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This dissertation presents a different approach to understanding how amphibians 

are responding to disease through ontogeny. Although numerous efforts have been 

conducted to understand host responses to the fungus Batrachochytrium dendrobatidis 

(Bd), studies have been restricted to distinct developmental stages. This dissertation 

provides information on host response to Bd across life history transitions in native and 

invasive anuran species. My dissertation is an effort to understand several aspects of the 

host-pathogen dynamic in the amphibian- chytrid system from embryos to hatchlings, 

larvae, and juveniles to reproductive adults. I investigate how previous exposure at early 

life stages (embryos) carries over to impact host response in later life stages. Then, I 

explore how the virulence of the pathogen varies according to its origin and how this 

modifies host response. Finally I explore variation across geographic ranges in size at 

first reproduction, a life history trait that influences invasion potential, in the American 

bullfrog (Lithobates catesbeianus).  



 

Biodiversity loss threatens ecosystems worldwide and several factors, such as 

habitat transformation, overexploitation, and pollution contribute to this unprecedented 

crisis. Additional threats include emerging infectious diseases and the introduction of 

invasive species, both included as central topics of my dissertation research.  

I experimentally examined if embryonic exposure of anuran species to the fungus 

Batrachochytrium dendrobatidis (Bd) produces effects within the same stage. I exposed 

embryos of three anuran species found in the Willamette Valley, Oregon, to different 

strains of Bd at particular stages of embryonic development. I found that exposure to Bd 

resulted in direct effects on embryos; I found an increase in mortality after Bd exposure, 

and this response was conditioned by the host species, timing of exposure and Bd strain. I 

followed individuals through the hatching life history transition and into the larval stage. 

I detected both direct and latent effects of Bd exposure on the anuran larvae. Direct 

effects were observed in individuals exposed only as larvae, while latent effects were 

detected in individuals exposed only as embryos. Finally, repeated exposure to Bd as 

embryos and larvae resulted in species-specific mortality (Chapter 2).  

Research on variation in host response to pathogens isolated from conspecifics in 

different distributional ranges is needed to understand how pathogen origin can mediate 

host response. Chapter 3 explores the susceptibility of wild-caught invasive American 

bullfrogs to different Bd strains isolated from conspecifics in different distributional 

ranges. I found larval bullfrogs were susceptible to a novel Bd strain despite it being 

isolated from conspecifics. The finding of lower infection loads over time suggests 

bullfrogs are potentially able to clear Bd infection, but this response seems to be strain-

specific. In an era of emerging diseases and globalization, understanding the impacts of 



 

novel strains provides information about the importance of evolutionary relationships 

between hosts and pathogens. 

In chapter 4, I studied the next anuran life history transition: reproductive adults. I 

quantified variation in a key life history trait, size at first reproduction, which contributes 

to reproductive, and thus invasion, success. I used field sampling and laboratory analysis 

to determine the minimum reproductive size in an invasive anuran species, the American 

bullfrog, in the Willamette Valley. I found the minimum reproductive size of bullfrogs is 

similar to the reported values for bullfrogs in other invaded ranges yet smaller than sizes 

reported from their native range at similar latitudes. The results obtained by this research 

may be applied to management actions towards controlling and minimizing the impacts 

of this invasive species over local species of conservation concern.  

Chapter 5 summarizes the findings and implications of the studies presented in 

this dissertation. 
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Diseases play a major role in determining the life history, population dynamics and 

community structure (Jones et al. 2008). Disease results in complex interactions among hosts, 

pathogens and the environment (Plowright et al. 2008, Skerratt et al. 2009, Haislip et al. 2011). 

Therefore, understanding disease dynamics requires study across multiple taxonomic and 

hierarchical scales ranging from molecular biology to ecosystem level. The integration of 

ecology, immunology, epidemiology, pathology, invasion biology and conservation biology will 

enrich our understanding and management of disease dynamics that can have significant impacts 

on wild organisms. To advance our knowledge of disease, we must integrate these diverse 

scientific disciplines to design comprehensive and holistic studies (Plowright et al. 2008). 

In recent years, the emergence of infectious diseases has caused global concern due to the 

link with species extinctions, population declines and developmental anomalies (Jones et al. 

2008). Biodiversity losses have been documented globally across multiple taxonomic groups 

(Mooney 2010) and amphibians are recognized as a group of serious conservation concern 

(Stuart et al. 2004, Wake & Vredenburg 2008, Kilpatrick et al. 2010) with extinction rates 

estimated to exceed 105 times the baseline for all species (McCallum 2007). Amphibian 

population declines are often the result of multiple factors and are strongly impacted by habitat 

loss, the introduction of non-native species, and emerging infectious diseases (Kats & Ferrer 

2003, Cushman 2006, Blaustein et al. 2011). Different types of pathogens affect amphibians in 

complex ways and can cause mortality or sublethal damage (Blaustein & Kiesecker 2002, 

Blaustein et al. 2012). Bacterial and viral diseases such as red leg syndrome and ranaviruses 

affect both wildlife and captive amphibian populations (Cunningham et al. 2003, Densmore & 

Green 2007). Mycotic and mycotic-like organisms are also implicated with amphibian diseases, 
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such as chytridiomycosis, zygomycoses, chromomycoses, saprolegniasis and ichtyophoniasis 

(Speare et al. 1994, Longcore et al. 1999, Taylor et al. 1999, Kiesecker et al. 2001, Juopperi et al. 

2002, Densmore & Green 2007). Protozoan and metazoan parasites cause malformations, such as 

webbings, supernumerary digits and limbs, or missing limbs (Blaustein & Johnson 2003a, b, 

Johnson et al. 2003). However, only a fraction of these pathogens are implicated in the decline of 

multiple populations of amphibians (Daszak et al. 1999, Wake & Vredenburg 2008).  

Emerging Infectious Diseases (EIDs) are those reported in new geographical ranges and 

host species, and whose incidence, pathogenicity and impact have increased recently (Daszak et 

al. 2003). Batrachochytrium dendrobatidis (Bd) is the pathogen that causes chytridiomycosis, an 

emerging infectious disease of amphibians ((Berger et al. 1998, Daszak et al. 1999, Longcore et 

al. 1999). The geographical distribution of Bd is extensive: Bd is present on every continent 

except Antarctica (Fisher, Garner, et al. 2009). Bd has been reported in 516 amphibian species 

(Olson et al. 2013), and is associated with the extinction and decline of at least 200 species 

(Skerratt et al. 2007). Considering future scenarios of climate change, model project Bd will 

spread to new regions threatening additional amphibians populations (Xie et al. 2016). Virulence 

of Bd is associated with its dynamic genome (Farrer et al. 2017); multiple lineages have been 

described revealing the complexity of Bd’s evolutionary history and significant diversity in 

lineage function (Rosenblum et al. 2013). So far, the global panzootic lineage emerging in the 

20th century is recognized as producing the most aggressive strains (Farrer et al. 2011). Research 

on how hosts respond to different strains with different virulence must be done when considering 

the interaction among the host, Bd, and the environment.  

The response of amphibians to Bd vary with species (Blaustein et al. 2005, Garner et al. 

2006, Searle et al. 2011, Brannelly et al. 2012, Gervasi et al. 2017) and population (Briggs et al. 
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2005, Tobler & Schmidt 2010, Phillott et al. 2013, Bradley et al. 2015). Host response is also 

modified by factors such as environmental conditions (Schlaepfer et al. 2007), Bd strain (Berger 

et al. 2005, Fisher et al. 2009, Dang et al. 2017), host developmental stage (Garcia et al. 2006, 

Ortiz-Santaliestra et al. 2013, Bakar et al. 2016, Gervasi et al. 2017) and host immunity (Gervasi 

et al. 2014, McMahon et al. 2014, Bataille et al. 2015). Hosts can exhibit diverse responses to Bd 

infection which include reduced survivorship as well as indirect or sub-lethal impacts such as 

changes in host behavior (Han et al. 2011), activity (Kleinhenz et al. 2012), morphology 

(Venesky et al. 2010), and timing and size at metamorphosis (Parris & Beaudoin 2004, Parris & 

Cornelius 2004). These sub-lethal responses can have significant impacts on host fitness and 

disease dynamics within the ecosystem. As such, it is important to identify species- and stage-

specific variables that influence the direct and indirect effects of Bd.  

Host ontogeny and life stage are important factors when examining or predicting disease 

dynamics. Exposure to the pathogen during a particular developmental stage can drastically 

change host life history trajectories. Exposure of amphibian embryos to pathogens at early stages 

of development can trigger latent, or carry over development effects over ontogeny (Rohr et al. 

2013). For example, exposure of amphibian egg masses to a pathogenic fungus (Order: 

Dothideales) and water molds (Order: Saprolegniales) resulted in earlier hatching in four 

different amphibian host species (Warkentin et al. 2001, Gomez- Mestre et al. 2006, Touchon et 

al. 2006). We currently lack information regarding latent effects of Bd exposure on development 

through ontogeny, as well as direct Bd impacts on embryos. Interestingly, amphibian embryos 

were not considered to be susceptible to the chytrid fungus. However, the Bd pathogen can 

produce enzymes that can destroy tissue, potentially impacting embryos by delaying or 

triggering key transitions such as hatching time (Rosenblum et al. 2010, McMahon et al. 2013, 
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Fites et al. 2013). This may result in ontogenetic shifts or changes in life history strategies. 

Direct or latent effects may also vary with Bd strain and with host species, therefore evaluating 

different strains is critical to disentangle intrinsic aspects of the pathogen as virulence and how it 

changes among hosts. 

