

AN ABSTRACT OF THE THESIS OF

Tanjin Xu for the degree of Master of Science in Computer Science presented on May 31, 2016.

Title: Exploration of Regression Models for Cancer Noncoding Mutation Recurrence

Abstract approved:

Stephen A. Ramsey

An important impact of the genome technology revolution will be the elucidation of mechanisms

of cancer pathogenesis, leading to improvements in the diagnosis of cancer and the selection of

cancer treatment. Integrated with current well-studied massive knowledge and findings about

the role of protein-coding mutations in cancer, demystifying the functional role of human “junk”

DNA (non-protein-coding DNA) mutations for cancer development and progression is one of

the most popular and promising approaches these days to improve our understanding of the

complicated cellular mechanisms in cancer. In light of one recent finding that non-protein-

coding driver mutations tend to be highly recurrent, in this thesis we explore three different kinds

of regression models for predicting non-protein-coding mutation recurrence: generalized linear

models, conventional machine learning approaches and deep neural network learning models.

We compare the regression model results and find the most accurate model for non-protein-

coding mutation recurrence prediction so that we can prioritize somatic mutations based on

their predicted recurrence and provide insights for further biological validation and eventually

improved cancer therapy.

c©Copyright by Tanjin Xu
May 31, 2016

All Rights Reserved

Exploration of Regression Models for Cancer Noncoding Mutation
Recurrence

by

Tanjin Xu

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented May 31, 2016
Commencement June 2016

Master of Science thesis of Tanjin Xu presented on May 31, 2016.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my thesis to any reader upon
request.

Tanjin Xu, Author

ACKNOWLEDGEMENTS

I have been quite lucky to have Professor Stephen Ramsey as my supervisor. Steve’s professional

ability to clearly and cleanly formalize problems and intuitions is unsurpassed in my experience.

Working with Steve has fundamentally changed the way that I think about research and working

on projects. And also great thanks to Steve for his financial support, inspiration and encourage-

ment for two years in the lab. I strongly believe all that I have learned from him will benefit a lot

in my future career.

I would also like to thank all other committee members, Prof. Xiaoli Fern, Prof. David

Hendrix and Prof. Hector A. Vergara for their insights, suggestions and their time for my thesis

defence.

Thanks to all my colleagues and friends for their support and help, especially thanks to Dr.

Jichen Yang, Jun He, Xin Liu, Yao Yao and Zheng Liu for putting up with me throughout my

graduate life in U.S..

And finally, I am so grateful to my family. Without continuous strong support and under-

standing of my parents, I can not step so far. Great thanks to my wife Li Li for her deep love and

standing behind me all the time.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Background . 1

1.2 Cancer Overview . 2

1.3 Noncoding Mutations . 4

1.4 Mutation Recurrence . 5

1.5 Research Objective . 6

1.6 Outline . 7

2 Literature Review 8

2.1 Driver Mutation Detection . 8

2.2 Generalized Linear Regression Models . 11
2.2.1 Poisson Regression . 12
2.2.2 Negative Binomial Regression . 14
2.2.3 Goodness of Fit . 15

2.3 Conventional Machine Learning Approaches 16
2.3.1 Random Forest Regression . 17
2.3.2 Gradient Boosted Regression Trees 19
2.3.3 Ada Boosting Regression . 20

2.4 Deep Learning Approach . 22
2.4.1 Neural Network Regression . 22
2.4.2 Stacked AutoEncoder Regression . 24

2.5 Cross-Validation . 27

3 Materials and Methods 28

3.1 Datasets and Feature Selection . 29

3.2 Annotation of Noncoding Mutations . 34

3.3 Regression Analysis . 36
3.3.1 Definition of Mutation Recurrence 37
3.3.2 Generalized Linear Models . 37
3.3.3 Ensemble of Decision Trees Models 40
3.3.4 Deep Neural Network . 44

3.4 Model Evaluation . 48
3.4.1 Explained Variance Score . 49

TABLE OF CONTENTS (Continued)
Page

3.4.2 Mean Absolute Error . 49
3.4.3 Mean Squared Error . 49
3.4.4 Median Absolute Error . 50
3.4.5 R2 score . 50

3.5 Overall Procedure . 51

4 Results 52

4.1 Recurrence Distribution . 53

4.2 GLM Regression Analysis . 54

4.3 Ensemble Methods Analysis . 57

4.4 Deep Neural Network Regression Analysis . 59

4.5 Overall Performance Summary . 60

4.6 Feature Importances . 61

5 Discussion 63

6 Conclusion 65

Bibliography 66

LIST OF FIGURES
Figure Page

1.1 The prevalence of somatic mutations across human cancer types (reproduced
from [1]) . 3

1.2 Noncoding mutation frequency in different regions (reproduced from [82] where
error bar represents the mean standard error) 5

2.1 Overview of strategies for driver detection [65] 9

2.2 Random Forest Classifier for driver detection (reproduced from [75]) 10

2.3 Poisson and Negative Binomial Distribution 12

2.4 Poisson Regression dispersion [48] . 14

2.5 Random Forest Regression Models [33]. As the figures shows, the original input
X is bootstrapped sampled to build different decision trees. And in the last step
to predict ŷ using the weighted averaging strategy. 17

2.6 Feed-Forward Neural Network Model [76]. In the forward phase, from the in-
put layer to the output layer, the activation values of the hidden nodes and the
output are calculated, and also the gradients. In the backward phase, from the
output layer to the input layer, the weights are updated layer by layer using a
backpropagation algorithm. 23

2.7 Stacked Auto Encoder Pretraining [57]. In the example above, train the first
hidden layer h(1) (encoder) and drop the output, then use the h(1) as input to
train the second encoder h(2) and also drop the output. And in the last train
the weights from the second hidden layer to the output layer. All the activation
values and weights were memorized and re-updated. 25

2.8 Stacked Auto Encoder Fine-tuning [57]. Put the input layer X , the two pre-
trained encoders h(1), h(2) and the output layer all together, and also reuse the
learned weights to fit the input data again. Use the backpropagation based on
gradient descent to update the weights. 26

3.1 Example rows from noncoding mutation dataset from the COSMIC database . . 29

3.2 Noncoding mutation and TSS distance . 31

3.3 Noncoding mutation and GC-content . 33

LIST OF FIGURES (Continued)
Figure Page

3.4 Noncoding intergenic regions . 36

3.5 Noncoding mutation recurrence . 37

3.6 Neural Network Nonlinear Representation (figure reproduced from [80]) 45

3.7 Stacked AutoEncoder Regression . 48

3.8 Overall Regression Analysis Procedures . 51

4.1 Noncoding mutation data distribution: (a) the frequency (number of occurrence)
of noncoding mutation recurrence; (b) log frequency of overall noncoding mu-
tations; (c) the frequency of noncoding mutations with recurrence less than 100;
(d) as a function of the recurrence count, the Poisson model-predicted and em-
pirical log frequency of mutations (plus the log factorial). 53

4.2 MSE of GLM regression models with different sampling rates 55

4.3 GLM regression models performance with different sampling rates 56

4.4 Ensemble regression models test performance with different sampling rates . . 57

4.5 Ensemble regression models training performance with different sampling rates 58

4.6 Deep neural network regression training error with different sampling rates . . 59

4.7 Deep neural network regression test error with different sampling rates 60

4.8 Overall regression models test MSE/MAE with different sampling rates 61

4.9 Variable importances score . 62

LIST OF TABLES
Table Page

3.1 Twenty-nine noncoding mutation features for regression 30

4.1 Recurrence variance/mean ratio . 54

4.2 GLM regression statistics . 55

4.3 Ensemble methods parameters tuning . 57

4.4 Neural Network regression parameters tuning 59

LIST OF ALGORITHMS
Algorithm Page

1 RANDOM FOREST REGRESSION . 18

2 GRADIENT BOOSTING METHOD . 19

3 ADABOOST.R2 [20] . 21

4 TF BINDINGS SITES FEATURES EXTRACTION 32

5 NONCODING MUTATIONS ANNOTATION . 35

6 NEURAL NETWORK REGRESSION . 46

7 STACKED AUTOENCODER REGRESSION . 47

Chapter 1: Introduction

Cancer is the second leading cause of death in the United States [56]. As of 2009, approximately

40% of Americans are expected to develop cancer in their lifetime, and approximately 50%

of these individuals are expected to die of disease [66]. Given the worldwide increase in the

incidence of cancer and the urgent need to find ways for prevention and cure, cancer research

is progressing at a rapid rate toward understanding the mechanisms of the transformation of a

normal cell into cancer and eventually spreading to different organs – a process called metastasis

[14].

1.1 Background

Today our knowledge of cancer is advancing at an unprecedented rate. It is well established that

cancer primarily develops because of somatic alterations in the genome [82]. Many genomic

events with direct phenotypic impact have been identified and a subset of critical mutations have

been successfully targeted therapeutically [65]; for example, imatinib has been used to target

cells expressing the BCR-ABL fusion gene in chronic myeloid leukemia [27], and gefitinib has

been used to inhibit the epidermal growth factor receptor in lung cancer [58].

However, the more we understand about cancer, the more its complexity becomes apparent

[25]. Cancer can take hundreds of different forms depending on the location, cell of origin and

spectrum of genomic alterations that promote oncogenesis and affect therapeutic response [83].

On the other hand, cancer patients are extremely heterogeneous in their responses to treatments

and disease outcomes [63]. No two individuals’ cancers are identical due to the fact that cancer

arises from the selection of specific point mutations, structural variants and epigenetic alterations

from a large pool of such variation. To date, the vast majority of studies of somatic mutations in

cancer have focused on coding regions; however, the protein-coding component of the genome

accounts for less than 2% of the total sequence, and there is very little information on how

noncoding variation affects cancer development and progression [82].

2

1.2 Cancer Overview

Cancer is fundamentally a genetic disease in that it results from dysregulation of the gene net-

works that maintain normal cellular identity, growth and differentiation [12]. And the cause

is mainly due to genomic instability which refers to an increased tendency of alteration in

the genome during the life cycle of cells [71]. Only a small proportion of cancers are at-

tributed to heritable single-gene disorders (also called germline mutations), usually involving

non-synonymous mutations in the coding sequence of protein-coding genes, such as BRCA1 in

familiar breast cancer and RB1, which causes familial retinoblastoma [12]. The majority of can-

cers primarily develops because of somatic alterations in the genome [82]. These alterations

include nucleotide substitutions, small insertions and deletions, large chromosomal rearrange-

ments(also called structural variants) and copy number changes [39]. Such alterations often, of

course, concomitantly alter genes in a number of ways that may be critical to cancer onset or

progression, such as adverse effect on protein-coding and regulatory components of genes, and

especially might affect the two important types of genes in cancer - oncogenes which encodes a

protein capable of transforming cells in culture or inducing cancer, and tumor-suppressor genes

which encode proteins that normally inhibit cell division [35].

Genomic coding mutations have been studied for decades using low-throughput approaches

such as targeted gene sequencing or cytogenetic techniques, which have led to the identification

of a number of highly recurrent somatic mutations [27, 81]. In the past few years, revolutionary

advances in next-generation sequencing (NGS) technologies have enabled Whole-genome Se-

quencing and the Whole-exome Sequencing with much greater speed and much lower cost. This

has engendered the acquisition of massive amounts of cancer genomic data and provided somatic

mutation landscapes for better understanding cancer biology and improving cancer diagnosis and

therapy [13]. Since many gene alterations might not have been observed before and might not

necessarily reside in coding regions of the genome, whole-genome sequencing is increasingly

regarded as a promising approach that can find all the variants in a cancer genome. Based on the

assumption that changes in gene expression levels impact disease progression, high-throughput

short-read sequencing of mRNA (RNA-seq) is increasingly employed to determine whether and

how these genetic alterations impact cancer progression [31].

So far, somatic mutations of more than 20 cancer types have been systematically explored.

The COSMIC (Catalogue Of Somatic Mutations In Cancer) database [3] contains information

on 3.1 million coding mutations and 4.5 million noncoding mutations. In addition, large-scale

3

Figure 1.1: The prevalence of somatic mutations across human cancer types (reproduced from
[1])

cancer genomics projects such as The Cancer Genome Atlas (TCGA) and the International Can-

cer Genome Consortium (ICGC [39]) have profiled tens of thousands of cancer samples [82].

As of May 2015, nearly 13 million somatic mutations have been uncovered by ICGC [13].

The mutation rate in cancer genomes varies by 1000-fold among different cancer types [44].

Most solid tumor genomes harbor hundreds of sequence-level genetic alterations. The majority

of these alterations are expected to be passenger mutations that do not confer a selective growth

advantage, while a few are driver mutations which have a selective growth advantage in tumor

cells [81]. Though it is easy to define a “driver gene mutation” in physiologic terms (as one

conferring a selective growth advantage), it is more difficult to identify which somatic mutations

are drivers and which are passengers. Moreover, it is important to point out that there is a

fundamental difference between a driver gene and a driver gene mutation. A driver gene is one

that contains driver gene mutations. But driver genes may also contain passenger gene mutations

[81].

4

1.3 Noncoding Mutations

Despite extensive study on coding variants, the majority of the genetic component of cancer

susceptibility has not yet been linked to individual genes, highlighting significant deficiencies

in our understanding of the molecular basis of cancer [12]. A key development in unravel-

ling the complex genetics of cancer may be the shift in focus from looking exclusively at the

protein-coding components of the genome to consideration of the role of variation in genomic

regulatory elements. The Encyclopedia of DNA Elements (ENCODE) Project has stimulated a

dramatic reassessment of the information content of the human genome [82]. Rather than is-

lands of protein-coding genes in a sea of junk DNA, it is increasingly apparent that much of the

genome, far more than expected, encodes regulatory information. Indeed the ENCODE project

recently concluded that although only ∼1.2% of the genome is protein-coding, at least 20%

shows biological function and over 80% exhibits biochemical indices of function [12, 17].

