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Cell-cell communication in bacteria is understood to facilitate the 

coordination of population-wide cooperative behavior in the form of concerted gene 

expression. The opportunistic pathogen Pseudomonas aeruginosa uses such a 

communication mechanism to regulate a large group of genes important to virulence 

strategies in this bacterium. This general mechanism of communication is termed 

quorum sensing (QS) and restricts activation of target genes to high cell density when 

cooperation is beneficial. QS in P. aeruginosa, like many Gram-negative 

Proteobacteria, is mediated through the synthesis of diffusible N-acyl-homoserine 

lactone (AHL) signals by LuxI-type synthases, and recognition by LuxR-type 

receptors that function as transcriptional regulators. P. aeruginosa harbors two 

complete AHL QS synthase/receptor pairs termed LasI/R and RhlI/R. Here we use P. 

aeruginosa QS as a model system to investigate mechanisms that help maintain 

cooperative, QS-dependent secretion in the face of non-cooperating cheater mutants, 

and that define the cell density threshold that triggers the activation of QS target gene 

expression. 

We begin with analysis of an in vitro evolution system in which P. aeruginosa 

must express QS-controlled extracellular proteases in order to grow. In this system, 

QS-deficient cheater mutants evolve over time. They take advantage of protease 

production by the QS-proficient wild-type.  Curiously, QS-deficient cheaters only 



 

 

 

reach a frequency of about 25% during the duration of the experiment.  They do not 

enrich to levels that would cause a collapse of the population, generally referred to as 

a “tragedy of the commons”. Genomic sequence analysis revealed a previously 

unknown mutation in this system in the transcriptional regulator PsdR. Mutations in 

the gene coding for PsdR derepress growth rate limiting nutrient uptake and 

metabolism, a non-social adaptation. Combining mutational analysis with phenotypic 

assays and measurements of relative fitness, we show that rapid fixation of PsdR 

mutation in evolving populations serves to preserve cooperation and prevent a 

tragedy of the commons. 

Next, we focus on the mechanisms that determine the threshold of QS 

induction in P. aeruginosa. We constructed a set of isogenic mutant strains deficient 

in one, two, or three anti-activator proteins that serve to delay QS activation: QteE, 

QscR, and QslA. While these anti-activator proteins are understood to bind LasR and 

RhlR QS receptors, it is yet unclear why multiple anti-activators are needed, and how 

they work in concert to achieve the QS threshold. Using phenotypic assays, QS gene 

activation kinetics, and transcriptomic profiling, we found additive effects in the 

deletion of multiple anti-activator genes with largely overlapping sets of anti-

activator-affected genes. Progressive deletion of anti-activators advances the 

induction threshold and increases expression levels. Our results suggest some anti-

activators may even co-associate with R-proteins in exerting their effect. 

Together, these studies contribute new mechanistic understanding of how P. 

aeruginosa uses QS to coordinate cooperative behaviors to specific conditions, and 

how this cooperative communication system may be safeguarded against social 

exploitation. 
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Abstract 

Cooperation and conflict in microorganisms is being recognized as an 

important factor in the organization and function of microbial communities. Many of 

the cooperative behaviors described in bacteria are governed through a cell-cell 

signaling process generally termed quorum sensing. Communication and cooperation 

in diverse microorganisms exhibit predictable trends that behave according to social 

evolutionary theory, notably that public goods dilemmas produce selective pressures 

for divergence in social phenotypes including cheating. In this review we relate the 

general features of quorum sensing and social adaptation in microorganisms to 

established evolutionary theory. We then describe physiological and molecular 

mechanisms that have been shown to stabilize cooperation in microbes, thereby 

preventing a tragedy of the commons. Continued study of the role of communication 

and cooperation in microbial ecology and evolution is important to clinical treatment 

of pathogens, as well as to our fundamental understanding of cooperative selection at 

all levels of life. 
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1.1 Introduction 

Cooperation among individuals is a common strategy affecting natural 

selection at every level of life, from genes in genomes (Burt & Trivers, 2006) to 

humans in global societies (Hardin, 1968, Kollock, 1998). Cooperative interactions 

typify states of stabilization along an evolutionary progression that has ultimately 

resulted in the complex and interconnected ecology of life we currently observe 

(Maynard Smith & Szathmary, 1995). With such a fundamental role for cooperation 

in the underlying ecology of the natural world, understanding the evolutionary origins 

and maintenance of cooperation has become a primary theme in biological research.  

While not required for all cooperative interactions, communication among 

neighboring individuals is often deployed as a mechanism to coordinate cooperative 

strategies.  At the scale of single cells, cooperation among microorganisms has 

provided a clear window for viewing complex evolutionary phenomena, enabling 

insights into mechanisms where similar studies of larger organisms have struggled 

(West, et al., 2007). We now understand that many bacteria communicate in a process 

generally referred to as “quorum sensing” (QS). Originally discovered in Gram-

negative Proteobacteria, the diversity of bacterial taxa harboring QS componentry 

has grown to include hundreds of species across most known bacterial phyla 

(Manefield & Turner, 2002, Case, et al., 2008, Pereira, et al., 2013). QS is now 

understood to mediate cooperative behaviors as diverse as light production during 

endosymbiosis with cephalopods (Fuqua, et al., 1994), air vesicle formation that 

allows vertical migration of planktonic bacteria in aquatic habitats (Ramsay, et al., 

2011), biofilm formation (Davies, et al., 1998), and virulence factor production (Van 

Delden & Iglewski, 1998). Many of these QS-regulated phenotypes exhibit the tell-

tale signs of a cooperative “public good” and are the result of secreted products that 

are produced by individuals with benefits that are available to all cells in a 

population. Examples are exoenzymes for the degradation of biopolymers, 

exopolysaccharide (EPS) for the formation of biofilms, and antibiotics for microbial 

warfare (Schuster, et al., 2013, Cook & Federle, 2014).  
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The particularly well-studied opportunistic pathogen Pseudomonas 

aeruginosa exhibits many such cooperative behaviors. It uses QS-controlled 

extracellular enzymes and toxins to inactivate host immune agents as well as digest 

and invade host tissue (Rumbaugh, et al., 2000, Williams & Camara, 2009, Strateva 

& Mitov, 2011, Jimenez, et al., 2012). Considering the roles of cooperation and 

communication in the guise of bacterial virulence, their medical relevance is evident. 

Transcriptome analysis has found that QS regulation can affect hundreds of 

genes encoding secreted virulence factors as well as intracellular metabolic enzymes, 

thereby demonstrating the regulatory scope to be much wider than just easily 

identifiable cooperative traits (Schuster, et al., 2003, Majerczyk, et al., 2014). Some 

QS-regulated products appear entirely “private” in nature, such as intracellular 

nucleoside hydrolase in P. aeruginosa (Heurlier, et al., 2005), whose function in the 

realm of QS is not entirely clear. Other intracellular QS-controlled functions, such as 

catalase and dehydrogenases in P. aeruginosa (Garcia-Contreras, et al., 2015) and 

enzymes involved in the acetate switch in Vibrio fischeri (Studer, et al., 2008) 

provide an indirect group benefit by reducing environmental oxidative stress and 

acidification, respectively. Observations of QS-regulated competence in 

Streptococcus (Havarstein, et al., 1995, Mashburn-Warren, et al., 2010) and 

conjugation in Enterococcus (Shokeen, et al., 2010) and Agrobacterium (Wang, et 

al., 2014) highlight examples of QS phenotypes for which the evolutionary 

implications appear less clear and may diverge from the cooperative scheme. QS 

circuitry also integrates environmental and nutritional cues, providing cells with 

additional regulatory input that allows further optimization of metabolic and secretion 

strategies (Schuster & Greenberg, 2006, Venturi, 2006, Srivastava & Waters, 2012).  

The fields of bacterial QS and social evolution have benefitted extensively 

from theoretical and computational approaches. Mathematical modeling studies have 

contributed to our understanding of the ecology and social context of QS, just some 

of which include: the integral role of relatedness in the stability of QS-mediated 

cooperative behavior (Brown & Johnstone, 2001), definition of the effects of signal 

stratification on biofilm production and structure in pathogenic bacteria (Nadell, et 

al., 2008), the roles of nutrient limitation in QS-mediated bacterial swarming (Boyle, 
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et al., 2015), and even the fundamental premise for the evolution and diversification 

of signaling (Pacheco, et al., 2015). Recent application of evolutionary game theory 

has shown the general features of social interactions in bacteria behave according to 

economic social games, adding a level of predictive power and broader understanding 

to the field of QS (Damore & Gore, 2012).  

Despite the breadth and depth of knowledge we have gained regarding 

bacterial signaling and social evolution, many significant barriers remain. Relating 

evolutionary pressures to the social dynamics observed in bacteria presents several 

conceptual and methodological difficulties. Until recently, much of the social 

evolutionary literature has focused on higher eukaryotes while failing to appropriate 

theory for the unique biological constraints of microbes. This review aims to 

summarize the general themes relating bacterial cell-cell signaling, cooperative 

behaviors, and applications of evolutionary theory to understand the evolution and 

maintenance of microbial cooperation in general. We start with a general overview of 

bacterial QS and cooperative behaviors, followed by theoretical treatments of social 

evolution. We will then focus on empirical evidence examining the maintenance of 

cooperative behavior in bacteria and microbes in general. We conclude with 

applications of social evolutionary research in microbes and highlight some 

remaining questions and new directions in the field.  

 

1.2 Principles of bacterial signaling and selection 

1.2.1 Microbial growth 

The general features of microbial growth and selection provide an excellent 

model system to investigate cooperative and competitive interactions among cells. 

Bacteria are especially fit for experimentation. Bacteria exhibit the fastest generation 

times of any independent biological organism, in some cases under 30 minutes with 

optimal conditions, permitting the observation of evolutionary change essentially in 

real time. The ability to easily achieve clonality in routine cultivation is an 

instrumental advantage. These features, when coupled with the ease of selective 

pressure manipulation, genetic tractability of model microbial organisms, general 
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ease of handling, and relatively large effective population sizes, extend excellent 

opportunities for experimental evolution studies (Elena & Lenski, 2003).  

 

1.2.2 Bacterial signaling 

Bacterial cell-cell signaling was termed QS in 1994 and has been thoroughly 

characterized over roughly the past 30 years (Fuqua, et al., 1994). QS is widespread 

in prokaryotes and much of the literature to date has focused on the two most well-

understood mechanisms: acyl-homoserine lactone (AHL) signaling in Gram-negative 

bacteria, and peptide-QS in Gram-positive bacteria (Waters & Bassler, 2005). With 

both mechanisms, a small pheromone-like signal is released and received by 

participating members of a population, allowing surveillance of population density. 

The molecular architecture and regulatory processes allowing both AHL and peptide-

QS signaling have received considerable attention in the literature (Schuster, et al., 

2013, Cook & Federle, 2014), so we are restricting our coverage here to include only 

the concepts that are necessary to understand their role in social evolution. The 

common QS componentry in both types of signaling includes a signal synthase, the 

autoinducer signal, and a signal receptor-regulator (Figure 1.1). These components 

were initially characterized in the QS-archetype V. fischeri, yielding a well-studied 

model of the circuitry (LuxI-type AHL synthase and LuxR-type receptor-regulator) 

that has served as a guide for defining other systems (Eberhard, et al., 1981, 

Engebrecht, et al., 1983, Engebrecht & Silverman, 1984). It is important to note that 

other bacterial QS mechanisms have been described in the literature in addition to 

AHL- and peptide-based QS. These include hydrophobic signals such as the 

Pseudomonas quinolone signal (PQS) which is packaged into a membrane vesicle for 

trafficking between members of a population (Mashburn & Whiteley, 2005), and a 

furanosyl borate diester known as autoinducer-2 (AI-2) that is released by diverse 

bacteria and is presumed to be a mechanism of interspecies communication (Chen, et 

al., 2002). Other factors and cues that exhibit signal-like qualities are being 

discovered (Lindemann, et al., 2011, Kumar, et al., 2013, Brameyer, et al., 2015, 

Weigel & Demuth, 2015, Zhou, et al., 2015). 
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Figure 1.1 Social and environmental context of QS. Representative AHL-QS 

circuit with a signal synthase of the LuxI family and a signal receptor of the LuxR 

family (blue).  LuxI produces AHL signals (circles) that diffuse out of the cell (gray 

ellipse) and are bound by LuxR. Several external abiotic and biotic inputs (pink 

region) influence extracellular signal concentration and consequently, the quorum 

threshold. As cell density increases, signal levels rise leading to LuxR binding of 

signal (highlighted in red) and subsequent downstream gene regulation; the positive 

feedback loop of QS-mediated lasI upregulation and QS-regulon genes encoding 

secreted public goods (orange) are emphasized. Larger cells (top) represent relatively 

magnified views of cells existing in populations (bottom). 

 

QS is just one of many molecular mechanisms bacteria can use to yield a 

regulatory strategy that is tuned for economical use of resources in a given set of 

environmental parameters (Dekel & Alon, 2005). QS regulatory systems can include 

graded responses, as well as distinct “ON” and “OFF” activation states that impart 
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bistability on the target regulon. Generally, as a population exists at low density and 

releases signal, the signal diffuses away before it can bind a receptor-regulator, 

leaving the QS system OFF (Figure 1.1). As the population grows in density, so does 

the concentration of signal. At a critical threshold density, enough signal has 

accumulated to bind the cognate receptor and shift the stoichiometry of signal and 

receptor in favor of signal-bound, active receptor-regulators, turning the QS system 

ON (Figure 1.1). Several QS systems employ an autoregulatory positive feedback 

loop that stimulates the production of additional signal (Choi & Greenberg, 1992, 

Seed, et al., 1995), thereby amplifying the QS response. When additional network 

elements are present, namely either receptor dimerization or a second positive 

feedback-loop, then bistable behavior results that is generally accompanied by 

hysteresis and associated “memory” of previous states. Such bistability has been 

observed in a synthetic LuxI/R QS system based on V. fischeri components 

(Williams, et al., 2008). At the single-cell level, QS gene expression in native V. 

fischeri was found to be highly heterogenous, likely due to biochemical noise, leading 

to a graded QS response at the population level (Perez & Hagen, 2010). 

Regardless of the QS mechanism employed, bacterial communication signals 

and receptors are affected by numerous layers of regulatory control, as well as 

external biological and physicochemical input. Co-regulation by other cellular 

pathways is a common theme in this regard; adaptation to stationary-phase stress 

(Goo, et al., 2012) and the coordination of metabolic processes through prudent 

regulation of secretion (Xavier, et al., 2011) and starvation responses (Ulitzur, 1989, 

Mellbye & Schuster, 2014) are clearly integrated into QS circuitry. When released, 

signals are subject to diffusion, advection, and even active degradation by competing 

bacteria (Figure 1.1) (Hense & Schuster, 2015). Within the cell there are myriad 

opportunities for control of a QS circuit with various inputs. Of course, some factors 

influencing the stability of QS-activation states are specific to a given taxon or QS 

mechanism. Some oligopeptide signals of peptide-QS require processing for 

maturation and subsequent secretion (Thoendel & Horswill, 2010), and the 

employment of a two-component sensor kinase with a subsequent phosphorylation 

cascade yielding transcription of a major regulatory RNA (for example, RNAIII in 
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Staphylococcus spp.) can provide additional opportunities for tuning of the QS 

response (Novick & Geisinger, 2008). The general QS circuitry of signaling and 

reception of signal must be tightly tuned to ensure the timing and magnitude of gene 

induction matches the immediate needs of the cell (Hense & Schuster, 2015). One 

mechanism for this fine-tuning of QS induction is through repression and anti-

activation. Negative regulators directly repress AHL synthase transcription in 

Pseudomonads and provide AHL homeostasis (Rampioni, et al., 2007, Venturi, et al., 

2011). Anti-activator proteins decrease AHL receptor stability in P. aeruginosa 

(Siehnel, et al., 2010, Fan, et al., 2013) and Agrobacterium tumefaciens (Piper & 

Farrand, 2000, Chen, et al., 2007). Anti-activators control the induction threshold and 

may ultimately prevent short-circuiting of signaling machinery before induction is 

advantageous (Goryachev, et al., 2005). In Vibrio spp., one endpoint regulatory agent 

is a set of small regulatory RNAs, providing yet another layer of complexity (Lenz, et 

al., 2004). All of these factors come together at the intersection of a specific 

bacterium’s biology and the given social and ecological scenarios. 

  

1.2.3 Signaling theory 

Careful study of signaling mechanisms is complemented by integration of 

existing signaling theory. While much of the signaling theory literature to date has 

focused on signaling and language in higher eukaryotes as models, similar to social 

evolution theory covered later in this review, the concepts of signaling honesty and 

information content are applicable to microbes. First, it is important to clearly define 

what is meant by a “signal” when evaluating social behaviors in bacteria with respect 

to signaling theory. Not every secreted or otherwise released molecule that affects the 

behavior of other organisms can be considered a social signal under the same 

definition. The key features in discerning true signaling lie in the fitness 

consequences of communication for both the sender and receiver, and whether the 

system evolved owing to that effect (Table 1) (Maynard Smith & Harper, 2003). In a 

case where the sender’s act did not evolve according to a beneficial effect on sender 

fitness, but still benefits the receiver to respond, the communication is termed a cue. 
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Conversely, when the communication did evolve according to the effect on the sender 

but does not benefit the receiver to respond, the interaction is termed coercion. For 

the purposes of this review we will assume the standard definition of true signaling to 

include only communication that both evolved due to the effect on the sender and 

which benefits the receiver to respond (Diggle, et al., 2007). Of course gray areas 

exist with consideration of bacterial QS. In the case of the individual AHL-based QS 

signals of a symbiont (Sinorhizobium meliloti) and a facultative pathogen (P. 

aeruginosa) of the model legume Medicago truncatula, the plant is able to 

“eavesdrop” and respond to the different AHLs as cues depending on which bacteria 

are present (Mathesius, et al., 2003). In this example, a true signal produced by one 

organism serves as a cue to another. Additionally, divergence in a microbial 

“species”, even over the course of an in vitro evolution experiment, could potentially 

lead to responses formerly evolved as signaling mechanisms being reconfigured as 

coercion.  

Table 1.1 Forms of communication 

  

Evolved because 

of effect on 

sender 

Benefits receiver 

to respond 

Signal + + 

Cue - + 

Coercion + - 

 

Diligence in the proper use of these terms for communication and signaling 

has allowed more parsimony in microbial social evolution and signaling theory 

literature, but the nature of a communicative act is not always clear. The information 

contained in a signal determines what the signal will mean for distinct individuals. 

AHL synthases are generally thought to produce species-specific signals which yield 

very specific information, and with the high degree of side-chain modification 

possible this seems intuitive (Schuster, et al., 2013). However, some LuxR-type 

receptors show promiscuity that could blur their designation between signals, cues, 

and coercion, depending on the social context of the interaction. This configuration 

allows for “cross-talk” or “cross-inhibition” between QS systems. Burkholderia 

cepacia has been shown to respond to the AHLs of P. aeruginosa when the two co-
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occur in the lungs of cystic fibrosis patients; upregulation of B. cepacia virulence 

factors from this interaction suggest this interaction may be a cue (Eberl & Tümmler, 

2004). A similar form of eavesdropping has also been observed in Vibrio and 

separately in Bacillus, suggesting the potential for an adaptive role for QS signal 

diversification where varying signal specificity may benefit the receiver through 

facultative cheating in the presence of non-kin (Ke, et al., 2015, Even-Tov, et al., 

2016). Plasticity of receptor specificity may also foster adaptations in recently 

diverged species or upon introduction to new ecological niches, where intermediate 

levels of signal specificity could enable novel response relationships (Ke, et al., 

2015). Additionally, the abundance of orphan luxR genes in diverse prokaryotic 

genomes provides opportunity for eavesdropping on the AHL signals produced by 

other species. Because some LuxR orphans contain a relatively high number of 

cysteine residues, it has been suggested that they serve an additional role as cellular 

redox sensors, although more direct, mechanistic experimentation will be necessary to 

confirm this speculation (Hudaiberdiev, et al., 2015). Similarly, as AI-2 is produced 

by a wide variety of bacteria, the information content of this signal could be very low 

aside from providing total community abundance. In many bacteria, it is likely 

nothing more than a metabolic by-product of the activated methyl cycle, and may be 

most appropriately classified as a cue (Diggle, et al., 2007). Dedicated AI-2 signaling 

pathways are currently only known for Vibrio and Salmonella (Surette, et al., 1999, 

Taga, et al., 2001). In contrast, autoinducing oligopeptides of the Gram-positive 

Staphylococci can be highly specific to subsets of strains of the same species, yielding 

very specific information to the communicating population (Novick & Geisinger, 

2008). 