The chapters included as part of this thesis are aimed to advance our understanding of the 

interaction host – pathogen in native and invasive amphibian species across life history 

transitions. My research is mainly empirically driven, but it also includes field sampling for 

sample collection and laboratory analysis. In this thesis, I examine the impact of exposure to 

different Bd strains on native and invasive amphibian species (Chapter 2). I exposed embryos 

and followed their development across the hatching life history transition (Gosner stage 26), 

describing patterns of susceptibility for Pseudacris regilla, Anaxyrus boreas and Lithobates 

catesbeianus. In my next chapter, using wild - caught metamorphs of L. catesbeianus, I 

evaluated susceptibility to different strains of Bd isolated from conspecifics (Chapter 3). This 

chapter examines different pathogenic strains and their differential effects on an invasive anuran 

species. In chapter 4, I focused on reproductive potential of L. catesbeianus in their invaded 

range. The results from this chapter may be useful for managers for understanding when an 

invasive species reaches its minimum reproductive size which can help management to make 

informed decisions for control. Finally, in the last chapter (5), I summarize my work in regards 

to future research efforts to better understand the dynamics of an emerging infectious disease 

(chytridiomycosis) in anuran hosts. This research represents a different approach to 

understanding how amphibians are responding to disease through ontogeny and provides novel 

information regarding disease ecology, particularly impacts of emerging infectious diseases in 

key life history stages.   
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Abstract 

Emerging infectious diseases are one of the multiple factors contributing to the current 

biodiversity crisis. Amphibian populations are declining globally in part due to chytridiomycosis, 

an emerging infectious disease, caused by the fungal pathogen Batrachochytrium dendrobatidis 

(Bd). This fungus primarily affects keratinized structures in larval, juvenile, and adult 

amphibians. However, we know little about how Bd can impact early amphibian life history 

stages as well as potential latent effects of Bd exposure over ontogeny. We examined the effects 

of Bd exposure across Pacific chorus frog (Pseudacris regilla), Western toad (Anaxyrus boreas) 

and American bullfrog (Lithobates catesbeianus) life stages using two different Bd strains and 

multiple exposure times. Using a factorial experimental design, embryos of these three species 

were exposed to Bd at early or late embryonic stages, with some individuals re-exposed after 

hatching. Embryonic Bd exposure resulted in differential survival as a function of host species, 

Bd strain and timing of exposure. P. regilla experience embryonic mortality when exposed 

during later developmental stages to one of the Bd strains. There were no differences across the 

treatments in embryonic mortality of A. boreas. And embryonic mortality of L. catesbeianus 

occurred in all Bd exposure. We detected latent effects in A. boreas and L. catesbeianus larvae, 

as the odds of larval mortality increased when individuals had been exposed to any of the Bd 

strains during the embryonic stage. We also detected direct effects on larval mortality in all 

three-anuran species as a function of Bd strain. And when individuals were repeatedly exposed 

(late in the embryonic stage and again as larvae), we found an increase in the odds of mortality. 

Our results suggest that exposure to Bd can directly affect embryo survival and have direct and 

latent effects on larvae survival of both native and invasive species. However, these impacts 

were highly context dependent, with timing of exposure and Bd strain influencing the severity of 

the effects.  
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Introduction 
 

In many organisms, exposure to stressors during embryonic or prenatal stages can result 

in both direct and latent effects on subsequent developmental stages. These effects can be on 

individual growth rates, behavior, locomotion, immunology, etc. (Pechenik 2006, Uller et al. 

2009, Murillo-Rincón et al. 2017, Sniegula et al. 2017). For example, exposure to predator cues 

in the pinewoods tree frog Hyla femoralis slowed larval growth and development, resulting in 

metamorphs with relatively smaller body sizes (LaFiandra & Babbitt 2004). In amphibians, 

repeated exposure at early life stages to other environmental stressors, such as contaminants, 

predator cues, and pathogens can produce latent effects in juvenile and adult amphibians 

(Pechenik 2006, Richter-Boix et al. 2014, Garcia et al. 2017). As such, the timing of pathogen 

exposure might play a critical role on host susceptibility to infection (Rumschlag & Boone 

2015). 

Changes in individual susceptibility to pathogens occur throughout ontogeny in many 

organisms, including plants (Develey-Rivière & Galiana 2007), insects (Brutscher et al. 2015), 

birds (Mast & Goddeeris 1999), reptiles (Holgersson et al. 2016), mammals (Valkenburg et al. 

2012) and amphibians (Rohr et al. 2010, Echaubard et al. 2016). The key, however, to 

understanding temporal association between pathogens and susceptibility is to empirically 

discern latent and direct effects within and across life history stages. We posit that amphibians 

can be model systems for testing these questions as they are a taxon of conservation concern, 

have complex life histories, and are susceptible to multiple emerging infectious diseases.  

One of the most researched amphibian pathogens is the fungus Batrachochytrium 

dendrobatidis (Bd), which has been implicated in the decline of numerous amphibian species 
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worldwide (Hatcher et al. 2012, Olson et al. 2013, Berger et al. 2016). Differential susceptibility 

to Bd has been documented across species (Blaustein et al. 2005, Searle et al. 2011, Gahl et al. 

2012, Gervasi et al. 2013, Bielby et al. 2015, Gervasi et al. 2017), populations (Tobler & 

Schmidt 2010, Bradley et al. 2015), life stages (Briggs et al. 2005, Garner et al. 2009, Briggs et 

al. 2010, Piovia-Scott et al. 2011, Ortiz-Santaliestra et al. 2013) and Bd strains (Retallick & 

Miera 2007, Gervasi et al. 2013, Doddington et al. 2013, Piovia-Scott et al. 2015, Berger et al. 

2016, Dang et al. 2017). However, how exposure to Bd in one developmental stage can produce 

latent effects in a later life stage is unclear. Information regarding direct Bd impacts on embryos 

is also lacking as Bd mainly affects keratinized structures, which are absent in embryos. Further, 

the importance of evolutionary relationships between Bd strain and the embryonic host may also 

have significant implications.  

We explored the direct and latent effects of Bd exposure on both the embryonic and 

larval stages using three amphibian species with differential susceptibility to native and invasive 

Bd strains. We posit that amphibian embryos will be susceptible to the chytrid fungus as Bd can 

produce enzymes that can destroy tissue (Fites et al. 2013; McMahon et al. 2012; Rosenblum et 

al. 2010). Further, the release of fungal toxin (Blaustein et al. 2005, Voyles et al. 2009) could 

impact embryos by delaying or triggering key transitions resulting in ontogenetic shifts or latent 

effects on life history trajectories. Direct or latent effects may also vary with Bd strain and with 

host species, therefore evaluating different strains is critical to disentangle intrinsic aspects of the 

pathogen, such as virulence and how it changes among hosts. We also examined the influence of 

Bd exposure on larval survival predicting that repeated exposure to Bd across the 

embryonic/larval transition would result in decreased survival.  
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Methods 
 

We studied three anuran species found in the US Pacific Northwest (PNW). The Pacific 

chorus frog (Pseudacris regilla) is a highly abundant species throughout its PNW range, the 

Western toad (Anaxyrus boreas) has experienced declines across much of its historic range and 

American bullfrogs (Lithobates catesbeianus) are an introduced species in the PNW (Blaustein et 

al. 1995, Muths et al. 2003, Jones et al. 2005). Twenty clutches of P. regilla were collected from 

Little Three creeks on 19 June 2014 (44°06'03.5" N, 121°38'34.7" WGS84 Deschutes County, 

OR, elevation = 2000 meters) and 600 eggs of A. boreas were collected from 20 different egg 

masses at Todd Lake (44°01'44.5" N, 121°41'07.6"W WGS84 Deschutes County, OR, elevation 

= 1870 meters) on 29 May 2015. We collected 600 newly laid eggs from six distinct L. 

catesbeianus egg masses from William L. Finley National Wildlife Refuge on 20 May 2014 

(44°25'23.6" N, 123°18'41.8"W WGS84 Benton County, OR, elevation = 276 meters). After 

collection, eggs were immediately transported to a climate controlled environment at Oregon 

State University and held under constant temperature (14 – 15.5 C) and photoperiod (12L: 12D) 

conditions. Less than six hours after arrival, every clutch of P. regilla or group of eggs of A. 

boreas and L. catesbeianus were divided into three groups and each group for P. regilla and A. 

boreas contained ~10 eggs (±1.95 eggs), and 20 eggs for L. catesbeianus.  

 

Pre-Hatch Exposure Regime- 

Bd exposure treatments were administered in either the early embryonic developmental 

stages or closer to hatching. Early exposure (early) corresponded to the late gastrula stages, or 

Gosner Developmental Stage 12 (Gosner 1960) while closer to hatching exposure (late) 
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corresponded to embryos capable of muscular response, or Gosner Developmental Stage 18 

(Gosner 1960). Bd strains (i.e. the isolate of the fungus used for the inoculation) included a novel 

Bd strain to Oregon freshwater habitats (JEL 627, hereafter ‘East’, isolated from L. catesbeianus 

in Maine USA), and an endemic Bd strain (JEL 630, hereafter ‘West’, isolated from L. 

catesbeianus in Oregon). Following Searle et al. (2011), Bd was cultured on a sterile tryptone – 

agar media plates with 0.5 ml of stock Bd broth coming from each particular strain of the fungi. 

Bd cultures were allowed to grow for 5-8 days at 20 °C before used in the experiment. 

Using a hemocytometer, we quantified the zoospores from a pooled inoculation broth (8-12 

plates per Bd strain). Five ml inoculations of the zoospore broth (30K zoospores/ml) were then 

administered to experimental units (18 cm H x 10 cm OD high - density polyethylene graduated 

beakers) containing 800 ml of dechlorinated water. A similar dose was previously tested in 

larvae of P. regilla (Gervasi et al. 2013), A. boreas (Marcum et al. 2010, Gervasi et al. 2013, 

Searle et al. 2014), and L. catesbeianus (Gahl et al. 2012, Eskew et al. 2015). Controls were 

inoculated with a sham inoculum created by rinsing the same number of sterile agar plates with 5 

ml of dechlorinated water.  

Using a factorial experimental design, each group of eggs was assigned to a time of 

exposure treatment (Early, Late) and a Bd strain treatment (West, East, Control) (Figure 2.1: pre-

hatching). 60 experimental units (581 total eggs) were assigned for P. regilla (10 replicates per 

Early and Late treatment groups), 51 experimental units (506 total eggs) for A. boreas (8 

replicates per Early exposure treatment, 9 replicates per Late exposure treatment), and 30 

experimental units (600 total eggs) for L. catesbeianus (5 replicates per Early treatment groups, 6 

replicates per East/Late treatment, and 4 replicates for West/Late exposure treatment) (Table  
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Table 2.1). The length of the pre-hatching phase varied by species, lasting 19 days for P. regilla 

and A. boreas, and 22 days for L. catesbeianus. Embryos that died were preserved individually in 

2.0 ml Eppendorf tubes with 95 % ethanol. No water changes were performed during the pre-

hatching phase as movement associated with water changes can induce hatching, thus 

influencing our results. Upon hatching, water changes were conducted weekly. We quantified the 

time of hatching by direct observation, and hatchling events and survival were recorded twice 

per day.  

To analyze differences in hatching time, we compared proportions between treatments of eggs 

being exposed to Bd and control treatments (no exposure to the pathogen) using quasibinomial 

generalized linear models (GLM). All analyses were run in R (R Core Team 2016). To evaluate 

differences among strains and controls we calculated pairwise comparison using a Tukey HSD 

test.  

 

Post-Hatch Exposure Regime 

Upon hatching, survivors were pooled within pre-hatch treatment groups (Early or Late; East, 

West, Control) to standardize sample sizes for the post-hatch phase of the experiment. In this 

phase, larvae were either re-exposed to the same pre-hatch Bd strain or held as controls to 

estimate latent effects (Figure 2.1: Post-Hatch). For P. regilla, there were a total of 328 surviving 

hatchlings distributed across the larval exposure treatments for a total of 82 experimental units, 

resulting in 33 control replicates, 21 East strain replicates, and 28 West strain replicates. We 

reported complete mortality in the East/Late pre-hatch exposure treatment group; as such, there 

was no continuation of this treatment in the post-hatch phase. For A. boreas, we ran 42 control 

replicates, 28 East strain replicates, and 26 West strain that contained a total of 384 surviving 
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hatchlings for a total of 96 experimental units. For L. catesbeianus, we ran 23 control replicates, 

17 East strain replicates, and 16 West strain using a total of 228 surviving hatchlings with a total 

of 56 experimental units. Due to complete mortality in the East/Early and the West/Early pre-

hatch phase, these treatments were not continued in the post-hatch phase (Table 2.2). 

