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visual tracking. A major challenge for single object visual tracking is that most training

sets with frame-level track annotations are quite small, due to the prohibitive cost of

manual annotation. Current training approaches either supplement the annotations with

other data sources (e.g., object-detection training data) or generate noisy variants of

the track annotations. In either case, the data generation and training methods have

ignored the fact that tracking involves sequences of decisions (one per frame) that are

dependent on one another. Thus, the objectives optimized by these learning algorithms

are not directly tied to the end goal of tracking performance. To further study this issue,

we consider the state-of-the-art imitation learning algorithm, DAGGER, for training an

online tracker. We observe that the DAGGER faces difficulty when applied to tracking,

because online trackers typically experience unrecoverable failures, especially early in

training. To rectify this issue we introduce, analyze, and evaluate a variation of DAGGER,

called DAGGER with Resets (DAGGER2), a novel imitation learning framework which

maintains the theoretical properties of DAGGER and is more appropriate for training

deep trackers. Our main contribution is to compare different training methods, including
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experimental results show this principled training approach and methodical random

augmentation is able to outperform existing training approaches across multiple visual
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Chapter 1: Introduction

Deep learning methods have led to vast improvements in solutions to many problems in

computer vision, including scene recognition, object detection, and activity recognition.

These methods have all leveraged the availability of large offline datasets to train robust

classifiers. However, deep learning methods have received much less attention for visual

tracking [19, 15, 18, 26, 11]. Unlike in other vision areas, recent tracking literature

continues to report that conventional algorithms are competitive with deep learning

methods (e.g., [27]).

State-of-the-art conventional online trackers typically seek to learn a representation

of the object being tracked [11, 19]. Many deep trackers share that objective. To learn

a robust representation of objects, deep neural networks require a large and diverse set

of training data. Unfortunately, most tracking datasets are quite small. In many cases,

tracking datasets contain around 100 individual tracks. While this amounts to thousands

of annotated images, there are still fewer than 100 objects in the entire dataset, which

could cause the network to overfit. These sorts of small datasets make training deep neural

networks to effectively model any object extremely difficult. One promising way to address

the lack of visual tracking data for training has been to supplement the annotations with

similar data sources (e.g., object-detection training data) or noisy variants of the original

track annotations. In this paper, we continue this research direction by introducing,

analyzing, and evaluating a new imitation learning framework for training deep trackers

offline and then compare it to previous methods.

Recent deep trackers have considered various ways of using large repositories of

training images available for object detection, i.e., for solving a related but not the same

vision problem. For example, the CF2 tracker [16, 25] first pre-trains its deep network on

an object classification dataset, as a starting point for a correlation filter based tracker.

A major drawback of such a strategy is that it does not necessarily uncover the most

informative features for tracking, which could hinder the tracker’s performance. When

training a network for object classification, all objects of the same class are treated

equivalently. In a scene that contains many objects of the same type, the network
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(a) DAGGER (b) DAGGER with Reset

Figure 1.1: (a) A tracker produces an erroneous track (red) compared to the ground truth
(yellow). Consequently, in learning, DAGGER collects “useless” training data along the
lost red track that are far from the ground truth data distribution. (b) In this case, our
approach DAGGER2 will reset the tracker when it strays too far from the ground truth.
This allows DAGGER2 to collect more meaningful training data, and consequently learn
a better performing tracker.

activations of those objects are similar. This poses a problem for the tracker, because

distinguishing between objects of the same class becomes challenging.

Other approaches train their deep trackers by augmenting the available tracking

annotations with new object bounding boxes randomly sampled in the vicinity of the

ground truth target location[19, 15, 18, 3]. These samples are treated independently of

each other when training. Thus, the network loss is also based on independent decisions.

However, we know that loss in visual tracking strongly depends on a sequence of previously

made decisions. Trackers might go slightly off target and are still expected to perform

well. Therefore, random sampling may be poorly correlated with true object trajectories.

In turn, this may potentially introduce certain biases in learning, such as, e.g., finding

only object poses and appearances with numerous samples relevant (e.g., trajectory parts

when the object moves slowly) and ignoring other scarce samples (e.g., dramatic turns

and speed-ups along the trajectory).

Thus, we find the aforementioned strategies common in training deep trackers are

not directly tied to the end goal of online tracking performance. To address this issue,



3

we formulate online tracking as a sequential decision making problem, and consider a

state-of-the-art algorithm for learning decision-making policies via imitation learning. Our

key idea is to learn a policy – here, a deep tracker – that can imitate an expert performing

the task of tracking, and in this way more explicitly tie our learning objective to the end

goal. In our case, the ”expert decisions” are available from the track annotations, which

may come from either the original (small) training set or a larger set carefully augmented

with new samples via probabilistic, expert-dependent sampling.

In addition to comparing traditional training methods, we start by considering a

state-of-the-art imitation learning algorithm, called the dataset aggregation algorithm

(DAGGER) [20], which has shown empirical success on a variety of AI control and

planning problems. DAGGER iteratively learns a policy by minimizing discrepancy

between decisions made by the expert and those made by a current policy estimate. As

decisions have dependencies between them, DAGGER collects all sequences of decisions

made by the current policy estimate after each learning iteration, and adds them to the

training set. In this way, DAGGER iteratively trains the policy on all decisions induced

by previously learned policies. DAGGER has strong theoretical guarantees relative to

performance of the policy that best mimics the expert on training data.

We observe that DAGGER faces a significant limitation, however. In non-trivial

tracking domains, even the best trackers will often get lost. In such situations, as shown in

Fig. 1.1, DAGGER would continue collecting “useless” training data, far from the ground

truth data distribution, as long as the tracker continues. To remedy this issue, we create

an extension to DAGGER, called DAGGER with Reset (DAGGER2). When learning,

DAGGER2 will reset the tracker at points along the trajectories when it strays too far

from the ground truth. This allows DAGGER2 to collect more meaningful training data

for the next learning iteration. We show that DAGGER2 maintains the same theoretical

guarantees as DAGGER, but for a modified and intuitively attractive loss function.