Of these non-protein-coding sequences, a large portion contains regulatory elements. Broadly

speaking, they consist of cis-regulatory regions and noncoding RNAs (ncRNAs). Cis-regulatory

regions include promoters and distal elements (enhancers, silencers and insulators), which reg-

ulate gene expression following binding by transcription factors (TFs) [42]. It is well known

that somatic mutations in noncoding regions are frequent, but their effects are poorly understood

[82]. Recent efforts to understand noncoding variation in the human population have shown

that disease-associated genomic variation is commonly located in regulatory elements [82]. A

notable recent discovery is that recurrent somatic mutations in the promoter region of the gene

TERT have been found in multiple cancer types including cancers of the central nervous system,

bladder, thyroid, and skin [78]; and a more distally located enhancer mutation upstream of TAL1

in T-cell acute lymphoblastic leukemia [50]. These two examples of driver mutations generate

de novo binding sites for oncogenic transcription factors. Particularly, the TERT promoter mu-

tations create new ETS-like binding sites leading to their binding to the TERT promoter and

subsequent upregulation of gene expression, while the TAL1 mutation creates a MYB binding

site [75].

Accumulating evidence indicates that cis-regulatory element alteration is associated with

multiple diseases [51]. This is illustrated by the human gene mutation database (HGMD [74]),

which includes more than 3,000 disease-implicated mutations categorized as ’regulatory’. A

meta-analysis of ∼1,200 GWAS (Genome-Wide Association Study) SNPs showed that more

than one third of noncoding variants are likely to be causal for the phenotypic or disease traits

5

Figure 1.2: Noncoding mutation frequency in different regions (reproduced from [82] where
error bar represents the mean standard error)

observed [79]. Of particular relevance is cancer, which has been described as disease of disrupted

gene regulation. It is therefore unsurprising that non-coding variations are linked to tumorigen-

esis [51].

1.4 Mutation Recurrence

As illustrated in the above section, driver mutations are those that grant cells a survival advan-

tage, while the passenger mutations are those that have been acquired at some point during clonal

evolution but do not provide a substantial survival advantage [31]. Therefore driver mutations

contribute to oncogenesis whereas the majority are passenger mutations accumulated during

cancer progression. A major challenge of cancer research is to differentiate these two types of

mutations. In the current state-of-art, bioinformatic identification of driver mutations is based

on two lines of evidence: detection of signals of positive selection [44], namely the presence

of more recurrent mutations than expected by random chance, or prediction of mutations with

high functional impact [26]. Analysis of the recurrence of somatic variants from tumour samples

6

in functional elements to identify regions under positive selection is similar to the burden test

strategy that is used to associate rare germline variants with complex traits [42].

A case of study [82] of 864 human tumors highlighted recurrent mutations in promoter re-

gions of the PLEKHS1, WSR74, and SHDH along with those already known to be associated

to the TERT gene which encodes the catalytic subunit of telomerase. The recurrent mutations

found in the SHDH promoter have been shown to be associated with reduced gene expression.

Tumours in tissues with relatively low rates of self-renewal (including melanomas, urothelial

carcinomas and medulloblastomas) tend to exhibit higher frequencies of TERT promoter muta-

tions [42]. The high occurrence of these mutations points to their role as driver as opposed to

passenger mutations [42].

In general, computational identification of coding drivers is based on mutation recurrence.

Computational identification of non-coding drivers is in many ways even more challenging than

coding drivers owing to their complex and varied modes of action and our poor understanding

of noncoding regions in general. Noncoding mutations are also more abundant than coding ones

and thus the key mutations with functional impact have to be distinguished from a larger set of

passenger events [42]. However, in light of the recent findings (as illustrated above) about high

recurrent mutations in the regulatory noncoding regions including promoters and enhancers and

those noncoding mutations were also identified as drivers, it is still promising to apply mutation

recurrence approach to distinguish the noncoding driver mutations from the passenger mutations.

1.5 Research Objective

It is well established that the protein-coding “driver” mutations are highly recurrent, i.e., they

occur in many tumour samples high frequently and also in many different cancer types [75]. For

noncoding mutations, recent studies [42, 52, 75, 82], especially for the finding of TERT promoter

mutations, suggests that the noncoding “driver” mutations also show high recurrence. Therefore

in light of these studies and the growing availability of whole-genome cancer sequencing, in this

study, we analyzed noncoding mutations from the COSMIC database. We developed a model of

mutation recurrence counts and we explored different kinds of regression models to find the best

model to fit the recurrence counts of noncoding mutations. Our rationale was that if successful,

this model could be used to predict the potential of a newly discovered somatic mutation to be

a driver mutation, and by extension, it could be used to rank novel somatic mutations by their

predicted cancer-driving potential.

7

To achieve this, our study involved three steps. First, we annotated noncoding mutations

focusing on the regulatory region in genome, such as 5′ untranslated regions (UTRs) and inter-

genic regions including promoters and the enhancers. Second, we extracted the most important

genomic features for each noncoding mutation, such as transcription factor binding sites, the

distance to the nearest gene transcription start sites, and DNase I hypersensitive sites. Third,

we built mutation count response models and we explored and evaluated various linear and non-

linear regression models. The details are illustrated in Chapter 3.

1.6 Outline

In the following sections, the content is organized as described below. Chapter 2 summarizes

the current state-of-art computational methods for detecting noncoding mutations, and also the

regression models used for count data which are discrete integers. Additionally, we analyze

the accuracy of traditional statistical machine learning approaches and the most popular deep

learning techniques for regression problems, for predicting cancer mutation counts. Chapter 3

illustrates the count models used for regression analysis to predict noncoding mutation recur-

rence and the computational methods and algorithms. Chapter 4 shows the regression results

and in Chapter 5 we discuss the results from our analysis. In Chapter 6, we summarize our

analysis and discuss possible follow-on studies.

8

Chapter 2: Literature Review

Computational identification of driver (vs. passenger) mutations is a challenging task. Below

we discuss various methods for recognizing cancer driving mutations in non-coding regions, and

also the computational models that can be used for regression analysis of discrete counts data,

including both the traditional statistical machine learning methods and the recent popular deep

learning approach.

2.1 Driver Mutation Detection

To analyze regulatory mutations on the genome-wide scale and to prioritize candidate driver

mutations, several types of information can be integrated. A first class of methods is based

on filtering all candidate mutations, such as single nucleotide variants (SNV) and small indels,

to retain only those that affect “interesting” nucleotides [75]. For example, a method called

FunSeq [2] retains mutations that affect “sensitive” genomic positions. Sensitive positions are

determined by FunSeq as positions that are significantly infrequently substituted in the normal

human population. Other methods like OncoCis [61] and RegulomeDB [7], retain mutations that

are located in candidate regulatory regions, as determined by publicly available regulatory data

(e.g., from ENCODE). The disadvantage of this approach is that regulatory activity observed in

a cancer sample may not correspond to any of the available annotation, particularly when the

mutation creates a gain-of-function cis-regulatory module (CRM), or in other words, publicly

available regulatory annotation information is not always indicative for the function of the CRM

in cancer.

A second class of approaches used information about transcription factor (TF) binding site

sequence motifs and selects mutations that affect transcription binding sites by scoring the refer-

ence and mutated sequences with a position weight matrix (PWM) of a particular TF, assessing

the impact of the mutation by the difference of the scores for the reference and mutated sequences

[75]. One limitation of these methods is that PWM-scanning methods are notorious for gener-

ating high amount of false positive predictions, which can affect the accuracy of PWM-based

mutation scoring, yielding excessive amounts of false-positive driver mutations [75].

9

Figure 2.1: Overview of strategies for driver detection [65]

The first two classes of identification methods require biological prior knowledge and mostly

focus on functional analysis of the noncoding mutations. Some other methods integrate these

types of functional analysis with gene expression analysis [22]. Meanwhile there are also a

number of computational tools that exist to annotate and prioritize potentially functional non-

coding mutations with high impact as listed in Table 2 of the article by Khurana et al. [42].

However, the main problem with these methods is their low accuracy and their dependence on

biological prior knowledge. Since in this thesis we try to explore regression models to predict

noncoding mutation recurrence with the features of well-known or more likely to be correlated

with the mutations in the noncoding regions in cancer, we focus more on statistical learning

methods and computational algorithms.

One method for identifying non-coding driver mutations involves analyzing the recurrence

of somatic mutations from tumour samples in functional elements [22, 52, 82]. Specifically

Weinhold et al. [82] used a hotspot analysis to identify focal regulatory regions that were sig-

nificantly recurrently mutated in comparison to a random distribution of mutations across the

genome and also used a regional recurrent approach targeting regulatory regions that were mu-

10

tated more frequently than expected by chance. And another interesting finding by Melton et al.

[52] is that the detected recurrent mutations in distinct noncoding positions are close to the

transcription start site (TSS), suggesting that TSS distance would be an essential feature for pre-

dicting recurrent mutations in our regression analysis. Such types of methods that try to identify

noncoding elements based on mutation recurrence (that is, those mutations that are undergoing

positive selection within their respective tumours) also need to account for genomic mutation

rate covariates (similarly to methods used for driver mutation analysis of coding exons [42]).

Another machine-learning approach, employed by Svetlichny et al. [75], is to use a Random

Forest model for identification of regulatory mutations, as shown in Figure 2.2. They trained

TF-target Random Forest classifiers for 45 cancer-related TFs to predict which cis-regulatory

mutations may have a significant impact on gene regulation by evaluating whether the mutation

causes a significant gain or loss in the probability that the CRM is a functional TF target. And

the mutations with the top highest PRIME (Predicted Impact of a Mutation in an Enhancer) score

were chosen as candidate drivers.

Figure 2.2: Random Forest Classifier for driver detection (reproduced from [75])

The main problem of this approach is that the classification model held an assumption that

the mutations change the existing TF binding sites or create new ones and scan the mutated se-

quence comparing to the reference TF binding sites. However, some mutations may not directly

change the existing binding sites or create new binding sites, but they may indirectly impact

regulatory elements that affect cancer development and progression. And also the model only

targeted 45 specific transcription factors, which may not be helpful for detecting noncoding

11

driver mutations in regulatory regions that are not yet discovered.

In summary, computational methods for noncoding driver mutation detection are at present

not fully explored. In this thesis we build a regression model to predict the recurrence of non-

coding mutations using state-of-the-art regression algorithms. Since in our regression model, the

response variable—the mutation recurrence—is represented by an integer count, in the section

below we explore the regression models which are suited for counts data analysis.

2.2 Generalized Linear Regression Models

Regression models are the most popular tool for modelling the relationship between a response

variable and a set of predictors, including linear regression models and non-linear regression

models. In linear regression, the parameters appear in a linear form as:

yi = β1xi1 + · · ·+ βpxip + εi = xTi β + εi, i = 1, . . . , n, (2.1)

and the closed form:

y = XTβ + ε, (2.2)

where yi represents the response variable, xi represents the predictor, εi represents the error

term, β represents the coefficient parameters, p denotes the number of predictors (dimension)

and T denotes the transpose. While for the non-linear regression model, there is no requirement

of the linear form of the parameters and it usually has the form as:

y = f(X,β) + ε, (2.3)

where X is a vector of p predictors, β is a vector of k parameters, f is some known regression

function, and ε is an error term whose distribution may or may not be normal.

One of the main assumptions of linear regression model is that the residual errors follow

a normal distribution. To meet this assumption when a continuous response is skew, a trans-

formation of the response variable can produce errors that approximate normal. However, in

computational biology, it is very common that the response variable y is categorical or discrete,

or even limited to non-negative numbers. One obvious example is that the response variable

represents the count number. In this case, the linear regression model is not appropriate for the

12

counts data analysis because there are high number of 0’s so that it is impossible to transform to

normal distribution, and also the linear regression model may predict negative values. Instead,

the most widely used models are Poisson regression and Negative Binomial regression.

Figure 2.3: Poisson and Negative Binomial Distribution

2.2.1 Poisson Regression

The Poisson distribution is often used for modelling count data. The Poisson regression model

specifies that each yi is drawn from a Poisson population with parameter λi, where λi is related

to the regressors xi [30]. The primary equation of the model is:

Prob(Y = yi|xi) =
e−λiλyii
yi!

, λi > 0, yi ∈ {0, 1, 2, . . . }. (2.4)

The most common formulation for λi is the log-linear model:

lnλi = xTi β. (2.5)

13

It is easily shown that the expected number of events per period is given by:

E[yi|xi] = Var[yi|xi] = λi = ex
T
i β, (2.6)

so we can obtain the derivative of xi:

∂E[yi|xi]
∂xi

= λiβ. (2.7)

With the parameter estimates in hand, this vector can be computed using any data vector desired.

In principle, the Poisson model is simply a nonlinear regression [30]. But it is far easier to

estimate the parameters with maximum likelihood techniques. The log-likelihood function is:

lnL =
n∑
i=1

[−λi + yix
T
i β − ln yi!] (2.8)

The likelihood equations are:

∂lnL
∂β

=

n∑
i=1

(yi − λi)xi = 0. (2.9)

And the Hessian is:

∂2lnL
∂β ∂βT

= −
n∑
i=1

λixix
T
i . (2.10)

Apparently the log likelihood function is concave as the Hessian is negative definite for all x

and β so there is no explicit solution for β. However, the Newton-Raphson iterative method

[30] can be used to estimate β and it usually converges rapidly. At the converging value for

β, the quantity [
∑n

i=1 λ̂ixix
T
i]−1 provides an estimator of the asymptotic covariance matrix for

the parameter estimator. Given the estimates, the prediction for observation i is the expectation

value λ̂i = E(Yi|xi) = exp(xTi β̂).

The standard univariate Poisson regression model makes two assumptions [84]. First, p(y|λ)

is the conditional probability function of y given λ, and it must hold that λ > 0. Second,

observation pairs (yi, xi), i = 1, . . . , n are independently distributed [84].

14

Figure 2.4: Poisson Regression dispersion [48]

2.2.2 Negative Binomial Regression

A Poisson random variable is equidispersed, i.e., the variance is equal to the mean. However, in

many cases, the actual random variable is overdispersed, with variance greater than the mean,

due to additional factors that are not accounted for by the input x or the model itself [11].