Larvae were held individually and those that were re-exposed to Bd were re-inoculated once a 

week (every 7 d) for the duration of the experiment. Individuals were held in rectangular plastic 

containers (31 x 18 x 8 cm) filled with 2000 ml dechlorinated water. Water changes occurred 

concurrently with re-inoculation using 5ml of 50K zoospores/ml. Animals that died during the 

experiment were preserved in 95% ethanol. At the end of the experiment, animals remaining 

alive were humanely euthanized in accordance with institutional animal care protocol in MS-222 

(Tricaine methanesulfonate) and then preserved in 95% ethanol. The experimental trials for each 

species lasted until individuals reached Gosner stage 30-31 (distinctive foot paddle) or death. 

Total duration for the experiment was 65 days for P. regilla, 59 days for A. boreas and 19 days 

for L. catesbeianus.  

 

We monitored survival twice per day and quantified developmental differences through time by 

staging all larvae (Gosner stage) every week during water changes. At the end of the post-hatch 

phase, we sampled a subset of all Bd-exposed animals of each species and also randomly 

sampled 5 control animals of each species to confirm no contamination happened across 

treatments. To assess infection load at the termination of the experiment, we dissected larvae 

mouthparts for P. regilla individuals, and we swabbed mouthparts using fine tipped sterile rayon 

swabs (Medical Wire and Equipment MW&E 113) for A. boreas and L. catesbeianus. Both 

protocols, swabbing and cutting mouthparts, are recommended as adequate protocols for 
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assessing infection loads. Excised mouthparts and swabbing are similar in the likelihood of 

detecting Bd infection regardless of developmental stage and larval size (Retallick et al. 2006, 

Hyatt et al. 2007).  

Each sample was analyzed using quantitative polymerase chain reaction (qPCR) 

following the methods of (Boyle et al. 2004). A small modification of the amount of Prepman 

Ultra (Applied Biosystems®, Life Technologies) was used to extract the DNA; we used 60 µL 

instead of 40 µL (Searle et al. 2013). Our extractions were diluted 1:10 and each sample was 

analyzed in triplicate to quantify the average number of genome equivalents per animal (7500 

real-time PCR Applied Biosystems instrument). To analyze infection loads, we log transformed 

the qPCR results as log (genome equivalents per individual + 1) to normalize data.  

 

Effect of exposure on survivorship was analyzed independently by species using odds 

ratios calculated with a generalized linear mixed model, family: binomial (logit). The values of 

the ratios represent the likelihood or the risk of mortality due to exposure to the pathogen in 

comparison to the controls. Therefore, odds ratios higher than 1 represent an increased risk after 

exposure, odds ratios equal to one represent no difference in the risk, and odds ratios lower than 

1 represent a lower risk of the exposed group. All analyses were run in R (version 3.3.2). 

 

Results 
 

Pre-Hatching Phase:  

Pseudacris regilla embryos exposed to both the East and West Bd strains in the Early exposure 

groups had a lower proportion of hatchlings relative to controls (East strain: t = - 4.40, p<0.001; 
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West strain: t =1.99, p = 0.04). A post hoc Tukey test showed that this proportion was different in 

embryos exposed to the East strain in contrast to the control (z = -4.45, p<0.001) and the West 

strain (z = 6.14, p<0.001), with only a 50% hatching rate. Reduced hatching was also found in 

the Late/East treatment group (t = - 11.03, p<0.001) relative to the Late/West treatment (t = - 1.29, 

p= 0.19). In fact, less than 10% of embryos hatched after being exposed late in development to 

the non-native East strain (Figure 2.2, top). In A. boreas, the proportion of embryos that hatched 

was similar across both strains in comparison to controls across the Early (East strain: t = - 0.49, p 

= 0.62; West strain: t =0.62, p = 0.53) and Late exposure treatments (East strain: t = 1.31, p=0. 19; 

West strain: t =0.73, p = 0. 46) (Figure 2.2, middle). The proportion of L. catesbeianus embryos 

that hatched was low when embryos were exposed early in development, with lower survival in 

the West Bd strain treatment relative to controls (West strain: t =3.58, p<0.001). There were no 

survivors in the East strain exposure treatment. The estimate of Bd strain as factor in our model 

was high (5329), potentially due to the 100% mortality, making the t and p- value not significant 

(t = 0.003, p = 0.99). The proportion of embryos that hatched in the Late exposure treatment was 

lower across both Bd strains in comparison to the controls (East strain: t = 2.89, p <0.01; West 

strain: t = 2.13, p= 0.03) (Figure 2.2, bottom). A post hoc Tukey test showed that this proportion 

was different in embryos exposed to the East strain in contrast to the control (z = 2.89, p<0.01), 

but it was not different for embryos exposed to the West strain (z = 2.13, p= 0.08) 
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Post-Hatching Phase 

Our generalized linear mixed model quantified as odds ratios (OR) the effects of exposure to a 

particular strain on larvae mortality in comparison to the controls given their history of exposure 

as embryos. As such, results are reported as an increase or decrease in odds of mortality. 

Direct effects on larvae –only exposed to Bd as larvae (Control-Bd) 

We found evidence for direct effects of Bd exposure on larval mortality for the three species. In 

P. regilla, post -hatching exposure to the East strain increased the odds of mortality (OR Early/ 

Control- East - 8.88, p = 0.01, CI: 1.43- 54.85) (Figure 2.3 Left panel). For A. boreas, we found that 

individuals exposed during the post-hatch phase to the West strain had lower odds of mortality 

relative to controls (OR Early/ Control- West 0.12, p = 0.03, CI: 0.018 – 0.84, Figure 2.4 Left panel). In 

contrast, larvae coming from the Late control group and exposed post-hatch to East or West had 

higher odds of mortality than controls (OR Late/ Control - East 14.38, p = 0.03, CI: 1.19 - 173.65; OR 

Late /Control -West   19.56, p=0.03, CI: 1.32- 288 (Figure 2.4 Right panel). Larvae of L catesbeianus 

increased their odds of mortality when exposed to either East or West strain (OR East 9.9, p= 

0.04, CI: 1.06 – 92; OR West 539, p < 0.001, CI: 29.64 – 9801).  

Latent Effects on larvae –only exposed to Bd as embryos (Bd-Control) 

We did not find evidence for latent effects in P. regilla. In A. boreas odds of mortality changed 

according to the time of exposure and Bd strain. Odds of mortality for larvae decreased when 

embryos were exposed early in development to the West strain of Bd (OR Early/ West – control 0.14, p 

= 0.02, CI: 0.026 - 0.73, Figure 2.4, left panel). On the contrary, individuals exposed Late as 

embryos to the East strain had higher odds of mortality than controls (OR Late/ East – control 10.62, p 

= 0.04, CI: 1.07-105, Figure 2.4 right panel). In L catesbeianus, we found higher odds of 
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mortality than controls for both Bd strains (OR Late/ East – control 31, p = 0.001, CI: 3.5- 272, OR Late/ 

West control 23.21, p = 0.006, CI: 2.42 – 222.14, Figure 2.5).  

Repeatedly Exposed treatments- exposed to Bd as both embryos and larvae (Bd-Bd)  

We found evidence that exposure to Bd in both the embryonic and larval stages affects the larval 

odds of mortality in all three species. We found in P. regilla that re- exposure to the West strain, 

(Late treatment group) increased the odds of mortality (OR Late/West–West 8.05, p = 0.04, CI 1.01-

64.22, Figure 2.3). In A. boreas odds of mortality increased in re- exposed individuals to both the 

East and West strains (Late treatment groups) (OR Late/East - East 9.37, p = 0.05, CI: 0.92 – 95; OR 

Late/West -West 9.12, p= 0.05, CI: 0.91 – 91.32). In L. catesbeianus, odds of mortality were high for 

re-exposed animals to either Bd strain (OR East Late - East 58.3 p = 0.0003, CI: 6.35 – 534.6, OR West 

Late-West 101.29, p < 0.001, CI: 8.9 – 1145).  

Infection loads 

Real-time qPCR analyses of tadpole mouthparts for P. regilla and swabs for A. boreas and L. 

catesbeianus confirmed Bd infection in all species but not in all treatments. All tadpoles 

subsampled from control treatments were negative for Bd. Mean infection load did not differ by 

treatment and history of exposure across all species. We found infection loads from P. regilla 

when exposed to both strains at Early or Late treatment groups in the direct effect and the 

repeteadly exposure treatments (Table 2.3). In A. boreas infection loads were positive when 

individuals were exposed Early or Late to the East strain in the direct effect treatment and in 

individuals from the Early treatment group repeatedly exposed to the West strain (Table 2.3). 

Infection loads for L. catesbeianus were positive for individuals exposed in the Late treatment 
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group. Positive results for this species were detected after exposure to the East strain in the direct 

effect treatment and for both strains in the latent effect treatment (Table 2.3).  

 

Discussion 
 

Life stage, time of exposure, and Bd strain influenced susceptibility to Bd in the embryo - 

larvae life history transition for three anuran species: P. regilla, A. boreas, and L. catesbeianus. 

We detected direct effects of Bd on embryonic and larval mortality, latent effects across the 

embryo/larval transition, and additive effects when repeatedly-exposed to Bd across both life 

stages. Exposure of embryos to Bd resulted in direct impacts on hatchling survivorship. We 

found direct, negative impacts of Bd strain and time of exposure on embryonic survival and 

proportion of hatching success for P. regilla and L. catesbeianus. Embryos of P. regilla were 

drastically affected by the non-native East Bd strain, resulting in 90% mortality when exposed 

later in embryonic development. Interestingly, embryos of invasive L. catesbeianus died when 

exposed to either Bd strain (East or West). When exposed early in embryonic development to the 

East strain, the number of viable hatchlings was zero and we detected a mortality of 90% in 

hatchlings after early exposure to the West Bd strain. When exposed later in development (East 

or West strains), only 50% of embryos hatched. 

Post-hatching exposure resulted in both direct and latent impacts on larval survivorship. 