The centerpiece of signaling theory is perhaps the honesty of a signaling 

system, or signal reliability. Honest signaling requires a balance in the fitness trade-

offs between fitness cost and benefits received by signaler and receiver. For example, 

overproduction of signal could be utilized to elicit increased cooperative behavior 

from neighboring cells (exaggeration), while underproduction of signal avoids the 

metabolic cost of signal production (concealment of information). In order for 

positive selection of honest signaling, mechanisms preventing the subjugation of 
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signaling individuals are required. Three principles are thought to maintain signal 

reliability in theory: (i) an index signal, which is causally related to the quality being 

signaled and cannot be faked, thereby ensuring reliability, (ii) handicap, which makes 

signaling inherently costly and therefore expensive to fake, and (iii) common interest, 

in which relatedness among signaling individuals provides incentive for reliable 

communication (Maynard Smith & Harper, 2003, Davies, et al., 2012).  

The concept of an index signal was originally introduced in the context of 

mate selection in birds, where plumage quality in a male is directly correlated with 

genetic quality, providing a reliable signal to females in search of a mate (Davies, et 

al., 2012). In bacteria, the only current examples of index signals are cases were the 

signal itself, or a precursor to the signal, serves as the public good normally 

mechanistically downstream of signaling, obligately linking the signal to the 

reliability of communication that allows cooperation. An example is lantibiotic 

production Gram-positive bacteria, where production of competitive agents such as 

nisin in Lactococcus lactis (Kuipers, et al., 1995) or subtilin in Bacillus subtilis 

(Kleerebezem, 2004) is regulated by the respective peptides themselves, obligately 

linking the signal to the cooperative act and thereby guaranteeing reliable signaling 

(Dufour, et al., 2007).  

Costly signaling was originally thought to provide a “handicap” to honestly 

signaling individuals (Johnstone, 1998, Zahavi & Zahavi, 1999). In the handicap 

principle, the cost of signaling adds a degree of reliability to the signaling system; a 

would-be defector that exaggerates by overproducing signal would incur a greater 

signaling cost (Számadó, 1999, Zahavi & Zahavi, 1999, Brown & Johnstone, 2001). 

As many microbial signals must be actively produced and released, the cost of 

signaling should then be empirically quantifiable, although it is difficult to uncouple 

the cost of signaling and the cost of cooperation in many systems. Out of two studies 

with P. aeruginosa, one found that QS signal production by a signal-proficient strain 

significantly reduced growth compared to a signal-blind mutant (Diggle, et al., 2007), 

whereas  the other found no significant difference (Wilder, et al., 2011). Moreover, a 

theoretical exploration of the fates of variably signaling groups of cooperating 
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individuals suggested signaling and cooperative behavior may be coupled obligately 

(Czaran & Hoekstra, 2009).  

According to the model of Brown and Johnstone, the level of signaling should 

initially increase and then decrease as relatedness is reduced, because intermediate 

relatedness selects for individuals to “coerce” other individuals into cooperation 

(Brown & Johnstone, 2001). However, this was not observed in a recent empirical 

test of this hypothesis. Instead, Popat et al. found that the level of signaling 

monotonically decreased with decreasing relatedness. The primary cause appeared to 

be a loss of responsiveness to the signal, although the tight coupling between signal 

production level and ability to respond complicated interpretation of results (Popat, et 

al., 2015). Further disentanglement of the direct fitness costs of signaling with co-

occurring behaviors will be necessary to define the role of signaling cost and common 

interest in the maintenance of honest signaling. Common interest in the form of 

relatedness between cooperating organisms, the foundation of kin selection theory, is 

further discussed in the context of social evolution theory later in this review. 

 

1.2.4 Signal network complexity and ecological considerations  

Thus far, we have generally discussed QS systems in terms of single synthase-

receptor circuits, but many bacteria utilize multiple QS systems simultaneously. For 

example, P. aeruginosa possesses two interconnected QS circuits, consisting of two 

AHL synthase/receptor pairs LasI/R and RhlI/R, arranged in a hierarchy that places 

the las system largely in control of the QS response (Schuster & Greenberg, 2006). 

Both QS circuits regulate partially overlapping sets of genes, but induction of the rhl 

system components is generally controlled by LasR (Schuster, et al., 2003, Schuster 

& Greenberg, 2006). Several ideas have been proposed to explain the purpose of 

multiple QS systems. In a coupled modeling and experimental approach, Cornforth et 

al. argued that the varying stabilities of the two signal molecules, 3-oxo-C12-HSL 

and C4-HSL generated by LasI and RhlI, respectively, could enable distinction 

between social (cell density) versus physical (mass transfer) inputs (Cornforth, et al., 

2014). Based on experiments evaluating the relative contributions of the las and rhl 



14 

 

 

systems to QS gene induction under specific nutrient limitation, Mellbye and Schuster 

suggested that multiple QS systems may have evolved to permit distinct levels of 

signal integration: While the las system primarily responds to cell density, the rhl 

system also integrates starvation signals (Mellbye & Schuster, 2014).  

In contrast to the hierarchical systems of P. aeruginosa, the three QS 

pathways possessed by V. harveyi (LuxM/N, AI-1; LuxS/PQ, AI-2; CqsA/S, CAI-1) 

function in a parallel fashion (Long, et al., 2009). By analyzing pathways in isolation 

as well as in combination, Long et al. showed AI-1 and AI-2 function in a strictly 

additive, graded fashion, with near-equal contribution to the total response (Long, et 

al., 2009). They proposed that such reliable distinction of external autoinducer 

concentrations and combinations could help synchronize gene expression during 

distinct developmental steps in a bacterial community (Long, et al., 2009). Another 

recent study explained the presence of multiple parallel quorum signal-receptor pairs 

in V. harveyi and B. subtilis from the perspective of social evolution. Key here is the 

repression of QS-controlled target genes by the various receptors in the unliganded 

state. A strain with a novel signal-receptor pair can then invade and exploit the 

ancestral population as a social cheater. When its frequency increases, it resumes 

cooperation because the novel signal is produced at sufficiently high levels to de-

repress the cognate receptor (Even-Tov, et al., 2016).  

The complexity of QS signaling networks also draws into question the 

ecological role of QS. Most studies of QS involve in vitro populations of clonal 

bacteria growing under conditions that reflect only a limited set of conditions that 

bacteria may experience in the natural environment. The lack of ecological relevance 

in the QS literature leaves many questions remaining, particularly the role of natural 

population diversity in determining signal specificity, inter- and intra-specific 

cooperation, as well as validation of in vitro evolution approaches. Some have argued 

that the primary principle of cell-density dependence that we have described thus far 

has actually evolved for a different ecological function, namely sensing the extent of 

diffusion (or more generally, mass transfer), challenging the notion that QS is a social 

behavior (Redfield, 2002) (Figure 1.2). Not surprisingly, mass transfer limitation can 

trigger QS at very low cell densities or even in single cells (Shompole, et al., 2003, 
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Boedicker, et al., 2009, Lui, et al., 2013). Others have suggested these two 

explanations are not mutually exclusive and can be unified generally as an “efficiency 

sensing” principle that integrates information about cell density, mass transfer, and 

also spatial distribution of cells (Hense, et al., 2007). As indicated above, additional 

factors such as signal stability and degradation, either enzymatically or abiotically, 

can further modify the actual extracellular signal concentration that is sensed (Hense 

& Schuster, 2015). The system response may be disturbed by these factors, or may be 

tuned to account for them if they are an integral part of the ecology of the organism. 

Clearly, there is a need to better understand the ecological context of the respective 

microbe and its QS system in order to evaluate the relative importance of cell density, 

mass transfer and other parameters, as discussed in more detail by Hense and 

Schuster (Hense & Schuster, 2015). 

 

Figure 1.2 Cell-density and diffusion sensing. (a) Cell density. Induction (right) of 

public goods (orange) may occur principally when cells (gray ellipses) are at a high 

density, such as a densely populated colony or biofilm, where accumulation of signal 

(blue) has reached a critical threshold. When cell density is low (left), as is the case 
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with free-living planktonic bacteria, signal does not accumulate leaving the cells 

uninduced. (b) Diffusion. The accumulation of signal and subsequent induction is 

primarily due to mass transfer limitation by, for example, spatial constraints. 

 

1.2.5 Cooperative growth and selection 

In microbial communities, like most living populations, the best, most 

beneficial strategy for an individual does not necessarily align with the best strategy 

for the community. Herein lies the source of social conflict; investment by some 

members of the population produces a common or “public” good that is costly, but 

can yield fitness benefits for all members of the population, including defectors or 

“cheaters” that do not suffer the cost of the investment (Keller & Surette, 2006, West, 

et al., 2006).  The microbial world is replete with examples of behaviors that involve 

these canonical public goods, many of which are potentially vulnerable to cheating. 

For example, production of secreted proteases (Diggle, et al., 2007, Sandoz, et al., 

2007) or iron-scavenging siderophores (Griffin, et al., 2004) by P. aeruginosa 

cooperating under nutrient-limited conditions provides opportunities for non-

producers to exploit these public goods for a fitness benefit. Cheating phenotypes are 

often the result of a loss-of-function mutation in a QS receptor that regulates 

cooperative traits, such as the central QS regulator LasR in P. aeruginosa (Sandoz, et 

al., 2007) or AgrC in Staphylococcus aureus (Pollitt, et al., 2014). Clarity has been 

gained from in vitro studies using nutrient-limited synthetic media. In a minimal 

medium with a bulky protein as the sole carbon source, extracellular protease 

regulated through QS is required for growth of P. aeruginosa (Diggle, et al., 2007, 

Sandoz, et al., 2007). Mutants defective in QS are unable to grow to high densities on 

their own but have a fitness advantage in wild-type co-culture (Diggle, et al., 2007, 

Sandoz, et al., 2007, Wilder, et al., 2011, Asfahl, et al., 2015). A recent experiment 

using strains of P. aeruginosa engineered to be defective in the secreted protease 

LasB or in the QS regulator LasR, which is responsible for LasB expression along 

with other cooperative traits, found that fitness advantages were only realized by the 

regulatory cheater (Mitri & Foster, 2016). QS regulator mutants were favored over 

protease mutants because they provided a much larger cost reduction. In vivo studies 
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have also observed potential cheating in bacterial cooperation; P. aeruginosa isolates 

harboring fitness-enhancing mutations in LasR have been observed to increase in 

frequency in acute burn wound infections in a murine model (Rumbaugh, et al., 

2009), as well as acute lung infections of mechanically ventilated patients (Kohler, et 

al., 2009), and Staphylococcus aureus QS cheaters have been observed to behave 

similarly in model (Pollitt, et al., 2014) and clinical infections (Shopsin, et al., 2008) 

where they are able to invade and persist in mixed cooperating populations. That a 

behavior is exploitable by a cheating phenotype has become a hallmark of 

cooperative behavior (West, et al., 2006, Schuster, et al., 2013). The overarching 

theme of these examples demonstrates how public goods produced by cooperating 

populations can yield profound effects on population fitness. 

The dilemma of cooperation, namely the conflict between group benefit and 

personal benefit, has produced a wealth of scientific research and speculation, 

beginning with Hardin’s original treatise, “The Tragedy of the Commons”, presented 

in the context of human economics (Hardin, 1968, Rankin, et al., 2007).  In the 

original example, herdsmen with shared access to a common grazing area make the 

rational decision to graze their own cattle as much as possible, even though moderate 

grazing would preserve the cooperative resource for future use. The tragedy arises 

because natural selection favors overgrazing for each individual herdsman, eventually 

exhausting the resource and reducing the fitness of all herdsmen (Hardin, 1968). The 

debate continues through the present with several significant reviews that focus 

specifically on the “problem of cooperation” in microbial populations (West, et al., 

2006, West, et al., 2007, Diggle, 2010). For example, under nutrient limiting 

conditions, selection can be strong at the level of the individual bacterium to 

cooperate – without a mechanism to secure further nutrients, the fitness of the 

individual will approach zero. Alas, executing a cooperative behavior alone or in a 

population with a high frequency of cheaters does not guarantee a significant return 

on investment, either. The need for a mechanism like QS to facilitate group behavior 

is then justified; QS is an optimizing principle, a mechanism that restricts public good 

production to growth stages and ecological scenarios with the greatest net fitness 

benefit (Pai, et al., 2012). Facultative cheating may have even contributed to the 
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diversification and redundancy of QS systems observed today (Eldar, 2011, Pollak, et 

al., 2016).  

Cooperative behaviors generally benefit from a higher density of cooperating 

members in a population, a feature referred to as density dependence. The density-

dependence of cooperation by public goods can be described by two overlapping 

concepts, “avoidance of dilution” and “strength of effect” (Ng & Bassler, 2009, 

Darch, et al., 2012, Pai, et al., 2012, Heilmann, et al., 2015, Popat, et al., 2015). In 

the former, public goods are lost to the environment at low density but benefit 

neighboring cells at high density; an example is an extracellular degradative enzyme 

that makes nutrients available to all cells. In the latter, the effect of public goods on 

the environment depends on their concentration and hence, on cell density; an 

example is a secreted antibiotic that kills competing microbes in a concentration-

dependent fashion, benefitting all contributing cells. That cooperation is density-

dependent and has a non-linear effect on population fitness was originally described 

for Myxococcus xanthus proteolytic growth in casein media (Rosenberg, et al., 1977). 

This effect has been further demonstrated for a variety of different microbial 

phenotypes and species (Gore, et al., 2009, Ross-Gillespie, et al., 2009), including QS 

(Darch, et al., 2012, Pai, et al., 2012). The density-dependent benefit of cooperation 

also affects the relative fitness of invading cheater populations through frequency-

dependent selection (Sanchez & Gore, 2013). As has been demonstrated in several 

microbial systems, the relative fitness benefit of a cheater phenotype is dependent on 

their frequency in the population (Dugatkin, et al., 2005, MacLean & Gudelj, 2006, 

Ross-Gillespie, et al., 2007, Wilder, et al., 2011); when cheaters are rarer, their 

relative fitness is higher. 

 

1.3 Game theory and theoretical approaches to cooperation 

Theoretical approaches allow an abstract perspective for viewing central 

problems in microbial cell-cell signaling, cooperative growth, and the maintenance of 

these strategies. Here, we review the various contributions of evolutionary theory and 

game theory to our understanding of social evolution in microbes. A critical review of 
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theoretical tools useful to the microbiologist has already been published elsewhere 

(Damore & Gore, 2012), and we direct the reader to that review for origins and 

derivations of evolutionary theory.  

 

1.3.1 The Prisoner’s Dilemma, common themes and game theory  

The goal of evolutionary game theory is to reduce the evolutionary outcomes 

to a simple mathematical model that assigns distinct pay-offs to social interactions 

(Nowak & Sigmund, 2004). Perhaps the simplest theoretical treatment of cooperative 

interactions is encapsulated in the Prisoner’s Dilemma (PD) game. In the original 2-

person PD game, interacting individuals (“players”) have a choice to cooperate and 

pay a cost c to yield a benefit b > c for another individual, or to defect and not incur a 

cost while benefiting from others’ cooperation. Choosing to cooperate yields a 

modest payoff for each cooperator and the highest mean fitness, but if one player 

chooses to defect, there is a larger payoff for the defector. If both players defect, the 

payoff for both players is zero. We have formalized this mathematical approach to the 

Prisoner’s Dilemma with an illustrative model based on the replicator equation, 

presented in Figure 1.3. The replicator equation is a rate equation for the relative sizes 

of subpopulations that each play a different strategy. In a simple model, the 

reproductive success, or “growth rate”, is determined by fitness payoffs from pairwise 

encounters between individuals, and the probability to meet members of different 

subpopulations is given by their frequencies (Taylor & Jonker, 1978, Schuster & 

Sigmund, 1983, Nowak & Sigmund, 2004). The underlying dilemma arises because 

selection typically favors a scenario where both individuals defect (Figure 1.3A). 

Defection will always yield a higher payoff than cooperation for the individual (b > b-

c), even in the case of defection with defectors (0 > -c) (Figure 1.3A). In this case, 

defection is an evolutionarily stable strategy (ESS): a strategy that is immune to the 

invasion of other, initially rare strategies (Smith & Price, 1973, Maynard Smith, 

1982, Sigmund, 2011).  

 

 



20 

 

 

 

Figure 1.3 Classical Prisoner’s Dilemma and kin selection. (a) Classical Prisoner’s 

Dilemma. (b) Prisoner’s Dilemma with kin selection. Pay-off matrices are shown 

above each graph with C, cooperator; D, defector.  Graphs show population 

frequencies over time, as modeled by the replicator equation. Initial frequencies of 

cooperator and defector subpopulations are either 50:50, 90:10, or 10:90. (a) 

parameters b = 4, c = 2. (b) parameters b = 4, c = 2, r = 0.7. Pay-off matrices and the 

replicator equation were implemented in Matlab (Mathworks, Natick, MA, United 

States). We employed the deterministic replicator equation to model the relative sizes 

of subpopulations in a well-mixed population (Taylor & Jonker, 1978; Schuster & 

Sigmund, 1983). Here, the population frequencies xi evolve in time according to dxi/dt 

= xi(fi(x) - <f>), where fi(x) = ∑  𝑛
𝑗=1 (fij xj) is the average payoff strategy. When an 

individual of type i meets an individual of type j, it obtains a payoff fij, and the 

probability to meet a member of a different subpopulation is given by their 

frequencies x1, x2, … xn, which sum up to 1. <f> = Σi (xi fj(x)) is the time-dependent 

mean fitness of the entire population, which ensures that the population frequencies 

remain normalized. 

 

Given that biological interactions are rarely limited to two isolated 

individuals, the N-person PD game, also called the N-person Public Goods game, was 

developed to include interactions of all members of a population simultaneously 

(Hamburger H., 1973). This approach allows the individual contributions of all 

cooperating individuals to a central pool of “public goods” to be considered with 

respect to varying frequencies of defectors. Nevertheless, the ESS in the N-person PG 
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game is also “defect”. The general assumptions of both of these games do not include 

peculiarities of microbial cooperation, namely non-linear cost-benefit relationships, 

but they illustrate the central problem of cooperative behavior, and they provide a 

foundation for understanding the concept of the “Tragedy of the Commons”.  

 

1.3.2 Altruism and kin selection 

The leading theoretical explanation for the success of altruistic behavior is kin 

selection, which suggests altruistic behaviors can be selected if they produce a fitness 

benefit for relatives. Kin selection was first formalized in Hamilton’s rule, which 

states a cooperative behavior will be selected, if the cost c of the cooperative behavior 

is less than the product of the benefit b of the behavior multiplied by the relatedness r 

between actor and recipient (rb – c > 0; Figure 1.3B) (Hamilton, 1964). This creates a 

scenario where both individuals must share reciprocal altruism in order to suppress 

competition and maintain cooperation (Dawes, 1980, Axelrod & Hamilton, 1981). 

Here, kinship between neighboring cooperating individuals ensures that shared genes 

are favored by natural selection, allowing the cooperative strategy to dominate as 

long as r > b/c (Figure 1.3b). It is important to note that relatedness refers to the 

alleles encoding the cooperative behavior that is under selection in a cooperative 

environment. This approach necessarily assumes some form of assortment to allow 

interactions between kin, a quality common of many empirically demonstrated 

cooperative systems which are presented later in this review.  

There is empirical support from in vitro culturing and from an infection model 

that kin selection contributes to the maintenance of QS in P. aeruginosa (Diggle, et 

al., 2007, Rumbaugh, et al., 2012). When QS-proficient cells were kept separate from 

QS-deficient cells, i.e. relatedness was high, then the relative fitness of the QS-

proficient strain was high and QS was favored. When QS-proficient cells were mixed 

with QS-deficient cells, i.e. relatedness was low, then QS-proficient cells could be 

exploited; their relative fitness was low and QS was not favored.  

Recently, a modified form of Hamilton’s rule has accommodated the general 

features of microbial cooperation that make this framework more useful, including 
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parameters for non-linearity, strong selection, and non-additivity of fitness effects 

(Smith, et al., 2010). The utility of this model was tested using measurements of its 

parameters in a cooperating population of Myxococcus xanthus bacteria (Smith, et al., 

2010), confirming the role of spatial structure in kin selection for cooperative traits.  

 

1.4 Mechanisms that stabilize cooperation 

In addition to kin selection as an evolutionary force, several distinct 

mechanisms that stabilize cooperation have been defined in microbes. Most of the 

mechanisms do not directly involve bacterial QS, but we include them here to 

highlight common principles (Travisano & Velicer, 2004, Foster, et al., 2007, 

Schuster, et al., 2013, Bruger & Waters, 2015). 

 

1.4.1 Facultative cooperation 

As indicated above, the benefit of a cooperative behavior, such as a secreted 

exoprotease or an antibiotic, generally increases with population density. QS 

optimizes this cooperative behavior by restricting production of public goods to 

sufficiently high densities (Pai & You, 2009, Pai, et al., 2012). A recent investigation 

using a coupled modeling and experimental approach confirmed that P. aeruginosa 

exoenzyme production is restricted, through tightly-regulated QS, to instances where 

the cooperating bacteria are surrounded by other cooperating bacteria (Allen, et al., 

2016). This intrinsic feature of QS-based cell-cell signaling allows the cost incurred 

by cooperators to be calibrated to the relative abundance of other cooperators in the 

population (Allen, et al., 2016). In many cases, the linear cost of public good 

production is coupled with accelerating benefits at the population level, which allows 

QS to maximize the cost-benefit ratio of a cooperative behavior (Heilmann, et al., 

2015). This restriction of cooperation to times when it is most beneficial effectively 

reduces the strength of selection for non-producing cheats at lower cell densities, 

allowing QS to bestow a stabilizing effect on the cooperative system (Cornforth, et 

al., 2012) (Figure 1.4a). 
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Figure 1.4 Physiological and molecular mechanisms of cooperation stabilization. 
(a) Facultative cooperation through QS. QS signaling (blue dots) in cooperating cells 

(green) restricts production of secreted public goods (orange squares) to populations 

where more cooperators are present (left); in contrast, when there is a high relative 

frequency of cheaters (red) in the population (right), public goods are not secreted. 

