0.17 

  PATCHES + PROP.FOR 0.23 (0.02) -0.08 (0.03) -- -- -0.01 (0.04) 0 (0.04) --  -29.20 5.38 0.04 

  PATCHES * PROP.FOR 0.21 (0.03) -0.07 (0.03) -- -- -0.02 (0.04) -0.01 (0.04) -0.03 (0.03)  -27.08 7.50 0.01 

 Homing straightness            

  NULL 0.64 (0.03) -0.12 (0.03) -- -- -- -- --  -20.71 0.00 0.61 

  PROP.FOR 0.64 (0.03) -0.12 (0.03) -- -- -- -0.01 (0.03) --  -18.09 2.62 0.17 

  PATCHES 0.64 (0.03) -0.12 (0.03) -- -- 0 (0.03) -- --  -18.04 2.67 0.16 

  PATCHES + PROP.FOR 0.64 (0.03) -0.12 (0.03) -- -- 0 (0.04) -0.01 (0.04) --  -15.20 5.51 0.04 

  PATCHES * PROP.FOR 0.6 (0.04) -0.11 (0.03) -- -- -0.01 (0.04) -0.02 (0.04) -0.05 (0.04)  -13.67 7.04 0.02 
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Table A10 (Continued) 

 
   Parameter estimates (SE)  AICc results 

Species Response Model INTERCEPT STEPS CAPTIVITY CONDITION PATCHES PROP.FOR 

PATCHES*

PROP.FOR   AICc 

Delta 

AICc Weight 

              
Ovenbird             

 Total time            

  CAPTIVITY 3.51 (0.14) -- 0.57 (0.14) -- -- -- --  30.17 0.00 0.58 

  PATCHES + PROP.FOR 3.51 (0.13) -- 0.6 (0.14) -- -0.37 (0.19) -0.4 (0.19) --  32.92 2.75 0.15 

  PROP.FOR 3.51 (0.14) -- 0.62 (0.16) -- -- -0.14 (0.16) --  32.95 2.78 0.15 

  PATCHES 3.51 (0.14) -- 0.54 (0.16) -- -0.11 (0.16) -- --  33.42 3.25 0.11 

  PATCHES * PROP.FOR 3.4 (0.21) -- 0.64 (0.16) -- -0.45 (0.23) -0.49 (0.24) -0.16 (0.25)  38.17 8.00 0.01 

 Exploring time            

  NULL 21.04 (4.02) -- -- -- -- -- --  128.89 0.00 0.56 

  PATCHES 21.04 (3.98) -- -- -- -4.71 (4.12) -- --  130.63 1.74 0.23 

  PROP.FOR 21.04 (4.17) -- -- -- -- 0.57 (4.31) --  132.05 3.16 0.12 

  PATCHES + PROP.FOR 21.04 (3.99) -- -- -- -8.76 (5.89) -5.68 (5.89) --  133.33 4.44 0.06 

  PATCHES * PROP.FOR 28.29 (5.86) -- -- -- -3.07 (6.57) -0.52 (6.39) 10.9 (6.77)  134.82 5.93 0.03 

 Homing time            

  NULL 20.17 (3.71) -- -- -- -- -- --  126.47 0.00 0.69 

  PATCHES 20.17 (3.84) -- -- -- -0.72 (3.98) -- --  129.62 3.15 0.14 

  PROP.FOR 20.17 (3.85) -- -- -- -- -0.25 (3.98) --  129.65 3.18 0.14 

  PATCHES + PROP.FOR 20.17 (3.99) -- -- -- -1.81 (5.89) -1.54 (5.89) --  133.35 6.88 0.02 

  PATCHES * PROP.FOR 18.64 (6.49) -- -- -- -3.01 (7.27) -2.62 (7.08) -2.29 (7.5)  137.89 11.42 0.00 

 Total straightness            

  NULL 0.36 (0.03) -0.09 (0.03) -- -- -- -- --  -18.80 0.00 0.76 

  PATCHES 0.36 (0.03) -0.09 (0.03) -- -- -0.01 (0.03) -- --  -15.02 3.78 0.11 

  PROP.FOR 0.36 (0.03) -0.09 (0.03) -- -- -- 0 (0.03) --  -15.01 3.79 0.11 

  PATCHES + PROP.FOR 0.36 (0.03) -0.09 (0.03) -- -- 0 (0.05) 0 (0.05) --  -10.36 8.44 0.01 

  PATCHES * PROP.FOR 0.32 (0.05) -0.08 (0.04) -- -- -0.03 (0.05) -0.02 (0.05) -0.06 (0.06)  -5.88 12.92 0.00 

 Exploring straightness            

  NULL 0.22 (0.04) -0.05 (0.04) -- -- -- -- --  -9.60 0.00 0.65 

  PROP.FOR 0.22 (0.04) -0.04 (0.04) -- -- -- 0.04 (0.04) --  -6.87 2.73 0.17 

  PATCHES 0.22 (0.04) -0.06 (0.04) -- -- -0.04 (0.04) -- --  -6.81 2.79 0.16 

  PATCHES + PROP.FOR 0.22 (0.04) -0.05 (0.04) -- -- -0.02 (0.06) 0.02 (0.06) --  -2.32 7.28 0.02 

  PATCHES * PROP.FOR 0.18 (0.07) -0.04 (0.05) -- -- -0.04 (0.07) 0 (0.07) -0.05 (0.08)  2.86 12.46 0.00 

 Homing straightness            

  CAPTIVITY 0.51 (0.04) -0.1 (0.04) -0.11 (0.04) -- -- -- --  -4.93 0.00 0.81 

  PATCHES 0.51 (0.04) -0.11 (0.04) -0.1 (0.04) -- 0.03 (0.05) -- --  -0.76 4.17 0.10 

  PROP.FOR 0.51 (0.04) -0.1 (0.04) -0.12 (0.05) -- -- 0.01 (0.05) --  -0.36 4.57 0.08 

  PATCHES + PROP.FOR 0.51 (0.04) -0.11 (0.04) -0.11 (0.05) -- 0.06 (0.06) 0.06 (0.06) --  3.86 8.79 0.01 

  PATCHES * PROP.FOR 0.5 (0.07) -0.11 (0.05) -0.11 (0.05) -- 0.06 (0.08) 0.05 (0.08) -0.02 (0.09)  11.28 16.21 0.00 
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Table A11. Full results from all mixed conditional logistic regression models fit to step level data for translocated Wood Thrush 

and Ovenbirds.  Variables included in models were distance from the step endpoint to the capture site (CAPDIST) or stream 

(RIPDIST), forest cover within 50 m of the start point (FOR50), number of gaps (GAPS), total gap distance (GAPDIST), 

proportion of the step in forest (FOR%), and an indicator variable for behavioral mode (BEHAV) equal to one if the step occurred 

during exploring.  All regression coefficients were treated as random to account for correlation among steps taken by the same 

individual birds.  Thus, we report the estimated mean and standard deviation for each parameter, and 95% confidence intervals. 

 
                Mean   SD 

Species Model DF LogLik AICc Delta AICc Weight Variable Est LCL UCL   EST LCL UCL 

Wood Thrush              

 1 7 -2235.47 4485.09 0.00 0.46 CAPDIST -2.10 -2.66 -1.53  0.78 0.16 1.40 

       CAPDIST*BEHAV 0.07 -1.45 1.58  2.55 1.17 3.94 

       GAPS -0.23 -0.39 -0.08  0.21 0.04 0.37 

               

 2 9 -2234.58 4487.41 2.32 0.14 CAPDIST -2.20 -2.84 -1.55  0.99 0.31 1.66 

       CAPDIST*BEHAV 0.44 -1.06 1.94  2.58 4.05 1.10 

       GAPS -0.29 -0.48 -0.10  0.23 0.06 0.41 

       GAPS*FOR50 -0.04 -0.13 0.05  0.04 0.15 0.23 

               

 3 7 -2236.71 4487.57 2.48 0.13 CAPDIST -2.39 -3.09 -1.68  1.13 1.88 0.37 

       CAPDIST*BEHAV 0.39 -1.14 1.93  2.61 0.94 4.27 

       GAPDIST -0.25 -0.42 -0.07  0.08 0.39 0.23 

               

 4 9 -2235.21 4488.67 3.58 0.08 CAPDIST -2.06 -2.63 -1.50  0.76 0.14 1.38 

       CAPDIST*BEHAV 0.03 -1.51 1.56  2.60 1.21 3.99 

       GAPS -0.22 -0.38 -0.06  0.21 0.05 0.38 

       GAPS*BEHAV -0.13 -0.49 0.23  0.00 0.52 0.53 

               

 5 9 -2235.59 4489.43 4.33 0.05 CAPDIST -2.09 -2.67 -1.50  0.86 0.24 1.49 

       CAPDIST*BEHAV 0.13 -1.39 1.64  2.52 0.97 4.06 

       FOR% 0.32 0.12 0.51  0.12 0.10 0.35 

       FOR%*FOR50 0.08 -0.01 0.16  0.05 0.05 0.15 

               

 6 11 -2233.96 4490.27 5.18 0.03 CAPDIST -2.18 -2.81 -1.55  0.99 0.34 1.63 

       CAPDIST*BEHAV 0.45 -1.08 1.99  2.67 4.23 1.12 

       GAPS -0.27 -0.47 -0.08  0.24 0.07 0.41 

       GAPS*BEHAV -0.15 -0.54 0.24  0.05 0.59 0.49 

       GAPS*FOR50 -0.04 -0.13 0.05  0.07 0.04 0.17 

               