Poisson regression is ill-suited to model overdispersion because it will bias the mean towards

the variance, in order to keep the equidispersion property. One popular regression model for

overdispersed count data is based on the Negative Binomial [10].

Negative binomial regression is a type of generalized linear model in which the dependent

variable Y is a count of the number of times an event occurs. A convenient parametrization of

the negative binomial distribution is given by:

p(y) = p(Y = y) =
Γ(y + 1/α)

Γ(y + 1)Γ(1/α)

(
1

1 + αµ

)1/α(αµ

1 + αµ

)y
. (2.11)

15

where µ > 0 is the mean of Y and α > 0 is the heterogeneity parameter.The traditional negative

binomial regression model, designated the NB2 model in [36], is:

lnµ = β0 + β1x1 + β2x2 + · · ·+ βpxp. (2.12)

where the predictor variables x1, x2, . . . , xp are given, and the population regression coefficients

β0, β1, β2, . . . , βp are to be estimated. Then the distribution formula can be rewritten as:

p(yi) =
Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(
1

1 + αexiβ

)1/α(αexiβ

1 + αexiβ

)yi
, i = 1, 2, . . . , n. (2.13)

Typically, likelihood maximization is employed to estimate α and β. The likelihood function is:

L(α, β) =
n∏
i=1

p(yi) =
n∏
i=1

Γ(yi + 1/α)

Γ(yi + 1)Γ(1/α)

(
1

1 + αexiβ

)1/α(αexiβ

1 + αexiβ

)yi
.

and the log-likelihood function is

(2.14)
lnL(α, β) =

n∑
i=1

(
yi lnα+ yi(xi · β)−

(
yi +

1

α

)
ln
(

1 + αexi·β
)

+ ln Γ

(
yi +

1

α

)

− ln Γ(yi + 1)− ln Γ

(
1

α

))
.

The pair (α, β) that maximizes lnL(α, β) will be the maximum likelihood estimates, and the

estimated variance-covariance matrix of the estimators is
∑

= −H−1,where H is the Hessian

matrix of the log-likelihood function.

2.2.3 Goodness of Fit

A measure of discrepancy between observed and fitted values is the deviance [10]. For General-

ized Linear Models (GLM) including Poisson regression and Negative Binomial regression, the

deviance takes the form

D(y, µ̂) = 2{L(y)− L(ŷ)} (2.15)

16

which is twice the difference between the maximum log-likelihood achievable and the log-

likelihood of the fitted model. For Poisson regression, it takes the form

Dpoisson =
n∑
i=1

{yi log(
yi
ŷi

)− (yi − ŷi)}, (2.16)

while for Negative Binomial regression, it takes the form

DNB2 =

n∑
i=1

{
yi ln

(
yi
ŷi

)
− (yi + α−1) ln

[
ln
yi + α−1

ŷi + α−1

]}
, (2.17)

where ŷi denotes the fitted values based on the current parameter estimates. The first term is

identical to the binomial deviance, representing twice a sum of observed times log of observed

fitted. The second term, a sum of differences between observed and fitted values, is usually zero,

because the maximum likelihood estimates (MLE) have the property of reproducing marginal

totals [67].

For large samples the distribution of the deviance is approximately a chi-squared with n− p
degrees of freedom, where n is the number of observations and p is the number of predictors (or

parameters). Thus, the deviance can be used directly to test the goodness of fit of the model [67].

An alternative measure of goodness of fit is Pearson’s chi-squared statistics, which is defined

as

χ2
p =

n∑
i=1

(yi − ŷi)2

ŷi
. (2.18)

The numerator is the squared difference between observed and fitted value, and the denominator

is the expected (fitted) value. The Pearson statistic has the same form for Poisson and binomial

data, namely a ‘sum of squared observed minus expected over expected’.

2.3 Conventional Machine Learning Approaches

Machine learning is the study of data-driven methods capable of mimicking, understanding and

aiding human and biological information processing tasks [4]. Machine learning methods aim at

improving a predictive performance measure by repeated observation of experiences. They may

capture hidden information from large databases [28]. The ensemble methods, such as Random

17

Forest (RF) algorithms [9] and boosting [23], are the most appealing alternatives to analyze

count data, and they have been widely applied in GWAS for human diseases [24, 28, 29].

2.3.1 Random Forest Regression

Random Forest can be viewed as a machine learning ensemble algorithm (ensembles of decision

trees) and was first proposed by Breiman [9]. It is non-parametric, robust to over-fitting and

able to capture complex interaction structures in the data, which may alleviate the problems of

analysing genome-wide data. This algorithm constructs many decision trees on bootstrapped

samples of the data set, averaging each estimate to make final predictions. This strategy, called

bootstrap aggregating (or “bagging”) [8], reduces error prediction by a factor of the number of

trees. Like decision trees, random forests handle categorical features, extend to the multiclass

classification setting, do not require feature scaling, and are able to capture non-linearities and

feature interactions.

Figure 2.5: Random Forest Regression Models [33]. As the figures shows, the original input X
is bootstrapped sampled to build different decision trees. And in the last step to predict ŷ using
the weighted averaging strategy.

Let yn×1 be the data vector consisting of discrete observations for the outcome of a given event,

18

i.e., noncoding mutations in this thesis, and X = {xi} where xi is a p× 1 vector representing p

features (predictors), to which T decision trees are built. The ensemble can be described as an

additive expansion of the form:

y = µ+
T∑
t=1

ctht(y;X). (2.19)

Each tree ht(y;X) for t ∈ (1, T) is distinct from any other in the ensemble as it is constructed

from n samples from the original data set selected at random with replacement, and at each ode

only a small group of noncoding mutations are randomly selected to create the splitting rule.

Each tree is grown to be the largest extent possible until all the terminal nodes are maximally

homogeneous. Then, ct is some shrinkage factor averaging the trees. The trees are independent

identically distributed random vectors, each of them casting a unit vote for the most popular

outcome of the disease at a given combination of observed mutations.

The random forest regression algorithm is shown in Algorithm 1 (adapted from [40]).

Algorithm 1 RANDOM FOREST REGRESSION

input : All observations Xn×p and Yn×1 where n is training size and p is input dimension; B is
the number of tree to build.

output: Predicted values Ŷn×1 and feature importance scores Ip×1

for b← 1 to B do
Draw a bootstrap sample Z? of size N from the training data.

Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the follow-
ing steps for each terminal node of the tree, until the minimum node size nmin is reached.

1. Select m variables at random from the p variables.

2. Pick the best variable/split-join among the m.

3. Split the node into two daughter nodes.

end

Output the ensemble of trees {Tb}B1
Prediction of x:f̂Brf (x) = 1

B

∑B
b=1 Tb(x).

19

2.3.2 Gradient Boosted Regression Trees

Boosting is one of several classic methods for creating ensemble models, along with bagging

and random forests which are based on model averaging. However, boosting is sequential: it

is a forward, stage-wise procedure. Gradient boosting [23] is a machine learning technique for

regression problems. It builds each regression tree in a step-wise fashion, using a predefined loss

function (i.e., mean squared error) to measure the error in each step and correct for it in the next.

The predictor is an ensemble of weak prediction models, typically decision trees.

Gradient Tree Boosting or Gradient Boosted Regression Trees (GBRT) is a generalization of

boosting to arbitrary differentiable loss functions. GBRT is an accurate and effective procedure

that can be used for both regression and classification problems. Gradient Tree Boosting models

are used in a variety of areas including Web search and ecology [60]. The generic gradient

boosting algorithm is described in Algorithm 2 (derived from [23, 32]). The Gradient Tree

Algorithm 2 GRADIENT BOOSTING METHOD

input : Training set {(xi, yi)}ni=1, a differentiable loss function L(y, F (x)), and also number of
iterations M for training to converge.

Initialize model with a constant value:
Let F be the learning model, L be the loss function, and γ be the weighting factor.

F0(x) = argmin
x

∑n
i=1 L(yi, γ),

for m← 1 to M do
1. Compute so-called pseudo-residuals:

rim = −

[
∂L(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, ..., n.

2. Fit a base learner hm(x) to pseudo-residuals, for example, train it using the training set
{(xi, rim)}ni=1

3. Compute multiplier γm by solving the following one-dimensional optimization problem:
γm = argmin

γ

∑n
i=1 L(yi, Fm−1(xi) + γhm(xi)).

4. Update the model:
Fm(x) = Fm−1(x) + γmhm(x)

end
output: FM (x)

Boosting algorithm fits a decision tree hm(x) to pseudo-residuals. Let J be the number of the

20

tree’s leaves. The tree partitions the feature vector space into J disjoint regions R1m, . . . , RJm

and predicts a constant value in each region:

hm(x) =

J∑
j=1

bjmI(x ∈ Rjm), (2.20)

where I is an indicator function, bjm is the value predicted in the region Rjm [32]. And each

tree’s region has a separate optimal value γjm, so the update rule would be rewritten as:

Fm(x) = Fm−1(x) +
J∑
j=1

γjmhm(x)I(x ∈ Rjm), (2.21)

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γhm(xi)). (2.22)

There are some advantages for the gradient boosting tree regression model [60]. It can handle

heterogeneous features (mixed data type) and has strong predictive power. Meanwhile it is robust

to outliers in output space via robust loss functions. One minor disadvantage is that since the

boosting method is inherently sequential, it is not conducive to parallelization.

2.3.3 Ada Boosting Regression

Another popular boosting technique is AdaBoost [70] which can be also used for both classifica-

tion and regression. AdaBoost is one of the best known boosting methods for classification [59].

In AdaBoost, each training instance receives a weightwi that is used when learning each hypoth-

esis; this weight indicates the relative importance of each instance and is used in computing the

error of a hypothesis on the data set. After each iteration, instances are reweighted, with those

instances that are not correctly classified by the last hypothesis receiving larger weights. Thus,

as the process continues, learning focuses on those instances that are most difficult to classify.

A number of methods have been proposed for modifying AdaBoost for regression, and one

of the methods that have been shown to be generally effective is AdaBoost.R2 [20] which

is also implemented in the function interface sklearn.ensemble.AdaBoostRegressor

of the popular machine learning toolkit scikit-learn [60]. The key to AdaBoost is the

reweighting of those instances that are misclassified at each iteration. In regression problems,

the output given by a hypothesis ht for an instance xi is not correct, but has a real-valued error

21

ei = |yi − ht(xi)| that may be arbitrary large. Thus, a method of mapping an error ei into an

adjusted error e
′
i is needed in the reweighting formula used by AdaBoost. The AdaBoost.R2

algorithm is described in Algorithm 3 (adapted from the description in Drucker et al. [20]).

Compared to gradient boosting which accounts for “shortcomings” by gradients, in AdaBoost,

Algorithm 3 ADABOOST.R2 [20]
input : the labeled target data set T of size n, the maximum number of iterations N , and a base

learning algorithm Learner. Unless otherwise specified, set the initial weight vector
w1 such that w1

i = 1/n for 1 ≤ i ≤ n.

for t← 1 to N do
1. Call Learner with the training set T and the distribution wt, and get a hypothesis
ht : X → R.

2. Calculate the adjusted error eti for each instance:

(a) let Dt = maxnj=1|yi − ht(xj)|
(b) then eti = |yi − ht(xi)|/Dt

3. Calculate the adjusted error of ht:

(a) εt =
∑n

i=1 e
t
iw

t
i ; if εt ≥ 0.5, stop and set N = t− 1.

4. Let βt = εt/(1− εt)

5. Update the weight vector:

(a) wt+1
i = wtiβ

1−eti
t /Zt (Zt is a normalizing constant)

end
output: the hypothesis:
hf (x) = the weighted median of ht(x) for 1 ≤ t ≤ N , using ln(1/βt) as the weight for
hypothesis ht.

“shortcomings” are identified by high-weight data points [49]. Since both of the two methods are

sequential, and also AdaBoost can use the decision tree as its base learner, all of the advantages

and disadvantages of Gradient Boosting Regression Tree also apply to AdaBoost regression.

22

2.4 Deep Learning Approach

Conventional machine learning algorithms have limitations in processing feature data in raw

form, so researchers typically transform the raw form into suitable high-abstraction level fea-

tures with considerable domain expertise [45]. On the other hand, deep learning, a new class

of machine learning algorithms, has emerged recently on the basis of increasing training data

set sizes (Big Data), the power of parallel and distributed computing, and breakthroughs in al-

gorithmic efficiency [54]. Deep learning algorithms have overcome the former limitations and

are making major advances in diverse fields such as image recognition, speech recognition, and

natural language processing. Recently deep learning has been emerged in bioinformatics areas,

such as gene expression profiling [19, 21], protein structure prediction [34, 72, 73], and biomed-

ical image processing in cancer [37, 62]. Closer to the study described in this thesis, in recent

work, Zhou et al. [87] described a convolutional neural network model for predicting noncoding

variant effects de novo from sequence using. However, their analysis is just based on noncoding

population genetic variants in human disease, instead of somatic variants in cancer.

A hallmark of deep learning algorithms is the use of an artificial neural network of multiple

nonlinear layers which is usually called as base learner. The key aspect of deep learning is

that predictive features are not human-engineered but instead are learned from the data by the

algorithm [54]. As one of the representation learning methods, deep learning can learn and

discover hierarchical representations of data with increasing level of abstraction [45]. Although

currently the majority research of deep learning is about classification problems, applying deep

learning techniques in regression problems is still promising if appropriate activation and loss

functions are used. The following sections describe the base learner (neural network), and the

deep neural network (stacked auto encoder) for regression analysis.

2.4.1 Neural Network Regression

Although neural networks are widely known for use in deep learning and modelling complex

problems such as image recognition, they are easily adapted to regression problems. Any class

of statistical models can be termed a neural network if they use adaptive weights and can ap-

proximate non-linear functions of their input [53]. Thus neural network regression is suited to

problems where a more traditional regression model cannot fit a solution.