(b) Spatial structuring and positive assortment. Growth of structurally isolated groups 

of cooperators (green) keeps distribution of secreted public goods locally separated 

from cheaters (red). (c) Kin discrimination, policing and pleiotropy. Pleiotropic 

regulation (R) of secreted and cell-associated products, e.g. a toxin (black X’s) and 

immunity protein or other resistance trait (blue squares), respectively, has different 

effects on cooperator (green) and cheater (red) fitness. Without the cell-associated 

resistance trait, cheaters (red) suffer a fitness cost due to the toxin. (d) Partial 

privatization of public goods. Degradative enzymes (orange) associated with the 

periplasm (between OM, outer membrane, and IM, inner membrane) can hydrolyse 

complex substrate (yellow chains). Most of the hydrolysis products (individual 

yellow circles) are lost to the extracellular space, while a portion is retained by the 

producing cell (gray). (e) Non-social adaptation. Growth environments can promote 

social (left) and non-social (right) selection. In social adaptation, mechanisms like QS 

(left) provide regulation (R) of secreted public goods (orange) that break down 

polymeric nutrients such as polypeptides (yellow chains) outside the cell for export. 
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In non-social adaptation, mutations allow increased uptake and processing (purple) of 

digested nutrients such as dipeptides and individual amino acids (individual yellow 

circles), increasing the fitness of the individual. (f) Metabolic prudence. QS integrates 

cues regarding the relative supply of specific nutrients (orange and blue circles); 

regulating (R) secretion of public goods (orange enzyme) to times when the primary 

building block of the product is not limiting (left, orange nutrients relatively high), 

isolating cooperative secretions to periods when metabolic cost is relatively low. 

Secretion is repressed under specific nutrient limitation (right). 

 

1.4.2 Spatial structuring and positive assortment 

That idea that the net benefit of cooperation is maximized at high cell density 

underlies a second stabilizing mechanism: spatial structure and positive assortment of 

cooperating individuals. When positioned in a structured habitat cooperative 

behaviors can be more easily directed at other cooperators, and related cooperators in 

particular (Figure 1.4b). This mechanism necessarily draws from the theoretical kin 

selection framework introduced earlier, and several empirical examples of the 

cooperation-stabilizing effect of spatial structure are available. In the available 

examples it is not always clear if and how the emergent cooperative behaviors in 

question are regulated by QS or other mechanisms. A recent examination of 

cooperative fruiting body production in the social amoeba Dictyostelium discoideum 

showed the importance of the fine-scale spatial positioning of related, cooperating 

individuals (smith, et al., 2016). The authors found that just millimeters of separation 

between genetically distinct foraging cells was sufficient to produce clonal fruiting 

bodies, thereby ensuring the cooperative task of sporulation was shared among 

relatives (smith, et al., 2016).  

Another example of positive assortment is focused on the ecology of biofilm 

growth. Biofilms are a frequently encountered microbial strategy where cells secrete a 

stationary EPS matrix that immobilizes the cooperating population, allowing 

stationary lifestyle in beneficial environments, protection from dessication and 

predation, and a physical lattice for limiting the diffusion of secreted public goods 

(Hall-Stoodley, et al., 2004, Nadell, et al., 2009, Drescher, et al., 2014). Models of 

biofilm growth have predicted this spatial structuring promotes cooperative behavior 

(Kreft, 2004, Xavier & Foster, 2007, Nadell, et al., 2010). In support of this notion, 
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Van Gestel et al. found that cooperative EPS production in Bacillus subtilis provides 

a competitive advantage over non-producers during in vitro biofilm growth when 

biofilms are initiated at a low cell density, enabling strong positive assortment of 

related bacteria (van Gestel, et al., 2014). In a recent extension of this approach in 

Vibrio cholerae, Nadell et al. showed that invasion of biofilms by non-cooperating 

cells is prevented through secretion of a binder protein by cooperators that connects 

related cells within the biofilm, further localizing cooperative populations (Nadell, et 

al., 2015). With these examples it is clear that spatial structuring and positive 

assortment of kin provide strong stabilization of cooperative behavior. It must be 

noted that the sessile lifestyle of biofilms also presents potential conflict in the 

competition for local resources, even among closely related individuals. While these 

conflicts are certainly important drivers of selection in biofilms, they reflect more the 

physical constraints of the biofilm lifestyle (Nadell, et al., 2009). In contrast to the 

evidence that biofilms promote cooperation, Popat et al. demonstrated that QS 

cheaters lacking the regulator LasR are able to invade QS-proficient populations of a 

P. aeruginosa biofilm and impose a significant burden on overall growth to an extent 

greater than in planktonic culture (Popat, et al., 2012).  It is plausible that exploitation 

was facilitated in this case by the density of the biofilm, by the initial mixing of the 

seed population, or by the diffusibility of the public good. 

 

1.4.3 Kin discrimination, policing and pleiotropy 

In order to ensure the benefits of secreted public goods are adequately directed 

to related cooperators, some microbes utilize discrimination of kin and policing of 

non-producers (Figure 1.4c). Mechanisms of kin discrimination can be generally 

sorted as either promoting fitness of kin, or punitive treatment of non-kin. For 

microbes, the term “kind discrimination” has also been proposed to generally define 

mechanisms that distinguish those who possess a specific trait from those that do not, 

and contrast them from a more narrow definition in animals that associates kin 

discrimination with descent due to genealogy (Strassmann, et al., 2011). The social 

amoeba Dictyostelium purpureum preferentially aggregates and migrates with close 
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relatives when forming a characteristic cooperative fruiting body, thereby promoting 

fitness of only related individuals (Mehdiabadi, et al., 2006). In an in vitro evolution 

approach, M. xanthus bacteria also preferentially aggregate with cooperating relatives 

when forming cooperative fruiting bodies, even discriminating against cooperating 

ancestors that evolved in parallel conditions (Rendueles, et al., 2015). In M. xanthus, 

kin discrimination is effectively achieved through recognition of the polymorphic 

cell-surface protein TraA (Pathak, et al., 2013), isolating the mechanism to a single 

variable allele. A similar discrimination effect has been observed in cooperative 

swarming in B. subtilis (Stefanic, et al., 2015, Lyons, et al., 2016), and separately in 

Proteus mirabilis (Gibbs, et al., 2008), where a distinct boundary termed a Dienes 

line forms between conspecific migrating populations of different strains of the same 

species (Dienes, 1946, Budding, et al., 2009).  

Punitive treatment of non-kin through coercion, generally referred to as 

“policing” owing to a substantial amount of literature examining this behavior in 

higher eukaryotes (Clutton-Brock & Parker, 1995), takes on several forms in the 

maintenance of bacterial cooperation. To prevent non-producing cheaters from 

invading a cooperative biofilm, Burkholderia species utilize a toxin-resistance system 

to punish neighbors lacking relatedness at specific loci (Anderson, et al., 2014). Also 

described in Escherichia coli, these contact-dependent-inhibition (CDI) systems 

utilize a set of toxic proteins expressed on the outer membrane coupled with 

expression of immunity proteins that confer resistance to the toxin to indirectly 

promote kin fitness (Aoki, et al., 2009, Aoki, et al., 2010). In a different form of 

punishment, policing in P. aeruginosa cooperative proteolytic growth is mediated by 

production of hydrogen cyanide by cooperators (Wang, et al., 2015). QS cheater 

mutants defective in the QS regulator RhlR, or by extension the master regulator 

LasR, are punished by sensitivity to cyanide and suffer a fitness cost (Wang, et al., 

2015). This mechanism of policing was recently shown to have the added benefit of 

preventing inter-species cheating, allowing P. aeruginosa to also punish neighboring 

Burkholderia multivorans that exploit the same pool of public goods (Smalley, et al., 

2015). In this system, like many other toxin-resistance systems widely distributed in 
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bacteria (Strassmann, et al., 2011), the bulk production of a toxin by cooperators is 

also associated with resistance to the toxin.  

The general effect of co-regulated toxin-resistance systems shares some 

conceptual similarity with the cooperation-stabilizing mechanism of pleiotropy, a 

common feature of genes in which a single allele yields multiple traits (Barton, 1990). 

In the social amoeba D. discoideum described earlier in the context of population 

structuring, pleiotropy also acts to preserve the integrity of cooperative spore 

formation by constraint: mutants that do not “hear the call” to cooperate are excluded. 

A single gene confers a phenotype that responds to signals to form a fruiting body 

stalk, a sacrificial altruistic role, while lack of the gene is also associated with 

exclusion from the spores (Foster, et al., 2004). QS-dependent cooperative proteolysis 

in P. aeruginosa can be in part safe-guarded from cheater exploitation due to 

pleiotropic linkage to an allele encoding a private metabolic trait (Dandekar, et al., 

2012). Cell-associated nucleoside hydrolase (Nuh) allows growth on adenosine and 

secreted LasB protease allows growth on casein in a medium with the two 

compounds supplied as the sole carbon sources (Dandekar, et al., 2012). Pleiotropic 

linkage of nuh and lasB through LasR regulation thus confers a metabolic advantage 

to cooperators under specific growth conditions that prevents enrichment of QS 

cheaters (Dandekar, et al., 2012). If QS-control of nuh evolved for this purpose, 

however, is not clear. Taken together, in these systems, pleiotropic linkage of 

contrasting traits serves to link cooperative behavior with the opportunity to 

reproduce or otherwise increase fitness, effectively stabilizing cooperation in the 

presence of cheating.  

 

1.4.4 Partial privatization of public goods 

In addition to linking private and public good regulation, cooperation can also 

be stabilized if a small fraction of the public good is retained by the producing cell 

(Figure 1.4d). For example, the sucrose-hydrolyzing enzyme invertase in yeast is 

located in the periplasm where roughly 99% of the hydrolysis products are allowed to 

diffuse away from the individual cell (Gore, et al., 2009). While cheaters are able to 



28 

 

 

exploit the bulk of the hydrolysis products, the small fraction of products not released 

are secured by the cooperator and are sufficient to prevent population collapse. 

Cooperators and cheaters co-exist in a mixed equilibrium resulting from the fact that 

the rare strategy always invades the common strategy, the defining characteristic of 

the snow-drift game in evolutionary game theory. This dynamic is echoed in a recent 

study of a cooperative siderophore, enterochelin, in Escherichia coli. Scholz and 

Greenberg showed that enterochelin is partially cell-associated (private) at low cell 

densities, but is secreted at high cell densities allowing exploitation by cheaters 

(Scholz & Greenberg, 2015). Facultative privatization of siderophore production also 

offers a solution to the problem of cooperation with diffusible public goods at low 

cell densities.  

 

1.4.5 Non-social adaptation and adaptive race 

Exploitable behavior among related cooperators can also be safe-guarded 

against cheating simply through co-inheritance of other alleles that are subject to 

separate selective pressures, a feature referred to as genetic hitchhiking (Santos & 

Szathmary, 2008). While such positive selection through genetic hitchhiking may 

eventually be lost due to linkage equilibrium, its short-term advantage to a 

cooperating population can sufficiently prolong cooperation. General, non-social 

adaptation to a cooperative environment can be under positive selection (Figure 1.4e) 

(Waite & Shou, 2012, Asfahl, et al., 2015). Observations of P. aeruginosa evolving 

in an environment requiring QS-regulated protease for growth found a non-social 

adaptation rose to fixation in the population before a cheating subpopulation was even 

detected (Asfahl, et al., 2015). The underlying mutation allowed increased uptake of 

proteolysis products in the cooperative environment, elevating the absolute fitness of 

individuals and allowing the population to saturate faster (Asfahl, et al., 2015). The 

adapted, cooperating population was still vulnerable to invasion by cheater 

phenotypes, but the adapted population maintained higher overall yields than defined 

co-cultures with equivalent cheater load (Asfahl, et al., 2015). In a related example 

using an engineered mutualistic cooperative system in the yeast Saccharomyces 
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cerevisiae, the adaptive dynamics were reversed (Waite & Shou, 2012). In this 

contrasting system, the evolutionary dynamics were observed with co-cultures of 

cooperators and defined obligate cheaters mixed together at the start of each 

experiment (Waite & Shou, 2012). While obligate cheating phenotypes with a higher 

fitness than the cooperators typically enriched in co-culture, some replicate 

populations acquired a mutation that allowed purging of cheaters and concomitant 

preservation of cooperation (Waite & Shou, 2012). The authors proposed an 

“adaptive race” model where the fate of the cooperating population depended on 

acquiring the beneficial allele earlier than the cheats, which positively correlated with 

the frequency of cooperators (Waite & Shou, 2012). Evidence for the adaptive race 

mechanism has also been demonstrated in cooperative siderophore production in 

Pseudomonas fluorescens, where numerically dominant cooperators were found more 

likely to be the subject of strong non-social selection (Morgan, et al., 2012). 

 

1.4.6 Metabolic prudence 

A final mechanism that effectively limits cheating of microbial cooperation is 

the prudent regulation of public goods that minimizes the metabolic cost of their 

production (Figure 1.4f). In P. aeruginosa swarming motility, the production of a QS-

dependent secreted biosurfactant was resistant to exploitation by non-producing 

mutants. Xavier et al. found that biosurfactant expression was limited to growth 

conditions where carbon, the primary nutrient required for biosurfactant synthesis, 

was not limiting (Xavier, et al., 2011), thus minimizing the metabolic cost of its 

synthesis. While somewhat similar to examples of facultative cooperation described 

earlier, metabolically prudent regulation of public good expression in this case is not 

mediated exclusively by cell-cell signaling, but instead is dependent on nutrient 

availability (Xavier, et al., 2011). This mechanism received further support when 

Mellbye and Schuster (Mellbye & Schuster, 2014) showed multiple QS-controlled 

cooperative secretions are prudently regulated in P. aeruginosa according to the 

availability of the specific building blocks of the public good.  
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1.5 Applications and future directions 

Cooperative strategies mediated by QS are common in bacterial pathogenesis, 

and understanding the social dynamics of virulence has become an important focus 

(Rutherford & Bassler, 2012). P. aeruginosa uses QS to control expression of many 

secreted virulence factors (Schuster, et al., 2003). QS mutants defective in the master 

QS regulator LasR have been isolated from wound infections, the lungs of cystic 

fibrosis (CF) patients, and other intubated patients (Denervaud, et al., 2004, Schaber, 

et al., 2004, Hoffman, et al., 2009, Kohler, et al., 2009). However, it is unclear if 

social selective pressures demonstrated in vitro (Sandoz, et al., 2007, Popat, et al., 

2012) are also important drivers of population structure in vivo. On the one hand, data 

from a mouse infection model and from intubated patients suggest that social 

selection plays a role (Kohler, et al., 2009, Rumbaugh, et al., 2009). On the other 

hand, non-social, physiological factors such as increased antibiotic resistance and 

growth under oxygen limitation also favor lasR mutants (Hoffman, et al., 2010). In 

vivo study of population dynamics can be difficult, and recent development of 

realistic model systems that correlate with actual infections may help to disentangle 

the evolutionary trends affecting virulence (Harrison, et al., 2014). 

A better understanding of the social and non-social drivers of selection in 

pathogens could lead to new therapies for treating infections that do not involve the 

problems of positive selection inherent with traditional antibiotics. Antivirulence 

strategies using QS inhibitors (QSIs) could effectively reduce QS-mediated virulence 

by preventing the induction of QS-controlled virulence factors (Hentzer, et al., 2003, 

Kalia & Purohit, 2011). Even if a QSI-resistant phenotype were to evolve, social 

conflict in situations where virulence is mediated by QS-dependent public goods 

should prevent selection of QSI-resistant isolates (Mellbye & Schuster, 2011). The 

largely QSI-susceptible population would act as social cheaters that attenuate growth 

and virulence of a QSI-resistant mutant. Recent evidence in an analogous study of P. 

aeruginosa virulence attenuation via siderophore quenching provided support for this 

notion (Ross-Gillespie, et al., 2014). This particular avenue within the greater field of 

antivirulence research has seen development of an assortment of strategies for 

interfering with QS signaling, including targeting of signal molecules directly, 
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inhibition of signal biogenesis, disruption of signal detection (LaSarre & Federle, 

2013), or even introduction of strains with coercive, spiteful, or cheater phenotypes 

using a “Trojan horse” strategy (Brown, et al., 2009).   

The detailed understanding of QS design principles has also received 

application in synthetic biology. For example, synthetic AHL sender and receiver 

pairs have been used for the formation of complex spatial patterns (Basu, et al., 

2005). In another example, QS circuitry has been employed to precisely control 

population density via QS-controlled killing (You, et al., 2004).  Mechanistic 

knowledge about QS is being combined with ecological and social evolution concepts 

in the emerging field of synthetic ecology (Fredrickson, 2015, Hennig, et al., 2015). 

Synthetic ecology investigates interactions in defined microbial communities for a 

better understanding of more complex, authentic microbial ecosystems, and it 

attempts to engineer microbial populations for biotechnological applications. Multiple 

orthogonal QS signal-response systems that function independently without cross-talk 

are being developed (Scott & Hasty, 2016). These systems permit the coordination of 

different metabolic tasks among community members that are not easily 

accomplished by a single cell. Potential benefits include the yield improvement in 

typically low-efficiency biosynthesis processes (Zhang, et al., 2015), or optimization 

and stabilization of communities in wastewater treatment plant systems (Zhang & Li, 

2016). While metabolic interactions in complex communities are being increasingly 

well understood in synthetic ecology (Zelezniak, et al., 2015), the social evolutionary 

outcomes and competitive interactions between existing and engineered or introduced 

communities will benefit from further development. 
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Chapter 2 

 

RESEARCH OBJECTIVES 

 

 The topics of this dissertation lie at the confluence of social evolution, 

ecology, and gene expression in bacteria. This goal of this dissertation is to uncover 

poorly understood aspects of the social evolutionary pressures facing communicating 

bacteria and the molecular architecture of their signaling systems. Cooperation and 

communication by P. aeruginosa has emerged as a popular experimental model 

system to investigate both aspects. During growth in media requiring QS-controlled 

proteolysis for growth, strong selection for cooperation puts cooperators at risk of 

exploitation by non-responding cheats. In Chapter 3 of this dissertation, our focus was 

to provide systematic evidence for the molecular mechanism allowing P. aeruginosa 

cooperative growth to persist in the presence of naturally evolving cheaters. Using 

genome sequencing of an evolved isolate from an in vitro evolution experiment, we 

discovered a mutation in a non-social single gene coding for the transcriptional 

regulator PsdR that allows cooperation to persist. Mutation in PsdR confers a 

cooperation-stabilizing effect through derepression of growth rate-limiting nutrient 

uptake and processing, thereby maximizing absolute fitness of cooperators and 

deferring a tragedy of the commons.  

 In Chapter 4 of this dissertation, we turned our focus upon the molecular 

mechanisms defining the threshold of QS activation in P. aeruginosa. As discussed in 

Chapter 1, a considerable amount of research has been dedicated to understanding the 

circuitry and dynamics of QS. However, it is unclear how multiple anti-activator 

proteins of QS function together to determine the quorum-activated threshold. Using 

mutational analysis of all known anti-activators of P. aeruginosa coupled with 

phenotypic measurements, gene induction kinetics, and transcriptional profiling to 

approach this question. We found an additive effect of multiple anti-activator deletion 

on QS gene expression, particularly when one mutation was in the anti-activator gene 

qslA. We also found nested, overlapping anti-activator regulons that suggest anti-



48 

 

 

activation likely works through LasR or RhlR, and may involve co-binding of these 

regulators with more than one anti-activator. 
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Abstract 

In a process termed quorum sensing (QS), the opportunistic bacterial pathogen 

Pseudomonas aeruginosa uses diffusible signaling molecules to regulate the 

expression of numerous secreted factors or public goods that are shared within the 

population. But not all cells respond to QS signals. These social cheaters typically 

harbor a mutation in the QS receptor gene lasR and exploit the public goods produced 

by cooperators. Here we show that non-social adaptation under growth conditions that 

require QS-dependent public goods increases tolerance to cheating and defers a 

tragedy of the commons. The underlying mutation is in the transcriptional repressor 

gene psdR. This mutation has no effect on public goods expression but instead 

increases individual fitness by derepressing growth-limiting intracellular metabolism. 

Even though psdR mutant populations remain susceptible to invasion by isogenic 

psdR lasR cheaters, they bear a lower cheater-load than do wild-type populations, and 

they are completely resistant to invasion by lasR cheaters with functional psdR. 