We also compare whether more effective ways of supplementing the original ground

truth data will also improve the tracker’s performance. There are two reasons to believe

a more effective sampling strategy, like that in DAGGER2, will outperform traditional

methods. First, the additional training data comes directly from decisions made by

previously learned versions of the tracker. Second, important additional training data

can be readily identified around the points when the tracker is declared as lost, and thus

focus imitation learning on hard examples.
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Our evaluation uses two deep tracking architectures, over three challenging tracking

datasets, to compare the effectiveness of traditional training methodologies to those based

off of DAGGER.

Our contributions include:

1. New formulation of DAGGER suitable for tracking.

2. Benchmarking of different training methods

3. New tracking dataset of NFL football videos with ground-truth annotations in every

frame, complementing the existing benchmarks with new challenges prominent in

the football domain.

In the following, Chapter 2 reviews closely related work, Chapter 3 specifies the

trackers and datasets used for evaluations, Chapter 4 formulates our problem, reviews

DAGGER, and specifies DAGGER2, finally, Chapter 5 presents our results.



5

Chapter 2: Prior Work

Tracking is a long standing problem in computer vision, with extensive background

literature. In this section, we focused our review on recent training strategies for deep

tracking methods. Other related work on imitation learning is discussed in Cgapter 4.

Convolutional neural networks (CNN) have led to many advances in computer vision.

The representational power of CNN’s has led to major advances in every area of computer

science. Tracking has been somewhat slower to adopt convolutional neural networks

because of the difficuly training them for tracking. There have been numerous attempts

to use CNNs for tracking with varying degrees of success. These difficulties arise from

two main issues, the size of datasets and the time it takes to train a CNN.

There are two general ways of training a tracker, online and offline. Most previous

deep trackers are trained online [15, 25, 26, 18, 2, 13]. They typically draw training

samples around the detected target in every frame to train a classifier over features

extracted by a CNN. However, training neural networks is typically slow, even with GPU

acceleration, limiting the application of such trackers in real-world domains.

Offline models do not have to be trained while tracking so they can track objects

more quickly. However, lack of data has been a persistent problem when training offline

trackers. Many of these models have millions of parameters, which makes learning a

robust function difficult without sufficient data.

The learning objective in most trackers are cast within the classification framework,

where they are trained to classify whether two image patches are similar [16, 15, 18, 31,

13, 24, 25, 12, 26]. The approaches generally use a VGG-net [22], trained for object

detection, to extract features that are then used for the comparison. Another type of

approach has trackers regress to the target object’s location[11]. Also, deep trackers can

be trained to match patches in consecutive video frames [9, 29, 24]. However, all three

types of learning objectives — namely, classification-, regression-, and matching-based

— are typically formulated using loss functions that treat training data as independent

samples. In addition to those approaches, we investigate using imitation learning for

explicitly taking into account dependencies of sequences of ground truth annotations
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along the target trajectories.

A separate class of deep trackers are aimed at particular domains, and thus trained

to track a specific class of objects (e.g., pedestrians in upright poses) [5]. Our imitation

learning algorithm can be used for both generic and domain-specific trackers.

Finally, when learning a tracker off-line, a number of approaches seek to first identify

“corrupted” training samples (e.g., due to occlusion, or background clutter) using a

combination of experts [30], another separate tracker [17], or distance comparisons [6],

and then either discard or adaptively downweight them [3]. This reportedly leads to

performance improvements. With a few exceptions [3], all of these approaches rely on

heuristics, since they do not unify this step with training the tracker. In contrast, our

DAGGER2 manages training samples within the learning process. Importantly, not

only does DAGGER2 use all available training samples, but also augments this set with

new noisy samples generated by the tracker in the learning iterations. According to the

imitation-learning theory, this noisy augmentation of the initial training set guarantees

an improved, robust learning of the tracker.
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Chapter 3: Datasets and Trackers

To analyze the performance of different learning methods used to train visual trackers,

we tested on a variety of different deep trackers and datasets. A tracker can be viewed as

function that takes a video and an initial bounding box as input, and outputs a bounding

box of the target for each frame in the video. For each frame of the video, the tracker

passes some encoding of the previous sequence of decisions made by the tracker and the

current frame into a CNN, whose output is then used to decide the next location of the

track.

Visual tracking networks can be split into two groups: ones that learn a comparison

function, and ones that try to perform some sort of regression on the tracked object’s

location. We will refer to the two types of tracking networks as a comparison function

network and a regression network, respectively. For our tests we will train both types of

networks. We will refer to the encoding of the previous detections as the track’s history.

Generally, the encoding used for tracking are crops of previous detections. The specific

form of the previous detections used for input is unique to each tracker. In section below,

we describe what is used for the input in more detail.

When tracking, comparison function networks select a set of potential candidate crops

from the frame being searched and score each of them. The highest scoring candidate is

then selected as the next location of the track. Regression networks, on the other hand,

output coordinates of the tracked object’s location. Instead of scoring many candidate for

each frame, regression networks only need one search crop to detect the objects location.

For each tracker, the search crop is slightly different. The search image in comparison

function networks is a potential tight crop of the tracked object. In regression networks,

the search image is a crop that contains the tracked object, and it does not require a

tight bound. We tested our learning methods on two different deep trackers: MCDT and

GOTURN. The MCDT learns a comparison function and the GOTURN tracker regresses

to the location of the object.

Tracking datasets used to train these networks are composed of videos and a series

of annotations for the track. Each dataset has a variety of different attributes that
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distinguish them from others. Two attributes that we will use to distinguish them are

the number of different object categories, and the amount of scale change the tracks goes

through. Having fewer object categories makes tracking easier because the network is

trained on a larger number of sample from the same object class so it can learn a better

representation of that object. In our experiments, we tested our learning methods on

three datasets containing different numbers of object classes. The GOTURN tracker also

leverages the use of an object detection dataset when training. These datasets consist

of images, the bounding box of the object, and the object’s label. When training for

tracking, the label is ignored.

For every given dataset we trained our set of trackers using different training methods.

Overall, this gives a robust picture of how effective each training method affects a tracker’s

performance. In the sections below we go into more detail of both the datasets and

trackers we used to analyze the training methods.

