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Chapter 1: Introduction

The collection and analysis of large-scale environmental-data via sensor networks has

become popular in the Ecological Sciences community and has brought with it new

data-processing and interpretation related challenges [5]. This thesis deals with one such

dataset collected for studying, besides other things, a spatiotemporal phenomenon called

Cold Air Pools (CAPs) [13, 10, 2, 3, 8, 7, 6].

1.1 HJ Andrews Experimental Forest

The HJ Andrews Experimental Forest (HJA) is a 16,000-acre ecological research site in

Oregons western Cascades Mountains, and the subject of several long-term ecological

research studies at the Oregon State University (OSU). Dr. Julia Jones [17] from

the OSU College of Earth, Ocean, and Atmospheric Sciences, is our domain-expert

collaborator.

1.2 Dataset

For our analyses, we use the temperature multivariate time-series data, sampled every

20 minutes, and associated covariates (Latitude, Longitude and Elevation) from about

160 sensors deployed across the HJA (Figure 1.2). Other covariates such as the aspect

of the sensors, and time-series of solar-radiation, are also available, but have not been

used in this analysis.

Our typical analysis considers all 72 time-steps (sampled every 20 minutes, e.g.

figure 1.3) of a day’s 24-hour time-series , except in a small fraction of a analyses, where

we only consider the nightly (4pm-7am) cooling curve consisting of 48 time-steps. Sensor

elevations range from 469 meters to 1558 meters (above sea level).
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Figure 1.1: Topological Relief Map of the HJA. Inset shows rough location of HJA in
the state of Oregon. (Used with author’s permission from [2])

1.3 Cold Air Pools

Cold Air Pools occur when cold air from higher elevations roll down a slope to accumulate

in lower elevations, or when atmospheric processes favor warming of higher elevations

[12] or both. Persistent CAPs are associated with stagnation of air in the topographic

depression in which they form, and with low insolation (exposure to sun’s rays) [12].

As an example, microclimate anomalies such as the city of Corvallis (OR) experiencing

persistent cold weather even on a sunny day, can be explained by Cold Air Pooling.

Since CAPs are formed when insolation is low, they are more frequent and more

pronounced in winter than in summer. There are also transient CAPs formed on cold
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Figure 1.2: Map showing locations of around 160 sensors spread out over the HJA
landscape. Map uses Universal Transverse Mercator (UTM) system instead of Lati-
tude/Longitude to conform with the one used by the domain-expert.

nights regardless of season.

1.4 Lapse Rate and Inversions

The rate at which atmospheric temperature decreases with a rise in altitude is known

as the lapse rate. It is typically around 5◦ F per 1,000 meters [13, 12] in dry weather. In
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Figure 1.3: Multivariate Time Series for August 1st 2011, a summer day with almost
no CAPs. 24-hours produce 72 time-steps, sampling at every 20 minutes. Each sensor’s
time-series is in a different color.

certain conditions, the temperature is known to increase with rise in altitude, and since

this is the opposite of the typical behavior, it is called an “Inversion”.

Note that “lapse-rate” is a term associated with atmospheric (i.e. relatively high-

altitude) phenomena. We reuse this terminology when we use the term lapse-rate in the

context of rate of change of temperature using low-altitude (near surface) readings at

different elevations (i.e. heights of the ground with respect to sea-level). This is not

uncommon in the literature [13, 14, 18, 10]

The presence of CAPs and presence of Inversions are, by definition, correlated.
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Figure 1.4: Temperature (◦C) vs. Elevation (meters above sea level) plot for a normal
summer evening. Lapse Rate is ≈ −6.5◦C/1000 meters. implying no inversions or CAPs

The rest of the manuscript is organized as follows: Chapter 2 describes our approaches to

exploring and understanding the CAP phenomenon. Chapter 3 and 4 describe automated

approaches to CAP detection and their performance on real-world data. Chapter 5

describes the design of a simulator and the performance of the detectors on synthetic

datasets. Chapter 6 describes a graphical-model that we have created to explore further

extensions of the aforementioned work, possibly incorporating more domain-knowledge.

Chapter 7 concludes with a discussion of the work described and proposes directions for

further exploration.
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Chapter 2: Exploratory Data Analysis and Modeling Approaches

In this section we describe the three high-level approaches we took to exploring the

presence of CAPs in our dataset, ranging from the most-general and domain-agnostic, to

the most domain-dependent. This section also details the various visualization strategies

we used to explore our multivariate time-series spatiotemporal dataset.

The first two approaches approach CAP detection problem as an anomaly de-

tection problem: Dereszynski et al [5], who have previously studied the data streams

received from the HJA, classify the anomalies possible in sensor-data into three degrees:

1. Simple Anomalies, which are readings outside the acceptable range of temperature

and are introduced into the data-stream by the sensor itself e.g. a large negative

value reading for a disconnected logger or an out-of-range voltage reading.

2. Medium Anomalies, which are associated with malfunctions in a sensor’s hardware

(e.g. a damaged sun-shield on a sensor results in positively biased readings during

the day) or a change in a sensor’s functionality (e.g. a sensor gets temporarily

buried by snow).

3. Complex Anomalies, which can only be detected by considering multiple sensors.

In their paper, the authors address the first two types of anomalies in individual sensor

readings using a Dynamic Bayesian Network model, but not the third type (Complex

Anomalies, spanning multiple sensors). When viewed as an anomaly detection problem,

the detection of CAPs necessarily requires multiple sensors to be considered as CAPs

often cover large spatial expanses.