Mutations in psdR also sustain growth near wild-type levels when paired with certain 

partial loss-of-function lasR mutations. Targeted sequencing of multiple evolved 

isolates revealed that mutations in psdR arise before mutations in lasR, and rapidly 

sweep through the population. Our results indicate that a QS-favoring environment 

can lead to adaptations in non-social, intracellular traits that increase the fitness of 

cooperating individuals and thereby contribute to population-wide maintenance of QS 

and associated cooperative behaviors. 
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3.1 Introduction 

Bacterial cell-cell signaling, termed quorum-sensing (QS), often coordinates 

other cooperative behaviors such as nutrient acquisition, biofilm formation, or 

virulence in a cell-density-dependent manner (Waters and Bassler 2005, Williams et 

al 2007). In Gram-negative proteobacteria, QS is generally comprised of a LuxI-type 

signal synthase that produces a diffusible acyl-homoserine lactone (acyl-HSL) signal, 

and a cognate LuxR-type receptor that binds the signal and regulates transcription of 

target genes (Schuster et al 2013, Waters and Bassler 2005, Williams et al 2007). The 

opportunistic pathogen Pseudomonas aeruginosa, a particularly well-understood 

example, employs two acyl-HSL signaling systems, LasI/R and RhlI/R, arranged in a 

hierarchical fashion with LasR sitting atop the hierarchy (Jimenez et al 2012, 

Schuster and Greenberg 2006, Williams and Camara 2009). Together, both systems 

regulate over 300 genes, many of which encode secreted public goods such as 

extracellular enzymes or secondary metabolites that have a role in virulence (Hentzer 

et al 2003, Schuster et al 2003, Wagner et al 2003).   

How social behaviors such as QS evolve and are maintained is of intense 

research and debate, as exploitation of common resources by selfish individuals 

should be favored and lead to a so-called “tragedy of the commons” (Keller and 

Surette 2006, West et al 2006). A tragedy of the commons results when the 

magnitude of selfish exploitation by cheaters exceeds the capacity of a cooperative 

system, resulting in the collapse of the entire population. Indeed, several studies have 

demonstrated the emergence of QS-cheaters that reap the benefits of cooperative 

secretions without metabolic investment both in vitro (Dandekar et al 2012, Diggle et 

al 2007, Sandoz et al 2007, Wilder et al 2011) and in vivo (Kohler et al 2009, 

Rumbaugh et al 2009). These QS-cheaters are defined by a loss-of-function mutation 

in the gene coding for the primary QS-receptor LasR. We previously showed that P. 

aeruginosa lasR mutant cheaters consistently evolve in a minimal growth medium 

with casein as the sole carbon source that requires QS-dependent extracellular 

proteolysis (Sandoz et al 2007). Using defined wild-type and lasR mutant co-cultures, 

we further showed that these cheaters do better when they are rare (i.e. display 

negative frequency-dependent fitness), and that they impose a burden on population 
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growth (Sandoz et al 2007, Wilder et al 2011). Intriguingly, however, this negative 

effect on group fitness was generally not observed during in vitro evolution 

experiments initiated solely with the wild-type strain, suggesting evolution of a 

mechanism that stabilized QS (Dandekar et al 2012, Sandoz et al 2007, Wilder et al 

2011).  

To identify and characterize the underlying mechanism, we used a 

combination of whole-genome sequencing, genetic analysis, and growth experiments. 

We found a single mutation in a transcriptional repressor, PsdR, that rapidly 

dominates the population, enhances intracellular dipeptide metabolism, increases both 

individual and group fitness, provides immunity against cheaters that do not 

themselves carry a psdR mutation, and lessens the detrimental effect of certain lasR 

mutations on group fitness. Our results show that QS-favoring conditions can select 

for non-social adaptations that improve group fitness and defer a tragedy of the 

commons. 

 

3.2 Materials and methods 

3.2.1 Strains and culture conditions 

 Pseudomonas aeruginosa PAO1 was used as the wild-type isogenic parent at 

the start of all original in vitro evolution experiments (Sandoz et al 2007, Wilder et al 

2011). All mutants were created via allelic exchange using a suicide vector containing 

either evolved alleles or in-frame deletions constructed by splicing-overlap-extension 

PCR (SOE-PCR) (Hoang et al 1998, Horton 1995) (see Table 3.1 for a 

comprehensive list of strains). For routine culturing, we grew strains at 37°C on 

Lennox LB agar or with shaking in Lennox LB broth buffered with 50 mM 3-(N-

morpholino)-propanesulfonic acid (MOPS), pH 7.0. Plates were supplemented with 

100 µg/mL tetracycline when necessary for the selection of marked strains. For 

fitness, competition, substrate utilization, and expression assays, M9 minimal 

medium supplemented with either 1% caseinate, 0.5% casamino acids (CAA), or 10 

mM GlyGlu dipeptide was used (Kiely et al 2008, Sandoz et al 2007). In the case of 

caseinate fitness experiments with supplemented exoprotease, porcine elastase 
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(Sigma) was added at the beginning of growth, in principle as described previously 

(Diggle et al 2007). As determined with a FITC-casein assay (see below), the 

caseinolytic activity of the elastase concentration used (0.21 U/ml) was 20% of that 

found in the supernatant of wild-type cultures grown in M9-caseinate medium for 24 

h. All experiments were performed using a minimum of three biological replicates 

with independent inocula. 

Table 3.1 Bacterial strains and plasmids.   

Strain or plasmid Relevant properties Reference or origin 

Pseudomonas aeruginosa 

     PAO1 Wild-type (obtained from M Vasil and U 

Ochsner) 

(Holloway 1955) 

   PAO-HC PAO1 derivative; evolved hybrid 

cooperator containing lasR5, psdR1, and 

abcB1 mutations 

(Sandoz et al 2007) 

   PAO1 lasR5 PAO1 derivative; lasR5, unmarked mutant 

in which wild-type lasR was replaced with 

lasR5 

This study 

   PAO1 psdR1 PAO1 derivative; psdR1, unmarked mutant 

in which wild-type psdR was replaced with 

psdR1 

This study 

   PAO1 ΔlasR PAO1 derivative; ΔlasR, unmarked in-

frame deletion from amino acid 102 to 216 

(Wilder et al 2011) 

   PAO1 ΔpsdR PAO1 derivative; ΔpsdR, unmarked in-

frame deletion from amino acid 11 to 124 

This study 

   PAO1 psdR1 lasR5 PAO1 psdR1 derivative; psdR1 lasR5, 

unmarked mutant in which wild-type psdR 

and lasR were replaced with psdR1 and 

lasR5, respectively 

This study 

   PAO1 psdR1 ΔlasR PAO1 ΔlasR derivative; psdR1 ΔlasR, 

unmarked mutant in which wild-type psdR 

and lasR were replaced with psdR1 and 

ΔlasR, respectively 

This study 

Escherichia coli 

     DH5α F- Φ80lacZYA-argF U169 recA1 hsdR17 

(rk-, mk+) phoA supE44 λ- thi-1 gyrA96 

relA1 

Invitrogen 

   SM10 thi thr leu tonA lacY supE recA::RP4-2-

Tc::Mu Km λpir 

(Simon et al 1983) 

Plasmids 

     pEX18Gm Conjugative suicide plasmid; Gm
R
 (Hoang et al 1998) 

   pEX18Gm.psdR1 pEX18Gm with the evolved psdR1 allele This study 

   pEX18Gm.ΔpsdR pEX18Gm with ΔpsdR containing an in-

frame deletion from amino acid 11 to 124 

This study 

   pEX18Gm.lasR5 pEX18Gm with the evolved lasR5 allele This study 

   pUC18R6KT-mini-

Tn7T-Tet 

Broad host range mini-Tn7 vector with Tc 

resistance gene cassette  

Courtesy of 

Herbert P 

Schweizer 
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3.2.2 Whole genome sequencing and targeted DNA sequencing 

 For genome sequencing, we selected  an evolved “hybrid cooperator” (HC) 

isolate from our previous long-term growth experiment (Sandoz et al 2007) and its 

wild-type PAO1 parent strain. The evolved isolate was dubbed HC because of its 

partially positive QS phenotypes (see the Results section for details). Both strains 

were grown individually overnight (18 h) in MOPS-buffered LB medium as 

described above. Genomic DNA was isolated using the Qiagen Puregene 

Yeast/Bacteria Kit B (Qiagen Sciences, Germantown, MD, USA) and assessed for 

quality on a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 

MA, USA). 454 pyrosequencing was carried out using unpaired reads on a Genome 

Sequencer FLX instrument with GS FLX Titanium series reagents (454 Life 

Sciences, Branford, CT, USA) by the Dhingra Genomics Lab at Washington State 

University in Pullman, Washington, USA. Sequencing of the HC isolate produced 

507094 reads covering approximately 187 Mb, while the ancestral PAO1 produced 

501270 reads covering approximately 200 Mb. Raw 454 reads were assembled using 

the Roche 454 Newbler assembler with the PAO1 genome as a reference (Margulies 

et al 2005, Stover et al 2000, Winsor et al 2011). The HC assembly utilized an 

average map length of 370 bp and average sequence depth of 29.5, while the ancestral 

PAO1 assembly utilized an average map length of 401 bp and average sequence 

depth of 31.7. Differences between the HC and ancestral PAO1 assemblies were 

discovered using SNP/INDEL calling in SAMtools (Li et al 2009). To confirm the 

identified mutations, and to sequence specific loci of interest, standard dideoxy 

sequencing of PCR-amplified and purified chromosomal DNA was employed at the 

Center for Genome Research and Biocomputing at Oregon State University in 

Corvallis, Oregon, USA. Primers are listed in Table S3.4. 

 

3.2.3 Fitness assays and cheater-load 

Wild-type, evolved HC, and defined mutants (tagged with an antibiotic-

resistance marker where applicable) were grown in caseinate minimal medium. 

Overnight cultures of individual strains in MOPS-buffered LB were used as inocula 
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for experiments and diluted to starting OD600 values of 0.02 (1 cm pathlength, 

approximately 2×10
7
 CFU/mL). In the case of co-culture experiments, the combined 

total starting OD600 was 0.02. All fitness experiments were allowed to proceed for 24 

h with shaking at 37°C. For rich media (LB+MOPS, M9-CAA) and dipeptide media 

co-cultures, conditions were kept identical to caseinate experiments with the 

exception that co-cultures in dipeptide media were grown for 7 d to allow the cultures 

to reach saturation. Colony forming units (CFU) per mL were determined by dilution-

plating at t = 0 and 24 h, with an additional plating at t = 12 h during absolute fitness 

experiments. For enumeration in co-culture experiments, differential plating on 

tetracycline-supplemented LB agar was used. Fitness was calculated according to the 

Malthusian growth model (Lenski et al 1991, Wilder et al 2011).  Absolute fitness is 

expressed as the average rate of increase or Malthusian parameter (m), with m = 

ln(N1/N0)/t, where N1 and N0 are the final and initial strain densities, respectively, and 

t is the culturing time in days. Relative fitness is expressed as the ratio of the 

Malthusian parameters (w) of two competing strains. Cheater-load experiments were 

performed as previously described (Sandoz et al 2007), with the exception that for 

this set of experiments total starting OD600 values of 0.02 were identical for all 

treatments. 

 

3.2.4 Extracellular proteolysis 

 Extracellular caseinolytic activity was determined using an established FITC-

casein assay (Twining 1984, Wilder et al 2011). Briefly, starter cultures of each strain 

were grown overnight in MOPS-buffered LB at 37°C and diluted to an OD600 of 0.02 

in fresh CAA medium. Supernatants were harvested after 12 h of growth, sterile 

filtered and incubated with the FITC-conjugated casein substrate (Sigma). Digestion 

was allowed to proceed for 3 h at 37°C. Fluorescence was measured at λex = 490 nm 

and λem = 525 nm in a 96-well format on a Tecan Infinite M200 plate reader (Tecan 

Group Ltd., Männedorf, Switzerland).  

 To predict the cleavage pattern of our caseinate substrate (a mixture of α-s1-

casein, α-s2-casein, β-casein, and κ-casein) by LasB elastase, we employed ExPASy 
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PeptideCutter (http://web.expasy.org/peptide_cutter/) for in silico digestion with 

thermolysin, the closest LasB elastase family member available in the database 

(Gasteiger et al 2005). 

 

3.2.5 Expression analysis 

Strains were initially grown overnight in MOPS-buffered LB liquid culture, 

and then diluted to an OD600 of 0.02 in fresh CAA medium. Expression cultures were 

harvested at OD600 values of 0.5 and 1.5, corresponding to exponential and early 

stationary phases in this medium, respectively. Total RNA was isolated and cDNA 

synthesized as previously described (Schuster and Greenberg 2007, Schuster 2011). 

Quantitative reverse-transcriptase PCR (qRT-PCR) was carried out according to 

established protocols (Schuster and Greenberg 2007, Schuster 2011) using an Applied 

Biosystems 7300 Real Time PCR System (Applied Biosystems, Foster City, CA, 

USA). Identical amounts of cDNA were used as template. Transcript levels were 

quantified using the relative standard curve method. 

 

3.3 Results    

3.3.1 Genome sequencing of in vitro-evolved P. aeruginosa 

In our previous in vitro evolution studies, we cultured the PAO1 wild-type 

strain in caseinate medium for 20 days, subculturing into fresh medium each day 

(Sandoz et al 2007, Wilder et al 2011). We used two phenotypic screens as a proxy 

for QS-proficiency, namely 1) protease production on skim milk agar plates, and 2) 

growth on minimal agar plates with adenosine as the sole carbon source. Negative 

results in the phenotypic screens correspond to mutations in the gene coding for the 

primary QS regulator, lasR, thereby conferring a cheater phenotype.  

To confirm that QS-controlled extracellular proteolysis is solely responsible 

for the growth deficiency of the pleiotropic lasR mutant in caseinate medium, we 

cultured the ΔlasR single mutant in the presence of purified elastase. Addition of 

elastase restored ΔlasR mutant fitness, expressed as Malthusian growth parameter, m 
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(Lenski et al 1991), to a level indistinguishable from wild-type and significantly 

above that of the ΔlasR mutant without elastase (Figure 3.1).  

 

Figure 3.1 Effect of elastase addition on the absolute fitness of a lasR mutant. 

Absolute fitness of the P. aeruginosa ΔlasR mutant and its wild-type parent was 

calculated as Malthusian growth parameter (m) after 24 h of growth in caseinate 

medium. In the case of ΔlasR + elastase, 0.21 U/ml porcine elastase was added. Bars 

represent means (n = 3). * Denotes significant difference as determined by unpaired t-

test (p = 0.00010). NS, difference not significant (unpaired t-test, p = 0.096). 

 

While cheaters can exploit the public goods produced by the cooperating 

population in a way that eventually leads to a population crash, we only observed this 

outcome in one of our five replicate evolution experiments (Figure 3.2a-f). Instead, 

we found that lasR cheater frequencies as high as 60% are tolerated and do not 

significantly affect the growth yield of the population (Figure 3.2a-f). This was 

surprising, considering our previous co-culture experiments with specific initial 

frequencies of defined lasR-mutant cheaters and wild-type cooperators, where we 

demonstrated the burden of cheaters on the productivity of a population manifests at 

cheater levels as low as 25% (Sandoz et al 2007). We also observed a subpopulation 

of isolates deficient in growth on adenosine, but not in skim-milk proteolysis. Based 

on their phenotypes, we dubbed these isolates “hybrid cooperators” (HCs). The HC 

subpopulation rose in frequency similar to the cheaters, representing up to 20% of the 

total population (Figure 3.2a), and also harbored mutations in lasR (Sandoz et al 

2007). We reasoned that this HC phenotype had an important role in the maintenance 
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of cooperative population growth. We hypothesized that the HC phenotype was 

caused by an independent second-site mutation that occurred either before or after 

mutation of lasR, and that this mutation partially restored QS proficiency.  

 

Figure 3.2 In vitro evolution of P. aeruginosa populations under conditions that 

require QS. (a-f) Population growth yield and phenotypic frequencies. OD600 values 

measured daily prior to subculture are plotted on the left vertical axis (blue line). 

Frequencies of cooperator (black triangles), cheater (red circles), and hybrid 

cooperator (green squares) phenotypes are plotted on the right vertical axis. (a) 

Means and SEM of all replicate experiments (n = 5). In some cases error bars are too 

small to be seen. (b-f) Individual, independent biological replicates. Based on raw 



59 

 

 

data from Wilder et al., 2011 (panels b, c) and Sandoz et al., 2007 (panels d-f). (g) 

Schematic of evolutionary trajectories of individual mutations. 

 

 To address our hypothesis, we sequenced the genome of a representative HC 

isolate from day 12 of one replicate experiment. We also sequenced the genome of 

the ancestral PAO1 wild-type strain for comparison. Genomes were assembled using 

the published PAO1 genome sequence as a reference (Stover et al 2000, Winsor et al 

2011). In all, our analysis showed the HC harbored only three mutations when 

compared to the wild-type ancestor, including lasR. The mutations were single 

nucleotide polymorphisms (SNPs) in lasR (PA1430) and in PA2408, as well as an 18 

base-pair truncation in psdR (PA4499). PA2408 encodes a probable ATP-binding 

component of an ABC-transporter, and psdR encodes a transcriptional regulator 

(Kiely et al 2008, Winsor et al 2011) (Table 3.2). Targeted Sanger sequencing of all 

three loci in two additional HC and cheater isolates from day 12 of two independent 

in vitro evolution experiments revealed that mutations in lasR and psdR are 

ubiquitous in isolates displaying both phenotypes, but mutations in PA2408 are not 

(Table S3.5). We therefore concluded that the PA2408 mutation is not likely to be 

relevant to the HC phenotype. Additional evidence for this conclusion is presented 

below. 

Table 3.2 Mutations in a sequenced Pseudomonas aeruginosa HC 

genome. 
  

Gene (name)
a
 Function

a
 Mutation

b
 Allele ID 

PA1430 (lasR) luxR-type transcriptional regulator C→T (683) lasR5 

PA4499 (psdR) Putative transcriptional regulator Δ18 bp (514) psdR1 

PA2408  Probable ATP-binding component of ABC 

transporter 

T→C (337) abcB1 

aGene names and functions as annotated in the Pseudomonas Genome Database. 
bNumbers in parentheses indicate position or beginning of a given mutation relative to the translational start site.  

 

 The presence of psdR mutations in cheater isolates in addition to the HC 

isolates indicated that a mutation in psdR is not a distinguishing feature of the HC 

phenotype, and that mutation of psdR may have arisen prior to mutation of lasR. To 

elucidate the evolutionary trajectories of the psdR mutation, and to assess whether 

psdR mutations are also present in cooperator phenotypes, we sequenced the psdR 
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locus of evolved isolates positive for both skim-milk proteolysis and adenosine 

utilization from the day 4, 8, and 12 archives of two replicates (5 isolates per day, 30 

total). Surprisingly, we found 100% of sequenced isolates harbored a non-

synonymous mutation in psdR (Table 3.3). Even as early as the first phenotypic 

screen at day 4, the entire sampled population that originally appeared to be “wild-

type” with respect to QS actually had acquired point mutations, insertions or deletions 

in psdR. Isolates from the same replicate culture often harbored different psdR 

mutations, and some psdR mutations in early cooperator isolates were identical to 

those in later HC and cheater isolates. These results therefore suggest that the HC 

phenotype is primarily defined by the nature of the lasR mutation itself. In general, 

our sequencing data indicate a strong selection against a functional psdR during 

cooperative growth in caseinate medium, and show that the evolutionary trajectories 

of cheater, HC and cooperator phenotypes all start with a mutation in psdR (Figure 

3.2g). This result is consistent with the presumed function of PsdR. PsdR has been 

characterized as a transcriptional repressor of genes involved in the uptake and 

intracellular degradation of dipeptides in P. aeruginosa (Kiely et al 2008). Thus, 

derepression of dipeptide metabolism through mutation and inactivation of PsdR 

could potentially increase the fitness of P. aeruginosa during proteolytic growth in 

caseinate medium. Such a mutant would take up and process the dipeptides generated 

by the cocktail of secreted proteases (including LasB elastase, alkaline protease, and 

protease IV) more rapidly. Consistent with this idea, in silico digestion of bovine 

casein by thermolysin, a homolog of P. aeruginosa LasB elastase with similar 

cleavage properties (Jiang and Bond 1992, Morihara and Tsuzuki 1971), indeed 

produces up to 6 dipeptides per casein molecule. 

Table 3.3 psdR mutations in evolved Pseudomonas aeruginosa isolates. 