 7 9 -2236.11 4490.47 5.37 0.03 CAPDIST -2.34 -3.03 -1.66  1.10 0.31 1.90 

       CAPDIST*BEHAV 0.48 -1.41 2.36  2.48 4.14 0.82 

       GAPDIST -0.29 -0.72 0.14  0.11 0.67 0.89 

       GAPDIST*FOR50 -0.04 -0.16 0.08  0.01 0.18 0.15 

               

 8 9 -2236.18 4490.59 5.50 0.03 CAPDIST -2.26 -2.90 -1.62  0.92 0.27 1.57 

       CAPDIST*BEHAV 0.18 -1.37 1.73  2.57 1.08 4.07 

       GAPDIST -0.21 -0.37 -0.04  0.04 0.59 0.67 

       GAPDIST*BEHAV -0.43 -1.42 0.57  0.30 1.65 1.06 
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Table A11 (Continued) 

 
                Mean   SD 

Species Model DF LogLik AICc Delta AICc Weight Variable Est LCL UCL   EST LCL UCL 

Wood Thrush              

 9 7 -2239.14 4492.43 7.34 0.01 CAPDIST -2.01 -2.59 -1.43  0.87 1.54 0.21 

       CAPDIST*BEHAV 0.08 -1.42 1.57  2.71 1.05 4.36 

       FOR% 0.20 0.04 0.37  0.19 0.02 0.36 

               

 10 11 -2235.47 4493.29 8.20 0.01 CAPDIST -2.07 -2.65 -1.48  0.84 0.19 1.48 

       CAPDIST*BEHAV 0.07 -1.46 1.60  2.48 0.99 3.97 

       FOR% 0.30 0.10 0.50  0.13 0.08 0.34 

       FOR%*BEHAV 0.08 -0.22 0.38  0.00 0.43 0.44 

       FOR%*FOR50 0.07 -0.02 0.16  0.04 0.14 0.05 

               

 11 11 -2235.47 4493.29 8.20 0.01 CAPDIST -2.38 -3.09 -1.66  1.12 1.85 0.40 

       CAPDIST*BEHAV 0.54 -1.12 2.20  2.66 0.91 4.41 

       GAPDIST -0.36 -0.74 0.02  0.22 0.62 0.18 

       GAPDIST*BEHAV -0.34 -1.24 0.56  0.22 1.20 0.75 

       GAPDIST*FOR50 -0.04 -0.15 0.07  0.06 0.10 0.23 

               

 12 13 -2233.86 4494.22 9.13 0.00 CAPDIST -2.17 -2.80 -1.55  0.98 0.33 1.62 

       CAPDIST*BEHAV 0.44 -1.09 1.98  2.66 4.22 1.09 

       GAPS -0.27 -0.46 -0.07  0.24 0.07 0.41 

       GAPS*BEHAV -0.22 -0.73 0.29  0.05 0.61 0.51 

       GAPS*FOR50 -0.04 -0.13 0.05  0.06 0.06 0.18 

       GAPS*BEHAV*FOR50 -0.06 -0.37 0.25  0.01 0.21 0.23 

               

 13 13 -2234.63 4495.74 10.65 0.00 CAPDIST -2.26 -2.93 -1.60  0.95 0.19 1.70 

       CAPDIST*BEHAV 0.13 -1.38 1.65  2.55 1.05 4.04 

       GAPDIST -0.30 -0.59 -0.02  0.15 0.15 0.45 

       GAPDIST*BEHAV -1.01 -2.50 0.49  0.02 1.10 1.07 

       GAPDIST*FOR50 -0.05 -0.14 0.05  0.03 0.18 0.13 

       GAPDIST*BEHAV*FOR50 -0.35 -0.93 0.22  0.01 0.36 0.39 

               

 14 13 -2234.79 4496.06 10.97 0.00 CAPDIST -2.12 -2.74 -1.50  0.95 0.32 1.58 

       CAPDIST*BEHAV 0.15 -1.35 1.64  2.70 4.27 1.13 

       FOR% 0.29 0.08 0.49  0.13 0.08 0.34 

       FOR%*BEHAV 0.27 -0.30 0.85  0.02 0.38 0.41 

       FOR%*FOR50 0.06 -0.04 0.16  0.05 0.14 0.05 

       FOR%*BEHAV*FOR50 0.10 -0.14 0.35  0.01 0.13 0.15 

               

 15 9 -2238.97 4496.18 11.09 0.00 CAPDIST -2.00 -2.58 -1.42  0.87 1.53 0.21 

       CAPDIST*BEHAV 0.05 -1.46 1.56  2.72 1.08 4.36 

       FOR% 0.19 0.02 0.36  0.19 0.02 0.35 

       FOR%*BEHAV 0.10 -0.24 0.43  0.05 0.35 0.46 

               

 16 5 -2244.45 4498.97 13.88 0.00 CAPDIST -1.86 -2.37 -1.34  0.73 0.18 1.28 

       CAPDIST*BEHAV -0.06 -1.51 1.40  2.39 1.02 3.77 
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Table A11 (Continued) 

 
                Mean   SD 

Species Model DF LogLik AICc Delta AICc Weight Variable Est LCL UCL   EST LCL UCL 

Wood Thrush              

 17 9 -2240.39 4499.02 13.93 0.00 CAPDIST -1.91 -2.42 -1.41  0.74 0.18 1.30 

       CAPDIST*BEHAV -0.30 -1.79 1.18  2.35 0.99 3.71 

       RIPDIST -0.14 -0.34 0.06  0.24 0.03 0.45 

       RIPDIST*BEHAV 0.05 -0.28 0.39  0.24 0.03 0.45 

               

 18 7 -2242.45 4499.06 13.96 0.00 CAPDIST -1.91 -2.44 -1.39  0.67 0.10 1.24 

       CAPDIST*BEHAV -0.10 -1.52 1.32  2.34 0.87 3.81 

       RIPDIST -0.09 -0.26 0.08  0.27 0.05 0.49 

               
Ovenbird              

 1 9 -1594.41 3207.16 0.00 0.57 CAPDIST -4.67 -5.68 -3.65  0.70 1.96 0.56 

       CAPDIST*BEHAV 2.64 1.05 4.23  0.35 2.82 3.51 

       RIPDIST -0.13 -0.38 0.13  0.39 0.14 0.65 

       GAPS -0.47 -0.71 -0.23  0.17 0.23 0.56 

               

 2 11 -1593.27 3209.04 1.87 0.22 CAPDIST -4.94 -6.06 -3.83  0.81 0.25 1.88 

       CAPDIST*BEHAV 2.80 1.16 4.44  0.55 3.19 2.09 

       RIPDIST -0.16 -0.42 0.10  0.38 0.12 0.64 

       GAPS -0.56 -0.86 -0.26  0.19 0.54 0.16 

       GAPS*BEHAV 0.17 -0.39 0.72  0.27 0.91 0.36 

               

 3 11 -1593.96 3210.41 3.25 0.11 CAPDIST -4.78 -5.85 -3.71  0.81 0.37 2.00 

       CAPDIST*BEHAV 2.66 1.05 4.27  0.57 3.20 2.07 

       RIPDIST -0.14 -0.40 0.12  0.39 0.13 0.65 

       GAPS -0.42 -0.69 -0.15  0.15 0.50 0.21 

       GAPS*FOR50 0.03 -0.08 0.14  0.00 0.10 0.09 

               

 4 9 -1597.01 3212.35 5.19 0.04 CAPDIST -4.38 -5.35 -3.41  0.75 1.95 0.45 

       CAPDIST*BEHAV 2.37 0.84 3.89  0.19 3.29 2.92 

       RIPDIST -0.13 -0.40 0.14  0.40 0.15 0.65 

       FOR% 0.44 0.25 0.64  0.00 0.22 0.23 

               

 5 13 -1593.35 3213.38 6.21 0.03 CAPDIST -4.85 -5.94 -3.76  0.81 2.02 0.40 

       CAPDIST*BEHAV 2.81 1.18 4.43  0.22 2.83 3.27 

       RIPDIST -0.14 -0.40 0.13  0.38 0.13 0.64 

       GAPS -0.48 -0.79 -0.16  0.14 0.40 0.68 

       GAPS*BEHAV 0.15 -0.49 0.80  0.26 0.52 1.05 

       GAPS*FOR50 0.03 -0.09 0.14  0.00 0.09 0.08 

               

 6 11 -1596.66 3215.82 8.65 0.01 CAPDIST -4.52 -5.66 -3.37  0.79 0.44 2.02 

       CAPDIST*BEHAV 2.49 0.91 4.07  0.33 2.62 1.97 

       RIPDIST -0.13 -0.43 0.17  0.42 0.12 0.73 

       FOR% 0.50 0.25 0.76  0.00 0.33 0.33 

       FOR%*BEHAV -0.15 -0.56 0.25  0.03 1.90 1.84 
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Table A11 (Continued) 

 
                Mean   SD 

Species Model DF LogLik AICc Delta AICc Weight Variable Est LCL UCL   EST LCL UCL 

Ovenbird              

 7 11 -1596.92 3216.34 9.18 0.01 CAPDIST -4.46 -5.46 -3.45  0.74 0.43 1.91 

       CAPDIST*BEHAV 2.37 0.84 3.90  0.32 2.81 2.18 

       RIPDIST -0.13 -0.39 0.13  0.42 0.16 0.68 

       FOR% 0.48 0.13 0.83  0.00 0.24 0.24 

       FOR%*FOR50 0.02 -0.10 0.14  0.00 0.07 0.07 

               