Direct effects on larvae are reported mainly as an increased in the odds of mortality for all three-

anuran species. P. regilla was negatively affected by exposure to the non-native East Bd strain, 

while A. boreas and L. catesbeianus were affected by both strains (East and West). Odds of 

mortality in A. boreas were higher when exposed to the West strain (19.56) than when exposed 

to the East strain (14.38). On the contrary, the odds of mortality in L. catesbeianus were higher 
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when exposed to the East strain (9.9) than when exposed to the West strain (5.39). This result 

was not wholly unexpected as larvae mortality has been reported in experimental studies 

exposing these same species to Bd. A. boreas has been particularly susceptible to Bd (Blaustein 

et al. 2005, Dang et al. 2017) while P. regilla and L. catesbeianus larvae have relatively high 

survivorship (Blaustein et al. 2005, Reeder et al. 2012, Gervasi et al. 2013, Dang et al. 2017). In 

this study, we found a direct effect of Bd on larval survivorship for all three species. The 

increase in the odds of mortality in P. regilla and L. catesbeianus larvae can be explained by the 

origin and characteristics of the East strain. Isolated from L. catesbeianus in Maine (USA), this 

strain has been identified as hypervirulent (Farrer et al. 2011, Schloegel et al. 2012, Rosenblum 

et al. 2013) and categorized as part of the North American clade in the Global Pandemic Lineage 

(GPL) (Schloegel et al. 2012). As such, we anticipated an increase in larval mortality due to a 

lack of evolutionary relationship with this strain. However, L. catesbeianus larvae were also 

susceptible to the East strain even though it was isolated from their conspecifics within their 

native range. 

In terms of latent effects, we found an increase in the odds of larval mortality of both A. 

boreas and L. catesbeianus.as a function of Bd strain and timing of embryonic exposure. In A. 

boreas, embryos exposed early to the West strain showed a decrease in the odds of mortality. 

Conversely, when A. boreas were exposed to the East strain late in embryonic development, 

larvae were almost 10 times more likely to die than control individuals. There was a similar 

increase in the odds of larval mortality in L. catesbeianus when exposed as embryos to any of the 

Bd strains. The high mortality rates in L. catesbeianus when exposed early to Bd prevented us 

from understanding potential latent effects for this invasive species. Similarly, we could not 

evaluate potential latent effects after late exposure of P. regilla embryos to the East strain. Our 



26 
 

 

results support the hypothesis that timing of pathogen exposure is a major factor that influences 

host survivorship.  

We also found effects of repeatedly Bd exposure (exposed in both the embryonic and 

larval stages) in all three-anuran species. All species showed an increase in the odds of larval 

mortality when the first Bd exposure occurred at a later embryonic developmental stage (Gosner 

stage 18). In P. regilla, odds of mortality increased after repeated exposure to the West strain. A. 

boreas and L. catesbeianus increased the odds of mortality when exposed to both strains (East or 

West). Repeated exposure effects have been reported in experiments examining the 

larval/metamorph transition (Goater 1994, LaFiandra & Babbitt 2004, Kelehear et al. 2009, Saka 

et al. 2013), thus our experiment provides additional information concerning other life history 

transitions.  

The differential response of A. boreas to Early/Late and East/West Bd treatments may be 

explained by the presence of a potential critical window of vulnerability for this species and by 

the virulence of Bd strain. Late exposure of A. boreas embryos to the East strain increased the 

odds of larval mortality of this species. Fernandez-Beneitez et al. (2011) found that embryos of 

natterjack toad (Bufo calamita) and Western spadefoot toad (Pelobates cultripes) exposed to 

Saprolegnia spp. at early developmental stage (Gosner stage 12) suffered no increase in 

mortality, while embryos challenged at later stages of embryonic development Gosner staged 15 

and 19 were sensitive to the pathogen with mortality rates up to 90%. Understanding which 

species experience latent effects will help target management efforts by identifying how 

exposure in particular life history stages can change host response. 

Our findings complement the information on susceptibility of P. regilla to Bd as larvae of 

this species had previously been reported to be tolerant to certain Bd strains (Blaustein et al. 
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2005, Dang et al. 2017). Interestingly, we found that this tolerance can change with an 

individual’s previous exposure regime to non-native strains. Our experimental evaluation 

revealed that Bd strains isolated from an invasive species can have harmful consequences on 

native and even invasive conspecific hosts. Our findings for A. boreas support previous work 

showing species as being susceptible to both the East and West strains of Bd (Blaustein et al. 

2005, Gervasi et al. 2013, Dang et al. 2017). In L. catesbeianus, larvae and adults have been 

reported as able to withstand infection loads of the chytrid in different regions (Hanselmann et al. 

2004) and this species is suggested as an asymptomatic carrier or reservoir of Bd (Daszak et al. 

2004, Garner et al. 2006). Our results indicate that larvae can also be susceptible to Bd but this 

response will be mediated by previous exposure in an early life stage. Individuals that received 

exposure as embryos and then were re- exposed as larvae to the chytrid were about 50 times 

more likely to die than individuals kept as controls. This contrasts with previous experimental 

studies reporting this species as a carrier of Bd (Blaustein et al. 2005, Gahl et al. 2012, Eskew et 

al. 2015). Generally, those studies directly exposed individuals in the larval stage (Gosner stage 

26-30) without considering previous exposure regimes. In our study, L. catesbeianus were 

vulnerable to Bd exposure in response to direct exposure and across life history transitions.  

We found species- specific embryonic mortality after exposure to Bd. Many pathogens 

impact anuran embryos, including ranavirus (Haislip et al. 2011), oomycetes (Kiesecker & 

Blaustein 1995, Fernández-Benéitez et al. 2008), filamentous ascomycetes (Warkentin et al. 

2001) and microsporidia (Green & Converse 2005). But few studies have quantified direct 

effects of Bd on anuran embryos. Bd enzymatic action is one mechanism that could explain this 

result, as it can cause damage in skin tissue of hosts after exposure (Blaustein et al. 2005, 

Symonds et al. 2008, Moss et al. 2010, McMahon et al. 2013). A complex mix of proteolytic and 
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hydrolyze enzymes (esterases) that degrade amphibian tissue have been described from different 

Bd isolates (Symonds et al. 2008, Moss et al. 2010, Brutyn et al. 2012). In addition, many 

hatching anurans release enzymes to assist with degradation of the egg capsule at the moment of 

hatching (Carroll & Hedrick 1974, Cohen et al. 2016); this could potentially facilitate the 

enzymatic action of Bd to degrade tissues. Recently, dose - dependent mortality and proliferation 

in zebrafish (Danio rerio) tissue was reported with toxins secreted after the establishment of Bd 

sporangia (Liew et al. 2017).  

The present study offers useful information about the complexity of host response to a 

pathogen, particularly with multiple exposures across life stages. Our study provides information 

about direct effects of Bd on anuran embryos, with significant impacts on mortality and the 

proportion of hatching success. Our results also quantified latent effects of Bd exposure over 

ontogeny (Hamdoun & Epel 2007). Despite being a relatively brief period, exposure to Bd in the 

egg led to increased mortality after hatching. Species-specific differences were due to the timing 

of embryonic exposure and re-exposure in the larval stage. Additional research exploring the 

mechanisms protecting the embryos is needed to better understand the susceptibility of this 

developmental stage to disease. Characteristics such as jelly thickness and composition, or size 

of the capsule, can be involved in resistance to chytrid. As eggs received material from their 

parents during oviposition, evaluating the role of parents in the immune response of their 

offspring can help us to understand more about embryonic immunity. Further studies are also 

required to better understand how variation in other environmental and biological parameters can 

affect the outcome of repeated Bd exposure in anuran species. Our results add information to the 

growing body of evidence concerning differential susceptibility to pathogens among amphibian 

species and across life stages.  
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Table  

Table 2.1 Number of replicates per treatment per species followed by total number of eggs per 
treatment between parentheses  

 

Host species 

Pre-hatch exposure regime 
Bd strain x Time exposure treatments 

 
Control 

 
East 

 
West 

 
Early Late Early Late Early Late 

Pseudacris regilla 10 (101) 10(96) 10(97) 10(94) 10(98) 10(95) 
Anaxyrus boreas 8(80) 9(85) 8(84) 9(86) 8(84) 9(87) 
Lithobates catesbeianus 5(100) 5(100) 5(100) 6(120) 5(100) 4(80) 
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Table 2.2 Number of replicated groups exposed in the different treatments per species as larvae. 
In parentheses, total number of individuals per treatment including all replicates; (-) no treatment 

Pseudacris regilla 

Pre-hatching treatments 

Bd strain x Time  

Control East West 

Early Late Early Late Early Late 

Post -hatch  
Bd treatment 

Control 8 (32) 7 (28) 5 (20) 0 (0) 7 (28) 6 (24) 

East 8 (32) 7 (28) 6 (24) 0 (0) - - 

West 8 (32) 7 (28) - - 7 (28) 6 (24) 

Anaxyrus boreas 

Pre –hatching treatments 

Bd strain x Time  

Control East West 

Early Late Early Late Early Late 

Post -hatch  
Bd treatment 

Control 5 (20) 3 (12) 8 (32) 8 (32) 9 (36) 9 (36) 

East 6 (24) 5 (20) 9 (36) 8 (32) - - 

West 5 (20) 4 (16) - - 9 (36) 8 (32) 

Lithobates catesbeianus 

Pre-hatching treatments 

Bd strain x Time  

Control East West 

Early Late Early Late Early Late 

Post -hatch  
Bd treatment 

Control 6 (24) 6 (24) 0 (0) 7 (28) 0 (0) 4 (16) 

East 5 (20) 5 (20) 0 (0) 7 (28) - - 

West 6 (24) 6 (24) - - 0 (0) 4 (16) 
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Figure 2.1 Exposure treatments of egg masses and tadpoles according to the time of exposure 
and chytrid strain. Pre-hatching treatments are indicated in gray and above the separation line. 
Treatments for tadpoles (Post-hatching) are listed below the separation line 
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Figure 2.2 Proportion of hatchlings in P. regilla (top), A. boreas (middle), and L. catesbeianus 
(bottom) after exposure of eggs to different chytrid treatments. Red color represents exposure to 
the East strain, green color represents exposure to the West strain, and controls are indicated by 
the blue color. a) Treatments exposed early in development (Gosner stage 12) and b) Treatments 
exposed late in development (Gosner state 18)
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Abstract 
 
The combination of introduced host species and emerging pathogens can result in unanticipated 

disease dynamics and novel host-pathogen interactions. The American bullfrog (Lithobates 

catesbeianus) is a successful invasive amphibian in the western U.S. that can act as a host to the 

emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd) that has been implicated in the 

decline of amphibian populations worldwide. However, how host-pathogen interactions vary 

across populations and strains is relatively unknown. We experimentally examined if wild caught 

invasive bullfrogs were differentially susceptible to two regionally distinct isolates of Bd. Newly 

metamorphosed bullfrog individuals were exposed to either a Bd strain originally isolated from 

bullfrogs in their endemic range or a strain from the invaded range in the western USA. Juvenile 

bullfrogs were collected from a breeding site in the western U.S. where the western US strain of 

Bd is also found. We quantified initial infection load of bullfrogs and compared mortality rates 

and changes in infection load after 30 days to determine strain-specific susceptibility. We found 

that wild caught bullfrogs from the western U.S. were particularly susceptible to an eastern Bd 

strain (JEL 627). In contrast, infection loads and survival were higher in individuals exposed to 

the western strain (JEL 630); suggesting individuals were more susceptible to a novel strain. 