3.1 Datasets.

For evaluation, we use three datasets: ALOV300++ [23], KITTI [7], and our own new

dataset of NFL football videos. Traditionally, single object tracking benchmarks have been

compiled with many different object types. Benchmarks like CVPR100, ALOV300++,

and the VOT2016 challenge all include many different classes. These datasets are useful

when benchmarking how well the trackers generalize to objects outside the dataset. While

it would be preferable to have a tracker that can track everything extremely well, in our

experiments, we show how inadequate conventional single object trackers can be.

It is also reasonable to assume that many of these trackers would be used to track only

a small set of specific objects. Therefore, we believe testing on a variety of datasets with

different numbers of object classes is relevant to evaluating training methods. Furthermore,

being able to fine tune a tracker to a small set of classes can be a strength. For example,

imagine tracking a human walking whose legs are not visible for part of the video. The

person is tracked correctly in the beginning of the video. However, their legs become

occluded part way through the video and only the person’s head and torso are now

tracked. When their legs become visible again it is conceivable that if a tracker did not

recognize object types while it was tracking (in this case a person), it would continue

to track just the person’s torso and head. If the tracker recognizes object types, then
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it might be able to recover from the partial occlusion and continue to track the entire

person as they move past the occluding object. In our tests we used three datasets with

different numbers of object classes to explore this idea.

Scale change is the other significant difference we saw when comparing datasets. Many

current state-of-the-art trackers do not adjust their object size for the entire track [16, 15].

Therefore, datasets that do not contain large scale changes are advantageous for those

trackers. All three of our datasets have varying amounts of scale changes during the

course of the video, as a result of the objects motion and the relative movement of the

scene induced by the camera. The easiest of these datasets for scale changes is the NFL

Football player dataset. The object bounding box does not change for the entire duration

of a track. Videos for the dataset are filmed from a set camera with relatively little

motion or zoom. On the other hand, the KITTI dataset contains significant amounts of

scale changes. The videos used for the dataset are filmed from the top of a car driving

down busy streets. The objects come closer, and while the camera does not zoom, the

background is almost constantly moving. The ALOV300++ dataset contains many videos

with varying amounts of scale change. In most of the samples, the camera is set and does

not zoom often which decreases the occurrences of large scale changes.

Another measure of difficulty for trackers is occlusion. However, it is much harder to

control and measure occlusion. In most datasets the object size being tracked includes

parts hidden by other objects. If a person walked behind a car, the bounding box, in

some datasets includes the person’s legs even though they are not visible. To have some

sort of measure of occlusion we would need bounding boxes explicitly showing what is

visible, which most datasets do not provide. All three of our datasets include tracks that

contain occlusion. However, we do not have a measure on how much occlusion occurs.

ALOV300++ consists of 314 video sequences, totaling 89364 frames, which present

a host of challenges, including: low contrasts, confusion with similar objects, clutter,

occlusion, camera zoom, and severe shape changes [23]. The ground truth in ALOV300++

is annotated every five frames on average, by a bounding box around the target1, through

a combination of manual annotation and linear interpolation. The ground truth bounding

box in the first frame is specified to the trackers. We conduct 3-fold cross-validation on

1We use this data for DAGGER-style training by simply ignoring frames that did not have annotations,
which amounts to training on a downsampled version of the videos. Since annotations were quite frequent,
this did not seem to impact performance.
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ALOV300++, where 2/3 of videos are used for training, and 1/3 for testing.

KITTI has 21 training and 29 test sequences, with each video containing many

individual tracks [7]. Each video contains ground truth for 8 classes annotated in every

frame. The videos in KITTI are captured from a moving car, so the dataset includes

dramatic scale changes and lighting variations. While KITTI does include a test set, we

are unable to use it because single object tracking requires that the first crop be given

to the tracker, which is not included in the set. Therefore, in this paper, we perform

3-fold cross-validation only on the 21 original training sequences, where in each fold 2/3

of the videos are used for training, and 1/3 used for testing (ignoring their annotations

in testing).

NFL Football Players consists of 18 videos, totaling 22510 annotated frames with

bounding boxes around target players. We have also compiled this dataset from NFL

football videos, with the goal of tracking individual football players. Our NFL dataset

On average each sequence has 118 frames, which is sufficient to show long trajectories in

this particular domain with extremely quick motions. The football game location and

play type change with every video. Our dataset complements the above benchmarks

by presenting additional challenges, including: sharp trajectory changes, confusion

with similar-looking players on the same team, frequent and long-term occlusions, and

players moving through a crowd. The dataset is available at: https://github.com/

trevorfiez/Football-Player-Tracking-Dataset.

Object detection datasets have also been leveraged to help train trackers. One

advantage of these datasets is that they contain many different object classes, which

might be lacking in tracking datasets. However, a sample from an object detection dataset

consists of a image, a bounding box of the target object, and a label. We know networks

used for tracking use multiple frames as input. To rectify this, a tracker will use the same

image for both the previous and current frame. In this way, we can use object detection

datasets to supplement our existing training data.

3.2 Trackers

We trained two trackers in our experiments: the regression-based GOTURN [11], and

our own classification-based multi-channel deep tracker (MCDT). This allows us to test

different training methodologies within both regression and classification networks. We
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Figure 3.1: Architecture for the multi-channel deep tracker. The history frames are
concatenated with a candidate and then are fed into the network. The blue layers denote
a convolution and the purple denote a fully connected layer

note that the classification-based tracker is only evaluated on the NFL dataset due to

the fact that it was not designed to handle dramatic scale changes, which are present in

KITTI and ALOV300.

GOTURN [11] uses a Siamese CNN to regress to a bounding box of the target object.

The input consists of a crop from the previous frame and a crop of the current frame.

The previous frame is cropped around the object detection, and the current frame is

cropped around the previously detected location with a size and shape proportional to

the previous detection. The Siamese CNN is simultaneously trained off of the ImageNet

object detection dataset, and a tracking dataset. Their training augments the ground

truth, in both cases, by shifting and scaling the available training samples according to a

Laplacian distribution. For our tests on the ALOV300++ dataset, we randomly initialize

the GOTURN network. Similar to pretraining a CNN on ImageNet for image recognition,

when testing on the NFL Player and KITTI datasets we pretrain the network on the

ALOV300++. We will denote the pretrained GOTURN network as GOTURN-PRE and

the randomly initialized network as GOTURN.

