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Most of today’s Internet of Things (IoT) applications assume that data will be moved off

devices into centralized cloud platforms. While existing IoT systems leverage cloud-based an-

alytics for meaningful data reasoning, the assumption that data should always be moved off the

devices is problematic. The amount of data to be moved from devices over Internet gateways

to cloud platforms is huge which potentially make it cost inefficient. In other scenarios, pri-

vacy concerns of customers or organizational rules complicate the process of transferring data to

third-party data centers.

This dissertation proposes architectures and dynamic overlay network algorithms for in-

network and edge processing of data offered by the globally available IoT devices and provides a

global platform for meaningful and responsive data analysis and decision making. The proposed

techniques shift IoT analytics from a ”collect data now and analyze it later” scenario to directly

providing meaningful information from the in-network processing of devices data at or near the

devices. The techniques serve future IoT use cases including distributed context awareness, on-

demand data analysis, and in-network decision making. The dissertation comprises three main

components.

The first component is a device management protocol for cloning devices’ data in proximate

Edge Computing platforms. Unlike existing application-layer IoT management protocols the

proposed protocol uses the LTE/LTE-A radio frame structure, device-to-device communication,

and IoT data properties to avoid excessive network access latency in existing technologies.

The second component realizes distributed IoT analytics as overlay networks of devices

clones. By means of virtual network embedding, it selects and interconnects devices’ clones

to efficiently realize applications’ virtual topologies to achieve goals such as minimum latency,

minimum infrastructure cost, or maximum infrastructure utilization.

Finally, the dissertation presents a communication middleware that allows autonomous dis-

covery, self-deployment, and online migration of devices’ clones across heterogeneous Edge

computing platforms. The middleware ensures that communication latency between clones is

kept minimum despite the uncontrolled variability of the network and hosting platforms condi-

tions.

We evaluate the proposed architectures and algorithms through simulations and prototype

implementation of various components in controlled testbed environments, which we evaluate

using real user applications. We explore the feasibility of the proposed techniques from both

theoretical and practical perspectives.
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Chapter 1: Introduction

The scalability and reliability of IoT applications require rethinking system and end-to-end

network architecture designs that differ from existing systems such as enterprise applications

[15, 11, 118].

The goal of this dissertation is to develop cloud networking technologies for on-demand, dy-

namic, trusted, and reliable IoT analytics. Analytics for IoT can be done in conventional cloud

computing platforms by moving data from devices into centralized data lakes. The emerging

paradigm of Edge computing is also getting attention to executing such analytics near the net-

work edge without the need to move data from devices to conventional clouds. Finally, IoT ana-

lytics can be done with in-network processing with IoT devices as devices communicate through

device-to-device communication. We explore existing networking technologies that can enable

such diverse requirements, and dive deep in network virtualization technologies that realize IoT

analytics as overlay networks of virtual topologies.

Figure 1.1: High level architecture.

1.1 Background

1.1.1 Edge computing in LTE/LTE-A

Mobile-edge Computing augments already-existing Radio Access Network (RAN) with cloud

computing resources in close proximity to mobile subscribers. For developers, Mobile-edge
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Computing provides an environment of ultra-low latency and high-bandwidth as well as direct

access to real-time radio network information.

The LTE all-IP architecture, built-in security and spectral efficiency nominate LTE to become

the dominant connectivity technology for the Internet of Things (IoT), while IoT services and

applications create unprecedented traffic growth for 3GPP LTE/LTE-A networks [4]. For IoT

applications, it is becoming a global consensus that cloud computing technology is an essential

driver for IoT computation speedup, energy consumption, and service realizations [9, 144]. IoT

applications include, for example, connected vehicles, smart grids and cities, and wireless sen-

sors and actuators networks [35]. In such applications, IoT devices offload its computations by

replicating small-sized (tiny) memory objects and transferring these memory replicas through

LTE networks to a back-end cloud computing infrastructure that enables the IoT applications to

scale its computing resources on elastic infrastructure instead of resource limited devices besides

many other benefits. Despite the potential of LTE to efficiently transport these memory replicas

to the scalable cloud infrastructure, the massive number of devices per cell, which is projected

to reach 50,000 devices by 2020 (see [5]), renders an LTE network as the major communication

bottleneck for cloud offloading that can significantly limit offloading performance gains.

We propose REPLISOM - a memory replication architecture and protocol - based on the

emerging mobile edge computing paradigm [68], the Device-to-Device (D2D) communication

technology [23], and the compressed sampling theory [62].

1.1.2 Virtual Network Embedding

Network Virtualization and Application overlay networks have emerged as key technologies

to effectively use network resources in support of diverse services and applications [96, 10].

Network virtualization consolidates hardware and software network resources under a single ad-

ministrative authority. In general, network virtualization involves interconnecting virtualizable

hardware in a network that performs a certain task. The tasks can be permanent - as in enterprise

applications - or on-demand as we explore in this dissertation. Network virtualization can be

done at any layer of the networking stack. In this work, we refer to virtualization at the applica-

tion level as application overlay networks. We also refer to virtualization of inter-networked IoT

devices as virtual sensor networks.

A virtual network is described by application developers as a network of virtual nodes in-

terconnected by virtual links. Successful on demand network virtualization involves three main
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Bird-VNE RADV Flock
Scalability Polynomial Polynomial Linearithmic

Closeness to Optimal 1
2 far from optimal N/A 1 + ε

Architecture Centralized Hybrid (conjectured) Centralized or Distributed
Network Tomography Must maintain consistent network measurements Cooperative measurements local measurements

Service Discovery Centralized Relies on Gossip Methods N/A
Implementation Complexity 3k lines of code 3k lines of code 1k lines of code

Table 1.1: Comparison of the proposed technuiques and why flock is the key technuiqe.

methods. First, a discovery of the resources of the substrate network is essential for a virtual

network embedding algorithm to have a complete of a partial view of the network resources.

Second, a virtual network embedding algorithm selects the substrate nodes and the substrate

links that realize the virtual network. The virtual network itself can realize enterprise applica-

tion, on-demand distributed algorithms, or applications that span several geographical locations

as in IoT analytics.

We explore architectures and algorithms for Network virtualization at different levels. We

propose a centralized algorithm that we name BirdVNE. BirdVNE embeds on-demand virtual

networks onto substrate networks using the theory of constrained optimization. Centralization of

BirdVNE constraints its scalability, hence we propose RADV as another solution for distributed

resource discovery and network virtualization using gossip protocols and distributed optimiza-

tion. Although performing well, in practice, we found RADV properties hard to formally prove

and complex to implement as a single unit as it involves several components. Finally, we propose

Flock algorithm, which we demonstrate its superior performance in terms of stability, closeness

to an optimal solution, ease of implementation, and applicability to satisfy diverse design goals.

Table 1.1 shows a comparison between Bird-VNE, RADV, and Flock and shows how Flock is

the key technuiqe proposed.

1.1.3 Implementation, Testing, and Usage

Today, emerging applications of overlay networks require experimentation in geographically

distributed testbeds. Distributed analytics near the network edge is one example application in

which several hundreds of microservices and Internet of Things devices execute distributed com-

putation on data from devices close to access points [144, 146, 10]. Existing cloud computing

infrastructures best suit the needs of such experimentations.

For example, to experiment our virtual network embedding algorithms we need to deploy

cloud resources that are spread over several geographical locations that mimic real substrate
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System 

Architecture

Software 

Design
Specification Coding Testing

Figure 1.2: Implementation types for evaluation and testing.

Technuiqe Implementation Type
REPLISOM Numerical Simulation and Prototyping for Device-To-Device communication at Layer-7
Bird-VNE Emulation

RADV Emulation and Prototyping for the Service Discovery mechanism
Flock Simulations and Prototyping for the entire technuiqe

Table 1.2: Comparison of the proposed technuiques and why flock is the key technuiqe.

networks with shared traffic, workload, and overhead. To remain cost-effective we shall be

able to dynamically create, interconnect, and configure such virtual testbeds, run experiments

for a predefined time period, collect results, and then destroy virtual testbed as soon as the

results are available for analysis. In some experiments, we also need to measure and account for

real Internet and shared cloud resources variations. Experiments in such variable uncontrolled

and real environments allows credible prototyping of new architectures and systems that face

todays real-world challenges such as scalability, multi-tenant support, and handling of resource

shortage. Figure 1.2 shows the implementation phases that we folow for testing and evaluating

the proposed techniques and Table 1.2 shows a taxonomy of the differnet implementation types

we have for these technuiqes.

We propose Beelet; A geographically distributed virtual testbed management API that sim-

plifies large-scale virtual testbed creation for research experiments in network function virtu-

alization, distributed systems, and large-scale overlay networks. Beelet uses Layer-3 overlay

networks to interconnect application services that Beelet deployed in virtual machines. Beelet

can use Amazon EC2 or Google cloud platforms to host the virtual machines and automatically

interconnect them according to a predefined topology given by Beelet users. We demonstrate the

effectiveness of Beelet through a usage model in which we deploy FogMQ for functional experi-

ments, and present its use for integrating RADV and Bird-VNE implementations and evaluation.

We also propose GROUP; A library to create overlay networks at layer-7. GROUP incorpo-

rates an off-the-shelf implementation of the gossip protocols for node discovery in Wide Area

Networks and is foundational to the realization of RADV. The library introduces practical meth-

ods of overcoming authorization latencies by separating the control plane functionalities from

the data-plane functionalities in existing middleware communication.

Finally, we propose FogMQ; an implementation, evaluation, and use case of the Flock al-
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gorithm. In FogMQ, we design self-deploying brokering clones that discover cloud hosting

platforms and autonomously migrate between them according to self-measured weighted tail

end-to-end latency, ultimately allowing us to stabilize clones deployment and achieve a near

minimum latency given an existing infrastructure limits. Figure 1.3 shows the development

phases for FogMQ prototyping.

System 

Architecture

Software 

Design
Specification Coding Testing

Figure 1.3: Development phases of prototypes.

1.1.4 Contributions and Organization

This work comprises nine chapters. Chapter 1 provides and introduction and highlights of our

proposed solutions. We organize the chapters and summarize the contributions of this disserta-

tion as follows.

In Chapter 2, we discuss the evolution of existing LTE/LTE-A architecture towards Mobile

Edge Computing that supports IoT analytics near the edge. In this chapter, we propose REPLI-

SOM, a protocol that improves mobile edge computing responsiveness for tiny-sized memory

replication from a massive number of IoT devices in LTE in specific. REPLISOM Reduce the

memory replication delay by diminishing the need of initiating the LTE random access proce-

dure for each replica transfer, which introduces an undesirable delay, increased energy consump-

tion, and risk of instability given a large number of simultaneously active devices. Our proof-

of-concept implementation and evaluation shows that REPLISOM enhances the LTE signaling

overhead and resource usage for memory replication by avoiding the allocation of unnecessary

dedicated control channels per device, which wastes the scarce radio resources and risks the

blocking of human communications.

In Chapter 4, we develop a centralized virtual network embedding algorithm, termed BIRD-

VNE, for mobile wireless networks. BIRD-VNE is a centralized approximation algorithm that

ensures a close to optimal virtual embedding profit and acceptance rate while minimizing the

number of virtual network migrations resulting from the mobility of wireless nodes. BIRD-

VNE employs a constraint satisfaction framework by which we analyze the constraint propaga-

tion properties of the VNE problem and design constraint processing algorithms that efficiently

narrow the solution space and avoid backtracking as much as possible without compromising
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the solution quality. Our evaluation results show that the likelihood that BIRD-VNE results in

backtracking is small, thus demonstrating its effectiveness in reducing the search space. We

analytically and empirically verify that BIRD-VNE outperforms existing VNE algorithms with

respect to computational efficiency, closeness to optimality, and its ability to avoid potential

migrations in mobile wireless networks.

In Chapter 5, we propose an architecture and use case of overlay networks for Sensing as a

Service. We conjecture a global architecture, named Cloud of Things, that scales up cloud com-

puting by exploiting the global sensing resources of the highly dynamic and growing Internet

of Things (IoT) to enable remote sensing. The proposed architecture scales out by augment-

ing the role of edge computing platforms as cloud agents that discover and virtualize sensing

resources of IoT devices. Our solution enables performing in-network distributed processing

of sensing data offered by the globally available IoT devices and provides a global platform

for meaningful and responsive sensing data analysis and decision making. We design cloud

agents algorithmic solutions bearing in mind the onerous to track dynamics of the IoT devices

by centralized solutions. First, we propose a distributed sensing resource discovery algorithm

based on a gossip policy that selects IoT devices with predefined sensing capabilities as fast as

possible. We also propose RADV: a distributed virtualization algorithm that efficiently deploys

virtual sensor networks on top of a subset of the selected IoT devices. We show, through analy-

sis and simulations, the potential of the proposed algorithmic solutions to realize virtual sensor

networks with minimal physical resources, reduced communication overhead, and low complex-

ity. RADV overcomes centralization and complexity limitations of Bird-VNE by delegating the

embedding tasks to multiple cloud agents and devices. Although performing well in proof-of-

concept implementation and evaluation, it is hard to formally prove its superiority and prototype

it in practice.

In Chapter 6, we overcome the limitations of both Bird-VNE and RADV by designing Flock

algorithm. We recognize the importance of live migration in optimizing the overlay networks

in dynamic environments. Flock is a simple and scalable protocol that enables live migration

of Virtual Machines (VMs) across the heterogeneous edge and conventional cloud platforms to

improve the responsiveness of cloud services. Flock is designed with properties that are suitable

for the use cases of the Internet of Things (IoT). We describe the properties of regularized latency

measurements that Flock can use for asynchronous and autonomous migration decisions. Such

decisions allow communicating VMs to follow a flocking-like behavior that consists of three

simple rules: separation, alignment, and cohesion. Using game theory, we derive analytical
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bounds on Flocks Price of Anarchy (PoA) and prove that flocking VMs converge to a Nash

Equilibrium while settling in the best possible cloud platforms. We verify the effectiveness

of Flock through proof-of-concept implementation and evaluation and discuss how its generic

objective can simply be tweaked to achieve other objectives, such as cloud load balancing and

energy consumption minimization.

Theory development: 

Flock, Controlled-Flock

Simulations

FogMQ 

Prototyping

Spring

2015

Summer

2015

Fall

2015

Winter

2016

Spring

2016

Summer

2016

Fall

2016

Figure 1.4: Theory and protoyping timeline of Flock and FogMQ.

In Chapter 7, we implement and evaluate Flock in an optimized usage for communication

middleware in Edge and Fog Computing that name FogMQ. This prototype implementation

is motivated after we show the superiority of Flock algorithm theoretically and with proof-of-

concept simulations in Chapter 6. Figure 1.4 shows a timeline for Flock and FogMQ theory, sim-

ulation, and prototype development. Excessive tail end-to-end latency occurs with conventional

message brokers as a result of having massive numbers of geographically distributed devices

communicate through a message broker. On the other hand, broker-less messaging systems,

though ensure low latency, are highly dependent on the limitation of direct device-to-device

(D2D) communication technologies, and cannot scale well as large numbers of resource-limited

devices exchange messages. We propose FogMQ, a cloud-based message broker system that

overcomes the limitations of conventional systems by enabling autonomous discovery, self-

deployment, and online migration of message brokers across heterogeneous cloud platforms.

For each device, FogMQ provides a high capacity device cloning service that subscribes to de-

vice messages. The clones facilitate near-the-edge data analytics in resourceful cloud compute

nodes. Clones in FogMQ apply Flock, an algorithm mimicking flocking-like behavior to al-

low clones to dynamically select and autonomously migrate to different heterogeneous cloud

platforms in a distributed manner.
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As we recognize the possibility to implement overlay networks at different network stacks,

we provide frameworks for implementation in Layer-7 and Layer-3 in Chaper 8 and Chapter 9

respectively.

In Chapter 8, we propose GROUP is a dynamic application overlay platform for controlled,

trusted, and reliable communication among heterogeneous devices and services in cloud and

edge computing environments. GROUP eases development and policy management for such

complex environments. It has a control plane that creates application overlay networks. An

application overlay network is data plane that is used to exchange messages between applica-

tion services. Each data plane can also act as a control plane to create and manage additional

application overlay networks. Control plane actions are uniformly and transparently subject to

policy and obligations. Policy determines what actions are permitted. Obligations direct adap-

tation for the system in terms of launching or terminating services, or requiring changes to the

application overlay networks. Our approach distributes policy enforcement and allows for cen-

tralized, distributed, or hybrid policy decision, information, and administration points. We have

implemented GROUP as reusable Java APIs and tested it in a controlled environment where we

demonstrate its usability by implementing a privacy perceiving ride-sharing solution that lever-

ages real-time data from IoT devices.

In Chapter 9, we introduce Beelet; a geographically distributed virtual testbed management

API that simplifies large-scale virtual testbed creation for research experiments in network func-

tion virtualization, distributed systems, and large-scale application overlay networks. Beelet uses

Layer-3 overlay networks to interconnect application services that Beelet deployed in virtual ma-

chines. Beelet can use Amazon EC2 or Google cloud platforms to host the virtual machines and

automatically interconnect them according to a predefined topology given by Beelet users. We

demonstrate the effectiveness of Beelet through a usage model in which we deploy FogMQ for

functional experiments. We also demonstrate the usage of Beelet to implement and evaluate

Bird-VNE and RADV.

We finally conclude this dissertation in Chapter 10.
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Chapter 2: Disciplined Tiny Memory Replication for Massive IoT Devices

in LTE Edge Cloud

2.1 Introduction

The LTE all-IP architecture, built-in security, and spectral efficiency nominate LTE to become

the dominant connectivity technology for the Internet of Things (IoT), while IoT services and

applications create unprecedented traffic growth for 3GPP LTE/LTE-A networks [4]. For IoT

applications, it is becoming a global consensus that cloud computing technology is an essential

driver for IoT computation speedup, energy consumption, and service realizations [9, 144]. IoT

applications include, for example, connected vehicles, smart grids and cities, and wireless sen-

sors and actuators networks [35]. In such applications, IoT devices offload its computations by

replicating small-sized (tiny) memory objects and transferring these memory replicas through

LTE networks to a back-end cloud computing infrastructure that enables the IoT applications to

scale its computing resources on elastic infrastructure instead of resource limited devices besides

many other benefits. Despite the potential of LTE to efficiently transport these memory replicas

to the scalable cloud infrastructure, the massive number of devices per cell, which is projected

to reach 50,000 devices by 2020 (see [5]), renders an LTE network as the major communication

bottleneck for cloud offloading that can significantly limits offloading performance gains.

Memory replication is a disciplined process in which consistency must be ensured such that

a write operation is followed by a memory update operation with the cloud for each device [54].

On the other hand, the current LTE network access and uplink scheduling procedures introduce

a significant latency and energy inefficiency to update a large number of tiny memory replicas.

An LTE cell can become easily blocked, if only 10% of the devices it covers became active

simultaneously to update their memory replicas with the cloud. Unsurprisingly, this bottleneck is

not a result of bandwidth limitation; as an IoT device memory replica is typically a few Kilobytes

and the LTE network is optimized for high throughput and low latency applications [85, 86, 80].

Nevertheless, the LTE standard is not optimized to support a large simultaneous access from

devices while remaining delay and energy efficient; as this requires allocating a large number

of control channels and wastes radio resources, which are primarily intended for transporting
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conventional mobile users data. To remain a disciplined process, we design an LTE-optimized

memory replication architecture and protocol to harvest the benefits of both LTE and cloud

computing technologies.

In this chapter, we propose REPLISOM 1, a memory replication architecture and protocol

based on: the emerging mobile edge computing paradigm [68], the Device-to-Device (D2D)

communication technology [23], and the compressed sampling theory [62]. We summarize our

contribution as follows:

• Improve the cloud responsiveness for IoT services and applications by distributing cloud

resources geographically close to the IoT devices. Unlike Cloudlets, MAUI, CloneCloud,

and COSMOS [144, 56, 54, 150], the proposed architecture enables the design of LTE-

aware cloud procedures in general and memory replication protocols optimized for tiny-

sized memory replication from a massive number of IoT devices in LTE in specific.

• Reduce the memory replication delay by diminishing the need of initiating the LTE ran-

dom access procedure for each replica transfer, which introduces an undesirable delay,

increased energy consumption, and risk of instability given the large number of simulta-

neously active devices. Unlike the application of compressed sampling in sensor network

which relies on spatial and temporal correlation of sensor data [87, 171], the proposed

memory replication protocol relies on two level of sparsity structures at the network and

memory levels.

• Enhance the LTE signaling overhead and resource usage for memory replication by avoid-

ing the allocation of unnecessary dedicated control channels per device, which wastes the

scarce radio resources and risks the blocking of human communications. Unlike other

protocols used in general purpose machine type communications in LTE [19, 173], our

work relies on the disciplined nature of memory replication to design a pull based mem-

ory replication protocol which uses a significantly less number of control channels com-

pared to direct memory replication using the conventional LTE access and data transfer

procedures.

2.1.1 Solution Outline

The REPLISOM architecture is a mobile edge cloud architecture (see Figure 2.1) in which we

augment the evolved NodeB (eNB) with cloud computing resources and refer to this augmented
1The name,REPLISOM , is inspired by replisomes that carries out replication of DNA.
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architecture by the LTE edge cloud. The LTE edge cloud is a new integrated radio access net-

work element that provides virtualizable computing, storage, and networking resources to clone

device specific IoT applications and services. The architecture is a highly responsive system that

neutralizes the back-hauling and routing bottlenecks which exist in current conventional cloud

architecture. Deploying cloud computing resources in the proximity of the IoT devices allows

developing an LTE radio interface which is optimized for memory replication utilizing already in

place technologies. For example, an LTE capable IoT devices already incorporate D2D technolo-

gies that support efficient proximal devices discovery and direct communication. By utilizing the

capabilities of the D2D technology and the existing LTE control and data channels, we show the

possibility to improve the memory replication performance through an LTE-optimized protocol.

The REPLISOM protocol is an LTE-optimized memory replication protocol(s) that relies on

pulling the memory replicas from the IoT devices instead of pushing the replicas from the de-

vices to the LTE edge cloud. We observe two sources of sparsity in memory replication. The first

source is at the network level, where the ratio of the active devices to the total number of devices

is small even if the number of simultaneously active devices is large under the traffic models

defined by 3GPP for machine communication. This source of sparsity is independent on any as-

sumption about the devices memory contents (e.g. spatial or temporal correlation). The second

source of sparsity is at the memory replica level, where the deltas of memory replicas typically

exhibit few non-zero memory blocks. In REPLISOM , a device sends its updated memory replica

to some other neighbor devices using D2D communication, while a receiving device compresses

all the received memory replicas into a single compressed replica. The edge cloud then selects

a number of devices, which is much less than the total number of devices in the LTE cell, and

pulls the compressed replicas from these devices. By compressed sampling reconstruction algo-

rithms, the cloud can recover the original replicas exactly utilizing the sparsity at the network

level. Moreover, we show possible further improvements to the devices energy consumption and

replication delay by utilizing the sparsity at the memory replica level.

Since the cloud pulls compressed replicas from a number of devices that is proportional to

the number of updated replicas, there is no need for initiating the random access procedure. As

an LTE device is already synchronized with its serving LTE cell to decode the cell’s control

channels, with REPLISOM a device just wakes up in predefined sub-frames to verify its pulling

occasions and transmit its compressed replica while remaining in a deep sleep state if it is not

pulled. Unlike directly pulling the original replicas from each device in the cell, which also does

not require initiating the random access procedure, the number of control channels allocated for
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the proposed protocol is significantly less than the number of control channels allocated to pull

replicas from each device in the cell.

The remaining of this paper is organized as follows. We first discuss the related work in

Section 2.2. Then, we present the proposed architecture in Section 2.3.1 where we discuss the

LTE specific challenges and the architectural rule of the D2D technology. Section 2.4 delves into

the proposed memory replication protocol and its relation to the compressed sampling theory and

shows how we use the two sources of sparsity, at the network level and at the memory replica

level, to design an efficient pull based memory replication protocol. In Section 2.5, we describe

our performance benchmarks and provide numerical evaluations of REPLISOM in comparison to

replica transfer using the conventional LTE procedures.

2.2 Background

Creating computing infrastructure back-ends for devices such as cloud platforms has been in

the heart of the IoT research since its inception in 1991 [169]. The vision of cloud computing

for IoT has evolved through the years to what we know today as Edge computing [68, 144] or

Fog Computing [35]. These evolved platforms extend the cloud computing paradigm with new

characteristics such as: location awareness, low latency networking, geographically distributed

infrastructure, support of mobility, wireless access awareness, and cloud interoperability [9].

Our work focuses on the efficient design of memory replication protocol for the purpose of

computation offloading in the LTE edge cloud with support of massive number of IoT devices.

Cloud offloading near the edge The idea of augmenting resource constrained devices with a

resource-rich cloud infrastructure accompanied the evolution of mobile computing more than a

decade ago [74, 105]. Computation offloading with a fine-grain memory replication has been the

focus of research since then [54, 56, 134, 150]. New forms of cloud platforms (e.g. cloudlets)

emerged to provide computing resources for proximate devices with a minimal communication

delay. The success of computation offloading to improve the computational capacity and energy

consumption in the Internet of things era is conditioned by the limits of the underlying network-

ing technologies that support memory replication from massive number of devices (see results in

[102, 177]). Our work investigates these limitations, architectural evolution, and protocol design

to support cloud-centric IoT services and applications at LTE eNB.
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Massive IoT devices in LTE The energy consumption and delay performance characteristics

of Internet of Things (Machine Type Communication) in LTE has been one main focus of the

cellular networks research and standardization efforts [86, 162]. Particularly, the delay and en-

ergy characteristics of the LTE random access and uplink transmission procedures resemble the

major bottlenecks under network overload from massive number of IoT devices [80]. The ex-

isting approaches to improve the LTE performance in such overload situation focus on finding

improvements for existing uplink transmission mechanisms [19, 86]. Our work is related to

these research efforts as we anticipate the impact of the LTE bottlenecks on the memory repli-

cation performance, hence cloud offloading. Our proposed protocol is specific to the memory

replication traffic, and not to any uplink traffic type, and its validity is conditioned by the evolu-

tion of Device-to-Device Communication technologies [23, 114, 75]. The LTE-aware design of

the proposed memory replication protocols reduces the dependency on the LTE random access

procedure and requires significantly less number of control channels.

Compressed Sampling in networking Our work is an application of the theory of sparse

recovery in compressed sampling [30], which has several applications in networking. Ap-

proaches to a decentralized compression of networked data has gained a lot of attention in the

last decade [87] and had applications in: network coding [127, 100], sensor measurements col-

lection [166, 111, 171], network tomography [180], and medium access [69]. The application

of compressed sensing in such applications utilizes the sparse properties of the data in different

forms. In sensor networks, for example, spatial and temporal correlations of sensor measure-

ments are the main sources of sparsity [166] which requires finding a network transformation

to sparsify the network data (e.g. using graph wavelets, or diffusion wavelets) [87]. Our work

relies on the sparsity of having a limited number of simultaneously active devices out of a large

number of devices at the network level besides the sparsity of having a limited number of non-

zero memory blocks in memory deltas at the memory level. These sources of sparsity do not

require any particular transformation to sparsify the memory replicas.

2.3 LTE Architecture Evolution for Edge Computing and Massive IoT

Devices

The current LTE architecture performs specialized processing that supports radio communication

with LTE devices and traffic back-hauling. When an IoT device, in an LTE cell, offloads its



14

Virtual Machine

IoT device#n

Virtual Machine

IoT device#2

Virtual Machine

IoT device#1

MEC IaaS virtualization layer

LTE NodeB

Memory replica

IoT device #1

Memory replica

IoT device #2

Memory replica

IoT device #n

Compute, Storage, and Network resources

IoT applications and service layer

Memory

Block

IoT device #2

IoT device #1

Memory

Block

D2D

Figure 2.1: Proposed Memory replication architecture in LTE/LTE-A with Mobile Edge Computing and
Device to Device communication.

computation to a cloud computing platform, it carries out LTE network access and uplink data

transfer procedures including: initiating a random access, sending uplink scheduling requests,

receiving uplink grants, and transmitting its uplink data (memory replica) using radio resource

blocks (see Figure 2.6). Then, a memory replica (received packets at the LTE cell) passes through

multiple stages of packet forwarding from the LTE cell through the serving gateway, to the packet

data network gateway, to the Internet routers, to the data center routers until it finally reaches

a cloud computing node that hosts a virtual machine - corresponding to the IoT device - that

updates the replicated memory block. The current LTE architecture is well optimized for voice

and data packet communication. However, given the service requirements of IoT including the

support of: massive number of devices, reduced complexity, and power efficiency, the LTE

architecture is not optimized for cloud computing offloading for IoT services and applications

which requires tighter delay bounds on packets transmission.

2.3.1 Proposed Architecture

We propose to address the LTE architectural bottlenecks by deploying local cloud computing

resources within the radio access network based on the mobile cloud computing paradigm [68].

Once the device memory replica reaches the LTE eNB, it becomes available to the IoT services

and applications deployed at these local cloud resources. This architectural change improves the

cloud responsiveness by distributing the cloud resources geographically close to the IoT devices

(Figure 2.1) and paves the road to: i) an improved IoT services and applications resiliency by

splitting the cloud resources to local resources (to devices) and global resources (conventional

cloud), ii) simplified analytics and big data by capturing key information from devices with

possible direct device access, iii) reduced latency as applications react faster to devices and

context changes away from possible congestion in other parts of the LTE network other than the
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radio network, and iv) optimized cloud protocols that are aware of network information (e.g.

radio conditions, performance statistics, and technology limitations).

2.3.1.1 Technical Challenges

Several technical challenges pertain to this LTE edge cloud architecture such as: the design of

highly distributed applications, support of optimized applications and virtual machines portabil-

ity, integration cloud security with current 3GPP-security requirements and practices, improving

applications and cloud hardware resilience to match 3GPP availability and service continuity

requirements, and design of LTE radio interface aware cloud protocols.

The LTE radio interface, in specific, resembles the major bottleneck for efficient memory

replication in LTE edge computing. Three benchmarks capture the system wide efficiency of a

memory replication protocol: the total delay, the total consumed energy, and the total number of

control channels required to transfer all the updated memory replicas from all the active devices

to the edge cloud (see Section 2.5 for a detailed description and evaluation). For example, the

memory replication efficiency implies minimizing the time a single device waits between two

successive replica updates. During that time the eNB is busy transporting memory replicas

from other devices (besides conventional human communication). Several characteristics and

observations render an LTE radio interface as the major bottleneck and motivate the design of an

LTE-optimized memory replication protocol.

Large simultaneous replica updates Although the majority of IoT devices exhibit a memory

change every few minutes, the massive number of devices per cell results in a large simultaneous

replica updates per minute. Recent 3GPP studies on enhancements of LTE for IoT suggest new

traffic models of IoT devices that can cause memory changes every 30 minutes down to 10

seconds in case of major failures which require the design of rapid network access procedures

[6]. Let n denote the number of devices in an eNB, and k = ρn denote the number of devices

with an updated replica at time t (active devices) where ρ is the ratio of the active devices to

the total number of devices in one minute. Under the suggested 3GPP models, the parameter ρ

typically ranges from 0.1 to 0.3 (i.e. 1000 to 15,000 simultaneous active devices per minute).

The LTE physical layer, besides other system aspects, restricts a large number of simultaneous

replica transfers due to several physical layer design aspects. For example, the finite sounding

reference signal periodicity restricts the number of simultaneous active devices so that the eNB
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is able to estimate the uplink channel quality with a finite accuracy (see [1] for more details on

physical layer scalability limitations).
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Figure 2.2: The idle to active scenario: LTE signaling for a replica transfer from the idle mode to the
active state.

Access latency and control channels As the devices are not engaged in frequent packet trans-

mission and reception, devices will typically remain in idle mode (not connected to the cell) for

a long time to save their energy and reduce the cell interference. Unfortunately transitioning

back from the idle mode to the connected mode results in an excessive access latency as every

memory update involves an initiation of the random access procedure (see Section 5.1 in [2]

for details on the random access procedure). We refer to this scenario as the idle to active sce-

nario. Every device accessing the network from the idle mode transmits and receives at least four

control messages (illustrated in Figure 2.2) : the random access request (device initiates the pro-

cedure), random access response (cell acknowledges the request and assigns initial resources),

uplink connection/scheduling request (device requests uplink resources), and uplink grant (cell

allocates uplink resources for data transmission). Random access requests can also collide. Let

L denote the random access opportunities per second and γ denote the random access requests

per second, the probability of collisions during the random access procedure is given by the

Pr collision = 1− e−γ/L [5]. Even if an operator was able to increase L such that the random ac-

cess initiation is collision free (Pr collision ≈ 0), recent studies suggest that in such hypothetical

case the average random access latency per device ranges from 47 ms to 55 ms (measured from
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the initiation till the first uplink transfer) in such hypothetical collision free scenario [5, 80].

Over-allocated scheduling opportunities Preventing devices from transitioning to the idle

mode can improve the access latency significantly. In such scenario, a device stays in a dor-

mant state for monitoring the control channels in predefined occasions, and does not need to

initiate random access except if, for example, it lost frame synchronization, or there were no

uplink resources available to send scheduling requests (see [2]). Optimized discontinues recep-

tion/transmission achieves energy saving for always connected devices (in dormant state) where

devices go into deep sleep and wake up only in predefined occasions to maintain, for example,

frame synchronization and decode other control channels. Figure 2.3 illustrates replica transfer

from the dormant state where the device first identify a scheduling opportunity and sends an up-

link scheduling requests. Once, the LTE cell allocates uplink radio resources for the device, the

cell sends an uplink grant message to the device to start its transfer. We will refer to this scenario

as the dormant to active scenario. This procedure exhibits the least possible latency, but ideally

requires allocating scheduling opportunities for n devices, which is not necessarily feasible for

a large number of devices (see [1] and [2]) and is inefficient due to the unnecessary allocation of

control channels as we will detail in Section 2.5.
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Figure 2.3: The dormant to active scenario: LTE signaling for a replica from the dormant state to the
active state.

Untraceable memory changes A memory replication protocol can be pull based, where the

edge cloud initiates the replicas transfer through paging the IoT devices, hence the random access

procedure is not initiated and the scheduling requests are allocated only for pulled devices. With

the current LTE specification, the cell can page a device to initiate an uplink transfer. There are
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two challenges accompanying this process. First, the paging process is not ideal and involves

latency, collisions, and capacity challenges that are as difficult as the random access procedure.

Second, it is not trivial for the edge cloud to determine which devices are active to pull replicas

from, without initiating unnecessary paging or pulling replicas from all the devices in the worst

case.

2.3.1.2 Architectural Rule of D2D Communication

We address the previously discussed challenges by designing a pull based memory replication

protocol using D2D communication (in specification starting 3GPP Release 12) and compressed

sampling (Section 2.4). Architecturally, IoT devices can communicate directly with each other

using the licensed cellular spectrum (in-band), or the unlicensed spectrum (out-band). In-band

D2D can use the same operating band of the LTE cell in an underlay mode or a different band in

an overlay mode. D2D communication requires: interference management, resource allocation,

and device discovery services that devices can perform autonomously or by the LTE infrastruc-

ture assistance (i.e. small and home cells other than the macro cell in Figure 2.1) [23].

In the proposed architecture, device pairs can communicate autonomously in parallel with

low power radio. Typically, the D2D transmission power, Pd2d, is a fraction of mW (e.g. 1 mW

[110]). A device is also capable of communicating with a group of devices in multicast, and the

total time required in transferring a replica from one device to the other is comparable to the idle

to active scenario (Figure 2.2). Let r denote the maximum communication range of the LTE D2D

technology2. A device is connected to a Neigh(i) = {j : Dist(i, j) ≤ r} neighbor set, where

Dist(i, j) denote the Euclidean distance between any two devices i and j. With an LTE cell that

covers an area a and serves n devices 3 , a device i is directly connected to E{Neigh(i)} = ηπr2

on average, where η = n
a denote the network density.