 

Number of mutations 

(Replicate)
b
 

 Mutations
a
 Day 4 Day 8 Day 12 Change

c
 

Cheater (4 sequences total) 

       Δ505-end 

  

2 (2) Deletion 

   T166C 

  

2 (1) S56P 

HC (4 sequences total) 

       Δ145-148 

  

2 (2) Deletion 
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                            Table 3.3 (continued)    
 

   Δ261-422 

  

1 (1) Deletion 

   Δ261-end 

  

1 (1) Deletion 

Cooperator (30 sequences total) 

       Δ261-422 1 (1) 1 (2) 

 

Deletion 

   Δ505-end 

 

1 (2) 

 

Deletion 

   Δ147-159 

 

1 (1) 1 (1) Deletion 

   C74T 1 (2) 1 (2) 

 

A25V 

   T100C 1 (2) 

  

F34L 

   C109A 1 (1) 

 

1 (1) Q37K 

   T166C 1 (1) 

  

S56P 

   G397A 2 (1) 2 (1) 

 

G133R 

   C411A 

  

3 (1) STOP at 137 

   A431C 1 (2) 1 (1) 2 (2) Y144S 

   Insert A at 3 

 

1 (1) 

 

Frameshift 

   Insert A at 378 1 (2) 1 (2) 1 (2) Frameshift 

   No amplicon 1 (2) 1 (2) 2 (2) Unknown 
aMutations are sorted by cheater, hybrid cooperator, and cooperator phenotypes. Numbers indicate nucleotide position 

or beginning of a given mutation relative to the translational start site.  
bThe individual replicate of the in vitro evolution experiment is indicated in parentheses. Same-day isolates with 
identical mutations were always from the same replicate. Replicates 1 and 2 correspond to Fig. 2 panels b and c, 

respectively. 
cNumbers indicate amino acid position relative to the translational start site. 

 

3.3.2 Absolute fitness of evolved and defined strains 

 Next, we investigated the fitness contributions of each mutant allele to the 

cooperator, cheater, and HC phenotypes. We constructed defined single and double 

mutants by transferring the evolved lasR5 and psdR1 alleles into the parental PAO1 

strain background, and compared their phenotypes to those of in-frame deletion 

mutants. This approach also allowed us to assess whether the nature of the mutation 

in lasR distinguishes a HC from a cheater. As characterized in our previous study, all 

evolved cheaters deficient in skim-milk proteolysis and adenosine utilization were 

also fully deficient in other QS-dependent phenotypes, identical to a lasR in-frame 

deletion mutant (Sandoz et al 2007).  

We first assessed growth of individual strains by measuring their population 

densities during clonal growth in caseinate medium that requires QS-dependent 

proteolysis (Figure 3.3a). The corresponding absolute fitness values and statistical 
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data are shown in Figure S3.8. The wild-type is capable of two logs of growth within 

24 h, from approximately10
7
 to 10

9
 CFU/mL, whereas a lasR deletion mutant shows 

little growth. Interestingly, the defined lasR5 mutant displayed an intermediate level 

of growth and fitness significantly above that of the ΔlasR mutant at 24 h, indicating 

that lasR5 retains partial function. The defined psdR1 mutant and the ΔpsdR mutant 

displayed similar growth and fitness levels significantly above that of the wild-type at 

12 h, indicating that the psdR1 mutation completely inactivates gene function. The 

defined psdR1 lasR5 double mutant and the evolved HC showed identical growth 

characteristics, similar to that of the wild-type at 24 h, supporting our sequencing data 

suggesting the PA2408 mutation does not play a part in the HC phenotype. In 

contrast, the psdR1 mutation, when paired with the ΔlasR mutation, did not support 

growth to levels beyond the ΔlasR single mutant, strengthening the role of the lasR5 

allele in the HC phenotype. Taken together, these results show that inactivation of 

psdR increases absolute fitness, and that this effect can compensate for the reduced 

level of cooperation from partial loss-of-function in lasR5. 
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Figure 3.3 Growth and proteolysis in pure culture. (a) Growth in caseinate 

medium measured at 12 and 24 h, expressed as CFU/mL. Means and SEM are shown 

(n = 3) and in some cases error bars are too small to be seen. Starting CFU/mL are 

statistically the same (one-way ANOVA, Tukey’s multiple comparisons test, α = 

0.05). (b) Caseinolytic activity of cultures grown in CAA medium for 12 h, as 

measured by FITC-casein assay. Caseinolytic activity is shown per OD600 to correct 

for slight variations in the final culture densities in CAA medium. Means and SEM 

are shown (n = 3). * Denotes significant differences as determined by one-way 

ANOVA, Tukey’s multiple comparisons test, α = 0.05. Results of similar magnitude 

are grouped for clarity. 

 

3.3.3 Exoprotease activity 

To correlate the absolute fitness of each strain with its exoprotease activity, 

we quantified caseinolysis of culture supernatants using a fluorescein isothiocyanate 

(FITC)-casein assay (Twining 1984, Wilder et al 2011). This method is more precise 

than the qualitative skim milk plate assay used previously (Sandoz et al 2007). In 
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order to uncouple exoprotease activity from its effect on growth, we replaced 

caseinate in our growth medium with casamino acids (CAA), a C-source that does not 

require QS-dependent proteolysis. All strains harboring the lasR5 allele showed 

intermediate levels of extracellular caseinolysis at half the levels of the wild-type lasR 

alleles and roughly three times higher than the ΔlasR alleles (Figure 3.3b). Strains 

containing psdR mutations did not show elevated caseinolysis compared with the 

wild-type. These results confirm that lasR5 is a partial-loss-of-function mutation, and 

further show that psdR has no effect on QS-dependent exoprotease production, 

consistent with its role in regulating intracellular dipeptide metabolism. 

 

3.3.4 Transcriptional regulation of dipeptide transport and processing  

 We have provided evidence that psdR mutations are explicitly linked to 

significant increases in the fitness of P. aeruginosa in a cooperative environment. As 

indicated above, PsdR is a transcriptional repressor of several neighboring genes 

involved in the transport and processing of dipeptides in P. aeruginosa (Kiely et al 

2008). Specifically, PsdR represses transcription of mdpA, which codes for the 

cytoplasmic dipeptidase MdpA, as well as dppA3, the first gene in a dipeptide 

transport gene cluster annotated dpp for a homologous region in the Escherichia coli 

K12 genome (Kiely et al 2008). Associated with this gene cluster is a gene coding for 

the porin OpdP, which is implicated in the uptake of single amino acids as well as 

dipeptides in P. aeruginosa (Tamber and Hancock 2006). 

Interestingly, our previous transcriptome analysis of P. aeruginosa grown in 

rich medium indicated that mdpA expression was affected by rhl-QS. Addition of 

3OC12-HSL to a signal synthesis mutant only induced expression 1.6-fold, but 

addition of both acyl-HSL signals induced expression 9-fold (Schuster et al 2003). 

Thus, it was conceivable that lasR affected dipeptide transport and processing mainly 

indirectly, through its effect on the rhl system, although this regulation is nutritionally 

conditional (Dekimpe and Deziel 2009, Medina et al 2003, Mellbye and Schuster 

2014). To investigate a possible link between QS and dipeptide metabolism in our 

experimental system, we quantified the transcript levels of dppA3 and mdpA during 
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growth in CAA medium for our set of eight P. aeruginosa strains used in the previous 

sections. Using qRT-PCR, we assessed transcription in exponential and early 

stationary phases, corresponding to OD600 values of 0.5 and 1.5, respectively. We 

found that for either gene at any growth phase tested, relative expression could be 

sorted by psdR allele, with at least an order of magnitude separating functional psdR 

alleles from those harboring psdR1 or ΔpsdR (Figure 3.4). Importantly, none of the 

lasR alleles substantially influenced expression of dppA3 or mdpA in our experiments. 

This result indicated that, under the growth conditions employed here, the regulation 

of dipeptide transport and processing is dependent on psdR but independent of lasR.  

Hence, control of the relevant ‘private’ goods – the cellular dipeptide uptake and 

processing machinery – occurs independently of QS-mediated ‘public’ goods in our 

system. 
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Figure 3.4 Expression of dppA3 and mdpA. Relative transcript levels of dppA3 (a) 

and mdpA (b), as determined by qRT-PCR. Relative expression during exponential 

(OD600 = 0.5, empty bars) and early stationary (OD600 = 1.5, filled bars) growth 

phases in CAA medium are shown. Means and SEM are shown (n = 3). * Denotes 

significant differences as determined by one-way ANOVA, Tukey’s multiple 

comparisons test, α = 0.05. Results of similar magnitude are grouped for clarity. 

 

3.3.5 Relative fitness of evolved and defined strains in co-culture 

 Next, we measured the relative fitness of our set of strains through pairwise 

comparisons in co-culture, again employing caseinate medium that requires QS-

dependent cooperation. We introduced an antibiotic resistance marker into one of the 

two strains at a neutral chromosomal site to allow differentiation in co-culture. The 

marker itself has no effect on growth (Wilder et al 2011). With the marked strain at 

an initial frequency of 0.01 (1%) in starting populations of approximately 2×10
7
 

CFU/mL total, we allowed competitions to proceed for 24 hours, and calculated the 

relative fitness (w) as the ratio of the average growth rates (Malthusian growth 

parameters) (Lenski et al 1991, Wilder et al 2011). 

First, we sought to ensure that selection for psdR mutants in the original in 

vitro evolution experiments was not just a general feature of prolonged growth but 

was tied to the specific growth medium. We therefore initiated defined co-cultures of 

the ΔpsdR mutant and the wild-type in different growth media, at a mutant frequency 

of 0.01.  We used a complex medium (MOPS-buffered LB) and M9 minimal medium 

with essentially fully hydrolyzed casein (CAA) as the sole C-source. The ΔpsdR 

mutant did not enrich in either LB+MOPS or CAA media, confirming that adaptive 

mutation of psdR is linked to the cooperative media we employed (Figure 3.5a). To 

confirm that the increased absolute fitness of a psdR mutant can be attributed in part 

to increased uptake and metabolism of dipeptides, we also employed M9-minimal 

medium with the dipeptide GlyGlu as the sole carbon source (Kiely et al 2008). The 

ΔpsdR mutant exhibited a high degree of relative fitness in this medium very similar 

to the psdR1 mutant in caseinate medium (Figure 3.5a and first column of Figure 

3.5b), indicating that dipeptide uptake and metabolism is indeed a target of selection 

in our cooperative growth environment. 
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Figure 3.5 Relative fitness. (a) Relative fitness of a ΔpsdR mutant in co-culture with 

its wild-type parent in rich and defined media, initiated at a mutant frequency of 0.01. 

LB, LB+MOPS; CAA, M9-CAA; GlyGlu, M9-GlyGlu. (b) Relative fitness of 

defined mutants in caseinate co-culture. Pairs of the respective rare and abundant 

strain were initiated at a ratio of 1:99. Relative fitness values were calculated as the 

ratio of Malthusian growth parameters (w) after 24 h, with the exception that 

experiments in M9-GlyGlu were allowed to proceed for 7 d to allow the co-cultures 

to reach saturation. Values of w signify whether the rare strains grow faster (w > 1) or 

grow slower (w < 1) than the respective abundant strains. Bars represent means (n = 

3), and means are significantly different from w = 1 (one sample t-test, p < 0.05), 

unless designated by §. NS, difference between two conditions not significant 

(unpaired t-test, p > 0.05). Difference in mean relative fitness of ΔpsdR in M9-

GlyGlu co-culture with WT (a) and psdR1 in caseinate co-culture with WT (b) is not 

significant (unpaired t-test, p = 0.23). 

 

Second, we sought to compare the relative fitness of mutant alleles (initial 

frequency of 0.01) against the wild-type ancestor to better understand the population 

dynamics at the beginning of our previous in vitro evolution experiment. The lasR5 

mutant modestly enriched in wild-type co-culture, as did the ΔlasR mutant in 

accordance with previous studies (Figure 3.5b) (Sandoz et al 2007, Wilder et al 

2011). This result was expected as an individual that decreases investment in a 

secreted “public good” while still taking advantage of its production by cooperators 

should exhibit higher relative fitness (West et al 2006). A psdR1 mutant had a 

tremendous relative fitness advantage with respect to the wild-type, consistent with its 

high absolute fitness, and mirroring the early dominance of psdR mutants during in 

vitro evolution (Figure 3.5b). When we combined either of the lasR mutant alleles 

with psdR1, the average relative fitness again was well above that of the lasR mutants 
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alone, demonstrating the independence of psdR fitness from LasR regulation (Figure 

3.5b).  

 We then aimed to understand the relative fitness dynamics after the 

emergence and dominance of psdR mutations in the evolved populations. This time 

we initiated competitions with the psdR1 defined mutant in majority (initial frequency 

of 0.99). Both psdR1 lasR5 and psdR1 ΔlasR double mutants displayed relative 

fitness above 1.0, as would be required for their enrichment in the original in in vitro 

evolution experiments (Figure 3.5b). The difference in the relative fitness between the 

two strains is reflected in their relative abundances during in vitro evolution (Figure 

3.2a). Interestingly, a defined mutant with the ΔlasR allele alone was not able to 

enrich against the defined psdR1 mutant, further demonstrating the effect that a large 

increase in absolute fitness can have on relative fitness against an obligate cheater. 

 Fourth, to investigate resistance of the HC to obligate cheating, we initiated 

competitions with the HC genotype (psdR1 lasR5) in majority (initial frequency of 

0.99). We observed resistance to invasion by the ΔlasR cheater, but when the obligate 

cheater allele is paired with the evolved psdR allele, the psdR1 ΔlasR relative fitness 

again rose above 1.0 (Figure 3.5b).  

Taken together, we confirmed our original predictions of the evolutionary 

trajectories (Figure 3.2g) of an evolving P. aeruginosa population. However, these 

relative fitness measurements do not fully explain the sustained cooperative growth of 

the evolved population. While even the psdR mutant was susceptible to subsequent 

invasion by psdR1 ΔlasR mutants, it is plausible that it would tolerate a higher 

proportion of cheaters, thereby maintaining high population growth in cooperative 

growth environments. 

 

3.3.6 Cheater-load  

To finally determine the effect of increasing fractions of cheaters on the mean 

group fitness of the entire population, or cheater-load, we again used defined co-

culture experiments in caseinate medium. We varied the initial frequencies of an 
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obligate cheater, ΔlasR or psdR1 ΔlasR, with respect to the cooperating parent strain, 

wild-type or psdR1, respectively, and quantified total population growth after 24 h. 

As expected, we found the burden of cheaters was significantly lower for the psdR1 

mutant compared with the wild-type. Significant decreases in population productivity 

in the psdR1 background did not occur until the cheater was at a frequency of 0.75 or 

greater, compared to 0.25 for the wild-type (Figure 3.6). This result demonstrated that 

the psdR1 mutation helps stabilize cooperative, proteolytic growth as long as obligate 

cheaters are not the majority.   

 

Figure 3.6 Cheater-load. Cheater-load expressed as relative growth yield of the 

entire population. Co-cultures of a ΔlasR mutant cheater and its wild-type parent 

(filled bars), and of a psdR1 ΔlasR double mutant cheater and its psdR1 single mutant 

parent (empty bars) were grown for 24 h in caseinate medium. Starting cheater 

frequencies are indicated on the horizontal axis. Growth yield of each parent strain 

culture without cheater is set to 100%. Means and SEM are shown (n = 3). * Denotes 

significant difference from respective parent strain without cheater as determined by 

unpaired t-test (p < 0.05). 

 

3.4 Discussion 

 In this paper, we identified and characterized a mechanism that helps 

transiently stabilize cooperative behavior in the QS pathway of the opportunistic 

pathogen P. aeruginosa. Growth in the QS-dependent cooperative environment 

described here strongly selects for non-social mutations that increase absolute fitness, 

thereby leading to increased tolerance to cheaters. Such adaptive mutation has been 



70 

 

 

described in other microbial systems. Morgan et al. theoretically and experimentally 

showed that siderophore-producing populations of Pseudomonas fluorescens grown 

under iron-limiting conditions cannot be invaded by non-producing mutants (Morgan 

et al 2012). The authors proposed that this occurred because the numerically 

dominant cooperators had a greater chance of obtaining a beneficial mutation that 

could sweep through the population. However, the underlying mutation was not 

identified. In a related study, Waite and Shou (Waite and Shou 2012) engineered a 

system with obligatory mutualistic cooperation between two non-mating yeast strains. 

The addition of an obligate cheater strain that exploits a common good shared 

between the two mutualistic cooperators lead to an adaptive race to either preserve 

cooperation or fail through population collapse. In the cases where cooperation was 

preserved, the cooperating subpopulation acquired a beneficial mutation that helped 

purge the cheater phenotype from the population. Here, the genetically engineered 

nature of the cooperative system raised questions about its relevance. 

Our in vitro evolution experiments were initiated with pure cultures of wild-

type bacteria. Under these conditions, there was essentially no adaptive race between 

cooperators and cheaters initially, because the non-social adaptation emerged first and 

quickly dominated the population. Of course, these mutants with non-social 

adaptations were then subject to invasion by cheaters that also carry the adaptation. It 

is possible that an adaptive race between these two evolved genotypes would 

eventually result in a second non-social mutation that further sustained cooperative 

growth, consistent with previous work on long-term microbial adaptation (Wiser et al 

2013). This stochastic scenario may explain why we observed a collapsing population 

in only one out of five in vitro evolution experiments (Figure 3.2b-f). Genome 

sequencing of late isolates beyond day 12 would be required to confirm this notion. 

As in the study by Waite and Shou, we found that in defined co-cultures, non-social 

adaptation conferred resistance to cheaters with an otherwise wild-type background 

(Waite and Shou 2012). However, in contrast to Waite and Shou, evolved cheaters 

were still able to invade their cooperating parent strains. Our result is plausible in that 

cooperators, no matter how evolved, inevitably divert a portion of their resources into 
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the secretion of public goods, resulting in an inherent growth disadvantage compared 

with non-producing strains.  

An increase in the absolute fitness of P. aeruginosa during proteolytic growth 

was realized through a loss-of-function mutation in the transcriptional repressor 

PsdR, which in turn increases intracellular dipeptide transport and processing. This 

adaptation suggests that QS-dependent extracellular proteolysis is not growth-rate 

limiting during in vitro evolution, at least not exclusively. Presumably, proteolysis is 

only limiting during an initial lag-period at the beginning of each growth cycle in 

caseinate medium. Abundant protease secretion during this period may lead to an 

excess in proteolytic break-down products that await uptake and processing later in 

growth. Here, psdR mutants would benefit. This effective separation in cooperative 

and non-cooperative selective targets during QS-dependent in vitro evolution of P. 

aeruginosa is illustrated in Figure 3.7. The psdR mutation proportionally increased 

the growth rates of cooperators and cheaters in co-culture, because the psdR lasR 

mutant showed the same relative fitness in psdR mutant co-culture as did the lasR 

mutant in wild-type co-culture (Fig. 5b). This general impact on growth is 

nevertheless sufficient to explain its cooperation-stabilizing effect during in vitro 

evolution: Mixed cooperator/cheater populations deficient in PsdR reach saturation 

faster than those with functional PsdR and are consequently more robust to cycles of 

dilution and regrowth.  

 

Figure 3.7 Targets of selection during P. aeruginosa QS-dependent in vitro 

evolution. Cooperative (left) and non-cooperative (right) targets of selection are 



72 

 

 

illustrated in this schematic model. QS-controlled public goods, specifically 

extracellular proteases (red) that degrade polypeptides outside the cell (chains of 

yellow circles, each of which represent individual amino acids), constitute the 

cooperative target. PsdR-mediated repression of genes (green) coding for proteins 

(pink) that facilitate the uptake (DppA3) and intracellular processing (MdpA) of 

dipeptides constitutes the non-cooperative target. Temporal separation of these 

selective targets likely accounts for the evolutionary dynamics observed in this study. 

 

The high number of independent psdR mutations during in vitro evolution was 

a surprise, raising the possibility that this locus is a mutational hot spot. However, this 

notion is not supported by the analysis of published P. aeruginosa genomes. Out of 

18 genomes in the NCBI database, 17 contain a psdR homologue with 99% or greater 

identity, nine of which show 100% identity (Altschul et al 1990) 

(http://blast.ncbi.nlm.nih.gov/). This ubiquity and sequence conservation implies that 

a functional PsdR is likely necessary for the evolutionary success of P. aeruginosa in 

its natural environment, although the situation may be different for other 

Pseudomonas species with dpp operons. P. protegens Pf-5 (formerly P. fluorescens) 

contains a truncated, presumably inactive psdR allele, while several other 

Pseudomonas spp. do not carry psdR at all (Kiely et al 2008). The maintenance of a 

functional PsdR in natural P. aeruginosa isolates suggests that proteolysis may limit 

growth more often than subsequent peptide processing, or that PsdR activity may be 

modulated through a natural ligand and derepression would sufficiently increase 

dipeptide metabolism. PsdR is a Mer-type regulator with a helix-turn-helix DNA-

binding domain and a cupin sensor domain that has the potential to respond to a 

variety of environmental stimuli (Brown et al 2003, Kiely et al 2008).  

A second, beneficial effect of the psdR mutation was that it was able to 

promote cooperative growth near wild-type levels when paired with a partial loss-of-

function lasR allele, lasR5. This mutation in lasR, by itself, conferred intermediate 

levels of proteolysis and proteolytic growth in culture. Thus, the random emergence 

of certain lasR mutations, particularly in an adapted parent, is not detrimental to 

cooperative growth. Although lasR5 affects LasR-dependent phenotypes other than 

caseinolysis (Sandoz et al 2007), the precise impact on the entire regulon is not clear. 