MCDT – our multi-channel deep tracker estimates if a potential object bounding box

is a good fit given a set of previous detections. Recent work [24] considers analogous

formulations. However, our approach has a few important differences from recent work.
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Firstly, MCDT does not use a Siamese CNN. Instead, we stack the dimensions of each

crop together, as you saw in Fig. 3.1. Secondly, most recent deep trackers only use the

previous frame as state encoding while MCDT looks at more [19, 11]. Our network

consists of a typical CNN configuration with 7 layers. The first part of the CNN consists

of 3 convolutional layers, with filter numbers and sizes of 96x5x5, 256x3x3, and 384x3x3,

respectively. Each convolutional layer uses a rectified linear unit for non-linearity. Between

the first and second, and the second and third layer, the network also has two 2x2 max-

pooling layers. The fully connected layers have 4096 and 2 hidden units, respectively. As

input, MCDT uses the bounding box detected at 20, 10, and 1 frames before the current

frame.
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Chapter 4: Learning Approaches

We consider a supervised learning setting, where the goal is to learn a tracker from

training data {(x, y)} drawn from a distribution P (x, y), where x is a video, and y is a

ground-truth sequence of bounding boxes around the target object in every frame. A

tracker, π, is a function that takes a video, x, and an initial bounding box, y1, as input,

and outputs a predicted track, ŷ (one bounding box per frame). In this paper, we focus

on online trackers, which predict bounding boxes in the video in a single pass from start

to finish.

The state of an online tracker up to frame t, st = (x1:t, ŷ1:t−1), encodes all video frames

up to time t, x1:t, and all previous predictions, ŷ1:t−1. An online tracker is a function

π(st) = ŷt from states to predictions. Most online trackers do not use all information

in st, and rather make predictions based on a short-term history of video frames and

previous predictions.

When training a neural network, the designer has a variety of options including the

architecture, dataset, and method to update weights. Another factor that has proven

vital to certain challenges is how the input data are sampled in order to expand the

dataset. In many image classification problems this has included flipping and randomly

cropping images. Expanding the dataset with different forms of sampling is also important

when training CNNs for visual tracking. However, since tracking is a series of sequential

decisions, the sampling methods used have to take into consideration a series of annotations

associated with a track. Algorithm 1 is the pseudocode used to train a neural network for

visual tracking. Similar to training any network, the training algorithm samples batches

from the training data. Each batch will be augmented and sampled with a method

AUGMENT and will then be fed into the network. It should be noted that AUGMENT

can also return the input without any changes. For our study, we will examine three

different methods of training visual trackers: random sampling, naive imitation learning,

and DAGGER with Reset which are described in more detail below.
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Algorithm 1 LEARN

Input: TRN = {(x, y)} – set of annotated training videos
π – network used in tracker
N – number of batches to train network
AUGMENT – random transformation to augment training data (optional)

for i = 1 to N do
2: // Sample from training set

{(xi, yi)} = SAMPLE(TRN)
4: // Augment the training batch

BATCH = AUGMENT({(xi, yi)})
6: // Train the network on the batch

TRAIN NETWORK(π,BATCH)
8: end for

return π

4.1 Random Sampling Training Methods

Random sampling techniques for data augmentation have been used for almost every

computer vision problem. Due to the sequential nature of tracking, random sampling

must be done carefully. If a change alters the previous detection crop too much, it could

hypothetically make every single candidate for the next location a bad one. For example,

if AUGMENT shifted the ground truth bounding box so that it did not contain the target

at all, the state encoding would not contain any relevant information.

One way training methods have ignored this dependency is by augmenting the search

crop of the image and using ground truth detections for the state encoding of the network.

In this way, some traditional random sampling techniques can be used to augment data.

For a classification network, like MCDT, a training batch is generated by sampling

locations around the ground truth. These are then labeled correct if the overlap is greater

than some threshold, and incorrect if it is below. The network then learns to classify

which crops have a high overlap with the ground truth target. An analagous version

of random sampling in the search frame of a regression network, is to shift and scale

the search image. The target bounding box still perfectly encloses the tracked object,

but it looks slightly different than the original image. Held et al.(2016) proposed to

randomly augment the search crop image in regression networks by shifting and scaling

the search bounding box crop according to a laplacian distribution. When we are testing
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the GOTURN tracker we will augment samples using the same method. For the MCDT

tracker, we will uniformly shift the ground truth crop but not scale the ground truth.

Both of these methods use thresholds to keep samples in a reasonable range. When

using a classification network we also require that all samples used to train the network

have an overlap above a threshold of 30%. For regression networks we restrict the scale

to change at most by 30% and the shift to move no greater than 50% of the object size,

which is used by GOTURN[11].

While traditional random augmentation methods have effectively increased the number

of samples in a dataset, they neglect the sequential nature of visual tracking. In previous

methods, the encoding of the track’s history is always generated from the ground truth.

However, we know that even the best trackers will stray off target in non-trivial tracking

domains. To further investigate how random augmentation affects the performance of a

trained tracker, we will also randomly augment the state encoding by shifting the image

crop of the previously detected target.

We introduce a method for random augmentation on the state encoding to further

compare against DAGGER2. When augmenting the trackers history, we will also shift

and scale the ground truth detections of the previous targets. To ensure that this does

not violate the condition that the state encoding be representative of the track, we require

the ratio of intersection over overlap between the augmented bounding box and the

ground truth be above some threshold. In all of our tests we set that threshold to be 0.7.

These should mimic the slight mistakes that trackers make, and make the data we are

training our classifiers on more realistic. They are also used in tandem with the random

augmentations used in the search frame.

4.2 Learning to Track via Imitation

For video x with ground truth y, an online tracker incurs the loss of a prediction

ŷ, l(x, y, ŷ) =
∑|x|

t=1 ∆(yt, ŷt), where ∆ is a distance between two bounding boxes. For

example, ∆(yt, ŷt) may measure the distance between the centers of yt and ŷt, or some other

measure of their overlap. The expected loss of a tracker π is denoted by L(π) = E [l(x, y, ŷ],

where (x, y) ∼ P and ŷ is produced by π. Our goal is to learn an online tracker using

training data D that achieves a minimum expected loss.