 8 15 -1592.73 3216.37 9.21 0.01 CAPDIST -5.01 -6.38 -3.64  0.88 0.66 2.42 

       CAPDIST*BEHAV 2.88 1.16 4.60  0.21 2.09 1.68 

       RIPDIST -0.13 -0.38 0.12  0.45 0.17 0.73 

       GAPS -0.43 -0.78 -0.07  0.12 0.21 0.44 

       GAPS*BEHAV -0.01 -0.88 0.86  0.12 2.24 2.48 

       GAPS*FOR50 0.05 -0.10 0.19  0.02 0.13 0.09 

       GAPS*BEHAV*FOR50 -0.10 -0.88 0.69  0.31 1.35 0.72 

               

 9 9 -1599.82 3217.98 10.82 0.00 CAPDIST -4.91 -6.13 -3.70  1.03 0.00 2.05 

       CAPDIST*BEHAV 2.74 1.16 4.33  0.31 2.01 1.40 

       RIPDIST -0.13 -0.37 0.11  0.45 0.17 0.74 

       GAPDIST -0.55 -1.06 -0.05  0.31 0.17 0.79 

               

 10 13 -1596.59 3219.87 12.70 0.00 CAPDIST -4.52 -5.58 -3.45  0.77 0.46 2.00 

       CAPDIST*BEHAV 2.49 0.90 4.07  0.35 2.56 1.87 

       RIPDIST -0.13 -0.39 0.14  0.43 0.15 0.70 

       FOR% 0.56 0.15 0.97  0.00 0.27 0.26 

       FOR%*BEHAV -0.16 -0.57 0.25  0.07 1.14 0.99 

       FOR%*FOR50 0.02 -0.10 0.15  0.00 0.06 0.06 

               

 11 11 -1598.88 3220.25 13.08 0.00 CAPDIST -4.78 -5.94 -3.61  1.34 0.20 2.49 

       CAPDIST*BEHAV 2.63 1.00 4.27  0.58 1.72 2.87 

       RIPDIST -0.11 -0.38 0.16  0.43 0.14 0.73 

       GAPDIST -0.61 -1.11 -0.11  0.58 0.07 1.22 

       GAPDIST*BEHAV -0.34 -1.68 0.99  0.78 2.07 0.50 

               

 12 11 -1599.69 3221.87 14.71 0.00 CAPDIST -4.94 -6.16 -3.73  1.14 2.35 0.07 

       CAPDIST*BEHAV 2.86 1.25 4.48  0.47 2.75 1.81 

       RIPDIST -0.19 -0.44 0.07  0.40 0.16 0.63 

       GAPDIST -0.50 -0.95 -0.05  0.15 0.13 0.43 

       GAPDIST*FOR50 -0.01 -0.14 0.11  0.05 0.04 0.14 

               

 13 15 -1595.75 3222.40 15.24 0.00 CAPDIST -4.89 -6.04 -3.75  1.56 2.75 0.36 

       CAPDIST*BEHAV 2.91 1.28 4.54  0.42 2.39 1.54 

       RIPDIST -0.16 -0.40 0.08  0.41 0.18 0.64 

       GAPDIST -0.56 -1.02 -0.10  0.34 0.65 0.03 

       GAPDIST*BEHAV -0.52 -1.92 0.87  0.21 0.92 1.33 

       GAPDIST*FOR50 0.07 -0.10 0.24  0.16 0.04 0.29 

       GAPDIST*BEHAV*FOR50 -0.01 -0.68 0.66  0.41 0.09 0.91 
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Table A11 (Continued) 
 

                Mean   SD 

Species Model DF LogLik AICc Delta AICc Weight Variable Est LCL UCL   EST LCL UCL 

Ovenbird              

 14 15 -1596.21 3223.33 16.17 0.00 CAPDIST -4.49 -5.51 -3.48  0.81 1.97 0.35 

       CAPDIST*BEHAV 2.49 0.90 4.08  0.49 2.44 1.47 

       RIPDIST -0.15 -0.41 0.12  0.41 0.16 0.66 

       FOR% 0.55 0.11 1.00  0.02 0.35 0.30 

       FOR%*BEHAV -0.08 -0.92 0.76  0.13 0.73 0.47 

       FOR%*FOR50 0.02 -0.13 0.17  0.02 0.12 0.07 

       FOR%*BEHAV*FOR50 0.01 -0.34 0.36  0.07 0.23 0.09 

               

 15 13 -1598.65 3223.98 16.82 0.00 CAPDIST -4.82 -5.96 -3.67  1.17 2.85 0.50 

       CAPDIST*BEHAV 2.70 1.00 4.41  0.49 2.39 1.40 

       RIPDIST -0.17 -0.43 0.09  0.42 0.15 0.69 

       GAPDIST -0.48 -0.94 -0.02  0.16 0.11 0.43 

       GAPDIST*BEHAV -0.39 -1.34 0.56  0.58 0.24 1.41 

       GAPDIST*FOR50 -0.01 -0.19 0.16  0.09 0.05 0.23 

               

 16 7 -1613.19 3240.59 33.42 0.00 CAPDIST -3.81 -4.64 -2.97  0.26 3.04 2.52 

       CAPDIST*BEHAV 2.02 0.57 3.47  0.27 3.16 2.63 

       RIPDIST -0.12 -0.38 0.14  0.38 0.14 0.62 

               

 17 9 -1613.14 3244.61 37.45 0.00 CAPDIST -3.84 -4.72 -2.96  0.38 1.17 1.93 

       CAPDIST*BEHAV 2.05 0.62 3.49  0.25 2.93 2.44 

       RIPDIST -0.11 -0.39 0.17  0.39 0.15 0.64 

       RIPDIST*BEHAV -0.02 -0.35 0.32  0.01 0.45 0.44 

               

 18 5 -1617.49 3245.09 37.93 0.00 CAPDIST -3.52 -4.42 -2.63  0.79 0.33 1.92 

       CAPDIST*BEHAV 1.70 0.30 3.09  0.04 4.52 4.44 
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Figure A1. A comparison of the posterior means and credible intervals of the parameter 

estimates from a community occupancy model that did (solid lines) and did not (dashed lines) 

include an interaction term between patch size and forest amount.  In every case, the parameter 

estimates were nearly identical between the two models. 
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Figure A2.  A comparison of three measures of patch size for the 202 forest patches we sampled.   

We calculated interior patch size by excluding all parts of the patch within 100 m of a forest 

edge.  Edge patch size is the difference between forest patch size and interior patch size.  Here 

we show the relationship between these metrics for our 490 point count stations.  Because all of 

these measures of patch size are highly correlated, replacing forest patch size with either interior 

or edge patch size resulted in very similar parameter estimates for patch size effects.  Because 

some interior patch sizes were zero, we transformed all values by adding 1 and then taking the 

natural logarithm. 
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Figure A3. Plots showing distance from home as a function of time for the 32 translocated 

Wood Thrush that homed successfully.  Dots represent recorded GPS points.  Vertical dashed 

lines indicate the behavioral change point (Table A8).  Birds tended to move towards home 

quickly and directly after switching from exploring behavior (left of dashed line) to homing 

(right of dashed line).  Birds are numbered in order from quickest to home (1) to slowest (32). 
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Figure A4. Plots showing distance from home as a function of time for the 15 translocated 

Ovenbirds that homed successfully.  Dots represent recorded GPS points.  Vertical dashed lines 

indicate the behavioral change point (Table A8).  Birds tended to move towards home quickly 

and directly after switching from exploring behavior (left of dashed line) to homing (right of 

dashed line).  Birds are numbered in order from quickest to home (33) to slowest (47). 
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APPENDIX B: R CODE USED FOR SIMULATION AND ANALYSIS OF OCCUPANCY 

AND USE SAMPLING DATA 
 

#Remove all objects from the workspace 
rm(list=ls()) 
 
#Load required packages 
library(unmarked) 
library(gdata) 
 
######################################################################################
## 
#This function simulates and analyzes presence/absence datasets as described in our 
#manuscript. All datasets generated mimic those collected using Pollock's robust 
sampling 
#design (Pollock 1982), where 3 secondary sampling periods are nested 
#within each of 3 primary sampling periods.  By default, the function creates 
#1000 datasets containing 500 sites each, but these values can be specified. 
 
#Other parameters that can be specified include: 
  #psi0 - the initial probability of site use 
  #eps0 - the probability a used site becomes unused during a subsequent primary 
period 
  #Pa - the probability at least one individual using the site was available for 
sampling 
  #Pd = the probability at least one available individual is detected 
 
#Note that gamma0 is the probability an unused site becomes used during a subsequent 
primary period, 
#and that gamma0 is calculated such that the expected value of psi0 remains constant 
across all primary periods 
 
#Additionally, when the user specifies sampling="USE", datasets are generated 
#such that availability for detection is independent on each of the 9 sampling 
#occasions, representing a sampling scheme where probability of 
#site use is estimated within primary sampling periods. 
 