2.1 Approach 1: Time-series Changepoint Detection

2.1.0.1 Pairwise analysis

Since CAPs are associated with Inversions, the simplest form of changepoint to consider is

the location of the change of the covariance of two adjacent sensors’ time-series. Manual
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inspection of pairs of sensors on the same slope but having different elevations indeed

revealed several such changepoints (see example in Fig. 2.1)

Figure 2.1: Nighttime cooling-curves (temperature over time) for a pair of sensors on
the same slope. Sensor 254 is down-slope compared to Sensor 30, and starts off warmer
as is expected from a normal lapse-rate. Later, after around timestep 20, the relation-
ship between the temperature of the two sensors flips, due to cold air pooling at lower
elevations. Curves were obtained by using a smoothed fit to a spline basis using the R
package fda [20]

2.1.0.2 Multivariate analysis

If we visually inspect the (multivariate) time-series plots for a summer day with no (or

minor night-time) CAPs (see figure 1.3), and compare them with a winter day with

heavy persistent Cold Air Pooling (see figure 1.3), we can easily see differences in both

the mean and the variance between time-series with normal and inverted behavior.
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Figure 2.2: Multivariate Time Series for December 9th 2011, a winter day with heavy
CAPs. Compare with equivalent plot for August 1st 2011, figure: 1.3
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We experimented with automatic changepoint-detection algorithms for both pairwise

and multivariate approaches. However, due to the widely-varying shapes and noise on

individual sensor time-series, both approaches suffered the problem of excessive False

Positives. Additionally, typical multivariate time-series changepoint detection algorithms

[22] only detect changepoints in time, and do not easily support localizing changes to

specific time-series components (i.e. sensors).

2.2 Approach 2: Low-dimensional manifold extraction

Since the data we are dealing with is from a natural physical phenomenon, and we have

densely sampled it via our network of sensors, we suspect that it would be possible

to find an underlying low-dimensional generative process that could explain the data.

Additionally, it might be easier to separate ‘normal’ behavior from behavior involving

CAPs by investigating such a low-rank representation.

To use a visual metaphor, one can think of the multivariate time-series data from

the HJA to represent a temperature surface that oscillates over time. Normal behavior,

i.e. without CAPs, implies a relatively ‘smooth’ surface with a ‘regular’ oscillation.

Inversions and CAPs then imply that there ‘bumps’ of varying size that form on this

oscillating surface.

We tried a variety of techniques for low-dimensional structure discovery, including

Singular Value Decomposition (SVD) [21], Dynamic Mode Decomposition (DMD) [19]

and Functional Principal Component Analysis (fPCA) [20]. As an example, the Singu-

lar Value Decomposition (SVD) of the multivariate time-series data indeed reveals (see

Figures 2.3 & 2.4) such a low-rank structure. However, we were not able to see any

clear separation between the so-called normal behavior and behavior involving CAPs,

by examining the low-rank structure.

2.3 Approach 3: Lapse Rate Analysis

A recurring observation that came up during the aforementioned analyses, but has not

been explicitly modeled yet, is the structure observed in the Temperature vs. Elevation

relationship within the sensor readings. To investigate this further quantitatively, we fit

linear regression models on all time-steps of several days where we expected few-to-no
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Figure 2.3: Separating Low-Rank Approximation from Residue for Aug. 1st 2011:
(1) Top-left: Original Data, (2) Top-right: Scree plot of singular-values reveals low-
rank structure (3) Bottom-left: Low-rank (N=2) Approximation and (4) Bottom-right:
Residue after removing low-rank approximation from original.
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Figure 2.4: Separating Low-Rank Approximation from Residue for Dec. 9th 2011:
(1) Top-left: Original Data, (2) Top-right: Scree plot of singular-values reveals low-
rank structure (3) Bottom-left: Low-rank (N=2) Approximation and (4) Bottom-right:
Residue after removing low-rank approximation from original.
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Figure 2.5: Two-component GMM fit to
the distribution of lapse-rates for month of
Aug. 2011. X-axis shows lapse-rate (slope)
in units ◦C/1000-meters.

Figure 2.6: Two-component GMM fit to
the distribution of lapse-rates for month of
Dec. 2011. X-axis shows lapse-rate (slope)
in units ◦C/1000-meters.

CAPs (August) and compared them with several days where CAPs are expected to be

frequent (December). Fitting two-component Gaussian Mixture Models (GMMs) to the

distribution of lapse rates (i.e. slope coefficient from regression fits) indeed revealed a

clear difference between these two groups (see Figures 2.5 & 2.6).

This is the relationship that we will investigate further in the rest of this manuscript.

Note that this is the most domain-specific approach among the three discussed, because it

specifically takes into account the domain-knowledge that the Temperature vs Elevation

relationship is important to the detection of CAPs.
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Chapter 3: Linear Detector

3.1 A Naive Linear CAP Detector

Motivated by the observations noted in the last section, we further investigate the dy-

namics of the lapse rate by fitting a linear regression model:

Temperature = β0 + β1 ∗ Elevation + ε

for each time-step of the data and plotting the slope coefficient β1 (i.e. lapse-rate) over

time.

As shown in the figure 3.1, many days in August show brief periods of (night-time)

inversion, while in December, only a few days are free of long periods of inversion.

Figure 3.1: Lapse Rate Time Series for August (Above) and December (Below), reveals
regular nightly CAPs in August, and persistent CAPs in December. Recall that positive
lapse-rate values imply ‘inversions’.
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As we know that inversions are correlated with CAPs, we now have a naive detector

that can temporally localize CAPs. To verify that our detector is indeed working as it

should, we sought out a qualitative assessment from our domain-expert.

3.2 Qualitative assessment

To facilitate the qualitative assessment, we created an animation ‘dashboard’ (see

screenshot in Figure 3.2) that enabled a side-by-side evaluation, at each time-step, of (1)

the linear detector and (2) a spatial visualization of the temperature surface of the HJA.

Figure 3.2: Dashboard for inspecting linear-detector fit. Right panel shows Tem-
perature vs. Elevation plot with Linear Model. Left Panel shows the (interpolated)
temperature surface over the HJA landscape (Northing × Easting Coordinates in UTM
units). See Supplemental Materials 7.2 to access full-length animations.