An important aspect of online tracking is that a tracker’s decision at frame t influences
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its decisions in the future. In particular, the prediction π(st) = ŷt for the input state st

is conditioned on previous predictions of π. Therefore, online tracking is an instance of

sequential decision making, in contrast to standard classification and regression problems

where all decision are independent of one another. In general, learning for sequential

decision making is more difficult than independent, identically distributed learning, since

ideally learning algorithms must account for the dependence between learned decisions.

A popular learning approach for sequential decision making is imitation learning,

which has been studied in many contexts including navigation [21], robotics [1], and

recently for playing Atari games from video input [8]. The main idea is to attempt to

learn to imitate an expert or oracle, that is available during training time to perform the

desired task. In the context of tracking, obtaining an expert tracker for the training data

is straightforward since we have the ground-truth track for each example. In particular,

the expert tracker, π∗, always returns the ground-truth bounding box for any video frame,

and hence L(π∗) = 0.

The simplest approach to imitation learning, which we will call Naive Imitation

Learning (NIL), collects a set of training bounding boxes along the trajectories produced

by the expert tracker. For example, given annotated training video (x, y), we would

produce one training example per frame of the form (s∗t , yt), where s∗t = (x1:t, y1:t−1) is

the state at frame t of the perfect expert tracker. The resulting training set D over all

videos specifies a standard regression learning problem, with regression inputs s∗t and

target outputs yt. NIL then proceeds to learn a tracker π based on D using a standard

learning algorithm (e.g., deep learning).

While the NIL approach can sometimes produce satisfactory results, it has some well

known deficiencies, which can limit its performance [20]. The fundamental problem is that

the learned tracker π is trained on the state distribution of the expert π∗, but tested and

evaluated on the distribution of states that π generates. Often, even small inaccuracies

in π with respect to π∗ can cause these distributions to be quite different. To see this,

suppose that at frame t, π makes a prediction ŷt that differs from the expert prediction

yt. This imperfect prediction is then used as part of the input to π at frame t+ 1, that is

ŷt is added to st+1. This means that st+1 will differ from the expert generated state s∗t+1.

Since π was trained on only expert generated states, there is a chance that it will not

generalize well to st+1, and hence make a prediction for t+ 1 that is incorrect by an even

wider margin. This misprediction will then be incorporated into st+2, which may differ



17

even more from the expert state s∗t+2. This type of error propagation behavior of NIL

has been commonly observed in the imitation learning literature and can significantly

degrade performance.

Ideally, we would like to train a tracker to perform well on its own state distribution.

Indeed, it is known [20] that if a tracker π does have low prediction error with respect

to the expert on its own state distribution, then π will perform nearly as well as the

expert. However, this leads to an apparent chicken-and-egg problem. How can we train

a tracker π on its own state distribution without first having π? In the next section,

we describe a recent answer to this question for general imitation learning along with

important modifications that are needed in the context of imitation learning for tracking.

4.3 DAGGER with Reset

DAGGER [20] is a state-of-the-art imitation learning algorithm that has strong theoretical

guarantees in addition to a number of empirical successes [20, 8, 4, 14]. Here we describe

DAGGER in the context of tracking, though it is more generally applicable to any

sequential decision making problem. The main idea behind DAGGER is to start with

expert generated data as in NIL, but to then iteratively generate and aggregate frame-level

training data from a sequence of learned trackers. This provides training data from

states that learned trackers tend to visit in addition to states that the expert visits.

The iterative process converges to learning a tracker that performs well on its own state

distribution.

Algorithm 2 gives pseudo-code that implements DAGGER when run with the input

parameter set to δ = ∞. DAGGER assumes a set of annotated training videos and a

learning algorithm Learn that can learn a tracker given a set of frame-level training

examples. Each of the N main iterations of DAGGER produce a learned tracker πi based

on data collected from all previous iterations. The initial tracker π1 is set equal to the

expert tracker π∗ that always returns the ground truth. Each iteration then uses the

current tracker πi to generate tracks for the training video (line 6), noting that when

the input parameter δ 6=∞ the tracks may be different from those produced by πi (see

below). Each such track goes through a sequence of tracking states and we collect each

such state s and put it in the frame-level training data labeled by the expert prediction

π∗(s) (line 9). At the end of the iteration we learn a new policy πi+1 from the frame-level
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Algorithm 2 DAGGER2 (setting δ =∞ results in standard DAGGER)

Input: TRN = {(x, y)} – set of annotated training videos
δ – reset threshold
Learn – algorithm for learning a tracker from a frame-level training set (e.g. a deep

network)

1: D = ∅ // Initialize frame-level training set
2: π1 = π∗ // Initialize to expert tracker that returns ground truth
3: for i = 1 to N do
4: for (x, y) ∈ TRN do
5: // Run tracker πi on x but reset to ground truth when error is greater than δ
6: T = GenerateTrackWithReset(πi, (x, y), δ)
7: for each state s in T do
8: // Add new frame-level example for s to data
9: D = D ∪ {(s, π∗(s))}

10: end for
11: end for
12: // Learn next policy based on aggregated data
13: πi+1 = Learn(D)
14: end for
15:

16: return best πi on validation test

training data. After N iterations DAGGER returns the learned policy πi (for i > 1) that

achieves the best performance on validation data. In practice, it is common to simply

return the final policy πN , which is the policy that was trained with the largest amount of

training data. In practice, significant performance improvements over NIL are observed

even with just a few iterations.

DAGGER has been primarily evaluated on common AI problems (e.g., game playing),

which are qualitatively quite different from tracking and tracking presents at least one

critical challenge for DAGGER. The main difficulty arises at line 6, where the current

learned tracker πi is used to generate a track for the video. For challenging tracking

problems, πi will tend to “get lost”, i.e., stray far away from the correct object, as

illustrated in Figure 1.1a. Let us consider how this can adversely impact DAGGER.