#When the user specifies sampling="OCCUPANCY", availability for detection 
#only changes between primary periods, representing a sampling scheme where 
#instantaneous occupancy rates are estimated within primary sampling periods 
 
#For each simulated dataset, we then fit both a static (MacKenzie et al. 2002) 
#and dynamic (MacKenzie et al. 2003) occupancy model, evaluate the proportion 
#of the time the dynamic (open) model is seleced over the static (closed) model, 
#and calculate the mean, variance, and bias of parameter estimates generated 
#from both models. 
######################################################################################
## 
pres.abs.sim = function(psi0=NULL, eps0=NULL, Pa=NULL, Pd=NULL, sampling=NULL, 
nsites=500, nsim=1000){ 
   
  #Calculate colonization rate such that probability of site use remains 
  #constant across all primary periods 
  gamma0 = (psi0*eps0)/(1-psi0) 
   
  #Create dataframe for storing results of simulations 
  data.summ=data.frame(matrix(NA, nrow=nsim, ncol=14)) 
  colnames(data.summ) = c("psi0", "gamma0", "eps0", "Pa", "Pd", "closed.psi", 
"closed.p", "open.psi", "open.p", "open.col", "open.ext", "tstat", "delta", "LRT") 
   
  for(j in 1:nsim){ 
    if(sampling=="USE"){ #Simulations generated when sampling=="USE" 
      a = matrix(NA, nrow=nsites, ncol=9) #Create availability matrix 
      y = matrix(NA, nrow=nsites, ncol=9) #Create observation matrix 
      z = matrix(NA, nrow=nsites, ncol=9) #Create use matrix 
      z[,1] = rbinom(n=nsites, size=1, prob=psi0) #Simulate initial site use, which 
remains constant for 3 sampling periods 
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      z[,2] = z[,3] = z[,1] 
      z[,4] = rbinom(n=nsites, size=1, prob=z[,1]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,1]-1)^2)*gamma0) #Simulate changes in site use between first and second 
primary periods. 
      z[,5] = z[,6] = z[,4] 
      z[,7] = rbinom(n=nsites, size=1, prob=z[,4]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,4]-1)^2)*gamma0) #Simulate changes in site use between second and third 
primary periods. 
      z[,8] = z[,9] = z[,7] 
       
      for(i in 1:9){#Simulate availability given use independently for each sampling 
occasion 
        a[,i] = rbinom(n=nsites, size=1, prob=z[,i]*Pa) 
      } 
      for(i in 1:9){#Simulate detection given availability 
        y[,i] = rbinom(n=nsites, size=1, prob=a[,i]*Pd) 
      } 
    } 
     
    if(sampling=="OCCUPANCY"){ #Simulations generated when sampling=="OCCUPANCY" 
      a = matrix(NA, nrow=nsites, ncol=9) #Create availability matrix 
      y = matrix(NA, nrow=nsites, ncol=9) #Create observation matrix 
      z = matrix(NA, nrow=nsites, ncol=9) #Create use matrix 
      z[,1] = rbinom(n=nsites, size=1, prob=psi0) #Simulate initial site use, which 
remains constant for 3 sampling periods 
      z[,2] = z[,3] = z[,1] 
      z[,4] = rbinom(n=nsites, size=1, prob=z[,1]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,1]-1)^2)*gamma0)#Simulate changes in site use between first and second 
primary periods. 
      z[,5] = z[,6] = z[,4] 
      z[,7] = rbinom(n=nsites, size=1, prob=z[,4]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,4]-1)^2)*gamma0)#Simulate changes in site use between second and third 
primary periods. 
      z[,8] = z[,9] = z[,7] 
       
      for(i in c(1,4,7)){#Simulate availability given use such that availability can 
change only between primary periods 
        a[,i] = rbinom(n=nsites, size=1, prob=z[,i]*Pa) 
      } 
      a[,2] = a[,3] = a[,1] 
      a[,5] = a[,6] = a[,4] 
      a[,8] = a[,9] = a[,7] 
      for(i in 1:9){#Simulate detection given availability 
        y[,i] = rbinom(n=nsites, size=1, prob=a[,i]*Pd) 
      } 
    } 
     
    #Construct unmarked dataframes for fitting closed and open occupancy models 
    closed = unmarkedFrameOccu(y=y) 
    open = unmarkedMultFrame(y=y, numPrimary=3) 
     
    #Fit closed and open occupancy models 
    try({closed.test = occu(~1~1, closed)}, silent=T) 
    try({open.test = colext(~1,~1,~1,~1, open)}, silent=T) 
     
    #Provide starting values for parameters, only if necessary 
    if(exists("closed.test")==F){ 
      try({closed.test = occu(~1~1, closed, starts=c(qlogis(psi0), qlogis(Pa*Pd)))}) 
    } 
    if(exists("open.test")==F){ 
      try({open.test = colext(~1,~1,~1,~1, open, starts=c(qlogis(psi0), 0, 0, 
qlogis(Pa*Pd)))}) 
    } 
     
    #Save parameter estimates from closed and open occupancy models 
    try({data.summ$open.col[j] = plogis(coef(open.test)[2])}, silent=T) 
    try({data.summ$open.ext[j] = plogis(coef(open.test)[3])}, silent=T) 
    try({data.summ$open.psi[j] = plogis(coef(open.test)[1])}, silent=T) 
    try({data.summ$open.p[j] = plogis(coef(open.test)[4])}, silent=T) 
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    try({data.summ$closed.psi[j] = plogis(coef(closed.test)[1])}, silent=T) 
    try({data.summ$closed.p[j] = plogis(coef(closed.test)[2])}, silent=T) 
     
    #Calculate likelihood ratio test statistic 
    try({data.summ$tstat[j] = LRT(closed.test, open.test)[1,1]}, silent=T) 
     
    #Find delta value required to appropriately calculate chi-square 
    #mixing proportions for comparison with the test statistic (Self & Liang 1987) 
    try({I1 = open.test@opt$hessian[2:3,2:3]}, silent=T) 
    try({I2 = open.test@opt$hessian[2:3,c(1,4)]}, silent=T) 
    try({I3 = solve(open.test@opt$hessian[c(1,4),c(1,4)])}, silent=T) 
    try({I4 = open.test@opt$hessian[c(1,4),2:3]}, silent=T) 
    try({sub.hessian = I1-I2%*%I3%*%I4}, silent=T) 
     
    #Delta is set at 0.5 when it cannot be appropriately calculated, as this 
    #minimizes the probability of rejecting H0. 
    try({data.summ$delta[j] = 
min(acos(sub.hessian[1,2]/sqrt(sub.hessian[1,1]*sub.hessian[2,2]))/(2*pi), 0.5, 
na.rm=T)}, silent=T) 
     
    #Calculate p-value 
    try({data.summ$LRT[j] = (0.5-data.summ$delta[j])*0 + 0.5*(1-
pchisq(data.summ$tstat[j],1)) + data.summ$delta[j]*(1-pchisq(data.summ$tstat[j], 2))}, 
silent=T) 
     
    #Itentify non-invertible Hessian matrices 
    try({data.summ$invert.closed.hess[j] = 
ifelse(min(diag(closed.test@opt$hessian))<0, 0, 1)}, silent=T) 
    try({data.summ$invert.open.hess[j] = ifelse(min(diag(open.test@opt$hessian))<0, 0, 
1)}, silent=T) 
     
    rm(closed, open, closed.test, open.test, sub.hessian, I1, I2, I3, I4) 
  } 
   
  #Record simulation parameters 
  data.summ$psi0 = psi0 
  data.summ$gamma0 = gamma0 
  data.summ$eps0 = eps0 
  data.summ$Pa = Pa 
  data.summ$Pd = Pd 
  data.summ$sampling = sampling 
   
  data.summ$open.selected = ifelse(data.summ$LRT < 0.05, 1, 0) 
   
  #Eliminate parameter estimates from models with non-invertible Hessian matrices 
  data.summ$closed.psi = ifelse(data.summ$invert.closed.hess==0, NA, 
data.summ$closed.psi) 
  data.summ$closed.p = ifelse(data.summ$invert.closed.hess==0, NA, data.summ$closed.p) 
  data.summ$open.psi = ifelse(data.summ$invert.open.hess==0, NA, data.summ$open.psi) 
  data.summ$open.p = ifelse(data.summ$invert.open.hess==0, NA, data.summ$open.p) 
  data.summ$open.col = ifelse(data.summ$invert.open.hess==0, NA, data.summ$open.col) 
  data.summ$open.ext = ifelse(data.summ$invert.open.hess==0, NA, data.summ$open.ext) 
   
  #Calculate bias in colonization and extinction rates 
  data.summ$col.bias = data.summ$open.col - data.summ$gamma0 
  data.summ$ext.bias = data.summ$open.ext - data.summ$eps0 
   
  #Summarize data from all simulations 
  tmp = aggregate(cbind(closed.psi, closed.p, open.psi, open.p, open.col, open.ext, 
col.bias, ext.bias)~sampling+psi0+Pa+Pd+gamma0+eps0, data=data.summ, FUN="mean") 
  colnames(tmp) = c("sampling", "psi0", "Pa", "Pd", "gamma0", "eps0", 
"closed.psi.mean", "closed.p.mean", "open.psi.mean", "open.p.mean", "open.col.mean", 
"open.ext.mean", "col.bias", "ext.bias") 
  tmp2 = aggregate(cbind(closed.psi, closed.p, open.psi, open.p, open.col, 
open.ext)~sampling+psi0+Pa+Pd+gamma0+eps0, data=data.summ, FUN="var") 
  colnames(tmp2) = c("sampling", "psi0", "Pa", "Pd", "gamma0", "eps0", 
"closed.psi.var", "closed.p.var", "open.psi.var", "open.p.var", "open.col.var", 
"open.ext.var") 
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  results = merge(tmp, tmp2, by=c("sampling", "psi0", "Pa", "Pd", "gamma0", "eps0")) 
  results$perc.open = 100*(sum(data.summ$open.selected, 
na.rm=T)/sum(!is.na(data.summ$open.selected))) 
   
  return(results) 
} 
 
#Note that simulating and analyzing 1000 presence/absence datasets with a 
#given set of parameters took approximately 30 minutes. 
example1 = pres.abs.sim(psi0=0.7, eps0=0, Pa=0.5, Pd=0.5, sampling="USE", nsites=500, 
nsim=100) 
example2 = pres.abs.sim(psi0=0.7, eps0=0, Pa=0.5, Pd=0.5, sampling="OCCUPANCY", 
nsites=500, nsim=100) 
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APPENDIX C: A DYNAMIC, MULTI-SCALE OCCUPANCY MODEL FOR 