Individuals infected upon collection were able to clear their infection over time. We found lower 

infection loads over time in individuals exposed to the western strain, indicating the ability to 

clear this infection. This suggests rapid evolution of resistance to sympatric pathogens and 

indicates a cost to maintaining resistance to historic strains. 
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Introduction 
 
Biodiversity loss threatens ecosystem function and ecosystem services worldwide (Naeem et al., 

1999; Balvanera et al., 2006; Oliver et al., 2015). Habitat transformation, introduction of 

invasive species, pollution, overpopulation, and overexploitation are human activities explaining 

the unprecedented biodiversity loss (Brook et al., 2008; Butchart et al., 2010; Barnosky et al., 

2012; Dirzo et al., 2014). Another global threat for biodiversity conservation and human health 

are emerging infectious diseases (EID’s) (Fisher et al., 2012; Tompkins et al., 2015). EID’s may 

have substantial ecological and economic costs (Hatcher et al., 2012). Population declines and 

extinctions across multiple taxa have been associated with EID’s (Daszak et al., 2000; Frick et 

al., 2010; Rogers & Miller, 2013; Lorch et al., 2015). For example, amphibians represent one of 

the most threatened vertebrate group whose numbers have been decimated worldwide, in part, by 

disease (Skerratt et al., 2007; Crawford et al., 2010; Olson et al., 2013).  

The fungal pathogen Batrachochytrium dendrobatidis (Bd) is especially prominent with 

regard to amphibians population declines, range reductions and extinctions (Hatcher et al., 2012; 

Berger et al., 2016). Bd infects more than 600 amphibian species globally (Olson et al. 2013) and 

recent distribution models suggest shifts and potential expansion in Bd ranges under projected 

scenarios of climate change (Xie et al., 2016). Bd causes chytridiomycosis, which can cause 

excessive skin shedding, loss of reflex, lethargy and mortality in susceptible juveniles and adults. 

In tadpoles, chytridiomycosis affects mainly mouthpart structures (Voyles et al., 2009; Brutyn et 

al., 2012), although mortality can occur when larvae are exposed to Bd (Blaustein et al., 2005; 

Garner et al., 2009; Searle et al., 2013). Susceptibility to Bd varies across host species (Blaustein 

et al., 2005; Searle et al., 2011; Gahl et al., 2012; Bielby et al., 2015; Gervasi et al., 2017), 

population (Tobler & Schmidt, 2010; Bradley et al., 2015), life stage (Blaustein et al., 2005; 
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Briggs et al., 2010; Ortiz-Santaliestra et al., 2013; Searle et al., 2013) and, pathogen strain 

(Berger et al. 1998, Retallick & Miera 2007, Gervasi et al. 2013, Doddington et al. 2013, Eskew 

et al. 2015).  

Despite extensive research effort since the discovery of Bd, differential impacts of Bd 

strain on amphibian hosts are poorly understood (Morehouse et al., 2003; Retallick & Miera, 

2007; Farrer et al., 2011; Gahl et al., 2012). The response of a host to a particular strain gives us 

insight about virulence of the pathogen as well as tolerance and resistance of the host. Multiple 

lineages of Bd have been identified using genetic and genomic information from multiple 

geographic locations (Farrer et al., 2011; Rosenblum et al., 2013). Pathogenicity of these 

lineages can differ according to amphibian host and/or location (Schloegel et al., 2012). Some 

Bd Global pandemic lineage (Bd-GPL) strains, however, have shown different virulence levels 

when tested in common hosts (Berger et al., 1998), highlighting the need for additional research 

on strain-specific interactions. 

Several amphibian hosts are considered to be more resistant to Bd than other. Among 

anuran amphibians, it has been suggested that the American bullfrog (Lithobates catesbeianus) is 

a relatively tolerant carrier of Bd, harboring the pathogen without signs of morbidity or mortality 

(Daszak et al., 2004; Garner et al., 2006). However, reports of mass mortality events in farmed 

American bullfrog populations suggested that exposure to novel Bd strains may cause 

chytridiomycosis outbreaks (Mazzoni et al., 2003). Moreover, Gervasi et al. (2013) found 

differential susceptibility in juvenile bullfrogs experimentally exposed to different Bd strains. As 

such, American bullfrogs offer a unique opportunity to study the ecological and evolutionary 

relationship between an EID and its host.  
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Bullfrogs are endemically distributed in the east and central regions of the United States 

and have established wild invasive populations after introductions in the western US (Moyle, 

1973) and other continents (Ficetola et al., 2007; Nori et al., 2011) and island chains around the 

world (Lever, 2003). In their invaded range, direct and indirect effects of bullfrogs on native 

amphibian species have been documented by field surveys and experimental studies (Kats & 

Ferrer, 2003; Bucciarelli et al., 2014). Direct effects occurred by predation (D’Amore et al., 

2009) and competition (Both & Grant, 2012; Preston et al., 2012; Medeiros et al., 2017) while 

indirect effects involved altering the use of habitat (D’Amore et al., 2009), changes in behavior 

(Kiesecker et al., 2001), and changes in activity and refuge use (Kiesecker & Blaustein, 1997, 

1998). Other indirect effect involved the role play by bullfrogs as disease vector (Garner et al., 

2006; Greenspan et al., 2012), especially of chytridiomycosis.  

Bd strains have been isolated from bullfrogs in their native and invasive ranges 

(Schloegel et al., 2012) with the earliest detection of Bd in invasive California populations 

reported from specimens in 1928 (Huss et al., 2013). We investigated if invasive bullfrogs in 

Oregon USA had differential susceptibility to Bd strains isolated from their endemic and 

invasive ranges. Therefore, we experimentally exposed wild caught juveniles to Bd isolated from 

bullfrogs in Maine, USA (eastern strain, JEL 627) and Bd isolated from bullfrogs in Oregon, 

USA (western strain, JEL 630). We used wild caught animals to estimate infection loads at the 

time of capture and to estimate the impact of previous exposure on strain specific susceptibility. 

While virulence typically depends on the interaction among host, pathogen and environment 

(Poulin & Combes, 1999), some Bd traits such as zoosporangium size (Fisher et al., 2009), 

inhibition of growth in immune cells (Fites et al., 2013) and zoospores production (Langhammer 

et al., 2013) have been linked to virulence. We quantified the mean number of zoospores 
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produced by Bd while in culture in agar media to identify activity differences in both Bd strains 

outside the host. While a high zoospore number can be linked mechanistically to a high infection 

rate (Briggs et al., 2010); some strains with low zoospore production can still have major impacts 

on their host. We hypothesized that bullfrogs from Oregon would show greater mortality when 

exposed to a novel Bd strain (eastern strain). We also hypothesized that individuals infected at 

the time of capture would be more susceptible to a novel strain.  

Materials and methods 
 

We collected 90 recently juvenile bullfrogs at Gosner stage 45 when a tail stub was still 

detected in the individuals (Gosner, 1960), (x̄ = 3.3–8.9 g, SD = 5.6 g ± 1.15) from a seasonal 

pond with no resident fish populations (44°24'47.0"N 123°19'38.0"W) in William L. Finley 

National wildlife refuge, OR (USA). Our survey followed a Visual Encounter Survey method 

(VES); we used head-lamps and manual flashlights to spotlight individual frogs on the 

vegetation along the margin of the pond. Once an animal was detected, we hand-collected the 

individual wearing new gloves per individual to avoid cross contamination. 

Initial Infection Load Assessment  

We handled each individual with fresh gloves and swabbed fifteen strokes along the 

ventral side and along each thigh and rear foot using one sterile swab per individual (MW113, 

Medical Wire & Equipment). Swabs were placed in sterile 1.5 ml microcentrifuge tubes and kept 

on a cooler with ice. We immediately transported the frogs and swabs to Oregon State University 

in individual containers and randomly assigned individuals to one of three experimental 

treatments: Eastern Bd treatment (strain JEL 627), Western Bd treatment (strain JEL 630) or 

control (No Bd). Although the use of terbinafine hydrochlorine in ethanol has been found as 

effective at curing infection in L. catesbeianus (Bowerman et al., 2010), we did not use this 
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substance or a different fungicide as their action could change the response of the individuals 

when exposed to the pathogen. We use wild caught animals to obtain information about how 

previous exposure in nature affect the response of individuals when repeatedly exposed to Bd. 

 

Bd Culture Methodology 

Bd strain JEL 627 is an isolate from the native range of American bullfrogs in Maine, 

USA; JEL 630 was isolated from the local invasive range of American bullfrogs in Oregon, 

USA. Both strains were obtained from cryogenically preserved material by J. Longcore in May 

2013. Colonies from the plates were sterilely moved into tryptone broth 1% before being plated 

in sterile agar for at least 7 days before inoculation. For control animals (n=30), inoculum 

without Bd but from sterile agar plates was used (Searle et al. 2011, Gervasi et al. 2013). 

 

Bd virulence Methodology 

To quantify the virulence of Bd, we counted the number of zoospores produced in culture 

over time for both strains JEL 627 and JEL 630 (i.e., strain growth rate). We cultured on the 

same day: 50 agar plates per strain using 1 ml of tryptone broth 1% per plate. After 6 days of 

culture, we harvested zoospores from 5 plates per strain using 10 ml of water and counted the 

number of active zoospores using a hemocytometer. We repeated the harvesting and counting of 

zoospores on days 8 through 15. We stopped our observations when the number of zoospores 

and their activity began to decline (Day 15). 
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Bd Exposure Methodology 

We housed frogs individually in petri dishes (140 x 30 mm) with holes in the lid and 10 

ml of water covering the bottom. All units were held at 18 ° C and on a 12hr light: 12hr dark 

photoperiod. Animals were acclimated for three days and then exposed to one of three treatment 

groups: JEL 627 (n=30), JEL 630 (n=30), or a control. Individuals were given to a concentration 

of 1.7 X 104 zoospores/ml in 15 ml of total inoculate weekly.  

Survival of individuals was monitored for 30 days post initial treatment exposure. 

Individuals found dead during the experiment were immediately preserved in 95% ethanol. After 

30 days, all surviving animals were euthanized (MS-222) and preserved in 95% ethanol. All 

animals were swabbed after preservation following the same protocol used to assess initial 

infection loads (15 strokes along the ventral side and along each thigh and rear foot using one 

sterile swab per individual). We quantified infection load of all animals before and after the 

experiment using quantitative-PCR (qPCR) (Boyle et al., 2004). All samples were analyzed in 

triplicate and reported as positive when replicates showed Bd DNA in at least two wells. 

Average number of genome equivalents per individual (infection loads) were log transformed to 

normalize data distribution during statistical analysis.  

 

Statistical Analysis 

Using a post hoc analysis of variance (ANOVA), we evaluated if initial infection load 

differed among individuals randomly assigned to the treatments. We hypothesized that some 

individuals would be infected with the western Bd strain upon capture, thus we used a linear 

regression model to determine if body size (snout-vent length) or body condition (Băncilă et al., 

2010) impacted initial Bd infection loads. We used an analysis of covariance (ANCOVA) to 
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determine treatment effects on infection loads upon death or at the termination of the experiment 

controlling for initial infection load.  