DAGGER will include such “lost” state s in the training data with the ground truth

label. For example, in Figure 1.1a, DAGGER would create an example for the tracking

state of the lost red bounding box with a ground truth label corresponding to the yellow

bounding box. Such training examples are nearly impossible for the learning algorithm,
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since the example is effectively telling the tracker that it should instantaneously jump

to the location of the true target object from the current lost location. At best, such

examples will be useless for learning, and at worst the examples will confuse the learner

and degrade performance. For many trackers, such data are not even useable, since the

trackers have a bound on how far away they will move the bounding box from frame to

frame. In any of these cases, DAGGER effectively throws away a large portion of the

labeled training videos. In particular, all data from frames that occur after a learned

tracker are lost.

The above problem with DAGGER for tracking motivates our extension that we call

DAGGER with Reset (DAGGER2). In particular, we modify DAGGER so that when it

uses πi to generated tracks (line 6), the tracker is reset to the ground truth whenever

its error becomes more than a user specified parameter δ, and then tracking continues.

This is implemented via the procedure GenerateTrackWithReset. The frame-level

training examples are then generated for the tracking states along the trajectory with

reset. Figure 1.1b shows an example of this modified procedure where the green band

indicates the region within δ of the ground truth and the red track indicates the result of

running the learned tracker with reset.

DAGGER2 spans the range of imitation learning algorithms from NIL to regular

DAGGER. When δ = 0 the learned trackers used to generate data at each iteration will

almost always be reset at each frame, meaning that they will generate data along only

the ground truth trajectories, which exactly matches the behavior of NIL. As the value of

δ increases, the generated training data will be able to depart from the ground truth and

be more reflective of learned policies, which is the key motivation for DAGGER. However,

as δ grows beyond an acceptable error tolerance for an application, the generated training

data will be along lower quality trajectories, and hence less useful or even detrimental to

learning, similar to DAGGER when used for tracking. When δ = ∞, or a finite value

beyond the largest possible error, the tracker will never be reset and DAGGER2 behaves

exactly like DAGGER.

We now consider what loss function DAGGER2 is optimizing. The original DAGGER

algorithm provides theoretical guarantees with respect to the expected tracking loss

L(π) of the learned tracker. While the theoretical results for DAGGER are beyond the

scope of this paper, at a high-level, DAGGER will learn a tracker that performs close

to the performance of the best tracker that could be learned. In practice, however, for
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challenging tracking domains, there will be no tracker within the class of trackers being

considered that performs well in terms of L(π). All trackers will eventually get lost during

normal operation and after that accumulate significant loss.

In actual operation, when a tracker gets lost, a human must reset the tracker in order

to complete a track. Thus, we specify a more meaningful notion of loss for this scenario,

called the reset loss. Specifically, for a video x with ground truth y, the δ-reset loss of

π, lδ(x, y, π), is the accumulated loss in each frame when π is used to track but is reset

when the error goes beyond δ, similar to how a human would reset the tracker in actual

operation. Accordingly, the expected reset loss is given by Lδ(π) = E [l(x, y, π)]. It is

straightforward to see that the theoretical results for DAGGER carry over to DAGGER2,

but for the δ-reset loss Lδ. Thus, DAGGER2 will converge to a tracker that approximately

achieves the minimum possible Lδ.

Minimizing Lδ(π) is arguably a more relevant learning goal for many applications

where it is expected that trackers will be reset/corrected when they get lost.
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Chapter 5: Results

Our focus is how training methods affect a single tracker across the same dataset. We

trained the trackers using naive imitation learning (NIL), DAGGER, DAGGER2, and

random augmentations. Since some of our trackers have tunable parameters, we also

provide some assessment of how performance varies with different δ values for DAGGER2,

including evaluating the original DAGGER algorithm. Unless otherwise noted, our

default threshold for DAGGER2 is δ = 0.15 for both GOTURN and MCDT. In addition,

we report results for the state-of-the-art deep tracker CF2 as a reference point [16].

This tracker has been demonstrated to be among the best performers for single object

tracking on the CVPR-100 dataset [28]. By design, CF2 cannot be fine-tuned to a specific

dataset, which allows us to conduct comparison on a range of domains represented by

the aforementioned three datasets.

5.1 Quantitative Results

We measure performance using two metrics. First, our tables will report average precision,

which measures the percentage of all video frames across a dataset for which the predicted

bounding box has an overlap with ground truth of at least 0.5. One issue with this single

number is that it can be biased by video length. In particular, if a tracker happens to

fail and get lost early in a long video, it hurts performance more than failing early in a

shorter video. To counteract this bias we consider another performance measure: success

versus overlap. Given an overlap threshold, the success rate is the percentage of videos in

a given test set for which the average per-frame overlap was at least the threshold value.

In fig. 5.1 you can see a plot of the success rate over the threshold.

Tab. 5.1 shows our precision results for the NFL videos. First considering the

MCDT, we see that DAGGER2 is able to significantly improve performance over the

more conventional imitation learning approach, NIL, which demonstrates the utility of

the iterative DAGGER with resets approach. We also see that random augmentation

increases the performance of over traditional training as well. For GOTURN, we see that
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Tracker Tracker Precision

CF2 0.73

MCDT + NIL 0.736
MCDT + DAGGER2 0.862
MCDT + Random 0.844

GOTURN-PRE 0.32
GOTURN-PRE + NIL 0.925
GOTURN-PRE + DAGGER 0.802
GOTURN-PRE + DAGGER2 0.928
GOTURN-PRE + Random 0.915

Table 5.1: Tracker precision on our NFL football dataset. GOTURN-PRE denotes
GOTURN [11] initialized on the ALOV300 dataset. NIL stands for naive imitation
learning. Using DAGGER2 to selectively add examples increases precision of both
GOTURN and our own MCDT tracker compared to their corresponding baselines trained
without DAGGER2. Both GOTURN and our MCDT trained with DAGGER2 outperform
CF2 [16] by 4.1% and 18%, respectively.

the pre-trained network GOTURN-PRE performs quite poorly and improves significantly

when trained via NIL. In this case DAGGER2 performs similarly to NIL, which indicates

that for this combination of tracker and dataset, the additional training data provided

by the DAGGER-style iterations did not help improve generalization performance. The

graphs for the NFL data in Figure 2a agree with the observations in the table.