2.4 Memory Replication Protocols

The main intuition behind the proposed REPLISOM memory replication protocol is to recognize

that during a short time interval, the memory replicas of all the n devices in an eNB resemble a
2Early commercial solutions show LTE D2D communication range up to 500 meters and we assume r < 200

meters.
33GPP suggests a ≈ 1 square Kilometer as detailed in [6].
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sparse vector, x, of length n that has k non-zero entries which represent replicas from k active

devices. We refer to this observation as the sparsity at the network level. Hence. it is possible

to recover all the replicas (the vector x) from few memory replica samples m < n by the use of

compressed sampling reconstruction algorithms [62, 87]. Efficient replica recovery is possible

with compressed sampling: if we designed a low complexity protocol that samples the replicas

incoherently with few control channels; and if we treated the memory replicas as blocks of finite

precision floating numbers instead of low level binary bit streams. These insights enable the

development of the proposed pull based memory replication protocol that does not have to learn

which devices are active with an updated memory contents, while it pulls only memory replicas

from a number of devices that is far less than n. The protocol works as follows (see Figure 2.4

for the messages flow).

2.4.1 Proposed Protocol

Suppose that k devices are active and updated their memory. Let p denote the memory page of a

device i which is split into l blocks that are represented as finite precision floating numbers.

1. An active device i, upon updating p at time t, performs the following:

1.1. creates the i-th memory replica, xi ∈ R, as: xi = float(device : i, time :

t, memory : p), where float is a function that casts the replica bits to a fixed

point floating number.

1.2. pushes xi to randomly chosen neighbors in a multicast D2D communication.

2. A receiving neighbor device j performs the following:

2.1. solicits memory replicas periodically from neighbor devices until it receives at least

d = O(log(n/k)/ε updated replicas (ε ∈ (0, 1)) from N ⊂ Neigh(j) neighbor

devices,

2.2. aggregates all the received replicas into one compressed replica yj = φjjxj+
∑
∀i∈N φjixi

and stores only yj, where φji ∈ R is a predefined signature that the LTE edge cloud

initially generates and assigns to the j-th device upon declaring another device i as

a direct neighbor,

3. The LTE edge cloud performs the following:
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3.1. randomly selects m = O(k log(n/k)) out of n devices,

3.2. sends pulling requests to the selected devices using pre-scheduled uplink grants such

that: the eNB can pull a device j only at (j mod m) occasions in the LTE frame,

and the uplink grants include initial radio block allocation information for uplink

transfer.

4. A device j remains in the dormant state and decodes possible uplink grants only at (j

mod m) occasions; otherwise it remains in deep sleep to save energy. If j is pulled, it

transfers yj using the assigned radio blocks in its uplink grant (further dedicated control

channels ensure that a radio conditions optimized radio blocks allocation after the initial

assignment).

5. The LTE edge cloud, upon receiving the replica samples, finally recovers the k updated

replicas by solving the l1-minimization problem:

minimize
x

‖ x ‖1 subject to Φx = y,

where x is the n × 1 column vector such that its i-th element corresponds to the original

replica xi, y is the m × 1 column vector such that its j-th element corresponds to the

compressed replica yj, and Φ is the m×n matrix such that its element in the j-th row and

the i-th column corresponds to the signature φji or equals zero if such signature was not

used in computing yj (i.e. j did not receive xi) or the cloud never defined it (i.e. i is not a

direct neighbor to j).

2.4.1.1 Protocol Correctness

The REPLISOM memory replication protocol is an application of the theory of compressed sam-

pling with sparse measurement matrices [30]. The correctness of REPLISOM depends on the

properties of the Φ matrix (step 5 in the protocol) from the compressed sampling theory [62],

and the minimum number of direct neighbors |Neigh(i)| of any IoT device i. On the other hand,

the computation and communication overheads of the D2D communication steps of REPLISOM

(steps 1.2 and 2.1) depend on the minimum value of d (step 2.1) for an accurate recovery by the

theory of sparse compressed sampling recovery [30, 82].
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The matrix Φ shall satisfy the Restricted Isometry Property (RIP), to ensure the correctness

of REPLISOM and an accurate replicas recovery.

Definition 2.4.1 An m × n matrix Φ is said to satisfy the RIP(q) if, for any vector x that is k

sparse, there exists a constant δ such that

(1− δ)‖x‖q ≤ ‖Φx‖q ≤ ‖x‖q

An accurate recovery is possible if the matrix Φ is sparse and satisfies the RIP(1) property (see

Theorem 4 in [30] for formalism).

Theorem 2.4.1 Them×n signature matrix Φ, withm = O(k log(n/k)) and d = O(log(n/k)/ε),

satisfies the RIP (1) property for δ = 2ε.

Proof see Appendix 2.6.

Numerically, a correct recovery depends on the exact number of neighbors, d, to which a

device sends its memory replica in step 1.2 (i.e. the value of ε) and the number of active devices

k. Intuitively, as k decreases, a device needs to send its replica to more neighbors to ensure

information incoherence and a correct recovery. Figure 2.5 shows the probability to recover a

single replica (out of k) with at most one-bit error and suggests that it is sufficient to design

d = 2 log(n/k) for an accurate replicas recovery.
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2.4.2 REPLISOM Improvement Through Utilizing Memory Sparsity

It is possible to further reduce the communication overhead of REPLISOM by utilizing the spar-

sity of memory pages deltas. Consider two consecutive memory pages of an IoT device, pt and

pt+1. Typically, the memory page delta pdelta = pt+1 − pt represents an l vector of memory

blocks where there are only s blocks that are non-zero. We refer to this as the sparsity at the

memory replica level.

The straight forward approach to exploit such sparse structure of memory page deltas is

to scan through pdelta and represent it using an O(s log(l)) space-efficient sparse vector which

contains only the non-zero blocks associated with their relative memory addresses. The memory

replica of a device i is then constructed as xi = float(device : i, time : t, memory : pdelta).

As the device initially sends p0 in full to the edge cloud, the cloud simply constructs subsequent

pages from pdelta (e.g. p1 = pdelta + p0). This approach is not efficient for a large enough l as

one must associates every non-zero block with its relative memory page address (i.e. requires

log(l) bits) for sparse representation of pdelta.

We propose to use compressed sampling to exploit the sparsity of memory page deltas. Com-

pressed sampling requires w = O(s log(l/s)) bits to represent the s-sparse memory deltas. This

approach does not require scanning through pdelta and works as follows:

1. the cloud generates a random Gaussian and dense w × l matrix, Υi, for each device i and

sends Υi initially to the i-th device (a random matrix Υi is sufficient for exact recovery,

see [62]),

2. a device i initially includes its p0 in its replica xi,
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3. as the device updates its memory, it constructs xi as xi = float(device : i, time :

t, memory : pc), where pc = Υipdelta,

4. upon recovering xi, as discussed in the memory replication protocol, the cloud recovers

pdelta by solving the l1-minimization problem:

minimize
pdelta

‖ pdelta ‖1 subject to Υipdelta = pc,

5. finally, the cloud determines the full memory replica of the device pt+1 = pdelta + pt.

2.5 Benchmarks and Numerical Evaluation
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Figure 2.6: LTE time division duplex frame timing and main channels.

Before defining and evaluating the performance metrics for REPLISOM protocol compared

to the idle to active and the dormant to active scenarios (Figure 2.2 and Figure 2.3), we first

review the LTE radio frame structure, timing, control channels, and data channels.

2.5.1 The LTE Frame and Channels

The LTE time division duplex frame has an overall duration of 10 ms and consists of two half

frames (downlink and uplink) each of 5 ms duration and a half frame consists of five subframes

each of 1 ms duration. Each subframe carries physical control and data channels that carries

logical channels information (see Section 4.5 from [2] for detailed mapping of logical channels to
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transport and physical channels). The capacity and timing of these channels specifies the latency

and energy consumption in replica transfers to the mobile edge cloud. Figure 2.6 illustrates the

LTE frame along with the typical timing of these control and data information.

The Physical Uplink Shared Channel (PUSCH) is the traffic channel used for an uplink data

transmission. The PUSCH contains g radio blocks in each subframe for data transmissions from

at most g simultaneous devices. According to its measured radio condition at time t, the i-th

device can transmit at most Bi
t bits defined as the transport block size. The device determines

Bi
t according to its radio condition (translated into a modulation coding scheme) and the total

number of allocated radio blocks (refer to the Table 7.1.7.1-1 and Table 7.1.7.2.1-1 from [1] for

details). It is sufficient for our scope to assume that the transport block size is the same for all

devices and is time independent. We refer to the transport block size as B.

Separate dedicated and common control channels are responsible for the transport of the

radio interface control messages. The uplink half frame contains the Physical Uplink Control

Channel (PUCCH) which carries the uplink scheduling requests, which a device uses to request

for the PUSCH resources. Generally, each subframe can contain up to b simultaneous schedul-

ing requests from different b devices. Moreover, the uplink half frame contains occasions of the

Physical Random Access Channel (PRACH) which carries the random access request informa-

tion for the initiation of the random access procedure (see Section 5.7 in [3] for random access

timing).

The downlink half frame carries two main control information that are necessary for uplink

transmission. First, the random access response in the Downlink Shared Control Channel (DL-

SCH) which is addressed to a specific device that previously sent a random access request. The

time between sending the random access request and receiving the random access response is the

average random access delay, Tr (Average PRACH delay in Figure 2.6). The collisions during

random access, the contention resolution procedure, and the propagation delay determine the

actual value of Tr. Assuming a collision free random access, recent studies suggests that Tr is

between 47 ms and 55 ms [5, 80]. The second control information is the uplink grants which

is sent on the Dedicated Downlink Control Channel (PDCCH) that is designated to a specific

device which previously sent an uplink scheduling request. Upon receiving a scheduling request

it takes Ts ≈ 10 ms (Time to schedule in Figure 2.6) to process the request at the eNB and send

the uplink grant to the requesting device. The eNB schedules an uplink transmission for any

device after Tt ≥ 4 ms (Time to transmit in Figure 2.6) from receiving its uplink grant.
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Symbol Definition Default Value / Range
n total devices per small cell 1000 / Up to 50000

a coverage area of eNB 60 meter2 / 1 Km2, n = 50000

k active devices per cell 300 / 30 to 300

m REPLISOM pulled devices m = 2k log(n/k)

d D2D neighbors d = 2 log(n/k)

b scheduling requests per subframe 18 / 1 to 18

g radio blocks per subframe 32 / {4, 8, 16, 32}
B transport block size per radio block 408 bits / 16 to 584 (see 3GPP)
l memory replica size 512 bytes / 16 to 2048 bytes
s memory replica sparsity 0.1l / 0.1l to 0.3l

w compressed replica size w = 2s log(l/s)

Prx consumed power during receive 100 mW
Ptx consumed power during transmit 316 mW
Pinact consumed power during inactivity 10 mW
Pd2d consumed power during D2D 0.09 mW
Tr average PRACH delay (collision free) 50 ms / 47 to 55

Ts time to schedule 10 ms
Tt time to transmit 4 ms

Table 2.1: Parameters summary and values for numerical evaluations.

2.5.2 Memory Replication Performance

We use system level simulations to evaluate the performance of the implemented protocol. Ap-

pendix B shows the detailed results of the system level simulations used in this evaluation.
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Figure 2.7: Systen level simulations.

Three performance metrics determine the efficiency of the memory replication from k si-

multaneous active devices in mobile edge computing. First, the total allocated control channels,

which defines the total number of control channels, C, that the eNB allocates for devices to

access the network and initiate an uplink data transmission. Second, the total replication delay,
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which measures the total time T =
∑k

i=1 T
acc
i + T data

i that is required to update the k replicas;

where for a device i, T acc
i denote the access latency and T data

i denote its replica transfer time

(and already includes encryption overhead). Third, the total consumed energy, which measures

the total energyE =
∑k

i=1 Prx×T rx
i +Ptx×T tx

i +Pinact×T inact
i to update the k replicas; where

Prx and T rx
i denote the consumed power during a reception and the receive time of device i; Ptx

and T tx
i denote the consumed power during a transmission and the transmit time; and Pinact and

T inact
i denote the consumed power during an inactivity and the inactive time at which i only

monitors the control channels in an optimized Discontinuous Reception (DRX) mode. Table 2.1

summarizes all the used parameters, and the notation definitions with their numerical values that

are used in our following evaluation. Table 2.2 summarizes the three benchmarks, based on the

timing and the channels definitions in Figure 2.6, for our proposed memory replication proto-

col, REPLISOM , with and without applying compressed sampling on the memory deltas and

compared to the idle to active and dormant to active scenarios (Figure 2.2 and Figure 2.3).

Memory replication C T [ms] E [µJ]

REPLISOM m 2d×lB + m×(Tt+1)
b + m×l

(g×B) Pd2d
k×l
B +m

(
Pinact × Tt + Ptx

l
B + Prx

)
REPLISOM (with compressed replicas) m 2d×wB + m×(Tt+1)

b + m×w
(g×B) Pd2d

k×w
B +m

(
Pinact × Tt + Ptx

w
B + Prx

)
Idle to Active (collision free random access) 4k k×(Tr+Ts+Tt+2)

b + k×l
g×B k

(
Pinact (Tr + Ts + Tt − 1) + Ptx

(
l
B + 2

)
+ 2Prx

)
Dormant to Active (ideal with no random access) n+ k n

k×b + k×(Ts+Tt+2)
b + k×l

g×B k
(
Pinact

(
n
k×b + Ts + Tt

)
+ Ptx

(
1 + l

B

)
+ Prx

)
Table 2.2: Benchmarks of proposed memory replication protocols comparing current LTE generic uplink
transmission procedures.

2.5.2.1 The total allocated control channels

Since, REPLISOM requires only m device to be pulled, while each device consumes one uplink

grant message, the eNB allocates a less number of control channels (m) compared to using con-

ventional LTE procedures for the uplink data transfer (see Figure 2.8). Unlike the conventional

LTE procedures which require a number of control channels that scales linearly in n, the number

of channels in REPLISOM scales logarithmically in n. In the dormant to active scenario, the eNB

allocates scheduling occasions to all n devices whether these devices will use them or not in ad-

dition to k uplink grants to the active devices. Although this behavior, minimizes the delay and

power consumption, it significantly wastes the network resources as it requires the allocation of
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n+k control channels. In the idle to active scenario, the eNB allocates four control channels per

device (a random access request, random access response, scheduling request, and uplink grant)

requiring a total 4k control channels. Although, this scales linearly with k, as k increases this

scenario requires a greater number of channels than those required by REPLISOM . Moreover,

if the random access occasions, L, are not sufficient compared to the random access intensity γ,

the number of control channels used in the idle to active scenario increases significantly due to

collisions.
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Figure 2.8: Allocated control channels for the proposed protocol comparing conventional LTE scenarios.

2.5.2.2 The total replication delay

Given the LTE current procedures, the dormant to active scenario achieves the lowest possible

uplink replication delay that one can hope for (on the expense of wasted control channels).

Similarly, the idle to active (under the collision free assumption) scenario resembles our assumed

LTE worst case performance. In both cases the total replica transfer time is given by T data =
k×l
g×B for all the k active devices since the number of radio blocks needed to transmit an l-bits

replica is l/B, and the network can transmit at most g blocks simultaneously. The total access

delay in the idle to active scenario is given by T acc = k×(Tr+Ts+Tt+2)
b , which is dominated by

the average random access delay, Tr, per device. While in the dormant to active scenario the

access delay is significantly reduced as it only takes: two subframes for sending a scheduling

request and receiving an uplink grant, Ts subframes to schedule the uplink grant, Tt subframes

to start the uplink transmission, and n
k subframes between successive scheduling occasions for

up to b devices to access the network simultaneously (i.e. T acc = n
k×b + k×(Ts+Tt+2)

b ).

REPLISOM reduces the total delay required to start replica transmissions in two ways. First,
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as active devices send replicas to their neighbors in parallel it takes no more than 2d×lB subframes

for the devices to construct replica samples regardless the number of active devices k (step 2.2).

Second, as it only takes one uplink grant message to pull the replica samples from the devices,

it requires Tt + 1 subframes before b devices start to transmit their replica samples (step 4). On

the other hand, the total time that is required to transmit all replicas is governed by the values of

m and l as T data = m×l
g×B . As the replica size increases, the total delay of the proposed protocol

becomes strongly dependent on the uplink data transmission phase and is observably greater

than the total delay in the dormant to active scenario (see Figure 2.9). Fortunately, the sparse

structure of memory page deltas improves this undesired behavior where the total size of data

transmission improves by aw/l factor. In general, the smaller the replica-size, the improved total

delay we observe compared to the conventional LTE scenarios. This restricts the applicability

of REPLISOM to replication of tiny sized memory pages (see Figure 2.10). Figure 2.9 shows

that for the same replica size l, the proposed protocol (with compressed replicas) exhibits a total

replication delay as the ideal dormant to active scenario and is slightly better as k approaches

0.3n.
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Figure 2.9: Total replication delay.

2.5.2.3 The total consumed energy

The total consumed energy of REPLISOM is generally worse than the conventional LTE scenarios

because it requires m devices to become active compared to k devices in the conventional LTE

scenarios (see Figure 2.11) although the energy consumed per device during a single replica

transmission is significantly less. To see this, consider the inactive, transmit, and receive duration

of a single device in the total consumed energy of Table 2.2. In REPLISOM , a device first



29

Replica size l (Bytes)

10
2

10
3

10
4

10
5

T
o
ta

l 
d
e
la

y
 T

 (
m

s
)

0

500

1000

1500

2000
R eplisom

Idle to Active (collision free PRACH)
Dormant to Active

Figure 2.10: Replica size impact on delay.

transmits its replica to its neighbors with a low power for a duration of l/B subframes. Then,

the device consumes Pinact power for a duration of Tt compared to Tr + Ts + Tt − 1 subframes

in the idle to active scenario and to n
k×b + Ts + Tt subframes in the dormant to active scenario.

For a replica transmission, a device consumes Ptx power for a duration of l/B subframes, that

is reduced to w/B if the sparsity at the memory level is utilized, compared to l/B + 2 and

l/b+ 1 in the idle to active and the dormant to active scenarios respectively. A pulled device, in

REPLISOM , consumes less energy at each pulling occasion, but since a device becomes active

more often than in the conventional LTE scenarios it consumes more energy on a longer term.

Fortunately, the energy consumption disadvantage of REPLISOM does not hold true for small

enough memory replicas (tiny replicas). This is illustrated in Figure 2.12 where energy consump-

tion improves by reducing the replica size, which we also attain by utilizing the sparsity at the

memory level. As the memory replicas become smaller, the less energy consumption per a single

device activity becomes the dominant energy factor.

Generally, REPLISOM has delay and energy advantages over the conventional LTE scenarios

if: the replica size is sufficiently small, or an LTE operator is limited in the number of resource

blocks for control channels. Both conditions are of significant practical importance. Although

there can be a large number of IoT devices, an individual device generally replicates a small

sized data objects (see example applications in [5]). Additionally, the number of radio blocks

that are allocated for control channels is limited by the maximum LTE bandwidth (20 MHz)

and it is generally in an operator interest to allocate most of the radio blocks as data blocks for

conventional network users that have tough quality of service requirements.
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Figure 2.11: Total consumed energy.
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Figure 2.12: Replica size impact on power.
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2.5.2.4 Impact of Different Parameters

The earlier discussion influenced the impact of the transport block size, B on the delay and en-

ergy consumption. It is obvious that as the radio conditions improve and B increases the total

delay shall decrease and the device shall consume less energy (as it transmits for a shorter du-

ration); but how the radio condition, hence the transport block size, does influence the delay of

REPLISOM compared to the conventional LTE procedures? The poor radio conditions signif-

icantly reduce the transport block size, B, and render the proposed protocol to exhibit greater

delay than the idle to active scenario. However, for moderate and good radio conditions and for

the same memory replica size, l, the delay improves rapidly, so as the energy consumption, to

approach the dormant to active performance as shown in Figure 2.13.
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Figure 2.13: Transport block size impact on delay.

The total number of radio blocks, g, that are available per subframe also improves the total

delay of REPLISOM , but has no impact on the energy consumption (see Figure 2.14). As the

radio resources available to the eNB increase (e.g. increase bandwidth), the delay decreases

rapidly. However, if the radio resources are limited as in the scenarios where human commu-

nication consumes most of the available radio resources, the total delay of REPLISOM becomes

worse than the idle to active scenario.

2.6 Proof of Theorem 2.4.1

In this appendix we prove that Φ satisifies the RIP(1) property, hence recovers all memory

replicas x accurately (Theorem2.4.1). If one shows that Φ relates to the adjacency matrix of an

expander graph, then it satisfies the RIP(1) property. Let G = (U, V,E) be a left-d-regular
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Figure 2.14: Radio blocks per subframe impact on delay.

bipartite graph, where U is its set of left vertices, V is its set of right vertices, and E ⊆ U × V
is its set of edges, such that every left vertex in U has exactly d neighbors in V .

Definition 2.6.1 A left-d-regular bipartite graph G = (U, V,E) is an (k, d, ε)-expander if any

set S ⊆ U of at most k vertices has at least (1− ε)d|S| neighbors.

ASSUME:

1. G = (U, V,E) is the left-d-regular bipartite graph such that: U represents all the n IoT

devices and V represents all the m selected devices by the edge cloud, a left node i is

connected to a right node j if the later received the replica xi (in step 1.2 or 2.1), and A is

the adjacency matrix such that Aij = 1 iff (i, j) ∈ E

2. Ψ is a random i.i.d m × n matrix such that Ψij ∝ 1/d and Φ = A ◦ Ψ (◦ denote matrix

element-wise multiplication)

PROVE: G is an (k, d, ε)-unbalanced expander

Proof 1. The probability that a left vertex i has at least d neighbors for a network density

η = n
a is given by

Pr(|Neigh(i)| ≥ d) =

(
1−

d∑
i=0

(ηπr2)i

i!
e−ρπr

2

)n

(see Theorem 2 in [32] for details)
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2. for a dense network (e.g. n = 50000, a = 1, r = 0.2), i has at least d neighbors almost

surely

3. for S ⊂ U such that |S| ≤ k and M ⊆ V such that |M | ≤ m, the neighborhood of S is

completely contained in M with probability

Pr(Neigh(S) ⊆M) ≤
(
|M |
m

)d|S|
4. G is not an expander if |M | ≤ (1− ε)d|S|

5. Let Pr ′ denote the probability that G is not an expander and is bounded by

Pr ′ ≤
k∑
i=1

(
n

i

)(
m

(1− ε)di

)(
1− ε)di
m

)di

≤
k∑
i=1

(nei )
(

me

(1− ε)di

)(1−ε)d((1− ε)di
m

)d
︸ ︷︷ ︸

z


i

≤
∞∑
i=1

zi =
z

1− z

6. as i ≤ ρn and d = O(log(n/k)/ε), then z ≤ 1
10 and Pr ′ ≤ 1

8
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Chapter 3: Replisom7: Reliable and Secure Data-Centric Cloning for IoT

Devices in Edge Computing

3.1 Introduction

Computation offloading of resource-constrained devices with a fine-grain memory replication

has been the focus of research accompanying the evolution of mobile and pervasive computing

[25, 54]. New forms of cloud platforms (e.g. cloudlets, edge computing) emerged to provide

computing resources where Big Data analytics is performed near the data sources instead of

cloud-centric data-lakes. The success of Edge computing paradigm requires efficient replication

of devices’ data onto clones that run in high volume compute nodes co-located with existing cel-

lular sites [12]. Two major factors pertain to an efficient memory replication: 1) communication

over heterogeneous transport networks (see Figure 3.1), and 2) support of memory replication

from a massive number of devices in limited geographical areas.

Thermostat

Utility MeterLight Bulb

Coffee Pot

Door Lock

LTE Edge
 IoT Clones

LTE / LTE-A

WiFi - 802.11/x

WiFi - Direct

Figure 3.1: Heterogeneous Transport Networks For Devices and Edge Computing Communication. De-
vices can replicate their memory through direct uplink transfer, relaying data through a WiFi-LTE access
point, or organize themselves in a spanning tree using RPL.

The REPLISOM architecture - we propose in [12] - is an edge computing architecture that

augments the evolved NodeB (eNB) of LTE/LTE-A with integrated cloud elements. The cloud

elements provide virtualizable compute, storage, and network resources for diverse IoT appli-

cations and services (see [109] for example appliactions). REPLISOM utilizes the capabilities

of the D2D communication technologies and the existing LTE control and data channels to im-
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prove the end-to-end memory replication delay and devices’ energy consumption through an

LTE-optimized protocol.

REPLISOM requires a cross-layer design between the memory replication protocol and the

LTE/LTE-A stack which complicates REPLISOM implementation in practice. To achieve its

promised performance gains, REPLISOM devices shall not perform the Random Access Pro-

cedure for it uplink replica transfers, which accounts for the major memory replication delay

given a massive number of devices in an LTE site [12]. As REPLISOM relies on pulling mem-

ory replicas from devices, REPLISOM allows devices to remain idle and in low-power mode

and only listen to memory pulling occasions at predefined time-slots. Such requirements require

non-trivial changes to existing LTE/LTE-A implementations.
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Figure 3.2: Replisom7 proposed architecture.

3.1.1 Background and Contribution

In this paper, we implement and evaluate REPLISOM as an application layer protocol instead

of an LTE cross-layer protocol. We call this protocol version Replisom7. Like its original

design - REPLISOM - Replisom7 uses compressive sensing to efficiently pull and reliably re-

cover devices’ data. Replisom7 uses ZeroMQ [89] as communication middleware over diverse

co-existing technologies including LTE, WiFi, and WiFi-Direct (for device-to-device communi-

cation). We compare Replisom7 design approach to conventional device data transfer protocols

such as MQTT and CoAP and demonstrate Replisom7’s superiority in terms of native support

of reliable memory replication.

Replisom7 also uses a federated OpenID [138] for devices identity management and authen-

tication and adopts elliptic curve cryptography [101] of ZeroMQ for key management and en-
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cryption. Finally, Replisom7 provides fine-grain access control and resource discovery through

the XACML [71] standard. Through XACML, Replisom7 govenrs devices permissions to com-

municate over D2D links and to the Edge Cloud, as well as, defining entitlement of devices’

services.

We also show that the lack of cross-layer awareness in Replisom7 prevents it from achiev-

ing the promised delay and energy consumptions gains of REPLISOM. To mitigate an unde-

sired lack of performance due to cross-layer implementation absence, we show through emula-

tions that through optimized LTE RRC parameters for paging and random access, we optimize

Replisom7’s operation to minimize the delay and energy consumption compared to existing

techniques.We call this optimized protocol Replisom+.

Existing techniques include: LTE uplink data transfer procedure, data relaying in WiFi-

LTE coexistence scenarios, and data routing through minimum spanning tree protocols such as

the Routing Protocol for Low-Power and Lossy Networks (RPL). In LTE uplink data transfer,

devices use their LTE modem to directly replicate their memory content using 3GPP uplink data

transfer standards. The details of this procedure is described in [12]. Devices can also relay their

data to the LTE Edge Cloud through a WiFi-Lte access point. A WiFi access point connects a

handful number of devices (typically four devices), and routes their data to the LTE-Edge cloud

through its LTE interface. In the last scenario, devices organize themselves in a spanning tree

through the RPL routing protocol, in which the tree root (RPL DODAG root) acts as the gateway

to the LTE Edge Cloud. Figure 3.1 summerizes the networking technologies and these existing

approaches.

We describe Replisom7 architecture in Section 3.2 and its management-plane, data-plane,

and control-plane functionality in Section 3.3. We demonestrate our experimental evaluation in

Section 3.4 and conclude the paper in Section 3.5.

3.2 Communication Middleware Architecture from Devices to their Clones

Replisom7 runs on three types of nodes: devices, access points, and edge cloud servers co-

located with a cellular site. Figure 3.2 illustrates Replisom7 architecture. A node can sup-

port one or more communication technology (LTE, WiFi, or WiFi direct). A communication

technology interface optimises the node communication parameters according to the underlying

technology. Any node minimally runs a secure communication middleware and a Layer-7 data

switching function.



37

3.2.1 Switching and Memory Replication

We use ZeroMQ ([89]) as a lightweight communication middleware with a request/response

servlet (server/client) in each node. A node x defines a list peer nodes (neighbors) that it directly

communicate with, and a gateway node to forward messages to through a Layer-7 switching

function if the message’s destination node that is not included in x’s list of peer-nodes. The

Layer-7 Switching function in access points and cloud servers also organises the network topol-

ogy on the device-to-device underlay. For example, we use the cloud’s switching function to

organise the devices as spanning trees instead of using the distributed control-plane of RPL as a

potential scenario for evaluation.

A Memory Replication Function reliably and timely replicates devices’ data to a Replica

Recover function hosted on the edge cloud servers. The Replica Recovery Function orderly

recovers the devices’ data and pushs the recovered replicas to devices’ clones that we implement

as isolated processes in edge clouds. Clones act as surrogates of the devices and implement the

actual IoT applications. Clones can also act on behalf of the devices for continous computaions

in case the device become offline. In existing scenarios, the Memory Replication Function is

simplly pushing, publishing, or sending the devices’ data to the Memory Replica Function. We

will discuss how we design the Replication and Recovery functions using compressive sensing

in Replisom7 design in Section 3.3.

3.2.2 Security and Discovery

Replisom7 incorporates message encryption, authentication, and access control functions. We

use elliptic curve cryptography to encrypt all data messages communicated through ZeroMQ

on the data-plane according to Curve25519 specifications. On the control-plane, the Key and

Identity Management function handles Crypto-keys management and node’s authentication. The

LTE Edge Cloud hosts an Identity server and uses the OpenID protocol to authenticate nodes

[138]. OpenID allows seamless authentication of devices and access points using their users

existing accounts.

We realise access-control via the XACML standards. Nodes’ Policy Enforcement Point

(PEP) Clients send access requests to a unique PEP running at the LTE Edge Cloud to obtain

access control, entitlements, and obligation decisions. The edge cloud runs a Policy Decision

Point that evaluates PEP requests according to XACML policies defined by the Edge Cloud
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Property Replisom7/+ MQTT CoAP
Communication Model Peer-to-Peer Broker Publish/Subscribe Client/Server or Peer-to-Peer
Transport TCP or UDP TCP UDP
Reliability Native (no explicit QoS) QoS: delivered at least once QoS: confirmable
Authentication Federated OpenID username/password EAP
Security CurveZMQ SSL/TLS DTLS
Resource Discovery XACML Obligations None Server Side Query
Cross Layer Support LTE-RRC and multi wireless Interface None None

Table 3.1: Replisom7 vs MQTT vs CoAP.

administrator through a unified Policy Administration Point (PAP). A Policy Information Point

(PIP) stores policies attribute information that a Policy Decision Point (PDP) uses to form a

decision or to add obligations to the decisions.

Access-control entitlement decision determines if two nodes are permitted to communicate

directly with each other, if a node is permitted to use a particular access point as a gateway, or if

a node is permitted to replicate its memory with the LTE Edge Cloud. Entitlement decision con-

tains obligation information that a node can use for services and node parameter discovery. For

example, if node x receives an entitlement decision to communicate with node y, the entitlement

decision can contain the public key of y and the memory replication parameters of y as we will

detail in Section 3.3.

3.3 Compressive Sensing Based Memory Replication

Replisom7’s design splits into management and data planes. The management-plane carries out

authentication, authorization, and peer-to-peer connections obligations. The data-plane carries

out the memory replication from devices to their clones.

3.3.1 Management-plane

At initialization, devices authenticate with the LTE Edge cloud through the PIP client. When

a device i detects another neighbor device j in D2D communication range, it sends an access

control request to the LTE Edge Cloud to authorize that i can replicate its memory by direct

communication with j. If permitted, the Edge cloud sends a random signatures φij to i and

φji to j that i and j shall use for memory replication over the data-plane. Since a φij is a 32-bit

floating point number, the overhead associated with this per node is at most 32× log(n/k)/ε-bits
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for the life time of the node, where n is the total number of devices and k ≤ d0.3ne is a design

parameter that indicates the maximum number of simultaneously active devices.

The Edge cloud also sends - as an XACML obligation - a list of data-plane services that

i must expose for its neighbors. Among the obligations, the Edge cloud include a parameter

N = log n/k to i. During the replication process - as we will detail in the data-plane description

- a device i shall send its memory replicas for at least N neighbor devices such that the Edge

cloud can correctly recover the replicas. Since we seperate the management-plane from the

data-plane, no management overhead is associated with the Replication process.

3.3.2 Data-plane

Conventionally devices send its data to the Edge Cloud over an LTE uplink session, through a

WiFi gateway that relays devices data to the Edge Cloud, or through the root device in a tree than

spans the network of devices. In the later case devices can be organized as a spanning tree where

devices route data until it reaches a root node that can relay data to the LTE Edge Cloud (see

for the Routing for Low Power and Lossy Networks for example [170] ). Unlike conventional

methods, Replisom7 relies on compressive sensing to recover replicas from devices that are

organized in an arbitrary topology and can communicate over a D2D technology.

Let Ri denote a floating point number that device i shall replicate with the Edge cloud and

SEQ is a cyclic sequence number of Ri. A device i sends Ri and SEQ to at least N randomly

chosen neighbour devices over a low-power, low-latency D2D technology such as WiFi-Direct.

If a device j receives Ri it adds it to a replica store that maintains a Replisom Replica which is

an aggregate value of j’s received replicas and yj = φjjRj +
∑
∀i∈N φjiRi. A device j also

maintains a list of devices’ IDs with replica values evaluated in a Replisom Replica and a list of

sequence numbers of these replicas values.

The Edge cloud periodically sends a PULL message to at least m devices that are randomly

choosen such that m = dk log(n/ke. At the end of a PULL cycle, a device can recover the

original devices replicas by solving the l1-minimization problem:

minimize
x

‖ x ‖1 subject to Φx = y,

where x is the n× 1 column vector such that its i-th element corresponds to the original replica

Ri, y is the m× 1 column vector such that its j-th element corresponds to the Replisom replica



40

Mode µt, σt µτ , στ α β σp
WiFi Transmit 79.1 15.1 1.0 0.5 283.17 132.86 50.0
WiFi Receive 79.1 15.1 4.5 2.0 137.01 132.86 50.0
LTE Transmit Idle 260.19 15.8 5.0 2.5 438.39 1288.04 100.0
LTE Receive Idle 260.19 15.8 12.5 5.0 51.97 1288.04 50.0
LTE Transmit Idle (no RA) 14.0 1.0 5.0 2.5 438.39 1288.04 100.0
LTE Receive Idle (no RA) 14.0 1.0 12.5 5.0 51.97 1288.04 50.0
LTE Transmit Connected 43.2 1.5 5.0 2.5 438.39 1288.04 100.0
LTE Receive Connected 43.2 1.5 12.5 5.0 51.97 1288.04 50.0
WiFi-Direct Transmit 8.3 4.0 1.0 0.5 0.09 0.1 0.01
WiFi-Direct Receive 8.3 4.0 1.0 0.5 0.09 0.1 0.01

Table 3.2: Delay and power models parameters.

yj , and Φ is the m × n matrix such that its element in the j-th row and the i-th column corre-

sponds to the signature φji or equals zero if such signature was not used in computing yj . Since

Replisom7 recovers the same replicas in several pulling ocasions, it provides a native reliability

for replica recovery as we will demonestrate in Section 3.4.

3.3.3 Replisom+: Control-plane optimizations

The latency and energy gains of REPLISOM (see [12]) are based on a cross-layer optimiza-

tion over the LTE protocol stack. In its original design, REPLISOM skips the random access

procedure during the LTE uplink data transfer and timely listens to Replisom Replica pulling

occasions using the LTE paging procedure. Since we implement Replisom7 as an application

layer protocol, we cannot directly incorporate fine-grain redesigns to the LTE procedures.

To remain delay and power effective, we introduce two control-plane optimizations to Replisom7 and

name this newly optimized protocol Replisom+. Replisom+incorporates LTE timers optimiza-

tions that are not possible with conventional uplink data transfer in LTE. With these optimiza-

tions, devices can avoid long contentions during the LTE Random Access Procedure and transi-

tion to an Idle Mode state as quickly as possible to minimize delay and save power.