Using Kaplan-Meier analyses, we compared survival of animals in control versus Bd-

exposed treatments (JEL 627 and JEL 630). We used a Cox’s proportional hazards model to 

statistically compare survival of each treatment group and its associated “hazard ratio” as well as 

the effect of initial infection load. A hazard ratio including 1 indicates there is no difference in 

the probability of mortality associated with a factor, in a comparative way (a hazard ratio > 1 

indicates an increase in the probability of mortality). To analyze differences in growth rate 

between strains, we calculated a log-level multiple linear regression to predict mean number of 

zoospores based on strains (treatments) and time. Statistical analyses were performed in R 

(version 3.3.1, 2016).  

Results 
 

The overall prevalence of Bd in wild-caught juveniles of L. catesbeianus was 43 %, with 

39 out of 90 frogs testing positive for Bd at the time of capture (Table 3.1). Individuals were 

randomly assigned to treatment groups without a priori information on infection status. 

Treatment groups were significantly different in proportion of initially infected individuals and 

infections loads (F2, 87 = 4.52, p < 0.001), with the control group having a high number of 

individuals with higher infection loads than either exposure group (Table 3.1). However, initial 

infection load was not a significant predictor of infection load after the experiment (F1,86 =0.29, p 

= 0.59).  

Infection loads of juveniles collected in the field were in average 11.2 genome 

equivalents and this initial infection load was not related with snout-vent length (t87 = 1.71, p = 

0.09) or body condition (t87 = 0.17, p = 0.86) of the animals. At the termination of the 
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experiment, we found reduced infection loads in the control treatment. As expected, animals 

exposed to Bd strains during the experiment had significantly higher infection loads than 

controls, with the JEL 630 (t86 = 3.47, p < 0.001) group showing higher loads than JEL 627 (t86 = 

2.63, p = 0.01). Infection loads after 30 days of treatment exposure were largely explained by 

treatment level (F2,86 = 6.34, p = 0.0027, Table 3.2 and Figure 3.1).  

After experimental exposure to Bd treatments, the rate of mortality in animals exposed to 

JEL 627 was significantly greater than the rate of mortality in control animals (Figure 3.2, Cox 

proportional hazards model p < 0.008; hazard ratio = 3.7). The rate of mortality of individuals 

exposed to JEL 630 was not significantly greater than the rate of mortality in control animals 

(Figure 3.3; Cox proportional hazards model p = 0.63; hazard ratio = 0.72). During the first 15 

days of the experiment, 15 of 30 animals died when exposed to JEL 627. In comparison, only 4 

animals died when exposed to JEL 630 (Figure 3.3) in the first half of the experiment. These 

treatment effects were independent of initial infection load which was included in the Cox 

model, but did not significantly influence mortality (Figure 3.3; Cox proportional hazards model 

p=0.74; hazard ratio = 1.11). The following log-level multiple linear regression model predicted 

the number of zoospores for strains in culture as -2.15 + 0.28 (days) + 0.07 (strain) (F 2,13 = 

70.42, p < 0.001, R- square = 0.9155). There was a significant effect of strain on growth rate (F 

1,13 = 22.73, p = 0.00036); JEL 627 had a 7.1% higher growth rate per day after culture than JEL 

630 (CI 3.98 to 10.95%) (Figure 3.4).  

 

Discussion 
 

Wild-caught American bullfrog (L. catesbeianus) juveniles from a population within their 

western USA invasion range were susceptible to a novel Bd strain. In a factorial experiment, we 

found that bullfrogs exposed to a Bd strain isolated from the bullfrog’s endemic range (eastern 
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strain, JEL 627) suffered higher mortality rates compared to controls (no Bd exposure), bullfrogs 

exposed to a western Bd strain (JEL 630) isolated from Oregon. During the first half of the 

experiment, almost 50% of the individuals exposed to the eastern Bd strain died. In contrast, 

86 % of the individuals exposed to the western Bd strain survived and harbored a higher 

pathogen burden. This suggests strain-specific resistance in this invasive anuran population.  

We found that 43% of the bullfrog juveniles were infected with Bd prior to experimental 

exposure. Interestingly, 19 out of 30 infected individuals randomly placed within the control 

group were able to clear the infection over time. The initial infection loads may not have reached 

a threshold for the onset of disease (McConnell, 2007). The levels of initial Bd infection were 

low in terms of prevalence and intensity (mean 11.1 raw genome equivalents), and were similar 

to other wild-caught bullfrogs swab samples from the USA (Garner et al., 2006; Schloegel et al., 

2009; Walke et al., 2015).  

Lower infection loads were detected in individuals exposed to the eastern strain upon 

termination of the study. This observed reduction in infection load was not associated with a 

lower incidence of the disease as concluded in several chytridiomycosis studies (Stockwell et al. 

2010, Gervasi et al. 2013). These lower infections loads were related to an increased probability 

of mortality in animals exposed to the eastern strain. Conversely, individuals exposed to the 

western strain had higher infection loads and a lower mortality risk. We posit that this is a 

statistical relationship and argue for closer examination of the relationships between infection 

load, morbidity and strain pathogenicity.  

Infection loads can vary considerably among individuals due to host susceptibility but 

also to pathogen virulence (Beldomenico & Begon, 2010). Although we did not characterize 

individual host immunity via immune response (see Gervasi et al. 2013), we characterized the 



56 
 

 

eastern and western strain growth rate while in culture to infer virulence (Fisher et al 2009, 

Langhammer et al 2013). Our results indicate that the eastern strain had a higher growth rate 

relative to the western JEL 630 while in culture. A greater number of active zoospores through 

time could lead to an increase in the risk of mortality in animals exposed to JEL 627. However, 

in-vitro growth rates of the pathogen are not always consistent with pathogen growth in 

susceptible hosts. Strains with lower in-vitro growth rates can represent higher Bd loads in their 

hosts (Piovia-Scott et al., 2015). In this study, bullfrogs exposed to the novel eastern strain with 

an higher in vitro growth rate were more susceptible and died faster, even with a lower infection 

load relative to animals exposed to the western strain.  

Individuals exposed to a novel Bd strain can experience a higher mortality risk than 

individuals exposed to strains isolated from conspecifics (Gervasi et al., 2013b; Eskew et al., 

2015). When exposed to the native strain, individuals have high infection loads and survive 

which could be indicative of co-evolutionary dynamics. The host-pathogen interaction in a 

particular geographic distribution is expected to lead toward coexistence, with reduced 

susceptibility in the host and reduced pathogenicity in the pathogen (Doddington et al., 2013).  

Bd is an emerging pathogen globally (Olson et al., 2013; Balaz et al., 2014; Van Rooij et 

al., 2015) and it is projected to spread with changes in climate (Liu et al., 2012; Xie et al., 2016). 

In the absence of a shared evolutionary history, the impact of a new Bd strain on the host is a 

higher probability of host mortality. Invasive species capable of transporting novel strains to new 

geographic ranges can potentially cause chytridiomycosis outbreaks with unusual severity and 

magnitude (Farrer et al., 2011; Van Rooij et al., 2015). This disruption of evolved trade- offs 

between the host and the pathogen can be devastating to local amphibian assemblages. At least 

17 different Bd strains have been isolated from L. catesbeianus from different geographic 
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distributions (Schloegel et al., 2012) and archived collections from the California Academy of 

Sciences (CAS) reported the presence of Bd in specimens dated back to 1928 (Huss et al., 2013). 

While it is unknown which Bd strain was detected at 1928, we hypothesize that invasive 

bullfrogs in the western USA have coexisted with Bd, and after reaching stable pathogen-host 

equilibrium this strain is not virulent to their host. A similar result was found in Taudactylus 

eungellensis, a stream dwelling frog in Australia where populations were able to persist with 

endemic infections of Bd (Retallick et al., 2004). 

Understanding the variation in host response to pathogens isolated from conspecifics in 

different distributional ranges is needed to understand how pathogen origin can mediate host 

response. The strains used in this experiment are part of the North American clade - Global 

Panzootic Lineage (Bd- GPL1). However, they are grouped within distinct clusters and thus vary 

in distributional range and heterozygosity (James et al., 2009; Rosenblum et al., 2013). Although 

the GPL contains many of the deadliest Bd isolates, our findings support there are differences in 

virulence properties inside this lineage that deserve more research.  

In conclusion, this study underscores the importance of experimental studies to shed light 

on infection dynamics in invasive species and its implication in the movement of individuals to 

different geographic locations. Translocation of an invasive species will mean the arrival of not 

only of a potential predator and competitor of native species but also a host species harboring 

pathogens that affect natives. Arrival of non-native bullfrogs and their associated pathogens can 

represent an ‘invasional meltdown’ increasing their likelihood of survival and the magnitude of 

their ecological impacts (Simberloff & Von Holle, 1999). We need to evaluate the interactions 

among Bd strains from different geographic locations and susceptible hosts to understand if the 

interaction is facilitating or precluding the onset of a disease. In an era of emerging diseases 
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and globalization, understanding the impacts of a novel strain can help managers better 

mitigate these dangers, potentially through stronger regulation of importation of live 

animals, reducing the trade of species and applying informed legislation in conservation 

actions. 

.  
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Table 3.1 Batrachochytrium dendrobatidis (Bd) mean initial infection load values (raw genome 
equivalents GE) for all individuals upon field capture. Bd occurrences CI = 95% Clopper-
Pearson binomial confidence interval for prevalence (%) 
 

Assigned  
Exposure treatment 
(n=30 per 
treatment) 

Infection loads mean  
Bd raw GE (low-
high) 

Prevalence Bd 
No. Bd-positive /  
Total no. samples 
(%) 

Prevalence Bd 
CI 

Control 21.8 (0-343) 26/30 (86) 69-96 

JEL 627 (East strain) 10.7 (0-303) 8/30 (26) 12-45 

JEL 630 (West strain) 0.8 (0- 12) 5/30 (16) 5-34 

Total  11.1 (0-343) 39/90 (43) 32-54 
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Table 3.2 Batrachochytrium dendrobatidis (Bd) mean infection load values (raw genome 
equivalents GE) for all individuals after being Bd-exposed to JEL 627 and JEL 630. Bd 
occurrences CI = 95% Clopper-Pearson binomial confidence interval for prevalence (%) 
 

Exposure treatment Infection loads mean  
Bd raw GE (low-high) 

Prevalence Bd 
No. Bd-positive /  
Total no. samples 
(%) 