The lasR5 mutation substitutes a valine for a nonconserved alanine at position 228 in 
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the DNA-binding domain of LasR, presumably weakening, but not completely 

eliminating, interaction with target promoters.   

Given the properties of the lasR5 mutation, one might expect a HC to exhibit 

lower relative fitness than a fully lasR-deficient cheater when paired with a 

cooperator. We observed this difference with strains harboring the psdR1 mutation, 

but not with those harboring functional PsdR. A possible explanation for this 

discrepancy could be the large size of the lasR-controlled QS-regulon and the 

difference in the relative burdens it imposes on cooperators with and without the psdR 

mutation. Potential fitness differences between lasR5 and ΔlasR alleles stemming 

from the variable costs of cooperative extracellular proteolysis (and other LasR-

dependent behaviors) could be effectively masked by PsdR-mediated repression of 

dipeptide uptake and processing, and only manifest after this rate-limiting step has 

been removed through mutation of psdR. Thus, genetic context may be important 

when considering the relative fitness contributions from a cooperative allele. This 

idea is also supported when interpreting our results in the framework of kin selection 

theory.  

Kin selection theory, encapsulated in Hamilton’s rule, states that cooperation 

evolves if rb – c > 0, where b is the benefit of cooperation, c is the cost of 

cooperation, and r is the genetic relatedness between actors and recipients (Hamilton 

1964a, Hamilton 1964b). It has been shown that the cost c of bacterial cooperation 

may decrease with increased resource supply (Brockhurst et al 2008). Analogously, 

psdR mutation appears to alleviate c by increased use of the products of protease 

digestion. This reduction in c does not require a direct mechanism, i.e. a direct effect 

of psdR on the cooperative trait itself, but merely reflects the context in which the 

behavior is performed. Given the non-linearity of fitness effects in our system 

(including a synergistic effect from QS induction and a saturating effect from 

protease secretion), further analysis of frequency-dependent relative fitness in the 

context of a generalized form of Hamilton’s rule would be required to precisely 

quantify b and c (Smith et al 2010).  
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More broadly, cycles of non-social, genetic adaptation and cheating are 

unlikely to maintain cooperative behavior in the long-term as environmental 

adaptation is expected to eventually reach an optimum. Non-social adaptation through 

mutation likely works in concert with other mechanisms that stabilize cooperative 

behavior, and may be particularly beneficial early in the evolution of cooperative 

behavior. The generally high phenotypic plasticity of present-day microbes with 

unpredictable life histories would appear sufficient for coping with most changes in 

their natural environment. In microbes, other stabilizing mechanisms include positive 

assortment of cooperating individuals through, for example, colonial growth (Fletcher 

and Doebeli 2009), the linkage of cooperative behaviors with other essential traits 

through pleiotropy (Foster et al 2004), and metabolically prudent regulation of public 

goods such that their production is only initiated if the limiting nutrient is not also a 

building block of the good (Mellbye and Schuster 2014, Xavier et al 2011). It seems 

that pleiotropic control of extracellular proteolysis and subsequent intracellular 

metabolism via QS would be a reasonable strategy to curtail cheating, and a recent 

investigation using a similar in vitro evolution system has provided support for this 

notion (Dandekar et al 2012). QS cheaters that do not contribute to proteolysis would 

be punished with reduced nutrient uptake and processing. We found that lasR indeed 

controls mdpA transcription in rich medium (Schuster et al 2003), but not in the 

minimal medium used in this study. Of course, the relative fitness advantage of lasR 

mutant cheaters is consistent with the latter. Even if pleiotropic control played a role 

here, our results suggest that QS regulation of mdpA or related genes would be 

subject to strong counterselection whenever dipeptide uptake and processing was 

growth-rate limiting.  

In summary, we have shown that non-social, genetic adaptation to a new 

growth environment that requires QS can help maintain cooperative behavior in P. 

aeruginosa populations. The adapted population is still vulnerable to invasion by 

cheaters that also carry the adaptation. However, a higher intrinsic growth rate affords 

higher tolerance to these cheaters, and some lasR mutations even contribute to 

cooperative growth. 
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3.6 Supplementary Material 

Table S3.4 Primers used in this study.   

Primer Name Sequence Region amplified
a
 Source 

Mutant Construction   

    del_lasR_1  5’-

N6GAGCTCACAGACGTCTGCGC

CTCGG-3’ 

-396 (lasR) (Wilder et 

al 2011) 

    del_lasR_4 5’-

N6AAGCTTCGCCTCCAGCGTACA

GTCG-3’ 

+1456 (lasR) (Wilder et 

al 2011) 

    PA4499_KO_1 5’-

N6GAGCTCACGCTCGACGTGGR

GGTGCTC-3’ 

-557 (psdR) This study 

    PA4499_KO_2 5’-

CAGGCGTTCGCCGATGCGGTCT

AC-3’ 

-386 (psdR) This study 

    PA4499_KO_3 5’-

CGTAGACCGCATCGGCGAACGC

CTGGCCGAGTTCTCCTACGTCCT

GTCCGGG-3’ 

+6 (psdR) This study 

    PA4499_KO_4 5’-

N6TCTAGATCTGGTAGCGGCTCA

GGATGAAAGGC-3’ 

+1478 (psdR) This study 

Sequencing Primers    

    PA1486_forward 5’-GGTGGTGATGGAGACCTT-3’ +371 - +528 

(PA1486) 

This study 

    PA1486_reverse 5’-

CTTGAACTCGTGACAGATCAT-

3’ 

    PA2875_forward 5’-CGGTATCCGTCGGTTCAGC-3’ +970 - +859 

(PA2875) 

This study 

    PA2875_reverse 5’-CGACCAGGCGGACCCCAC-3’ 

    PA2976_forward 5’-GCGAGGAACGCAGCGAACG-

3’ 

+1552 - +1761 

(PA2976) 

This study 

    PA2976_reverse 5’-TCGTCCTGCTCGTCCTGCTC-

3’ 

    PA2727_forward 5’-CAGCGACCCGTCCCAGGAG-

3’ 

+2850 - +3034 

(PA2727) 

This study 
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 Table S3.4 (continued) 

    PA2727_reverse 5’-GCTTGTGTACCACTTCCAGG-

3’ 

    PA3317_forward 5’-GAGAGCCTGGTGATCGAGG-

3’ 

+475 - +673 

(PA3317) 

This study 

    PA3317_reverse 5’-GAAATGCCTGCGGTCCGTC-3’ 

    PA3749_forward 5’-

TACGACAGCATCGGCTACTGG-

3’ 

+343 - +580 

(PA3749) 

This study 

    PA3749_reverse 5’-ACTCACGGAACTGCTCCTCG-

3’ 

    PA4606_forward 5’-GCGGTCTGGGTGAGTTGCTC-

3’ 

+1111 - +1289 

(PA4606) 

This study 

    PA4606_reverse 5’-

ATGCTGATGGAGTCCTTCGTGG-

3’ 

    PA5425_forward 5’-CGACGGCGACCACCTGAGC-

3’ 

+823 - +949 

(PA5425) 

This study 

    PA5425_reverse 5’-

AGCCAGTTCGAGAACCACTTGC

-3’ 

    PA1765_forward 5’-CATGGGCAGGAGCTTCTACG-

3’ 

+792 - +989 

(PA1765) 

This study 

    PA1765_reverse 5’-

ATGAAAGCGTAGCGATACCAGG

-3’ 

    PA2278_forward 5’-GACCTTCGTCGTCGGTGGC-3’ +666 - +869 

(PA2278) 

This study 

    PA2278_reverse 5’-

TACATGCCCAGCGAGAAGACC-

3’ 

    PA5024_forward 5’-

TGCTGATGGGCCTGTACATCCT

GA-3’ 

+302 - +739 

(PA5024) 

This study 

    PA5024_reverse 5’-

TTGTGTTCGCCGCTTATGCCTGT

-3’ 

    PA3760_forward 5’-

TGCCGGTGGAAGAAAACCCAGC

A-3’ 

+1865 - +2174 

(PA3760) 

This study 

    PA3760_reverse 5’-

TCGTTGGTGCCGATGGAGAGGA

A-3’ 

    PA5100_forward 5’-

ATTCAGCAGGGCATTCAGCAGC

G-3’ 

+1003 - +1434 

(PA5100) 

This study 

    PA5100_reverse 5’-

GGGGTGGCCAATGCCTTCGATT

T-3’ 

    PA4499_forward 5’-CGACCAAGACCCATTGCCTG-

3’ 

+467 - +605 

(psdR) 

This study 

    PA4499_reverse 5’-ACGTTTGCCTGACAGGATGG-

3’ 
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 Table S3.4 (continued)   

    PA2408_forward 5’-GCCTGCCGCTCACCGTCG-3’ +281 - +399 

(PA2408) 

This study 

    PA2408_reverse 5’-CATGCCGACCCGTTCCAGG-3’ 

    PA1430_full_F 5’-GTGCCGGATATCGGGTGCCG-

3’ 

-68 - +764 (lasR) This study 

    PA1430_full_R 5’-

AGGGCAAATTACCGATCGCCAG

C-3’ 

    PA4499_full_F 5’-AACACCCACGGTCATTTGT-3’ -182 - +685 

(psdR) 

This study 

    PA4499_full_R 5’-

GATTCGCTGATGCCGAAATTAA

G-3’ 

    PA2408_full_F 5’-

CCGGCAAGTACGAGGAAGAA-3’ 

-124 - +775 

(PA2408) 

This study 

    PA2408_full_R 5’-AGTTGTTCGTAGGCGTCGT-3’ 

    Intergenic1_F 5’-

GCGAAGCGCTCCGTAAGGTTTC

A-3’ 

1467321 - 

1467775 

This study 

    Intergenic1_R 5’-

ATCCCGGCCGACTGGAAAGACA

A-3’ 
aRegion amplified is given in relation to the gene’s start site. In the case of mutant construction primers, only the primer 

annealing position is given. The gene name or number is indicated in parentheses. In the case of intergenic regions, 
genome position is given. 
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Figure S3.8 Absolute fitness in pure culture. Absolute fitness of individual strains 

after (a) 12 h and (b) 24 h of growth in caseinate medium. Bars represent means (n = 

3). * Denotes significant differences (one-way ANOVA, Tukey’s multiple 

comparisons test, α = 0.05). Results of similar magnitude are grouped for clarity. 
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Abstract 

In the opportunistic pathogen Pseudomonas aeruginosa, quorum sensing (QS) 

via acyl-homoserine lactone (AHL) signals coordinates virulence gene expression. 

AHL signals must reach a critical threshold before enough is bound by cognate 

regulators LasR and RhlR to drive transcription of target genes. In addition, three 

anti-activator proteins, QteE, QscR, and QslA, sequester QS regulators to increase the 

threshold for induction and delay expression of QS target genes. It remains unclear 

how multiple anti-activators work together to achieve the quorum threshold. Here, we 

employed a combination of mutational, kinetic, phenotypic, and transcriptomic 

analysis to examine regulatory effects and interactions of the three distinct anti-

activators. We observed additive, combinatorial effects on QS gene expression. As 

measured by reporter gene fusion, individual deletion of each anti-activator gene 

increased lasB expression and QS-controlled virulence factor production. Deletion of 

qslA in combination with the deletion of any other anti-activator gene resulted in the 

greatest increase and earliest activation of lasB gene expression. RNA-seq of the 

previously uncharacterized QslA and QteE regulons revealed overlapping, yet distinct 

groups of differentially expressed genes. Simultaneous inactivation of qteE and qslA 

had the largest effect on gene expression with 999 genes induced in the double mutant 

and 798 genes repressed in the double mutant vs. wild-type. We found that LasR and 

RhlR-activated QS genes form a subset of the genes induced in the qteE, qslA, and 

double mutant. The activation of almost all of these QS genes was advanced from 

stationary phase to logarithmic phase in the qteE qslA double mutant. Taken together, 

our results identify additive effects of anti-activation on QS gene expression, likely 

via LasR and RhlR, but also suggest QS-independent effects.  
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4.1 Introduction 

Bacterial cell-cell signaling is a widespread mechanism of communication, 

allowing coordination of behavior among cells in a population (Asfahl and Schuster, 

2017). This intercellular signaling is generally termed quorum sensing (QS), but the 

signaling mechanisms and behaviors regulated by QS in different bacteria are diverse 

(Schuster et al., 2013; Cook and Federle, 2014; Mashburn and Whiteley, 2005). The 

environmental bacterium and opportunistic human pathogen Pseudomonas 

aeruginosa has been established as a premier model system for studying QS 

regulation via diffusible acyl-homoserine lactone (AHL) signals. Hundreds of target 

genes, including many virulence genes, are controlled through a hierarchy of two 

complete, interconnected LuxI/R-type AHL circuits (Hentzer et al., 2003; Schuster et 

al., 2003; Wagner et al., 2003). The LasI synthase produces the N-3-oxo-dodecanoyl-

homoserine lactone (3OC12-HSL) signal received by the LasR receptor-regulator (an 

‘R-protein’), and the RhlI synthase produces the N-butanoyl-homoserine lactone (C4-

HSL) signal received by the RhlR receptor-regulator (Schuster and Greenberg, 2006). 

P. aeruginosa also harbors an orphan LuxR-type regulator QscR that binds and 

responds to 3OC12-HSL, as well as the PQS signaling system, both of which 

contribute to virulence gene regulation (Chugani et al., 2001; Diggle et al., 2006; Lee 

et al., 2006b; Lequette et al., 2006; Lintz et al., 2011; Chugani and Greenberg, 2014).  

 LasR and RhlR function as transcriptional activators by binding to conserved 

sequence elements upstream of target promoters. Most QS target genes are activated 

at the beginning of stationary phase in batch culture (Schuster et al., 2003). QS signal 

accumulation is necessary but not sufficient for QS gene induction. Additional 

regulatory inputs, such as the general stress response, are required for expression 

(Schuster et al., 2004). Serving as an opposing force to QS activation in the presence 

of signal, anti-activation of QS components can effectively delay the QS response 

(Hense and Schuster, 2015). Anti-activation was originally discovered in 

Agrobacterium tumefaciens, where a TraM anti-activator protein binds the LuxR-type 

receptor TraR, suppressing AHL-QS activation and transcription of TraR target genes 

(Fuqua et al., 1995; Hwang et al., 1995). Anti-activator proteins bind and destabilize 

LuxR-type regulators (Piper and Farrand, 2000; Siehnel et al., 2010; Fan et al., 2013), 
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imposing constraints on the activation threshold and allowing the timing and 

magnitude of QS response to be tuned. Deletion of A. tumefaciens TraM activates QS 

at a much lower cell density (Hwang et al., 1995), possibly representing constitutive 

activation.  It has therefore been proposed that anti-activation could prevent 

intracellular self-activation of receptors, also termed “short-circuiting” (Goryachev et 

al., 2005). In this model, the stoichiometry of LuxR-type receptors with anti-

activators determines the induction threshold. More generally, anti-activation tunes 

the induction threshold to optimize the benefits attained from costly secretions (Pai et 

al., 2012; Gupta and Schuster, 2013). 

 

Figure 4.1 Anti-activators responsible for suppressing R-protein (R) activation 

in P. aeruginosa. 

 

Three anti-activator proteins that work to suppress QS-activation have been 

identified in P. aeruginosa thus far: QteE, QscR, and QslA (Figure 4.1). The orphan 

LuxR homolog QscR (PA1898, qscR) has been observed in the formation of 

heteromultimeric complexes with both LasR and RhlR (Ledgham et al., 2003; Lintz 

et al., 2011). QscR suppresses key gene clusters of the quorum regulon such as hcn 

(hydrogen cyanide biosynthesis) and phz (phenazine biosynthesis)(Chugani et al., 

2001). Microarray analysis shows that qscR represses 329 genes, although it also 

activates a small, separate set of target genes (Lequette et al., 2006). The structurally 

unrelated anti-activator protein QteE (PA2593, qteE) may also form a heterodimer 

with LasR that prevents signal binding and destabilizes LasR (Siehnel et al., 2010). 

The authors of that study also found that in addition to LasR, QteE can reduce RhlR 
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QS-transcriptional activity independently, as well as destabilize the RhlR protein 

(Siehnel et al., 2010). A third protein QslA (PA1244, qslA) acts as a potent anti-

activator of LasR through heterotrimer formation that can dissociate previously 

formed LasR-DNA complexes (Seet and Zhang, 2011). This effect is achieved 

through direct binding of QslA to the ligand-binding-domain (LBD) of LasR in a 2:1 

ratio, obscuring the dimerization interface and thereby preventing activation (Fan et 

al., 2013). Despite the contributions of these studies, the roles of individual anti-

activators and the scope of their collective influence on the QS induction threshold 

are not fully understood. It is unclear in an evolutionary context why P. aeruginosa 

would maintain multiple similarly functioning anti-activator proteins. Gupta and 

Schuster found that mutations in either qteE or qscR can produce virtually identical 

phenotypes under certain conditions (Gupta and Schuster, 2013). However, 

considering the inherent metabolic constraints on superfluous protein production in 

bacteria, individual anti-activators are unlikely to have equivalent effects on the QS 

regulon. At 191, 238, and 114 amino acids long, respectively, QteE, QscR, and QslA 

are not structurally related and may bind R-proteins differently (Siehnel et al., 2010; 

Lintz et al., 2011; Fan et al., 2013). In consideration of this evidence together, several 

important open questions remain. Why does P. aeruginosa maintain multiple anti-

activators? Does deletion of multiple anti-activators produce a stronger affect than 

loss of a single gene, and how do different anti-activators affect the QS regulon? 

Deletion of any single anti-activator produces a general increase in QS activation 

(Chugani et al., 2001; Siehnel et al., 2010; Seet and Zhang, 2011; Gupta and Schuster, 

2013), indicating their functions are not completely redundant. Interactions between 

anti-activators are possible, a scenario that could produce additive or synergistic 

effects. Given current mechanistic information, it is plausible that most, if not all of 

the genes affected by anti-activator deletions are those activated by LasR and RhlR.  

Here we use mutational analysis of anti-activator genes in combination with 

phenotypic measurements, gene induction kinetics, and transcriptome profiling to 

address these questions. 
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4.2 Materials and methods 

4.2.1 Strains and culture conditions 

Pseudomonas aeruginosa PAO1 was used as the wild-type isogenic parent in 

mutant construction and as the control strain in all experiments. PAO1 and the 

isogenic, markerless ΔqteE knockout were obtained from R. Siehnel (Univ. 

Washington, USA) (Siehnel et al., 2010). See Table 4.1 for a comprehensive list of 

strains and plasmids. The ΔqslA and ΔqslA ΔqteE mutants were created using a 

pEX18-based suicide vector (Hoang et al., 1998). We subcloned an in-frame deletion 

constructed by splicing-overlap-extension PCR (SOE-PCR) into pEX18Gm for use in 

allelic exchange (Horton, 1995; Hoang et al., 1998).  The PAO-R3 (qscR-Gm
R
) strain 

was obtained from S. Chugani (Univ. Washington, USA)(Chugani et al., 2001). PAO-

R3 genomic DNA was used to introduce the qscR-Gm
R
 allele into PAO ΔqteE qscR-

Gm
R
 and PAO ΔqteE ΔqslA qscR-Gm

R
 strains via whole-genome transformation and 

subsequent homologous recombination of the qscR-Gm
R
 fragment (Choi et al., 2006). 

All routine and experimental cultures were carried out at 37°C. We grew strains on 

Lennox LB agar solid media or with shaking at 250 rpm in Lennox LB broth buffered 

with 50 mM 3-(N-morpholino)-propanesulfonic acid (MOPS), pH 7.0, for routine 

propagation. When necessary, plates were supplemented with 100 µg/ml tetracycline 

or 100 µg/ml gentamicin for the selection of marked strains. Reporter plasmids were 

maintained using 200 µg/ml carbenicillin in routine cultures, but not in experimental 

cultures. When necessary, cells were washed, resuspended, and diluted in M9 

minimal medium with no carbon added (M9-salts)(Gupta and Schuster, 2013). For 

inoculation of all experimental cultures, we modified a previously described (Siehnel 

et al., 2010; Gupta and Schuster, 2013) recursive growth-dilution preculture scheme 

to effectively dilute carryover GFP-fluorescence from previously activated LasR and 

its associated PlasB-gfp reporter activity. First, fresh colonies from plates were 

suspended in M9-salts, optical density was measured at 600 nm (OD600) and then 

diluted to allow initial inoculation of 4 ml LB-MOPS at OD600=0.0001 in glass 

culture tubes. After incubation at 37°C with shaking, cells were harvested in log 

phase (OD600 < 0.2), washed in M9-salts, and re-diluted into 4 ml fresh LB-MOPS at 

OD600=0.0000001. After another incubation at 37°C with shaking, cells were again 



90 

 

 

harvested in log phase (OD600 < 0.2), washed in M9-salts, and then diluted to 

compose experimental inocula. For transcriptional reporter assays, endpoint 

phenotypic assays, and transcriptomic analysis, M9 minimal medium was 

supplemented with 0.5% (w/v) casamino acids (CAA) as the sole carbon source 

(Gupta and Schuster, 2013). CAA medium serves as a semi-defined rich medium in 

which all required amino acids are present. Growth experiments conducted in the 

plate reader were terminated at 800 min due to evaporation in this configuration and 

corresponding increased variability beyond this time point. All experiments were 

performed using a minimum of three biological replicates with independently 

prepared inocula. 