As devices waits for Random Access contention resolutions, devices remains in an active

state and consume more power. Replisom+sets the mac-ContentionResolutionTimer to its min-

imum value to prevent unnecessary power consumption and prolonged wait time. This may in-

troduce more collisions in the network, if conventional uplink transfers from devices is present.
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However, as devices do not engage in a device-initiated data uplink transfers, devices do not

frequently activate the Random Access procedure except to maintain synchronization with the

LTE-site.

The periodic Replisom replica pulling approach allow devices to remain in the connected

mode of minimal duration of time and listen to pulling occasions on predefined intervals. Al-

though in Replisom+, we do not change devices’ behavior in the MAC protocol to listen to

certain paging occasions, we set the tail timer to its minimum value to prevent devices from

remaining in connected mode longer than necessary. Typically the tail timer takes a value of

11 seconds which is considered too long and unnecessary given that devices shall not expect

downlink traffic from the Edge Cloud after the pulling their data.

Before demonstrating the performance of Replisom7 and performance enhancements of

Replisom+, we provide a design comparison to existing application layer protocols in the IoT

landscape. Table 3.1 summarizes the architectural and functional aspects of Replisom7 and

Replisom+.

3.4 Evaluation

We evaluate Replisom7 and Replisom+in a controlled testbed environments where any node in

the network is emulated as a simple Linux process that shall communicate over ns-3 TapBridges.

TapBrdiges in NS3 integrates real internet hosts into ns-3 simulations, which simplifies rapid

protoyping of real world protocols and leverages the advantages of relying on existing ns-3

models for evaluations (see [78, 92, 125, 178]).
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Figure 3.3: Device Emulators with NS3.

Figure 3.3 and Figure 3.4 show the interworking between the emulated nodes in the linux

user space and the ns-3 nodes. For each nodes, a ghost ns-3 node communicate with its counter

linux process over a tap bridge through virtual tunnels. Using network namespaces, we isolate

the traffic over the user space nodes over a specific tap bridge. As device emulators require a
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WiFi interface and an LTE interface, its corresponding ghost node route the traffic from device

emulators to a corresponding ns-3 node (WiFi node or LTE node) according to the destination

address of the packets as illustrated in Figure 3.3. Similarly, an Edge cloud’s traffic is routed to

a remote host node that’s colocated with an eNodeb node inside ns-3 and communicate with it

via a peer-to-peer link of 100 Gbps and 10 Micro Second delay. The ns-3 nodes representing the

devices are organized on a grid with inter-node seperation distance of 50-meters. The devices’

ns-3 nodes communicate over an AdhocWifiMac using the 802.11n standard at 5GHz with an

OfdmRate54Mbps data mode.
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Figure 3.4: Edge Cloud Emulations with NS3.

A device generates a random 32-bit floating number as its data every 1 to 30 second chosen

randomly according to a Poisson distribution. Power consumption during data transmission, re-

ception and idle period are evaluated based on models proposed in [95, 22]. Unlike the complete

numerical evaluation presented in [12] where we show REPLISOM’s properties with a massive

number of nodes, using ns-3 limits scaling the number of nodes beyond 40 nodes with ns-3

running using a 40 CPU/ 160GByte RAM server. ns-3 is also limiting the evaluation since the

existing LTE module does not incorporate LTE paging procedure, support of more than 360 LTE

interfaces, power consumption models, or LTE based device-to-device communication.

3.4.1 Delay and Power Models

Any node (device, access point, or LTE cloud) incroporates packet delays as real-time wall-

clock seconds during send and receive according to the underlaying technlology. Delay values

are modeled as d = s
τ + t, where s is the packet size, t is network access delay, and τ is the

transmission rate. The access delay is obtained as a random value t ∼ N (µt, σ
2
t ), and the values

of the transmission rate as τ ∼ N (µτ , σ
2
τ ). The exact values of µt, σt, µτ , στ are evaluated

based on experiments presented in [95, 22] and is given in Table 3.2. As replicas are 32-bit
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floating point numbers, this make all packet payload less than 64 bytes and encryption time

2.8± 1.6 Micro Seconds, and decryption time 8.9± 5.57 Micro Seconds.

Power consumption during transmission and recepiton depends on the delay value d. We

use a modefied version of the conjectured model in [95], to trace devices power and energy

consumption as ns-3 does not incorporate such power models. A device power is given by

p = αd+ β + z, where z ∼ N (0, σ2
p) and the parameters α, β, and σp are given in Table 3.2.

3.4.2 Results

We evaluation Replisom7 and Replisom+ compared to convetional uplink transfer in LTE (de-

noted LTE), routing replicas through a tree that spans devices (denoted Spanning Tree), and

through using a WiFi gateways that connect four devices each (denoted WiFi-Relay). In each

scenario, we compate the end-to-end delay per replica, the average energy consumption, and

the loss rate for n ∈ {10, 20, 40} and k = 0.3n (maximum value of k for REPLISOM correct

recovery).

Figure 3.5 shows the average delay per replica. As expected, Replisom7 does not bring the

promised delay improvement without control-plane changes to the LTE parameters and without

adopting low power and low latency communication in WiFi-Direct 1.The limited scalability of

ns-3 number of nodes stands still against demonestrating the delay improvement in REPLISOM

for massive number of nodes as the LTE delay performance is effecient for the small number of

nodes available to us in this experiment.
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Figure 3.5: Average delay per replica in [ms] computed to a 0.1 error at 95% confidence.

Figure 3.6 shows the average energy consumption per replica and Figure 3.7 shows the frac-

tion of time a node transitions into idle mode for minimal energy consumption. Replisom7 and
1As NS-3 does not support WiFi-direct, we use WiFi-adhoc model instead with corrected parameters in Table 3.2
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Replisom+ bring obvious energy savings to the devices as the number of devices increase. Al-

though, the ns-3 experiments are limited to demonestrate the full potential, it’s noticed that as the

number of nodes n increases more devices transition to idle mode, where energy consumption

per replica decreases. The reason behind this behavior is the Replisom7 and Replisom+ acti-

vate only m = dk log(n/ke devices during a pulling occasions. As n increases, more nodes are

allowed to remain in idle mode and save energy. WiFi relay shall always show the minimum

energy consumption to devices, since devices do not communicate directly with LTE and offload

intensive communication to the WiFi access points. This gain is achieved with investing a capital

by deploying a large number of access points in a small and dense geographical region.
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Figure 3.6: Average energy consumption per replica in [J] computed to a 0.1 error at 95% confidence..
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Figure 3.7: Idle mode rate computed as the number of Idle mode states to the total numner of states.

As Replisom7 and Replisom+ pull the same devices’ replicas in several ocassions, they im-

prove the overall reliability of the memory replication process. On the average, Replisom7 re-

covers the same replica in three replica pulling occasions, where the clone picks the majority

value as the correct value. Such property is not natively attained in the design of other pro-

tocols. Figure 3.8 shows average loss rate measured for differnet scenarios. Replisom7 and

Replisom+ remain resilient to packet loss. Both Replisom7 and Replisom+shows 90% im-

provement in Replica loss rate compared to Spanning Tree Protocols and 68% improvement
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compared to LTE.
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Figure 3.8: Replisom7 and Replisom+improved Loss Rate over other scenarios.

Our results suggest that minimum spanning tree protocols do not suit the heterogeneous

network organization in Figure 3.1. The reason of this is the excessive routing overhead require-

ment in devices which make devices active almost all the time and engaged in transmission all

the time, which increases energy consumption and introduces data transfer delays in interme-

diate nodes. Such minimum spanning tree protocols (e.g. RPL) better suits scenarios that lack

network infrastructure.

3.5 Conclusion

We design and implement REPLSIOM as an application layer protocol (Replisom7) with au-

thentication, authorization, access control and service discovery capabilities. We extend Replisom7 with

a control plan in Replisom+ that derives its performance closer to the performance gains promised

in REPLISOM. Using ns-3, we evaluate Replisom7 and Replisom+ and compare it to exiting

methods that can be used for cloning devices’ data in LTE Edge Cloud. Finally, we compare

the design artefacts of Replisom7 and Replisom+ to MQTT and CoAP that are widely used

protocols in IoT. Through emulated networks, we show that Replisom+ improves the energy

consumption and end-to-end memory replication when compared to existing LTE protocols,

minimum spanning tree protocols, and WiFi relaying.
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Chapter 4: Efficient Virtual Network Embedding with Backtrack

Avoidance for Mobile Networks of Clones

4.1 Introduction

Virtual network embedding in wireless networks can have a pivotal role in several areas in-

cluding: sensor network virtualization [9], vehicular cloud [81], mobile edge computing [68,

112, 183], network based and geographically distributed cloud environment [17, 13], and cyber

foraging [143]. By means of virtualization, it is possible to embed, with low cost, large-scale

virtual sensor networks onto sensor-equipped physical devices (e.g. smart-phones, autonomous

vehicles) so as to perform specific sensing tasks and autonomous, agile, and timely decisions

in a distributed manner. Such virtual networks can support several applications such as: urban

sensing, intelligent transportation, terrain exploration, disaster recovery, and surveillance. In ad-

dition, VNE can be used to enable virtual content delivery in wireless networks near the network

edge. VNE algorithms can then deploy surrogates of services (e.g. networked virtual servers) in

proximity to users to improve their perceived latency, where geographical locations and mobility

patterns of users are crucial parameters to maintain a target content delivery quality. In a more

general context, virtual network embedding in wireless networks can enable effective distributed

processing of real-time content and allow agile decision making from data at its ”actual sources”.

The focus of this paper is on the design of virtual network embedding (VNE) techniques that

enable on-demand mapping of virtual networks onto substrate mobile wireless networks. More

specifically, the VNE problem consists of mapping the virtual nodes to substrate nodes and the

virtual links to substrate paths in such a way that all resource (CPU, storage, and bandwidth)

requirements of the virtual network are met. Here, a virtual network consists of a set of virtual

nodes, each requiring CPU processing capability and storage capacity to process data in a prede-

fined geographical area, and a set of virtual links connecting these virtual nodes, each requiring

some bandwidth capacity. The substrate network, on the other hand, consists of a large set of

mobile wireless nodes, each having sensing and Internet-access capabilities.

Unlike wired networks, mobile wireless networks’ dynamics (e.g. node mobility, link insta-

bility) create new challenges that require new architectural and algorithmic considerations when
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it comes to enabling VNE. Mobility of substrate nodes, in particular, may invalidate the oper-

ations of virtual networks as nodes move away from desired locations of some virtual nodes.

Such a mobility can also change the connectivity of the substrate nodes–and so can the substrate

paths–that are already used by virtual links, making them insufficient or invalid. In such cases,

VNE solutions shall remap (migrate) invalid virtual networks to other substrate nodes and paths

[93]. As migrations incur a significant overhead [117], we shall design architectural and algo-

rithmic solutions that can effectively capture node mobility and topology changes, and minimize

virtual network migrations due to nodes mobility while not compromising the effectiveness of

VNE techniques.

The effectiveness of the VNE techniques can essentially be captured through three metrics:

computation time (the time it takes to solve a VNE instance), embedding cost (the amount of

overhead incurred and resources needed to solve a VNE instance), and acceptance rate (the ratio

of successfully solved VNE instances to the total number of instances). Therefore, in addition to

meeting the resource requirements, the aim of VNE techniques is to reduce the computation time,

minimize the embedding cost, and increase the acceptance rate. The challenge, however, is that

these three performance goals are often conflicting with one another. For instance, backtracking

algorithms can, in general, find optimal solutions, but they do so in exponential time [174].

Other heuristic approaches, on the other hand, can find solutions in polynomial time, but these

solutions are sub-optimal, thus leading to low acceptance rates [72].

In this paper, we develop VNE techniques that strike a good balance between these three

performance goals by finding near optimal solutions in polynomial times (short execution times)

while yielding high embedding profits (minimal embedding costs) and high acceptance rate. The

proposed approach takes also into account potential virtual networks migrations due to substrate

nodes mobility in its objective definition to minimize the anticipated overhead associated with

migrating invalid virtual networks. Our proposed approach consists of designing algorithms that

are based on backtracking techniques so as to ensure good solution optimality, while reducing

the computational complexity and the embedding cost by exploiting the constraint propagation

properties of the VNE problem. Essentially, they reduce the embedding complexity and cost

by narrowing down the search space and avoiding backtracking as much as possible without

compromising the solution quality so as to maintain high acceptance rates and minimize potential

virtual network migrations. To recap, our contributions in this paper are twofold.

• Developing pruning techniques that reduce the embedding time and cost significantly by

reducing the search space. These techniques eliminate the need for backtracking during
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the embedding solution search, thereby enhancing the embedding time without compro-

mising the optimality of the obtained VNE solutions.

• Developing techniques that account for the VNE embedding cost, expressed in terms of the

amount of resources needed and the migration overhead incurred to successfully embed

a virtual network, to devise VNE algorithms with minimal embedding costs and minimal

potential virtual network migrations.

The rest of the paper is organized as follows. The next section surveys the existing techniques

that are related to our proposed VNE approach. In Section 4.3, we state and formulate the VNE

problem. We begin by modeling the virtual and substrate networks and the substrate node mo-

bility, and by defining the node and link mapping steps to be performed during the VNE process.

We then describe the overall design goals of the VNE technique. In Section 4.4, we present our

pruning techniques proposed to reduce the embedding search space. We then, in Section 4.5,

use these pruning techniques to develop a polynomial-time VNE algorithm, which leverages the

benefits of our proposed pruning techniques to avoid backtracking while still maintaining the

optimality of the obtained VNE solutions. In the same section, we also derive analytic bounds

on the approximation ratio of the incurred objective value of the proposed algorithm. Finally, we

present our experimental results and findings in Section 4.6.

4.2 Related Work

Virtual Network Embedding: There have recently been research efforts aiming to develop

VNE algorithms, and the recent survey by Fischer et al. [72] presents a detailed classification

of such algorithms. Broadly speaking, these algorithms can be classified into three categories:

backtracking based algorithms (e.g. branch and bound), stochastic algorithms, and heuristics.

Backtracking based algorithms generally consist of formulating and solving the VNE prob-

lem using branch and bound or exact backtracking based techniques [116, 94, 37, 49, 38]. For

example, Lischka et. al. [116] show that the VNE problem can be formulated as a graph isomor-

phism (which is known to be NP-hard) and then using a backtracking based algorithm to solve

it. Backtracking can, in general, find optimal solutions. However, they do so in exponential

time [57].

Stochastic algorithms like simulated annealing, particle swarm optimization, tabu search, or

genetic algorithms, are other common approaches that can be used to search for VNE solutions.

For example, [181] uses particle swarm optimization to find near optimal solutions in relatively
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short execution times (as shown empirically). The major drawback of stochastic algorithms,

besides their relatively long execution times, is their high likelihood of getting stuck in local

minima.

Heuristic algorithms attracts the most attention of researchers given their less complexity

when compared to exact backtracking algorithms. Heuristics on the other hand can only find

inexact solutions and hardly provide tight approximation gaps [184, 53, 99, 159, 39, 84]. For

example, Zhu and Ammar in [184] adopt one very basic greedy algorithm that greedily search

for feasible nodes to serve a virtual network and then compute the shortest paths between these

nodes. If the evaluated shortest paths can satisfy the demands of the virtual links, the virtual

network is considered successfully embedded. This is the most simple but sub-optimal algorithm

which brings no guarantee to solve the VNE problem. We refer to this algorithm throughout as

baseline. The authors in [53] formulate the VNE problem as two stage, coordinated node and

link mapping problems, that are both formulated as Mixed ILP (MIP), and then use a rounding

relaxation to find near optimal solutions by an off-the-shelf solver. This algorithm can, however,

be very slow especially when the size of the virtual network (number of nodes and links) is

large, and is shown to have a worst case complexity of O(n14 b2 ln b ln ln b) where n is the

number of substrate nodes, and b is the number of input bits to the linear program [53, 99].

Several other works adopted a similar approach to [53], formulating the VNE problem as MIP

[179, 124]. Formulating the VNE problem as MIP allows a mechanical problem formulation that

can address a wide range of objectives such as energy-awareness and fault-tolerance [153, 97,

17, 13]. Heuristic algorithms, though have better execution times than backtracking algorithms,

do result in low acceptance rates, due to their sub-optimal embedding nature.

Our algorithm, Bird-VNE, follows a constraint processing design methodology and involves

a simplified form of backtracking to bound the resulting approximation-ratio. Our algorithm

is different from other backtracking based solutions in that it relies on the analysis of the con-

straint properties of the VNE problem. This analysis allows us to develop constraint processing

algorithms specific to the VNE problem that effectively prune the search space. Unlike other

heuristics, Bird-VNE allocates substrate paths directly to the requested virtual links, rather than

separating node and link mapping or at most coordinating their allocations. This approach leads

to a proved approximation-ratio that tightens the Bird-VNE performance which was first pro-

posed in our work in [8].

Virtual Network Embedding and Migration in Wireless Networks: Designing VNE al-

gorithms that account for network dynamics (e.g. wireless link quality instability, links failure,
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node mobility, etc.) attracted little attention [176, 175, 167]. The authors in [167] discuss vir-

tualization measures that can ensure network embedding feasibility in wireless networks under

dynamic behaviors. Also in [175], the authors propose to use VNE over static wireless multihop

networks. Unlike these papers, we design our VNE embedding considering wireless network

dynamics due to substrate nodes that can invalidate already embedded virtual networks, hence

mandating migrating these virtual networks to ensure service continuity.

Virtual network migration has also attracted the attention of some researchers to fix invalid

virtual networks [93, 154, 21]. The work by Houidi et. al [93] is one example in which the au-

thors propose to continuously monitor already embedded virtual networks and to detect possible

events that may trigger migration, hence adaptively reembed these virtual networks. Unfortu-

nately virtual network migration is accompanied with several challenges and overheads. A recent

study demonstrates the potential migration challenges including: unavoidable packet loss, slow

adaptability of switches to changes, and critical deadline time to switch packets to new paths.

[117].

In this paper, we extend our work in [8] to take into account the potential virtual network mi-

gration overheads by minimizing the likelihood of migrating already embedded virtual networks

which arises due to substrate node mobility. Our work also matches the recent recommendations

in [117] where an awareness of the potential migrations during the Virtual network embedding

phase is needed to avoid the migration drawbacks. Unlike existing virtual network migration

algorithms, if we integrate Bird-VNE with a migration solution (e.g. as in [93]), that solution

shall become activated less frequently.

4.3 System Model and Design Objective

We abstract and model the substrate (physical) network, consisting of a set S of n nodes, as

an undirected graph Φ = (S,L) where L is the set of substrate links with each link l ∈ L

corresponding to a connected pair of nodes s, s′ ∈ S. We assume that each node s ∈ S offers a

processing capacity C (s), and each link l ∈ L offers a bandwidth capacity C (l).

In what follows, let R be the set of all possible paths between all substrate node pairs,

where a path P (s, s′) between two substrate nodes s and s′ is a sequence of connected links

(or pairs of nodes) in L. Throughout the paper, P (s, s′) (or sometimes P ) will also refer to

the set of all the links constituting the path. The path length, |P |, and the bandwidth capacity,

C (P ) = minl∈P C (l), characterize P .
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We also consider that the substrate nodes are mobile, and adopt the modified Random Way

Point (RWP) mobility model proposed in [115] to model the substrate node mobility. This

model describes the mobility of any substrate node s by an infinite sequence of quadruples

{(Xi−1,Xi, Ci,Wi)s}i∈N, where i denotes the i-th movement sample of node s. For every

movement sample i, s moves from the starting waypoint Xi−1 to the target waypoint Xi with

velocity Ci. Upon arrival to the target waypoint Xi, s waits Wi time units.

Given the waypoint Xi−1, the node chooses the target waypoint Xi randomly such that

the included angle θi between the vector Xi − Xi−1 and the abscissa is uniformly distributed

in [0, 2π] and the transition length Zi = ‖Xi − Xi−1‖ is Rayleigh distributed. The angles

{θ1, θ2, . . .} are i.i.d., and the transition lengths {Z1, Z2, . . .} of a substrate node s are also i.i.d.

with parameter λs and a CDF P (Zi < z) = 1− exp(−λsπz2), z > 0.

Velocities Ci are generally i.i.d. random variables with arbitrary distributions. Even with

randomly distributed velocities, it is sufficient for the purpose of this paper that Ci ≡ Cs,

where Cs is a positive constant, equaling the average speed of substrate node s. Waiting times

{W1,W2, . . .} of a substrate node s are also assumed to be i.i.d. exponential with parameter µs
and a CDF P (Wi < w) = 1− exp(−µsw), w > 0

The following are important stochastic properties of the modified RWP [115]:

1. Transition time Tr, defined as the time a substrate node spends between two successive

waypoints. For a substrate node s moving with constant velocity Cs, the Probability Dis-

tribution Function (PDF) of Tr is fTr(t) = 2πλsC
2
s t exp(−λsπC2

s t
2) and the (Cumulative

Density Function) CDF is P (Tr < t) = 1− exp(−πλst2C2), λs > 0.

2. Target waypoint distribution. Given Xi−1, the PDF of the target waypoint Xi in polar

coordinates is given by

fXi(r, θ) = λs exp(−λsπr2). (4.1)

We also assume that there exists a central node that is responsible for managing the substrate

network and embedding the virtual network requests. That is, the central node will be receiving

multiple different VNE requests in real time, and embedding them one at time. Each VNE

request i is to be embedded for τi time units (i.e. τi is VNE i’s service time).
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4.3.1 Virtual network embedding

A VNE request can be represented as an undirected graph Υ = (V,E) where V is the set of

the virtual nodes and E is the set of the virtual links (i.e. connected pairs of virtual nodes). In

what follows, let nv = |V | and mv = |E|. Each node v ∈ V has a geographical location and a

requested node stress T (v) (e.g. processing capacity). Similarly, each virtual link e ∈ E has a

requested link stress T (e) (e.g. link bandwidth). Table 4.1 summarizes the key notations.

Substrate Network Random Way Point Virtual Network
Symbol Definition Symbol Definition Symbol Definition
S Set of substrate nodes X A waypoint τi Service time
n Number of nodes C Traveling velocity Υ Virtual network
Φ Substrate network W Waiting time at X V Set of virtual nodes
L Set of substrate links Z Transition lenth E Set of virtual links

C (s) and C (l) Substrate capacities λ Rayleigh parameter nv and mv Number of virtual nodes/links
R Set of all paths Tr Transition time T (v) Processing demand

P (s, s′) A substrate path fXi
(r, θ) Waypoint distribution T (e) Bandwidth demand

Table 4.1: Summary of notations.

Suppose that, at a given point in time, the central node has already received and successfully

embedded a total of k − 1 virtual network requests, Υ(1),Υ(2), . . . ,Υ(k−1), and the kth request,

Υ(k), has just arrived. The problem of embedding of the kth virtual network Υ(k) = (V (k), E(k))

into the substrate network Φ consists of the following two mappings.

Node mapping: maps each virtual node v ∈ V (k) to a distinct substrate node s ∈ S subject

to two constraints. One, s must be within ∆ distance from v, where ∆ is a parameter associated

with the VNE request. Two, the sum of the requested processing capacities of all virtual nodes

mapped to s (including those mapped from previous VNE requests) must not exceed the offered

processing capacity of s. Formally, letting Dist(u, v) denote the Euclidean distance between u

and v, node mapping consists of finding a node mapping function, M
(
V (k)

)
: v ∈ V (k) 7→

M (v) ∈ S, such thatM (vi) =M (vj) iff vi = vj , Dist(M (v) , v) ≤ ∆ for all v ∈ V (k), and∑
v∈∪ki=1V

(i):M(v)=s T (v) ≤ C (s) for all s ∈ S.

Link mapping: maps each virtual link e ∈ E(k) to a substrate path P ∈ R subject to two

constraints. One, the end virtual nodes of e must correspond to the end substrate nodes of P .

Two, for every l ∈ L, the sum of the requested bandwidth capacities of all virtual links (including

those belonging to previous VNE requests) whose mapped paths go through the substrate link l

must not exceed the offered bandwidth capacity of l. Formally, link mapping consists of finding

a link mapping function,M
(
E(k)

)
: e = (v, v′) ∈ E(k) 7→ M (e) = P (s, s′) ∈ R, such that



53

M (v) = s,M (v′) = s′, and
∑

e∈∪ki=1V
(i):l∈M(e) T (e) ≤ C (l) for all l ∈ L.

Definition 4.3.1 The embedding of Υ(k) is said to be feasible when both the node mapping and

link mapping tasks defined above are successful.

Upon successfully embedding the kth VNE request, the central node updates the locations

of the substrate nodes, as well as the amounts of the available/remaining substrate resources.

These are the remaining processing capacity of substrate node s, denoted by R(k)(s) = C (s)−∑
v∈∪ki=1V

(i):M(v)=s T (v), the remaining bandwidth capacity of substrate link l, denoted by

R(k)(l) = C (l) −
∑

e∈∪ki=1V
(i):l∈M(e) T (e), and the remaining path capacity of substrate path

P , denoted by R(k)(P ) = minl∈P R
(k)(l). Also, upon receiving a new VNE request, the central

node constructs the mapping domains of the virtual nodes and links, which are defined as follows.

Definition 4.3.2 The mapping domain Dv of a virtual node v ∈ V (k) is defined to be the set

of all substrate nodes whose Euclidean distances to v are each less than ∆ and whose remain-

ing processing capacities are each greater than T (v); i.e., Dv = {s ∈ S : Dist(s, v) ≤
∆, R(k)(s) ≥ T (v)}.

Definition 4.3.3 The mapping domainDe of a virtual link e = (v, v′) ∈ E(k) is defined to be the

set of all substrate paths whose end nodes (s, s′) are inDv×Dv′ and whose remaining capacities

are each greater than T (e); i.e., De = {P (s, s′) ∈ R : (s, s′) ∈ Dv ×Dv′ , R
(k)(P (s, s′)) ≥

T (e)}.

Figure 4.1 shows a VNE example, where the graph on the left side is the virtual network

and that on the right side is the substrate network. In this example, the node mapping do-

mains are Da = {A,C}, Db = {G,H}, and Dc = {B,E, F}, the link mapping domains are

shown in dashed lines (e.g. D(a,c) = {{(A,B)}, {(A,E)}, {(A,E), (E,B)}, {(A,C), (C,D), (D,E)},

{(A,C), (C,D), (D,E), (E,B)}, {(A,B), (B,E)}}). The VNE solution is given by (i) the node

mappings, M (a) = C, M (b) = H, and M (c) = B, and (ii) the link mappings, M ((a, b)) =

{(C,D), (D,H)},M ((a, c)) = {(C,A), (A,B)}, andM ((b, c)) = {(H,E), (E,B)}.

4.3.2 Probability of VNE migration due to node mobility

If a virtual node v is mapped to a substrate node s, a migration is triggered when the distance

d = Dist(v, s) becomes greater than ∆. More specifically, a migration will not be triggered
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Figure 4.1: Virtual Network Embedding: node mapping domains are shown in dashed circles (radius=∆)
and link mapping domains are shown in dashed lines parallel to substrate paths.

due to s’s mobility if s stays within the circle A(v,∆) of diameter ∆ centered at v for a period

longer than τ , the service time of the virtual network request incorporating node v. From (4.1),

the probability that the target waypoint of the substrate node is withinA(v,∆) is, for 0 ≤ d ≤ ∆,

P (A(v,∆)) =

∆+d∫
∆−d

2π∫
0

fXi(r, θ) rdrdθ,

= exp(−πλs(d−∆)2)− exp(−πλs(d+ ∆)2).

LetH(s) be the probability that a migration is triggered due to the mobility of substrate node

s. H(s) can be approximated as the probability that neither the target waypoint is withinA(v,∆)

and the total time spent in A(v,∆) is ≥ τ nor the target waypoint is outside A(v,∆) and the

transition time to the boarder of A(v,∆) is ≥ τ . Computing the PDF of the total time spent in

A(v,∆) (W + Tr) requires convolution of the PDFs of W and Tr, and strong assumptions on

relative values of λs, Cs, and τ , which are outside the control of the embedding algorithm. To

simplify the analysis and the VNE objective design, we assume that: i) the time spent within

A(v,∆) is dominated by the waiting time at the target waypoint Xi, ii) if the target waypoint

is outside A(v,∆), the whole transition time is spent within A(v,∆), and iii) the waiting time

of the starting waypoint has elapsed at the time of the virtual network embedding. Since we

are mainly interested in evaluating the migration probability of a substrate node relative to other

substrate nodes, the impact of these assumptions is minimal. With this, H(s) can be expressed
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as
H(s) = 1− P (W ≥ τ)P (A(v,∆))

− P (Tr ≥ τ)(1− P (A(v,∆)))
(4.2)

To minimize the migration overhead, the VNE algorithm shall map virtual nodes to substrate

nodes with the least migration probability, H(s). Unlike traditional virtual network embedding

and migration algorithms, this requires the estimation of the transition length and waiting time

distribution parameters and the use of the estimated parameters to evaluate the migration proba-

bility associated with mapping a virtual node v to a substrate node s. The maximum likelihood

estimation of the transition length parameter is λ̂s = 1
4

(
Z2
)−2

, where the Z2 denotes the sec-

ond sample moment of Z, and that of the waiting time parameter is µ̂s = 1
W

, where W denotes

the sample moment of W .

4.3.3 VNE design objective

Our objective is to develop an algorithm that finds feasible VNEs while maximizing the em-

bedding profit and minimizing the migration overhead. We say that a feasible embedding is

optimal when its profit is maximum1. Given a virtual network Υ, the profit is defined as

the difference between the revenue generated from embedding Υ and its embedding cost, i.e.

Profit(Υ) = Revenue (Υ)− Cost (Υ).

To achieve the VNE design objective, we model the embedding cost to capture the cost of

node mapping, the cost of link mapping, and the potential cost of migration that may arise as a

result of mobility. It is defined as

Cost (Υ) =
∑
v∈V

αT (v) +
∑
e∈E

βT (e)× |M (e)|

+
∑
v∈V

γ(v)H(M (v)),
(4.3)

where α and β denote the cost of processing and bandwidth resource units, respectively. The

third term captures the cost of migration due to substrate nodes mobility, where γ(v) is the cost

of migrating the virtual node v. Intuitively, γ(v) depends on the amount of resources allocated

to v, as well as on v’s connectivity to other virtual nodes.
1Modeling the objective as a maximization problem allows us to analytically bound the objective value, as shown

later in Section 4.5.
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We also define the revenue to be generated from successfully embedding Υ as

Revenue (Υ) =
∑
v∈V

α′T (v) +
∑
e∈E

β′T (e) , (4.4)

where α′ and β′ denote the price to be charged for each processing and bandwidth unit, respec-

tively.

Observe that the embedding revenue in (4.4) depends only on the virtual network’s requested

resources and not on the VNE solution. Also recall that the function H(M (v)) given in (4.3)

represents the probability that a migration of v is triggered due to the mobility of the substrate

node, M (v). It follows that maximizing the profit implies minimizing the embedding cost in

(4.3), which implicitly minimizes the virtual network migration overhead due to mobility. Note

that even though, in this paper, the function H(M (v)) captures the likelihood of migration that

is due to mobility, it can be used to represent/capture the migration due to any other network

dynamics, like link failure.

4.4 Enforcing Domain Consistency

The node and link mapping domains, defined in Definitions 4.3.2 and 4.3.3, involve coupled

constraints. A mapping of a virtual node v to a substrate node s ∈ Dv impacts other nodes

and links mapping domains in several ways. First, no other virtual nodes can be mapped to s.

Second, we can only map virtual links that have v as an end node to substrate paths that have s as

an end node. Moreover, a mapping of a virtual link e to a substrate path P ∈ De restricts other

virtual links from being mapped to the substrate paths that share one or more substrate links with

P . The shared links become capacity bottlenecks as their bandwidth capacity must be greater

than the required bandwidth of not only e but also other virtual links mapped to paths sharing

these links. A backtracking algorithm resolves such constraint couplings by mapping virtual

nodes and virtual links one at a time, and backtracking to previous steps when the algorithm

encounters an unfeasible mapping.

A VNE algorithm can avoid backtracking (backtrack-free search) if the mapping domains

of all virtual nodes and links are consistent. Enforcing domain consistency involves pruning

the node and link mapping domains to avoid mappings that lead to an unfeasible embedding.

Unfortunately, the use of the standard consistency propagation algorithms are exponential in

time. This is because the constraint network of the VNE problem has a maximum degree that
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is a function of n, while the running time of the standard consistency propagation algorithm, to

ensure backtrack-free search, is exponential in the maximum degree of the constraint network

(see [57] for details).

Fortunately, constraint propagation algorithms can take advantage of certain properties spe-

cific to VNE to prune the mapping domains in polynomial time through mapping domains con-

sistency enforcement. In this section, we develop techniques that exploit these properties to

avoid backtracking during the VNE search process, and use these techniques to design a poly-

nomial time, almost backtrack-free VNE algorithm. There are two types of mapping domains

consistency, virtual network topological consistency and substrate paths capacity consistency,

which are presented next.

4.4.1 Virtual network topological consistency

We first enforce domain consistency to ensure that the topology of the resulting solution (node

and link mappings) matches exactly the topology of the virtual network, i.e. topological con-

sistent. This requires enforcing the following: (i) substrate nodes mapped to the virtual nodes

must be all different, (ii) end nodes of the substrate paths in link mapping domains must have

corresponding substrate nodes in the node mapping domains and vice versa, and (iii) substrate

nodes in the node mapping domains must maintain similar virtual node degrees.

Alldifferent virtual node mapping constraint: The constraint to map virtual nodes to dis-

tinct substrate nodes is known as the alldifferent constraint in the constraint programming con-

text, and we next state a useful corollary following from Régin’s theorem [139] on the alldifferent

constraint.

Corollary 4.4.1 A virtual node mapping v ∈ V 7→ s ∈ Dv leads to an unfeasible embedding if

the edge (v, s) does not belong to a maximum matching that covers all the virtual nodes in the

bipartite graph B = (V ∪ S, {(v, s) :M (v) = s}).

The above corollary can then be exploited to prune away nodes and links from the node and

link mapping domains, and for completeness, we provide in Procedure 1 a brief description of

such a pruning technique, which we term ALLDIFFERENT [139].

In Procedure 1, a residual graph, B′, is defined as B′ = (V ∪ S ∪ {t},M ∪ E2 ∪ E3 ∪ E4)

where M is the set of edges in the matching directed from virtual nodes to substrate nodes,

E2 is the set of edges that are not in the matching M and are directed from substrate nodes to
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Procedure 1: ALLDIFFERENT

Input: V, Dv∈V

Ensure: Distinct virtual node to substrate node mappings in O
(
n1.5
v n

)
[139].

1: Construct bipartite graph B = (V ∪ S, {(v, s) :M (v) = s})
2: Find a maximum matching M in B using Hopcroft-Karp algorithm [91]
3: if |M | < nv then
4: Return no feasible embedding for the given mapping domains
5: end if
6: Construct the residual graph B′

7: Compute the strongly connected components in B′

8: Prune the node mapping domains by deleting any edges connecting two different strongly connected
components in B′.

9: return Narrowed virtual node mapping domains

virtual nodes, E3 is the set of all directed edges from substrate nodes in the matching M to a

dummy node t, and E4 is the set of all directed edges from t to substrate nodes that are not in

the matching M .

Step 8 in Procedure 1 prunes substrate nodes from the node mapping domains that can never

lead to distinct node mappings. Any edge connecting two different strongly connected compo-

nents in B′ corresponds to a mapping from a virtual node v to a substrate node s and does not

belong to any maximum cardinality matching, hence it is not possible to find a feasible embed-

ding with distinct node mapping if v was mapped to s. Thus, s must be removed from Dv. The

time complexity of Procedure 1 is bounded by the time required to find the maximum matching

using the Hopcroft-carp algorithm in step 2. Since a virtual node can have at most n substrate

nodes in its node mapping domain, the number of edges in the bipartite graph B cannot exceed

nv × n edges. In the worst case, the Hopcroft-carp algotihm requires O(
√
nvnvn) steps, hence

the ALLDIFFERENT time complexity is O
(
n1.5
v n

)
.