The domain-expert found these animations useful and provided us with feedback

that we could incorporate into the next version of the detector. In addition to being able

to use the lapse-rate time-series to precisely localize in time the global state (inverted

or not) of the HJA, she was also able to (visually, applying her own expert-heuristic)

localize the CAP to specific sensors near the main stem of the stream (the darker-blue

regions in Figure 3.2).
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Chapter 4: Nonlinear Detectors: Quadratic + Piecewise

The Linear Detector allows us to localize a CAP in time but not in space. To localize

a CAP in space (i.e. to specific sensors), we further analyze the relationship between

Temperature and Elevation by considering two non-linear regression models.

4.1 Non-linear Models

4.1.1 Quadratic Model

The quadratic model is a simply a quadratic-regression [11] model:

Temperature = β0 + β1 ∗ Elevation + β2 ∗ Elevation2 + ε

The addition of the extra (β2) term allows for a non-linear curve, thereby improving the

fit to the data in some cases (see Figure 4.1 for an example).

Additionally, we can calculate the location of the inflection-point of the curve as:

dTemperature

dElevation
= β1 + 2 ∗ β2 ∗ InflectionElevation = 0

InflectionElevation = −β1/2β2

When the quadratic model estimates a concave-downward curve, the inflection-

point separates an upward-sloping curve (to its left) from a downward-sloping curve (to

its right). This can be thought of as approximating two connected linear models, having

arisen from an inversion in only a part of the landscape. The upshot of this is that the

inflection-point can be thought of as estimating the height of the CAP. The CAP

can now be spatially localized to sensors with elevations below the inflection-point.

There are also situations in which the quadratic model estimates a concave-upward

curve, where the inflection-point separates an downward-sloping curve (to its left) from a
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Figure 4.1: Dashboard for Nonlinear Detectors: Right panel: Temperature vs. El-
evation plot, with Linear-detector (solid-red), Quadratic-detector (solid-blue) and
Piecewise-Linear/Segmented detector (solid-green). Dashed vertical lines indicate
location of inflection-point/breakpoint for Quadratic and Piecewise-Linear/Segmented
detectors (respectively), and are colored when model is chosen by the hypothesis test,
and grayed-out otherwise. Left panel: All sensors to the left of the inflection-
point/breakpoint are regarded as in a CAP. Left panel shows this region (green) on
the HJA map corresponding to the Piecewise-Linear/Segmented detector. (Northing ×
Easting Coordinates in UTM units). See Supplemental Materials 7.2 to access full-length
animations.

upward-sloping curve (to its right). Such situations, as far as we know, do not correspond

to a physical phenomenon, and are ignored in our analysis.

4.1.2 Piecewise Linear Model (or Segmented Model)

To directly model the data as a pair of linear-models connected at an inflection-point,

we can use the Piecewise Linear Model (PLM) a.k.a. the Segmented Model.

We use the ‘segmented’ R package [16] to obtain our Piecewise Linear fits, as given

by the model:

yi = β1xi + β2(xi − ψ)+

where (xi − ψ)+ = (xi − ψ) × I(xi > ψ) and I(·) is the indicator function. β1 is the
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slope of the left arm, and β2 is the slope of the right-arm, and ψ is the break-point

(inflection-point).

As described in [15], an analytic solution is no longer possible, and so the resulting

non-linear objective function is approximated via a linearization around ψ, and fitted

via an iterative algorithm.

4.2 Model Selection

In many cases, the fit produced by the non-linear model is superior (in R2 terms) to

that produced by the linear model, and we should clearly choose the non-linear model.

In some cases, the fit produced by the non-linear model and the linear model are similar

(or the non-linear model has produced a degenerate fit, e.g. in figure 4.2). In such cases,

by Occam’s Razor, we prefer the simpler model. To make this decision in a principled

manner, we perform model selection using a hypothesis test.

4.2.1 Linear model vs. Quadratic Model

The ANOVA (F-test) for nested models [11, p. 116] is applicable here. The Null Hypoth-

esis is that the linear and quadratic models fit the data equally well, and the Alternative

Hypothesis is that the quadratic model is superior.

4.2.2 Linear model vs. Piecewise-Linear Model

The Chow test [1], which is commonly used in econometrics literature to test for struc-

tural breakpoints, is applicable here. It tests whether the true coefficients of two different

linear regressions on different data-sets are actually equal. In our case, we are interested

in testing if βL1 is the same as βR1, where

• Temperature = βL0 + βL1 ∗Elevation + ε, is the model fit to data to the left of the

InflectionElevation, and

• Temperature = βR0 + βR1 ∗ Elevation + ε, is the model fit to data to the right of

the InflectionElevation

Specifically, the Null Hypothesis is that βL1 = βR1, i.e. the simpler (linear) model is
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Figure 4.2: An example of a case when the data is not particularly non-linear in structure,
and leads to a particularly pathological PLM fit. The vertical dashed-line associated
with with both non-linear models have been grayed-out to indicate that the alternative
hypothesis (Non-linear Model) was not accepted by the hypothesis test.

chosen, and the Alternative Hypothesis is that βL1 6= βR1, i.e. the Piecewise-Linear

Model is more appropriate.

4.2.3 Multiple Hypothesis Error Correction

Since we carry out one test per time-step for each of 72 timesteps in a day, we need [9,

p. 686] to apply a correction to account for multiple tests.

The p-value threshold (typically 0.05) that is used to decide when the the linear model

is rejected over a more complex model (Quadratic or PLM) is made more stringent via
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the Bonferroni correction [9, p. 686], and set to 0.05/72.

4.3 Qualitative assessment

To facilitate qualitative assessment of the non-linear models, the non-linear ‘dash-

board’ (screenshot in Figure 4.1), and an auxiliary time-series (example in figure

4.3) were provided to the domain-expert.