When compared to augmenting the history randomly, we see slight improvements

similar to our DAGGER2 approach. However, when we train the GOTURN tracker using

DAGGER, we see a large decrease in performance relative to NIL, because some of the

training samples generated do not contain the ground truth track. On the other hand,

DAGGER2 fundamentally is trying add more realistic data to our training set. In the

MCDT tracker, DAGGER2 does this quite well. However, in GOTURN we only see

a slight improvement. Since the naive method did not work very well on the MCDT

tracker, the data added by DAGGER2 will better fit the true state distribution. This

data helps the tracker focus on more relevant targets to perform better. However as a

tracker becomes better, the difference between actual realistic state encodings and ground

truth state encodings becomes smaller. In the GOTURN case, during each iteration of

DAGGER2 most of the data added to the training set will be extremely similar to the
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Tracker Tracker Precision

CF2 0.126
GOTURN-PRE 0.296
GOTURN-PRE + NIL 0.355
GOTURN-PRE + DAGGER2 (δ = 0.15) 0.462
GOTURN-PRE + DAGGER2 (δ = 0.5) 0.453
GOTURN-PRE + DAGGER2 (δ = 0.75) 0.410
GOTURN-PRE + DAGGER 0.435
GOTURN-PRE + Random 0.445

Table 5.2: Tracker precision on the KITTI dataset. The acronyms are explained in
the caption on Tab. 5.1. DAGGER2 improves the performance of GOTURN-PRE and
GOTURN-PRE trained with NIL.

data already within it. The GOTURN tracker worked well using just NIL. So it is to be

expected that DAGGER2 would only result in relatively minute improvements.

Table 5.2 shows our precision results for the KITTI dataset. The only tracker we test

on this dataset is GOTURN, since our MCDT does not change scale which is vital for

this dataset. From our tests, we see that NIL significantly improves over GOTURN-PRE

and that DAGGER2 (with the default δ=0.15) significantly improves over NIL. This

again shows the utility of DAGGER-style training. However, we also see that just using

random perturbations, denoted as GOTURN-PRE + Random, produces similar increases

in performance to DAGGER2. Part of the reason for the discrepancy between KITTI and

the Football Player dataset is the level of difficulty between the two datasets. For one,

the NFL Football Dataset only contains 1 class, whereas KITTI contains 8. The NFL

football dataset is also filmed from a set camera and the bounding box of the players does

not change throughout the track. Whereas, the KITTI dataset is filmed from a top of a

car so it contains large variations in scale and movement. In addition to those challenges

the background in the KITTI videos change dramatically throughout the duration of

the track, whereas the NFL Football dataset background is always the field. Since NIL

learning is insufficient to model the real distribution of the previous states of a track,

DAGGER2 and random augmentation improve the performance of GOTURN significantly.

DAGGER2 might perform slightly better than randomly augmenting the previous states

because the training set generated by that method better reflects the actual performance
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Tracker Tracker Precision

CF2 0.233
GOTURN NIL 0.593
GOTURN DAGGER 0.263
GOTURN DAGGER2 0.603
GOTURN + Random 0.623

Table 5.3: Tracker precision on the ALOV300 dataset. The acronyms are explained in
the caption on Tab. 5.1. DAGGER2 improves the performance of GOTURN trained with
NIL.

of the tracker. The graphs in Figure 2b also agree with these conclusions.

On the KITTI dataset, we also evaluated how different δ values affect performance of

DAGGER2 including δ = 1, which corresponds to the original DAGGER algorithm. From

Tab. 5.2 we see performance degrades as δ increases from 0.15. However, interestingly pure

DAGGER performs better than the δ values 0.5 and 0.75 when measuring the performance

with tracker precision. When measuring the performance by average sequence, shown in

Figure 2b, we see that performances degrades from δ = 0.15 to δ = 1. The reason for

this is presently unclear.

Tab. 5.3 shows our results on the ALOV300++ dataset. Here we see that DAGGER2

improves slightly over NIL by 2%. Still though, random perturbation on the history

produces similar increases on the trackers performance. We can also see that when DAG-

GER is directly applied to train a tracker, it greatly decreases the trackers performance.

ALOV300++ contains hundreds of different tracks, unlike KITTI or the NFL football

player dataset, which contain 8 tracks or fewer. This may reduce the effectiveness of

DAGGER2 and random augmentation. If the training set does not reflect the actual tar-

gets it is tracking, it would make sense that it would not improve the tracker significantly.

DAGGER2 also might not generalize as well to unknown objects. Part of the reason

random augmentation might have worked better in this dataset is because the policy

learned by the tracker does not reflect how the tracker performs on the test set. In this

sense, the performance is random. Therefore, by augmenting the state encoding using

random augmentation we are adding more realistic state distributions to our training

set, which is DAGGER2’s objective. In turn, this makes random augmentation perform
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better than DAGGER2.

The CF2 tracker performed the worst on every single benchmark we tested. While it

performs well relative to other state of the art trackers on the CVPR100 dataset, it cannot

be fine tuned to more specific datasets. It contains no method to adjust the targets

scale, which is vital to be successful in both the KITTI and ALOV300++ dataset. This

highlights the importance of being able to finetune a tracker on a specific set. Current

state-of-the-art trackers are not good enough to generalize to any viewpoint or use case.

5.2 Qualitative Results

Overall, using either Dagger2 or good forms of random augmentation will increase the

trackers accuracy on a dataset. An example of a track that was improved after training

with DAGGER2 and random augmentation is shown in fig. 5.2.

However, there are still many failure cases for visual trackers which different training

methods cannot overcome. There are limits to the representation power of all of the

networks we tested. There are tracks that neither tracker is well suited to track well.