Relational consistency of node and link mapping domains: In the example of Figure4.1,

although mapping the virtual node c to F is feasible, doing so prevents us from finding a mapping

to the virtual link (a, c), as there is no substrate path between F and any substrate node in the

node mapping domain Da.

From the definition of mapping domains, we can easily observe that if two virtual nodes

v, v′ are connected by a virtual link e, then the end points of the substrate paths in the virtual

link mapping domain De is a subset of the cross product of the virtual node mapping domains

Dv × Dv′ . We can now rely on this simple observation and the definition of the virtual link

mapping domains to conclude the following:
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Figure 4.2: Procedure 1 illustration. (a):A Maximum cardinality matching (thick edges), v is connected to
s if s ∈ Dv , (b):Alternating graph with two strongly connected components. Edges crossing the strongly
connected components cannot be in a maximum matching therefore Procedure 1 prunes them.

Lemma 4.4.2 The node mapping v ∈ V 7→ s ∈ Dv leads to an unfeasible embedding if there

exists a link e = (v, v′) ∈ E whose link mapping domain De does not contain a path ending at

s. Similarly, a virtual link mapping e = (v, v′) 7→ P (s, s′) leads to an unfeasible embedding if

s 6∈ Dv or s′ 6∈ Dv′ .

Proof Assume v 7→ s and a subsequent mapping of e = (v, v′) such that there is no path

P ∈ De ending at s. A mapping of e to any substrate path in De results in mapping multiple

virtual nodes to the same substrate node. Also, e = (v, v′) 7→ P (s, s′) violates the link mapping

Definition 4.3.3 if either s 6∈ Dv or s′ 6∈ Dv′ .

Using Lemma 4.4.2, we propose two procedures to narrow down the node and link mapping

domains: Procedures 2 and 3. The functions u (De) and v (De) return the sets respectively of

the first and the second end nodes of all the paths in De. When applied to a path P , u (P ) and

v (P ) return the path’s first and second end nodes. In each iteration, Procedure 2 prunes the

substrate nodes from the node mapping domains of the end nodes of the virtual links, if there

is not any substrate path in their link mapping domains that also ends at those substrate nodes.

Since for each virtual link the intersection operator (step 2 and 3) requires at most O(n) steps as

| Dv |≤ n, then Procedure 2 has a worst case time complexity of O(mvn).

Procedure 3 complements Procedure 2 by pruning a substrate path from the link domain of a

virtual link if the substrate nodes ending that path cannot be found in the node mapping domains

of the virtual nodes ending the virtual link. Since there are at most O(n2) paths in the substrate
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Procedure 2: NODE-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Virtual node mapping domains are consistent with virtual link mapping domains in O(mv n)
1: for all virtual link e = (v, v′) ∈ E do
2: Dv ← Dv ∩ u (De)
3: Dv′ ← Dv′ ∩ v (De)
4: end for
5: return Narrowed virtual node mapping domains

network, the inner loop (step 2 to 6) of Procedure 3 requires at most O(n2) steps. Hence, the

worst case time complexity of Procedure 3 is O(mvn
2).

Procedure 3: LINK-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Virtual link mapping domains are consistent with virtual node mapping domains in O(mv n
2)

1: for all virtual link e = (v, v′) ∈ E do
2: for all substrate path P ∈ De do
3: if u (P ) /∈ Dv ∨ v (P ) /∈ Dv′ then
4: De ← De \ {P}
5: end if
6: end for
7: end for
8: return Narrowed virtual link mapping domains

Consistency of virtual and substrate node connectivity: The relational consistency of

node and link mapping domains does not ensure connectivity of the virtual network, nor does

it imply that the mapping domains can satisfy the virtual network connectivity requirements,

especially when the node mapping domains overlap. To illustrate this, consider a new induced

network of substrate nodes that represents the connectivity of the virtual link domains. In this

induced network, substrate nodes are connected by an edge if there exists a path belonging to

any link mapping domain that connects them. Induced network is defined formally next.

Definition 4.4.1 Given a virtual network Υ, we define the induced network I of Υ as the undi-

rected graph I = (SI ⊂ S,LI) where SI = ∪v∈VDv and LI = {(s, s′) ∈ S2
I : ∃ P (s, s′) ∈

De for some e ∈ E}.

Definition 4.4.2 For every connected component CCI of I , the set Nv(CCI) = CCI ∩ Dv

corresponding to the virtual node v is called the supernode of v. Let ζ(CCI) be the number
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Figure 4.3: Induced network I from substrate network Φ in Figure4.1. I has one connected components
CCI and three supernodes (dashed circles). ζ(CCI) = 3, δ(F ) = 1 and equals 2 for all other nodes.

of distinct supernodes in CCI . For every s ∈ SI , we define δ(s) as the number of supernodes

connected to s.

Figure 4.3 illustrates the induced network of the example given in Figure 4.1. This induced

network is constructed by connecting a pair of substrate nodes in Figure 4.3 when there is at

least one path connecting them in any link mapping domain. In general, if the mapping v 7→ s is

feasible, the function δ(s) reflects the degree of the virtual node v, and if a connected component

CCΥ of Υ is mapped to a subset of substrate nodes in Φ, the function ζ(CCI) reflects the number

of virtual nodes in the connected component CCΥ (size of CCΥ).

Lemma 4.4.3 Let DegΥ (v) denote the degree of virtual node v. A virtual node mapping v 7→ s

leads to an unfeasible embedding if DegΥ (v) > δ(s) or the size of the connected component of

Υ (CCΥ) that contains v is greater than the number of supernodes in CCI that contains s.

Proof Assume v 7→ s and DegΥ (v) > δ(s), then there exist at least one virtual link e such that

there is no substrate path P inDe with one of its end substrate nodes equals s. Then, v 7→ s does

not lead to a feasible embedding from Lemma 4.4.2. If DegΥ (v) ≤ δ(s) but |CCΥ| > ζ(CCI),

then there must exist an unmapped virtual node v′ ∈ CCΥ, while all substrate nodes s ∈ CCI
are already mapped to other virtual nodes in CCΥ including v. Since v′ must be mapped to one

substrate node in CCI to maintain connectivity, then mapping v 7→ s does not lead to a feasible

embedding.

The DEGREE-CONSISTENCY procedure (Procedure 4), a direct application of Lemma 4.4.3,

is a pruning technique that narrows down mapping domains through degree consistency enforce-
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ment. Its complexity is bounded by computing δ(s) for all the substrate nodes in the virtual node

mapping domains, which is O(n2).

Procedure 4: DEGREE-CONSISTENCY

Input: E, Dv∈V

Ensure: Degree Consistency in O(n2)
1: for all virtual nodes v′ ∈ V do
2: for all substrate nodes s′ ∈ Dv′ do
3: if DegΥ (v′) > δ(s′) then
4: Dv′ ← Dv′ \ {s′}
5: end if
6: end for
7: end for
8: for all connected component CCΥ ∈ Υ do
9: for all connected component CCI ∈ I do

10: if |CCΥ| > ζ(CCI) then
11: Dv′ ← Dv′ \ CCI , ∀v′ ∈ CCΥ

12: end if
13: end for
14: end for
15: return Narrowed virtual nodes domains

Running the ALLDIFFERENT, NODE-CONSISTENCY, LINK-CONSISTENCY, and DEGREE-

CONSISTENCY procedures for one iteration removes some inconsistent mappings from the node

and link mapping domains. To remove all the inconsistencies, these procedures must repeatedly

be run sequentially until no further removal is possible from either the node or the link map-

ping domains. The process merging all these four procedures is captured in Algorithm 1, which

essentially removes inconsistency, and hence avoids backtracking, by ensuring topological con-

sistency of the node and link mapping domains. This algorithm is referred to as TOPOLOGY-

CONSISTENCY.

The complexity of TOPOLOGY-CONSISTENCY is bounded by the number of times we run

the procedure LINK-CONSISTENCY in step 4. This implies a complexity of O(mv n
2) in each

iteration. In the worst-case scenario, TOPOLOGY-CONSISTENCY removes one substrate node

from one node mapping domain and this corresponds to at least one removal of one substrate

path from link mapping domains. Hence, it requires at most n iterations to remove all the

substrate nodes from one node mapping domain, thus returning false2. Thus, the complexity of
2A more efficient implementation checks the condition in step 6 every time any procedure removes a substrate

node/link from a mapping domain.
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TOPOLOGY-CONSISTENCY is O(mv n
3). But since the maximum number of virtual nodes is

the number of substrate nodes; i.e., nv ≤ n, then the complexity of TOPOLOGY-CONSISTENCY

is O(n5).

Algorithm 1: TOPOLOGY-CONSISTENCY

Input: E, De∈E , Dv∈V

Ensure: Topology Consistency in O(mv n
3)

1: repeat
2: NODE-CONSISTENCY(E, De∈E , Dv∈V )
3: ALLDIFFERENT(V, Dv∈V )
4: LINK-CONSISTENCY(E, De∈E , Dv∈V )
5: DEGREE-CONSISTENCY(E, Dv∈V )
6: if ∃ Dv′ = ∅, ∀v′ ∈ V ∨ De = ∅, ∀e ∈ E then
7: return false{T}here exist a virtual node or a virtual link with an empty mapping domain.
8: end if
9: until No node or link domain is changed

10: return true

4.4.2 Capacity disjoint paths consistency

We now study the second mapping domain consistency type, substrate paths capacity consis-

tency. Let us refer again to the example given in Figure 4.1 and consider the link mapping

sequence (a, b) 7→ P (C,H) = {(C,D), (D,H)} and (a, c) 7→ P (C,E) = {(C,D), (D,E)}.
The remaining bandwidth of the substrate link (C,D), R ((C,D)) = 15, is less than the sum

of the links’ requested bandwidth capacities, which is T ((a, b)) + T ((a, c)) = 24. Hence,

this mapping sequence is unfeasible. Clearly, a VNE algorithm will not backtrack if all substrate

paths in the link mapping domains are disjoint (if topological consistency is enforced). However,

constructing the link mapping domains from disjoint paths results in a degradation of the VNE

acceptance rate (such a rate reflects the number of virtual networks that can be embedded into

the substrate network), as well as in an increase in the embedding cost. Our proposed embedding

algorithm does not force paths to be disjoint so as to increase the acceptance rate and decrease

the embedding cost. Instead, our technique relies on the concept of capacity disjoint which we

formally define next.

Definition 4.4.3 For every substrate link l, let D̄e(l) = {P ∈ De : P 3 l} and Ē(l) = {e ∈
E : D̄e(l) 6= ∅}. We say that the paths in R′ =

⋃
e∈Ē(l) D̄e(l) are capacity disjoint iff the

remaining bandwidth capacity of l is greater than the sum of the requested bandwidth capacities



64

of all the virtual links in Ē(l). Formally, the paths in R′ are said to be capacity disjoint iff

R(k)(l) ≥
∑

e∈Ē(l) T (e).

Lemma 4.4.4 A virtual link mapping e 7→ P leads to an unfeasible embedding if all the sub-

strate paths in every unmapped virtual link’s mapping domain are not capacity disjoint with

P .

Proof If a virtual link ei 7→ Pi and in a next mapping step of virtual link ej , all paths in Dej

are not capacity disjoint with Pi, then any mapping ej 7→ Pj ∈ Dej will result in at least one

substrate link with negative remaining bandwidth.

Theorem 4.4.5 The proposed TOPOLOGY-CONSISTENCY algorithm ensures a backtrack-free

search if all substrate paths in all link mapping domains are capacity disjoint.

Proof It follows from Lemmas 4.4.2, 4.4.3, and 4.4.4 and from Corollary 4.4.1.

An algorithm that aims to ensure a backtrack-free search may remove substrate paths that

are not capacity disjoint from the virtual links mapping domains. Although such an algorithm

will have a complexity advantage because it is backtrack-free, it degrades the acceptance rate

and the cost as it will remove substrate paths that can actually lead to feasible or minimum cost

embedding. Apparently, capacity disjoint paths condition is required only for substrate paths that

are actually in an incurred embedding. In order to overcome the complexity problem while still

minimizing the cost and maximizing the acceptance rate, we propose Algorithm 2 (CAPACITY-

DISJOINT), which ensures that substrate paths in link mapping domains are capacity disjoint if

they are likely to coexist in an incurred embedding.

The key idea of the CAPACITY-DISJOINT algorithm is to determine the worst case scenario

in which the intersecting substrate paths in R′ can become simultaneous mappings of virtual

links in Ē(l). These paths are found by applying topological consistency procedures, discussed

earlier, on the subsets of link and node mapping domains D̄e ∈ Ē(l), D̄v ∈ V̄ (l) (Steps 1 to 6),

where V̄ (l) ⊂ V is the set of end virtual nodes of virtual edges in Ē(l) and D̄v(l) ⊂ Dv is the

set of substrate node mappings deduced from R′.

The CAPACITY-DISJOINT algorithm checks if all paths that are common to every substrate

link l are capacity disjoint. If not, the algorithm removes first the substrate paths D̄e ∈ Ē(l)

from the domain of the virtual link(s) e that has the largest link mapping domain size |De| (Step

7 to 16). This is to minimize the chances of ending up with an empty link mapping domain,
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thus maximizing the acceptance rate. Although it is clear that CAPACITY-DISJOINT algorithm

does not eliminate backtracking entirely, it substantially reduces its likelihood of occurrence. We

evaluate the likelihood of backtracking empirically in Section 4.6.

Algorithm 2: CAPACITY-DISJOINT

Input: E, L, De∈E , Dv∈V

Ensure: Substrate paths are capacity disjoint if they are likely to coexist in an incurred embedding in
O(mmv n

3).
1: for all l ∈ L : ∃ ps ∈ De∈E , l ∈ P do
2: repeat
3: NODE-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
4: ALLDIFFERENT(V̄ (l), D̄v ∈ V̄ (l))
5: LINK-CONSISTENCY(Ē(l), D̄e ∈ Ē(l), D̄v ∈ V̄ (l))
6: until No node or link sub-domain is changed
7: R′ (l)← R (l)
8: for all e ∈ Ē(l) ordered ascendingly by |De| do
9: if D̄e(l) 6= ∅ then

10: R′ (l)← R′ (l)− T (e)
11: if R′ (l) < 0 then
12: De ← De \ D̄e(l)
13: end if
14: end if
15: end for
16: end for
17: if ∃ De = ∅, ∀e ∈ E then
18: return false
19: end if
20: return true

The CAPACITY-DISJOINT algorithm uses similar steps to determine possible simultaneous

intersecting paths (Steps 2 to 6) for each substrate link l that intersects with some paths. Although

these steps are performed on a subset of the mapping domains and it is unlikely to encounter the

situation that every substrate link is a common link for all paths (as the substrate network will

almost look like a path), the complexity of CAPACITY-DISJOINT is bounded by O(mmv n
3).

This can be expressed as O(n7) if both the substrate and virtual networks are complete graphs

and have the same number of nodes n.
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4.5 Approximate Profit Maximization

TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT algorithms, discussed in the previous

section, reduce the search space and improve the running time of backtracking search. How-

ever, even in the case of backtrack-free search, an optimal optimization algorithm, like branch

and bound, may still traverse the whole search space through brute-force [57]. If we assume that

the VNE problem is backtrack-free, it can be viewed as the maximum weight matching problem

in a bipartite graph. The bipartite graph in this case is the set of virtual links on one side of the

bipartite graph connected by weighted edges to the set of substrate paths on the other side and

the edge weight is the profit attained by mapping a virtual edge to a substrate path. From (4.3)

and (4.4), the profit of mapping a virtual edge e = (v, v′) to a substrate path P = (s, s′) is given

by
Profit(e, P ) =(α′ − α)(T (v) + T

(
v′
)
)

+ (β′ − β × |P |)T (e)

− γ(v)H(s)− γ(v′)H(s′).

However, a direct application of conventional maximum weight matching algorithms (e.g. Hun-

garian methods or Edmond’s methods) is non-trivial. Fortunately, greedy approximations to

the maximum weight matching are applicable, but with some needed modifications to enforce

domain consistency and to verify solution feasibility in every step. We use this observation to

propose Algorithm 3, which finds a VNE such that the incurred embedding profit is at most as

half as the optimal profit in an attainable special case and at least 1
nv

in general.

Our proposed VNE algorithm, termed BIRD-VNE, starts by enforcing the mapping domains

consistency using TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT. It then searches for

an embedding by mapping the virtual links with the smallest link mapping domain sizes and

greatest demands (Line 9) first to the substrate paths in their domains with the highest profit (Line

10). After mapping each virtual link (mapping step), the algorithm ensures feasible embedding

according to Definition 4.3.1 (Line 20). If any mapping step results in unfeasible embedding,

the algorithm starts over the mapping process from the first virtual link by assigning it to an

unattempted mapping in its domain until a feasible embedding is found or all mappings of the

first link are tried.

This algorithm still involves a simplified form of backtracking. The algorithm always back-

tracks to the first virtual link mapping step. In this case, the total number of backtracks is

bounded in the worst case by the size of the smallest link mapping domain. Typically, the con-
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sistency enforcing algorithms reduce the number of backtracks significantly as we will show

empirically in Section 4.6. The following theorem bounds the worst case performance of BIRD-

VNE.

Theorem 4.5.1 In the worst case, BIRD-VNE is an O( 1
nv

)-approximation to the optimal em-

bedding profit, and only a 1
2 -approximation if there are, on average, nv paths of the same length

between any two substrate nodes.

Proof Let x be the profit of mapping the first virtual link e to the highest profitable path P in

its link mapping domain in a single iteration (step 7). The following potential mappings become

invalid and will never be attempted by the algorithm until a backtracking to step 7 is decided:

(i) mapping e to other substrate paths in its link mapping domain except P , (ii) mapping any

other virtual link to P , (iii) mapping another virtual link e′ that shares one of its end virtual

nodes with e with any other substrate paths except those that also share the same end substrate

node with P . Let d be the maximum degree of the virtual network, the worst case will occur

if we have exactly d paths of shortest length (highest profit) and the algorithm invalidates at

most d mappings of the optimal mappings (at most in the first mapping). In this case, the sum

of profits of the invalidated mapping cannot exceed dx. Since the profit is non-negative, the

approximation ratio is O(1
d) or more conservatively O( 1

nv
). However, if there are nv redundant

substrate paths of the same length between any two substrate nodes, BIRD-VNE invalidates at

most two mappings that may be optimal. This can be repeated for at most 1
2mv of the steps (9 to

19) and the sum of the profits of the invalidated mappings cannot exceed 2x. In this later case,

the approximation ratio is 1
2 , which proves the theorem.

4.5.0.1 Scalability and implementation consideration

The complexity of BIRD-VNE is analyzed as follows. The main loop (Step 10 to 25) has mv

iterations. In the worst-case scenario, for every virtual link, it checks the feasible mappings of

n2 paths. Then, the complexity of BIRD-VNE is bounded by the CAPACITY-DISJOINT com-

plexity O(mmv n
3) and can be written as O(n7). Although BIRD-VNE is polynomial in time

and scales much better than the state-of-the art algorithms, its O(n7) complexity may prevent

applying it to very large scale networks. Fortunately, this complexity bound can be improved

through simple but effective implementation improvements.
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Algorithm 3: BIRD-VNE

Input: Υ = (V,E), Φ = (S,L)
Require: D∀e∈E , D∀v∈V

Ensure: Embedding Υ 7→ Φ in O(mmv n
3)

1: SolutionExist← TOPOLOGY-CONSISTENCY
2: SolutionExist← SolutionExist and CAPACITY-DISJOINT
3: SolutionExist← SolutionExist and TOPOLOGY-CONSISTENCY
4: if not SolutionExist then
5: return ”Reject virtual network.”
6: end if
7: repeat
8: M (e)← ∅, ∀e ∈ E
9: for all e = (v, v′) ∈ E ordered ascendingly by |De|, and by T (e) do

10: for all P = (s, s′) ∈ De ordered descendingly by
Profit(e, P ) do

11: if e is the first virtual link in the order of E then
12: De ← De \ P
13: end if
14: if e 7→ P result in a feasible embedding then
15: M (e)← P ,M (v)← u (P ),M (v′)← v (P )
16: break
17: end if
18: end for
19: end for
20: until Feasible embedding is found or all first virtual link mapping domain are attempted.
21: if No feasible embedding is found then
22: return ”Reject virtual network.”
23: end if
24: return M (e) , ∀e ∈ E andM (v) , ∀v ∈ V
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The two procedures, NODE-CONSISTENCY and LINK-CONSISTENCY, can be easily imple-

mented in parallel by implementing these algorithms on exactly mv processing agents. In this

case, the NODE-CONSISTENCY complexity is reduced to O(n) while the LINK-CONSISTENCY

complexity is reduced toO(n2). It then follows that the complexity of TOPOLOGY-CONSISTENCY

is bounded by running ALLDIFFERENT at most n times, hence it is O
(
n2.5
v n

)
. Similarly, the

CAPACITY-DISJOINT complexity is also bounded by running ALLDIFFERENT at most m times,

hence it is O
(
n2.5
v m

)
. The complexity of CAPACITY-DISJOINT bounds the overall complexity

of BIRD-VNE to O
(
n2.5
v m

)
.

We can also improve the actual approximation ratio in practice by repeating step 7 to 19 until

all virtual link mappings of the first virtual link are attempted (i.e. remove steps 14 to 17) while

maintaining all the feasible solutions. We then pick the solution with the maximum total profit

as our solution and the other solutions as backup solutions in case a migration is needed. This

trick reduces the gap between the evaluated total profit and the optimal solution when compared

to the worst case scenario, and preserves the same worst case complexity at the expense of the

actual execution time.

4.5.0.2 Virtual network migration consideration

The proposed algorithm, BIRD-VNE, can still be used, with simple modification, if virtual net-

work migration is needed. If the previously discussed implementation in Section 4.5.0.1 is

adopted, we end up with multiple solutions to the same virtual network that can be quickly

evaluated for feasibility, so as to choose one of these VNE solutions for migrating the virtual

network instead of evaluating BIRD-VNE again from the beginning. Moreover, the following

simple procedures can be carried out to perform migrations to individual nodes and links instead

of migrating the whole virtual network.

Consider the case that a substrate path P is not capable of meeting the required demand of a

virtual link e. This situation can happen, for example, in case of a link failure or congestion along

the path, or failure of one or both end substrate nodes of P . In this case, we can immediately

find another backup path (and substrate nodes if necessary), P ′, in De {P} that has the largest

profit and is also feasible with the current embeddingM (e′) , ∀e′ ∈ E {e}. This algorithm is

as simple as running the steps from 9 to 19 in BIRD-VNE, while replacing De with De {P} for

only the virtual links that are impacted by the failure of P . If this fails, the whole embedding

needs to be performed again by running BIRD-VNE.
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4.6 Numerical Results

The effectiveness of the proposed algorithm, BIRD-VNE, is assessed in terms of the metrics

suggested in [73]:

1. Acceptance rate, defined as the ratio of the total accepted virtual networks to the total

requested virtual networks.

2. Revenue to Cost ratio (R/C), defined as R/C =
∑

Υ Revenue (Υ)/
∑

Υ Cost (Υ).

3. Average node and link utilization, defined as
∑
s∈S

R(s)−C(s)
nC(s) and

∑
l∈L

R(l)−C(l)
mC(l) , respectively.

In addition, we use the following metrics to assess the effectiveness of BIRD-VNE vis-a-

vis of its ability to avoid backtracking, limit network migration, and achieve optimal VNE by

comparing it to the optimal Brand and Bound technique.

1. Average/Maximum Approximation ratio, defined as the average/maximum ratio of the cost

achieved by BIRD-VNE to that achieved by Branch and Bound.

2. Backtrack-free ratio, defined as the ratio of the total number of times in which BIRD-VNE

finds a feasible embedding at the first attempt of the first virtual link mapping to the total

number of accepted requests.

3. Migration ratio, defined as the ratio of the total number of virtual network migrations to

the total number of accepted requests.

4.6.1 Simulation setup

We compare the performance of BIRD-VNE with two existing algorithms, Randomized Virtual

Network Embedding with shortest path link mapping (RVINE-SP) and with multicommodity

flow link mapping (RVINE-MCF) [53], which are integrated to an event-driven simulator that we

developed 3. We also compare the performance achievable under BIRD-VNE to that achievable

under the basic Greedy algorithm, referred to as BASELINE and proposed in [184].

The simulator generates Φ and Υ according to Erdös−Rènyi model. Similar to [53], Φ has

0.5 probability of connecting any two substrate nodes, n = 50, C (s) ∼ U(0, 50), ∀s ∈ S and
3Implementations of RVICE-SP and RVINE-MCF are online available at http://www.mosharaf.com/ViNE-

Yard.tar.gz
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C (l) ∼ U(0, 50),∀l ∈ L. Substrate nodes are placed randomly on a (25× 25) grid. The mean

inter-arrival time of virtual networks ranges from 5 to 25 networks per time unit, and the average

service time is set to τ = 1000 time units. Each pair of virtual nodes in Υ is connected with 0.5

probability, nv ∼ U(1, 10), ∆ = 15, T (v) ∼ U(0, 20),∀v ∈ V and T (e) ∼ U(1, 50), ∀e ∈ E.

The routing of the substrate network R is computed once in the prepossessing initialization step

using the all shortest path algorithm. All the cost parameters α, β, γ are set to unity in the

simulations.

We simulate the mobility of substrate nodes by setting τ = 50, and the average waiting time

at each waypoint to µ−1
s = 100 time units for all the substrate nodes. All substrate nodes travel

with the same constant speed Ci = 5 speed units, and the average transition length of all the

nodes is 5 length units (i.e. λ
2
s

2 = 5). We consider a wireless network infrastructure in which the

connectivity between the substrate nodes are not impacted by their mobility since fixed clones

of the mobile nodes actually execute the virtual network requests in a geographically distributed

cloud infrastructure as discussed in Section 4.7 and as illustrated in Figure 4.11.

4.6.2 Performance evaluation

4.6.2.1 BIRD-VNE improves the acceptance rate

Figure4.8 shows that BIRD-VNE has a 15% better acceptance rate when compared to the other

algorithms. The improvement in the acceptance rate is a direct result of Theorem 4.4.5 and is

consistent for different loads. BIRD-VNE is likely to find a feasible embedding once it passes

the consistency enforcement steps 1 to 6.

On the other hand, RVINE-SP and RVINE-MCF first rely on LP relaxations to solve the

non-convex MIP problem, and then round the solution of the relaxation to the nearest inte-

ger. This way, RVINE-SP and RVINE-MCF may unnecessarily reject a VNE request by falsely

concluding that it cannot be embedded. Moreover, when there is no solution, RVINE-SP and

RVINE-MCF tend to spend a significant amount of time searching for solutions before eventu-

ally rejecting unfeasible requests as shown in Figure 4.4-b.
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4.6.2.2 BIRD-VNE avoids backtracking

Figure4.4-a shows the backtrack-free ratio of BIRD-VNE. BIRD-VNE is unlikely to encounter

a backtracking, and finds a feasible solution from the first attempt. In this simulation setup, the

backtrack-free ratio is greater than 80% regardless of the arrival rate. This demonstrates the

effectiveness of TOPOLOGY-CONSISTENCY and CAPACITY-DISJOINT in pruning the search

space by removing the virtual links and nodes that can cause backtracking. Moreover, in large-

scale networks where link bandwidth is not a bottleneck, it is possible to ensure a 100% backtrack-

free search by ensuring that all link mapping domains are capacity consistent according to The-

orem 4.4.5.

4.6.2.3 BIRD-VNE minimizes and bounds the average cost

The approximation ratio is assessed by comparing the cost achieved by BIRD-VNE to the op-

timal cost achieved by branch and bound for a substrate network with 30 nodes. As shown in

Figure4.4 - c, the cost achieved by BIRD-VNE is, on average, only about 5% higher than the

optimal cost (i.e., average ratio = about 1.05). But the maximum cost can reach up to 70% higher

than the optimal cost (maximum ratio = about 1.7).

4.6.2.4 BIRD-VNE results in the best revenue to cost ratio

The revenue to cost ratio reflects the average profit of BIRD-VNE, and is 20% better than

RVINE-MCF as shown in Figure4.7. This is expected for two reasons. First, BIRD-VNE is a
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1
2 -approximation of the optimal cost, which contributes to the R/C ratio by minimizing the cost.

Second, we have shown numerically that BIRD-VNE has the highest acceptance rate, which

directly reflects on the total generated revenue by accepting as many virtual network requests as

possible.
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4.6.2.5 BIRD-VNE link utilization is better

The average link utilization achievable under BIRD-VNE is comparable to that achievable under

RVINE-MCF when considering various inter-arrival rates, as shown in Figure4.10. However,

for higher loads, the average link utilization of BIRD-VNE is less that that of RVINE-MCF,

which confirms our earlier argument stating that BIRD-VNE tends to allocate shorter substrate

paths to the virtual links with higher demands. On the other hand, the average node utilization

achieved by BIRD-VNE is generally greater than that achieved by RVINE-MCF due to the better

acceptance rates.

4.6.2.6 BIRD-VNE reduces the migration ratio

Figure4.9 shows the effectiveness of BIRD-VNE in minimizing the migration ratio. In this

figure, Mobility-Aware Bird-VNE corresponds to γ(v) = 1 and Bird-VNE corresponds to

γ(v) = 0. Even when the migration cost is low (i.e., γ(v) = 1), BIRD-VNE can reduce the

migration ratio by at least 10%. This gain can be increased by increasing the migration cost (γ),

which is a design trade-off. Observe that because of mobility, about 50% of the accepted virtual

networks face migrations.
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4.7 Discussion and practical considerations

Several architectural and practical considerations pertain to the discussed virtual network net-

work embedding solution. We discuss some possible approaches to address these challenges.

Topology changes: Substrate nodes are generally resources limited (e.g. smart-phones) and

mobile which results in network topology changes that require updating all the substrate paths

computations following any topology change. Updating all paths, R, can be addressed archi-

tecturally or algorihmically. Figure 4.11 shows a possible architecture utilizing the emerging

mobile edge computing to address this challenge by augmenting a wireless network infrastruc-

ture with distributed cloud resources. Each mobile node replicates its data and states (e.g sensors

measurements, locations) to a corresponding clone that is proximate to the node (i.e. at the ac-

cess point or cellular site). Clones are the actual entities that shall execute the virtual network

requests. Cloning the mobile nodes provides several advantages over executing the virtual net-

works directly on the mobile nodes including: (i) providing manageable and salable processing

and link capacity according to virtual networks demands, (ii) facilitating energy conservation

of the actual mobile nodes which may be power limited (e.g. sensor nodes), (iii) preventing

excessive latency compared to replicating nodes’ data in distant data-centers, and (iv) prevent-

ing substrate network topology changes due to mobility. Unfortunately, the architecture shown

in Figure 4.11 is not sufficient to prevent updating R in some cases such as back-hauling links

or node failures or changes in clones deployment. Fortunately updating the set of all paths R

is not as expensive as computing it from scratch and has remarkable long research history. The

authors in [58], for example, study the combinatorial properties of graphs that can be used to

update all shortest paths in dynamic networks in O(n2 log3 n) which is not a dominant factor in

the complexity analysis of our proposed techniques as discussed in Section 4.4 and Section 4.5.
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Figure 4.11: Architecture: Mobile nodes are connected through wireless infrastructure with integrated
compute resources that host clones of mobile nodes and actually implement the requested virtual net-
works.

Mobility Model: the general RWP model cannot capture exact mobility patterns especially

in walking scenarios. However, the recent modifications of the RWP model in [115] captures the

mobility patterns almost exactly at the accuracy of cell level in 3GPP cellular networks which is

suitable for several applications such as virtual sensor networks, and virtual content delivery net-

works. If a finer grain location resolution (e.g. locations of pedestrians at few meters error) were

needed by some applications, the RWP model may fail to capture the exact mobility trajectory.

In such cases, one can employ other mobility models that charachterize smooth movements of

mobile nodes (see for e.g. the Semi-Markov Smooth model [182]), or employ model indepen-

dant trajectory tracking methods (e.g. Kalman filtering) to track nodes locations. Such methods

are outside the scope of this paper.

Multipath adoption: If multipath were allowed for mapping virtual links, we conjecture

improvements particularly in the acceptance rate [174]. First, multipaths shall allow online

path optimization, and traffic splitting for highly demanding virtual links. Second, multipaths

shall increase link utilization making the most benefits of the network. Third, multipaths shall

facilitate a better sharing of mobile wireless nodes. Finally, multipaths shall allow balancing the

substrate network traffic used by the virtual networks and already existing services.
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Chapter 5: Cloud of Things for Sensing-as-a-Service: Architecture,

Algorithms, and Use Case

5.1 Introduction

Remote sensing applications will evolve through on-demand sensing services provided by the

global network of sensor equipped devices in our homes, factories, cities, and bodies known as

the Internet of Things (IoT). Today in smatphones ’only’, there are seven sensors on average per

device including: magnetometer, barometer, light, heart, humidity, and temperature sensors that

one can use as participatory sensors to carry out applications like short-term weather forecasting

[108, 120]. The density of smartphones’ sensors in London today exceeds 14,000 sensor per

square kilometer1. By 2020, the global number of sensor-equipped and location-aware devices

(e.g. wearable, smart home, and fleet management devices) will reach tens of Billions, poten-

tially creating dense, dynamic, location-aware, and onerous to manage networks of devices that

can realize the vision of providing a versatile remote sensing services, known as ’Sensing as a

Service’ [9, 132, 8].

We conjecture that employing IoT devices’ sensing resources in a cloud computing like plat-

form to support remote sensing applications may be an effective approach to realize the Sensing

as a Service vision [9]. The idea is to dynamically augment and scale up existing cloud re-

sources (compute, storage, and network) by exploiting sensing capabilities of devices through

cloud agents near the network edge to form a global system named the Cloud of Things (see

Figure 5.1). The Cloud of Things is a geographically distributed infrastructure with cloud agent

elements that continuously discover and pool sensing resources of IoT devices to be used by

cloud users on-demand. This infrastructure provides elastic sensing resources that scale up and

down according to remote sensing applications’ demands, providing an optimized and control-

lable sensing resource utilization and pricing based on measurable usage.

Cloud of Things shifts the current, conventional remote sensing use of cloud platforms from

a ’collect sensor data now and analyze it later’ scenario to a usage scenario that directly provides

1The population density in London exceeds 4,000 inhabitants per square kilometer and the UK smartphone pene-
tration reaches 55%.
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Figure 5.1: Sensor network virtualization in Sensing as a Service by different cloud agents near the
edge. First tier clouds are conventional cloud computing platforms, and cloud agents are edge computing
platform with evolved rule for Sensing as a Service. Arrows and numbers illustrate messages flow and
sequence of the proposed usage scenario.

meaningful information from in-network processing of sensing data by IoT devices. Without

such a conjectured infrastructure, remote sensing users can still gain access to sensing resources

through conventional cloud back-end systems (see [149, 132]), with less opportunities to scale

out sensing applications over the globally available sensing resources and with intolerable per-

formance to applications that require responsive exploitation and fusion of sensing data and agile

in-network decisions (e.g. localization [135] and estimation [10]).

5.1.1 Cloud of Things Infrastructure

Cloud platforms near the network edge already exist in different forms such as smartphones,

personal computers, gateways, and servers to offer computation offloading to nearby devices in

real-time (e.g. cloudlets [144, 104] and edge computing platforms [35, 150]). We envision a new

role of edge platforms as cloud agents that incorporate IoT devices as sensing resources (Fig-

ure 5.1) to scale up the conventional cloud with global and location specific sensing resources.

We propose algorithmic solutions that provide: (1) fast discovery of devices’ dynamic sensing

resources in specific geographical areas, (2) optimized device virtualization to serve as virtual
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(a) Magnetic field sensor
reading close to a window
(low energy environment).

(b) Same sensor read-
ing close to a power
source (high energy
environment).

Figure 5.2: Example of energy profiling from cheap magnetic field sensor in smartphones.

sensor networks by exploiting the discovered sensing resources, and (3) efficient in-network

processing of sensing data from unreliable but dense sensors in IoT devices.