Prevalence 
Bd CI  

Control 7.3 (0-145) 11/30 (36) 19-56 

JEL 627 (East strain) 30.7 (0-613) 28/30 (93) 77-99 

JEL 630 (West strain) 76.6 (0- 1721) 29/30 (96) 83-99 
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Figure 3.1 Genome equivalents of Bd before and after exposure to the pathogen. Bars represent 
standard error range. Field values represent infection loads of animals collected in the field. 
Laboratory infection loads represent animals after being exposed to a particular treatment. 
Individuals selected as controls decreased their infection loads through the experiment. 
Individuals exposed to JEL 630 were able to sustain higher infection loads than individuals 
exposed to JEL 627. 
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Figure 3.2: Cox proportional hazard ratios for factors of exposure treatment and initial infection 
load compared with a base level of one. Bars represent the 95% confidence interval for the 
hazard ratios. A hazard ratio of 1 indicates there is no difference in the probability of mortality 
associated with a factor, in a comparative way (a hazard ratio > 1 indicates an increase in the 
probability of mortality). 
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Figure 3.3: Survival curves of invasive bullfrogs after exposure to amphibian chytrid fungus 
strains JEL 627 (dotted lines) and JEL 630 (dashed line). Survival was significantly reduced in 
the pathogen treatment for JEL 627. No differences in survival occurred between Control (solid 
line) and pathogen-exposed animals in the JEL 630 treatment (dashed line) 
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Figure 3.4 Growth curves in days after culture for two Bd strains. JEL 627 represented by 
diamonds (top line) and JEL 630 represented by triangle (bottom line). The shadow represents 
the estimated standard errors per strain. 
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Abstract 
 
 

Invasive species pose a major threat to global biodiversity. Invasion potential of exotic 

populations can be strongly influenced and potentially mediated, by reproductive characteristics 

such as fecundity, egg production and duration and number of reproductive events. The 

minimum body size at first reproduction can also play a role in the establishment of an invasive 

species, with breeding at smaller sizes facilitating establishment and spread. The American 

bullfrog (Lithobates catesbeianus) is an invasive anuran that has successfully invaded more than 

40 countries across 4 continents. In the Willamette Valley, Oregon, USA, this nonnative species 

is having profound effects on native ecosystems. We characterized reproductive characteristics 

with emphasis on the minimum size at which males and females reach sexual maturity. We 

collected and dissected 105 individuals between 2013 and 2017, quantifying characteristics of 

sexual maturity including snout-vent length, total length, sex, tympanum diameter, presence of 

distended oviducts or eggs for females, and testes length and sperm activity in males. The 

minimum reproductive size we measured is smaller than predicted, with both males and females 

exhibiting smaller minimum reproductive sizes relative to bullfrogs within their native range. 

Our results are similar to other studies on minimum reproductive size on invasive bullfrog 

populations within the South American invasion ranges. Reduction in size at reproductive 

maturity is likely impacting the invasive success of American bullfrogs within these regions and 

this study gives us insight into potential control mechanisms. 
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Introduction 
 

Biological invasions are a significant driver of global change in biodiversity (Elton 1958, 

Simberloff 2013). Intentional and unintentional species introduction can result in degraded 

ecosystem function (Ehrenfeld 2010, Simberloff 2011), changes in interspecific interactions 

(Simberloff 2006, Fukami et al. 2006) and contributes to native population declines (Gibbons et 

al. 2000, Blackburn et al. 2004). In addition to environmental impacts, changes to economic 

growth (i.e agriculture, Paini et al. 2016) and human health (Juliano & Lounibos 2005) make 

invasive species one of the more costly anthropogenic disturbances at a global scale (Pimentel et 

al. 2000, Paini et al. 2016, Rogers 2017). However, a reasonably small proportion of exotic 

species succeed in establishing populations within novel regions (Booth et al. 2003) or, after 

becoming established, do not directly impact the invaded ecosystems (White et al. 2006). 

Therefore, it is of utmost importance to understand and evaluate the potential of introduced 

species to invade within a novel range. Predicting invasiveness can be difficult as biotic and 

abiotic factors both play a role determining the establishment of exotic populations (Hui et al. 

2016).  

Trait-based inquiry can be useful when characterizing biological invaders (Ricciardi et al. 

2013), including life history characteristics such as growth and reproduction rates, home range 

size, and diet breadth (Kolar & Lodge 2001). Although the strategies by which invasive species 

establish and spread vary significantly, reproductive traits, such as average clutch size and size at 

first reproduction, can disproportionally affect population dynamics (Lodge 1993). In particular, 

invasion potential can be strongly impacted by body size at first reproduction. For example, 

lionfish (Pterois spp) and the brown tree snake (Boiga irregularis) have larger body sizes in their 
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invaded ranges, resulting in increased propagule pressure (Savidge et al. 2007, Gardner et al. 

2015). Species-specific information on the relationship between body size and reproductive 

capacity can be useful for management actions that target invasive species with significant 

conservation impacts (Van Kleunen et al. 2010).  

The unprecedented loss of amphibian biodiversity at a global scale (Barnosky et al. 2011, 

Ceballos et al. 2015) contrasts to several anuran species that are successful invaders (Beard et al. 

2003, Lobos & Jaksic 2005, Ortega et al. 2005, Vargas Salinas 2006, Urban et al. 2007, Rebelo 

et al. 2010, Bucciarelli et al. 2014). American bullfrogs (Lithobates catesbeianus) have 

established in over 40 countries across 4 continents and been implicated in the decline of native 

species across multiple taxonomic groups (Adams & Pearl 2007). Trait-based research has 

largely attributed successful bullfrog invasions to initial propagule pressure and biotic tolerance 

to varying climate regimes (Pearl et al. 2005, Govindarajulu et al. 2006, Adams & Pearl 2007, 

Rago et al. 2012, Bai et al. 2012). The ability to reproduce at a smaller size improves invasion 

and range expansion potential of a newly established bullfrog population. In Brazil, established 

populations of American bullfrogs are able to reproduce when males reach 7.6 cm and females 

reach 6.5 cm (Lima et al. 1998, Leivas et al. 2012), which is smaller than what is reported in the 

bullfrog’s native range. In the northern extent of the bullfrog’s Pacific Northwest range, 

Govindarajulu et al. (2006) reported reproductive sizes similar to those found in the native 

populations at similar latitudes (Bruneau & Magnin 1980; Shirose et al. 1993).  

We evaluated the size at first reproduction in bullfrogs in the southern extent of their 

Pacific Northwest invaded range and compared minimum sizes with other invaded and native 

populations for this species. Bullfrogs were introduced to the Pacific Northwest during the early 

1900’s to establish frog farms with the intention of exporting to international markets and are 
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now densely populated throughout the region’s low-elevation freshwater habitats (Jennings & 

Hayes 1985). We evaluated the minimum reproductive size for males and females of American 

bullfrogs in the Willamette Valley (OR, USA) using macroscopic and microscopic 

characteristics of their reproductive system. We hypothesized the minimum reproductive size in 

the Willamette Valley would be smaller than the size reported in bullfrog populations at similar 

latitudes within their native range, and invasive populations from the northern extent of the 

Pacific Northwest invaded range. Further, we predicted minimum reproductive sizes would be 

similar to invasive populations in Brazil.  

Methods 
 

We collected American bullfrogs (Lithobates catesbeianus) samples from 6 locations in Lane 

(43° 57' 39.5994" N, 122° 39' 42.4794" W) and Benton County (44° 37' 41.5194" N, 123° 23' 

14.6394" W) in the Willamette Valley (Oregon). We sampled 4 ponds with no resident fish 

populations and 2 permanent ponds with fish populations (Figure 4.1 and Table 4.1). Using 

Visual Encounter Surveys (Crump & Scott Jr. 1994) we sampled and collected bullfrogs during 

spring and summer breeding seasons of 2013 and 2017 for a total sampling effort of 150 hours. 

Individuals were transported to Oregon State University where they were euthanized using MS-

222 and preserved in 90% ethanol. We followed all institutional and national guidelines for the 

care and use of animals. 

Determination of sexual maturity is more rigorously done by examination of the gonads 

(Govindarajulu et al. 2006), as relying only on secondary sexual characteristics can be 

problematic. Yellow throat coloration and swollen nuptial pads in males are indicators of sexual 

maturity, but are only present in males. Further, gender differences in tympanum size are not 
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obvious in young individuals. As such, we determined the stage of gonad development for both 

males and females in addition to measured snout-vent length (SVL), total body length, eye and 

tympanum diameter, and determined body mass for each individual. For males, we excised, 

measured and weighed testes with a precision of 0.001 g for mass and 0.01 mm for length. The 

right gonad was macerated to test for the presence of active sperm while the left gonad was 

preserved in 90% ethanol for microscopic analysis (Costa et al. 1998a, b). For females, ovarian 

maturation stages were described following the protocol developed in Costa et al. (1998a). 

Ovarian maturation in female American bullfrogs can be categorized into five distinct stages: 1) 

juvenile with thin ovaries, hyaline to whitish and no oocytes distinguishable; 2) beginning of 

maturation with yellowish ovaries and deeper invaginations, oocytes present; 3) intermediate 

maturation grayish ovaries with pigmented post-vitellogenic oocytes; 4) advanced maturation 

high proportion of post-vitellogenic oocytes; and 5) spent ovaries: flaccid, with reduced volume 

and atresic oocytes (Costa et al. 1998, Kaefer et al. 2007).  

The minimum reproductive size was determined as the minimum SVL when females 

presented convoluted oviducts or ovaries with eggs inside their thoracic cavity (stages ≥ 2). In 

the case of males, their minimum reproductive size was the minimum SVL when they exhibited 

active sperm. We macerated the right testis in 0.5 ml of Holtfreter’s solution 10% to count 

actively motile sperm using a hemocytometer (Browne & Zippel 2007). We evaluated if body 

size of adults were different by analyzing the SVL measurement and body mass using a 

Student’s t- test with a Welsh correction. To evaluate the logistic regression accuracy to predict 

sexual maturity in males and females, we used a ROC (Receiving Operator Characteristic 

Curve). This graphic representation shows the ability of the logistic regression to correctly 

classify cases meeting certain condition (sexually maturity) and cases not meeting the condition 
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of interest. The estimated threshold indicates the point at which the prediction for values meeting 

the condition is optimal; this is the point at which the sum of the false positives and false 

negatives is the least. 

Results 
 

We collected a total of 105 L. catesbeianus: 51 females, 50 males, and 4 individuals that 

were undetermined. Of this total, 21 were adult females and 38 were adult males. In females, 

SVL varied between 3.8 cm to 17.6 cm, total length between 8.46 cm and 34 cm, and body mass 

ranged from 4.63 g to 500 g. In males, SVL varied between 4.01 mm to 16.5 mm, total length 

between8.77 cm and 36 cm, and body mass ranged from 5.37 g to 357 g. We found that the 

minimum reproductive size for females was 6.7 cm and for the males 6.6 cm. For mature 

individuals we did not observe gender differences in size (SVL Welsh t-test, t = 1.244, df= 

41.02, and p =0.22; mean ± SD: Males SVL = 10.98 ± 2.75 cm, and females SVL = 11.93 ± 2.80 

cm) or body mass (Welsh t-test, t = 0.90, df= 34.67, and p = 0.37; mean ± SD: Males BM =144 ± 

105 g, and females BM = 174.11 ± 129 g). The threshold at which ROC curves estimated the 

accuracy of the logistic regression to predict sexual maturity in males and females as optimal 

was 0.69 and 0.48 respectively. The SVL value for these thresholds is 7.8 cm in males and 10 cm 

for females (Figure 4.2). At these thresholds, males and females were predicted to be sexually 

mature, with the minimum number of false positives and false negatives.  