Since GOTURN uses a state encoding of just the previous frame, all tracks that have some

sort of occlusion are quite challenging to track, as you can see in figure 5.4. Furthermore,

the state encoding also makes it challenging for GOTURN to track objects that look

extremely similar. This failure case can be seen in figures 5.3. In addition to those

failure cases, visual trackers fail on a surprising number of tracks that are fully visible

throughout the video, but might get stuck on a feature in the background, or not have

a good representation of the target. These sort of errors seem to be due to insufficient

training data and can be seen in figure 5.5.
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(a) NFL (b) KITTI

(b) ALOV300

Figure 5.1: Per video success rate versus overlap threshold. For each overlap threshold
the graphs show the percentage of videos for which the average per-frame overlap was
greater than the threshold.
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(a) Ground Truth (b) DAGGER2

Figure 5.2: Comparison of ground truth of track, the left column, from KITTI dataset
and the track generated using a a tracker trained using DAGGER2, which is on the right
column.
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(a) Ground Truth (b) DAGGER2

Figure 5.3: An example where the GOTURN tracker’s state encoding is insufficient to
track an object. The tracker loses the target among many objects that appear similar.
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(a) Ground Truth (b) Random Augmentation

Figure 5.4: An example where a GOTURN tracker trained with random augmentation
switches the target, shown in row 4, because the target becomes ambiguous during
tracking.
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(a) Ground Truth (b) DAGGER2

Figure 5.5: An example where even in the simple case of a person walking the GOTURN
tracker loses the target, and tracks another person.
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Chapter 6: Conclusion

Through our work we have tested the limits of current state-of-the-art visual trackers. We

have evaluated a variety of different datasets and training methods. Unfortunately we have

found that visual trackers are still far from matching human performance. There have

been many improvements made in deep tracking literature but as we have shown, even

simple tracks with no occlusion can still be extremely difficult to track using competitive

state-of-the-art trackers.

This partly comes from the difficulty inherent within visual tracking. A perfect

tracker will need to encompass many different, challenging components, some of which

include foreground detection, object recognition, and object permanence. Each of these

components are needed to fix the error cases we saw in our tests.

In our tests, trackers would commonly get fixated on something in the background

and then lose the tracked object. One of the reasons for this is the state encoding. Most

trackers use a rectangular crop of the target object. While this makes processing easier,

it also forces the network to include background information in the representation of

the object. Therefore, the tracker needs to have some notion about the foreground to

filter out the background noise. As we saw in some of the football player tracking videos,

the tracker would latch onto some line and completely lose the player. The trackers we

trained eventually learned to overcome most of the errors, but it still wasn’t enough to

correct every error case.

In addition to foreground recognition, trackers need to recognize the type of object

being tracked. One error case where object recognition might help is when tracks become

partial occluded. To prevent an error after the occlusion, the tracker must expand to

include the newly visible part of the object. While a tracker with a robust foreground

detection will be able to stay on the visible part of the track, it does not mean it would

recognize the newly visible area is part of the track. Therefore, a perfect tracker would

almost need to become a generic object detector to help recover from partial occlusions.

In the case a track becomes fully occluded, the tracker needs to recognize that the

tracked object is not in the frame currently, and needs to have the ability to locate it
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again when it reappears. Unfortunately, almost all deep learning trackers do not have the

ability to recognize the disappearance of an object. Most of the trackers we tested should

not be able to recover from full occlusion at all. In the GOTURN tracker for example, the

only inputs are the previous crop and the search window. When the object disappears for

even a single frame, the entire representation of the track is lost. Therefore, trackers will

need the ability to include more information than just the previous frame when tracking.

These challenges will continue to push researchers for years. However, there are

still many advances to be made in deep visual trackers. Most state-of-the-art tracking

networks have been in the form of a saimese structure and this will most likely continue

for the immediate future. Classification networks will continue to struggle when dealing

with scale changes and the time it takes to track an object. Furthermore, their sampling

methods will bound their accuracy. On the other hand, regression networks are fast but

have only one chance to correctly detect the tracked object. While new architectures are

being tested, researchers will also continue to add and combine larger datasets. This will

allow for researchers to create more complex networks which in turn should increase the

performance of visual trackers.

There are several interesting future avenues for research that we would wish to pursue.

For one, there needs to be a better way of dealing with multiple images when used as

the input into a CNN. Saimese networks architectures use convolutional stacks to encode

the images. These encodings are then concatenated together and passed into a fully

connected layer. This means that with each image added an equal number of parameters

are added to the network which can cause the number of trainable parameters to increase

dramatically. It also is not aligned with current trends of having fully convolutional

networks, like in ResNet for example [10]. Another aspect that would be interesting is to

explore how one could use recurrent layers so that the input to the network is only the

frame being searched. These are avenues that have more to do with different architectures

for tracking but do not generalize to all networks. A more general research avenue that

tracking would benefit from is doing some form of anomaly detection to detect when

trackers get lost. Many of these trackers have no mechanism to stop if they lose the track.

However, in many commercial applications it is conceivable that a user would wish to

know when a track left the screen or how confident it currently was.

Perfect tracking might be a long way off but visual tracking is rapidly improving.

Deep learning has improved every aspect of computer vision and tracking is no exception.



33

Our work has sought to explore ways to improve visual tracking with different training

methodologies for deep trackers and develop new architectures. We created a new

architecture for tracking, named multi-channel deep tracker, to explore different ways of

encoding the state of the track. We have specified a new imitation learning algorithm,

called DAGGER2, for training online deep trackers offline in a principled manner, such

that our learning objective is better aligned with the end goal of tracking than those in

existing formulations. This training method can be used by almost any tracker.

DAGGER2 extends the well-understood framework of DAGGER, because the latter

cannot be directly applied to tracking. DAGGER2 iteratively fine-tunes the tracker by

generating new training tracks based on the current performance of the tracker. We

have tested DAGGER2 on two benchmark datasets and another new dataset, using two

different trackers, based on classification and regression networks. The results demonstrate

that DAGGER2 improves performance of both trackers relative to conventional training.

We also compared DAGGER2 to a new random history augmentation technique. Over

our three tests, DAGGER2 outperformed the random technique two out of three times.

DAGGER2 and the random augmentation technique outperformed the base case in

every test. This highlights the importance of augmenting all inputs of the training data,

whether using either technique. We have found that the omission of not augmenting the

state encoding into the network hurt the performance of those trackers. It is our hope

that other researchers use the lessons learned through our analysis to help improve the

performance across all of their trackers.
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