Cloud agents implement remote sensing applications as virtual sensor networks to be de-

ployed on virtualizable IoT devices in a geographical area. A virtual sensor network performs

distributed in-network processing of sensing data such as: aggregation, feature extraction, belief

propagation, and consensus estimation to serve applications such as: distributed computer vision,

data analytics, or on-demand context awareness. These virtual sensor networks may employ de-

vices’ sensing resources that are discovered by the various multiple cloud agents. Conventional

cloud platforms provide a unified interface to cloud users to seamlessly use such global sensing

resources from anywhere and at anytime while hiding complexities and supporting interaction

between cloud agents. In Cloud of Things, IoT devices become surrogates of federated sensor

networks (i.e administrated by a single organization) that can potentially reduce the total cost of

ownership for remote sensing applications.

However, the IoT devices usually incorporate cheap and unreliable sensors to serve spe-

cific task that is not intended for remote sensing applications. For example, augmented reality

applications in smartphones make use of the measurements from magnetic field sensors. The

same magnetic field sensors can be used to profile energy levels in different environment (see

Figure 5.2 for an example). The main problem with remote sensing applications based on IoT

devices sensors is that individual measurements from the sensors of a single IoT device (e.g.
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magnetic field) are insufficient for a reliable sensing task. In Figure 5.2, it is hard to distinguish

the real context of a magnetic sensor reading changes; whether it is a result of user proximity to

the device, changes in the device’s orientation, or presence in a high energy environment. Simi-

lar unreliability problems appear in traffic congestion estimation in navigation applications (e.g.

Google maps), weather prediction from smartphones barometers, or indoor localization.

A virtual sensor network of a group of independent IoT devices can solve this problem

through distributed consensus estimation. Instead of analyzing measurements from an individ-

ual sensor, the virtual network use independent sensor measurements from several devices and

executes an efficient in-network distributed consensus estimation algorithm to be able to effi-

ciently achieve its goal (e.g. estimating energy level in an environment surrounding a user).

In this paper, we focus our analysis and evaluation on distributed consensus estimation as the

sensing task under study.

5.1.2 Contribution and Organization

In this paper, we propose a system to perform in-network analytics, such as distributed parameter

estimation, based on commodity IoT devices that act as surrogates of wireless sensor networks

(i.e. virtual sensor networks). We design a virtualization algorithm that suits the use case of

describing analytics as on-demand virtual sensor networks and the challenges of the conjec-

tured architecture in Figure 5.1. We also propose a distributed consensus parameter estimation

algorithm to be executed by the optimized virtual sensor network. The distributed consensus al-

gorithm provides a reliable, high quality parameter estimates from the low-quality and unreliable

sensors in commodity IoT devices.

We discuss the technical challenges and our envisioned use case of the proposed architecture

in Section 5.2. In Section 5.3, we first propose a sensing resource discovery algorithm that uses a

gossip policy for propagating a sensing task requirements to devices (or their virtual instance at

the edge cloud) and selects feasible devices to execute the task while responding to the dynamic

changes of devices as fast as possible. Then, we propose RADV, an efficient virtualization

algorithm, that deploys a virtual sensor network corresponding to the sensing task on top of

a subset of the selected devices with minimal physical resources. In Section 5.4, we propose

RADE; an efficient estimation algorithm that relies on the virtual sensor network, formed by

our proposed virtualization algorithm, to estimate a set of unknown parameters in a distributed

way and without requiring synchronization among the IoT devices. We discuss several related
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work in Section 5.6. Finally, we numerically evaluate our proposed algorithms in Section 5.5

and conclude this paper in Section 5.7.

5.2 Architecture Usability and Challenges

The proposed Cloud of Things architecture allows cloud users to run remote sensing tasks, with

certain specifications, virtually on any sensor-equipped IoT devices (see Figure 5.1). For ex-

ample, a cloud user can profile pollution changes in cities from real-time temperature and CO2

concentration measurements collected by sensors in vehicles with defined precision and accu-

racy. The architecture consists of three main elements: IoT devices, first tier clouds, and cloud

agents. IoT devices are sensor-equipped devices that can serve both specific and general purpose

remote sensing applications. First tier clouds are conventional cloud platforms that provide uni-

fied interfaces to users to access the system and hide complexities underlying the realization of

sensing services. Throughout, we refer to a first tier cloud as simply ’cloud’. Finally, cloud
agents are trusted and resource-rich elements near the network edge that are well-connected to

the Internet and to conventional cloud platforms. Cloud agents can be as powerful as super-

computers, or as flexible as smartphones according to the types of devices they serve and the

computing resources these devices demand. Throughout, we refer to a cloud agent simply as

’agent’.

This architecture offers new sensing features and service level guarantees with several ben-

efits. Deploying agents (cloud agents) close to devices improves responsiveness to sensing task

requests and enables access to a globally available sensing resources. From the devices’ view-

point, cloud resources can be split into local resources (agents’ resources) and global resources

(clouds’ resources) that can improve resiliency by migrating sensing tasks as the states of the

devices - which carry out the sensing task - change. A cloud (first tier cloud) also acts as liaison

to support coordination between distributed agents, while these agents can rapidly capture dy-

namics of the devices (e.g. utilization, connectivity, and availability). This approach simplifies

analytics and big data with possible direct device access for agile in-network data processing

and decision making. The proposed architecture finally allows the design of network-aware and

performance-optimized cloud procedures.
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5.2.1 Use case and System Model

Figure 5.1 summarizes message sequence and flow between the different architectural elements.

These are detailed as next.

5.2.1.1 First tier clouds

A cloud (first tier cloud) handles sensing tasks initiated by a user with a unified interface (step
1 in Figure 5.1). A sensing task defines physical parameters (e.g pollution changes) that the

user wishes to estimate in a defined geographical area during a predefined time with certain

sensing capabilities of the IoT devices carrying out the task. The sensing task objective can

be: information retrieval of raw sensed data, or execution of distributed algorithms on a virtual

sensor network deployed on multiple interconnected devices. We represent a sensing task by the

triple, 〈g, c, δ〉, where g denote the number of virtual sensors requested to perform the sensing

task and the two parameters c and δ define the center and the radius of a geographical area of

interest to the user’s remote sensing application.

5.2.1.2 Sensing task requests

The cloud translates a sensing task to a corresponding sensing task request that it sends to its

agents. A sensing task request defines the virtual sensors set, V , to be deployed on g connected

devices, which are all located within distance δ from the area center c. For each virtual sensor

j ∈ V , the cloud defines a minimum sensing capability, R(j). The minimum sensing capability

represents the minimum storage capacity, the minimum CPU computing power, and/or the mini-

mum amount of time that devices (to carry out the sensing task) must fulfill. The cloud may also

choose a suitable virtual topology that interconnects the virtual sensors so that they can execute

distributed algorithms for in-network processing of devices’ sensed measurements.

For example, for aggregation and belief propagation algorithms, the cloud organizes the

virtual sensor network as a spanning tree. A star topology can also be adopted for distributed

algorithms that are implemented using the map-reduce or graph-processing paradigms. Although

consensus algorithms, which are our main focus, can run with any arbitrary topology, we show

that a complete topology results in faster convergence. For our evaluation, we focus on three

common virtual topologies: complete, cyclic, and star. For a given topology, let E denote the set

of virtual links connecting the virtual sensors and Υ = (V,E) be the graph data structure that



82

represents the virtual sensor network of the virtual sensors (connected according to the given

virtual topology). After translating a sensing task to its corresponding sensing task request, the

cloud sends this request (i.e. the graph data structure Υ) to its agents (step 2 in Figure 5.1).

5.2.1.3 The IoT devices capabilities

Agents manage a large number of interconnected IoT devices. A device i, at time t, maintains

its geographical location denoted by loc(i) and its current sensing capability denoted by C(i).

C(i) defines the currently allowed sensing time, available processing capacity, and/or available

memory capacity that the i-th device can allocate (at time t) to fulfill the minimum sensing

capability demanded by a virtual sensor j (i.e. R(j)) to be deployed on i. The sensing capability

of a device can correspond to local device’s resources (i.e. CPU, memory, storage, and sensors)

or to resources at the edge cloud (agent) that the device may opportunistically use through

computation offloading mechanisms. We also assume that two devices can directly communicate

with each other if they are within a transmission radius r. We model the network of all n devices,

connected to a single agent, as the Euclidean geometric random graph, G = (S,L), where S

denote the set of n devices, and L denote the set of all links connecting the devices. We assume

that each sensor i ∈ S is capable of estimating a vector of unknown parameters, θ ∈ RN , through

noisy sensors measurements, xi ∈ RM . That is,

xi = Hiθ + ui, i = 1, . . . , n

where Hi ∈ RM×N is sensor i’s sensing model (typically known to i only) relating xi to θ, and

ui is an additive Gaussian noise with zero mean and variance σ2
i . We assume that ui and uj

are independent from one another for all i, j ∈ S. Because different sensors may have different

sensing models and/or different measurement methods, it is very likely that different sensors

have different estimates of θ. Also, we do not assume/require that the sensors are synchronized;

that is, the consensus algorithms we develop in this paper to estimate θ are asynchronous.
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5.2.1.4 Service Level Agreement (SLA) implications on agents configu-

rations

Agents handle sensing task requests under agreed SLAs with users through the cloud. An SLA

generally consists of: i) a maximum time within which the sensing task must be completed, ii)

a feasible selection of IoT devices to carry out the sensing task under certain tolerances of the

results accuracy, and iii) a maximum task rejection rate defined as the ratio of the number of

failures to handle sensing task requests to the total number of requests. The cloud translates an

SLA to parameters that agents can use in their algorithmic solutions to discover sensing resources

and virtualize devices efficiently. Defining all possible parameters that reflect any SLA is beyond

the scope of this work and we consider only four parameters.

The first parameter is the absolute error of the estimated parameter θ, denoted by εabs. The

second parameter is the relative error, εrel, of the parameter θ estimated by the different vir-

tual sensors such that all sensors estimate θ within εrel. The third parameter, defined earlier,

is the minimum sensing capability R(j) of the j-th virtual sensor. The fourth parameter is the

maximum allowed path length, h̄, between any pair of virtual sensors. h̄ limits the number of

devices/hops a message, exchanged between virtual sensors, can go through.

A virtual link between two virtual sensors may map to devices that do not necessarily deploy

a virtual sensor and the virtual sensor network just use these devices for message forwarding. We

use h̄ to impose an upper limit on these intermediate devices for two reasons. First, restricting the

number of intermediate devices shall bound the sensing task performance by an SLA. Second,

the sensor discovery and virtualization algorithms shall use the least number of hops and the least

possible physical resources when mapping the virtual network, so as to maximize the Sensing-

as-a-Service benefits (step 3 in Figure 5.1). The implication of h̄ on the virtualization design

will be discussed later in this section.

5.2.1.5 Sensing task execution (consensus)

Consensus estimation resembles the most commonly used sensing task relying on a collection of

measurements from unreliable sensors. In consensus estimation, the sensing task is to estimate a

set of parameters, θ, based on the measurements sensed by the IoT devices so that the estimated

parameters are at most εabs away from their actual value, and so that all the sensors consent to

the same estimate value of θ with a tolerance of εrel according to the SLA.
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Without loss of generality, consider indexing the selected g sensors in the virtual sensor

network as 1 . . . g and let x =
[
xT1 , . . . , x

T
g

]T, H =
[
HT

1 , . . . ,H
T
g

]T, and u =
[
uT1 , . . . , u

T
g

]T.

The combined measurements can then be written as x = Hθ + u. One simple approach of

estimating θ is to have the cloud agent first collect from each virtual sensor i its measurement

vector, xi, and its sensing model, Hi, and then solve the following LS problem

minimize 1
2‖x−Hθ̂‖

2 (5.1)

where θ̂ is here the optimization variable. The unbiased Maximum-Likelihood (ML) estimate of

θ is simply θ̂LS =
(
HTH

)−1
HTx.

5.2.2 Technical Challenges and Solutions Objectives

The proposed Cloud of Things architecture and use case envision designing algorithmic solutions

with specific objectives, given the following set of challenges:

5.2.2.1 Sensing resource discovery

In the sensor network virtualization (step 3 in Figure 5.1), an agent searches for devices with

sensing capabilities that meet the sensing task requirements specified by the virtual sensor net-

work data structure Υ. For a given Υ, the agent discovers devices’ sensing capabilities and

searches for a subset of devices, S′ ⊂ S, such that a device i ∈ S′, if it is geographically located

within δ distance from the center c, and the discovered sensing capability C(i) satisfies the min-

imum sensing capability R(j) demanded by at least one virtual sensor j ∈ V . We define the

virtual domain, D(i), of a device i as

D(i) = {j ∈ V : C(i) ≥ R(j), ‖loc(i)− c‖ ≤ δ} (5.2)

hence

S′ = {i ∈ S : |D(i)| > 0}. (5.3)

The design objective of a sensing resource discovery algorithm is to construct the virtual do-

mains,D(i) for all i ∈ S, as fast as possible and with minimal communication overhead between

the agent and the devices and between the devices themselves.
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The challenges related to sensing resource discovery arise from the large number of devices

and their onerous to maintain dynamics. The large number of devices connected to an agent

requires a scalable solution to discover devices’ sensing capabilities and to decide if a device’s

current state (e.g. connectivity to other devices) allows it to deploy a particular virtual sensor.

Moreover, the dynamics and rapid changes in the whole network, G, including device availabil-

ity, mobility, connectivity, and resource utilization, make it too difficult to maintain devices’

states in a centralized manner. To address these challenges, we propose a distributed algorithm

that propagates the graph data structure Υ to devices in G using a gossip policy as detailed in

Section 5.3.1.

5.2.2.2 Virtualization

After performing the sensing resource discovery, an agent deploys the virtual sensor network, Υ,

by means of devices virtualization. The virtualization task consists of finding: i) a set A ⊂ S′

of exactly g connected devices according to the virtual topology chosen by the cloud, and ii)

a setMA ⊂ {(i, j) ∈ A × V : j ∈ D(i)} of (device,virtual sensor) mapping pairs such that

one virtual sensor maps to exactly one device and a device maps to one and only one virtual

sensor in g. Also, the length h(i, i′) of any simple path connecting two distinct devices i, i′ ∈ A
that maps a virtual link (j, j′) ∈ E must be less than or equal to h̄. We refer to a {A,MA}
pair that satisfies the previous conditions as a feasible virtualization of the requested virtual

sensor network Υ. Note that for any possible set A, there can exist multiple mappings, MA,

and each can form a feasible virtulization. The design objective of a virtualization algorithm is

then to find the ’optimal’ feasible virtualization, {A,MA}∗, that uses the least possible physical

network resources.

We now define and introduce what an ’optimal’ feasible virtualization means. We consider

that the number of virtual sensors and the number of virtual links of a given Υ = (V,E) deter-

mine the cloud cost of providing the sensing service, which is given by Cost(Υ) = α|V |+β|E|.
The scalar α denote an incentive paid to each device that maps a virtual sensor, and the scalar

β denote an incentive divided and paid to each device on a physical path that maps to a virtual

link. An incentive could be monetary or could be in any other form (e.g., credit, service, etc.).

On the other hand, the total devices’ benefit from mapping the requested virtual network, Υ, can
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be expressed as

Benefit =
∑

(i,j)∈MA

α
C(i)−R(j)

C(i)
+

∑
(i,i′)∈P

β
h̄− h(i, i′)

h̄
, (5.4)

where h(i, i′) is again the length (in number of hops) of the path connecting the device pair,

(i, i′), mapping the virtual link between j and j′, and P = {(i, i′) ∈ A × A : (i, j), (i′, j′) ∈
MA , (j, j

′) ∈ E}.
The total devices’ benefit in (5.4) implies that the lesser the used physical resources, the

greater the benefit to the devices. The first term of (5.4) captures the benefit loss of the i-th

device from allocating resources to map a virtual sensor j. As the minimum demanded sensing

capability R(j) becomes negligible (w.r.t. the sensing capability C(i)), i gets higher benefit

as it invests lesser fraction of its resources (e.g. energy, CPU, or memory) to map j for the

same incentive α. Similarly, the second term captures the benefit loss of devices i and i′, which

map the virtual sensors j and j′ respectively. Such benefit loss results from mapping the virtual

link between j and j′ with more intermediate devices, as the same incentive β for the virtual

link (j, j′) is divided on a greater number of devices (i.e. number of hops h(i, i′)) compared to

h̄. Theoretically, h̄ can take a value up to the diameter of G. However, this shall not work in

practice as the diameter of G is assumed to be much greater than a user desired diameter Υ. The

virtualization algorithm that we propose in Section 5.3.2 consists of finding an ’optimal’ feasible

virtualization that maximizes the total benefit given in (5.4). We refer to the optimal solution as

{A,MA}∗. Clearly, finding {A,MA}∗ is hard due to the factorial size of the solution space in

n and due to the challenges, discussed earlier, associated with the sensing resources discovery

task.

5.2.2.3 Distributed consensus estimation

The virtual sensor network determined during the virtualization phase executes the distributed

sensing algorithms. The simple solution to the LS problem, proposed in (5.1), requires that each

virtual sensor exchanges its measurement vector and its sensing model with the cloud agent,

which can create significant communication overhead. Therefore, we instead propose a de-

centralized approach that relies on the virtual sensor network to provide an estimation of the

parameter vector θ. We rely on the recent results presented in [168] to develop our distributed
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estimation algorithm, which reduces communication overhead significantly when compared to

the conventional ADMM approach [131] in addition to not requiring synchronization among

sensors. The proposed algorithm is presented in Section 5.4.

5.3 Proposed Solutions for Sensing Resource Discovery and Virtualiza-

tion

5.3.1 Sensing Resource Discovery

Although devices are directly accessible by cloud agents, contacting the devices at fine-grained

time slots to discover their current sensing capabilities creates significant communication and

computation inefficiency for large n. Such a centralized approach requires exchanging O(n)

messages, in each time slot, while constructing the virtual domains, given by (5.2), requires

O(n) time. Moreover, activating devices periodically to update their current sensing capabilities

to their cloud agents is power inefficient, especially if the devices are battery operated.

We propose to perform sensing resource discovery through a gossip based algorithm that

requires a time complexity of O(r−1 log n) and an average Θ(1) messages per device. In this

algorithm, an agent propagates information about a received sensing task request, Υ, using the

following ’gossip policy’.

The agent sends Υ to a randomly chosen device starting at t = 0. Then, any device that

receives Υ continues sending Υ to a random device of its direct neighbors until one neighbor

acknowledges that it has already double received the same version of Υ in a previous step; by

then the device stops sending Υ. The agent does not need to send Υ to each device as the utilized

gossip policy allows devices to disseminate Υ autonomously, and the network of devices is

guaranteed to be connected with high probability if each device is connected to k neighbors and

k ≥ 0.5139 log n [27]. Since G is a connected network, this simple gossip policy guarantees that

Υ reaches all the devices inO(r−1 log n) time (see [148] for time complexity analysis of general

gossip protocols in Euclidean geometric random graphs). Hence a device i can construct D(i)

according to (5.2) once it receives Υ and the agent can discover sensing resources of devices that

are capable of satisfying the requirements of Υ as fast as possible with minimal communication

overhead.

The agent and all its connected devices implement the active and passive threads shown in

Figure 5.3. At the k-th time slot, let the device i be active and contact a random neighbor device
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while True do
wait ∆t
s←− random neighbor
if Υ is ∅ then

solicit Υ from s
else

send Υ to s
end if
receive Υ′ from s
if Υ′ = Υ then

stop sending Υ
else

Υ′ is newer than Υ
Υ←− Υ′

evaluate D(i)
end if

end while
i) active thread at device i

while True do
receive Υ′ or
solicit request from s
if Υ is not ∅ then

send Υ to s
end if
if Υ′ is new then

Υ←− Υ′

evaluate D(i)
end if

end while
ii) passive thread at i

Figure 5.3: proposed sensing resources discovery gossip based threads at device i.

i′ (i.e., (i, i′) ∈ L) with probability Ti,i′ > 0. Ti,i denote the probability that i does not contact

any other device. Let the n × n matrix T = [Ti,i′ ] be a doubly stochastic transition matrix of

non-negative entries [40]. A natural choice of Ti,i′ is

Ti,i′ =


1

di + 1
, if i = i′ or (i, i′) ∈ L,

0, otherwise,
(5.5)

where di = |{i′ ∈ S : (i, i′) ∈ L}| is the degree of i.

When i contacts i′, they exchange information as follows (see Figure 5.3 ). i pushes Υ to

i′ only if i′ does not have Υ, or pulls Υ from i′ only if i does not have Υ. If i contacts i′ and

both devices have received Υ before, i stops contacting any other device. If G is connected, the

proposed protocol guarantees that Υ is delivered to all IoT devices.

The actual running time of the proposed algorithm depends on the choice of the transition

matrix T and the communication range of the used device-to-device communication technology.

The running time is related to the mixing time of any random walk on G [40], which suggests
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that there is an optimal value of Ti,i′ to minimize the mixing time and it is related to the sec-

ond eigenvalue of the transition matrix. Moreover, in case of small r, the proposed algorithm is

generally slow. Practically, this algorithm is suitable for device-to-device communication tech-

nologies that support communication ranges of few hundreds of meters, as in WiFi direct and

LTE D2D and when G is sufficiently dense.

5.3.2 Virtualization

We present our proposed RADV algorithm. RADV consists of three phases: (I) pruning of

virtual domains D(i) for all i ∈ S, (II) construction of benefit matrices in a distributed manner,

and (III) solving assignment problems at virtual sensors. RADV results in multiple solutions

each evaluated by a different sensor (device), and the cloud agent selects the solution with the

maximum benefit.

Phase I—Virtual Domain Pruning

During this phase, we ensure that all virtualized sensors maintain the topology E by allowing a

senor to receive the virtual domains of other sensors and delete a virtual sensor j from its domain

if there exists a virtual link (j, j′) such that j′ is not included in any other received domains. Let

Ds ⊂ {D(i) : i ∈ S} denote the virtual domains set that sensor s has at time k. Initially Ds =

{D(s)} and h(i, s) = 0 for all i ∈ S2. Using the same transition matrix, T , defined in Eq. (5.5),

s contacts only one of its neighbors s′ at time k. Then, for allD(i) ∈ Ds : i 6= s′, s pushesD(i)

to s′ only if s′ did not receive D(i) before and h(i, s) < h̄. Also, for allD(i) ∈ Ds′ : i 6= s,

s pulls D(i) from s′ only if s did not receive D(i) before and h(i, s′) < h̄. If no information is

exchanged between s and s′ at time k, s stops contacting any of its neighbors. However, s may

restart contacting its neighbors again if it updated Ds after time k + 1.

When s constructs its Ds, it starts by pruning D(s). The pruning is performed by deleting a

virtual sensor j ∈ D(s) (i.e.,D(s)← D(s)\{j}) if none of the virtual sensors that are connected

to j, {j′ ∈ V : (j, j′) ∈ E}, is not included in any received D(i), i.e. j /∈ D(i) : D(i) ∈ Ds.

This pruning rule ensures that the virtualized sensors maintain the required topology E and the

constructed benefit matrices shall result in a feasible virtualization.
2Knowledge about other sensors existence is not needed, and h is typically evaluated dynamically.
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Phase II—Construction of Benefit Matrices

As mentioned earlier, finding a feasible virtualization, {A,MA}∗, that maximizes the total ben-

efit given in Eq. (5.4) is a hard problem due to the large size of the solution space. Therefore,

this phase proposes an efficient way of solving this virtualization problem. Specifically, we

propose a method that solves this problem in a distributed manner and without requiring any

synchronization among sensors, as described next.

During this phase, each sensor s locally constructs its own set, A(s), of g sensors that s

chooses as virtualized sensors to assign to virtual sensors in V . Each sensor s also maintains g

row vectors, B(s)
i ∈ R1×g and i ∈ A(s), that we define as the benefit vector of sensor i seen by

s, where the j-th element, B(s)
i,j , denotes the benefit of assigning participatory sensor i ∈ A(s) to

the virtual senor j ∈ V as seen by s, and is given by

B
(s)
i,j =

α
C(i)−R(j)

C(i)
+ β

h̄− h(j, s)

h̄
if j ∈ D(i),

0 otherwise.

Our objective is then to construct, for each s ∈ S, the benefit matrix B(s) = [B
(s)

i∈A(s) ] as fast

as possible, and find a feasible virtualization, {A,MA}, that maximizes the total benefit,∑
(i,j)∈MA

B
(s)
i,j ,

among all s ∈ S without knowing the G structure. Moreover, the path length between a sensor s

and any other sensor i that s includes in its benefit matrix must not exceed h̄. Finally, a sensor s

shall include only the benefit vectors of the g sensors with the largest possible benefit.

Each sensor s initially sets A(s) = A(s) ∪ {s} if D(s) /∈ ∅, sets h(i, s) = 0 for all i ∈ S, and

sets

B
(s)
s,j =


α
C(s)−R(j)

C(s)
+ β, j ∈ D(s),

0, otherwise.

Also, s maintains a scalar, bmin
s , defined as the minimum total benefit it has received from any

other sensor and written as

bmin
s = min

i

∑
j∈V

B
(s)
i,j .
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s also maintains the corresponding sensor,

imin
s = argmin

i

∑
j∈V

B
(s)
i,j .

Initially, bmin
s = 0 and remains so until |A(s)| = g.

Using the same transition matrix, T , defined in Eq. (5.5), s contacts its neighbor s′ only once

at each time k. Then, for all i ∈ A(s) : i 6= s′, s pushes the benefit vector B(s)
i to s′ only if

h(i, s) < h̄ and ∑
j∈V

(
B

(s)
i,j −

β

h̄

)
> bmin

s′ .

Also, for all i ∈ A(s′) : i 6= s, s pulls the benefit vector B(s′)
i from s′ only if h(i, s′) < h̄ and

∑
j∈V

(
B

(s′)
i,j −

β

h̄

)
> bmin

s .

If no information is exchanged between s and s′ at time k, s stops contacting its neighbors at

time k + 1. However, s may restart contacting its neighbors again if B(s) is updated after time

k + 1.

When s receives B(s′)
i , s updates B(s)

i,j as

B
(s)
i,j =

B
(s)
i,j −

β

h̄
if j ∈ D(i),

0 otherwise.

If i /∈ A(s), then we have two scenarios. In the first scenario, s still has not received g

benefit vectors, so bmin
s = 0 and |A(s)| < g, then s updates its set of candidate sensors as

A(s) = A(s)∪{i}. In the other scenario in which |A(s)| = g, s replaces the sensor corresponding

to the minimum total benefit, imin
s , with i so that A(s) = A(s) \ {imin

s } ∪ {i}. On the other hand,

if i ∈ A(s), then s updates B(s)
i,j if

∑
j∈V

B
(s′)
i,j >

∑
j∈V

B
(s)
i,j . Finally, s updates bmin

s , imin
s , and h(i, s)

as h(i, s) = h(i, s′) + 1.

Finding a feasible virtualization that maximizes the benefitB(s) = [ B
(s)

i∈A(s) ] instead of the

benefit given in Eq. (5.4) makes the problem easier because every sensor has a different value

for the benefit Bi,j that depends only on the length of the physical path between i and s instead
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of the path lengths of all possible combinations of sensor pairs (i, i′) that can virtualize a virtual

link. Intuitively, this relaxation still leads to an optimal or near optimal virtualization, because

if G is very large and connected, the number of sensors that are directly connected by a single

physical link (clique) grows logarithmically in n and hence this number is larger than g almost

surely as g � n. In such a case, it is sufficient to ensure that the length of the paths between

i and s and between i′ and s are the shortest possible ones to ensure that the length of the path

between i and i′ is also the shortest, as in this case, s, i, and i′ reside in the same clique with

high probability. We evaluate the effectiveness of this relaxation in Section 5.5 and show that

our virtualization algorithm performs well even when the condition g � n does not hold.

Phase III—Solving Local Assignment Problem

After reception of the g benefit vectors, s proceeds to this phase of the algorithm only if it stops

communicating and |A(s)| = g. Each sensor s ∈ S with |A(s)| = g solves locally the following

assignment problem:
maximize

∑
i∈A(s)

∑
j∈D(i)

B
(s)
i,j mij

subject to
∑

j∈D(i)

mij = 1, i ∈ A(s),∑
{i:j∈D(i)}

mij = 1, j ∈ V,

mij ∈ {0, 1},

(5.6)

where mij are binary optimization variables indicating whether the participatory sensor i is

assigned to the virtual sensor j. The problem formulated in (5.6) is equivalent to the perfect

maximum weight matching problem in a bipartite graph, and hence, we propose to use the

classical Hungarian method to solve it (the worst case time complexity is O(g3) [107, 126]).

We can also tolerate an error ε > 0 of the resulting total benefit and relax the restriction

of finding a perfect matching for large g. This relaxation is reasonable when there are enough

sensors involved in solving these local optimization problems, as in this case we can pick the

best solution and discard those without a perfect matching. In such a scenario, we can also use

a linear time (1 − ε)-approximation algorithm to solve (5.6) [63]. In this paper, we use the

Hungarian method to solve our formulated optimization problems. Details of the algorithm are

omitted due to space limitation; readers are referred to [107, 126, 63] for detailed information.

Each sensor solves locally the optimization problem given in (5.6) and sends its obtained
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solution to the cloud agent. This is done asynchronously. The cloud agent then selects the

solution that leads to the maximum total benefit, and keeps all other solutions for later use in the

event that the network dynamics invalidate the selected solution before the virtual sensing task

completes.

Complexity and message overhead. We assume that the topology of G, devices mobility, and

sensing capability are not changed during the execution of the virtualization phase. The time

required to spread Υ across the network is O(r−1 log n) [148]. It takes O(g) worst case time to

evaluateD(i) locally at sensor i. Also, the time required to spread information in the pruning and

benefit construction phases is O(r−1n log n). The pruning of the virtual domain D(i) requires

node i to examine g received virtual domains, each having at most g entries. The worst case

local running time of pruning is then O(g2). Finally, the local running time of the Hungarian

method is O(g3). Hence, the overall complexity is O(max{r−1n log n, g3}).

The average number of messages communicated per sensor during the sensor search phase

is Θ(1) and each message is O(g) in size. During pruning of virtual domains, since every sensor

exchanges a maximum of n domains each of size that is also O(g), the average number of

messages communicated per sensor is O(n). However, because we restrict that messages to be

communicated up to h̄ hops for only a group of sensors that support the requirements of Υ, the

average number of messages per sensor is typically small. Figure 5.4 shows the total time and

the average number of messages per sensor required during both the domain pruning and the

benefit construction phases. The total time growth is linearithmic in n when Υ is sent to exactly

one sensor and when G is connected. This time can, in practice, be decreased significantly if Υ

is initially sent to multiple sensors. Additionally, the average number of messages per sensor is

shown to scale linearly with n, and is typically a very small fraction of n.

5.4 Proposed Solutions for Distributed Estimation

After completing the sensor virtualization task, using RADV, the virtual sensors run an in-

network parameter estimation algorithm to compute θ̂ distributedly. In this section, we present

our proposed RADE algorithm. We first follow the standard ADMM approach to derive primal,

dual and Lagrangian variable update equations, then we describe the proposed RADE algorithm.

For clarity of notation, in what follows, we refer to the set of g selected devices, determined by

RADV, simply as A.

The centralized estimation approach given in (5.1) is first decomposed into g local estimates
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Figure 5.4: Time (in number of iterations) and message overhead (in average number of communicated
messages) resulting from constructing the benefit matrices, g = 10.

of θ (one θ̂i for each i ∈ A) while constraining the local estimates with the coupling constraints

θi = θj for all (i, j) ∈ P . This results in the following optimization problem:

minimize 1
2

∑
i∈A
‖xi −Hiθi‖2

subject to θi − θj = 0 for all (i, j) ∈ P,
(5.7)

where {θi, i ∈ A} are the optimization variables.

By introducing an auxiliary variable, z, we decouple the constraints in (5.7), so that θi−z =

0 for all i ∈ A [129]. However, this requires that z be shared among all the g virtual sensors.

Instead, we introduce g auxiliary variables, zi, and equivalently write the optimization problem

as
minimize 1

2

∑
i∈A
‖xi −Hiθi‖2

subject to θj − zi = 0 for all (i, j) ∈ P.
(5.8)

Let λ = {λi,j ∈ RN×1 : (i, j) ∈ P} and ρ = {ρi,j ∈ R : (i, j) ∈ P} denote respectively the

set of Lagrangian multipliers and the set of penalty parameters. The augmented Lagrangian is

given by

Lρ(θ, z, λ) =
∑
i∈A

[
1
2‖xi −Hiθi‖2

−
∑

j∈A:(i,j)∈P
λTi,j(θi − zj)

+
∑

j∈A:(i,j)∈P

ρi,j
2 ‖θi − zj‖

2

]
.

(5.9)
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By setting the gradient w.r.t θi of Eq. (5.9) to zero and solving for θi, we get

θi =

(
HT
i Hi +

∑
j∈A:(i,j)∈P

ρi,jI

)−1

.

(
HT
i xi +

∑
j∈A:(i,j)∈P

(λi,j + ρi,jzj)

)
.

Similarly, we solve for zi by setting the gradient w.r.t to zi to zero and rearranging the indices of

the Lagrangian multipliers and the penalty parameters. It follows that

zi =
1

g

∑
j∈A:(i,j)∈P

(
θj −

1

ρj,i
λj,i

)
.

The former analysis leads to the conventional ADMM-based distributed consensus estima-

tion algorithm given by

θ
(k+1)
i =

(
HT
i Hi +

∑
j∈A:(i,j)∈P

ρi,jI

)−1

.

(
HT
i xi +

∑
j∈A:(i,j)∈P

(
λ

(k)
i,j + ρi,jz

(k)
j

))
,

z
(k+1)
i = 1

g

∑
j∈A:(i,j)∈P

(
θ

(k)
j −

1
ρj,i
λ

(k)
j,i

)
,

λ
(k+1)
j,i = λ

(k)
j,i − ρj,i

(
θ

(k+1)
j − z(k+1)

i

)
,

(5.10)

where the superscript k denotes the value of the variable at the k-th iteration. This conventional

ADMM algorithm, given in (5.10), requires synchronization and variable update among the

sensors [41, 172]. Moreover, at each iteration k, each sensor imust send z(k)
i and θ(k)

i to all other

sensors it is connected to, so as to evaluate their k + 1 primal, dual, and Lagrangian multipliers.

When M is small, this algorithm incurs communication overhead that can be shown to be worse

than the communication overhead incurred by centralized estimation methods. However, when

M is large, the conventional ADMM algorithm incurs lesser communication overhead than what

centralized estimation methods incur, but it still remains practically unattractive due to other

weaknesses, detailed later in Section 5.5.

Given the absolute and relative tolerances, εabs and εrel, specified by the SLAs, we define the
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primal and dual tolerances, controlling the convergence of the algorithm at iteration k, as

εprii (k) =
√
gεabs + εrel max(‖θ(k)

i ‖, ‖ − z
(k)
i ‖),

and

εduali (k) =
√
gεabs + εrel

∑
j∈A
‖ρj,iλj,i‖.

The tolerances, εprii and εduali , define the stopping criteria of sensor i; i.e., sensor i stops updating

θi and zi when

‖θ(k+1)
i − z(k+1)

i ‖ < εprii (k), (5.11)

and

‖z(k+1)
i − z(k)

i ‖ < εduali (k). (5.12)

The stopping criteria of RADE are different from those of the conventional ADMM. Unlike the

conventional ADMM where all sensors shall stop computations all at the same time using a com-

mon stopping criteria and common primal and dual tolerances, the stopping criteria (Eq. (5.11)

and Eq. (5.12)) of RADE allow a sensor i to stop its computations asynchronously and inde-

pendently from other sensors. However, these criteria are not enough to ensure asynchronous

implementation, as synchronization is still required for dual and primal variable updates at iter-

ation k + 1 due to their dependencies on k.

To ensure full asynchronous implementation, we use the doubly stochastic transition matrix,

T ∈ Rg×g, where Ti,j is the probability that a sensor i contacts another sensor j at any iteration,

for deciding the communications among sensors. We can have

Ti,j =


1

d′i + 1
if i = j or (i, j) ∈ P,

0 otherwise,

where d′i = |{j ∈ A : (i, j) ∈ P}| is the degree of the virtual sensor, in Υ, that i virtualizes.