A feed-forward neural network is a non-parametric statistical model for extracting nonlinear

23

relations in the data [76]. A common neural network model configuration is to place between

the input and output variables (also called ‘neurons’), a layer of ‘hidden neurons’ as shown in

Figure 2.6. The value of the jth hidden neuron is:

yj = tanh(
∑
i

wijxi + bj), (2.23)

where xi is the ith input, wij is the weight parameters and bj is the bias parameters, and

tanh(x) =
ex − e−x

ex + e−x
. (2.24)

The output neuron is given by

Figure 2.6: Feed-Forward Neural Network Model [76]. In the forward phase, from the input
layer to the output layer, the activation values of the hidden nodes and the output are calculated,
and also the gradients. In the backward phase, from the output layer to the input layer, the
weights are updated layer by layer using a backpropagation algorithm.

z =
∑
j

w̃jyj + b̃ (2.25)

24

and a cost function

J =
1

n

n∑
i=1

(z − zobs)2 (2.26)

measures the mean squared error between the model output z and the observed values zobs. The

parameters wij , w̃j , bj and b̃ are adjusted as the cost function is minimized using a backpropa-

gation algorithm from layer to layer backwards based on gradient descent optimization.

2.4.2 Stacked AutoEncoder Regression

Unsupervised feature learning methods and deep learning have been widely used for image and

audio applications [38, 47]. In these domains, these techniques have shown strong promise

in automatically representing the feature space using unlabelled data in order to increase the

accuracy of subsequent classification or regression tasks. Using additional properties of the

data, these capabilities have been further extended to facilitate learning in very high dimensional

feature spaces. For example, by using image characteristics such as locality and stationary of

images, Lee [46] proposed a method to scale the unsupervised feature learning and deep learning

methods to high dimensional and full-sized images. Similarly Le [38] applied an supervised

feature learning method in the context of cancer detection by applying it in the classification of

histological image signature and classification of tumour architecture. Recently, deep learning

techniques have also been applied in the area of bioinformatics such as in the work of Fakoor

[21], who used deep learning to enhance cancer diagnosis and classification by applying a sparse

autoencoder method to learn a concise feature representation from unlabelled data.

The autoencoder neural network is an unsupervised feature learning method in which the

input is used as the target for the output layer [64]. In this way it learns a function hw,b(x) ≈ x

that represents an approximation of the input data constructed from a limited number of feature

activations represented by the hidden units of the network. The sparse autoencoder is constructed

by three layers in the neural network (i.e., input layer, hidden layer, and output layer) in which

the hidden layer contains K nodes. The units in the hidden layer force the network to learn

a representation of the input with only K hidden unit activations, representing K features. To

train the network it uses the backpropagation method to minimize the squared reconstruction

25

Figure 2.7: Stacked Auto Encoder Pretraining [57]. In the example above, train the first hidden
layer h(1) (encoder) and drop the output, then use the h(1) as input to train the second encoder
h(2) and also drop the output. And in the last train the weights from the second hidden layer to
the output layer. All the activation values and weights were memorized and re-updated.

error with an additional sparsity penalty [16, 64]

minb,a
m∑
i

‖x(i)u −
K∑
j

a
(i)
j bj‖

2
2 + β‖a(i)‖1 (2.27)

s.t. ‖bj‖2 ≤ 1, ∀j ∈ {1, . . . , s},

where x(i)u is unlabeled training example, b is basis vector, and a is the vector of activations of

26

Figure 2.8: Stacked Auto Encoder Fine-tuning [57]. Put the input layer X , the two pretrained
encoders h(1), h(2) and the output layer all together, and also reuse the learned weights to fit the
input data again. Use the backpropagation based on gradient descent to update the weights.

the basis [64]. The sparsity penalty included in the form of the L1-norm of the activation vector,

a, here biases the learner towards features, bj , that allow the data items to be represented using a

combination of a small number of these features.

As Figure 2.7 and Figure 2.8 show, there are two phases, one is pretraining which is a su-

pervised learning for feature learning, and the other is the fine-tuning phase. In the pretraining

phase, the weights from the input to the first encoder, the weights from the first encoder to the

second encoder, and the weights from the second encoder to the output layer are trained one

by one. Additionally, during the training, the weights are saved, but the decoder layers and the

output are dropped. During the fine-tuning phase, the input layer, the two encoders, and the soft-

max output layer are all put together, using backpropagation to update the weights. Although

the stacked auto encoder (SAE) is popular for classification problems, just as in the case of the

neural network, the SAE can be easily modified to be used for regression problems.

27

2.5 Cross-Validation

Cross-validation is a general method for obtaining unbiased performance estimates for both un-

supervised learning and supervised learning methods and for tuning parameters or models for

optimal performance. A standard version of cross-validation is k-fold cross-validation, which

works this way: the data (i.e., the samples, sometimes called cases) are partitioned into k random

subsets of samples, and then the algorithm of interest (learning machine, regression model) is

generated or trained on k − 1 of the subsets and applied or tested using the samples in the re-

maining subset. This is done repeatedly over all the k possible arrangements of the subsets into

these two groups. At each iteration the measure of model performance (e.g., prediction error for

supervised learning and distance matrix for unsupervised clustering) of the algorithm in the test

set is computed, leading to k estimates. The final estimate of model performance is the average

of these k performance estimates. Assuming that samples are independent, in cross-validation,

the algorithm is in every iteration being trained and tested on statistically independent subsets of

samples [18].

28

Chapter 3: Materials and Methods

As we discussed in the introduction section 1.2, whole-genome sequencing is becoming less

expensive so whole cancer genome analysis is expected to become more feasible and affordable

in the near future. This is expected to lead to improvements in cancer diagnosis and targeted

(i.e., more precisely tailored to the cancer’s unique molecular genetic signature) therapy. With

cancer genome sequences in hand, data-driven approaches such as applications of statistics, ma-

chine learning and deep learning can be used to uncover new molecular and genetic mechanisms

as well as more precisely subtype cancers. This thesis is focused on data-driven approaches,

specifically, on the functional analysis of genome somatic variants in cancer (also broadly called

as mutations) compared to the genome sequences from normal (non-cancerous) cells from the

same individual.

In general, there are two categories of mutations, protein-coding mutations (simply called

coding mutations) and non-protein-coding mutations (simply called as noncoding mutations).

Coding mutations have been studied for decades and bioinformatic methods for functionally

characterizing coding somatic mutations are relatively mature, such as detection of mutations

of oncogenes and tumour-suppressor genes, gene expression analysis (up-regulated or down-

regulated), and corresponding up-stream and down-stream analysis. However, it is well known

that the majority of mutations are passenger mutations which has no impact on tumour cell

growth, cancer development and progression, and only very few of them are driver mutations

which have real impact. Additionally, mutations are heterogeneous for different individuals and

cancers. Given these difficulties, distinguishing the driver mutations from passenger mutations

is challenging. Meanwhile, the recent finding that TERT promoter mutation (noncoding mu-

tation) appears in multiple cancer types, has spurred interest in identifying driver mutations in

noncoding genome regions, which together constitute than 90% of the human genome. Multiple

studies have confirmed that the TERT promoter is frequently mutated in human cancer samples

and also located in the hotspot (one genome segment which has most number of mutations)

[52, 75, 78, 82]. Therefore, in this thesis we explore regression models for predicting noncoding

mutation recurrence so that the noncoding mutations with highest predicted recurrence can be

chosen as candidate “drivers” for further analysis.

29

In this chapter, first we introduce the noncoding mutation dataset, data processing (i.e., anno-

tation of noncoding mutations and feature extraction). Secondly, we describe how we quantified

the recurrence (the response or dependent variable) of a noncoding mutation within its chromoso-

mal location, the features that we used as predictors (the independent variables), and appropriate

regression models for noncoding mutation recurrence count data. Lastly, we describe the model

evaluation methods that can be used and calculated in all regression models so that we can do

further comparative performance analysis.

3.1 Datasets and Feature Selection

We downloaded the latest dataset of noncoding mutations from the COSMIC [3] database. This

dataset contains∼10.1 million mutation positions in human genome GRCh37 (also known by its

UC Santa Cruz Genome Build identifier, hg19). And each mutation entry provides the chromo-

some ID, the genome assembly coordinate in that chromosome, the COSMIC mutation ID, the

reference nucleotide and the altered (mutated) nucleotide as Figure 3.1 shows: For each muta-

Figure 3.1: Example rows from noncoding mutation dataset from the COSMIC database

30

tion, we have to extract biological features (predictors) for regression analysis. With the existing

findings in literature which is also discussed in the sections above, the noncoding “driver” mu-

tations tend to more likely appear in regulatory regions which contain abundant transcription

factor binding sites, and also they are close to the gene transcription start sites. Therefore from

biology perspective, we extracted 29 following features as shown in Table 3.1.

Table 3.1: Twenty-nine noncoding mutation features for regression
Feature Names Data Type Description

tfbs cnt, tfbs max/avg sc Integer Number,Max/Avg score of overall TFBS

atf3 cnt, atf3 max/avg sc Integer Number,Max/Avg score of ATF3 TFBS

cebpb cnt, cebpb max/avg sc Integer Number,Max/Avg score of CEBPB TFBS

cebpd cnt, cebpd max/avg sc Integer Number,Max/Avg score of CEBPD TFBS

creb1 cnt, creb1 max/avg sc Integer Number,Max/Avg score of CREB1 TFBS

egr1 cnt, egr1 max/avg sc Integer Number,Max/Avg score of EGR1 TFBS

ets1 cnt, ets1 max/avg sc Integer Number,Max/Avg score of ETS1 TFBS

maff cnt, maff max/avg sc Integer Number,Max/Avg score of MAFF TFBS

dhs src cnt Integer Number of DNase I Hypersensitive Sites

dhs max sc Integer Max score of DHS sites

gerp sc Float Genomic evolutionary rate profiling score

tss dist Integer Distance to nearest transc. start sites

gc per Float The percentage of GC content

As we can see from Table 3.1, most of the features are integer-valued and two of them

are floating-point-valued. All of the raw feature data including transcription factor binding

sites (TFBS), transcription start sites (TSS), DNase I hypersensitive sites (DHS), and GERP

(Genome Evolutionary Rate Profiling) score were in BED [41] format and downloaded from

UCSC Genome Browser [68, 69]. When extracting features related to the bindings sites, given

a noncoding mutation (chri, pj) where chri is chromosome ID and pj is the genome coor-

dinate of the mutation, and the TF binding sites {(chri, tsstartk, tsendk)}k=1,2,...,m where

tsstartk, tsendk represent TSS starting and ending coordinate for TSS site k, and k repre-

sents the total number of transcription factor binding sites in chromosome i. We then count the

31

matchings:

tfbs cnt =
m∑
k=1

I(tsstartk ≤ pj ≤ tsendk), (3.1)

where I is the indicator function. Similarly, we can calculate the maximum peak value max sc

and average peak value avg sc. We can then apply the same strategy to the specific transcription

factors ATF3, CEBPB, CEBPD, CREB1, EGR1, ETS1 and MAFF including the DHS features as

well. The details are illustrated in Algorithm 4.

As discussed earlier, all other features of counts and maximum/average scores can be calcu-

lated using the same or similar algorithm as Algorithm 4. However, for TSS distance, calculating

the closest distance from the mutation point to the nearest TSS including both the downstream

and upstream directions, it is a little more complicated since the same gene may have multiple

different transcripts, different transcripts may have the same start sites and gene transcriptions

have two directions.

Figure 3.2: Noncoding mutation and TSS distance

For example, in Figure 3.2, p is one noncoding mutation point in chromosome 1, and T1, T2,. . . ,

T6 are transcription start sites, among which T1, T3 have the negative direction, and T2, T4, T5, T6
have an opposite (positive) direction. And the mutation point p is in the upstream of T1, T2, T6
and in the downstream of T3, T4, T5. Also one exception is that T3 and T6 use the same start

sites but have different directions. At this point, we prefer the upstream so T6 would be chosen.

Now given the two closest transcription start sites Ti and Tj for the mutation point p, with the

condition cord(Ti) ≤ p ≤ cord(Tj) where cord represents the coordinate of the TSS, we can

32

Algorithm 4 TF BINDINGS SITES FEATURES EXTRACTION

input : List of noncoding mutations {{(chri, pj)}j=1,2,...,n} and list of TF binding sites
{{(chri, tsstartk, tsendk, scorek)}k=1,2,...,m}

for i ∈ {1, 2, . . . , 22, X, Y } do
Sort the mutation list in chromosome i by pj in ascending order
Sort the TFBS list in chromosome i by tsstartk in ascending order
k ← 1
t← 1
for j ← 1 to n do

tfs cnt← 0
tfs max score← 0
tfs avg score← 0
tfslist← {}
while k ≤ m and pj > tsendk do

k ← k + 1
end
if k > m or (k ≤ m and pj < tsstartk) then

continue
end

// Memorize the current start searching position
t← k
while t ≤ m and pj ≥ tsstartt do

if pj ≤ tsendt then
tfslist.push back((tsstartt, tssendt, scoret))

end
t← t+ 1

end
tfs cnt← length(tfslist)
tfs max score← max{tf.score | tf ∈ tfslist}
tfs avg score← avg{tf.score | tf ∈ tfslist}

end
end
output: List of feature values for each mutation: {(pj , tfs cnt, tfs max score, tfs avg score)}
Running Time: O(n log n+m logm)

define the TSS distance to the mutation point as:

dist(p, Ti) =

{
(p− cord(Ti)) ∗ dir(Ti) If all TSS have the same direction,

− |p− cord(Ti)| Otherwise
(3.2)

TSSDist(p) = min{|dist(p, Ti)| , |dist(p, Tj)|} ∗ sign(p), (3.3)

33

where dir indicates the transcription direction, and sign indicates the direction of TSS which has

smaller absolute distance. As shown in Figure 3.2, for mutation p, the calculated TSS distance

value which would be used for regression analysis is dist(p, T5) = (p − cord(T5)). The same

strategy as Algorithm 4 can be used to annotate all the mutations with the TSS distance feature

and the running time would beO(n log n+m logm) wherem is the total number of transcription

start sites across the whole genome.

For the GERP score feature, we use the existing tool bigWigAverageOverBed [41] to

extract the value of gerp sc for all the input noncoding mutations. If there is no matching found

for the mutation, then gerp sc would be assigned to zero.