Table 4.1 Bacterial strains and plasmids.   

Strain or plasmid Relevant properties Reference or origin 

Pseudomonas aeruginosa 

     PAO1 Wild-type, PAO1 UW library strain (Jacobs et al., 2003) 

   PAO ΔqteE Markerless qteE deletion mutant, in 

PAO1 UW background; 'qteE' 

(Siehnel et al., 2010) 

   PAOR3  PAO1 derivative; qscR-Gm
R
, null 

mutant marked with Gm cassette 

inactivating qscR; 'qscR' 

(Chugani et al., 

2001) 

   PAO ΔqslA PAO1 derivative; ΔqslA, unmarked 

in-frame deletion from amino acid 

6 to 111 ; 'qslA' 

This study 

   PAO ΔqteE ΔqslA PAO1 ΔqteE derivative; unmarked 

double-null deletion mutant in 

which both qteE and qslA harbor 

in-frame deletions; 'qteE qslA' 

This study 

   PAO qscR-Gm
R
 ΔqslA PAOR3 derivative; marked double-

null mutant which harbors both 

ΔqslA and qscR-Gm
R
 alleles; 'qscR 

qslA' 

This study 

   PAO ΔqteE qscR-Gm
R
  PAO1 ΔqteE derivative; marked 

double-null mutant harbors both 

ΔqteE and qscR-Gm
R
 alleles; 'qteE 

qscR' 

This study 

   PAO ΔqteE ΔqslA qscR-Gm
R
  PAO1 ΔqteE ΔqslA derivative; 

marked triple-null mutant harbors 

ΔqteE, ΔqslA, and qscR-Gm
R
 

alleles; 'qteE qslA qscR' 

This study 

   DA6 PAO1 derivative; ΔlasR ΔrhlR, 

unmarked double-null deletion 

mutant in which both lasR and rhlR 

harbor in-frame deletions; 'lasR 

rhlR' 

(Siehnel et al., 2010) 

Escherichia coli 

  



91 

 

 

       Table 4.1 (continued)   

   DH5α F
-
 Φ80dlacZΔM15 Δ(lacZYA-argF) 

U169 deoR recA1 endA1 

hsdR17(rK
-
, mK

+
) phoA supE44 λ

-
 

thi-1 gyrA96 relA1 

Invitrogen 

   SM10 thi-1 thr leu tonA lacY supE 

recA::RP4-2-Tc::Mu Km
R
 λpir 

(Simon et al 1983) 

Plasmids 

     pEX18Gm Conjugative suicide plasmid; Gm
R
 (Hoang et al 1998) 

   pEX18Gm.ΔqslA pEX18Gm with ΔqslA containing 

an in-frame deletion from amino 

acid  

This study 

   pProbeAT Broad-host-range vector with a 

promoterless gfp, Cb
R
 

(Miller et al., 2000) 

   pRG13 240bp lasB promoter cloned into 

pProbeAT 

(Gupta et al., 2013) 

 

4.2.2 GFP-transcriptional reporter assays 

A plasmid-borne fusion of the QS-controlled lasB (PA3724) promoter 

sequence (240 bp) and GFP was used to assess promoter activity in our collection of 

mutants. We used fluorescence spectroscopy for detection as previously described 

(Gupta and Schuster, 2013). Briefly, pRG13 (PlasB-gfp) and pProbeAT (promoterless 

gfp negative control) were individually introduced into each strain background. 

Following our recursive growth-dilution scheme, precultured cells were inoculated at 

a starting OD600=0.01 in 200 µL of CAA medium in black-walled (fluorescence) 96-

well plates (Greiner bio-one, Cat. No. 655090). Cell density (absorbance at 600 nm) 

and fluorescence (GFP, λexcitation=480 nm, λemission=535 nm, gain setting=60) were 

measured in 15 min intervals as cultures were incubated with shaking at 37°C in a 

Tecan Infinite (M200) multifunction plate reader. PlasB-gfp promoter activity 

(reported as lasB expression) for individual strains was corrected for background 

fluorescence by subtracting the OD-normalized fluorescence of a strain harboring 

pProbeAT from the OD-normalized fluorescence of the corresponding strains with 

the active reporter for each time point. PlasB-gfp expression rates were calculated as 

the time derivative of GFP fluorescence over OD600 (dGFP/dt/OD600) over a 30 

minute period as described previously (Zaslaver et al., 2006; Gupta and Schuster, 

2013). Data were smoothed by reporting the mean of 3 consecutive measurements. 
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4.2.3 Pyocyanin production assay 

Pyocyanin production of individual strains was assessed essentially as 

described previously (Essar et al., 1990; Mellbye and Schuster, 2014). Starting with 

our recursive dilution scheme, we inoculated each precultured strain into 5 ml CAA 

medium at a starting OD600=0.01 and allowed cultures to grow with shaking at 37°C 

for 18 h (stationary phase). Pyocyanin was extracted from 5 ml supernatant using 3 

ml chloroform, followed by extraction of pyocyanin from chloroform using 1 ml 0.2 

M HCl. After separation of the acidified pyocyanin from the top of the mixture, 

ABS520 of 200 µl aliquots was measured in a Tecan plate reader and reported as fold-

change vs. wild-type production.  

 

4.2.4 Elastase activity assay 

Elastolytic activity of stationary phase supernatants was determined using the 

elastin congo red (ECR) assay as previously described (Diggle et al., 2002), but 

modified to allow high throughput. Starting with our preculture scheme, we 

inoculated each strain into 800 µl CAA medium at a starting OD600=0.01 and allowed 

cultures to grow at 37°C with shaking in 96-well deep-well blocks (VWR North 

America, Cat. No. 82006-448) covered with Breath Easy® sealing membranes 

(Diversified Biotech, Cat. No. BEM-1). After 18 h, OD600 was measured in a Tecan 

plate reader, and separately cells were pelleted at 4000 rpm for 10 min, followed by 

sterile filtration of 250 µl supernatant in AcroPrep
TM

 96-well filter plates (Pall Life 

Sciences, Cat. No. 5045). Forty µl cell-free supernatant was combined with 360 µl 

ECR buffer (100 mM Tris, 1 mM CaCl2, pH 7.5) containing 20 mg/ml ECR (Sigma-

Aldrich Co., Cat. No. E0502) in sealed 96-well deep-well blocks and incubated at 

37°C with shaking for 3 h. After pelleting insoluble ECR at 4000 rpm for 10 min, 200 

µl supernatant was transferred to a 96-well plate for measurement of absorbance at 

495 nm in a Tecan plate reader. Elastolytic activity of supernatants is reported as 

fold-change vs. wild-type activity.   
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4.2.5 RNA sequencing transcriptome generation  

RNA sequencing (RNA-seq) was carried out on a subset of 5 of our strains; 

WT, lasR rhlR, qteE, qslA, and qteE qslA were each examined at 2 time-points with 3 

biological replicates made from separate preparations on separate days, producing a 

total of 30 samples. Starting with our recursive dilution scheme, we inoculated each 

strain into 4 ml CAA medium at a starting OD600=0.01 and incubated cultures with 

shaking at 37°C, periodically measuring OD600 to monitor growth. Approximately 

2×10
9
 cells were harvested at OD600 values of 0.2 (log phase) and 1.6 (early stationary 

phase), immediately preserved using RNAprotect Bacteria Reagent (Qiagen, Cat. No. 

76506), pelleted by centrifugation, and frozen at -80°C until RNA extraction. Total 

RNA was isolated as previously described (Schuster et al., 2003) using sonication and 

column-based purification (RNeasy Mini Kit, Qiagen, Cat. No. 74106), followed by 

treatment with DNase I (RNAse-free, New England Biolabs, Cat. No. M0303S), and 

RNeasy-based purification. Total RNA was subjected to rRNA-depletion using the 

Ribo-Zero
TM

 protocol (Illumina Inc.), followed by cDNA synthesis and indexed, 

stranded library preparation using the WaferGen protocol on the robotic Apollo 

instrument (WaferGen Bio-systems Inc.). All 30 sample libraries were then pooled 

and evenly multiplexed into a single lane of paired-end 2×100 bp sequencing on the 

HiSeq3000 instrument (Illumina Inc.). cDNA libraries were prepared and sequenced 

at the Center for Genome Research and Biocomputing at Oregon State University 

(Corvallis, Oregon, USA). Sequences were separated according to index and filtered 

of contaminating adapter content bioinformatically. Raw .FASTQ files (containing 

sequence “reads”) were inspected for general quality (per base sequence quality > 

Q28) and sequence contamination using FastQC 

(http://www.bioinformatics.babraham.ac.uk), confirming no further pre-processing 

was necessary.  

 

4.2.6 Transcriptome data analysis 

We used the Burrows-Wheeler aligner (BWA-MEM; see ref. (Li and Durbin, 

2010)) to map processed reads to the P. aeruginosa PAO1 reference genome ORFs 
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(PAO1_107; available at http://www.pseudomonas.com), followed by optical-

duplicate removal and count matrix generation in samtools with default parameters 

(Li et al., 2009). rRNA, tRNA, and tmRNA ORFs (http://www.pseudomonas.com) 

were manually removed yielding a count matrix of 5622 genes × 30 samples that was 

then loaded into the RStudio statistical environment (https://www.rstudio.com). 

Differential expression analysis was carried out using the DESeq2 package under 

standard settings using each strain-growth phase combination as a factor level (Love 

et al., 2014). Hypothesis testing was carried out in DESeq2 using the Benjamini 

Hochberg adjustment for multiple comparisons and a false-discovery rate (FDR) 

α=0.05 with no high or low log2fold-change limits. Functional annotations were 

assigned using the most recent list of 22 predicted classes  produced using publicly 

available PAO1 COG mappings (http://www.pseudomonas.com). Absolute 

expression comparisons were made using the regularized log transformation (rlog) in 

DESeq2 (Love et al., 2014). Data were visualized using the Heatmapper webtool 

(Babicki et al., 2016), ClustVis webtool (Metsalu and Vilo, 2015) and ggplot package 

in RStudio (Wickham, 2009).      

 

4.3 Results 

4.3.1 lasB promoter activity among anti-activator mutants 

The effects of individual qteE, qscR, or qslA gene deletions on the induction 

of QS target genes have been examined by different research groups (Chugani et al., 

2001; Siehnel et al., 2010; Fan et al., 2013; Gupta and Schuster, 2013), but a direct 

comparison of their individual effects and the effects of multiple deletions on timing 

and magnitude of QS expression has not been made. We assembled a set of anti-

activator-null strains of PAO1 representing each possible combination of anti-

activator-null alleles (7 mutants total; see Table 4.1 for a comprehensive list of strains 

and plasmids used in this study) to allow comparisons of anti-activator effects. P. 

aeruginosa LasB-elastase is a well-described Las- and Rhl-responsive proteolytic 

virulence factor, making lasB promoter activity an appropriate proxy for QS gene 

induction in this context (Pearson et al., 1997). We recorded lasB promoter activity 

http://www.pseudomonas.com/
https://www.rstudio.com/
http://www.pseudomonas.com/
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through utilization of an established plasmid-borne PlasB-gfp (lasB) transcriptional 

reporter (Gupta and Schuster, 2013). We evaluated accumulation of PlasB-gfp-derived 

fluorescence during growth (Figure 4.2). All strains showed similar growth in CAA 

medium (Figure 4.2a). From these data, we also calculated specific expression rates 

(Figure 4.2c). The qteE and qscR single mutants showed 30- and 15-fold increases in 

maximum expression levels and rates (Figure 4.2a and c) compared to the wild-type. 

The qslA mutant only showed increases of roughly 7-fold in expression levels and 

rates. The qteE qscR double mutant registered values nearly identical to mutants 

harboring just a single one of these mutations, indicating a lack of additivity with 

these two anti-activators. However, with any other combination of deleted anti-

activator alleles (qteE qslA or qteE qscR), PlasB-gfp induction is increased further in 

both total expression levels and rates, with the triple anti-activator mutant showing a 

slightly lower increase (Figure 4.2b and c). The timing of induction only changed for 

our three strains showing the highest expression levels. qscR qslA, qteE qslA, and 

qteE qslA qscR mutants all showed PlasB-gfp-activation and rapid increases in 

expression rates starting at approximately 200 min, with all other mutants and the 

wild type showing activation occurring roughly 60-120 min later (Figure 4.2b, inset). 

In summary, all measurements of overall mutant PlasB-gfp expression levels and rates 

were higher in the mutants than the wild-type, with three groups emerging with 

similar profiles: the qslA mutant with the smallest increase in expression, the qteE, 

qscR, and qteE qscR mutants with moderate increases, and the qscR qslA, qteE qslA, 

and qteE qslA qscR mutants showing the highest expression.  

A closer look at the expression rates of the wild-type reveals a biphasic 

pattern with two distinct peaks (Figure 4.2c, inset) at approximately 310 and 500 min, 

likely corresponding to the sequential induction of the Las and Rhl QS systems, 

respectively (Gupta and Schuster, 2013). In all mutants except qslA, we observed a 

general shift in the relative expression rates to favor much higher expression rates 

during the initial, presumably Las-dependent, rate peak.  This induction pattern 

suggests that anti-activator proteins primarily target LasR rather than RhlR. 
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Figure 4.2 Effects of anti-activator gene deletion on PlasB-gfp expression kinetics. 

(a) Growth of strains in CAA medium. (b) PlasB-gfp expression levels. Expression 

levels are normalized to OD600. Inset has reduced y- and x-axes to emphasize 

expression timing. (c) PlasB-gfp expression rates. Time derivatives of expression 

levels are normalized to OD600. Inset has a reduced y-axis to emphasize expression 

rate peaks in the wild-type. In all panels, values represent means of three biological 

replicates.  Error bars indicate s.e.m. (n=3). 
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4.3.2 Elastase and pyocyanin production in anti-activator mutants 

To support our observations of differing effects of some anti-activator 

combinations on PlasB-gfp expression, we examined two characteristic QS phenotypes 

in P. aeruginosa, pyocyanin production and elastase activity in CAA stationary-phase 

cultures. Levels of pyocyanin produced by the wild-type rose only 2-fold over the 

lasR rhlR QS mutant and elastase activity was roughly equivalent between the two 

strains (Figure 4.3a and b; not significantly different, α=0.05). Elastase and pyocyanin 

production levels in the different anti-activator mutant combinations generally 

mirrored that observed with PlasB-gfp fusions. Single mutants produced intermediate 

levels, and the double mutants harboring a qslA deletion as well as the triple mutant 

produced the most. The qteE, qscR double mutant grouped together with most single 

mutants. Notably, the qslA mutant produced as much elastase as the other single 

mutants, but significantly less pyocyanin.   
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Figure 4.3 Effects of anti-activator gene deletion on QS phenotypes. (a) Elastase 

activity. (b) Pyocyanin production. Each assay was performed separately after 18 h 

growth in CAA medium. In both panels, values represent means of three biological 

replicates. Error bars indicate s.e.m. (n=3). Bars are grouped for clarity. Significant 

differences (*) in selected individual pairwise comparisons were determined using a 

two-tailed T-test (α=0.05). 

 

4.3.3 Identification of QteE and QslA regulons 

Having demonstrated anti-activator effects on QS phenotypes in addition to 

promoter activity dynamics of a QS gene, we sought to uncover the global scope of 

QS anti-activators with transcriptome profiling. We focused on qteE and qslA 

mutants, alone and in combination, which produced the most consistent additive 
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effects on gene expression based on our analysis above, and which had not been 

previously profiled. Using an RNA-seq-based transcriptomics approach, we identified 

all genes that were differentially expressed (DE, α=0.05) when mutants (qteE, qslA, 

qteE qslA) were compared to wild-type in both logarithmic and early stationary 

phase. Both single anti-activator mutants showed differential expression of hundreds 

of genes, with the qteE mutant showing 415 differentially expressed genes, and the 

qslA mutant showing roughly double that quantity at 770 genes (Table 4.2). We 

observed a synergistic effect of deletion of both anti-activators with the qteE qslA 

mutant differentially expressing a total of 1797 genes, corresponding to roughly 31 

percent of all P. aeruginosa genes. Consistent with a common functional role, the 

three different gene sets showed substantial overlap in both log and early stationary 

phase (Figure 4.4), and most genes affected by anti-activator gene deletion showed 

activation (Table 4.2). Sets of anti-activator-affected genes were effectively nested; 

regardless of growth phase, more than 75 percent of qteE-affected genes were also 

qslA-affected, and more than 85 percent of qslA-affected genes were also affected in 

the double mutant (Figure 4.4). This finding is consistent with anti-activators strictly 

functioning by sequestering QS activators to different degrees, with the qteE qslA-

affected gene set encompassing both single-mutant gene sets. In addition, numerous 

genes were repressed by anti-activator gene deletion. These genes are either indirectly 

regulated by QS, through LasR or RhlR-dependent activation of a transcriptional 

repressor, or they are regulated completely independently of the presumed R-protein 

sequestration mechanism. (Figure 4.4). 
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Figure 4.4 Comparison of differentially expressed genes among anti-activators. 

(a) Log phase. (b) Early stationary phase. Differentially expressed (DE) genes were 

determined in DESeq2 using three biological replicates (false discovery rate α=0.05, 

n=3). Venn diagram variables are roughly scaled to reflect quantities to visualize 

nesting. 

 

4.3.4 Identification of a QS regulon 

Next, to evaluate the relationship between our anti-activator-affected genes 

and QS, we determined a QS regulon for the wild-type strain under our culture 

conditions. We identified all differentially expressed (DE, α=0.05) genes between our 

wild-type strain and an isogenic lasR rhlR mutant in both log and early stationary 

phase. Based on previous studies, we expected few DE genes in the log phase 

comparison as this represents a quorum “OFF” state, while induction of QS in early 

stationary phase represents a QS “ON” state and should produce differential 

expression in many genes (Schuster et al., 2003; Wagner et al., 2003). We found 138 

differentially expressed genes in early stationary phase between the wildtype and lasR 

rhlR mutant, including 79 quorum-activated and 59 quorum-repressed genes (Figure 

4.5a, Tables 4.3 & 4.4). The only DE gene detected in our log phase comparison was 

lasR itself, supporting the design of our log phase (QS “OFF”) vs early stationary 

phase (QS “ON”) comparison. As genes activated in the quorum regulon are 

consistent with the established function of LasR and RhlR as transcriptional 
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activators (Whiteley et al., 1999; Kiratisin et al., 2002; Hentzer et al., 2003; Schuster 

et al., 2003; Schuster and Greenberg, 2007) and the established function of anti-

activators as factors for R-protein destabilization and degradation (Piper and Farrand, 

2000; Siehnel et al., 2010; Fan et al., 2013), we focused our subsequent analysis on 

only activated genes.  
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Figure 4.5 A QS-controlled regulon. (a) Histogram of genes differentially expressed 

in a wild-type vs lasR rhlR mutant comparison from early stationary phase cultures 

grown in CAA medium. Differentially expressed (DE) genes activated (black bars) 

and repressed (gray bars) in the comparison were determined in DESeq2 using three 

biological replicates (false discovery rate α=0.05, n=3). (b) Comparison of QS 

regulons among previous microarray results and the present study. Venn diagram 

variables are not quantitatively scaled. (c) Comparison of lasB (PA3724) fold-change 

in the RNA-seq experiment. Wild-type (WT) fold-change represents results from the 

wild-type vs. lasR rhlR comparison; all others represent results of individual 

comparisons with each strain vs. the wild-type. 