At iteration k + 1, sensor i may need to contact only one sensor j, unless both of i’s stopping

criteria, Eq. (5.11) and Eq. (5.12), are already satisfied. Whereas sensor j can be contacted by

more than one sensor if j is not contacting any other sensor, even when both of j’s stopping

criteria are satisfied.

Upon contacting j, sensor i pushes θ(k)
i to j only if i’s primal stopping condition is not
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Figure 5.5: MSE of RADE compared to those achieved under ADMM and LS at different noise power
and for different virtual sensor network topologies, g = 10.

satisfied and pushes z(k)
i to j only if i’s dual stopping condition is not satisfied. Also, i pulls

θ
(k)
j from j only if j’s primal stopping condition is not satisfied and pulls z(k)

j only if j’s dual

stopping condition is not satisfied. Finally, both i and j update their k + 1 variables using the

most recent values they received from other sensors.

Mean square error and convergence. The asynchronousness and randomization design of

RADE do not impact the MSE achieved by RADE when compared to ADMM. This is ex-

plained as follows. In both ADMM and RADE, the number of necessary dual and primal vari-

ables updates that are needed until convergence remains unchanged, so that convergence to the

same estimate is guaranteed in both algorithms. Figure 5.5 shows the MSE achievable under

both RADE and ADMM when compared to LS under each of the three studied sensor network

topologies: complete, star, and cycle. These results show the optimality of RADE that we intu-

itively discussed. All approaches have the same accuracy. But of course each of them does so at

a different performance cost, as will be discussed later.

On the other hand, RADE exhibits a linear convergence rate (O(1/k)), similar to what the

conventional ADMM does. Figure 5.6 shows the number of time steps required for both RADE

and ADMM to converge under different relative tolerance parameters, εrel. RADE convergence

tends to be more restricted by the randomization nature of the algorithm for smaller values of εrel,

which can be seen by the increasing number of steps as g increases if εrel = 10−2. ADMM gener-

ally requires a lesser number of steps to converge by relaxing the consensus constraint (through

reducing εrel). However, as will be seen in the numerical results section later, this increase in

the number of convergence steps is acceptable when considering the amount of communication

overhead that the algorithm saves.
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5.5 Numerical Results

In this section, we evaluate the performance of the proposed RADV and RADE algorithms

through simulations. In our simulations, G and Υ, are generated using the parameters sum-

marized in Table 5.1. We evaluate the performance for a complete, cyclic, or star virtual sensor

network topology, with a randomly chosen central location, c. We consider receiving and servic-

ing only one virtual sensing task request at a time. The G topology and connectivity can change

rapidly. For a single Υ, we assume that the network change rate is slow enough for the comple-

tion of the sensor search and virtualization phases. The absolute and relative tolerances, εabs and

εrel, are set to 10−4 unless specified otherwise.

Table 5.1: Simulation Parameters

Parameter g r C(i) R(j) δ h̄

Value 10 0.1 ∼ U(50, 100) ∼ U(25, 50) 0.2 20

Figure 5.7 shows the rejection rate encountered with different Υ topologies and n values.

As we only consider one single request at a time, the results shown in this figure reflect mainly

the impact of the virtual sensor network topology, the number of sensors n, and the simulations

parameters given in Table 5.1 on the rejection rate. The denser the network of IoT devices is, the

lower the rejection rate, implying that the cloud is capable of granting higher number of requests.

One way of assessing the effectiveness of the virtualization algorithm is by measuring the

difference between the total virtualization benefit given in (5.4) and the cost associated with
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the sensor virtualization introduced in Section 5.3.2. For a given number of virtual sensors, the

cost is mainly determined by the choice of the topology (star topology has the lowest cost and

complete topology has the highest one). For a given topology, the total benefit is maximized

when each virtual sensor is assigned to the IoT devices with the maximum capacity and each

virtual link is mapped to exactly one physical link. We refer to this maximized benefit as the

upper bound.

In Figure 5.8, we evaluate the virtualization effectiveness achieved by RADV under different

virtual topologies. As the network gets denser, RADV achieves a Total Benefit − Cost that

is very close to the upper bound. Since the lowest possible virtualization cost is with star or

cyclic topologies, it is desired by the cloud to arrange each virtual sensing task in a star or a

cyclic topology. This observation holds true for a more general topologies. On the other hand,

convergence and communication overhead of the distributed estimation is also impacted by the

cloud agent’s choice of the virtual topology. This creates a design trade-off, as we will see in the
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next two paragraphs.

Figure 5.9 shows the impact of the virtual topology choice on the convergence performance

of RADE when compared to ADMM. If g is small (three to eight), the impact of the virtual

topology on convergence of RADE and ADMM is minimal. This is because the degree of par-

allelism (number of virtual sensors active at the same time) is restricted by the small number of

virtual sensors g. In such a scenario, it is convenient for the cloud agent to always arrange the

virtual sensors in a star topology. However, as g increases, the impact of choice of the virtual

topology becomes significant as the degree of parallelism is higher in a complete topology, en-

abling RADE to converge much faster as g gets larger. This convergence becomes slower with

star and cyclic topologies. This is because in star and cyclic topologies, only few sensors are

active at a time, making RADE and ADMM converge in a number of steps comparable to that

of the ADMM’s sequential implementation. In this later scenario, the cloud agent shall arrange

the virtual sensors as a complete topology unless the SLA permits slower convergence.

Moreover, RADE converges in a higher number of steps when compared to the conventional

ADMM. This is because in ADMM, all sensors are active at each time, and a sensor exchanges

its updated variables with all of its neighbors, whereas in RADE, only disjoint sensor pairs are

active at a time and variables are updated only between pairs of sensors. Nevertheless, we argue

that this loss in speed of convergence for RADE is marginal when compared to the significant

savings in communication overhead.

Figure 5.10 shows the total number of O(N) sized messages exchanged during estimation

when comparing RADE, ADMM, and LS for M = 100. The number of messages exchanged

by RADE is at least an order of magnitude less than the number of messages generated under
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ADMM. Also the communication overhead of RADE is less than the centralized LS especially

as M becomes large. This savings in communication overhead is attributed to the asynchronous

design of RADE in which messages among sensors are only exchanged if new values of a primal

or dual variables are changed away from their specified tolerances.

5.6 Related Work

5.6.1 Network Virtualization

Network virtualization techniques proposed in the past decade consist mainly of virtual network

embedding algorithms, which instantiate virtual networks on substrate infrastructures [72, 29].

Most of these virtual network embedding algorithms are centralized (e.g. [8, 49]) due to the ease

of deployment of centralized approaches in cloud platforms where the cloud provider desires

to have full control on the physical network resources. Distributed network virtualization tech-

niques are suited for Cloud of Things, given the size of the network, and are also proposed for

applications in resource allocation in distributed clouds, wireless sensor network virtualization,

and cloud network as a service [64, 16].

Beck et al. propose a hierarchical partitioning of any substrate network [159] and solve the

network virtualization (virtual network embedding) problem on the scale of smaller partitions

by delegating the problem to delegate nodes. In our context, their algorithm can progress in four

steps: (1) partitioning the network of IoT devices, (2) assigning delegation nodes among the IoT

devices that actually perform the network virtualization, (3) setting distributed lock trees to avoid
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inconsistent solutions among different delegation nodes, and (4) embedding the virtual sensor

network within the scope of the delegation nodes. Several assumptions in this work prevent this

method applicability in Cloud of Things. The authors require that a centralized node manage

the IoT network topology to perform the partitioning. The centralized node partitions the IoT

devices in groups that are highly interconnected. This requirement is very hard to achieve, if

not impossible, in an Internet-scale network of IoT devices, not only because of the size of the

network but also due to its highly dynamic nature that prevents tracking the states of the devices

and their connectivity. Moreover, to apply the same method in cloud of things, the delegation

nodes of Beck’s method needs to learn a significant amount of information about the IoT devices

in their neighborhood, which creates significant practical problems such as: timely information

retrieval, privacy concern, and computation power.

Esposito and Ibrahim propose to model the network virtualization as a network utility maxi-

mization problem, where the utility is a general function that is measured on each hosting node

(i.e. IoT device) [66]. They solve the problem distributivity using primal dual decomposition.

To employ their algorithm in our Cloud of Things context, the non-convex constraints of the

network virtualization problem need be relaxed. Such a relaxation is known to have a negative

impact on the accuracy of the solution and may lead to false decisions [8]. Moreover, this method

requires the definition of a single utility for the IoT device that shall not reflect the actual embed-

ding cost due to network conditions, and only captures network conditions seen locally by the

IoT device. Finally, solving the problem using primal-dual decomposition requires cooperation

between all IoT devices in the network, which prevents this method from scaling on large-sized

networks without adequate network partitioning as approached by Beck et al. in [159].

In [67, 65], the authors propose a distributed virtual node mapping algorithm using consensus-

auction. To apply it in our context, a utility function needs to be defined for each IoT device that

is based on the devices local capacity and link bandwidth (known only to the device). The IoT

devices then start bidding for virtual sensors to maximize its utility. Although the node mapping

is very close to optimal, the overall result of the algorithm is not necessarily optimal since the

link mapping uses only first hop link information of the substrate nodes. The authors also as-

sume that paths are computed using 3−shortest paths, which overlook other path diversity that

can be found in a large substrate network.

The earlier methods are designed for federated data centers, and cannot be applied to the

Cloud of Things context. In our approach, each device with a non-empty virtual mapping do-

main first solves the problem within a radius of h̄ of the subgraph centered at the IoT device.
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Then, the agent selects the best solution by reducing different solutions found by the devices

to a single best solution. Unlike the work of Beck et al. in [159], partitioning and delegation

are an implicit process of the algorithm performed through the gossip policy used during the

sensing resource discovery phase where only the IoT devices with a non-empty virtual mapping

domain start to execute the next steps of the algorithm. This approach does not require updated

knowledge about all the IoT devices and the topology of the network. The IoT devices perform

virtualization by exchanging minimal information to construct their local benefit matrices and

solving an assignment problem. Unlike [66, 67, 65], a benefit matrix constructed by a device

captures all network information within a radius of h̄ around that device, thereby improving the

obtained solution closeness to optimal without overlooking important network characteristics.

And unlike [66, 159], we do not restrict the link mapping to use k−shortest paths, thereby al-

lowing the use of diverse paths in the network constructed during the randomized gossip policy

used during the benefit matrices construction.

5.6.2 Distributed Estimation

Distributed parameter estimation approaches have been proposed in [131, 157, 79]. Estimation

can for e.g. be carried out by first computing a local estimate at each virtual sensor and then

perform a distributed weighted average of the local estimates [157]. This approach results in

an ML estimate, but does not limit/bound the variation between mean square errors of local

estimates. More recently, Paul et al. [131] propose a distributed estimation algorithm based on

ADMM. Although this approach results in an optimal mean square error when compared to LS,

it exhibits a significant in-network communication overhead that requires even more messages

to be exchanged among sensors than that exchanged in the centralized LS. One approach also

proposed in [131] to overcome this problem is to approximate the computation of primal and

dual variables at each step of the algorithm by using predictions and earlier versions of these

variables instead of sharing them at each iteration which marginally reduces the communication

overhead. In addition to the increased communication overhead, conventional ADMM requires

synchronous operation of the sensors. This is very challenging from a practical viewpoint, and

does not scale well especially when applied in the IoT context. It has been shown recently

that an asynchronous implementation of ADMM has O(1/k) convergence [168]. Our proposed

estimation algorithm is both asynchronous and distributed, and reduces communication overhead

significantly when compared to the conventional ADMM approach [131].
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5.7 Conclusion and Discussion

We have shown the potential of Cloud of Things to scale cloud computing vertically by exploit-

ing sensing resources of IoT devices to provide Sensing as a Service. We have proposed a global

architecture that scales Cloud of Things horizontally by employing edge computing platforms in

a new role as cloud agents that discover and virtualize sensing resources of IoT devices. We have

described cloud agents technical challenges and design objectives for sensing resources discov-

ery and virtualization that can dispatch offering virtual sensor networks deployed on IoT devices

to cloud users with in-network processing capabilities. We gave a taxonomy of the potential

sensing tasks, their applications, and there challenges. We have proposed our sensing resource

discovery solution based on a gossip policy to discover sensing resrouces as fast as possible

and RADV: our virtualization solution. We have shown through analysis and simulations the

potential of RADV to achieve reduced communication overhead, low complexity, and closeness

to optimal such that RADV employs minimal physical resources in devices virtualization with

maximal benefit. We also proposed RADE for distributed consensus estimation as we believe

it is one major sensing task in Sensing as a Service. Using simulation, we show that RADE

reduces the communication overhead significantly without compromising the estimation error

when compared to the traditional ADMM algorithm. We also show that the convergence time

of our proposed algorithms maintain linear convergence behavior, as in the case of conventional

ADMM.



105

Chapter 6: Flocking Virtual Machines in Quest of Responsive IoT Cloud

Services

6.1 Introduction

Live Virtual Machine (VM) migration is essential for improving the responsiveness of cloud

services. VMs, hosted in Edge Cloud (EC) platforms, install resource-rich cloud services close

to data sources to realize Internet of Things (IoT) applications. Such VMs provide, for example,

real-time video analytics services from cameras to mobile applications. Hosting VMs near the

edge can subdue the end-to-end services latency from hundreds to tens of milliseconds compared

to hosting VMs in conventional cloud platforms [113, 145]. Existing resource provisioning

algorithms migrate VMs from one EC to the other in response to devices mobility and services

computational capacity requirements. VM migration ensures minimal average latency between

mobile devices and the EC [163, 98]. Migration can achieve other goals such as load balancing,

efficient service chaining and orchestration, infrastructure cost minimization, efficient content

delivery, and energy efficiency, to name a few [48].

However, migrating VMs in response to the mobility of IoT devices is a limited decision

given the diverse IoT use cases. Such a mobility-triggered migration assumes a constraining IoT

use case in which a cloud service, installed in VMs, communicates with one - and only one - IoT

device [145]. Consider EC services for smart glasses as an example. Migrating a VM, which

hosts video processing cloud services of a Google glass, minimizes the video processing latency

as the glass/user moves, a goal that is only reasonable for the Google Glass use case, in which

the Google Glass is the singleton client that uses the EC video processing services [145, 163].

However, in general IoT use cases, several VMs, very likely to be deployed in different ECs,

are needed to execute distributed algorithms (e.g. computer vision feature extraction, consensus,

and aggregation [161]) and require intensive communication among the VMs and/or the devices.

Distributed computer vision, for example, enables distributed context-aware applications such as

autonomous vehicles and intelligent traffic systems [60]. Predominantly for modern IoT appli-

cations, developers implement analytics via large-scale distributed algorithms executed by VMs

in geographically distributed and heterogeneous cloud platforms [90, 10, 8].
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In this paper, we propose Flock; a simple protocol by which VMs autonomously migrate

between heterogeneous cloud platforms to minimize their weighted latency measured with end-

user applications, IoT devices, and other peer-VMs. In Flock, a VM uses only local latency

measurements, processing latency of its hosting cloud, and local information provided by its

hosting cloud about other clouds which the VM can migrate to. A VM greedily migrates to a

cloud platform that reduces its regularized weighted latency. We prove, using game-theory, that

Flock converges to a Nash Equilibrium (NE) and its Price of Anarchy (PoA) is (1 + ε) given

the properties of our proposed social value function. We discuss how Flock serves a generic

goal that we can redesign using simple tweaks to achieve other objectives such as load balancing

and energy minimization. Our design allows VMs to imitate a flocking-like behavior in birds

comprising separation, alignment, and cohesion rules.

6.2 System Model and Objective

We consider a network of VMs modeled as a graph G = (V, P ), where V denotes the set of

n VMs and P denotes the set of VM pairs such that p = (i, j) ∈ P if the i-th and j-th VMs

communicate with each other. Let dij ∈ R+ denote the traffic demand between VMs i and j and

assume that dij = dji. We also consider a set, A, of m clouds (i.e. ECs, or conventional clouds)

that communicate over the Internet. A VM i autonomously chooses its hosting cloud.

Let xi ∈ A denote the cloud that hosts i and let l(xi, xj) > 0 be the average latency be-

tween i and j if they are hosted at xi and xj respectively (Note: if i and j are hosted at the

same cloud xi = xj). We assume that l is reciprocal and monotonic. Therefore, l(xi, xj) =

l(xj , xi) and there is an entirely nondecreasing order of A → A′ such that for any consecu-

tive xi, x′i ∈ A′, l(xi, xj) ≤ l(x′i, xj). The reciprocity condition ensures that measured la-

tencies are aligned with peer-VMs and imitates the alignment rule in bird flocking. We model

l(xi, xj) = τ(xi, xj) + ρ(xi) + ρ(xj), where τ(xi, xj) is the average packet latency between xi
and xj , and τ(xi, xj) = τ(xj , xi). The quantity ρ(x) is the average processing delay of x mod-

eled as: ρ(x) = δ
∑

i∈V :xi=x

∑
j∈V dij/(γ(x)−

∑
i∈V :xi=x

∑
j∈V dij), where δ is an arbitrary

delay constant and γ(x) denotes the capacity of x to handle all demanded traffic of its hosted

VMs. An increased value of ρ(xi) signals the VM i that it is crowding with other VMs in the

same cloud, imitating the separation rule in bird flocking.
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A VM i evaluates its weighted latency with its peers if hosted at x as

ui(x) =
∑
j∈V

dijl(x, xj)/
∑
j∈V

dij . (6.1)

Our objective is to design an autonomous VM migration protocol that converges to an outcome

σ = (x1, x2, . . . , xn) that minimizes the sum of weighted latency
∑

i∈V ui(xi). That is to say,

σ maximizes the responsiveness of all VMs given their peer-to-peer communication pattern (i.e.

connectivity and demands).

6.3 Flock: Autonomous VM Migration Protocol

We design a simple protocol that allows a VM to autonomously decide its hosting cloud among

a set Ai ⊆ A of available clouds by relying on only local regularized latency measurements. We

call Ai the strategy set of i. Every cloud x evaluates its current weight wx =
∑

i:xi=x
ui(x)

and advertises a monotonic non-negative regularization function f(wx) : R+ → R+, such that

α < f(wx) < 1 for α > 0, to all the VMs that are hosted at x.

Since each VM is hosted by a single cloud and all VMs have access to the same strategy set,

the VM migration problem is modelled as a singleton symmetric weighted congestion game with

the objective of minimizing the social cost C(σ) =
∑

x∈Awxf(wx). If f(wx) is approximately

1, this game model is approximately equivalent to minimizing
∑

i∈V ui(xi). Throughout, we

use x i−→ y to mean that a VM i migrates from cloud x to cloud y. Letting η ≤ 1 be a design

threshold, we propose the following migration protocol:

Flock: Autonomous VM migration protocol.
Initialization: Each VM i ∈ V runs at a cloud x ∈ A.

Ensure: A Nash equilibrium outcome σ.

1: During round k, do in parallel ∀i ∈ V
Greedy migration process imitating cohesion in flocking:

2: i solicits its current strategy Ai from x.

3: i randomly selects a target cloud y ∈ Ai.
4: if ui(y)f(wy + ui(y)) ≤ ηui(x)f(wx − ui(x)) then
5: x

i−→ y.

6: end if
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We begin by proving that Flock converges to a Nash equilibrium, where each VM chooses

a single cloud (strategy) and no VM has an incentive (i.e. less average latency) to migrate from

its current cloud. Then, we derive an upper bound on Flock’s PoA for general regularization

functions, f , following a similar approach to [33]. Finally, we propose a regularization function

f(wx) ≈ 1 that achieves a tight PoA of at most 1 + ε.

6.3.1 Equilibrium

Convergence to a Nash equilibrium in Flock is non-obvious given the inter-dependency of a

VM’s average weight with its peers.

Theorem 6.3.1 Flock converges to a Nash equilibrium outcome.

Proof Any step of Flock corresponds to choosing a random outcome from a finite number of

outcomes. We show that any step of Flock reduces the social value C(σ) and C(σ) is bounded

below. We first show that if a VM i migrates from cloud x to cloud y, the increase in y’s weight

is less than the decrease in x’s weight. We then use contraction to show that if a subset of i’s

peers have a total latency that increased after i migrates, the remaining peers must have a total

latency that decreased by a greater value. Let σk and wkx denote the game outcome and the

weight of x at round k respectively, and let ∆wx = wk+1
x − wkx. If x i−→ y, then

ui(y)f(wy + ui(y)) ≤ ηui(x)f(wx − ui(x)).

As α < f < 1, we have two extreme cases: ui(y)α ≤ ηui(x), or ui(y) ≤ ηαui(x), which

implies that:

ui(y) ≤ η

α
ui(x). (6.2)

Because of the migration: ∆wx < 0 and ∆wy > 0, but |∆wx| ≥ ui(x), and |∆wy| ≤ ui(y),

otherwise i would not migrate, then

|∆wy| ≤ |∆wx| . (6.3)

Let zi = ui(xi)f(wxi) denote the regularized weighted latency and let zti denote its value at

round k. After the migration, i’s peers split into two subsets: Vinc = {j ∈ V : zk+1
j > zkj }, and

Vdec = {j ∈ V : zk+1
j < zkj }. Assume after the migration step that

∑
j∈Vinc

zj >
∑

k∈Vdec
zk. For
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f ≈ 1,
∑

j∈Vinc
uj(xj) >

∑
k∈Vdec

uk(xk). Substitute with the weighted latency value from (6.1)

and since the demands (i.e. dij) remain unchanged,
∑

j∈Vinc
l(xj , y) >

∑
k∈Vdec

l(xk, y). By

the reciprocity of l,
∑

j∈Vinc
l(y, xj) >

∑
k∈Vdec

l(y, xk), and ui(y) ≥ ui(x), which contradicts

(6.2). By this contradiction and from (6.3), the social value C(σk+1) ≤ C(σk). Since n and m

are finite, the number of all possible outcomes is finite. An outcome after a VM migration, σk+1,

corresponds to randomly choosing an outcome from the finite outcome space which reduces the

social value. Since C(σ) > 0, then Flock must converge to a Nash equilibrium. �

6.3.2 Price of Anarchy

We first give a generic upper bound of the PoA, then we propose our regularization function that

tightens the PoA.

Lemma 6.3.2 The social value of Flock has a perfect PoA at most λ/(1 − ε) if for ε < 1 and

λ > 1 − ε the regularization function satisfies w∗f(w + w∗) ≤ λw∗f(w∗) + εwf(w), where

w ≥ 0 and w∗ > 0.

Proof Let σ denote a Nash outcome and σ∗ denote any alternative outcome. Also let wx and

w∗x denote the weight on x in outcomes σ and σ∗ respectively. Similarly, let xi and x∗i de-

note i’s strategy (hosting cloud) in σ and σ∗ respectively. By definition of a Nash outcome,

∀i, ui(xi)f(wxi) ≤ ui(x∗i )f(wx∗i ). Summing over all VMs we get,C(σ) =
∑

i∈V ui(xi)f(wxi) ≤∑
i∈V ui(x

∗
i )f(wx∗i ) However,∑

i∈V
ui(x

∗
i )f(wx∗i ) ≤

∑
x∈A

∑
i:xi=x

ui(x)f(wx + ui(x))

≤
∑
x∈A

w∗xf(wx + w∗x)

≤
∑
x∈A

λw∗xf(w∗x) + εwxf(wx)

= λC(σ∗) + εC(σ).

Then, C(σ) ≤ λC(σ∗) + εC(σ). Rearranging we get, POA = C(σ)/C(σ∗) ≤ λ/(1− ε). �

Theorem 6.3.3 The regularization function f(w) = exp(−1/(w+a)) tightens the PoA to 1+ ε

for a sufficiently large constant a and reduces the game to the original VM migration problem,

i.e. minimizing
∑

i ui(xi).
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Proof For

λ ≤ f(wmax + wmin)

f(wmin)

(
1− ε wmaxf(wmax)

wminf(wmax + wmin)

)
,

f(w) = exp(−1/(w+ a)) satisfies the condition w∗f(w+w∗) ≤ λw∗f(w∗) + εwf(w) (verify

by inspection). For an infinitesimally small value of ε, we can choose a such that λ = 1 + ε,

hence the POA ≤ 1 + ε. If a is sufficiently large f(wx) ≈ 1, hence C(σ) ≈
∑

i ui(xi). �

6.4 Experimental Results and Discussion

We simulate Flock using SimPy (see [121] with several simulation rounds. In each round we

describe the clouds as a complete graph data structure with inter-cloud latency modeled as

τ ∼ Uniform(10, 100) and cloud capacity as γ ∼ Uniform(50, 100). We simulate the peer-

to-peer relations of a VMs as a binomial graph with d ∼ Uniform(1, 10). Each simulated VM

asynchronously runs Flock.

Figure 6.1 shows the average Flock rounds, k, required to converge to a Nash equilibrium

at 95%-confidence interval with 0.1 error in simulations rounds. Although in the worst case

k = O(n log(nfmax)), where fmax is the maximum value of the regularization function f [51],

Figure 6.1 suggests that Flock scales better than O(n) on average. The proof of the average

convergence time is complex and depends on properties of the social value C(σ) and other pa-

rameters. We leave this proof for future work. Figure 6.2 shows the PoA statistics of Flock with
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Figure 6.1: Convergence of Flock: m = 37, τ ∼ Uniform(10, 100), d ∼ Uniform(1, 10), a = 9,
γ ∼ Uniform(50, 100), and η = 0.9.

different η. We implemented the optimal solution as brute-force in simulations that evaluates
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the minimum social value among all possible VM to cloud assignments. As η ≈ 1, the maximum

PoA achieved matched the theoretical value of 1.21. In practice, it is desirable to keep η < 1

(e.g. η = 0.7) to avoid migrations with insignificant improvements and alternating migrations

between clouds. Although the worst case PoA for η = 0.7 approaches 4.5, the average PoA is

acceptable in practice.
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Figure 6.2: Price of Anarchy statistics for m = 5, n = 8, τ ∼ Uniform(10, 100), d ∼ Uniform(1, 10),
γ ∼ Uniform(50, 100), and a = 9.

Figure 6.3 and Figure 6.4 show the fairness of Flock as it maintains a homogenous PoA for

individual VM. In Figure(a), we evaluate the minimum utility value of each VM and compare it

to the utility value achieved by Flock. As shown, Flock maintains a homogenous PoA accross

individual VMs. In Figure(b), we show the variance of weighted latency accross VMs compared

to the mean weighted latency (Coefficient of Variance). As the Coefficient of Variance is very

low and the PoA is homogenous for individual VMs, it is unlikely that a single VM starves with

a less than close-to-optimal latency.

6.4.1 Special Cases: Load-balancing and Energy Efficiency

Flock can be redesigned with simple tweaks to suit other common cloud resource provisioning

problems. We consider load-balancing and energy efficiency as special cases.

In load balancing, we seek an outcome σ such that the total load is distributed proportionally

to the clouds’ capacities. We first force the latency τ = 0 between any cloud pairs x, y ∈ A.

This is equivalent to marginalizing the effect of latency on the social value. We also force the

VMs to ignore their peer relationships (i.e. P = ∅). The problem transforms immediately to
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minimizing the sum of cloud utilization. A VM in this setup greedily migrates to the least loaded

cloud.

Figure 6.5 shows the ideal mean utilization for a load-balanced system (’+’) and the mean

utilization using Flock (’*’). The box-plot also gives a summary statistics of the extreme value

and the 75%-percentile samples. Flock performs very well as a load balancing protocol.
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Figure 6.5: Flock usage for load balancing (P = ∅, τ = 0) for m = 20, d ∼ Uniform(1, 10), and
γ ∼ Uniform(50, 100).

The energy-efficiency goal seeks an outcome σ in which the maximum number of clouds

are idle (i.e. with ρ = 0). We (virtually) force each VM to be connected to all other VMs (i.e.

P = V × V ). We also force τ to be a very large value (i.e. τ → ∞, and d = 1). With this

tweak, a VM favors a cloud that hosts the largest number of VMs and with enough capacity ρ.

Figure 6.6 shows the ideal number of idle clouds that minimizes the energy consumption under

a certain load (upper bound) and the number of idle clouds using Flock under the same load.

6.4.2 Impact of system dynamics

We now study the impact of various system dynamics on Flock’s convergence. If we consid-

ered any two Flock steps at discrete times (k − 1) and k, the values of the VM’s utilities, ui,

evolve randomly. Both external factors and VM migrations can influence this evolution and in-

troduce difficulty in the analysis of Flock convergence. The simplest approach to deal with such

dynamics is to assume that changes in latencies, EC capacities, and any other state are much

slower than Flock convergence. This means that changes in ui due to external factors such as

link bandwidths or EC failures varies slowly. It also means that Flock steps are very rapid and
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Figure 6.6: Flock usage for energy efficiency (P = V × V , τ → ∞, d = 1) for m = 20, and γ ∼
Uniform(50, 100).

Flock measures only average values of l or any other system state. Fortunately, we have shown

that Flock converges in a finite number of steps. However, we cannot guarantee that this number

of steps are taken much faster than changes in any system state. We will follow the approach

in [106] to show that despite that Flock may take slow migration decisions, its convergence still

holds if we modeled the network dynamics (e.g. l) as a continuous-time Markov process that has

values that are generated by the migration steps of Flock.

Consider modeling the utility of a VM as a general discrete-time stochastic process such that:

∀k ∈ Z, ui,k+1 = ui,k+ bkωk, where ui,k+1 is the utility value of VM i at the discrete-time k, bk
is a design parameter, and ωi,k is a random variable that takes values according to both external

factors that impact u and Flock migrations prior to time k. For all k ∈ Z, the values of ω are

determined by ωi,k = h(ui,k, Yi,k) and Yi,k =
∫ k+1
k f(mi(t))dt, where mi(t) is a continuous-

time Markov process of generator Gui,k and with values in a finite setM, f : M ← RK is an

arbitrary mapping, and h : RL × RK ← RL is a bounded continuous Lipschitz function in u

and is uniformly distributed in Y . The Markov process mi(t) is irreducible and ergodic where

mi(k) = limt→k,t<kmi(t). We previously assumed that ui,k is bounded, which is true given

the bounded latencies, VM demands, and EC capacities. We also can enforce such bounded

values of u by projecting ui,k to a finite subset of RL. Finally, we assume that bk is positive and

decreasing in k, such that bk is constant as k →∞, so that
∑

k bk =∞ and
∑

k b
2
k <∞.

By adopting the discrete time factor into the values of ui,k, we transfer Flock into a class of

stochastic approximation algorithms with controlled continuous-time Markov noise [36]. As bk
is a decreasing step size, the speed of variations in ui,k decreases and vanishes as k increases.
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This is equivalent to modeling mi(t) as a Markov process with a fixed generator (e.g. when

τ values are frozen), and converges to an ergodic behavior. Hence, as k increases, Flock uses

averaged values of ui and represents a stable dynamical system (see [36] for formal proofs of the

convergence of stochastic approximation algorithms). We call the modified migration protocol,

controlled-Flock and is given as:

Controlled-Flock: Autonomous VM migration protocol.
Initialization: Each VM i ∈ V runs at a cloud x ∈ A.

Ensure: A Nash equilibrium outcome σ.

1: During round k, do in parallel ∀i ∈ V
Greedy migration process imitating cohesion in flocking:

2: i solicits its current strategy Ai from x.

3: i randomly selects a target cloud y ∈ Ai.
4: if ui,k(y)f(wy + ui,k(y)) ≤ ηui,k(x)f(wx − ui,k(x)) then
5: x

i−→ y.

6: x = y

7: end if
8: Update ui,k+1(x) = ui,k(x) + bkf(wx)

In the above algorithm, bk is a decreasing step size and is left as a design parameter, where

step 8 is a standard first-order auto-regressive model. For example bk = 1/k satisfies the de-

creasing condition of bk and that
∑

k bk = ∞ and
∑

k a
2
k < ∞. If bk is constant, we would

obtain weak convergence only. The function f(wx) serves as the random variable ωi,k for a VM

i. In such case f(wx) ≡ h(ui,k, Yi,k), where Yi,k =
∫ k+1
k

∑
j:xj=x,j 6=i uj,t(x)dt and uj,t(x) is

the continuous-time value of uj . The Markov process mi(t) in this case represents the current

outcome σk and that f(mi(t)) =
∑

j:xj=x,j 6=i uj,t(x) is an arbitrary mapping that is bounded

and continuous Lipschitz function. We can easily verify that the properties of stochastic ap-

proximation algorithms with controlled continuous-time Markov noise as described earlier are

satisfied and convergence of Controlled-Flock is ensured given the various dynamics.

Figure 6.7 shows the convergence of Controlled-Flock under dynamics of link latencies

and cloud capacity that are faster than Flock decisions. We use the same simulation setup in

Section 6.4, where Flock decisions are taken every other simulation step t instead of every

simulation step. At each simulation step we sample the packet latency for a link τ(t) from a

uniform distribution of an average µτ ∼ Uniform(10, 100) and a minimum value of zero. Sim-
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ilarly we sample the cloud capacity of a cloud γ(t) from a uniform distribution of an average

µγ ∼ Uniform(50, 100) with a minimum value of zero. The zero values of the latency and

capacity simulate momentary instability of link and cloud resources. As shown in Figure 6.7,

Controlled-Flock maitains the same convergence and PoA properties of Flock. However, the ac-

tual number of migrations required to converge to a nash equilibrium is greater. This is expected

as Controlled-Flock does not reach steady state until bk approaches a constant value as k →∞,

such that rapid variations in measurements become indifferent to migration decisions.
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Figure 6.7: Convergence of Controlled-Flock: m = 37, τ ∼ Uniform(10, 100), d ∼ Uniform(1, 10),
a = 9, γ ∼ Uniform(50, 100), and η = 0.9.

6.4.3 Migration cost

Migration of a VM can be too costly to perform very frequently [164]. It can also degrade per-

formance by introducing migration noise [103]. Depending on the implementation details of a

VM and the workload it serves, migration can involve transferring a large volume of data be-

tween ECs, which introduces a significant network overhead. For some cloud services, frequent

migration can cause intolerable services interruption, as the ”down-time” due to a migration can

range from few milliseconds to seconds [55]. Accounting for the migration cost in Flock can

be desired for several applications. We incorporate the migration cost in Flock utility values by

two methods.

First, we include the migration cost as an external dynamics in the VMs’ utilities and use

Controlled-Flock to minimize the utility, which also includes the average migration cost. Let

gi(k) ∈ {0, 1} indicate whether imigrated at time k or not. Also letRi(k+1) = βiRi(k)+(1−
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βi)gi(k) denote the average forgetting value of the migrations of VM i, where 0 ≤ βi ≤ 1 is a

VM specific parameter that reflects the impact of frequent migrations on service disruptions. The

migration cost, Ci, is an increasing function of Ri(k), Ci(Ri(k)). To incorporate the migration

cost, we redefine ui for the target cloud in Flock as

ui(y) =
∑
j∈V

dijl
′(y, xj)/

∑
j∈V

dij ,

where l′(y, xj) = l(y, xj) + Ci(Ri(k)) + Cj(Rj(k)) and ui(x) (i.e. utility for current cloud)

is memorized. This is equivalent to penalizing the latencies values measured with an additional

dynamic that accounts for the estimated average number of migrations. As Ri is a function in

prior migration, the Ci value increases as i migrates more frequently and vanishes over time

as i pauses migrations. This tweak perceives the numerical properties of both l and u, hence

maintains the convergence and PoA results of Controlled-Flock.

Although the first approach minimizes the average migration cost as k → ∞, it requires

exchanging the estimated migration cost between each i, j ∈ E to maintain the reciprocity

condition of l. This rapid message exchange introduces a significant communication overhead.

Moreover, incorporating the average migration cost in ui only has a long-term benefit on the sys-

tem as k grows and it can causes undesirable short-term service disruption for some applications.

For such interruption-sensitive applications, it may be beneficial to delay the migration decisions

using the η parameter instead of incorporating the migration cost into the utility function. In this

second approach each VM evaluates its own ηi accounting for the estimated number of migra-

tion as: ηi(k) = 1
exp(R(k)) . As the VM, i, performs less migrations over time, ηi(k) → 1 and

i migrates for any slight improvement in its utility. Whereas if i performs frequent migrations,

ηi(k)→ 0.36, where i only migrates if the migration decision brings a significant improvement

to ui. The drawback of this approach can be seen in Figure 6.2, where we sacrifice the tightness

of the PoA as η < 1.