While for the feature gc per which represents the percent of G/C-content in one fixed win-

dow, that is defined as

gc per =
G+ C

A+ T +G+ C
, (3.4)

where A, T,G,C represents the count number of the nucleotides A,T,G,C respectively.

Figure 3.3: Noncoding mutation and GC-content

However, the GC-ratio that we can get from UCSC genome browser in only based on 5 base-

34

pairs (bp) window. For each mutation that is a single nucleotide, it is meaningless to calculate

the GC-content of one mutation point. Instead, to be in line with our counting model which

is discussed in the section below, we compute the GC-content of a 101 bp window, including

50 bp upstream and 50 bp downstream of the mutation position. And also the downloaded data

is incomplete, for some mutations, they are not contained in any 5 bp window or in 101 bp

window, for some segments, the information of GC-content is missing. As Figure 3.3 shows, the

scenario (a) is the ideal case where the mutation position is located in continuous 5 bp windows

while for case (b) and (c) some reference GC-content information is missing. Therefore, we use

the approximated GC-content value for the 101 bp window by averaging. For instance, given

windows W = {wi : (start, end)}i=1,2,...,n which are intersected or contained by the 101 bp

window that are centered at the mutation point p, and {gci}i=1,2,...,n the GC-content of each 5 bp

window, then the approximated GC-content value gc per is

size [i] =


wi.end− p+ 50 + 1 i = 1, wi.start < p− 50 < wi.end

p+ 50− wi.start+ 1 i = n,wi.start < p+ 50 < wi.end

5 otherwise

(3.5)

gc per =

∑n
i=1 size [i] ∗ gci∑n

i=1 size [i]
, (3.6)

where size [i] represents the size of window i; wi.start, wi.end represents the start coordinate

and the end coordinate respectively, wi.end = wi.start+ 4.

3.2 Annotation of Noncoding Mutations

In general, noncoding regions include promoters, enhancers, 5’-UTRs, 3’-UTRs, introns and

intergenic regions as shown in Figure 1.3. For simplicity, in this thesis we only consider the two

regions only: 5’-UTR and the intergenic regions which contain most of the regulatory regions.

Intergenic region is the DNA segment between two adjacent genes as Figure 3.4 shows.

Therefore we need to filter out those non-relevant mutation points from the noncoding mu-

tation dataset downloaded from UCSC genome browser.

35

Algorithm 5 NONCODING MUTATIONS ANNOTATION

input : List of noncoding mutations {{(chri, pj)}j=1,2,...,n} and list of hg19 transcripts:

{{(chri, tsstartk, tsendk, tscodingk, 5startk, 5endk, 3startk, 3endk)}k∈[1,m]}

for i ∈ {1, 2, . . . , 22, X, Y } do
tsmap← build map with key (tsstart, tsend)

for j ← 1 to n do
found← 0 ; labelj ← null

for u← 1 to length(tsmap.keys) do
tsslist← tsmap[(tsstartu, tsendu)]

for k ← 1 to length(tsslist) do
if pj ≥ tsstartk and pj ≤ tsendk then

found← 1

if tscodingk = true then
if 5startk > 0 and pj ≥ 5startk and pj ≤ 5endk then

labelj ← “5utr” ; break
else if 3startk > 0 and pj ≥ 3startk and pj ≤ 3endk then

labelj ← “3utr” ; break
else

labelj ← “intron”; continue
end

else
if length(label) = 0 then

labelj ← “utr”

end
end

end
end

end
if found = 0 then

labelj ← “intergenic”

end
end

end
output: List of labelled mutations: {(pj , labelj)}
Running Time: O(nm) where m is total number of non-overlapping transcripts

36

Figure 3.4: Noncoding intergenic regions

The basic idea is to refer to human hg19 transcriptome data which contains detailed gene

transcripts information including the coordinates range of 5’-UTR region, 3’-UTR region and

the CDS (Coding DNA Sequence) region. For each mutation, compare its coordinate to the tran-

scripts regions (tsstart, tsend), if no matching with any transcription regions is found, then the

mutation is inter-genetic, otherwise further compare to the coordinate range of 5’-UTR regions,

if one matching (the mutation position is located in the region) is found, then mark the mutation

as 5’-UTR mutation. And then the same procedure for 3’-UTR regions. Nevertheless, there

are some exceptions since the transcripts region may overlap. First the mutation point may be

located in both protein-coding transcripts and non-protein-coding transcripts, in this case, we

prefer the protein-coding transcripts first. Second, the mutation may appear in different regions

of different protein-coding transcripts but we prefer the UTR (untranslated) region, that is as

long as the mutation is located in the UTR region of one coding transcript then we annotate it as

UTR mutation irrespective wherever the mutation is located in other transcripts. All the details

are illustrated in Algorithm 5.

3.3 Regression Analysis

In this section, we describe our regression models with the extracted features of noncoding

mutations that were discussed in the sections above. In the beginning we give the definition of

noncoding mutation recurrence and the counting model to get the recurrence values, and then

give the algorithm of exploring different computational regression models, which are mainly in

three categories: generalized linear model (also known as log-linear model), ensemble of trees,

and deep neural network. And then we elucidate the state-of-the-art model evaluation metrics

that could be calculated in all regression models so that we can do comparative performance

analysis although different models have different loss functions and optimization strategies.

37

3.3.1 Definition of Mutation Recurrence

In light of existing findings in the literature about noncoding mutations and driver mutations

detection, especially the latest paper [82], it can be concluded with high confidence that the

noncoding mutations that are located in the hotspot of regulatory region, close to the transcription

start sites and highly frequent in tumor samples, are more likely to be the drivers. Therefore for

the purpose of regression analysis, we define the noncoding mutation recurrence based on the

strategy of 101 bp sliding window that is centered at the mutation point.

Figure 3.5: Noncoding mutation recurrence

As Figure 3.5 shows, p1 ∼ p7 are mutation points (p1 < p2 < · · · < p7), and each mutation

has a corresponding window wi of 101 bp, which contains the mutations: {pj | pi − 50 ≤ pj ≤
pi + 50}. Now we define the noncoding mutation recurrence within a 101 bp window as

recurrence[i] =
K∑
j=1

freq(pj), s.t. pi − 50 ≤ pj ≤ pi + 50, (3.7)

where freq(pj) indicates the sample frequency from COSMIC. We can easily calculate the re-

currence of all mutations by walking through the mutation list exactly once after the list is sorted

therefore the running time is O(n log n). Now we have the response variable (mutation recur-

rence) and the predictors (features), so in the next section, we illustrate the proper regression

models for the noncoding mutation recurrence data analysis.

3.3.2 Generalized Linear Models

Although linear regression models are popular and powerful for regression analysis in general,

they cannot be applied to mutation count data. First, apparently from the definition of recurrence,

we can see the noncoding mutation recurrence value is based on the counts of mutation points

38

within the 101 bp window, the value is 1 at least, and most of the values are 1s but only very few

mutations have big recurrence value. At this point, it can be concluded that the distribution of

the recurrence (discrete positive integers) is not Gaussian and also it is very likely that the error

(difference between the predicted value and the ground-truth value) is not normally distributed

either, which does not satisfy the error normal distribution assumption of the linear regression

models [10]. Second, the features are in different scales, i.e., the counts feature vs. the scores

feature, or the distance feature vs. the ratio feature, therefore it is hard to see a linear correlation

between the predictors (the independent variables) and the response variable. One alternative is

to log-transform the data but it would lose too much valuable information. Instead for noncoding

mutation recurrences, we need to consider non-linear regression models.

As discussed in the review section, the well-known regression models for discrete count data

analysis are Poisson regression and Negative Binomial regression, which belong to the family of

Generalized Linear Models (GLM). The most well-established toolkit in the state-of-the-art for

GLM regression is the R package MASS [77].

3.3.2.1 Poisson Regression

We split the whole dataset randomly into two parts: one is for training which takes 80%, and the

left 20% is for testing:

train data = [train.X, train.y]

test data = [test.X, test.y],

where train data and test data are data frames, train.X and test.X are the feature vectors,

train.y and test.y are vectors of response variables, i.e., noncoding mutation recurrence counts.

For Poisson regression (also called as log-linear regression), we use the GLM functions to

build the regression model with training data and then use the learned model to predict with test

data:

glm.fit.res← glm(counts ∼ ., data = train data, family = poisson(link = log)

pred.counts← predict.glm(glm.fit.res, newdata = test.X, type = “response”)

39

We use the log-link function for regression:

ln(µ) = β0 + β1X1 + β2X2 + · · ·+ βpXp = βTX

µ = eβ
TX

P (Y = y|µ) =
e−µµy

y!
,

where β = (β0, β1, . . . , βp) is the coefficients vector that the regression model need to learn, and

p is the number of predictors (features). The squared loss function and the maximum likelihood

estimate optimization strategy are already illustrated in the review section. However, since the

Poisson regression model has a strong hypothesis:

µ = mean(y) = variance(y)

dispersion =
variance(y)

mean(y)
,

that is, the expectation (mean) value of the response variable is equal to its variance, we need to

verify the assumption by checking dispersion (ratio of the mean value and the variance value).

Meanwhile we also need to check the goodness-of-fit of the regression model which is discussed

in the model evaluation section below.

3.3.2.2 Negative Binomial Regression

For counts data, usually it easily gets overdispersed: variance(y) > mean(y), and the experience

ratio is approximate to 2 as shown in Figure 2.4 in the review section. If this is the case, a

corrected regression model is required, that is where the Negative Binomial regression is used.

Similarly as Poisson regression, we use the GLM functions for model learning and prediction in

the R package:

glm.fit.res← glm.nb(counts ∼ ., data = train data, link = log)

pred.counts← predict.glm(glm.fit.res, newdata = test.X, type = “response”).

40

We also use the log-link function for regression:

ln(µ) = β0 + β1X1 + β2X2 + · · ·+ βpXp = βTX

µ = eβ
TX

prob(Y = y|µ, α) =
Γ(y + 1/α)

Γ(y + 1)Γ(1/α)

(
1

1 + αµ

)1/α(αµ

1 + αµ

)y
,

where µ is the mean, α is the heterogeneity parameter which represents the extent of overdisper-

sion and is tuned internally in the regression algorithm, and β is the coefficients parameter that

the regression model need to learn. All details about the loss function used in Negative Binomial

regression and the maximum likelihood estimates of the parameters were already illustrated in

the review section. However, in our model, the response variable recurrence ≥ 1, since there is

at least 1 mutation point in each 101 bp sliding window but the Negative Binomial regression

would still predict 0s so that the model may not converge. Therefore, for simplicity and for

Negative Binomial regression only, we adjust the response variable as

train.y ← train.y − 1

test.y ← test.y − 1

with this approach, the response variable would have new range recurrence ≥ 0. An alterna-

tive approach is to use Zero-Truncated Negative Binomial Regression model [36, 55, 67, 86]

which excludes zeros and rescales the other probabilities to sum to one, which is implemented

in another R package VGAM [85] as

vglm.fit← vglm(counts ∼ ., family = posnegbinomial(), data = train data)

However, for the present thesis, we used the Poisson and negative binomial regression models.

3.3.3 Ensemble of Decision Trees Models

The main advantages of decision trees for regression include: (1) it easily handle irrelevant

features through information gain as it always select the best features to split the branches; (2)

it is robust against skewed distributions, since it does not make any assumptions regarding the

variable’s distribution when constructing axis splits; (3) it does not require any assumptions of

41

linearity in the data. Since our features data are highly skewed and in different scales or fields,

we can take advantage of decision trees to build the regression model.

However, a notable disadvantage of decision trees is overfitting. Therefore we use additional

ensemble methods to avoid that by using the weak learner - decision tree stump as the base

learner. Generally the ensemble methods include three categories: bagging, boosting, and ran-

dom ensembles (also called random forest). In this thesis, we use the algorithms that are widely

applied in regression problems analysis, which are random forest regression, gradient boosting

regression and AdaBoost regression. All the three models have been discussed in the review

section. To our best of our knowledge, the most well-established machine learning toolbox is

scikit-learn [60], which is also deployed in our regression analysis.

3.3.3.1 Random Forest Regression

The basic idea of random forest is to build trees using fixed structures and random features. Each

tree in the ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from

the training set. In addition, when splitting a node during the construction of the tree, the split

that is chosen is no longer the best split among all features. Instead, the split that is picked is the

best split among a random subset of the features. As a result of this randomness, the bias of the

forest usually slightly increases (with respect to the bias of a single non-random tree) but, due to

averaging, its variance also decreases, usually more than compensating for the increase in bias,

hence yielding an overall better model. And for prediction, just average the predicted output

values of each tree. Usually random forest model is popularly applied in classification problems

but it is easily to be modified for regression problems, for example, changing the objective

function to MSE (mean squared error). In scikit-learn toolkit, the function interface that

we use:

sklearn.ensemble.RandomForestRegressor(n estimators,

max features = p,

criterion = “mse”,

oob score = True,

min samples split,

n jobs = 16)

42

where n estimators indicates the number of trees to build, max features the number of fea-

tures to consider when looking for the best split, criterion the objective function used to mea-

sure the quality of a split, oob score whether to use out˙of˙bag samples to estimate the general-

ization error, min samples split the minimum number of samples required to split an internal

node, and n jobs the number of threads to run in parallel for both predict and fit. For all other

parameters, we just use the default configurations.

The main parameters to be tuned in the Random Forest regression model are the number of

trees (n estimators) and the number of features for the best split (max features). Having

a larger number of trees is better but accuracy would not be expected to significantly improve

beyond a critical number of trees, which is in most cases determined empirically. For regres-

sion, the default empirical good value for max features is the number of features in data [60].

Therefore mainly we tune the parameter n estimators using a cross-validation approach as

illustrated in the review section.