Both nonlinear models seem to fit the data better (in R2 terms) than the linear

model, during periods of suspected CAPs. In August, when CAPs are known to occur

only on cool nights, the linear model dominates most of the day. In December, when

CAPs are known to persist throughout the day, the more complex models get selected

by the hypothesis test for most of the day.

Between the two linear models, it seems like the PLM provides a better estimate of

the inflection-point (CAP elevation), while the Quadratic model’s inflection point tends

to often over-estimate it.

Non-linear models achieve the goal of localizing CAPs in both space and time. The

shape of the region indicated as under a CAP in the non-linear dashboard (e.g. figure

4.1), is consistent with the topology of the HJA (figure 1.1) that indicates that the lowest

elevations are towards the bottom-left of the map, and extend along the river.
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Figure 4.3: Auxillary time-series: Lower panel: R2 time series for Linear (solid-
red), Quadratic (solid-blue) and PLM/Segmented (solid-green) detectors. Overlayed
dashed step-function curves, when high, indicate when the respective detector was
chosen by the (multiple-testing corrected) hypothesis test. Upper Panel: Inflection-
point (CAP elevation) estimates from the Quadratic (solid-blue) and PLM/Segmented
(solid-green) detectors.
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Figure 4.4: Dashboard animation frames from August 1st 2011, a day with normal
“summer” behavior (with a minor night-time CAP). Frames from top to bottom are
for (1) 12:00 midnight, (2) 6:00 am, (3) 11:40 am, (4) 4:40pm and (5) 9:20pm. Full
animations available in Supplemental Materials. Grayed-out area on the left panels
indicate that the Segmented detector did not pass hypothesis test for that timestep.
Similarly, grayed-out dashed vertical lines indicate respective nonlinear classifier did not
pass hypothesis test for that timestep.
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Figure 4.5: Dashboard animation frames from December 9th 2011, a “winter” day with
heavy cloud-cover and persistent inversion and CAPs. Frames from top to bottom are
for (1) 12:00 midnight, (2) 6:00 am, (3) 11:40 am, (4) 4:40pm and (5) 9:20pm. Full
animations available in Supplemental Materials
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Chapter 5: Simulation Study

To evaluate the performance of the various CAP detectors, we test their performance on

synthetic data by (1) varying input-noise conditions and (2) varying the elevation of the

inflection-point.

5.1 Simulator Design

To generate synthetic data, we wrote a simulator that met the following criteria:

• A (Temperature) time-series is created for each sensor that is simulated and bears

the same sinusoid-like shape found in real data.

• An adjustable amount of normally distributed random noise is added to the am-

plitude at each time-step. A small amount of random noise is also added to the

phase of the sinusoid (does not vary per time-step), and was manually adjusted

to make the output look like a real sensor’s output.

• The number of time-series generated is adjustable, and set equal to the number

of sensors (about 160) being studied.

• The real-data values for the covariates (Elevation, Latitude & Longitude) associ-

ated with each sensor are used for the synthetic data.

• The mean-value for a simulated time-series is adjusted such that it is proportional

to a user-set lapse-rate (plus a small amount of random normal noise).

• Since the lapse-rate itself varies with time, an adjustable magnitude lapse-rate

time-series can be superimposed on the data. The shape of this superimposable

time-series can either be (1) Gaussian or (2) Sinusoid, both with adjustable

peak-magnitude and peak-location.

• In addition to being able to superimpose a lapse-rate time-series on top of the

data, we can choose an elevation (simulated inflection-point) above which the

lapse-rate adjustment will not be applied.
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Figure 5.1: Synthetic Data Example 1: Top Left: Real data Multivariate time-
series for August 2011-08-01, a typical summer day. Top right: Lapse-rate time series
showing a short period of early-morning cold air pooling (time-steps 25-35). Bottom
Row: Bottom left and right panels show the equivalent time-series and lapse-rate plots
using simulated-data. No attempt was made to replicate the (rare) outliers in real-data.

Two examples of synthetic-data produced by the simulator is shown in Figures 5.1

and 5.2. These synthetic-data examples were generated in such a way so as to match
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real-data from different days, in order to show the flexibility of the simulator to model

different microclimatic conditions.

5.2 Experiment: Detection Robustness

We would like to know how well the detectors can detect CAPs for varying levels of

input (amplitude) noise. Synthetic Input noise, in the form of additive random normal

noise, is varied from 0% to 20% (”error-fraction” in figure 5.3) of the amplitude dynamic-

range of the noiseless baseline curve. F1-scores were calculated by comparing against

the linear detector with no noise added, and averaging over 35 randomly-initialized trials.

Detection of an inversion is done as follows for each detector:

• Linear: Inversion detected when β1 >= 0

• Quadratic: Inversion detected when β1 >= 0

• Piecewise Linear/Segmented: Inversion detected when βL >= 0

As shown in figure 5.3, we found that the Linear and Quadratic detectors were quite

robust to added noise. The Piecewise-Linear/Segmented detector performed consistently

poorly because of its tendency towards degenerate fits when the data is inherently mostly

linear (similar to the one shown in figure 4.2).

Hybrid-detectors: We expect that the performance of the non-linear detectors can

be made more stable by using them in combination with the linear detector. We in-

troduce two Hybrid-detectors that implement this reasoning: (1) Linear+Quadratic (2)

Linear+Segmented.

For the Hybrid-detectors, the non-linear detector is only consulted if two conditions

pass: (1) the linear-detector indicates inversion (to filter out concave-upward fits) and

(2) the hypothesis test passes i.e. indicates that the data is significantly non-linear to

justify a more complex model. As can be seen in figure 5.3, the performance-curves for

the hybrid-detectors basically hug the performance-curve for the linear-detector.
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5.3 Experiment: Inflection Point Estimation

We would like to know how well the non-linear detectors estimate the location of the

inflection-point. This would additionally help quantify any systematic biases that the

detectors might have in terms of under or over-estimating the inflection point.