Migration cost of an individual VM can also be reduced in practice if the VM workload

does not require persistent state maintenance. For example, if a VM is running device’s cloning

function as in [54], it can be sufficient to only migrate device’s meta-data (few kilobytes) and

use it to start a new cloning VM at the target cloud. We apply this trick in developing a message

brokering system (see [7]) to minimize the messaging latency for IoT devices. For advanced

workload types, systems such as SonicMigration and adaptive pre-paging ([103, 88] ) can be
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used to minimize the VM migration overhead by examining the memory pages in a fine-grain

manner and transfer only memory pages that are necessary for an application.

6.5 Conclusion

We propose Flock; a simple autonomous VM migration protocol. Flock considers the peer-to-

peer interaction of VMs in heterogeneous edge and conventional cloud platforms. We show that

Flock converges to a Nash equilibrium with (1 + ε) PoA. Flock minimizes the average latency

of VMs as a generic goal with diverse use cases and can be easily redesigned to serve other

purposes such as load-balancing and energy efficiency.
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Chapter 7: When Clones Flock Near the Fog

7.1 Introduction

Many large-scale applications are sensitive to latency as they rely on messaging sub-systems

between geographically distributed devices and cloud services. Even if 10% of messages were

delayed for longer than 150-300 ms, applications like remote-assisted surgery and real-time situ-

ation awareness may not be feasible [20, 136]. A bounded tail end-to-end latency is a cornerstone

for the realization of large-scale IoT applications near the network edge [141, 34].

When devices communicate through a middle message broker, successive packets queuing

in multi-hop paths becomes a major source of latency. For example, the average end-to-end

latency of messages exchanged using a Redis broker in a close amazon data-center is three

times longer than deploying the same broker one-hop away from devices. Broker-less messaging

using device-to-device communication does not necessarily solve the successive packets queuing

problem. In IoT applications, a device communicates a large number of messages with many

devices. Devices limited processing and memory capacity become another major source of

latency for large-scale distributed applications. Experiments show that direct device-to-device

messages can experience double the end-to-end latency compared to brokering the messages

through a one-hop away broker (see Section 7.2).

If devices are cloned in a one-hop away cloudlet [144], a device’s clone can provide message

brokering service so that interacting devices can communicate with minimal latency and allow

devices to offload intensive computation in very large memory and processing nodes that host

the clones. Of course, communicating through a one-hop away clone may still cause long tail

end-to-end latency when the broker service relays messages to distant devices. If a clone can

measure: 1) messaging demand with other devices/clones, 2) the tail latency experienced by

messages, and 3) the potential latency of other cloudlets/cloud platforms, clones can self-migrate

between cloud platforms to always ensure a bounded weighted tail end-to-end latency. We show

how autonomous clone migration can mimic birds flocking and we prove that it is stable and it

achieves a tight minimal latency that is (1 + ε)−far from optimal.

The use of cloudlets and dynamic service migration to solve latency problems are not new:
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Figure 7.1: Motivating experiments: the sources of latency in devices publish/subscribe communication.

Cloudlets [145] reduce the single-hop latency from 0.5-1 seconds to tens of milliseconds, and

technologies like MobiScud and FollowMe [165, 156] migrate clones to sustain an average

single-hop Round Trip Time (RTT) at nearly 10 ms. Such schemes struggle to make optimal

migration decisions despite using central control units as they: adopt too constraining migration

metric (average single-hop latency) and trigger migration only if devices locations change [163].

However, applications in fog computing [34] necessitate the deployment of inter-networking

clones in heterogeneous platforms (cloudlet/clouds) without centralized administration. In this

fog environment, clones communicate with several geo-distributed devices and other clones

where the tail weighted end-to-end latency - that considers the 99-th percentile of computation

latency plus the communication latency between clones/devices - becomes the primary latency

measure instead of the average RTT of a single-hop.

We design self-deploying brokering clones that discover cloud hosting platforms and au-

tonomously migrate between them according to self-measured weighted tail end-to-end latency,

ultimately allowing us to stabilize clones deployment and achieve a near minimum latency given

an existing infrastructure limits.

We implement FogMQ as a simple Linux service that provides four key features. It:

1. reduces the successive queuing problem by ensuring a bounded tail weighted end-to-end

latency and a rapid adaptation to shared hosting nodes and network variations and without

sacrificing computation offloading gain in cloud platforms;

2. autonomously discover and migrate to heterogeneous cloud/edge platform in an Internet-

scale system without the need of a central monitoring and control unit;

3. simple and requires no change in existing cloud platforms controllers.
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7.2 Motivation and Challenges

We first show that multi-hop queuing along Internet paths is a major source of end-to-end la-

tency for IoT applications. We then show that devices’ limited compute and memory resources

standstill against latency reduction by direct device-to-device communication.

7.2.1 Sources of latency

When we host a message broker in a multi-tenant cloud platform, the end-to-end latency de-

grades as network interference delays the broker’s messages. Network interference occurs when

the broker messages share: ingress/egress network I/O of its host, and one or more queues in

the data-center network switches [28]. Hosts and network resources become spontaneously con-

gested by traffic-demanding applications. For a single-authority cloud, an operator can control

network interference of latency-sensitive applications with switching, routing, and queue man-

agement policies besides controlling contention for hosts’ compute, memory, and I/O resources

[133, 50].

Network interference is harder to control for IoT applications. As devices communicate

using cloud-hosted brokers, messages share network resources of multi-hop paths with diverse

and unmonitored traffic. Multiple, unfederated authorities manage network resources along these

paths, which make it hard to enforce unified traffic shaping or queuing management policies.

Adding also variations in devices traffic demand, communication pattern with other devices,

and mobility it becomes particularity hard to trace devices traffic, delays, and infrastructure

conditions to find optimal policies with centralized solutions. Multi-hop queuing along Internet

paths can account for a 3x degradation in end-to-end latency on average.

Figure 7.1a illustrates experiments to quantify this latency degradation. We install a Redis server

in a VM-instance in the nearest amazon EC2 data-center (EC2-Redis) and install another Redis server

in a same capacity VM in a host that is co-located with our WiFi access point (Edge-Redis). Our

host runs other workloads. We emulate devices as simple processes running on another host

that uses the same access point. We ensure that all VMs and hosts are time-synchronized with

zero delays and jitter during the experiment execution time. A device emulator A publishes 10K

messages to either Redis servers and another device emulator B subscribes to A’s messages.

Figure 7.1b shows the Cumulative Distribution Function (CDF) of the end-to-end latency mea-

sured as the time between receiving a message atB and publishing it fromA. The tail end-to-end
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latency for Edge-Redis is 15.6ms, while it measured at 24.2ms for EC2-Redis accounting for

1.5x tail end-to-end latency improvement by avoiding the multi-hop path to the closest EC2

instance and 3x improvement on average.

7.2.2 Why broker-less is not always the answer?

Benchmark 50% 99th%

Redis, 1000 messages 523.2 1, 276.0µs
ZeroMQ, 1000 messages 314.8 647.6µs
Redis, 10, 000 messages 620.1 2, 010.5µs
ZeroMQ, 10, 000 messages 320.3 652.9µs

Table 7.1: Median and 99th end-to-end latency of Redis and ZeroMQ measured under different loads
(number of messages).

Direct device-to-device communication using broker-less message queues can be thought

to be better than using message brokers. The obvious reasons for broker-less queues, such as

ZeroMQ [89], superiority are their lightweight implementation, and usage of a minimal num-

ber of shared queues, switches, routers, and access points, between communicating devices.

Table 7.1 shows the median and tail end-to-end latency of ZeroMQ and Redisunder different

loads, where ZeroMQ can deliver 10, 000 messages three times faster than Redis.

Unfortunately, if the devices are resource limited, the latency superiority of direct device-

to-device communication is not always maintained. We return to our motivating experiment in

Figure 7.1a. We limit the resources used by the devices emulators using Linux cgroups such that

a device emulator can use no more than 10% of the CPU time compared to EC2-Redis or Edge-

Redis. Figure 7.1b shows that the average end-to-end latency of D2D-ZeroMQ is 7 times longer

than Edge-Redis , and the tail end-to-end latency is 4 times longer. Several factors can contribute

to this deteriorated performance including the wireless environment loading and implementation

details of either Redis or ZeroMQ. However, the main factor that limits direct device-to-device

latency is the limited compute resources of the devices emulators.

To emphasis this observation, we increase the number of the publishing device peers (i.e.

number of subscribing device emulators) until the Edge-Redis server becomes loaded. Fig-

ure 7.1c shows the tail end-to-end latency for different number of peers. As we increase the

number of peers, the latency superiority of the Edge-Redis starts to diminish, until we reach

the 200 peers points at which our host becomes loaded at 90% utilization and the tail end-to-
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end latency of broker-less D2D-ZeroMQ becomes better by 14%. Broker-less device-to-device

messaging is only better if a device computational resources are sufficiently large, which is an

unrealistic assumption for most IoT devices.

7.3 FogMQ System Design

Our motivating experiments show that multi-hop queuing along Internet paths is a major source

of tail latency for cloud-based messaging systems and that the latency improvement promise

from device-to-device communication cannot be always attained due to limited devices re-

sources. FogMQ tackles multi-hop queuing by reducing the queuing of messages. Primarily,

if message brokers can self-deploy and migrate across cloud platforms (from edge to cloud and

including cloudlets) according to the communication pattern of the devices, then we will dimin-

ish the impact of multi-hop queuing delay. In the extreme case, if two resource-limited devices

communicate through brokers in the same unloaded host and using the same access point, we

can achieve a finite minimal bound on the latency.

In this section, we derive an intuitive design of FogMQ by which we bound the weighted

end-to-end latency of devices’ clones in FogMQ given an arbitrary network of heterogeneous

cloud platforms. Although the stability and bounded performance of our design is intuitive, we

solidify this intuition by relating the design to the theory of singleton weighted congestion games

[76, 77, 33], where we show that self-deploying clones reach a NE and it tightens the PoA of the

weighted end-to-end delay.

7.3.1 Social networks of clones

To begin, we assume that devices communicate with each other according to IoT applications

requirements and form a social network of devices. Typically, the convergence of man-machine

interactions in IoT will drive devices to form a social network [24]. This network can form

according to existing social network structure of devices’ users or according to the required

communication between devices that is inherited from application design.

The idea of modeling IoT analytics applications as social networks is simple. Applications

are modeled as graphs (e.g. [90, 14, 142] ) of inter-networked microservices, nano-services,

virtual machines, or containers. Devices contribute to the execution of an IoT application by

publishing their data to a brokering clone of the device. Other devices that are participating
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Figure 7.2: Example overlay aggregation tree formed by devices clones.

in the execution of the application also publish their information to their clones. On the other

hand clones subscribe to each other according to the application modeled graph which forms an

overlay network of clones that execute the application within resource-rich compute and network

nodes. Upon completion of the executions clones may push the results back to devices and the

application users. Figure 7.2 illustrates a simple tree aggregation application for data retrieved

from three devices. Device-A and Device-B publish their data, x and y, to their clones. Clone-C

subscribes to data from clone-A and clone-B, evaluates x+y, and pushes the result to device-C.

The pub/sub communication pattern provides an efficient messaging middle-ware for appli-

cations modeled as large-scale graph structures. We can rely on already in-place subscription

and matching languages to effectively route information between devices and clones, and inter-

clone. Existing pub/sub systems also simplify addressing and clone authentication, hence the

design of large-scale applications as overlay network between the clones.

Generally, the overlay network design of the clones is either structured or unstructured and

focus mainly on reducing clones fanout to minimize the communication overhead between the

clones. For example, topic-connected overlays are designed such that devices interested in the

same topic are organized in a dissemination overlay [47]. Overlay network design forms the

foundation for distributed pub/sub and directly impact scalability and applications performance

[26, 44, 155]. We assume that an overlay topology of clones is given and we model it as a social

network of clones. We model the network of clones as a graph G = (V, P ), where V denotes

the set of n clones and P denotes the set of clone pairs such that p = (i, j) ∈ P if the i-th and

j-th clone communicate with each other.
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7.3.2 FogMQ Architecture

FogMQ consists of a management-plane, control-plane, and data-plane. The management-plane

comprises nanoservices and clients for devices onboarding, clone creation, and cloud-network

tomography. The control-plane consists of clone monitoring and migration, overlay optimiza-

tion, and peer-to-peer routing functions. The data-plane uses the publish/subscribe communica-

tion pattern for messaging between devices and their clones as well as inter-clone communica-

tions. Figure 7.3 illustrates the high level architectural elements of FogMQ and its management,

control, and data modules.

FogMQ initially clone a device at the closest cloud/cloudlet from a set A of m cloud/-

cloudlets that are available to all devices and that can communicate over the Internet. Associ-

ation with nearest brokering server is a standard approach in existing cloud-based brokers. An

Remote Procedure Call (RPC) client in the device is responsible for the device registration, and

peer relationship definition with other devices by which a device participates in the execution of

a distributed application. A typical approach that clients can use to initiate clones is to query

a global geo-aware Domain Name Service (DNS) load balancer to retrieve the Internet Proto-

col (IP) address of the nearest FogMQ RPC server. With the integration of cloud computing

in cellular systems [12], devices can also use native cellular network procedures to initiate with

clones in the nearest cellular site to the device.

The FogMQ RPC server realizes the device clone in a cloud platform as a virtual machine,
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container, or native process, where processes are always a favorable design choice to avoid virtu-

alization overhead. Recent Linpack benchmark [61] shows that containers and native processes

can achieve a comparable number of floating point arithmetic per second that is at least 2.5x

greater than virtual machines. Despite that containers have a better advantage for privacy and

security, as they provide a better administration, network, storage, and compute isolation, con-

tainers networking configuration can account for 30µs latency overhead compared to a minimal

network configuration of native processes [70]. As we will discuss later implementing clones

as processes has an advantage over both virtual machines and containers as it incur minimal

migration overhead in our design.

Once FogMQ creates a clone for a device, the clone subscribes to the devices published

messages that contain preprocessed sensors reading. Subscribing to the devices messages eases

the clone migration processes as we will detail later. If a clone migrates from one cloud to the

other, any changes to the clone’s IP address or network configuration become transparent to the

device. Upon migration, the clone resubscribes to the devices messages, allowing the device to

continue publishing its messages without the need to notify the device of its clone migration.

A device’s clone can process the devices message in its computation offloading module (see

Figure 7.3) with high processing, memory, and storage capacities. The computation offloading

module of the clone also executes distributed applications defined as overlay networks that in-

terconnect several clones. To exchange messages between peer-clones of an overlay network,

a clone creates a separate process to process its peer messages. Each process subscribes to the

published messages from its corresponding peer-clone to make messages from peers available

for the computation offloading module. If needed a clone pushes messages and/or computation

results back to its device using a push/pull messaging pattern. Figure 7.3 illustrate the messages

flow between different modules for a simple example in which Device-A is a peer to Device-B.

The overlay optimization module and the peer-to-peer routing module are responsible for

optimizing the fan-out of overlay networks and the routing decisions. Although the design of

these mechanisms is integral to the performance of the overall system, overlay design and routing

optimization algorithms are orthogonal to the scope of this paper as we focus on autonomous

migration decisions that minimize the tail end-to-end latency.
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7.3.3 Cloud network tomography

An administrator runs FogMQ servers as application middle-wares that have network tomog-

raphy functionalities. In addition to managing the clones, the network tomography functions

assist the clones to measure and discover their local and potential hosting platforms, hence au-

tonomously decide their optimal hosting clouds. The tomography function consists of measuring

the average processing delay of a clone’s host and the network latency between the hosting cloud

and any other target cloud. It also comprises a function to discover potential cloud platforms.

7.3.3.1 Discovering cloud platforms

FogMQ servers in different clouds form a peer-to-peer network that can autonomously evolve

and discover each other. A FogMQ server discovers other FogMQ servers explicitly in a boot-

strapping phase and implicitly as it creates and manage clones. Once a FogMQ server starts,

it register with bootstrapping nodes that also authenticate the server. If a bootstrapping node

permits the server to join the network of FogMQ servers, the server becomes entitled to query

any bootstrapping nodes to learn about other FogMQ servers that already exist.

Additionally, whenever a server can implicitly learn about other FogMQ servers from clones

communication sessions. For two clones to communicate, each clone needs to learn the IP

address of the hosting node of the other clone by querying a clones registry (e.g. distributed

key-value store). The server proxies such control queries, and from the query responses it can

learn about new IP addresses of other hosting platforms and query the bootstrapping nodes for

more information if needed.

7.3.3.2 Processing delay and network latency

The FogMQ servers are also end-points that measure the average processing delay and network

latency of the hosting cloud and of any other cloud. Processing delay of any cloud platform is

a function of the utilization of the node that hosts the clone. A FogMQ server can programat-

iclly query the utilization of virtual machines using existing cloud platforms Application Pro-

gramming Interfaces (APIs). Network latency can be actively measured by ICMP protocols, or

passively measured by logging the RTT statistics of ongoing Transport Control Protocol (TCP)

sessions.

Each device clone self-monitors and characterizes the demands with its peers and evalu-
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ates latencies with the assistance of the FogMQ server. For clones, i and j, let dij ∈ R+

denote the traffic demand between i and j and assume that dij = dji. Let xi ∈ A denote

the cloud that hosts i and let l(xi, xj) > 0 be the average latency between i and j if they

are hosted at xi and xj respectively (Note: if i and j are hosted at the same cloud xi = xj).

We assume that l is reciprocal and monotonic. Therefore, l(xi, xj) = l(xj , xi) and there

is an entirely nondecreasing order of A → A′ such that for any consecutive xi, x′i ∈ A′,

l(xi, xj) ≤ l(x′i, xj). The reciprocity condition ensures that measured latencies are aligned

with peer-clones and imitates the alignment rule in bird flocking. FogMQ servers align the

measured latencies such that xi and xj use the same values of l(xi, xj). We model l(xi, xj) =

τ(xi, xj) + ρ(xi) + ρ(xj), where τ(xi, xj) is the average packet latency between xi and xj ,

and τ(xi, xj) = τ(xj , xi). The quantity ρ(x) is the average processing delay of x modeled as:

ρ(x) = δ
∑

i∈V :xi=x

∑
j∈V dij/(γ(x) −

∑
i∈V :xi=x

∑
j∈V dij), where δ is an arbitrary delay

constant and γ(x) denote the capacity of x to handle all demanded traffic of its hosted clones.

An increased value of ρ(xi) signals the clone i that it is crowding with other clones in the same

cloud which is imitating the separation rule in bird flocking.

7.3.4 Clones shall flock

To resolve the successive queuing problem, we design a simple protocol by which a clone au-

tonomously decides its hosting cloud using only local network tomography provided by its host-

ing FogMQ server. Clones greedily minimize their perceived weighted latency. In this section,

we analytically show that that this protocol is stable and close to optimal. In Section 7.4.4, we

demonstrate these properties when we functionally evaluate FogMQ. A clone i evaluates its

weighted latency with its peers if hosted at x as

ui(x) =
∑
j∈V

dijl(x, xj)/
∑
j∈V

dij . (7.1)

Our objective is to design an autonomous clone migration protocol that converges to an outcome

σ = (x1, x2, . . . , xn) that minimizes the sum of weighted latency
∑

i∈V ui(xi). That is to say, σ

maximizes the responsiveness of all clones given their peer-to-peer communication pattern (i.e.

connectivity and demands).

A clone i learns a setAi ⊆ A from its FogMQ server. The setAi is called the strategies set of

i. For a cloud x, FogMQ server evaluates its current weight wx =
∑

i:xi=x
ui(x) and advertises
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a monotonic non-negative regularization function f(wx) : R+ → R+, such that α < f(wx) < 1

for α > 0, to all the clones that are hosted at x. As any clone is hosted by a single cloud and

all clones have access to the same strategies set, we model the migration problem as a singleton

symmetric weighted congestion game that minimizes the social cost C(σ) =
∑

x∈Awxf(wx).

If f(wx) ≈ 1, this game model approximates to minimizing
∑

i∈V ui(xi). Let x i−→ y denote

that a clone i migrates from cloud x to cloud y and let η ≤ 1 denote a design threshold. We

propose the following migration protocol:

Flock: Autonomous clone migration protocol.
Initialization: Each clone i ∈ V runs at a cloud x ∈ A.

Ensure: A Nash equilibrium outcome σ.

1: During round t, do in parallel ∀i ∈ V
Greedy migration process imitating cohesion in flocking:

2: i solicits its current strategies Ai from x.

3: i randomly selects a target cloud y ∈ Ai.
4: if ui(y)f(wy + ui(y)) ≤ ηui(x)f(wx − ui(x)) then
5: x

i−→ y.

6: end if

We prove that Flock converges to a Nash equilibrium, where each clone chooses a single

cloud (strategy) and no clone has an incentive (i.e. less average latency) to migrate from its cur-

rent cloud. Then, we derive an upper bound on Flock’s PoA for general regularization functions,

f , following a similar approach to [33]. Finally, we propose a regularization function f(wx) ≈ 1

that achieves a tight PoA of at most 1 + ε.

Theorem 7.3.1 Flock converges to a Nash equilibrium outcome.

Proof We show that any step of Flock reduces the social value C(σ) and C(σ) is bounded

below. We first show that if a clone i migrates from cloud x to cloud y, the increase in y’s weight

is less than the decease in x’s weight. We then use contraction to show that if a subset of i’s

peers have a total latency that increased after i migrates, the remaining peers must have a total

latency that decreased by a greater value. See Chapter 6.

Lemma 7.3.2 The social value of Flock has a perfect PoA at most λ/(1 − ε), if for ε < 1 and

λ > 1 − ε the regularization function satisfies w∗f(w + w∗) ≤ λw∗f(w∗) + εwf(w), where

w ≥ 0 and w∗ > 0. See Chapter 6.
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Theorem 7.3.3 The regularization function f(w) = exp(−1/(w+a)) tightens the PoA to 1+ ε

for a sufficiently large constant a and reduces the game to the original clone migration problem,

i.e. minimizing
∑

i ui(xi).

Proof For

λ ≤ f(wmax + wmin)

f(wmin)

(
1− ε wmaxf(wmax)

wminf(wmax + wmin)

)
,

f(w) = exp(−1/(w+ a)) satisfies the condition w∗f(w+w∗) ≤ λw∗f(w∗) + εwf(w) (verify

by inspection). For an infinitesimally small value of ε, we can choose a such that λ = 1 + ε,

hence the POA ≤ 1 + ε. If a is sufficiently large f(wx) ≈ 1, hence C(σ) ≈
∑

i ui(xi). �

7.4 FogMQ Prototyping and Evaluation

We prototyped FogMQ and evaluated it in a virtual testbed in AWS cloud. We implemented all

FogMQ components as nanoservices that communicate using ZeroMQ. We deployed FogMQ and

the device emulators in several geographically distributed virtual machines in all EC2 regions

and availability zones. Our objective from this prototyping is to have a reference implementa-

tion of FogMQ by which we test its functionality and verify the stability and near optimality

properties in a shared cloud and Internet environment.

7.4.1 Devices on-boarding and overlay setup

In our prototype, we have emulated IoT devices as Linux processes that send messages according

to a Poisson distribution with a random average inter-arrival time of 1 to 30 seconds. Each device

emulator has a random unique ID. We used a Redis to register the devices emulators and to track

the clones deployments across different clouds.

Figure 7.4 shows the device emulator initialization sequence. A device emulator regis-

ters itself with the nearest FogMQ server. The emulator uses its ID, host IP address, and

ZeroMQpublish and pull ports for the registration. The FogMQ server adds the device infor-

mation to the Redis key-value store. This step can also be extended for devices authentication.

Once registered, the FogMQ server starts a clone for the device and acknowledge the device that

it is ready to add peers. The clone subscribes to the devices ZeroMQpublish port.

Whenever a message becomes available to the device from one of its peers, the clone pushes

the message to the device pull port. The devices peer-to-peer relationships - in our evaluation -
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Figure 7.4: Device emulator onboarding, cloning, and adding peers.

are determined based on real social network dataset from [123]. Devices emulators adds their

peer at the clone side using only the peer device ID. The device clone retrieves the peer clone

host IP from the key-value store. If the peer was not registered in the key-value store, the device

clone instructs the device to back-off for a randomly chosen timeout before retrying to add the

peer. Otherwise, the peer sub processes subscribes to messages from the peer clone to establish

the clone-to-clone overlay communication.

7.4.2 Flock and clones migration

We now detail how we implement Flock using nanoservices exposed by FogMQ servers and

how clones autonomously and efficiently migrate between cloud platforms. Each clone period-

ically executes the sequence diagram that we illustrate in Figure 7.5. In our implementation we

arbitrarily choose the execution period to be 30s and it is left as a design parameter that can be

configured to tune how rapid clone migration shall be.

To execute Flock , a clone i retrieves a potential target cloud y, from its FogMQ server

running at its hosting cloud x. Then i exeutes two RPCs with both FogMQ servers at x and y to
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:Clone i at x :FogMQ x server :FogMQ y server

retrievetarget()

cloud y (randomly)

latency(peers)

x latency to peers

latency(peers)

y latency to peers

flock()

Figure 7.5: Flock sequence diagram.

determine the current and the potential latencies with its peers. When a server receives a latency

RPC for a peer j, it immidetly answers with previously performed latency measurements with

the cloud hosting j, or perform active measurements to determine the estimated latency. Finally

the clone executes Flock to decide if a migration shall be performed or not.

If the migration condition in Flock is satisfied, the clone i sends its metadata an RPC to x

requesting to migrate to y as illustrated in Figure 7.6. The server x forwards i’s meta-data to y to

initiate a clone for device-i at y. The server y replaces the current hosting cloud of i to y and the

new clone at y subscribes to i’s messages. Finally server y instructs x to terminate its migrated

clone.

Figure 7.6 illustrates the migration sequence diagram and Figure 7.7 shows the total time

needed for clone migrations as Flock continues execution over time. By only transferring the

meta-data, which is less than 140 bytes in size, we ensure that clone migration overhead is mini-

mum. Alternatively, one can take a snapshot of the clone at x, transfer the entire clone memory,

and restart the clone at y. This can resemble a significant overhead as we could transfer unneces-

sary information. As shown in Figure 7.7, the parameter η can have an impact on the migration

overhead at initial execution where higher values of η eases the migration decisions. Morevoer,

The use of the publish/subscribe communication here makes such migration transparent to de-

vice i, and prevents potential data loss.
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:Clone i at x :FogMQ x server :FogMQ y server :Clone i at y
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status

status
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Figure 7.6: Clone migration sequence diagram.
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Figure 7.8: Code snippets for autodisconnect.

:Clone i at x :Peer process :key-value store

terminate()

RESET(i)

retrievehost(x)

cloud y

resubscribe(x)

Figure 7.9: Clone peer termination detection.

7.4.3 Accounting for data loss

Although making new clone to device subscription before breaking the old one prevents data

loss from a device to FogMQ, migration can still results in data loss between peers. First, the

peer processes that originally subscribed to i’s clone at x needs to detect its termination and

resubscribe to the new clone at y. Second, the new clone needs to enforce a history Quality of

Service (QoS), by which the new clone retains devices data until the peer processes subscribes to

the new clone and retrieve all historical data. The solution to the last problem is straight forward.

FogMQ implementation allows an administrator to configure FogMQ to either keep all devices

data in the new clone until delivery to peer processes, or to keep a configurable number of

messages (either by number or duration).

To solve the first problem, we need two mechanism to detect the termination of the orig-

inal clone and discover the new hosting cloud of the new clone. We use in-place connection-

monitoring in ZeroMQ to detect clone termination. The code snippet in Figure 7.8 shows the

main thread for clone connection monitoring. If the monitoring thread sees an EVENT DISCONNECT

event, it sends a RESET signal to the peer process. As the peer process receives a RESET signal,

it queries the current host from the key-value store, and attempts to resubscribe to the clone at

the new hosting cloud.
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EC2 Regions Virtual Machines
ap-northeast-1 4
ap-southeast-1 8

eu-west-1 6
sa-east-1 4
us-east-1 8
us-west-1 4
us-west-2 7

Table 7.2: Testbed distribution in EC2 regions
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Figure 7.10: FogMQ stability for differnet values of η

7.4.4 Experimental results

We deplyed our prototype in a geographically distributed testbed comprising fourty one virtual

machines running in EC2 regions as shown in Table 7.2. One virtual machine is running a Redis

key-value store to maintain experiments logs and a bind DNS server. Twinty virtual machines

are running FogMQ, and each of the remaining virtual machines runs five device emulators.

We generated the peer-to-peer relationships of the hundred device emulators as a subset of the

Facebook dataset from [123].

Our functional evaluation validates the stability of FogMQ given the flocking of clones and

its capability to subdue to end-to-end weighted latency of the clones. The use of geographically

distributed virtual testbed challenges FogMQ’s stability and optimality given the real variability

and uncertainty of the Internet and the hosting cloud conditions. We also show the advantage

of using Flock in FogMQover the widely used architecture in which devices relay messages

through the nearest broker.

Figure 7.10 shows a 30 minutes experiment. Initially all device emulators register with the

nearest FogMQ server by querying the DNS server. The Flockis activated at minute 1, where
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Figure 7.11: FogMQ Latency

all servers verify that all device emulators are registered from the Redis server. At this minute,

clone starts to autonomously migrate between the server and the secondary access show the total

migrations per minute. The number of migrations decrease rapidly and by minute 20, all clones

reside in a FogMQ server where they cannot improve their measured latency anymore. This is

a stability point of Flock. After minute 20, we notice some clones perform migrations in which

they quickly respond to variations in the system.

Figure 7.11 shows the summary statistics of the weighted latency comparing the initial de-

ployment and the stability point of FogMQ. The average latency is not significantly improved.

On the other hand the tail end to end latency shown as the maximum latency and the 95-percentile

latency has improve by 34% and 18% respectively. On the secondary axis of Figure 7.10, we

show the maximum weighted latency measured by clones. As Flock progresses, also stabilizes

at 150ms compared to 231ms initially. This stable behavior demonstrates the capability of

Flock to maintain tail latency under tight control, which we theoretically proved that it is no far

thatn 1 + ε from an optimal.

7.5 Related Work

We propose autonomous brokering clones for designing large-scale distributed pub/sub systems

as a major mechanism that complements existing techniques to minimize the tail end-to-end

messaging latency. Researches focus on three main techniques for the development of simple,

scalable, and resource economic pub/sub systems: 1) content-centric above layer-3 routing be-

tween brokers (e.g. [42, 43, 18, 45, 137]), 2) overlay brokers network topologies designs (e.g.
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[152, 46, 158, 44, 128]), and 3) content-centric in-network caching (e.g.[59, 52, 122, 122]).

Distributed pub/sub systems organize brokers, devices, or routing functions as an overlays

and sub-overlays at the application layer. Upon constructing an efficient overlay network, routing

protocols above layer-3 build minimum-cost message dissemination paths to deliver messages

to subscribers according to specific topic-interest. Caching policies replicate clones’ contents

closer to devices interested in a content for faster repetitive publishing. For a given routing, over-

lay topology, and caching mechanisms, FogMQ ensures that these mechanisms achieve their full

potentials by self-reorganizing the deployment of brokers through migrations in heterogeneous,

unmanaged, and dynamic cloud environments. Unlike widely adopted centralized systems (e.g.

Redis), FogMQ suits the large-scale applications and use cases of IoT and avoids the limitations

of broker-less systems (e.g. ZeroMQ).

7.6 Conclusion

There are many message brokers, cloud offloading, and communication middle-wares that sup-

port IoT analytics. We propose FogMQ, a message broker and cloning system for scalable and

geographically distributed analytics near and at the network edge. FogMQ uses Flockto enable

device clones to autonomously migrate across heterogeneous cloud/edge platforms. FogMQ servers

expose tomography functionalities that enables devices clones to take migration decisions with-

out complete knowledge about the hosting platform. This feature suites the deployability and

scalability challenges across Wide Area Networks (WANs) and the Internet.

We discuss the prototyping of FogMQ and its evaluation of a virtual and geographically

distributed testbed using public cloud resources from AWS-EC2. In our functional evaluation,

we demonstrated the stability of Flock, and the ability of FogMQ to improve the tail latency by

one third of that attained by a widely used architecture in which device communicate through

the nearest message broker. In our design we not only take into account devices’ location, but

also it traffic patter and communication relationships with other devices and cloud services.
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Chapter 8: Policies are not Barriers when Overlay Networks GROUP

8.1 Introduction

GROUP is a dynamic application overlay platform for controlled, trusted, and reliable commu-

nication among heterogeneous devices and services in cloud and edge computing environments.

GROUP eases development and policy management for such complex environments. It has

a control plane that creates application overlay networks. An application overlay network is

data plane that is used to exchange messages between application services. Each data plane

can also act as a control plane to create and manage additional application overlay networks.

Control plane actions are uniformly and transparently subject to policy and obligations. Policy

determines what actions are permitted. Obligations direct adaptation for the system in terms of

launching or terminating services, or requiring changes to the application overlay networks. Our

approach distributes policy enforcement and allows for centralized, distributed, or hybrid policy

decision, information, and administration points. We have implemented GROUP as reusable

Java APIs and tested it in a controlled environment where we demonstrate its usability by imple-

menting a privacy perceiving ride-sharing solution that leverage real-time data from IoT devices.

We provide a secure group platform for dynamic, controlled, trusted, and reliable informa-

tion exchanges among devices and application services from different vendors that may operate

on shared resources from the edge through to the enterprise and cloud. The platform is guided

by policies from participating vendors. The policies govern access to data, participation in dis-

tributed analytics, and access to control interfaces. Policies may be situationally dependent. The

approach is designed to support a vast number of distinct but possibly interconnected instances

of systems, efficiently enabling the diversity of configuration and dynamism that will be required

at an ever expanding edge computing footprint. We use a ride sharing service use case we name

tax-e-bay to demonstrate the platform.

The dynamic secure group platform is based on application overlay networks. The applica-

tion overlay networks can have arbitrary topologies, as best suited to the problem at hand [10].

The topologies are realized by a middleware environment that hides networking complexities

from developers and allows for scalable, real-time, reliable, and secure data exchanges within
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and across administrative domains (see [147, 130]. This enables the implementation of systems

where data remains close to where it was generated and problem-specific topologies of applica-

tion services collaborate to perform analytic tasks such as similarity search or machine learning

without transferring their data to a central data lake.

GROUP eases policy management for such complex environments. Control plane actions

are uniformly and transparently subject to policy and obligations. Data plane communications

are not subject to policy, as the communication links in realized topologies have already been

deemed as permitted. Our approach distributes policy enforcement points (PEP) and allows for

centralized, distributed, or hybrid policy decision point (PDP), policy information points (PIP),

and policy administration points (PAP). This makes the approach more scalable than systems

that enforce policy for each data exchange or that require a centralized policy enforcement,

decision, or administration point. Further, existing middleware systems lack support for the

dynamic creation of groups of application that we show are useful for facilitating application

development.

We describe our architecture and design in Section 8.2, where we detail how GROUP creates

application overlay networks through communication middlewares and uses eXtensible Access

Control Markup Language Version 3.0 (XACML 3.0) policies [71] and obligations for authoriza-

tion and application development. In Section 8.2, we validate our design through the tax-e-bay

use case. We finally summarize the article and discuss future work in Section refconclusion.

8.2 Architecture and Design

GROUP can be deployed on many kinds of computing nodes including dedicated physical

servers or IoT devices, virtual machines, or containers in locations from the edge, to business

permesis, to cloud computing data centers (see Figure 8.1). Each node minimally comprises

of an orchestrator and a middleware service that provides for intra and inter node application

communications. The orchestrator is responsible for application service lifecycle related control

functions for a node. These include starting, stopping an application service, and requesting the

service perform obligated group management activities. A device management service is also

illustrated. It shows IoT devices interacting with the management service using an IoT specific

protocol. Typical device interactions include registering/unregistering, pushing and pulling data,

and receiving control commands. Dynamic secure groups provide for all further communications

among the device management service and other application services.
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Figure 8.1: GROUP architecture.