3.3.3.2 Gradient Boosting Trees Regression

As explained in the review section, boosting is an another ensemble method which learns the

model from previous errors and update the weights sequentially. And during the weights update,

it takes the gradients of the loss function, in this thesis, we still use the squared error as the loss

function as all other regression models. Putting all together, we use the function interface in the

scikit-learn toolkit:

sklearn.ensemble.GradientBoostingRegressor(n estimators,

max depth = 4,

min samples split = 2,

learningrate = 0.1,

loss =′ ls′,

subsample = 0.5)

where n estimators represents the number of boosting stages to perform; max depth repre-

sents the maximum depth of the individual regression estimators, which limits the number of

nodes in the tree; min samples split represents the minimum number of samples required to

43

split an internal node; learning rate shrinks the contribution of each tree; loss is the loss func-

tion to be optimized, here we use the default “ls” - least squared error; subsample indicates the

fraction of samples to be used for fitting the base learners.

To get best performance of the model, we mainly tune the parameter n estimators - the

size of the regression tree base learners which defines the level of variable interactions that can

be captured by the gradient boosting model as gradient boosting is fairly robust to over-fitting

so a large number usually results in better performance. Another main parameter to be tuned is

max depth. And still we use K-fold Cross-Validation to choose the best parameter for the best

performance.

3.3.3.3 Decision Trees Regression with AdaBoost

Another widely-used boosting method is AdaBoost which is different from gradient boosting, as

AdaBoost does not take gradients to update the coefficient weights, instead it update the weights

of the instances according to the error of the current prediction so that subsequent regressors

focus more on difficult cases. Namely in each boosting iteration the weights w1, w2, . . . , wN

were applied/updated to each of the training samples. Initially those weights were assigned

to wi = 1/N . For each successive iteration, the sample weights are individually modified

and the learning algorithm is reapplied to the re-weighted data. At a given step, those training

examples that were incorrectly predicted by the boosted model induced at the previous step

have their weights increased, whereas the weights are decreased for those that were predicted

correctly. As iterations proceed, examples that are difficult to predict receive ever-increasing

influence. Each subsequent weak learner is thereby forced to concentrate on the examples that

are missed by the previous ones in sequence [60]. Like the other two ensemble methods, we use

44

the scikit-learn toolkit:

sklearn.ensemble.AdaBoostRegressor(DecisionTreeRegressor(

criterion =′ mse′,

max features =′ auto′,

max depth = 4,

min samples split = 2

),

n estimators,

learning rate = 0.1,

loss =′ square′

)

where DecisionTreeRegressor is the base learner for regression used in AdaBoost regression

model, criterion is the cost function used in decision tree regressor to measure the quality of

a split (here we use ’mse’ - mean squared error), max features is the number of features to

consider when looking for the best split (same as random forest), max depth is the maximum

depth of the tree, min samples split is the minimum number of samples to split an internal

node, n estimators is the number of estimators at which boosting is terminated, learning rate

shrinks the contribution of each regressor, and loss is the loss function to use when updating the

weights after each boosting regression (here we use squared error which is also used in other

models).

Same as the gradient boosting regression algorithm, the main parameter to be tuned for best

performance of the AdaBoost regression model is n estimators, which indicates the number of

weak learners (decision trees).

3.3.4 Deep Neural Network

Neural Networks are generic, accurate and convenient mathematical (statistical) models which

are able to emulate numerical model components, which are complicated nonlinear input/output

relationships [43]. The main advantages of the neural network model class is that it can avoid

curse of dimensionality and it is robust with respect to random noise and fault-tolerant. To

45

take advantage of the power of nonlinear representations of neural network, we also build a

feed-forward ANN (Artificial Neural Network) as the base learner and then build a deep neural

network—a Stacked Auto Encoder—for our regression analysis. Mainly the base learner ANN

has three layers: the input layer which represents the input features vector X , the hidden layer

which is consist of nonlinear neurons, and the output layer is consist of linear neurons Y as

Figure 2.6 shows.

Figure 3.6: Neural Network Nonlinear Representation (figure reproduced from [80])

For our noncoding mutation recurrence regression analysis, the input X is the vector of the

extracted genomic features as we discussed above; in the hidden layer, we use the tanh function

as the activation function; and for the output layer, we only have one output node that is a linear

combination of the activation output of the hidden layer. We use the MSE as the loss function

and take the gradients to update the weights backwards using backpropagation algorithm which

was already discussed in the review section.

The best-known toolkit for ANN and deep learning is Theano [5, 6] and Keras [15] which is

built based on Theano. The main procedure for building Neural Network Regression model

using Keras is described in Algorithm 6. In Algorithm 6, the function Dense indicates a

fully-connected network, which means that the connections from the input layer nodes to the

hidden layer nodes, and from the hidden layer nodes to the output layer nodes, are complete;

model.fit is the training function where 10-fold cross-validation (validation split = 0.1),

while model.predict is a prediction function based on the trained model; Adam is a regular-

ization function used for controlling the learning rate in the training phase; model.compile is a

function compiling the network structure with the loss function mean squared error which is

used in our regression analysis.

Compared to the base learner ANN, a deep neural network, which has two or more hid-

46

Algorithm 6 NEURAL NETWORK REGRESSION

input : Training set X trainn×p and Y trainn×1 where n is training size and p is feature
dimension; Test set X testm×p and Y testm×1 where m is the test data size. And
list of parameters to be tuned for best model performance: number of hidden nodes
hidden sizes, batch size for batching update in training batch size, number of itera-
tions nb epoch

output: Predicted recurrences Ŷ test

for hidsize in hidden sizes do
model← Sequential()
model.add(Dense(hidsize, input dim = p, activation =′ tanh′))
model.add(Dense(1, input dim = hidsize))
adam← Adam(lr = 0.01, beta 1 = 0.9, beta 2 = 0.999, epsilon = 1e− 08)
model.compile(loss =′ mean squared error′, optimizer = adam)
hist← model.fit(X tain, Y train, batch size, nb epoch, validation split = 0.1)
hist list.append(hist)
model list.append(model)

end

j ← argmin
i
{mean(hist list[i].val loss)}1≤i≤length(hidden sizes)

best.model← model list[j]
Ŷ test← best.model.predict(X test)
return Ŷ test

den layers, is more powerful for nonlinear representation of the data, especially in self-learning

features. In order to take advantage of the deep learning techniques, we use sparse Stacked Au-

toEncoder model for our noncoding mutation recurrence regression analysis. The main idea of

auto encoder deep neural network is to encode the features to a lower dimension (learned new

features) and then to decode to the original input dimension, so that the features can be more

compacted and the noise were filtered out. Stacked AutoEncoder is namely a stack of encoders,

usually two or more than two. For simplicity, we use two encoders as Figure 3.7 shows:

The SAE network looks similar to a fully-connected two-hidden-layer neural network but

they are different. All the weights in SAE were pretrained: weights from the input layer to

the first encoders, from the first encoder layer to the second encoder layer, and from the second

encoder layer to the output layer. As discussed in the review section, the weights were pretrained

using Auto Encoder network structure but the output layer was dropped and the weights were

cached. When training the weights from the first encoder to the second encoder, the previous

47

Algorithm 7 STACKED AUTOENCODER REGRESSION

input : Training set X trainn×p and Y trainn×1 where n is training size and p is feature
dimension; Test set X testm×p and Y testm×1 where m is the test data size. And
list of parameters to be tuned for best model performance: pair number of nodes in
two hidden layers {(num hid1, num hid2)}, batch size for batching update in training
batch size, number of iterations nb epoch

output: Predicted recurrences Ŷ test

for (i, j) in {(num hid1, num hid2)} do
encoders← {}
decoders← {}
X train tmp← X train
for (n in, n out) in {(p, i), (i, j)} do

model← Sequential()
encoder ← containers.sequential([Dense(n out, n in, activation =′ tanh′)])
decoder ← containers.sequential([Dense(n in, n out, activation =′ tanh′)])
model.add(AutoEncoder(encoder, decoder, output reconstruction = False))
model.compile(loss =′ mse′, optimizer =′ adam′)
model.fit(X train tmp,X train tmp, batch size, nb epoch)

encoders.append(encoder)
decoders.append(decoder)
X train tmp← model.predict(X train tmp)

end
full ae← Sequential()
full ae.add(AutoEncoder(encoders, decoders, output reconstruction = False)
full ae.compile(loss =′ mse′, optimizer =′ adam′)
full ae.fit(X train,X train, batch size, nb epoch)

model← Sequential()
model.add(encoders)
model.add(Dense(1, input dim = j))
model.compile(loss =′ mean squared error′, optimizer =′ adam′)
hist← model.fit(X train, Y train, batch size, nb epoch, validation split = 0.1)
hist list.append(hist)
model list.append(model)

end

j ← argmin
i
{mean(hist list[i].val loss)}1≤i≤length(hidden sizes)

best.model← modle list[j]
Ŷ test← best.model.predict(X test)
return Ŷ test

48

Figure 3.7: Stacked AutoEncoder Regression

learned activation values of the first hidden units were used as the network input, instead of the

original input features. Still we use the Python package Keras for SAE implementation. The

main procedures are described in Algorithm 7.

To get the best performance of neural network regression and Stacked Auto Encoder regres-

sion, the main parameters to be tuned is the number of hidden units and the learning rate used for

regularization in the training phase. Since we use auto encoder network structure to compact the

input features, the number of hidden units should be less than the input dimensions p > k > m

where p is the input feature dimension, k is the first encoder dimension, and m is the second

encoder dimension in Figure 3.7.

3.4 Model Evaluation

So far we already talked about six different regression models, including Poisson regression,

Negative Binomial regression, random forest regressor, gradient boosting regressor, AdaBoost

49

regressor, Neural Net, and Stacked Auto Encoder. All these models use different optimization

strategy, so it is not easy to calculate the deviance and Pearson chi-square statistics among all

models which are elucidated in the review section. However, as scikit-learn suggests, for

regression problems, we can calculate the general metrics used to evaluate the goodness-of-fit of

the model: the mean absolute error, the mean squared error, the median absolute error, the R2

score, and the explained variance score.

3.4.1 Explained Variance Score

If ŷ is the estimated target output, y the corresponding (ground-truth) target output, and Var is

variance, the square of the standard variation, then the explained variance is estimated as follows,

explained variance(y, ŷ) = 1− Var{y − ŷ}
Var{y}

.

The best possible score is 1.0 and lower values are worse.

3.4.2 Mean Absolute Error

The performance metric mean absolute error computes mean absolute error, a risk metric

corresponding to the expected value of the absolute error loss or l1− norm loss.

If ŷi is the predicted value of the i-th sample, and yi is the corresponding true value, then the

mean absolute error(MAE) estimated over n samples is defined as

MAE(y, ŷ) =
1

n

n−1∑
i=0

|yi − ŷi|.

Apparently lower MAE can achieve better prediction performance.

3.4.3 Mean Squared Error

The mean squared error is a risk metric corresponding to the expected value of the squared

(quadratic) error loss.

If ŷi is the predicted value of the i-th sample, and yi is the corresponding true value, then the

50

mean squared error (MSE) estimated over n samples is defined as

MSE(y, ŷ) =
1

n

n−1∑
i=0

(yi − ŷi)2.

Just as with MAE, a lower MSE corresponds to better regression performance.

3.4.4 Median Absolute Error

The metric median absolute error is particularly interesting because it is robust to outliers.

The loss is calculated by taking the median of all absolute differences between the target and the

prediction.

If ŷi is the predicted value of the i-th sample, and yi is the corresponding true value, then the

median absolute error (MedAE) estimated over n samples is defined as

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|).

3.4.5 R2 score

In the context of count regression, the R2 score is known as the coefficient of determination. It

provides a measure of how well future samples are likely to be predicted by the model. Best

possible score is 1.0 and it can be negative (because the model can be arbitrarily worse) [60].

A constant model that always predicts the expected value of y, disregarding the input features,

would get a R2 score of zero.

If ŷi is the predicted value of the i-th sample and yi is the corresponding true value, then the

score R2 estimated over n samples is defined as

R2(y, ŷ) = 1−
∑n−1

i=0 (yi − ŷi)2∑n−1
i=0 (yi − ȳ)2

,

where ȳ = 1
n

∑n−1
i=0 yi. Higher R2 score indicates better prediction performance.

51

3.5 Overall Procedure

Figure 3.8: Overall Regression Analysis Procedures

Now putting it all together, we used three categories of regression methods for our noncoding

mutation recurrence regression analysis, including the generalized linear models, the ensemble

method of decision trees, and the deep neural networks. For each noncoding mutation, we

constructed the features that are likely to be correlated with the mutation frequency in cancer.

We then randomly split the set of samples (mutations) into two parts: one set of mutations is for

model training and the other is for testing. Since all machine learning methods have to be tuned

with different model parameters (e.g., the number of decision trees, the number of iterations,

and the learning rate) to get best performance, we used 5-fold cross-validation to tune each

model. We then measured the accuracy of the tuned model’s predictions on the test data set,

and compared the models’ test-set prediction accuracies on identical test sets, using multiple

accuracy measures.

52

Chapter 4: Results

53

4.1 Recurrence Distribution

Figure 4.1: Noncoding mutation data distribution: (a) the frequency (number of occurrence)

of noncoding mutation recurrence; (b) log frequency of overall noncoding mutations; (c) the

frequency of noncoding mutations with recurrence less than 100; (d) as a function of the recur-

rence count, the Poisson model-predicted and empirical log frequency of mutations (plus the log

factorial).

54

As we can see from the Figure 4.1, in the regression model, the response variable, i.e., the non-

coding mutation recurrence, is not normally or uniformly distributed. Instead, the distribution

is very close to Poisson as shown in (c) and (d): small recurrence has extremely high frequency

while large recurrence has quite low frequency (i.e., equal to 1). From the Poisson distribution

formula:

p(y) =
e−λλy

y!
⇒

ln(p(y)) + ln(y!) = −λ+ y ln(λ),

so the correlation between ln(p(y)) + ln(y!) and y (mutation recurrence) is linear. However,

when looking at mutations with recurrence less than 100, the linear correlation is not quite strong

so it may have over-dispersion, as Figure 2.3 shows. To quantify this, we can examine the ratio

between the mean and the variance of the response variable:

Table 4.1: Recurrence variance/mean ratio
sampling mean variance ratio

1.0 1.596 1.919 1.203

0.3 1.599 2.335 1.460

0.4 1.595 1.861 1.167

0.5 1.595 1.885 1.181

0.6 1.597 2.305 1.444

0.7 1.596 1.901 1.191

0.8 1.597 2.234 1.399

Therefore, the response variable variance is a bit more than the mean so that the data may

be not be well-fit by the Poisson regression model which has the assumption that the mean is

equal to the variance. Instead a overdispersed version model is needed such as Quasi Poisson

regression or Negative Binomial regression, which are discussed in the section below.