We generate synthetic-data, similar to that in figure 5.2, and vary its inflection point

from 600-meters to 1300-meters. RMSE and Mean Error values are recorded and aver-

aged over 35 trials to summarize the overall-error and any systematic-bias respectively.

Note that the Quadratic detector can generate inflection-point locations that are outside

the range of sensor-elevations and thus has been trimmed to be within that range.

As shown in Figure 5.4, the Piecewise-Linear/Segmented detector consistently esti-

mates the true inflection-elevation with small error.

The Quadratic detector, consistently over-estimates the true inflection-elevation.

This is consistent with expectations, and follows directly from the geometry of the result-

ing curve when a inflection-point is introduced by artifically lowering the temperatures

of simulated sensors below a certain elevation.
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Figure 5.2: Synthetic Data Example 2: Top Left: Real data Multivariate time-series
for December 2011-12-13, a winter day with heavy cold air pooling. Top right: Lapse-
rate time series showing persistent cold air pooling. Bottom Row: Bottom left and
right panels show the equivalent time-series and lapse-rate plots using simulated-data.
This simulation required repeated superimposition of a Gaussian-shaped lapse-rate time-
series. Note that an adjustable inflection-point was introduced at 1000-ft. No attempt
was made to replicate the (rare) outliers in real-data.
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Figure 5.3: Results of experiment to compare detection of inversions: Error-fraction
denotes the amount of synthetic Input noise, in the form of additive random normal noise,
ranging from 0% to 20% of the amplitude dynamic-range of the noiseless baseline curve.
F1-scores were calculated by comparing against the linear detector with no noise added,
and were averaged over 35 randomly-initialized trials. Linear and Quadratic detectors,
being very similar in nature, perform equally well. Piecewise-Linear/Segmented detector
performed consistently poorly because of its tendency towards degenerate fits (e.g. in
figure 4.2) when the data is inherently mostly linear. The curves for the hybrid-detectors
almost overlap the linear-detector’s curve.
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Figure 5.4: Results of experiment to compare estimation of inflection-elevation: The
Piecewise-Linear/Segmented detector consistently estimates the true inflection-elevation
with small error, while the Quadratic detector, consistently over-estimates the true
inflection-elevation. Note that the Quadratic detector can generate inflection-point lo-
cations that are outside the range of sensor-elevations and thus has been trimmed to be
within that range. This trimming explains the reduction in the error close to the edges,
for the Quadratic-detector
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Chapter 6: Nonlinear Detectors: Probabilistic Graphical Model

We would like to explore further extensions of the nonlinear detectors that model the

data better, possibly by incorporating more domain knowledge. With this in mind, we

have created a probabilistic graphical model for Piecewise-Linear Regression, that could

serve as a starting-point for future extensions.

6.1 Graphical Model

Figure 6.1: Plate Diagram for Graphical Model:

Figure 6.1 shows a plate-diagram for the graphical-model. Z represents the latent-

variable for the inflection-point, and can take one of z1, · · · , zK values. βk represents

the vector of regression coefficients for two linear regressions, one to each side of the

inflection-point. There are K such vectors, one associated with each of K values that

the inflection-point latent-variable Z can take. Xi and Yi represent Elevation and Tem-

perature readings respectively, for each of i = 1 · · ·N observation-pairs. Gi is a binary-
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variable that indicates the assignment of this observation-pair to either the left-hand

(Gi = 0) or the right-hand (Gi = 1) linear-regression.

The model assumes that the observed-data originates from the following generative-

process: First, we select an inflection-elevation Z = zk, by drawing from a multino-

mial distribution with parameter π. The expected-value (Temperature) of an observa-

tion with elevation lesser than (or equal to) the inflection-elevation is βL,kXiI[Gi = 0]

while if higher than the inflection-elevation is βR,kXiI[Gi = 1]. Finally, the observed

Temperature (Yi) is generated by drawing from a Gaussian distribution with mean

βj,kXiI[Gi = gj ] and variance σ2k, where j ∈ {0, 1} indexing the left-hand and right-hand

regressions respectively. We assume that σk is a common variance parameter between

the left-hand and right-hand regressions for a given inflection-point zk.

The complete-data log-likelihood corresponding to the above generative-process is

given by the following equation:

Lc(θ) =

K∑
k=1

[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

(
I[Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

+ I[Gi = gj ]logP (Gi = gj |Xi, Z = zk)

)
+ logP (Xi)

)
+ I[Z = zk]logP (Z = zk|θ)

]

6.2 Inference

We use the Expectation-Maximization (EM) [4] algorithm to estimate the model param-

eters (θ = {π, β, σ}). The P (Gi = gj |Xi, Z = zk) term is actually deterministic, and is

simply equal to I[Xi > zk]. The EM algorithm iterates between the E-step and M-step

till a convergence condition has been satisfied.

The E-step comprises of calculating the expected complete-data log-likelhood func-

tion Q(θ, θ′)

Q(θ, θ′) = EG,Z|X,Y Lc

where θ and θ′ are the current iteration and previous iteration’s parameter values. In
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this process, we calculate two quantities, γi,j,k and δk, defined below:

γi,j,k = P (Z = zk, Gi = gj |X,Y ,θ′) =
P (Z = zk, Gi = gj ,X,Y |θ′)∑

Z

∑
G P (Z,G,X,Y |θ′)

δk = P (Z = zk|X,Y ,θ′) =
∑
i,j

γi,j,k

In the M-Step, we estimate the parameter values using the expected-values of the

latent-variables from the E-step. Given Q(θ, θt−1) from the E-Step, the M-step calcula-

tion is:

θt+1 = argmax
θ

Q(θ, θt)

The complete derivation of both the E- and M-steps is provided in the Appendix B.