ESTIMATING BOTH TEMPORARY EMIGRATION AND DYNAMIC DISTRIBUTION 

RATES FROM REPEATED PRESENCE-ABSENCE SURVEYS 

 

Sampling Situation 

Consider a situation in which there are N spatially discrete sampling sites.  Site use may 

change over time as a function of distribution dynamics (hereafter dynamics), defined as 

distributional shifts resulting from dispersal or other demographic processes that lead to unused 

sites becoming used, or vice versa.  Additionally, instantaneous occupancy may change as a 

function of either dynamics or temporary emigration.  There must be intervals within the study 

during which it is reasonable to assume that the occupancy state of the site is closed to both 

temporary emigration and dynamics.  Further, there must be intervals during which it is 

reasonable to assume that occupancy changes in a non-Markovian way due to temporary 

emigration, but site use is closed to changes resulting from dynamics.  That is, temporary 

changes in occupancy occur over finer time scales than changes in site use.   

The sampling scheme can be seen as an extension of Pollock’s robust sampling design 

(Pollock 1982) that includes tertiary sampling periods.  Sampling consists of P primary sampling 

periods between which site use can change as a function of dynamics (e.g. consecutive breeding 

seasons, or even consecutive weeks for short-lived species).  Within each primary period, there 

are S secondary sampling periods, between which temporary emigration may occur, but not 

dynamics.  These secondary periods are spaced in time such that the probability one or more 

individuals are available for sampling is independent during each secondary period.  Finally, 

within each secondary period there are T tertiary sampling periods between which the occupancy 

state of the site does not change.  MacKenzie & Royle (2005) provide useful suggestions for 

spacing repeated samples to ensure complete site closure, which may include using multiple 
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observers or detection methods simultaneously.  This results in a study in which there are P*S*T 

samples of presence/absence of the species at each site. 

 During each sampling occasion, the researcher uses an appropriate sampling method, and 

the species is detected (1) or not (0).  We assume that the species is not falsely detected when 

completely absent from the site, and consider each detection within a secondary sampling period 

an independent observation.  A non-detection event may occur either because 1) the species does 

not use the site, 2) it uses the site but has temporarily emigrated, or 3) it uses the site and was 

available for sampling, but was not detected by the observation method.  For each site, the 

resulting detection history Yi will be a vector of 0s and 1s of length P*S*T.  Under this sampling 

scenario, we can use likelihood theory to estimate the initial probability of site use (ψ0), 

probability of availability given use (pa), the probability of detection given availability (pd), the 

probability of a death or emigration event (ε0), and the probability of a birth or immigration event 

(γ0). 

 

Statistical Model and Likelihood 

We define Pr(Yi) as the probability of the observed detection history at site i.  Let yijkl = 1 

if the species is detected at site i in tertiary period l of secondary period k, in primary period j, 

and 0 otherwise.  Further, let yijk. = 1 if the species is detected during any tertiary period at site i 

in secondary period k of primary period j.  Lastly, let yij.. = 1 if the species is detected during any 

sampling occasion at site i in primary period j. 

It is easiest to express Pr(Yi) using matrix notation.  Let ψi be a 1×2 matrix 

𝝍0,𝑖1 = [𝜓0,𝑖1 (1 − 𝜓0,𝑖1)𝐼(𝑦𝑖1.. = 0)] 
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Here we use the indicator function I() to specify that the site cannot be unused in primary period 

1 if it was detected at least once during that primary period.  Further, we define ϕij as a 2×2 

matrix of use transition probabilities between primary periods 

𝝓𝑖𝑗 = [
(1 − 𝜀0,𝑖𝑗) 𝜀0,𝑖𝑗𝐼(𝑦𝑖𝑗.. = 0)

𝛾0,𝑖𝑗𝐼(𝑦𝑖𝑗−1.. = 0) (1 − 𝛾0,𝑖𝑗)𝐼(𝑦𝑖𝑗−1.. = 𝑦𝑖𝑗.. = 0)
] 

where the probability a site becomes unused (death/emigration) between primary periods j-1 and 

j (ε0,ij) is 0 if it was ever detected in primary period j, and the probability a site becomes used 

(birth/immigration event, γ0,ij) is 0 if it was ever detected in primary period j-1.  Similarly, the 

probability a site is not colonized (1-γ0,ij) is 0 if the species was either detected in either of the 

primary periods j-1 or j. 

 Within a primary period, we define paijk for each secondary period as a 2×3 availability 

matrix 

𝒑𝒂𝑖𝑗𝑘 = [
𝑝𝑎𝑖𝑗𝑘 (1 − 𝑝𝑎𝑖𝑗𝑘)𝐼(𝑦𝑖𝑗𝑘. = 0) 0

0 0 1
] 

where again, the probability an individual is unavailable (i.e., the site is not occupied) is 0 if it 

was detected at least once during that secondary period.  We then define pdijk as a 3×2 detection 

matrix 

𝒑𝒅𝑖𝑗𝑘 =

[
 
 
 
 
∏(𝑝𝑑𝑖𝑗𝑘𝑙)

𝑦𝑖𝑗𝑘𝑙

𝑇

𝑙=1

(1 − 𝑝𝑑𝑖𝑗𝑘𝑙)
1−𝑦𝑖𝑗𝑘𝑙 0

1 0
0 1]

 
 
 
 

 

If we allow Dij to be a 2×2 overall detection matrix such that 

𝑫𝑖𝑗 = ∏𝒑𝒂𝑖𝑗𝑘𝒑𝒅𝑖𝑗𝑘

𝑆

𝑘=1
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then the probability of the detection history Yi at any given site is 

Pr(𝒀𝑖) = (𝝍0,𝑖1𝑫𝑖1 ∏𝝓𝑖𝑗𝑫𝑖𝑗

𝑃

𝑗=2

) [
1
1
] 

and 

𝐿(𝜓, 𝑝𝑎, 𝑝𝑑, 𝜀, 𝛾|𝒀1, 𝒀2, . . . , 𝒀𝑁) = ∏𝑃𝑟(𝒀𝑖)

𝑁

𝑖=1

 

We can use this equation to generate estimates of ψ0, pa, pd, ε0, and γ0 by finding the values that 

maximize this likelihood given the observed detection histories.  While the model directly 

estimates probability of site use in the first primary period, probability of use in subsequent 

primary periods can be calculated as 

𝜓0,𝑖𝑗 = 𝜓0,𝑖𝑗−1(1 − 𝜀0,𝑖𝑗) + (1 − 𝜓0,𝑖𝑗−1)𝛾0,𝑖𝑗 

Further, the probability of occupancy at any given moment may be calculated as 

𝜓𝑖𝑗𝑘 = 𝜓0,𝑖𝑗𝑝𝑎𝑖𝑗𝑘 

and the temporary emigration rate as 

𝑇𝐸𝑖𝑗𝑘 = (1 − 𝑝𝑎𝑖𝑗𝑘) 

 

Model Extensions 

 It is easy to envision a situation in which the researcher might be interested in the effects 

of covariates on the model parameters.  For instance, the researcher may be interested in 

understanding the effects of habitat features on site occupancy, use, or dynamic rates, or the 

effects of survey covariates on detection probability.  The model can be extended to account for 
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covariate effects on any parameter using the logistic model.  For any parameter of interest θ, with 

a matrix of covariate information X, and logistic regression coefficients to be estimated β, 

𝜃 =
𝑒𝑥𝑝(𝑿𝜷)

1 + exp (𝑿𝜷)
 

 

Simulation Study 

 We simulated and analyzed datasets based on the sampling situation described above to 

evaluate the model’s performance under different scenarios.  We used values of N = 200 or 50, 

ψ0 = 0.3 or 0.7, pa = 0.5 or 0.8, pd = 0.5 or 0.8, and ε0 = 0.2 or 0.4.  In all simulations γ0 was 

calculated so the expected occupancy rate remained constant.  All simulations included 3 

primary, 3 secondary, and 3 tertiary sampling periods.  We thus considered 32 scenarios, each 

repeated 1000 times.  In each scenario we compared parameter estimates from the fitted models 

with the values used to generate the data.  We subtracted the simulation parameter from each 

estimate and averaged these values over all 1000 datasets to estimate bias.  Variance was 

calculated among the estimates themselves, and mean squared error (MSE) as the sum of the 

variance and the squared bias.  Full data simulation and analysis code is provided below. 

 

Simulation Results 

 This dynamic, multi-scale occupancy model performed very well under our limited range 

of simulation conditions (Table C1).  Both the bias and variance of all parameters tended to be 

larger when sample sizes were smaller (N = 50), particularly for the dynamic parameters (γ0 and 

ε0).  Nonetheless, these results indicate that this model may be useful for researchers interested in 

quantifying rates of both dynamics and temporary emigration simultaneously. 
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Table C1. Results from dynamic, multi-scale occupancy models fit to simulated datasets.  

Simulated data were collected using three tertiary sampling periods (over which sites were 

completely closed) nested within three secondary periods (over which sites were closed to 

dynamics), nested within three primary periods (between which dynamics could occur).  Here we 

report the bias and variance (on the original parameter scale) of the five estimated parameters 

from 1000 datasets generated for each combination of simulation parameters. 