4.2 GLM Regression Analysis

In this section, we present the results from applying the three GLM regression models to the

mutation recurrence count prediction problem: Poisson regression, Quasi-Poisson regression and

55

Negative Binomial regression by evaluating the goodness-of-fit of the three models by comparing

the deviance and the Pearson’s chi-square statistics which are illustrated in the review section

2.2.3.

Table 4.2: GLM regression statistics
metric poisson quasi poisson neg binomial

null deviance 507,429 507,429 1,017,382

residual deviance 506,095 506,095 1,015,060

deviance improve 0.26% 0.26% 0.23%

chi square 1,492,645 1,492,645 3,639,893

From Table 4.2 we can see the overdispersed version of Poisson regression model - Quasi-

Poisson regression does not have improvement. From the deviance improvement compared to

the null hypothesis, the Poisson model performs a little better than the Negative Binomial model.

Now we look at the mean squared error as Figure 4.2 shows:

Figure 4.2: MSE of GLM regression models with different sampling rates

where the X axis is the sampling rate, each MSE value is averaged over multiple samplings

of each sampling rate, and the error bar represents the standard error of the MSE. And in the

figure, the above three lines (nb.shuff,quasi.shuff,poisson.shuff) represent the MSE of the GLM

56

models against the shuffled features, namely the MSE of prediction on the random features’

values, and the below three lines represent the MSE of the GLM models against the real features

data in the testing set. As expected we can see the MSE of the shuffled data is larger than the

MSE of the real data, which means the three models have prediction power for the noncoding

mutation recurrences. Furthermore, the Poisson regression model performs a little better than

the Negative Binomial model as it has lower MSE.

Figure 4.3: GLM regression models performance with different sampling rates

Also in Figure 4.3 (where the error bar indicates the standard error of the mean), all of the

three models have positive explained variance scores and R2 scores for the real features data

while all of the score values for the shuffled features data are negative, which is consistent with

the MSE results. Among the three models, the Poisson models have lower MAE and higher

explained variance score and R2 scores than the Negative Binomial model.

To sum up, with regression analysis of three GLM models, the Poisson models perform

a little better than the Negative Binomial model with lower MSE/MAE and higher explained

57

variance scores and R2 scores.

4.3 Ensemble Methods Analysis

In this section we analyze regression results from applying three ensemble methods: Random

Forest, gradient boosting trees, and decision trees with AdaBoost. The table below shows pa-

rameters to be tuned for each model to get best performance.

Table 4.3: Ensemble methods parameters tuning
model parameter values

Random Forest Number of trees {100, 300, 500, 700}
Gradient Boosting Trees Number of boosting iterations {50, 100, 200, 400}
Decision Trees with AdaBoost Number of trees {50, 100, 200, 300}

Figure 4.4: Ensemble regression models test performance with different sampling rates

58

Figure 4.5: Ensemble regression models training performance with different sampling rates

And the corresponding training MSE over different parameters is shown in Figure 4.5 where

the error bars represent the standard error of the mean value.

Obviously among the three ensemble regression models, the decision tree regression with

AdaBoost performs the worst for all sizes of data since the error of the random features (ada.shuff)

is less than the error of real features. From the test mean squared error, the other two models gra-

dient boosting and random forest perform relatively poorly since there is no big error difference

59

between prediction on the real feature data (rf, gradient) and prediction on the random feature

data (rf.shuff, gradient.shuff).

From the training result which is shown in Figure 4.5 where the error bars represent the

standard deviation, tuning the number of boosting iterations did not help to get best AdaBoost

regression model which basically does not work well for our noncoding mutation recurrence

data. Increasing number of decision trees could get lower MSE/MAE for both gradient boosting

and random forest but when the trees number arrives at some extent, the error would increase.

However the gradient boosting tree and random forest regression models may still have some

predictive power if more data is ingested.

4.4 Deep Neural Network Regression Analysis

In this section, we discuss about the regression result of regression models based on neural net-

work structures, including the one-hidden layer artificial neural network and Stacked AutoEn-

coder (SAE) which is based on ANN. To get best performance of network regression model, the

main tuning parameter is the size (number of nodes) of the hidden layers.

Table 4.4: Neural Network regression parameters tuning
model parameter values

ANN one-hidden layer {2, 3, 5, 7, 9, 10, 12}
SAE two-layer encoders {(12, 10), (10, 8), (12, 5), (10, 5), (8, 4), (6, 3)}

Figure 4.6: Deep neural network regression training error with different sampling rates

60

As Figure 4.6 shows, Min Mean Squared Error represents the minimum MSE with each

sampling rate over different hidden layer size configuration. One interesting finding is that the

ANN and the SAE have approximately equal error even the difference can be ignored. One

possible reason is that the feature space is too small (as eventually we only have 13 features

after applying filtering strategy). However, most importantly from the test MSE of SAE, with

increasing size of training data, the error went down deeply. This is consistent with the beauty

of deep learning techniques - more data, then the model is more powerful.

Figure 4.7: Deep neural network regression test error with different sampling rates

Although we did not see much difference between ANN and SAE from the training error,

from the test error as Figure 4.7 shows, the stacked AutoEncoder performed a bit better than the

simple base learner - one-hidden-layer ANN.

4.5 Overall Performance Summary

Now put all test performance data together to see the differences across all regression methods

used in this thesis. As Figure 4.8 shows where the error bars represent the standard error of the

mean value, the decision tree with AdaBoost regression is the worst model for the noncoding

mutation recurrence data. As we already discussed, AdaBoost regression even performed worse

on the real feature data compared to the shuffled (random) feature data, which suggests AdaBoost

may not be good for the mutation recurrence data.

Instead, the other four regression models: Poisson, Negative Binomial, ANN, SAE perform

the best and their MSE is very close. Comparatively Poisson regression model performs a bit

better than the other three models when looking at the MSE only although the difference is quite

61

small. When looking at the MAE, the SAE regression looks a little better than the others when

the data volume is larger.

For the left two ensemble methods, random forest and gradient boosting regression, the

overall performance is better than AdaBoost, but they are still weak predictors as we already

discussed, the error difference between the prediction on the real feature data and the random

feature data is not big.

Figure 4.8: Overall regression models test MSE/MAE with different sampling rates

4.6 Feature Importances

Now we look at the feature importances predicted by the top 2 best regression models for our

data - Poisson regression and Negative Binomial regression. As Figure 4.9 shows where error

bars represent the standard error of the mean, the top 5 most important features are tfbs count,

dhs max score, dhs src count, tss dist, and gerp score which are consistent with the recent

literature findings that the “driver” noncoding mutations most likely to be located in the regula-

62

Figure 4.9: Variable importances score

tory region and close to the transcription start site. And also both Poisson regression model and

negative binomial regression model predict the same order of feature importances.

63

Chapter 5: Discussion

We have explored three different kinds of regression models for predicting local mutation re-

currence counts for noncoding somatic mutations and compared the models by evaluating the

models’ mean squared error, men absolute error, explained variance score, and R2 score. We

found that the generalized linear models like Poisson regression and negative binomial regression

perform better than other models and the GLM models are more stable over different sampling

size of data. And we also found deep neural network regression looks promising as its test-set

error is very close to those of the GLM models. However, there are several interesting questions

that remain to be answered about this problem.

Is noncoding mutation data sufficient for learning? We have around 4.5 million noncoding

mutations in total (80% for training and validation, and 20% for testing). From the volumn size,

the answer should be yes according to machine-learning theory since we only have 13 features in

total (i.e., n� p). However, looking at the mutation recurrence (response variable) distribution,

it is mainly focused on small regions of numbers. The whole range of the recurrence variable is

between 1 and 617, but most (> 90%) values are less than 50 especially the value between 50

or 600 are missing, as can be seen in Figure 3.1. However, we can not just remove or exclude

those “rare” mutations with high frequency (> 600) because those mutations contain the most

popular non-coding driver mutations like the promoter mutation of the TERT gene. Meanwhile

the number of features is small, and likely does not include all possible genomic and epigenomic

correlates of mutation recurrence. Therefore, in the future we may need to extract more genomic

features for better regression performance.

On the other hand, even for the best model—Poisson regression—the absolute prediction

power is still not strong since the difference between the prediction error on the real feature data

and the error on the shuffled (random) feature data is small, especially the correlation metrics

(explained variance score and R2 score) between the ground-truth values and the predicted val-

ues are not good as expected. Generally for these two values, the larger the better. And if the

value is close to zero, it indicates the model always predicts the mean value of the response

variable while the minus value means the model is very bad for the data. Although the posi-

tive explained variance score and R2 score of the Poisson regression model are positive for the

64

test-set data, they are still less than 0.5. However, for GLM regression, the goodness-of-fit of

the model is usually evaluated by the deviance and the chi-squared test, which look good for our

model as the deviance is decreased by 0.26% compared to the null hypothesis model where all

the coefficients are one.

Additionally, we observed that the local mutation recurrence count statistic that we have de-

fined is overdispersed, with a dispersion value of∼1.3. In this case, the Negative Binomial (NB)

regression model would be expected to achieve better prediction accuracy. For the noncoding

mutation recurrence data, the NB model performance is very close to the Poisson model, with the

latter being slightly better. One possible reason is that all mutation recurrence is at least 1 while

the NB model starts from 0 which is the most frequent. In future work, this conjecture could be

tested by applying a Zero-Truncated Negative Binomial regression as we already discussed in

the previous sections.

65

Chapter 6: Conclusion

In this thesis we describe our investigation of a regression-based approach for noncoding driver

mutation detection in cancer. We implemented and compared multiple models for predicting

noncoding mutation recurrence under the principle that mutations with higher recurrence fre-

quencies are more likely to be driver mutations. Our model applies to somatic mutations in

noncoding genome, which includes intergenic regions and the 5’ regulatory regions for genes.

For each mutation, we extracted 29 genomic features, of which we used 13 features for regres-

sion analysis. We used a sliding window approach to compute the local mutation recurrence

count, which in turn constituted the dependent variable for the regression. We fit the combined

feature and count data matrix with seven different regression models in three categories (gener-

alized linear models, ensemble decision trees, and the deep neural network): Poisson regression,

Negative Binomial regression, Random Forest regression, Gradient Boosting tree regression,

the decision tree regression with AdaBoost, the artificial neural network regression and stacked

AutoEncoder regression. We compared these models by evaluating their mean squared error,

mean absolute error, explained variance score, and R2 score.

From comparing the regression models’ prediction performance, we reached the following

conclusions. First, the Poisson and Negative Binomial regression models perform the best for

the noncoding mutation recurrence data, which is consistent with the existing research find-

ings of counts data regression analysis in ecology and economics areas where the counts data is

prevalent and the Poisson and Negative Binomial models are widely applied. Second, the neu-

ral network regression models, namely feed-forward neural network and stacked AutoEncoder,

are very promissing for noncoding mutation recurrence regression analysis. The performance

achieved by ANN and SAE is very close to Poisson even only small part of data is applied.

It is well-known that for deep neural network training, more data would be expected to further

improve performance. Third, conventional machine learning regression models may not be well-

suited to problems where the dependent variable is an integer count. As we defined, the noncod-

ing mutation recurrence is the count number of mutations within the 101 bp window centered

at one mutation. Among the models we studied in this thesis, including Random Forest regres-

sion, Gradient Boosting Trees regression, and the Decision Tree regression with AdaBoost, the

66

AdaBoost performs the worst and almost has no predictive power on this regression problem.

The Random Forest model and the gradient boosting model still have some predictive power.

Whether they could achieve better performance with additional tuning is an open question.

Last but not the least, the feature (variable) importances predicted by the regression models

is consistent with the current understanding of genomic and epigenomic covariates for recurrent

noncoding mutations, that the “hot” (more likely to be driver) noncoding mutations are located

in the gene regulatory region and close to the transcription start sites. From the rank of the

predicted feature importances, the feature tfbs count (number of binding sites of transcription

factors within the window centered at the mutation) has the highest score and the feature tss dist

(distance to the closest transcription start sites) is also on the top, which suggests these two

features are very important for noncoding mutation driver detection.

To sum up, GLM regression models and deep neural network models are two promising—

and highly distinct—model classes for noncoding mutation recurrence prediction. With more

features incorporated in the near future, better performance can be achieved then the regression

model that we learned can be very helpful for noncoding driver mutations detection.

67

Bibliography

[1] Ludmil B Alexandrov, Serena Nik-Zainal, David C Wedge, Samuel AJR Aparicio, Sam
Behjati, Andrew V Biankin, Graham R Bignell, Niccolò Bolli, Ake Borg, Anne-Lise
Børresen-Dale, et al. Signatures of mutational processes in human cancer. Nature,
500(7463):415–421, 2013.

[2] Orli Bahcall. Funseq for cancer genomics. Nature genetics, 45(11):1273–1273, 2013.

[3] S Bamford, E Dawson, Simon Forbes, J Clements, R Pettett, A Dogan, A Flanagan,
J Teague, P Andrew Futreal, MR Stratton, et al. The cosmic (catalogue of somatic mu-
tations in cancer) database and website. British journal of cancer, 91(2):355–358, 2004.

[4] David Barber. Bayesian reasoning and machine learning. Cambridge University Press,
2012.

[5] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

[6] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

[7] Alan P Boyle, Eurie L Hong, Manoj Hariharan, Yong Cheng, Marc A Schaub, Maya Ka-
sowski, Konrad J Karczewski, Julie Park, Benjamin C Hitz, Shuai Weng, et al. Anno-
tation of functional variation in personal genomes using regulomedb. Genome research,
22(9):1790–1797, 2012.

[8] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[9] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[10] A Colin Cameron and Pravin K Trivedi. Regression analysis of count data, volume 53.
Cambridge university press, 2013.