We summarize the parameter estimators below:

πk =
δk∑K
k=1 δk

β0j,k =

∑Nj

i=1 γi,j,k(Yi − β1j,kXi)∑Nj

i=1 γi,j,k

β1j,k =

∑Nj

i=1 γi,j,kXi(Yi − β0j,k)∑Nj

i=1 γi,j,k(X
2
i )

σ2k =

∑
j∈{0,1}

∑Nj

i=1 γi,j,k(Yi − β0j,k − β1j,kXi)
2∑

j∈{0,1}
∑Nj

i=1 γi,j,k

6.3 Nonlinear Detector

To use the graphical model as non-linear detector, the inflection point is obtained by

getting the MAP estimate of the Z variable, while the βk associated with that inflection-

point provide the estimates of the slopes for the left-hand and right-hand side regressions.

To initialize the algorithm, we choose z1, · · · , zK to correspond to 21 equally spaced

quantiles of the sensor elevations, and set πk = 1/K. βs and σs are initialized with co-

efficients from linear-regressions fit with an assumption of a median-elevation inflection-

point.

For convergence, we iterate the EM-algorithm till the change in the Q(θt, θt−1)
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function becomes lesser than an arbitrary small-threshold ε. In practice, this was almost

always less than 20 iterations.

6.4 Quantitative Assessment

We update the results from the simulation-study in Chapter 5, by re-running the ex-

periments for 35 trials each. As shown in experiment results, figures 6.2 and 6.3, the

performance of the graphical-model is close to that of the Segmented detector.

Figure 6.2: Inversion Detection experiment (N=35 trials) results with the Graphical-
Model detector (and hybrid Linear+Graphical detector added)

6.5 Qualitative Assessment

We found that the fits provided by the graphical-model are quite similar to those provided

by the Segmented model introduced in Chapter 5. Since no attempt was made to learn

a continuous function, there is often a ‘gap’ (i.e. discontinuity) between the value of the

function at the inflection-point, unlike in the case of the Segmented model.

Though the graphical-model does not have any specific advantages over other detec-
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Figure 6.3: Inflection Elevation estimation experiment (N=35 trials) results with the
Graphical-Model detector (and hybrid Linear+Graphical detector) added

tors currently, it, due to its extensibility, serves as a starting-point for future explorations.
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Chapter 7: Conclusion

We achieve our goal of temporally and spatially localizing CAPs in our multivariate time-

series dataset. Key to achieving this outcome was using a domain-driven approach where

we explicitly took into account the Temperature vs. Elevation (”lapse-rate”) relationship.

Visualizations were essential at each stage to decide on next-steps in modeling.

7.1 Key takeaways

• To detect the presence of cold-air-pools in a landscape at a specific timestep, a

linear model is often sufficient. To localize cold-air-pools spatially in addition to

temporally, a non-linear model is required.

• Between the proposed non-linear detectors, the Piecewise-Linear/Segmented model

outperforms the Quadratic detector in detecting lapse-rate inflection-points result-

ing from cold-air-pools. However, the Piecewise-Linear/Segmented model should

be used in conjunction with a Linear detector, because it easily produces spurious

fits when given data that is not inherently non-linear.

• The left-panel in the non-linear dashboard (ref. figure 4.1, and full animation

linked to in the Supplemental Materials) that shows spatial extent of CAP reveals

that, for the most part, only one large CAP forms in HJA. This is consistent with

the topological map of the HJA (figure 1.1) that shows one primary depression

along the stem of the river extending to the bottom-left end of the map.

7.2 Future work

We envision the following directions of modeling and exploration would be useful in the

future:

• Temporal correlation: Specifically modeling the temporal correlation of the

sensor data (Autoregressive in the observations), or the estimate of the inflection-
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point (Autoregressive in the latent-variable) could lead to more realistic dynamics

for the estimated inflection-point.

• Spatial correlation: Similarly, we could also model the tendency of nearby areas

to behave more like one another, and possibly take into account additional covari-

ates such as the aspect (i.e. the direction that the ground slope faces) of spatial

locations.

• Spatially Disjoint CAPs: In the case of a landscape where multiple disjoint

CAPs form over time, our current models will not correctly estimate different CAP

inflection-elevations (if they are indeed different) for different locations. To achieve

this, extensions to the current models need to be developed that first identify

the disjoint spatial CAP locations, and then estimate CAP inflection-elevations

separately for each.
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Appendix A: Supplemental Materials

The following supplemental material for this thesis can be found online at the URL

https://github.com/satpreetsingh/osu-cap

Two days each in August (Summer) and December (Winter) have been chosen as exem-

plars for the behavior of the HJA:

• Normal (or minor night-time inversion): Aug 1st and Dec 12th

• Inversions: Aug 21st and Dec 9th (heavy inversion)

Artifacts provided:

• Linear Detector Dashboard Animations [LinearDashboard 2011-MM-DD.fullday.gif]

• Nonlinear Detector Dashboard Animations [NonlinearDashboard 2011-MM-DD.fullday.gif]

• Nonlinear Detectors Inflection-Elevation andR2 time-series: [NonlinearAuxillary 2011-

MM-DD.fullday.png]

• Graphical Model Animations: [Nonlinear GraphicalModel 2011-MM-DD.fullday.png]

https://github.com/satpreetsingh/osu-cap
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Appendix B: EM Derivations for Graphical Model
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B.1 Complete-data log-likelihood:

Lc(θ) = logP (Y,X,G, Z|θ)

= log

( N∏
i=1

P (Yi, Xi, Gi|Z, θ)
)
P (Z|θ)

= log

K∏
k=1

[ N∏
i=1

(
P (Yi|Xi, Gi, Z = zk, θ)P (Gi|Xi, Z = zk)P (Xi)