 
 Simulation parameters Use (ψ0)    Avail (pa)      Det (pd)       Col (γ0)         Ext (ε0)        

 ψ0 pa pd γ0 ε0 Bias Var Bias Var Bias Var Bias Var Bias Var 

 

N = 200                

 0.3 0.5 0.5 0.09 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.5 0.5 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.5 0.8 0.09 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.5 0.8 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.8 0.5 0.09 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.8 0.5 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.8 0.8 0.09 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.3 0.8 0.8 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.5 0.5 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.5 0.5 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 0.00 

 0.7 0.5 0.8 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.5 0.8 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.8 0.5 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.8 0.5 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.8 0.8 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.8 0.8 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

                   

N = 50                 

 0.3 0.5 0.5 0.09 0.2 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.5 0.5 0.17 0.4 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.02 

 0.3 0.5 0.8 0.09 0.2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.5 0.8 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.8 0.5 0.09 0.2 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.8 0.5 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.8 0.8 0.09 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.3 0.8 0.8 0.17 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

 0.7 0.5 0.5 0.47 0.2 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 

 0.7 0.5 0.5 0.93 0.4 0.00 0.01 0.00 0.00 0.00 0.00 -0.03 0.01 0.00 0.01 

 0.7 0.5 0.8 0.47 0.2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 

 0.7 0.5 0.8 0.93 0.4 0.00 0.01 0.01 0.00 0.00 0.00 -0.02 0.01 0.00 0.01 

 0.7 0.8 0.5 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 

 0.7 0.8 0.5 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.7 0.8 0.8 0.47 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

 0.7 0.8 0.8 0.93 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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R Code for Simulation and Analysis of Dynamic, Multi-Scale Occupancy Models 

 
######################################################################################
## 
#This function simulates and analyzes presence/absence datasets as described in 
#Appendix C.  All datasets generated mimic those collected using an extended 
#version of Pollock's robust sampling design (Pollock 1982) that includes tertiary 
#3 tertiary sampling periods nested within each of 3 secondary sampling periods 
#nested within each of 3 primary sampling periods.  The function allows the user 
#to specify 
 
#psi0 = probability of initial site use 
#Pa = the probability that at least one individual using the site is available for 
detection 
#Pd = the probability at least one available individual is detected 
#eps0 = the probability a used site becomes unused during a subsequent primary period 
#nsites = the number of sampled sites 
#nsim = the number of datasts to simulate and analyze 
 
#Note that gamma0 is the probability an unused site becomes used during a subsequent 
#primary period and that gamma0 is calculated such that the expected value of psi0 
remains 
#constant during all primary periods. 
 
#The function returns parameter estimates for psi0, pa, pd, eps0, and gamma0 
#on the logit scale.  Use plogis() to view the estimates on the original 
#probability scale 
######################################################################################
## 
 
 
Dyn.MS.Occ.Sim =function(psi0=NULL, Pa=NULL, Pd=NULL, eps0=NULL, nsites=NULL, 
nsim=NULL){ 
  gamma0 = (psi0*eps0)/(1-psi0) 
   
  #Create table for results 
  results = data.frame(matrix(nrow=nsim, ncol=5)) 
  colnames(results) = c("psi0", "pa", "pd", "eps0", "gamma0") 
   
  #Simulate detection history 
  for(a in 1:nsim){ 
    z = matrix(NA, nrow=nsites, ncol=3) 
    z[,1] = rbinom(n=nsites, size=1, prob=psi0) 
    z[,2] = rbinom(n=nsites, size=1, prob=z[,1]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,1]-1)^2)*gamma0) 
    z[,3] = rbinom(n=nsites, size=1, prob=z[,2]*(1-eps0)) + rbinom(n=nsites, size=1, 
prob=((z[,2]-1)^2)*gamma0) 
     
    y = matrix(NA, nrow=nsites, ncol=9) 
    for(i in 1:3){y[,i] = rbinom(n=nsites, size=1, prob=z[,1]*Pa)} 
    for(i in 4:6){y[,i] = rbinom(n=nsites, size=1, prob=z[,2]*Pa)} 
    for(i in 7:9){y[,i] = rbinom(n=nsites, size=1, prob=z[,3]*Pa)} 
     
    data = matrix(NA, nrow=nsites, ncol=27) 
    for(i in 1:3){data[,i] = rbinom(n=nsites, size=1, prob=y[,1]*Pd)} 
    for(i in 4:6){data[,i] = rbinom(n=nsites, size=1, prob=y[,2]*Pd)} 
    for(i in 7:9){data[,i] = rbinom(n=nsites, size=1, prob=y[,3]*Pd)} 
    for(i in 10:12){data[,i] = rbinom(n=nsites, size=1, prob=y[,4]*Pd)} 
    for(i in 13:15){data[,i] = rbinom(n=nsites, size=1, prob=y[,5]*Pd)} 
    for(i in 16:18){data[,i] = rbinom(n=nsites, size=1, prob=y[,6]*Pd)} 
    for(i in 19:21){data[,i] = rbinom(n=nsites, size=1, prob=y[,7]*Pd)} 
    for(i in 22:24){data[,i] = rbinom(n=nsites, size=1, prob=y[,8]*Pd)} 
    for(i in 25:27){data[,i] = rbinom(n=nsites, size=1, prob=y[,9]*Pd)} 
     
    #Identify sites where species was detected at least once during 
    #each primary period 
    Y.. = cbind(apply(data[,1:9], 1, max), apply(data[,10:18], 1, max), 
              apply(data[,19:27], 1, max)) 
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    #Identify sites where species was detected at least once during 
    #each secondary period 
    Y. = cbind(apply(data[,1:3], 1, max), apply(data[,4:6], 1, max), 
              apply(data[,7:9], 1, max), apply(data[,10:12], 1, max), 
              apply(data[,13:15], 1, max), apply(data[,16:18], 1, max), 
              apply(data[,19:21], 1, max), apply(data[,22:24], 1, max), 
              apply(data[,25:27], 1, max)) 
     
    i = nsites; j = 3; k = 3; l = 3 
     
    #Likelihood 
    nll = function(params){ 
      psi = plogis(params[1]) 
      pa = plogis(params[2]) 
      pd = plogis(params[3]) 
      eps0 = plogis(params[4]) 
      gamma0 = plogis(params[5]) 
       
      occ = matrix(NA, nrow=i, ncol=2) 
      occ[,1] = psi 
      occ[,2] = ifelse(Y..[,1]==1, 0, 1-psi) 
       
      av = array(NA, c(2,3,k,j,i)) 
      av[2,,,,] = c(0,0,1) 
      av[1,c(1,3),,,] = c(pa, 0) 
      for(m in 1:i){ 
        av[1,2,1,1,m] = ifelse(Y.[m,1]==1, 0, 1-pa) 
        av[1,2,2,1,m] = ifelse(Y.[m,2]==1, 0, 1-pa) 
        av[1,2,3,1,m] = ifelse(Y.[m,3]==1, 0, 1-pa) 
        av[1,2,1,2,m] = ifelse(Y.[m,4]==1, 0, 1-pa) 
        av[1,2,2,2,m] = ifelse(Y.[m,5]==1, 0, 1-pa) 
        av[1,2,3,2,m] = ifelse(Y.[m,6]==1, 0, 1-pa) 
        av[1,2,1,3,m] = ifelse(Y.[m,7]==1, 0, 1-pa) 
        av[1,2,2,3,m] = ifelse(Y.[m,8]==1, 0, 1-pa) 
        av[1,2,3,3,m] = ifelse(Y.[m,9]==1, 0, 1-pa) 
      } 
       
      det = array(NA, c(3,2,k,j,i)) 
      det[,2,,,] = c(0,0,1) 
      det[2:3,1,,,] = c(1,0) 
      for(m in 1:i){ 
        det[1,1,1,1,m] = (data[m,1]*pd+(1-data[m,1])*(1-pd))*(data[m,2]*pd+(1-
data[m,2])*(1-pd))*(data[m,3]*pd+(1-data[m,3])*(1-pd)) 
        det[1,1,2,1,m] = (data[m,4]*pd+(1-data[m,4])*(1-pd))*(data[m,5]*pd+(1-
data[m,5])*(1-pd))*(data[m,6]*pd+(1-data[m,6])*(1-pd)) 
        det[1,1,3,1,m] = (data[m,7]*pd+(1-data[m,7])*(1-pd))*(data[m,8]*pd+(1-
data[m,8])*(1-pd))*(data[m,9]*pd+(1-data[m,9])*(1-pd)) 
        det[1,1,1,2,m] = (data[m,10]*pd+(1-data[m,10])*(1-pd))*(data[m,11]*pd+(1-
data[m,11])*(1-pd))*(data[m,12]*pd+(1-data[m,12])*(1-pd)) 
        det[1,1,2,2,m] = (data[m,13]*pd+(1-data[m,13])*(1-pd))*(data[m,14]*pd+(1-
data[m,14])*(1-pd))*(data[m,15]*pd+(1-data[m,15])*(1-pd)) 
        det[1,1,3,2,m] = (data[m,16]*pd+(1-data[m,16])*(1-pd))*(data[m,17]*pd+(1-
data[m,17])*(1-pd))*(data[m,18]*pd+(1-data[m,18])*(1-pd)) 
        det[1,1,1,3,m] = (data[m,19]*pd+(1-data[m,19])*(1-pd))*(data[m,20]*pd+(1-
data[m,20])*(1-pd))*(data[m,21]*pd+(1-data[m,21])*(1-pd)) 
        det[1,1,2,3,m] = (data[m,22]*pd+(1-data[m,22])*(1-pd))*(data[m,23]*pd+(1-
data[m,23])*(1-pd))*(data[m,24]*pd+(1-data[m,24])*(1-pd)) 
        det[1,1,3,3,m] = (data[m,25]*pd+(1-data[m,25])*(1-pd))*(data[m,26]*pd+(1-
data[m,26])*(1-pd))*(data[m,27]*pd+(1-data[m,27])*(1-pd)) 
      } 
       