Discussion 
 

We found that the minimum reproductive size for male and female American bullfrogs in 

the Willamette Valley was 6.6 cm and 6.7 cm respectively, which is smaller relative to 
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populations within the native range at similar latitudes with male and females being mature at 9.5 

cm and 10.8 cm respectively (Howard 1981) (Table 4.2). Further, our minimum reproductive 

size is similar to those found in invasive bullfrog populations in Brazil, South America, where 

the minimum reproductive size at sexual maturity was found to be 7.6 cm for males and 6.5 cm 

for females (Leivas et al. 2012). Minimum reproductive sizes in our study were smaller relative 

to other invaded ranges in the United States and Canada, including populations from the northern 

extent of the Pacific Northwest invaded range (Washington and British Columbia; Table 4.2). 

This reduction in minimum reproductive size is likely increasing the number of reproductive 

events for breeding individuals, thus increasing the propagule pressure of invasive populations in 

Oregon (Leivas et al. 2012). Reaching sexual maturity at a smaller body size is thus likely 

enhancing invasion potential for populations within the Willamette Valley, Oregon, with 

individuals reaching breeding age before secondary sexual characteristics are present.  

The allocation of energy towards reproduction provides advantages to invading species. 

The reproductive cycle of American bullfrogs in Oregon is mainly restricted to the summer 

season when individuals congregate in lentic freshwater systems. Critical factors for breeding 

include calm water and air temperature above 20° C (Jones et al. 2005). In the Willamette Valley, 

females can lay egg masses with 6,000 to 20,000 eggs with body size positively correlated with 

egg number (Nussbaum et al. 1983). In warm water, hatching occurs in two to five days and 

tadpoles can take up to two years to reach metamorphosis. However, tadpoles from some 

populations in the Pacific Northwest invaded range have been documented as being able to 

metamorphose less than four months after hatching (Govindarajulu et al. 2005, Cook et al. 2013). 

Males and females in the Willamette Valley may therefore be reaching their minimum 

reproductive size less than two years after metamorphosis. This size shift may be explained by 
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reaching metamorphosis faster, resulting in smaller juvenile body sizes. The estimated thresholds 

for males and females to be sexually mature were similar to measurements reported in an 

invaded range from Brazil (Lima et al. 1998). The estimated threshold was greater for females 

(10 cm) that could indicate females reach maturity delayed relative than males. Females of the 

western clawed frog (Xenopus tropicalis), another successful anuran invader, are able to mature 

6 months after metamorphosis at only 6.5 cm in length, providing an advantage in the 

widespread of the invaded range of this species (McCoid & Fritts 1989).  

Life history characteristics that value adult survivorship over reproductive potential can 

also increase invasion success (Sol et al. 2012). This highlights the tradeoff between earlier 

sexual maturity and smaller juvenile body size in Oregon bullfrog populations. We posit that 

bullfrog females in the Willamette Valley are allocating energy to early maturation with a 

correlated reduction in egg mass size. Individuals may also be capable of double clutching, or 

spawning multiple times during a breeding season. Multiple clutching increases propagule 

pressure as increases in the number of offspring within each generation. Additionally, multiple 

clutching can lead to improving the genetic diversity of the invading populations as one female’s 

eggs can be fertilized by multiple males (Howard 1983). However, this aspect of reproductive 

biology has not been studied or reported in the Willamette Valley. 

Understanding key traits that predict or enhanced invasion success is critical for the 

implementation of management and control actions (Adams & Pearl 2007). Characterizing the 

reproductive activity of breeding bullfrog populations in the Willamette Valley in connection 

with abiotic factors can be critical in managing the establishment of new populations of this 

species. Our study identified a decrease in the minimum reproductive size of males and females 

in invasive American bullfrogs in the Willamette Valley relative to native populations. This 
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finding indicates that we need to modify our view of what constitutes a mature bullfrog in the 

Willamette Valley, and potentially in other invasion ranges. Although smaller females can have 

limited reproductive output, the potential for longer reproductive longevity both over ontogeny 

and within a breeding season could significantly increase the invasion potential of this critical 

invasive species.  
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Table 4.1 Sampled locations for American bullfrogs (Lithobates catesbeianus) in the Willamette 
Valley.  
 
 
Location Coordinates Fish presence 

(Yes=Y/No=N) 
Hydroperiod 

William L. Finley 
National Wildlife refuge 
-Lower 22 

44°24'47.0"N 
123°19'38.0"W 

N Mostly permanent, 
dry by management 

LCC wetlands 44°00'49.5"N 
123°02'22.1"W 

N Permanent 

Timberline 44° 01' 13.07 "N 
123° 08' 52.07"W 

N Permanent 

Barger 44° 04' 35.8"N 
123° 12' 14.7"W 

N Permanent 

William L. Finley 
National wildlife refuge 
–Cattail pond 

44° 24' 05.0"N 
123° 19' 27.8"W 

Y Mostly permanent, 
dry by management 

Green Island 44°08'23.6"N 
123°06'14.4"W 

Y Permanent 
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Figure 4.1 Sampling sites in the Willamette Valley from where American bullfrogs (L. 
catesbeianus) were collected  
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Figure 4.2 Estimated values for the first maturation of males (top) and females (bottom) 
of America bullfrog (L. catesbeianus) in an invaded range (Willamette Valley, OR). The 
horizontal line represents the threshold at which males and females are sexually mature 
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Disease is a product of interactions among hosts and pathogens within in a 

particular environment. The amphibian - chytrid interaction is an ideal system to study 

the impact of an emerging pathogen and host response, as there is significant variation in 

species and population response, in addition to differential impacts across strain and life 

stage. My thesis examines amphibian host response to Batrachochytrium dendrobatidis 

(Bd) across life history transitions: embryos to larvae, larvae to metamorphs and 

juveniles to adults in different host species.  

To investigate how host exposure to Bd during early life stages (embryos) impacts 

later life history stages, I used a factorial experimental design. Embryos of three anuran 

species (Pseudacris regilla, Anaxyrus boreas and Lithobates catesbeianus) were exposed 

to Bd at early or late embryonic stages, with some individuals re-exposed after hatching. I 

evaluated how time of exposure and Bd strain influenced host response (Chapter 2). 

Embryonic Bd exposure resulted in differential survival as a function of host species, Bd 

strain and timing of exposure. P. regilla experienced embryonic mortality when exposed 

during later developmental stages to one of the Bd strains. There were no differences 

across the treatments in embryonic mortality in A. boreas. Embryonic mortality of L. 

catesbeianus occurred in all Bd exposure treatments. We detected latent effects in A. 

boreas and L. catesbeianus larvae, as mortality increased when individuals had been 

exposed to any of the Bd strains during the embryonic stage. We also detected direct 

effects on larval mortality in all three-anuran species and it varied with Bd strain. When 

individuals were repeatedly exposed (late in the embryonic stage and again as larvae), we 

found an increase in mortality. Our results suggest that exposure to Bd can directly affect 
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embryo survival and have direct and latent effects on larval survival of both native and 

invasive species. However, these impacts were highly context dependent, with timing of 

exposure and Bd strain influencing the severity of the effects. This chapter emphasizes 

how important is to consider that, despite being a relatively brief period, exposure to Bd 

in the embryonic stage can lead to increased mortality after hatching. Additional research 

exploring the mechanisms protecting the embryos is needed to better understand the 

susceptibility of this developmental stage to disease. As eggs receive material from their 

parents during oviposition, evaluating the role of parental contributions to the immune 

response of their offspring can help us better understand embryonic immunity. Further 

studies are also required to understand how variation in other environmental and 

biological parameters can affect the outcome of repeated Bd exposure in anuran species. 

Our results add information to the growing body of evidence concerning differential 

susceptibility to pathogens among amphibian species and across life stages. 

I explored the next life transition, metamorphosis, by evaluating how wild - 

caught invasive Lithobates catesbeianus, respond to Bd strains isolated from 

conspecifics. My results showed that wild caught bullfrog metamorphs from the Western, 

US were susceptible to a Bd strain isolated from conspecifics from the Eastern US. 

Bullfrogs exposed to this novel strain suffered higher mortality rates compared to 

controls and to bullfrogs exposed to a Bd strain isolated from conspecifics in the Western 

US. Individuals exposed to the Western Bd strain survived and were able to harbor a 

higher pathogen burden. I found 43% of the wild - caught animals were infected prior to 

experimental exposure. Interestingly, they were able to clear the infection. Understanding 

the variation in host response to pathogens isolated from conspecifics across different 
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distributional ranges can help us to understand how pathogen origin mediates host 

responses. Future work about virulence of Bd in isolates from conspecifics deserves more 

research. Upcoming research should include characterization of aspects such as 

individual immunity and pathogen virulence with and without the interaction with the 

host. This chapter illustrates how the movement of individuals to different geographic 

locations contributes to the arrival of pathogens that can affect local organisms. 

Reproductive strategies and propagule pressure are key determinants of the 

invasive potential of a species. We studied reproductively mature adult bullfrogs. We 

quantified reproductive characteristics with an emphasis on the minimum size at which 

males and females reach sexual maturity in bullfrog population within the Willamette 

Valley Oregon USA (Chapter 4). After sampling six locations in the Willamette Valley 

during 2013 and 2017, results suggest the minimum reproductive size for males and 

females is smaller relative to sizes of adults in the native bullfrog range and similar to 

minimum reproductive sizes observed in bullfrog invasion ranges in South America. 

Reduction in size at reproductive maturity could impact the invasive success of American 

bullfrogs and give us insight into the history of their founder populations. 

The research presented in this thesis sheds light on the complexity of host-

pathogen interactions. Our experimental and observational studies indicate that the 

incorporation of a neglected life stage (embryos) is needed to understand the direct and 

latent impacts of Bd on later life stages. Future research can benefit from the inclusion of 

life history transitions in conjunction with changes in environmental conditions to better 

understand the host response and the pathogen role in an integral way. Results from my 
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dissertation related to the minimum size of an invasive species can be taken into account 

in planning management actions to control this species. This dissertation provides new 

information on the impact of Bd on embryonic life stages, as well as information about 

susceptibility of American bullfrogs to Bd, a species that has generally been considered 

tolerant to Bd. Our results provide necessary information for conducting future research 

projects on the role of life history transition, repeated exposure, and strain virulence in 

different hosts. 

Wildlife and human health are threatened by emergent infectious diseases and 

information about factors that influence the response of hosts and how that response 

changes is critical to establish actions to prevent or control disease spread. Ultimately, it 

is in our hands to conduct research and plan conservation actions that include a holistic 

view of disease. I posit there is a need to involve more sub disciplines in this research, 

and a demand to work together to understand disease dynamics. Understanding the 

amphibian –chytrid system is a first step to obtain information to disentangle disease 

dynamics and applied our knowledge in different systems affected by diseases.  
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