)
P (Z = zk|θ)

]I[Z=zk]

= log
K∏
k=1

[ N∏
i=1

( J∏
j=1

{
P (Yi|Xi, Gi = gj , Z = zk, θ)P (Gi = gj |Xi, Z = zk)

}I[Gi=gj ]
P (Xi)

)

P (Z = zk|θ)
]I[Z=zk]

=

K∑
k=1

[
log

N∏
i=1

( J∏
j=1

{
P (Yi|Xi, Gi = gj , Z = zk, θ)P (Gi = gj |Xi, Z = zk)

}I[Gi=gj ]
P (Xi)

)

P (Z = zk|θ)
]I[Z=zk]

=
K∑
k=1

[
I[Z = zk]log

N∏
i=1

( J∏
j=1

{
P (Yi|Xi, Gi = gj , Z = zk, θ)P (Gi = gj |Xi, Z = zk)

}I[Gi=gj ]
P (Xi)

)

P (Z = zk|θ)
]

=

K∑
k=1

[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

log
{
P (Yi|Xi, Gi = gj , Z = zk, θ)P (Gi = gj |Xi, Z = zk)

}I[Gi=gj ]

P (Xi)

)
+ logP (Z = zk|θ)

]
=

K∑
k=1

[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

(
I[Gi = gj ]log

{
P (Yi|Xi, Gi = gj , Z = zk, θ)

P (Gi = gj |Xi, Z = zk)
})

+ logP (Xi)

)
I[Z = zk]logP (Z = zk|θ)

]
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=

K∑
k=1

[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

(
I[Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

+ I[Gi = gj ]logP (Gi = gj |Xi, Z = zk)

)
+ logP (Xi)

)
+ I[Z = zk]logP (Z = zk|θ)

]

B.2 E-Step:

For Q(θ, θ′), take EG,Z|X,Y Lc. Let θ′ be the previous iteration’s value of the parameters.

Q(θ, θt−1)

= EG,Z|X,Y ,θ′
K∑
k=1

[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

(
I[Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

+ I[Gi = gj ]logP (Gi = gj |Xi, Z = zk)

)
+ logP (Xi)

)
+ I[Z = zk]logP (Z = zk|θ)

]
=

K∑
k=1

EG,Z|X,Y ,θ′
[
I[Z = zk]

N∑
i=1

( ∑
j∈{0,1}

(
I[Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

+ I[Gi = gj ]logP (Gi = gj |Xi, Z = zk)

)
+ logP (Xi)

)
+ I[Z = zk]logP (Z = zk|θ)

]
=

K∑
k=1

EG,Z|X,Y ,,θ′
[ N∑
i=1

( ∑
j∈{0,1}

(
I[Z = zk, Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

+ I[Z = zk, Gi = gj ]logP (Gi = gj |Xi, Z = zk)

)
+ I[Z = zk]logP (Xi)

)
+ I[Z = zk]logP (Z = zk|θ)

]



44

=

K∑
k=1

N∑
i=1

∑
j∈{0,1}

EG,Z|X,Y ,θ′
[
I[Z = zk, Gi = gj ]logP (Yi|Xi, Gi = gj , Z = zk, θ)

]

+

K∑
k=1

N∑
i=1

∑
j∈{0,1}

EG,Z|X,Y ,θ′
[
I[Z = zk, Gi = gj ]logP (Gi = gj |Xi, Z = zk)

]

+

K∑
k=1

N∑
i=1

EG,Z|X,Y ,θ′
[
I[Z = zk]logP (Xi)

]

+
K∑
k=1

EG,Z|X,Y ,θ′
[
I[Z = zk]logP (Z = zk|θ)

]

=

K∑
k=1

N∑
i=1

∑
j∈{0,1}

P (Z = zk, Gi = gj |X,Y ,θ′)logP (Yi|Xi, Gi = gj , Z = zk, θ)

+

K∑
k=1

N∑
i=1

∑
j∈{0,1}

P (Z = zk, Gi = gj |X,Y ,θ′)logP (Gi = gj |Xi, Z = zk)

+

K∑
k=1

N∑
i=1

P (Z = zk|X,Y ,θ′)logP (Xi)

+
K∑
k=1

P (Z = zk|X,Y ,θ′)logP (Z = zk|θ)

Next, to compute P (Z = zk, Gi = gj |X,Y, θ′), we need:

P (Z = zk, Gi = gj |X,Y, θ′) =
P (Z = zk, Gi = gj ,X,Y |θ′)

P (X,Y |θ′)

=
P (Z = zk, Gi = gj ,X,Y |θ′)∑

Z

∑
G P (Z,G,X,Y |θ′)
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Thus, we need to compute the joint P (Z = zk, Gi = gj ,X,Y |θ′).

P (Z = zk, Gi = gj ,X,Y |θ′)

=
∑

G1,...,Gi−1,Gi+1,...,GN

P (Z = zk, G1, . . . , Gi−1, Gi = gj , Gi+1, . . . , GN ,X,Y |θ′)

=
∑
G−i

P (Z = zk, G0, . . . , Gi−1, Gi = gj , Gi+1, . . . , GN ,X,Y )

=
∑
G−i

[
P (Z = zk)

(
P (Yi|Xi, Gi = gj , Z = zk, θ

′)P (Gi = gj |Z = zk, Xi, θ
′)P (Xi)

)
∗

( N∏
l 6=i

P (Yl|Xl, Gl, Z = zk, θ
′)P (Gl|Z = zk, Xl, θ

′)P (Xl)

)]

= P (Z = zk)

(
P (Yi|Xi, Gi = gj , Z = zk, θ

′)P (Gi = gj |Z = zk, Xi, θ
′)P (Xi)

)
∗

∑
G−i

[( N∏
l 6=i

P (Yl|Xl, Gl, Z = zk, θ
′)P (Gl|Z = zk, Xl, θ

′)P (Xl)