[11] Antoni B Chan and Nuno Vasconcelos. Bayesian poisson regression for crowd counting.
In Computer Vision, 2009 IEEE 12th International Conference on, pages 545–551. IEEE,
2009.

68

[12] SW Cheetham, F Gruhl, JS Mattick, and ME Dinger. Long noncoding rnas and the genetics
of cancer. British journal of cancer, 108(12):2419–2425, 2013.

[13] Feixiong Cheng, Junfei Zhao, and Zhongming Zhao. Advances in computational ap-
proaches for prioritizing driver mutations and significantly mutated genes in cancer
genomes. Briefings in bioinformatics, page bbv068, 2015.

[14] Arul M Chinnaiyan and Nallasivam Palanisamy. Chromosomal aberrations in solid tumors.
Prog Mol Biol Transl Sci, 95:55–94, 2010.

[15] Franois Chollet. keras. https://github.com/fchollet/keras, 2015.

[16] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In International conference on artificial intelligence and
statistics, pages 215–223, 2011.

[17] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the
human genome. Nature, 489(7414):57–74, 2012.

[18] Abhijit Dasgupta, Yan V Sun, Inke R König, Joan E Bailey-Wilson, and James D Malley.
Brief review of regression-based and machine learning methods in genetic epidemiology:
the genetic analysis workshop 17 experience. Genetic epidemiology, 35(S1):S5–S11, 2011.

[19] Olgert Denas and James Taylor. Deep modeling of gene expression regulation in an ery-
thropoiesis model. In Representation Learning, ICML Workshop. Citeseer, 2013.

[20] Harris Drucker. Improving regressors using boosting techniques. In ICML, volume 97,
pages 107–115, 1997.

[21] Rasool Fakoor, Faisal Ladhak, Azade Nazi, and Manfred Huber. Using deep learning to
enhance cancer diagnosis and classification. In Proceedings of the ICML Workshop on the
Role of Machine Learning in Transforming Healthcare. Atlanta, Georgia: JMLR: W&CP,
2013.

[22] Nils J Fredriksson, Lars Ny, Jonas A Nilsson, and Erik Larsson. Systematic analysis of
noncoding somatic mutations and gene expression alterations across 14 tumor types. Na-
ture genetics, 46(12):1258–1263, 2014.

[23] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals
of statistics, pages 1189–1232, 2001.

[24] Manuel Garcı́a-Magariños, Inaki López-de Ullibarri, Ricardo Cao, and Antonio Salas.
Evaluating the ability of tree-based methods and logistic regression for the detection of
snp-snp interaction. Annals of human genetics, 73(3):360–369, 2009.

69

[25] Andrew J Gentles and Daniel Gallahan. Systems biology: confronting the complexity of
cancer. Cancer research, 71(18):5961–5964, 2011.

[26] Florian Gnad, Albion Baucom, Kiran Mukhyala, Gerard Manning, and Zemin Zhang. As-
sessment of computational methods for predicting the effects of missense mutations in
human cancers. BMC genomics, 14(Suppl 3):S7, 2013.

[27] John M Goldman and Junia V Melo. Chronic myeloid leukemia?advances in biology and
new approaches to treatment. New England Journal of Medicine, 349(15):1451–1464,
2003.

[28] Oscar González-Recio and Selma Forni. Genome-wide prediction of discrete traits using
bayesian regressions and machine learning. Genet. Sel. Evol, 43(7):21329522, 2011.

[29] Oscar González-Recio, Kent A Weigel, Daniel Gianola, Hugo Naya, and Guilherme JM
Rosa. L2-boosting algorithm applied to high-dimensional problems in genomic selection.
Genetics research, 92(03):227–237, 2010.

[30] William H Greene. Econometric analysis. Pearson Education India, 2003.

[31] Adrian D Haimovich. Methods, challenges, and promise of next-generation sequencing in
cancer biology. Yale J Biol Med, 84(4):439–46, 2011.

[32] T Hastie, R Tibshirani, and J Friedman. The elements of statistical learning 2nd edition,
2009.

[33] Hatena. Random forest models., 2016.

[34] Rhys Heffernan, Kuldip Paliwal, James Lyons, Abdollah Dehzangi, Alok Sharma, Jihua
Wang, Abdul Sattar, Yuedong Yang, and Yaoqi Zhou. Improving prediction of secondary
structure, local backbone angles, and solvent accessible surface area of proteins by iterative
deep learning. Scientific reports, 5, 2015.

[35] Momna Hejmadi. Introduction to cancer biology. Bookboon, 2010.

[36] Joseph M Hilbe. Negative binomial regression. Cambridge University Press, 2011.

[37] Kai-Lung Hua, Che-Hao Hsu, Shintami Chusnul Hidayati, Wen-Huang Cheng, and Yu-Jen
Chen. Computer-aided classification of lung nodules on computed tomography images via
deep learning technique. OncoTargets and therapy, 8, 2015.

[38] Gary B Huang, Honglak Lee, and Erik Learned-Miller. Learning hierarchical representa-
tions for face verification with convolutional deep belief networks. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2518–2525. IEEE, 2012.

70

[39] Thomas J Hudson, Warwick Anderson, Axel Aretz, Anna D Barker, Cindy Bell, Rosa R
Bernabé, MK Bhan, Fabien Calvo, Iiro Eerola, Daniela S Gerhard, et al. International
network of cancer genome projects. Nature, 464(7291):993–998, 2010.

[40] Markus Kalisch. Applied multivariate statistics., 2012.

[41] W James Kent, Ann S Zweig, G Barber, Angie S Hinrichs, and Donna Karolchik. Bigwig
and bigbed: enabling browsing of large distributed datasets. Bioinformatics, 26(17):2204–
2207, 2010.

[42] Ekta Khurana, Yao Fu, Dimple Chakravarty, Francesca Demichelis, Mark A Rubin, and
Mark Gerstein. Role of non-coding sequence variants in cancer. Nature Reviews Genetics,
17(2):93–108, 2016.

[43] VM Krasnopolsky, LC Breaker, and WH Gemmill. A neural network as a nonlinear trans-
fer function model for retrieving surface wind speeds from the special sensor microwave
imager. Journal of Geophysical Research: Oceans, 100(C6):11033–11045, 1995.

[44] Michael S Lawrence, Petar Stojanov, Paz Polak, Gregory V Kryukov, Kristian Cibulskis,
Andrey Sivachenko, Scott L Carter, Chip Stewart, Craig H Mermel, Steven A Roberts,
et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes.
Nature, 499(7457):214–218, 2013.

[45] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[46] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional deep
belief networks for scalable unsupervised learning of hierarchical representations. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pages 609–
616. ACM, 2009.

[47] Honglak Lee, Peter Pham, Yan Largman, and Andrew Y Ng. Unsupervised feature learning
for audio classification using convolutional deep belief networks. In Advances in neural
information processing systems, pages 1096–1104, 2009.

[48] Ned Levine and II CrimeStat. A spatial statistics program for the analysis of crime incident
locations. Ned Levine and Associates, Houston, TX, and the National Institute of Justice,
Washington, DC, 2002.

[49] Cheng Li. A gentle introduction to gradient boosting., 2014.

[50] Marc R Mansour, Brian J Abraham, Lars Anders, Alla Berezovskaya, Alejandro Gutierrez,
Adam D Durbin, Julia Etchin, Lee Lawton, Stephen E Sallan, Lewis B Silverman, et al.
An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic
element. Science, 346(6215):1373–1377, 2014.

71

[51] Anthony Mathelier, Wenqiang Shi, and Wyeth W Wasserman. Identification of altered
cis-regulatory elements in human disease. Trends in Genetics, 31(2):67–76, 2015.

[52] Collin Melton, Jason A Reuter, Damek V Spacek, and Michael Snyder. Recurrent somatic
mutations in regulatory regions of human cancer genomes. Nature genetics, 47(7):710–
716, 2015.

[53] Microsoft. Neural network regression., 2016.

[54] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics. arXiv
preprint arXiv:1603.06430, 2016.

[55] John Mullahy. Specification and testing of some modified count data models. Journal of
econometrics, 33(3):341–365, 1986.

[56] Sherry L Murphy, Jiaquan Xu, and Kenneth D Kochanek. Deaths: preliminary data for
2010. National vital statistics reports: from the Centers for Disease Control and Preven-
tion, National Center for Health Statistics, National Vital Statistics System, 60(4):1–52,
2012.

[57] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, and Caroline Suen. Ufldl tutorial,
2012.

[58] J Guillermo Paez, Pasi A Jänne, Jeffrey C Lee, Sean Tracy, Heidi Greulich, Stacey Gabriel,
Paula Herman, Frederic J Kaye, Neal Lindeman, Titus J Boggon, et al. Egfr muta-
tions in lung cancer: correlation with clinical response to gefitinib therapy. Science,
304(5676):1497–1500, 2004.

[59] David Pardoe and Peter Stone. Boosting for regression transfer. In Proceedings of the 27th
international conference on Machine learning (ICML-10), pages 863–870, 2010.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[61] Dilmi Perera, Diego Chacon, Julie AI Thoms, Rebecca C Poulos, Adam Shlien, Dominik
Beck, Peter J Campbell, John E Pimanda, and Jason WH Wong. Oncocis: annotation of
cis-regulatory mutations in cancer. Genome biology, 15(10):1–14, 2014.

[62] Sergey M Plis, Devon R Hjelm, Ruslan Salakhutdinov, and Vince D Calhoun. Deep learn-
ing for neuroimaging: a validation study. arXiv preprint arXiv:1312.5847, 2013.

72

[63] Eduard Porta-Pardo, Luz Garcia-Alonso, Thomas Hrabe, Joaquin Dopazo, and Adam
Godzik. A pan-cancer catalogue of cancer driver protein interaction interfaces. PLoS
Comput Biol, 11(10):e1004518, 2015.

[64] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught
learning: transfer learning from unlabeled data. In Proceedings of the 24th international
conference on Machine learning, pages 759–766. ACM, 2007.

[65] Benjamin J Raphael, Jason R Dobson, Layla Oesper, and Fabio Vandin. Identifying driver
mutations in sequenced cancer genomes: computational approaches to enable precision
medicine. Genome Med, 6(5), 2014.

[66] Lynn AG Ries, D Harkins, M Krapcho, Angela Mariotto, BA Miller, Eric J Feuer, Limin X
Clegg, MP Eisner, Marie-Josèphe Horner, Nadia Howlader, et al. Seer cancer statistics
review, 1975-2003. 2006.

[67] G Rodrı́guez. Lecture notes on generalized linear models., 2007.

[68] Kate R Rosenbloom, Joel Armstrong, Galt P Barber, Jonathan Casper, Hiram Clawson,
Mark Diekhans, Timothy R Dreszer, Pauline A Fujita, Luvina Guruvadoo, Maximilian
Haeussler, et al. The ucsc genome browser database: 2015 update. Nucleic acids research,
43(D1):D670–D681, 2015.

[69] Kate R Rosenbloom, Timothy R Dreszer, Jeffrey C Long, Venkat S Malladi, Cricket A
Sloan, Brian J Raney, Melissa S Cline, Donna Karolchik, Galt P Barber, Hiram Clawson,
et al. Encode whole-genome data in the ucsc genome browser: update 2012. Nucleic acids
research, page gkr1012, 2011.

[70] Robert E Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. Annals of statistics, pages
1651–1686, 1998.

[71] Zhiyuan Shen. Genomic instability and cancer: an introduction. Journal of molecular cell
biology, 3(1):1–3, 2011.

[72] Søren Kaae Sønderby and Ole Winther. Protein secondary structure prediction with long
short term memory networks. arXiv preprint arXiv:1412.7828, 2014.

[73] Matt Spencer, Jesse Eickholt, and Jianlin Cheng. A deep learning network approach to ab
initio protein secondary structure prediction. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (TCBB), 12(1):103–112, 2015.

[74] Peter D Stenson, Matthew Mort, Edward V Ball, Katy Howells, Andrew D Phillips,
NS Thomas, David N Cooper, et al. The human gene mutation database: 2008 update.
Genome Med, 1(1):13, 2009.

73

[75] Dmitry Svetlichnyy, Hana Imrichova, Mark Fiers, Zeynep Kalender Atak, and Stein Aerts.
Identification of high-impact cis-regulatory mutations using transcription factor specific
random forest models. PLoS Comput Biol, 11(11):e1004590, 2015.

[76] Youmin Tang. Geophysical data analysis., 2015.

[77] W Venables and B Ripley. Modern applied statistics using s, 2002.

[78] João Vinagre, Ana Almeida, Helena Pópulo, Rui Batista, Joana Lyra, Vasco Pinto, Ricardo
Coelho, Ricardo Celestino, Hugo Prazeres, Luis Lima, et al. Frequency of tert promoter
mutations in human cancers. Nature communications, 4, 2013.

[79] Axel Visel, Edward M Rubin, and Len A Pennacchio. Genomic views of distant-acting
enhancers. Nature, 461(7261):199–205, 2009.

[80] V.Krasnopolsky. Nonlinear statistics and nns, 2006.

[81] Bert Vogelstein, Nickolas Papadopoulos, Victor E Velculescu, Shibin Zhou, Luis A Diaz,
and Kenneth W Kinzler. Cancer genome landscapes. science, 339(6127):1546–1558, 2013.

[82] Nils Weinhold, Anders Jacobsen, Nikolaus Schultz, Chris Sander, and William Lee.
Genome-wide analysis of noncoding regulatory mutations in cancer. Nature genetics,
46(11):1160–1165, 2014.

[83] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozen-
berger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome At-
las Research Network, et al. The cancer genome atlas pan-cancer analysis project. Nature
genetics, 45(10):1113–1120, 2013.

[84] Rainer Winkelmann. Econometric analysis of count data. Springer Science & Business
Media, 2013.

[85] Thomas W Yee. Vector generalized linear and additive models. 2007.

[86] Achim Zeileis, Christian Kleiber, and Simon Jackman. Regression models for count data
in r. 2007.

[87] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning-based sequence model. Nature methods, 12(10):931–934, 2015.