      trans = array(NA, c(2,2,j-1,i)) 
      trans[1,1,,] = 1-eps0 
      for(m in 1:i){ 
        trans[1,2,1,m] = ifelse(Y..[m,2]==1, 0, eps0) 
        trans[1,2,2,m] = ifelse(Y..[m,3]==1, 0, eps0) 
        trans[2,1,1,m] = ifelse(Y..[m,1]==1, 0, gamma0) 
        trans[2,1,2,m] = ifelse(Y..[m,2]==1, 0, gamma0) 
        trans[2,2,1,m] = ifelse(Y..[m,1]==1 | Y..[m,2]==1, 0, 1-gamma0) 
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        trans[2,2,2,m] = ifelse(Y..[m,2]==1 | Y..[m,3]==1, 0, 1-gamma0) 
      } 
       
      tmp = rep(NA, nsites) 
      for(m in 1:nsites){ 
        tmp[m] = 
occ[m,]%*%av[,,1,1,m]%*%det[,,1,1,m]%*%av[,,2,1,m]%*%det[,,2,1,m]%*%av[,,3,1,m]%*%det[
,,3,1,m]%*% 
          
trans[,,1,m]%*%av[,,1,2,m]%*%det[,,1,2,m]%*%av[,,2,2,m]%*%det[,,2,2,m]%*%av[,,3,2,m]%*
%det[,,3,2,m]%*% 
          
trans[,,2,m]%*%av[,,1,3,m]%*%det[,,1,3,m]%*%av[,,2,3,m]%*%det[,,2,3,m]%*%av[,,3,3,m]%*
%det[,,3,3,m]%*%c(1,1) 
      } 
      -sum(log(tmp)) 
       
    } 
     
    #Maximize the likelihood and record the results 
    try({test = optim(c(0,0,0,0,0), nll, method="BFGS")}, silent=T) 
    try({results[a,] = test$par}, silent=T) 
     
    rm(test) 
  } 
  return(list(results)) 
} 
 
example1 = Dyn.MS.Occ.Sim(psi0=0.3, Pa=0.5, Pd=0.5, eps0=0.2, nsites=50, nsim=10) 
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APPENDIX D: COMMUNITY OCCUPANCY MODEL SPECIFICATION 

 

Below we present R code for importing three data files (BirdCounts.csv, HabitatVars.csv, 

and SurveyVars.csv), and formatting those data for analysis in our community occupancy model.  

We then provide the full specification of the hierarchical model, and associated R code for 

running the model in JAGS (Plummer 2003) using the R package jagsUI v 1.4.2 (Kellner 2016).  

Though we also fit a model that included an interaction term between forest patch size and forest 

amount, the model presented excludes this term, because it was non-significant for 98% of 

species examined. 

In order to assess model fit, we used a Bayesian p-value approach (Gelman et al. 1996, 

Zipkin et al. 2009, Kéry and Royle 2016).  At each iteration of the MCMC chain, we calculated a 

discrepancy statistic (D) as the sum of the squared differences between each observed data point 

(yi,j,k,l,m, below), and its expected value (Ei,j,k,l,m) under the fitted model.  We then simulated a 

unique dataset based on the fitted model (ysim) and calculated the same discrepancy statistic 

(Dsim) for this dataset as well.  Thus, the posterior distribution of Dsim provides a reference 

distribution against which to compare D.  We calculated our p-value as the proportion of the time 

(out of 6000 retained MCMC iterations) D was larger than Dsim. 

 

R and JAGS Code 

#Load jagsUI package 
library(jagsUI) 
 
#Import data and create a unique line for each combination of year, patch, point, 
#survey, and species 
 
birds = read.csv("BirdCounts.csv") 
habitat = read.csv("HabitatVars.csv") 
data = merge(birds, habitat, by=c("num.patch", "num.point", "year", "num.year")) 
tmp1 = expand.grid("num.year"=unique(data$num.year), 

"num.patch"=unique(data$num.patch), "num.point" = unique(data$num.point), 
"surveyorder"=unique(data$surveyorder), "num.species"=unique(data$num.species)) 
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data = merge(tmp1, data, by=c("num.year", "num.patch", "num.point", "surveyorder", 
"num.species"), all=T) 

 
#Create arrays for edge distance, patch size, and habitat amount. 
tmp1 = unique(data[, c("num.patch", "num.point", "edge.dist", "amount.prop", 

"Area_ha")]) 
tmp1$amount.prop = scale(tmp1$amount.prop, center=T, scale=T) 
tmp1$edge.dist = scale(tmp1$edge.dist, center=T, scale=T) 
tmp1$Area_ha = scale(log(tmp1$Area_ha), center=T, scale=T) 
tmp1 = tmp1[order(tmp1$num.point, tmp1$num.patch),] 
edge = array(tmp1$edge.dist, c(202, 10)) 
amount = array(tmp1$amount.prop, c(202, 10)) 
size = array(tmp1$Area_ha, c(202, 10)) 
 
#Conduct principal components analysis on local vegetation variables, and create 
#arrays for PC1, PC2, PC3, and tree basal area 
tmp1 = unique(data[which(!is.na(data$shrubtotal)),c("num.patch", "num.point", 

"num.year", "shrubtotal", "tottrees", "canopy_vvt", "leafmean", "vfd5m")]) 
tmp1$shrubtotal = scale(tmp1$shrubtotal, center=T, scale=T) 
tmp1$tottrees = scale(tmp1$tottrees, center=T, scale=T) 
tmp1$canopy_vvt = scale(tmp1$canopy_vvt, center=T, scale=T) 
tmp1$vfd5m = scale(tmp1$vfd5m, center=T, scale=T) 
tmp1$leafmean = scale(tmp1$leafmean, center=T, scale=T) 
 
tmp2 = prcomp(~tottrees+shrubtotal+canopy_vvt+vfd5m+leafmean, data=tmp1) 
tmp1 = cbind(tmp1, tmp2$x) 
 
tmp2 = expand.grid("num.year"=c(1:3), "num.point"=c(1:10), "num.patch"=c(1:202)) 
tmp1 = merge(tmp1, tmp2, by=c("num.year", "num.point", "num.patch"), all=T) 
tmp1 = tmp1[order(tmp1$num.year, tmp1$num.point, tmp1$num.patch),] 
 
pc1 = array(tmp1$PC1, c(202, 10, 3)) 
pc2 = array(tmp1$PC2, c(202, 10, 3)) 
pc3 = array(tmp1$PC3, c(202, 10, 3)) 
trees = array(tmp1$tottrees, c(202, 10, 3)) 
 
#Create array for response variable 
data$count = ifelse(data$count > 0, 1, 0) 
data = data[order(data$surveyorder, data$num.year, data$num.point, data$num.patch, 

data$num.species),] 
y = array(data$count, c(52,202,10,3,3)) 
 
#Create vector for number of sampling sites (points) in each patch 
tmp1 = data[which(!is.na(data$count) & data$num.year==1),] 
tmp1 = aggregate(num.point ~ num.patch, data=tmp1, FUN="max") 
tmp1 = tmp1[order(tmp1$num.patch),] 
nsites = tmp1$num.point 
 
#Create vector for group membership of each species 
tmp1 = unique(data[-which(is.na(data$num.group)),c("num.species", "num.group")]) 
tmp1 = tmp1[order(tmp1$num.species),] 
group = tmp1$num.group 
 
#Read in Julian dates and create array 
tmp = read.csv("SurveyVars.csv") 
tmp$julian = scale(tmp$julian, center=T, scale=T) 
tmp2 = expand.grid("num.year"=unique(tmp$num.year), "num.patch"=unique(tmp$num.patch), 

"num.point" = unique(tmp$num.point), "surveyorder"=unique(tmp$surveyorder)) 
tmp = merge(tmp, tmp2, by=c("num.year", "num.patch", "num.point", "surveyorder"), 

all=T) 
tmp = tmp[order(tmp$surveyorder, tmp$num.year, tmp$num.point, tmp$num.patch),] 
julian = array(tmp$julian, c(202, 10, 3, 3)) 
 