)]

= P (Z = zk)

(
P (Yi|Xi, Gi = gj , Z = zk, θ

′)P (Gi = gj |Z = zk, Xi, θ
′)P (Xi)

)
∗[ N∏

l 6=i
P (Xl)

( ∑
Gl∈{0,1}

P (Yl|Xl, Gl, Z = zk, θ
′)P (Gl|Z = zk, Xl, θ

′)

)]

Substitutions:

Let

γi,j,k = P (Z = zk, Gi = gj |X,Y ,θ′) =
P (Z = zk, Gi = gj ,X,Y |θ′)∑

Z

∑
G P (Z,G,X,Y |θ′)

Let

δk = P (Z = zk|X,Y ,θ′) =
∑
i,j

γi,j,k
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B.3 M-Step:

Given Q(θ, θt−1) from E-Step, get

θt+1 = argmax
θ

Q(θ, θt)

B.3.1 Gi,j and P (Xi):

• Gi,j is a deterministic quantity given Z = zk and observed quantity Xi, and is

simply set as: Gi,0 = I[Xi < zk] and Gi,1 = I[Xi ≥ zk]

• P (Xi) is a Uniform distribution with mean 1/N and does not need any parameters

learned. (Here, N is the number of observations or sensors)

For other parameters, we take take partial derivatives and set to zero to find the maxi-

mum:

B.3.2 For πk:

∂Q(θ, θ′)

∂πk
=

∂

∂πk

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

+

K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Gi = gj |Xi, Z = zk)

+

K∑
k=1

N∑
i=1

δklogP (Xi) +

K∑
k=1

δklogP (Z = zk|θ)

+ λ

( K∑
k=1

πk − 1

)]

=
∂

∂πk

[ K∑
k=1

δklog(πk) + λ

( K∑
k=1

πk − 1

)]
=
δk
πk

+ λ
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By setting to 0, we get:

δk
πk

+ λ = 0

δk + λπk = 0

K∑
k=1

δk + λ

K∑
k=1

πk = 0

λ = −
K∑
k=1

δk

∴ πk =
δk∑K
k=1 δk
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B.3.3 For β0:

∂Q(θ, θ′)

∂β0j,k
=

∂

∂β0j,k

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

+
K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Gi = gj |Xi, Z = zk)

+

K∑
k=1

N∑
i=1

δklogP (Xi)

+
K∑
k=1

δklogP (Z = zk|θ)
]

=
∂

∂β0j,k

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=

N∑
i=1

γi,j,k
∂

∂β0j,k

[
logP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=

Nj∑
i=1

γi,j,k
∂

∂β0j,k

[
logN (Yi − β0j,k − β1j,kXi, σ

2
k)

]

=

Nj∑
i=1

γi,j,k
∂

∂β0j,k

[
−0.5log(2πσ2k)−

(Yi − β0j,k − β1j,kXi)
2

2σ2k

]

=

Nj∑
i=1

γi,j,k

[
2(Yi − β0j,k − β1j,kXi)

2σ2k

]

...where Nj is subset of N s.t. Gi = gj

Setting to 0, we get

β0j,k =

∑Nj

i=1 γi,j,k(Yi − β1j,kXi)∑Nj

i=1 γi,j,k



49

B.3.4 For β1:

∂Q(θ, θ′)

∂β1j,k
=

∂

∂β1j,k

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

+
K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Gi = gj |Xi, Z = zk)

+

K∑
k=1

N∑
i=1

δklogP (Xi)

+
K∑
k=1

δklogP (Z = zk|θ)
]

=
∂

∂β1j,k

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=

N∑
i=1

γi,j,k
∂

∂β1j,k

[
logP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=

Nj∑
i=1

γi,j,k
∂

∂β1j,k

[
logN (Yi − β0j,k − β1j,kXi, σ

2
k)

]

=

Nj∑
i=1

γi,j,k
∂

∂β1j,k

[
−0.5log(2πσ2k)−

(Yi − β0j,k − β1j,kXi)
2

2σ2k

]

=

Nj∑
i=1

γi,j,k

[
Xi(Yi − β0j,k − β1j,kXi)

σ2k

]

...where Nj is subset of N s.t. Gi = gj

Setting to 0, we get

β1j,k =

∑Nj

i=1 γi,j,kXi(Yi − β0j,k)∑Nj

i=1 γi,j,k(X
2
i )
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B.3.5 For σk:

∂Q(θ, θ′)

∂σk
=

∂

∂σk

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

+

K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Gi = gj |Xi, Z = zk)

+

K∑
k=1

N∑
i=1

δklogP (Xi)

+
K∑
k=1

δklogP (Z = zk|θ)
]

=
∂

∂σk

[ K∑
k=1

N∑
i=1

∑
j∈{0,1}

γi,j,klogP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=
∑

j∈{0,1}

N∑
i=1

γi,j,k
∂

∂σk

[
logP (Yi|Xi, Gi = gj , Z = zk, θ)

]

=
∑

j∈{0,1}

Nj∑
i=1

γi,j,k
∂

∂σk

[
logN (Yi − β0j,k − β1j,kXi, σ

2
k)

]

=
∑

j∈{0,1}

Nj∑
i=1

γi,j,k
∂

∂σk

[
−0.5log(2πσ2k)−

(Yi − β0j,k − β1j,kXi)
2

2σ2k

]

=
∑

j∈{0,1}

Nj∑
i=1

γi,j,k

[
−1

σk
+

(Yi − β0j,k − β1j,kXi)
2

σ3k

]

...where Nj is subset of N s.t. Gi = gj

Setting to 0, we get

σ2k =

∑
j∈{0,1}

∑Nj

i=1 γi,j,k(Yi − β0j,k − β1j,kXi)
2∑

j∈{0,1}
∑Nj

i=1 γi,j,k
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