8.2.1 Application Overlay Networks

An application overlay network is a directed graph, G with its vertex set, V , containing the

members communicating over G’s links. Members are application services, where an applica-

tion service may belong to many graphs at the same time. A directed link i → j ∈ V restricts

communication between i and j, such that i only sends messages to j but not vise versa. A

graph instance has a name and purpose and context for its communications. For example, dif-

ferent graph and link instances may correspond to different programming interfaces for data

access, analytic processes, or access to control interfaces. The applications must implement the

corresponding logic.

A member i can own an overlayG, perform actions onG, and receive events from GROUP APIs

as G changes. Member i can perform two actions: 1) invite another member j to join G, or 2)

join an overlay G upon receiving an invitation. We refer to the invite and join actions by I and J

respectively. With the middleware environment we employ, invitations are sent as point to point

messages. An overlay is not considered created until at least two members (including its owner)

join. As a member joins and leaves an overlay, GROUP triggers events to the overlay owner:

E(G, j) indicating that member j has joined G and L(G, j) indicating that j has left G.

8.2.2 Policies and the Policy Decision Point

Application vendors or deployers use Policy Administration Point (PAP)s to define XACML 3.0

policies for GROUP’s members. These policies are then pushed to Policy Decision Point

(PDP)s for satisfying policy decision requests. Policies govern each members’ entitlements to

perform actions related to overlays and define obligations that guide system adaptation.

Each member i has an authorization policy Pi that a PDP evaluates as i performs an action
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or receives an event. The PDP decision can either be permit, deny, or not applicable in case

Pi is missing. Each policy Pi comprises of two authorization rules: an invite rule and a join

rule. The invite rule comprises a list RI of overlay names, i.e., graph names, that a member i

is permitted to invite other members to. Similarly, the join rule comprises a list RJ of overlays

that i is permitted to join. A policy also comprises two obligation rules: an on member join rule

and an on member leave rule. The on member join rule comprises a list RE of obligations that

the PDP sends to i if j joined G. Similarly, the on member leave rule comprises a list RL of

obligations that the PDP sends to i if j left G. The obligations may cause the start or termination

of an application service, or a request for a service to perform some group management actions.

According to the type of the action or event, an inviting or invited member assumes the role

of a Policy Enforcement Point (PEP) that triggers an XACML 3.0 request to the PDP to make

an authorization decision and/or retrieve obligations. First a member i assumes the PEP role and

request the PDP to evaluate if i is permitted to create an overlay G and invites another member

j. If j receives an invitation from i to join G, it assumes the PEP role and requests the PDP

to evaluate: 1) the invite rule of Pi, and 2) the join rule of Pj . If G ∈ RI of Pi, then i is

permitted to invite j to G and if G ∈ RJ , then j is permitted to join G otherwise j ignores

the invitation. After j receives the authorization to join G, j is entitled to communicate to its

linked member in G’s topology without further policy decisions. After j join G, i receives an on

member join event upon which it assumes a PEP role and triggers an XACML 3.0 request to the

PDP to activate Pi and retrieves the obligations list RE . Similarly, if j leaves G, i triggers an

XACML 3.0 request and retrieves RL. Our design ensures that the minimal number of policies

are evaluated to authorize members to communicate over an overlay.

8.2.3 Bootstrapping and PDP Proxying

When an administrator boots an orchestrator, o, the orchestrator must invite at least one PDP, d,

to join o’s PDP-overlay, God. The orchestrator must also invite at least one Policy Information

Point (PIP), i, to join o’s PIP-overlay Goi. The control overlays, God and Goi, are generally

graph data structure of a hub and spoke topology rooted at o and can include multiple PDPs

or PIPs for scalability, load-balancing, or if desired to support separately host policies from

different administrative domains. Upon receiving the invitations from o, d locally enforces the

invite rules of Po and the join rules of Pd to determine if o is permitted to send and invitation for

God and if d is permitted to join it. Similarly, i enforces the invite rules of Po and the join rules
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of Pi.

Once i joins Goi, o enforces the on member join rule of Po to determine the services that o

needs to launch in the hosting node. Then, the PDP sends RE to the orchestrator on God. In this

context, the administrator shall define RE as a list of services that the orchestrator must launch.

As it receives RE , o launches all services s ∈ RE . As s starts, it creates it local management

overlay, Gso, and invites o to join it. Using the previously discussed pattern, o enforces the invite

rule of Ps and the join rule of Po through d communicating on God.

After launching all services in RE , o assumes a PDP-proxy and PIP-proxy rules that it ex-

poses to all services in its hosting node. When a service, s need to enforce a policy with the PDP,

it sends its XACML 3.0 request to its orchestrator o. Currently, o forwards these local requests

to d.

8.2.4 Service Discovery and PIP Proxying

As an orchestrator o, joins a local management overlay Gso, o registers s with the PIP, i. The

orchestrator sends a remote register call on Goi where i stores s’s attributes, supported overlays,

and supported functionalities in a distributed data-store. In its initial phase a PIP, i, also invites

the PDP, d, to a control overlay Gid. This control overlay not only allows the PIP to enforce

policies with the PDP, but also allows the PDP to use advanced information about the services

from the PIP to make authorization and obligation decisions. For example, a policy may require

situational environmental information that is maintained within the PIP.

A service can discover other services by querying the PIP through the service’s orchestrator.

A service, i, sends a query to its orchestrator, o, on Gio specifying the attributes, names, or

functionalities of the services it need to invite to its application overlays. The orchestrator sends

the query to the PIP where it searches for the required services and notify the orchestrator,

hence the service. The middleware environment we employ handles the network-level service

discovery through gossip-protocols to determine the hosting node of the service.

8.3 A Ride-sharing Use Case

We validate our architecture and design by implementing a distributed ride-sharing use case for

smart-cities with n computing nodes deployed to telecom branch offices throughout the city.

Figure 8.2 illustrates an example for New York city.Ride vendor services {r11, r12, . . . , rnm} -
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are launched at each hosting node when the vendor has cars operating near the computing node

and terminated when it doesn’t. Ride vendor services track car current locations, occupancy, and

battery power levels, where rij denote the ride vendor service j hosted at node i. In this use case,

customers requests rides using their smart-watches that interact wtih a city wide ride sharing

service c. A ride request includes the watche’s customer id, current location, and destination.

Figure 8.2: Tax-e-bay use case: an exemplary ride sharing system for New York City.

The city wide service anonymizes the ride requests to hide customers identities and send it to

the closest city proxy service p ∈ {p1, p2, . . . , pn} hosted in nodes 1 . . . n on a static city-proxy

overlay,Gcp. The overlayGcp is a star topology, where c is the central node and p1 . . . pn are leaf

nodes. As pi receives the ride request, it queries all ride vendors in node i connected to pi in a star

overlay, Gpir (with pi being Gpir’s central node). With this query, pi determines which vendors

can feasibly satisfy the ride request (e.g. can redirect vacant cars to the customer location within

a bounded time) and forwards a list of feasible ride vendors, V to c. Consequently, c creates a

dynamic ride auction group Gride in which vendors run a distributed auction algorithm to select

a car from a vendor with the minimum possible price.

We use GROUP to create static and dynamic overlays for the ride-sharing use case as fol-

lows. We first create the following XACML 3.0 policies: Pc, Prij , Ppi , and Poi , where oi is the

orchestrator of node i and o is the orchestrator in the node hosting c. Pc permits c to invite others

to {Gco, Gcp, Gride} in its invite rule. Prij permits rij to join {Gpir, Gride} in its join rule and

to invite oi to Grijoi in its invite rule. Ppi permits pi to join {Gcp} and to invite oi to {Gpioi}.
An orchestrator policy Poi permits oo to invite the PDP, d, and PIP, i, to {Goii, Goid}. It also

permits oi to join {Grijoi , Gpioi}. The on member join rule of oi lists the services that oi needs

to launch as obligations (i.e. RE = {pi, ri,j}).



144

8.4 Acknowledgments

This work was done while Sherif Abdelwahab was a Research Associate intern with Hewlett-

Packard labs under the mentor-ship of Jerome Rolia. The authors would like to thank Christine

Kelley, the associate dean of the College of Engineering at Oregon State University, to make

Sherif’s internship happen. The statements and opinions expressed herein are solely those of

the authors and do not constitute official statements or positions of Hewlett-Packard enterprise,

Micro-focus, or any of their partners. The authors are grateful to Amip Shah, Kiara Corrigan,

Geoff Lyon, Doron Shaked, and Sagi Schein who contributed to this work.



145

Chapter 9: Beelet: Large-Scale Overlay Network Experiments in Public

Clouds

9.1 Introduction

Today, emerging applications of overlay networks requires experimentation in geographically

distributed testbeds. Distributed analytics near the network edge is one example applications

in which several hundreds of microservices and Internet of Things devices execute distributed

computation on data from devices close to access points [144, 146, 10]. While existing cloud

platforms can provide a controlled and reproducible environment for evaluating new cloud ar-

chitectures for such applications, their assumption that they can (or should) always be used for

experimenting large-scale and geographically distributed overlay networks is problematic.

For example, to experiment FogMQ [7] we need to easily deploy FogMQ services and sev-

eral hundreds of device emulators in a large number of virtual machines that are geographically

distributed and interconnect them as flat networks. To remain cost effective we shall be able

to dynamically create, interconnect, and configure such virtual testbed, run experiments for a

predefined time period, collect results, and then destroy virtual testbed as soon as the results

are available for analysis. In some experiments we also need to measure and account for real

Internet and shared cloud resources variations. Experiments in such variable uncontrolled and

real environments allows credible prototyping of new architectures and systems that face to-

days real-world challenges such as scalability, multi-tenant support, and handling of resource

shortage.

Figure9.1 Illustrates our vision for networks of geographically distributed virtual testbeds.

Virtual machines realize the testbed and can be hosted on commodity hosts, telecommunication

platforms, public clouds, private clouds, or a heterogeneous combination of them. The virtual

machines host application services, processes, or containers from different research experiments.

The hosted services communicate over predefined virtual topologies and can reuse IP address

spaces for simultaneous isolated experiments.

We introduce Beelet; A geographically distributed virtual testbed management API that sim-

plifies large-scale virtual testbed creation for research experiments in network function virtual-
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Figure 9.1: Beelet high-level vision.

ization, distributed systems, and large-scale application overlay networks. Beelet uses Layer-3

overlay networks to interconnect application services that Beelet deployed in virtual machines.

Beelet can use Amazon EC2 or Google cloud platforms to host the virtual machines and au-

tomatically interconnect them according to a predefined topology given by Beelet users. We

demonstrate the effectiveness of Beelet through a usage model in which we deploy FogMQ for

functional experiments. We also demonestrate the usage of Beelet to implement and evaluate

Bird-VNE and RADV.

9.2 Design and Implementation

Beelet consists of a management-plane, control-plane, and data-plane. Figure9.2 illustrates

Beelets management and control planes. The management-plane is responsible for creating,

configuring, and destroying virtual machines across heterogeneous cloud platforms. We refer

to such virtual machines as the testbed workers. Experiments in Beelet are defined as over-

lay topologies of containers that run micro and nano services. The control-plane is responsible

for the dynamic configuration of testbed workers connectivity, containers control, experiments

execution, and results collection. Figure9.3 illustrates Beelets data-plane. The data-plane real-

izes overlay networks between containers or services using Virtual Extensible LAN (VXLAN)

tunnels [119].
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Figure 9.2: Beelet control and management planes.

9.2.1 Testbed Management

Beelet comprises programming APIs that creates the testbed worker in a public clouds. For

each virtual testbed, Beelet creates a master worker that hosts management functions of the

entire testbed workers. After this worker is created, all other testbed management functions are

handled through remote procedure calls between the local Beelet software and Beelet worker

management services in the master worker.

A virtual testbed is specified in JSON format as a virtual topology of testbed workers given

as input to Beelet. Each testbed worker is defined to be hosted in a particular cloud provider,

geographical location, and availability zone. Beelet translates the input specification into a set

of remote procedure calls that are executed by the master worker. The master worker creates

the virtual machines hosting the testbed workers and configure an OpenVSwitch service in each

worker and an SDN controller to control the switch. It also starts a worker controller that al-

lows workers to run distributed control functions, and a container management microservice that

compartmentalizes and executes experiments artifacts.



148

9.2.2 Testbed Workers

Once a testbed worker controller starts, it bootstraps the testbed worker through the master work-

ers controller. Workers controllers communicate over a control-plane middleware. In our imple-

mentation, we use ZeroMQ [89] as a lightweight broker-less middleware for inter and intra

workers communication. The bootstrapping process involves periodic discovery of the con-

tainers and services needed to run a virtual testbed, the virtual topologies of the testbeds, and

the security credentials to enable secure communication. This periodic bootstrapping allows dy-

namic changes of the overlay topology of the virtual testbeds, creating new virtual testbeds using

already running testbed workers, or destroying existing ones.

Testbed Worker

OpenVSwitch

Container Service
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VxLan
VNI-yVNI-x

IP/Mac

VTEP

Testbed Worker

OpenVSwitch

Container Service
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Figure 9.3: Beelet control and data-plane.

In Figure9.3, we illustrate the data-plane of two simple virtual testbeds. In the bootstrapping

phase both workers retrieve a list of networked services. In our example these are one container

and one daemon service in each worker. The worker controller instructs the container manage-

ment module -through RPC calls - to start and configure the container and the service. The

two services communicate over a virtual link x and resemble one distributed experiment. That

services communicate using the same address spaces of the two containers which also run an

isolated distributed experiment.

As a worker i learns about another worker j as having direct virtual links with it for a given

experiment, it starts a distributed overlay links creation process. Worker i contacts worker j

over the - control-plane middleware - to create a bi-directional tunnel for each virtual testbed

as specified in the overlay link description in the testbed spec file. To create the tunnel for the

virtual link x each worker controller sends an RPC call that is executed by the worker local

Software Defined Networking (SDN) controller specifying the remote and local IP addresses of

the worker and a unique VXLAN Network Identifier (VNI) for each virtual testbed.
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9.3 Usage Model

To demonstrate Beelet in action, we used it to deploy FogMQ functional experiments in a geo-

graphically distributed testbed. Experiments in FogMQ comprises two main entities the FogMQ

service and geographically distributed IoT device emulators. A device emulator associates with

the nearest FogMQ service through geographical DNS lookup facilitated by a bind DNS service

that is local to the testbed. Experiments results are collected in a centralized key-value store for

post-experiment analysis.
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Figure 9.4: Beelet useage in FogMQ experiments.

Figure9.4 shows the virtual testbed used in this use case. The testbed comprises two virtual

topologies. The blue virtual topology represents the data communication between the device

emulators and FogMQ, and the red virtual topology represents results communications for stats

collection. By isolating stats collection traffic from data communication, we can enforce com-

munication policies that prevents traffic resulting from stats collection from interfering with data

communication.

9.3.1 BirdVNE Proof Of Concept Implementation

Beelet can also be used to implement Bird-VNE. Figure 9.5 illustrates the software architecture.

Substrate network topologies are created as VirtualTestbed Spec of the Testbed management

module. The Worker Management module maintains a complete view of the testbed workers

topologies which realize the substrate networks, maintain testbed workers utilization (e.g. using

sysstat [83]) and network tomography information (e.g. using iperf [160]). Maintining a consis-

tent view of the network entail a significant overhead as we inject traffic in the network to fill

the bandwidth pipe and implies incorrect functionality due to errors in bandwith estimation in a

shared cloud environment. Such mesurement must be performed on Layer-3. Figure 9.6 shows

the measurement overhead evaluated as the injected measurement traffic in a reporting period

(1 second) divided by the maximum theoritical bandwidth of the testbed worker virtual network

interface.
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Figure 9.6: Overhead of Network Tomography measured between two testbed workers hosted at different
availability zones in an AWS-region as micro instances.
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Figure 9.7: RADV Proof of concept of testbed implementation

The worker management module feeds this information to Bird-VNE. Virtual networks are

given to Bird-VNE as NetworkX graph data structures. The Bird-VNE module then pass the

resulting embedding solutions to the worker management module. The worker management

module communicates the resulting embedding solution to the worker controllers. Finally, the

worker controllers realize the virtual nodes as containers through the container management

module and the virtual links through the SDN controller as VXLan tunnels.

9.3.2 RADV Proof Of Concept Implementation

Figure 9.7 illustrates the software architecture to implement RADV proof-of-concept using

Beelet. One testbed worker comprises processes that generate sensing tasks as python objects.

Sensing task generators seralize the sensing task objects and send it to another testbed worker

which translates sensing tasks to sensing task requests as graph data structure using the networkX

library. Another testbed worker hosts cloud agent functionalities including sensing resource dis-

covery and final embedding solution selection. Other testbed workers host device emulators.

A device emulator consists of several threads. The sensing resource thread in the device

emulator simulates the functionalities of sensors, or utilization of the device emulator. Sens-

ing resource discovery functionality is split between the cloud-agent testbed worker (in sensing

resource discovery process) and the device emulator testbed worker (in Gossip Threads). Fig-

ure 9.8 and Figure 9.9 show the scaling of the Service Disovery Time and number of messages

with the number of used device emulators which scales linearithmicly as expected if fully con-

nected topology. The actual value of this time is strongly dependant on the number of socket

files a device emulator maintains, and how often we open and close the sockets in this proof-

of-concept implementation. A device emulator also comprises threads that implements virtual
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Figure 9.8: RADV Service Discovery Time in Seconds.

Figure 9.9: RADV Service Discovery Number of Virtual Network Messages

domain pruning, benefit matrix construction, and local assignmenent problem solvers. Virtual

sensors are also python threads that communicate over wide area networks using a message

broker system.

Table 9.1 shows the Link embedding time and the execution time of Bird-VNE and RADV

proof-of-concept implementation. The Link embedding Time includes the time to create two

containers in different testbed workers and establish a VxLan tunnel between them. As link

embedding is performed in parallel, it is independant from the number of virtual links or the

number of virtual nodes. This time significantly varies with the used template of the container

image. For Bird-VNE, the execution time is the computation time required from receiving an

input virtual network to the time of finding a solution. For RADV, the execution time is the

computation time required after the service discovery phase to the time of finding a solution.

Both execution times exclude the virtual embedding times1

1Profiling execution time in a multi-tenant cloud enviornment is an invalid metric analysis.
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Metric Value
Link Embedding Time 494.8± 126.4 seconds
Bird-VNE Execution Time 210.8± 0.12 ms
RADV Execution Time (Without Service Discovery) 314.8± 104.2 ms

Table 9.1: Embedding and Execution Time Statistics for Bird-VNE and RADV.

9.4 Related Work

CloudLab [140], GENI [31], and Emulab [151] all are academic federated testbeds for dis-

tributed systems, cloud computing and networking research. Each testbed can provide hundreds

of simultaneous compute slices that suites distributed and overlay network experiments. Exper-

iments are limited in particular geographical locations and generally are reliable and reproduca-

ble. CloudLab in particular operates on top of three data-centers in Utah, Wisconsin, and South

Carolina and integrates with GENI and Emulab. This makes it attractive for experiments that

requires geographically distributed resources.

The above testbeds do not meet the requirements we offer in Beelet. First they operate on

a dedicated networking infrastructure for Internet2, which prevents it capturing real-world sce-

narios of a shared infrastructure for prototyping. Second, despite their geographical distribution,

they operate in limited geographical locations which constraints evaluating geographically dis-

tributed and large-scale functional experiments. Third, the utilization of these infrastructures are

reaching warning peaks that cross 86%. Finally, there is no notion of dynamisms , or predefined

virtual topologies of the overlay networks that one can create on top of these platforms.

9.5 Conclusion

Beelet complements existing experimental environments to create large-scale overlay networks

on top of major public cloud infrastructure. Beelet leverages the decreasing cost of public clouds

and the emergent availability of academic research credits to use high-capacity data-centers op-

erating AWS, Azure, and Google Cloud. Beelet introduces three important features that do not

exist in current testbeds: dynamic testbed creation and extendability, deployability across het-

erogeneous compute resources, and large-scale geographical distribution.
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Chapter 10: Conclusion

This chapter provides a summary of the thesis, discusses its contribution and limitations, and

shed a light on directions of future work.

10.1 Summary

This thesis has introduced techniques for designing and implementing scalable and dynamic

overlay networks to satisfy the requirements of Edge Computing. The theoretical techniques

developed in Flock and REPLISOM has led to the development of the thesis’s proof-of-concepts

designated as Replisom7 and FogMQ.

In Chapter 2, we propose REPLISOM , a cloud resources augmented eNB architecture with

an LTE-optimized memory replication protocol for the Internet of Things applications. REPLI-

SOM works with the in-place LTE technologies and the emerging D2D technologies to efficiently

replicate tiny-sized memory pages from a massive number of devices as fast as possible with the

minimal control channel requirements via the sparse reconstruction in compressed sampling the-

ory. REPLISOM also utilizes the sparsity at the memory level to further improve the delay and

energy consumption. With extensive numerical evaluations of the delay and energy consump-

tion benchmarks, we demonstrate the benefits of REPLISOM to overcome the LTE bottlenecks

that arise from simultaneous access of devices for memory replication. REPLISOM may be

redeveloped to suite existing 802.11a/b/g and LTE technologies.

Chapter 3 describes our proof-of-concept implementation of REPLISOM at layer7. In this

implementation, we provide essential encryption, authentication, access control and discovery

features required in practical Edge computing platforms. We also propose high-level param-

eter tuning that improves REPLISOM’s performance by adopting a self-optimizing the Radio

Resource Control parameters in LTE to minimize the end-to-end memory replication delay and

devices’ energy consumption such that we approach the promised gains of REPLISOM. We ex-

perimentally demonstrate the superiority of REPLISOM to conventional uplink data transfer in

LTE and data aggregation protocols in existing heterogeneous wireless networks.

In Chapter 4, we show that the coupled constraints in the virtual network embedding prob-
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lem make it intractable. Instead of over-provisioning the physical network and splitting virtual

links across multiple paths, we propose VNE techniques that effectively prune the search space,

thereby reducing the execution times by avoiding backtracking, while not compromising the

quality of the obtained VNE solutions, expressed in terms of acceptance rates. Our simulations

show that the likelihood of performing a backtrack-free search is greater than 80%, confirming

the effectiveness of the proposed pruning techniques. These techniques are then exploited to de-

sign a polynomial-time, 1
2 -approximation VNE algorithm. We show analytically and empirically

that the proposed algorithm outperforms MIP-based algorithms in terms of the revenue to cost

ratio and the acceptance rate while minimizing the migration cost arising due to the mobility of

physical nodes.

In Chapter 5, we have shown the potential of Cloud of Things to scale cloud computing

vertically by exploiting sensing resources of IoT devices to provide Sensing as a Service. We

have proposed a global architecture that scales Cloud of Things horizontally by employing edge

computing platforms in a new role as cloud agents that discover and virtualize sensing resources

of IoT devices. We have described cloud agents technical challenges and design objectives for

sensing resources discovery and virtualization that can dispatch offering virtual sensor networks

deployed on IoT devices to cloud users with in-network processing capabilities. We gave a tax-

onomy of the potential sensing tasks, their applications, and there challenges. We have proposed

our sensing resource discovery solution based on a gossip policy to discover sensing resrouces

as fast as possible and RADV: our virtualization solution. We have shown through analysis and

simulations the potential of RADV to achieve reduced communication overhead, low complex-

ity, and closeness to optimal such that RADV employs minimal physical resources in devices

virtualization with maximal benefit. We also proposed RADE for distributed consensus estima-

tion as we believe it is one major sensing task in Sensing as a Service. Using simulation, we

show that RADE reduces the communication overhead significantly without compromising the

estimation error when compared to the traditional ADMM algorithm. We also show that the

convergence time of our proposed algorithms maintain linear convergence behavior, as in the

case of conventional ADMM.

In Chapter 6, we propose Flock; a simple autonomous VMs migration protocol. Flock con-

siders the peer-to-peer interaction of VMs in heterogeneous edge and conventional cloud plat-

forms. We show that Flock converges to a Nash equilibrium with (1 + ε) PoA. Flock minimizes

the average latency of VMs as a generic goal with diverse use cases and can be easily redesigned

to serve other purposes such as load-balancing and energy efficiency.
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In Chapter 7, we propose FogMQ, a message broker and cloning system for scalable and

geographically distributed analytics near and at the network edge. FogMQ uses Flockto enable

device clones to automously migrate across hetrogenous cloud/edge platforms. FogMQ servers

expose tomophgraphy functionalities that enables devices clones to take migration decisions

without complete knowledge about the hosting platform. This feature suites the deployabil-

ity and scalability challenges accorss WANs and the Internet. We discuss the prototying of

FogMQ and its evaluation of a virtual and geographically distributed testebed using public cloud

resources from AWS-EC2. In our functional evaluation, we demonestrated the stability of Flock,

and the ability of FogMQ to improve the tail latency by one third of that attained by a widley

used architecture in which device communicate through the nearest message broker. In our de-

sign we not only take into account devices’ location, but also it traffic patter and communication

relationships with other devices and cloud services.

In Chapter 8, we propose GROUP to enhance the flexibility of the middleware solutions

for IoT use cases. GROUP allows for the dynamic creation and managed change of overlay

networks of application services that are permitted to interact for certain purposes. We used the

authorization and obligation infrastructure of the XACML 3.0 policies to securely and scalably

orchestrate services interactions. In the future, orchestrators can act as a first layer PDP for scal-

ability. The PIPs can also trigger asynchronous events to notify the services with updates to their

queries. The orchestrator could also cache partitions of the PIP store to reduce services discovery

time. With GROUP orchestration, flexible policy enforcement, devices and application services

come/go or move around and GROUP automatically adapts its application overlay networks.

In Chapter 9, We show the advantages of experimenting new architectures and systems on

existing public cloud is the inherent support of massive capacity, several geographical locations,

and prototyping for challenges in real cloud platforms and the Internet. Configuring flat net-

works is relatively straightforward with VXLAN tunnels, however the challenge is to do it with

distributed control that can dynamically learn about changes in the testbed. For this reason,

we believe that Beelet is a very good starting point for virtual testbeds in heterogeneous cloud

environments that can be administered by multiple authorities. We enhanced the flexibility of

creating such virtual testbeds so that it can be organized in any virtual topology and demonstrated

its usage model through creating virtual testbeds for FogMQ.
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10.1.1 Thesis Contributions

This thesis develops prototypes for efficient device cloning and device-to-device communication

in heterogeneous Edge and Cloud Platforms. The decision to pursue this prototype implementa-

tion is based on the studies and lessons learned from designing and developing on-demand virtual

network embedding algorithms that the thesis presents as BirdVNE and RADV in Chapter 4 and

Chapter 5 respectively.

The limitation of BirdVNE and RADV, particularly their suitability for realization in a shared

cloud environment, motivated the development of Flocking Virtual Machines as a key algorithm

for optimizing dynamic overlay networks for objectives such as minimizing latency, improving

energy consumption, or balancing load in cloud and edge environments. The thesis also discov-

ers hidden sparsity in networks of massive number of devices, and shows the performance and

economic benefits of designing device cloning protocols that exploit this sparsity through the

compressive sensing theory. Finally, the thesis conjecture the concept of Cloud of Things that

scales up cloud platforms with sensing resources of the highly dynamic and growing Internet of

Things (IoT) to enable on-demand remote sensing.

The following points enumerate the thesis contributions:

• BirdVNE: Efficiently embeds on-demand virtual networks onto substrate networks using

the theory of constrained optimization. Bird-VNE has applications in: cloud resource

allocation, sensor network virtualization, and data-parallel applications.

• RADV: Distributed resource discovery and network virtualization using gossip protocols

and distributed optimization. RADV has applications in: sensing as a service, scheduling

data-parallel applications in Edge computing, and resource provisioning in heterogeneous

clouds.

• REPLISOM: Efficient memory replication protocol for massive number of IoT devices

in LTE/LTE-A edge clouds using the theory of compressive sensing and machine type

communication. Replisom introduces native cloud procedures design in wireless networks

protocols.

• Flocking Virtual Machines: A simple and scalable protocol that enables live migration of

Virtual Machines (VMs) across heterogeneous edge and conventional cloud platforms to

improve the responsiveness of cloud services.

• FogMQ: A message broker system that minimizes the tail-latency of devices communi-

cating in heterogeneous Edge and Cloud platforms.



158

10.2 Future Work

The research results presented in this thesis lead to several theoretical and experimental research

questions.

Flock theoretical results and applications: Our simulation results - in Chapter 6 - suggest

that Flock scales better than O(n) on average. A formal proof of this result will fortify the un-

derstanding of the expected Flock complexity in addition to its worst case complexity. Flock al-

gorithm shall be applied to applications other than overlay network optimization and virtual net-

work embedding. For example, a centralized implementation of Flock shall optimize resource

assignment in wireless networks with the objective to minimize total wireless interference. For-

tunately, the numerical properties of inter-device interference aligns with the utility function

properties in Flock (monotonic, and reciprocal). Moreover, Flock suits the design requirements

of several emerging applications such as service chaining, cloud-based radio access networks,

and content delivery networks.

REPLISOM for many-to-many relations: The thesis provides an in-depth study of REPLI-

SOM in a one-to-many architecture, where one edge cloud replicates the memory of many de-

vices. Nevertheless, REPLISOM is extendable to a many-to-many architecture, where several

replicating nodes pulls devices replica and reach consensus about devices memory contents.

This suits applications where consensus is required besides the replication processes. It remains

unclear though if REPLISOM brings performance, reliability, or security advantages compared to

existing consensus algorithms.

REPLISOM and Flock performance over other transport networks: The thesis focus the

design of REPLISOM for 3GPP and WiFi-direct networks, and the implementation of Flock for

wired networks. Extending the applicability of both protocols requires extensive performance

bench-marking of the developed prototypes for not only 3GPP networks but also for other tech-

nologies such as: low-power Bluetooth, WiFi, ZigBee, or IEEE 802.19 standard. Additionally,

studying Flock performance when deployed over wireless networks shall bring new insights that

particularly aid in the development of reliable network tomography (e.g. latency measurements)

in wireless environments.
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Network tomography in shared cloud environments: Effective and efficient bandwidth mea-

surements are the main setbacks in prototyping Bird-VNE and RADV. Although that this limita-

tion motivated the development of Flock, it remains important to develop efficient mechanisms

for network tomography where the network and host resources are shared by tenants whose re-

source usage are unknown and cannot be inferred. The newly developed techniques shall be

different from existing tools and systems, in the sense that the assumption that a single authority

manages the entire infrastructure across all the network layers is not valid. These new methods

shall also avoid approaches that attempt to infer resource usage by other tenants, as these ap-

proaches violate fundamental security principles in shared cloud environments and shall not be

used in practice.
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Appendix A: LTE System Level Simulations for REPLISOM numerical

models
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Figure A.1: Simulation Setup
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Figure A.3: Sectorized coverage map given the sites position and the used antenna pattern.
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Figure A.8: Transport block size statistics through the entire simulations.
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Appendix B: Blueprint: Extending Beelet capabilities to support

CloudLab/GENI

The Beelet virtual testbed supports only AWS and GCE cloud resources. This makes our pro-

posed techniques undeployable on GENI/CloudLab. In this appendix, we describe how we

extend Beelet’s capabilities to deploy experiments on GENI/CloudLab resources and use it to

profile real inter-cloud delays and utilization.

A major barrier that constraints the usage of GENI/CloudLab is the substantial gap in design

between Beelet and the implemented proof-of-concepts of our techniques compared to GENI

Operations and Management APIs. GENI uses low level compartments to support a wide spec-

trum of basic components (e.g. an edge computer, customizable router, programmable access

point, or optical link) in aggregates.

However, the main building block of Beelet is a cloud platform provisioning APIs that can

be easily used to create virtual machines as testbed workers (Beelets basic testbed component)

that executes the proof-of-concept implementations of our techniques. In order to use GENI

operations and management tools (e.g. omni, geni-lib, and RSpec), we need to architect, design,

develop, and test Beelet and the developed proof-of-concepts to use these basic GENI building

blocks from scratch in a very lengthy development cycle. Fortunately, recent advancements in

ExoGENI, and CloudLab allows the definition of in-place resource specification that we can use

to deploy highly-configurable OpenStack (an open source cloud platform for Infrastructure as a

Service) instances as GENI resources.

In this appendix, we give a blueprint on how to use OpenStack nova to augment the Public

Cloud and Remote Configuration module of Beelet and extend its usability to support Cloud-

Lab. Figure B.1 shows a simple and effective modification that allows using Beelet not only

on GENI/CloudLab bare-metal resources, but also on any other OpenStack-based public cloud

provider (e.g. RackSpace, Mirantis, Redhat, or IBM), free OpenStack clouds, or even on a sin-

gle laptop using devstack. The model-correction and validation is a placeholder for a module for

network and host tomography (i.e. bandwidth, and processing metrics) of virtual machines in

public cloud environments, where its development is a parallel research topic that’s outside the

scope of this thesis.
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List of Acronyms

ADMM Alternating Direction Method of Multipliers

API Application Programming Interface

CDF Cumulative Distribution Function

DNS Domain Name Service

EC Edge Cloud

IoT Internet of Things

IP Internet Protocol

LS Least Squares

ML Maximum-Likelihood

MSE Mean Square Error

NE Nash Equilibrium

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PoA Price of Anarchy

QoS Quality of Service

RADE Randomized and Asynchronous Distributed Estimation

RADV Randomized and Asynchronous Distributed Virtualization

RPC Remote Procedure Call

RTT Round Trip Time
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SDN Software Defined Networking

SLA Service Level Agreement

TCP Transport Control Protocol

VM Virtual Machine

VNI VXLAN Network Identifier

VXLAN Virtual Extensible LAN

WAN Wide Area Network

XACML 3.0 eXtensible Access Control Markup Language Version 3.0
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[27] Paul Balister, Béla Bollobás, Amites Sarkar, and Mark Walters. Highly connected random
geometric graphs. Discrete Applied Mathematics, 157(2):309–320, 2009.

[28] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-sensitive
application performance in the cloud. In Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, pages 35–46. ACM, 2010.

[29] Abdeltouab Belbekkouche, Md Hasan, Ahmed Karmouch, et al. Resource discovery
and allocation in network virtualization. Communications Surveys & Tutorials, IEEE,
14(4):1114–1128, 2012.

[30] Radu Berinde, Anna C Gilbert, Piotr Indyk, Howard Karloff, and Martin J Strauss. Com-
bining geometry and combinatorics: A unified approach to sparse signal recovery. In
Communication, Control, and Computing, 2008 46th Annual Allerton Conference on,
pages 798–805. IEEE, 2008.

[31] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar
Raychaudhuri, Robert Ricci, and Ivan Seskar. Geni: A federated testbed for innovative
network experiments. Computer Networks, 61:5–23, 2014.

[32] Christian Bettstetter. On the minimum node degree and connectivity of a wireless multi-
hop network. In Proceedings of the 3rd ACM international symposium on Mobile ad hoc
networking & computing, pages 80–91. ACM, 2002.

[33] Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden. Weighted congestion games:
The price of anarchy, universal worst-case examples, and tightness. ACM Transactions
on Economics and Computation, 2(4):14, 2014.



175

[34] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: A
platform for internet of things and analytics. In Big Data and Internet of Things: A
Roadmap for Smart Environments, pages 169–186. Springer, 2014.

[35] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16. ACM, 2012.

[36] Vivek S Borkar. Stochastic approximation with controlled markovnoise. Systems & con-
trol letters, 55(2):139–145, 2006.

[37] Juan Felipe Botero, Xavier Hesselbach, Michael Duelli, Daniel Schlosser, Andreas Fis-
cher, and Hermann De Meer. Energy efficient virtual network embedding. Communica-
tions Letters, IEEE, 16(5):756–759, 2012.

[38] Juan Felipe Botero, Xavier Hesselbach, Andreas Fischer, and Hermann De Meer. Optimal
mapping of virtual networks with hidden hops. Telecommunication Systems, 51(4):273–
282, 2012.

[39] Juan Felipe Botero, Miguel Molina, Xavier Hesselbach-Serra, and José Roberto Ama-
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