#Model specification 
sink("Model.txt") 
cat("model{ 
     
  mu.alpha0 ~ dnorm(0, 0.001) 
  sigma.alpha0 ~ dunif(0, 5) 
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  tau.alpha0 <- 1/(sigma.alpha0*sigma.alpha0) 
     
  mu.alpha1 ~ dnorm(0, 0.001) 
  sigma.alpha1 ~ dunif(0, 5) 
  tau.alpha1 <- 1/(sigma.alpha1*sigma.alpha1) 
     
  mu.alpha2 ~ dnorm(0, 0.001) 
  sigma.alpha2 ~ dunif(0, 5) 
  tau.alpha2 <- 1/(sigma.alpha2*sigma.alpha2) 
     
  for(h in 1:ngroups){ 
    sigma.patch[h] ~ dunif(0, 5) 
    tau.patch[h] <- 1/(sigma.patch[h]*sigma.patch[h]) 
     
    mu.beta0[h] ~ dnorm(0, 0.001) 
    sigma.beta0[h] ~ dunif(0, 5) 
    tau.beta0[h] <- 1/(sigma.beta0[h]*sigma.beta0[h]) 
     
    mu.beta1[h] ~ dnorm(0, 0.001) 
    sigma.beta1[h] ~ dunif(0, 5) 
    tau.beta1[h] <- 1/(sigma.beta1[h]*sigma.beta1[h]) 
     
    mu.beta2[h] ~ dnorm(0, 0.001) 
    sigma.beta2[h] ~ dunif(0, 5) 
    tau.beta2[h] <- 1/(sigma.beta2[h]*sigma.beta2[h]) 
     
    mu.beta3[h] ~ dnorm(0, 0.001) 
    sigma.beta3[h] ~ dunif(0, 5) 
    tau.beta3[h] <- 1/(sigma.beta3[h]*sigma.beta3[h]) 
     
    mu.beta4[h] ~ dnorm(0, 0.001) 
    sigma.beta4[h] ~ dunif(0, 5) 
    tau.beta4[h] <- 1/(sigma.beta4[h]*sigma.beta4[h]) 
     
    mu.beta5[h] ~ dnorm(0, 0.001) 
    sigma.beta5[h] ~ dunif(0, 5) 
    tau.beta5[h] <- 1/(sigma.beta5[h]*sigma.beta5[h]) 
     
    mu.beta6[h] ~ dnorm(0, 0.001) 
    sigma.beta6[h] ~ dunif(0, 5) 
    tau.beta6[h] <- 1/(sigma.beta6[h]*sigma.beta6[h]) 
     
    mu.gamma0[h] ~ dnorm(0, 0.001) 
    sigma.gamma0[h] ~ dunif(0, 5) 
    tau.gamma0[h] <- 1/(sigma.gamma0[h]*sigma.gamma0[h]) 
     
    mu.gamma1[h] ~ dnorm(0, 0.001) 
    sigma.gamma1[h] ~ dunif(0, 5) 
    tau.gamma1[h] <- 1/(sigma.gamma1[h]*sigma.gamma1[h]) 
     
    for(j in 1:npatch){ 
     
      for(l in 1:nyears){ 
        beta0.patch[h,j,l] ~ dnorm(0, tau.patch[h]) 
      } 
    } 
  } 
     
  for(i in 1:nspecies){ 
    alpha0[i] ~ dnorm(mu.alpha0, tau.alpha0) 
    alpha1[i] ~ dnorm(mu.alpha1, tau.alpha1) 
    alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2) 
    beta0[i] ~ dnorm(mu.beta0[group[i]], tau.beta0[group[i]]) 
    beta1[i] ~ dnorm(mu.beta1[group[i]], tau.beta1[group[i]]) 
    beta2[i] ~ dnorm(mu.beta2[group[i]], tau.beta2[group[i]]) 
    beta3[i] ~ dnorm(mu.beta3[group[i]], tau.beta3[group[i]]) 
    beta4[i] ~ dnorm(mu.beta4[group[i]], tau.beta4[group[i]]) 
    beta5[i] ~ dnorm(mu.beta5[group[i]], tau.beta5[group[i]]) 
    beta6[i] ~ dnorm(mu.beta6[group[i]], tau.beta6[group[i]]) 
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    gamma0[i] ~ dnorm(mu.gamma0[group[i]], tau.gamma0[group[i]]) 
    gamma1[i] ~ dnorm(mu.gamma1[group[i]], tau.gamma1[group[i]]) 
     
    for(j in 1:npatch){ 
     
      for(k in 1:nsites[j]){ 
        Z[i,j,k,1] ~ dbern(psi[i,j,k,1]) 
        logit(psi[i,j,k,1]) <- beta0[i] + beta0.patch[group[i], j, 1] + 

beta1[i]*pc1[j,k,1] + beta2[i]*pc2[j,k,1] + 
beta3[i]*pc3[j,k,1] + beta4[i]*edge[j,k] + beta5[i]*size[j,k] + 
beta6[i]*amount[j,k] 
 

        for(l in 2:nyears){ 
          Z[i,j,k,l] ~ dbern(psi[i,j,k,l]) 
          logit(psi[i,j,k,l]) <- gamma0[i] + gamma1[i]*Z[i,j,k,l-1] + 

beta0.patch[group[i], j, l] + 
beta1[i]*pc1[j,k,l] + beta2[i]*pc2[j,k,l] + beta3[i]*pc3[j,k,l] + 
beta4[i]*edge[j,k] + beta5[i]*size[j,k] + beta6[i]*amount[j,k] 

        } 
     
        for(l in 1:nyears){ 
     
          for(m in 1:nsurveys){ 
            logit(p[i,j,k,l,m]) <- alpha0[i] + alpha1[i]*julian[j,k,l,m] + 

alpha2[i]*trees[j,k,l] 
            y[i,j,k,l,m] ~ dbern(Z[i,j,k,l]*p[i,j,k,l,m]) 
     
            ysim[i,j,k,l,m] ~ dbern(Z[i,j,k,l]*p[i,j,k,l,m]) 
            E[i,j,k,l,m] <- Z[i,j,k,l]*p[i,j,k,l,m] 
     
            D[i,j,k,l,m] <- pow(y[i,j,k,l,m]-E[i,j,k,l,m],2) 
            Dsim[i,j,k,l,m] <- pow(ysim[i,j,k,l,m]-E[i,j,k,l,m],2) 
          } 
          D.1[i,j,k,l] <- sum(D[i,j,k,l,1:nsurveys]) 
          Dsim.1[i,j,k,l] <- sum(Dsim[i,j,k,l,1:nsurveys]) 
        } 
        D.2[i,j,k] <- sum(D.1[i,j,k,1:nyears]) 
        Dsim.2[i,j,k] <- sum(Dsim.1[i,j,k,1:nyears]) 
      } 
      D.3[i,j] <- sum(D.2[i,j,1:nsites[j]]) 
      Dsim.3[i,j] <- sum(Dsim.2[i,j,1:nsites[j]]) 
    } 
    D.4[i] <- sum(D.3[i,1:npatch]) 
    Dsim.4[i] <- sum(Dsim.3[i,1:npatch]) 
  } 
  fit.data <- sum(D.4[1:nspecies]) 
  fit.sim <- sum(Dsim.4[1:nspecies]) 
  bpv <- fit.data - fit.sim 
}", fill=T) 
sink() 
 
#Specify model values 
win.data = list(y=y, nsites=nsites, nsurveys=3, nyears=3, npatch=202, nspecies=52, 

ngroups=3, group=group,size=size, amount=amount, edge=edge, pc1=pc1, pc2=pc2, 
pc3=pc3, julian=julian, trees=trees) 

 
#Initial values for Z 
Zst = aggregate(count~num.year+num.point+num.patch+num.species, data=data, FUN="max") 
tmp1 = expand.grid("num.year"= c(1:3), "num.point" = c(1:10), "num.patch" = c(1:202), 

"num.species"=c(1:52)) 
Zst = merge(Zst, tmp1, by=c("num.year", "num.point", "num.patch", "num.species"), 

all=T) 
Zst = Zst[order(Zst$num.year, Zst$num.point, Zst$num.patch, Zst$num.species),] 
Zst = array(Zst$count, c(52, 202, 10, 3)) 
 
#Specify the remainder of the initial values 
inits=function()list(Z=Zst, mu.alpha0=rnorm(1), sigma.alpha0=runif(1), 

mu.alpha1=rnorm(1), sigma.alpha1=runif(1), mu.alpha2=rnorm(1), 
sigma.alpha2=runif(1), mu.beta0=rnorm(3), sigma.beta0=runif(3), mu.beta1=rnorm(3), 
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sigma.beta1=runif(3), mu.beta2=rnorm(3), sigma.beta2=runif(3), mu.beta3=rnorm(3), 
sigma.beta3=runif(3), mu.beta4=rnorm(3), sigma.beta4=runif(3), mu.beta5=rnorm(3), 
sigma.beta5=runif(3), mu.beta6=rnorm(3), sigma.beta6=runif(3), mu.gamma0=rnorm(3), 
sigma.gamma0=runif(3), mu.gamma1=rnorm(3), sigma.gamma1=runif(3), 
sigma.patch=runif(3)) 

 
#Identify parameters to track 
params=c("alpha0", "mu.alpha0", "sigma.alpha0", "alpha1", "mu.alpha1", "sigma.alpha1", 

"alpha2", "mu.alpha2", "sigma.alpha2", "beta0", "mu.beta0", "sigma.beta0", 
"gamma0", "mu.gamma0", "sigma.gamma0", "gamma1", "mu.gamma1", "sigma.gamma1", 
"beta1", "mu.beta1", "sigma.beta1", "beta2", "mu.beta2", "sigma.beta2", "beta3", 
"mu.beta3", "sigma.beta3", "beta4", "mu.beta4", "sigma.beta4", "beta5", 
"mu.beta5", "sigma.beta5", "beta6", "mu.beta6", "sigma.beta6", "sigma.patch", 
"fit.data", "fit.sim", "bpv") 

 
#Chains, iterations, burnin, and thinning 
nc=3; ni=400000; nb=200000; nt=100 
 
#Submit model to JAGS.  Remove "parallel=T" argument for non-parallel processing 
out = jags(win.data, inits, params, "Model.txt", n.chains=nc, n.thin=nt, n.iter=ni, 

n.burnin=nb, parallel=T) 

 



 
 

 

 