 

Table 4.3 Quorum-activated genes         

   

Early stationary phase fold change
2
 

Locus 

tag
1
 Name

1
 Annotation

1
 WT qteE qslA 

qteE 

qslA 

PA0026 plcB phospholipase C, PlcB 2.5  NC  2.3  2.1 
 

PA0027  hypothetical protein 2.2  1.8  3.1  2.4 
 

PA0052  hypothetical protein 2.3  4.6  9.6  14.9 
 

PA0143 nuh purine nucleosidase Nuh 1.9  1.9  3.8  3.8 
 

PA0178  probable two-component sensor 2.4  NC  NC  1.7 
 

PA0524 norB nitric-oxide reductase subunit B 7.8  NC  NC  -

10.7  

PA0572  hypothetical protein 3.6  2.9  4.5  2.8 
 

PA1130 rhlC rhamnosyltransferase 2 4.3  5.4  5.6  6.8 
 

PA1131  probable major facilitator 

superfamily (MFS) transporter 

11.0  6.1  5.3  7.0 

 

PA1246 aprD alkaline protease secretion protein 

AprD 

3.3  NC  NC  2.5 

 

PA1248 aprF Alkaline protease secretion outer 

membrane protein AprF precursor 

2.6  NC  NC  3.0 

 

PA1249 aprA alkaline metalloproteinase 

precursor 

3.6  3.6  4.5  7.0 

 

PA1250 aprI alkaline proteinase inhibitor AprI 3.7  3.1  3.6  3.5 
 

PA1251  probable chemotaxis transducer 3.3  2.5  3.3  3.7 
 

PA1430 lasR transcriptional regulator LasR 40.7*  1.7  2.5  3.6 
 

PA1431 rsaL regulatory protein RsaL 6.1  1.9  3.1  4.1 
 

PA1432 lasI autoinducer synthesis protein LasI 28.0  NC  -2.5  -1.6 
 

PA1433  conserved hypothetical protein 1.6  NC  NC  NC 
 

PA1656 hsiA2 HsiA2 3.5  12.0  8.0  5.8 
 

PA1663 sfa2 Sfa2 2.3  9.2  4.5  2.8 
 

PA1668 dotU2 DotU2 1.8  8.6  3.6  2.4 
 

PA1784  hypothetical protein 2.3  3.5  7.2  13.4 
 

PA1869  probable acyl carrier protein 3.5  25.1  20.5  23.6 
 

PA1871 lasA LasA protease precursor 3.4  22.9  22.9  36.6 
 

PA1893  hypothetical protein 2.5  1.6  NC  2.3 
 

PA1894  hypothetical protein 3.9  2.4  NC  3.2 
 

PA1895  hypothetical protein 2.3  2.1  NC  2.9 
 

PA1896  hypothetical protein 2.4  1.7  NC  2.9 
 

PA1897  hypothetical protein 2.5  2.3  NC  3.2 
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  Table 4.3 (continued)         

PA2076  probable transcriptional regulator 1.8  1.6  2.4  2.2 
 

PA2080 kynU kynureninase KynU 1.7  1.7  2.8  2.1 
 

PA2081 kynB kynurenine formamidase, KynB 2.5  1.9  2.7  2.5 
 

PA2193 hcnA hydrogen cyanide synthase HcnA 4.9  12.1  19.3  7.4 
 

PA2194 hcnB hydrogen cyanide synthase HcnB 5.4  12.7  19.0  7.3 
 

PA2195 hcnC hydrogen cyanide synthase HcnC 3.8  13.8  20.8  8.9 
 

PA2301  hypothetical protein 4.0  2.7  3.0  3.5 
 

PA2302 ambE AmbE 18.9  3.0  3.9  4.2 
 

PA2303 ambD AmbD 25.6  3.0  3.7  4.3 
 

PA2304 ambC AmbC 13.3  2.9  3.3  4.3 
 

PA2305 ambB AmbB 12.2  3.3  4.8  4.8 
 

PA2423  hypothetical protein 3.1  NC  3.1  3.9 
 

PA2587 pqsH probable FAD-dependent 

monooxygenase 

8.1  3.9  4.3  5.6 

 

PA2588  probable transcriptional regulator 1.9  7..9  7.0  24.4 
 

PA2591 vqsR VqsR 7.1  2.4  3.0  2.3 
 

PA2592  probable periplasmic 

spermidine/putrescine-binding 

protein (potF5) 

3.7  5.2  4.1  4.7 

 

PA2607  conserved hypothetical protein 1.6  NC  NC  NC 
 

PA2608  conserved hypothetical protein 

(yccK) 

1.5  NC  NC  NC 

 

PA2939  probable aminopeptidase (pepB) 2.7  4.1  9.1  11.5 
 

PA2949  probable lipase 1.4  NC  NC  NC 
 

PA3326 clpP2 ClpP2 2.5  7.2  7.3  7.0 
 

PA3327  probable non-ribosomal peptide 

synthetase 

3.3  16.1  8.1  3.5 

 

PA3328  probable FAD-dependent 

monooxygenase 

4.5  21.9  12.4  5.4 

 

PA3329  hypothetical protein 3.6  25.1  13.9  5.9 
 

PA3330  probable short chain 

dehydrogenase 

4.1  18.3  11.1  4.4 

 

PA3331  cytochrome P450 3.5  20.3  11.6  4.8 
 

PA3332  conserved hypothetical protein 3.3  23.4  13.4  4.8 
 

PA3333 fabH2 3-oxoacyl-[acyl-carrier-protein] 

synthase III 

4.4  22.9  11.9  4.0 

 

PA3336  probable major facilitator 

superfamily (MFS) transporter 

2.6  18.5  10.0  41.0 

 

PA3346  two-component response regulator 1.7  NC  2.0  2.8 
 

PA3391 nosR regulatory protein NosR 8.6  NC  NC  -

21.7  

PA3392 nosZ nitrous-oxide reductase precursor 10.7  NC  NC  -

13.5  

PA3476 rhlI autoinducer synthesis protein RhlI 10.5  4.1  2.9  4.3 
 

PA3477 rhlR transcriptional regulator RhlR 7.2  2.3  3.0  4.0 
 

PA3479 rhlA rhamnosyltransferase chain A 2.2  36.7  24.3  74.0 
 

PA3535  probable serine protease (eprS) 2.8  2.2  5.2  6.0 
 

PA3615  hypothetical protein 1.6  NC  NC  -1.5 
 

PA3904  hypothetical protein 15.0  2.6  3.3  2.5 
 

PA3905  hypothetical protein 10.5  2.4  3.0  1.6 
 

PA3906  hypothetical protein 17.4  NC  3.1  NC 
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  Table 4.3 (continued)         

PA3907  hypothetical protein 8.4  2.7  4.1  NC 
 

PA3908  hypothetical protein 5.8  2.9  4.3  2.4 
 

PA4117 bphP bacterial phytochrome, BphP 1.8  1.7  2.9  4.3 
 

PA4190 pqsL probable FAD-dependent 

monooxygenase 

2.5  NC  NC  NC 

 

PA4594  probable ATP-binding component 

of ABC transporter 

1.9  NC  2.1  2.6 

 

PA4677  hypothetical protein 1.8  3.7  3.1  3.6 
 

PA4778 cueR CueR (ybbI) 1.8  2.4  3.5  5.0 
 

PA4869  hypothetical protein 1.7  NC  2.4  2.7 
 

PA4955  hypothetical protein 1.6  NC  NC  NC 
 

PA5255 algQ Alginate regulatory protein AlgQ 

(algR2) 

1.5   NC   NC   NC 

 
1Locus tags, gene names, and gene annotations from the Pseudomonas Genome Database 

(https://www.pseudomonas.com).  
2Wild-type (WT) represent the WT vs. lasR rhlR contrast, while all anti-activator mutant contrasts are vs. the wild-

type. BOLD denotes genes of the quorum-activated regulon also differentially expressed in log phase. Negative 
values indicate repression, positive values indicate activation. NC, no change. 

 *This fold change estimate does not represent a fold change increase per se, but rather the native expression of LasR 
in the wild-type vs. lasR rhlR contrast. 

  

Table 4.4 Quorum-repressed genes 
    

   

Early stationary phase fold change
2
 

Locus 

tag
1
 Name

1
 Annotation

1
 

WT qteE qslA 
qteE 

qslA 

PA0045  hypothetical protein -2.2  NC  -2.9  -

3.3 

 

PA0047  hypothetical protein -2.3  NC  -1.9  -

2.3 

 

PA0592 ksgA rRNA (adenine-N6,N6)-

dimethyltransferase 

-1.6  NC  NC  -

1.4 

 

PA0944 purN phosphoribosylaminoimidazole 

synthetase 

-1.8  NC  NC  NC  

PA1302  probable heme utilization protein 

precursor (hxuC) 

-2.1  NC  NC  NC  

PA1303  signal peptidase -2.4  NC  NC  NC  

PA1542  hypothetical protein -1.8  NC  1.7  1.9  

PA1580 gltA citrate synthase (cisY) -1.6  NC  NC  NC  

PA1595  hypothetical protein -1.9  NC  NC  NC  

PA1757 thrH homoserine kinase -2.0  NC  NC  NC  

PA1791  hypothetical protein -1.9  NC  -2.1  -

3.1 

 

PA2583  probable sensor/response 

regulator hybrid 

-1.7  NC  NC  NC  

PA2665 fhpR  Transcriptional activator of P. 

aeruginosa flavohemoglobin, 

FhpR (ygaA) 

-1.7  NC  NC  NC  

PA2770  hypothetical protein -1.7  NC  NC  2.3  

PA2780 bswR bacterial swarming regulator 

BswR 

-1.5  NC  NC  NC  

PA2930  probable transcriptional regulator -2.4  NC  NC  NC  
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  Table 4.4 (continued)         

PA2950 pfm  proton motive force protein, PMF -1.6  NC  NC  NC  

PA2964 pabC 4-amino-4-deoxychorismate lyase -1.5  NC  NC  NC  

PA2970 rpmF 50S ribosomal protein L32 -2.1  NC  NC  NC  

PA2998 nqrB Na+-translocating 

NADH:ubiquinone 

oxidoreductase subunit Nrq2 

-1.8  NC  NC  NC  

PA3079  hypothetical protein -1.9  NC  NC  NC  

PA3111 folC folylpolyglutamate synthetase -1.6  NC  NC  NC  

PA3174  probable transcriptional regulator -1.9  -2.3  -2.7  -

3.2 

 

PA3268  probable TonB-dependent 

receptor 

-3.4  NC  NC  NC  

PA3284  hypothetical protein -3.3  -5.5  -7.4  -

8.8 

 

PA3362  hypothetical protein (amiS) -2.3  8.0  12.4  7.3  

PA3473  hypothetical protein -1.7  NC  NC  NC  

PA3609 potC polyamine transport protein PotC -2.0  NC  NC  NC  

PA3820 secF secretion protein SecF -2.5  NC  NC  NC  

PA3823 tgt queuine tRNA-ribosyltransferase -1.8  NC  NC  -

1.8 

 

PA3827 lptG Lipopolysaccharide export system 

permease protein LptG (yjgQ) 

-1.5  NC  NC  NC  

PA3979  hypothetical protein -1.6  NC  NC  NC  

PA4045  conserved hypothetical protein 

(btuF; yadT) 

-1.7  NC  NC  NC  

PA4046  hypothetical protein -1.5  NC  NC  NC  

PA4375 mexW Resistance-Nodulation-Cell 

Division (RND) multidrug efflux 

transporter MexW 

-1.7  NC  NC  NC  

PA4479 mreD rod shape-determining protein 

MreD 

-2.8  NC  NC  NC  

PA4519 speC ornithine decarboxylase -1.8  1.9  2  3.2  

PA4562  conserved hypothetical protein 

(mviN) 

-1.7  NC  NC  NC  

PA4569 ispB octaprenyl-diphosphate synthase 

(cel) 

-1.8  NC  NC  -

1.9 

 

PA4628 lysP lysine-specific permease -1.7  NC  NC  NC  

PA4630  hypothetical protein -2.0  -1.6  -2.6  -

2.5 

 

PA4672  peptidyl-tRNA hydrolase (pth) -2.1  NC  NC  NC  

PA4757  conserved hypothetical protein 

(yeaS) 

-1.5  NC  NC  -

1.4 

 

PA4840  conserved hypothetical protein 

(yciH) 

-1.6  NC  NC  NC  

PA5072  probable chemotaxis transducer -1.5  NC  NC  NC  

PA5081  hypothetical protein -2.0  -1.8  NC  -

1.5 

 

PA5117 typA regulatory protein TypA (bipA) -1.7  NC  NC  NC  

PA5139  hypothetical protein -2.2  NC  NC  -

3.3 

 

PA5156  hypothetical protein -1.8  NC  NC  NC  

PA5167 dctP DctP -3.9  NC  NC  NC  
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  Table 4.4 (continued)         

PA5168 dctQ DctQ -4.3  NC  NC  NC  

PA5169 dctM DctM -4.9  NC  NC  NC  

PA5194  hypothetical protein -1.7  NC  NC  NC  

PA5250  conserved hypothetical protein -1.7  NC  NC  NC  

PA5251  hypothetical protein -1.7  NC  NC  NC  

PA5320 coaC Phosphopantothenoylcysteine 

synthase/(R)-4'-phospho-N-

pantothenoylcysteine 

decarboxylase (coaB; coaBCI; 

dfp) 

-1.4  NC  NC  -

1.3 

 

PA5361 phoR two-component sensor PhoR -1.6  NC  NC  NC  

PA5492  conserved hypothetical protein 

(ysxC; yihA) 

-1.9  NC  NC  NC  

PA5560 atpB ATP synthase A chain (papD, 

uncB) 

-1.8   NC   NC   -

2.4 

  

1Locus tags, gene names, and gene annotations from the Pseudomonas Genome Database 

(https://www.pseudomonas.com). 

2Wild-type (WT) represents the wild-type vs. lasR rhlR contrast, while all anti-activator mutant contrasts are vs. 

the wild-type. Bold denotes genes of the quorum-repressed regulon also differentially expressed in log phase. 

Negative values indicate repression, positive values indicate activation. NC, no change.  

 

We then compared our quorum-activated genes with those published 

previously using microarrays (Hentzer et al., 2003; Schuster et al., 2003; Wagner et 

al., 2003). While media choice, growth phases tested, and strain backgrounds vary 

among these studies, previous comparisons suggest a core QS regulon in P. 

aeruginosa that may be activated in most strains (Schuster and Greenberg, 2006). In 

our 4-way comparison we found 68 of our 79 genes were shared with at least one 

previous study, and a core regulon of 47 quorum-activated genes is shared among all 

4 studies (Figure 4.5b). The large overlap of the quorum-activated regulon described 

here with those in previous microarray experiments validated our approach, as well as 

the general observation of a core QS-regulon among different P. aeruginosa strains 

and growth conditions (Chugani et al., 2012). The core QS-regulon determined here 

includes many well-studied targets of QS activation: rhlA (PA3479), encoding 

rhamnosyl transferase; the apr cluster (PA1246-50), encoding alkaline protease; rsaL 

(PA1430), a transcriptional repressor of LasR; rhlI and rhlR (PA3476-7), encoding 

the Rhl QS machinery and pepB (PA2939), encoding the aminopeptidase PepB 

(Table 4.3). We did not identify the lasB gene (PA3724) as differentially expressed in 

our QS regulon, which contrasts with the expected pattern of this quorum-activated 

gene based on PlasB-gfp expression analysis (Figure 4.2). Our transcriptome sampling 
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time in early stationary phase was guided in part by these lasB expression data, 

although we recognize that accumulation of stable GFP expressed from a multi-copy 

plasmid likely exaggerates gene expression changes obtained by transcriptomics. In 

addition, our sampling scheme was guided by a previous microarray study in LB 

medium (Schuster and Greenberg, 2007), where the vast majority of QS genes 

showed high induction in early stationary phase. In comparison with those results, it 

appears that induction levels in CAA medium are lower than those in LB medium. 

This is consistent with the fact that the QS regulon of cells grown in CAA medium is 

smaller than that in LB, not considering differences in statistical analysis. We also 

observed relatively low levels of elastase activity in the wild-type strain used here 

(Figure 4.2b). Additionally, examination of lasB expression values alone in our 

transcriptome dataset is in agreement with these phenotypic results. In the 

transcriptome results, the wild-type shows a modest increase in expression (2-fold, 

not significant, α=0.05), while the presence of any anti-activator mutation drives lasB 

expression beyond 37-fold (qteE) and up to roughly 130-fold (qslA)(Figure 4.5c). 

Thus, sampling times and growth conditions likely explain the absence of lasB in our 

experimentally determined quorum-activated regulon. 

With the above expression patterns under consideration, we asked whether 

variable proportions of QS componentry may be responsible for the observed 

differences among anti-activator deletion mutants. We sought to answer this question 

by evaluating absolute expression of the typical QS machinery (lasR, lasI, rhlR, rhlI) 

and anti-activator (qteE, qscR, qslA) genes in log and early stationary phase in the 

wild-type RNA-seq data. All genes encoding the typical QS machinery, including the 

gene coding for the orphan R-protein/anti-activator qscR, showed significant 

increases in absolute expression in early stationary phase (α=0.05, Figure 4.6), 

consistent with established mechanisms of QS autoregulation of synthase genes and 

stationary phase upregulation of R-proteins (Schuster et al., 2003; Schuster and 

Greenberg, 2006). qslA and qteE were both unchanged between log and early 

stationary phase. 
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Figure 4.6 Absolute expression of genes coding for QS machinery and anti-

activators. Absolute expression is presented as regularized log (rlog) values 

generated in DESeq2 using three biological replicates (n=3). Absolute gene 

expression in log phase (light bars) and early stationary phase (dark bars) are grouped 

by gene as QS machinery (red bars) or anti-activators (green bars). Bars represent 

means + s.e.m. (n=3). * indicates significantly higher expression in early stationary 

phase than log phase, two-tailed T-test (α=0.05). 

 

4.3.5 Deletion of qteE and qslA advance timing and increase magnitude of QS gene 

expression 

The quantity of differentially expressed genes was drastically higher in anti-

activator mutants than the wild-type in log phase (Table 4.2), so we reasoned many of 

those genes were genes from our quorum-activated regulon that exhibited advanced 

timing. To test this, we compared expression of genes induced in the qteE, qslA, and 

qteE qslA mutants in log phase with our quorum-activated regulon in early stationary 

phase. Genes listed in the quorum-activated regulon that are differentially expressed 

in anti-activator mutants in log phase can then be said to be the result of advancement 

of timing in the quorum threshold due to absence of QS anti-activation. The large 

majority of quorum-induced genes (61 of 79, 77 %) in early stationary phase were 

advanced to log phase through deletion of qteE, qslA, or both (Figure 4.7a). In 

addition, the nested character of the anti-activator regulons, as mentioned above, was 
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again apparent here. Both features reinforce the notion that QteE and QslA function 

by R-protein sequestration.   

We continued analysis of anti-activator effects through comparison of the 79 

quorum-activated genes with anti-activator mutant gene expression in early stationary 

phase. In all, 74 of the 79 quorum-activated genes, or 93 %, were differentially 

expressed by a mutant deficient in at least one anti-activator protein (Figure 4.7b). 

Fifty-one of those 74 were differentially expressed in all mutants tested. We then 

questioned whether absolute expression of the quorum-activated regulon as a whole 

differs among our mutants. Deletion of qteE or qslA appears to produce a similar 

pattern of increased absolute expression among quorum-activated genes in both log 

and early stationary phase (Table 4.2, Figure 4.8). Loss of anti-activation shows a 

step-wise increase in absolute expression of several QS genes during log phase 

moving from qteE to qslA to the qteE qslA double mutant. These genes include: nuh 

(PA0143), encoding the purine nucleosidase Nuh; rsaL (PA1431); kynU (PA2080) 

encoding the kynureninase KynU; cueR (PA4778), encoding the copper toxicity 

transcriptional regulator CueR; and a cluster of relatively evenly expressed genes 

(PA3904-8) encoding hypothetical proteins. A select group of nitrate respiration 

genes (norB, PA0524; nosR, PA3391) exhibited a nearly opposite pattern, showing 

maximal absolute expression in the qteE mutant, lower expression in the qslA mutant, 

and lowest absolute expression in the qteE qslA mutant. 
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Figure 4.7 Overlap of induced genes in QS and anti-activator regulons. (a) Log 

phase anti-activator regulons and early stationary phase QS regulon. (b) Early 

stationary phase anti-anti-activator regulons and early stationary phase QS regulon. 

For both panels: Differentially expressed (DE) genes were determined in DESeq2 

(see Materials and Methods) using three biological replicates (false discovery rate 

α=0.05, n=3), values represent only induced genes, and Venn diagram variables are 

not quantitatively scaled. 
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Figure 4.8 Absolute expression of the QS regulon. Absolute expression was 

calculated as the Z-score for individual samples among rows of both log and early 

stationary phase regularized log (rlog) values generated in DESeq2 (see Materials and 

Methods) using three biological replicates (n=3). Rows selected represent only 

induced genes in the QS regulon and are ordered by locus tag (middle column) for 

reference. WT, wild-type. 
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4.3.6 Global relationships between regulons  

Deletion of anti-activators generally increased expression of the quorum-

activated regulon, so we questioned if the subset of all induced genes identified in our 

study in early stationary phase also showed a similar trend. We defined a list of all 

induced genes from the wild-type vs. lasR rhlR comparison in early stationary phase, 

and from the comparison of each anti-activator vs. the wild-type in early stationary 

phase, yielding a subset list of 1002 unique genes. We compared the absolute 

expression of this list among each strain for both growth phases tested. Clustering of 

similarly expressed genes in our differential expression analysis allowed discovery of 

three distinct expression pattern groups (Figure 4.9a). Group I genes showed a 

general stationary phase-dependent pattern of low log phase expression combined 

with high expression in early stationary phase. This is in contrast to Group II which 

showed a general pattern of both anti-activator- and growth phase-dependent 

expression. With most genes remaining minimally expressed except in the anti-

activator mutants in early stationary phase, Group II highlights a set of genes not 

normally induced in the wild-type in early stationary phase (as in Group I). Group III 

was the smallest and exhibited a pattern roughly the opposite of Group I, with most 

genes activated in log phase and only a few relatively activated by the qteE qslA 

mutant. Group I and II genes showed a pattern of successive induction that is 

particularly evident in stationary phase, with lowest levels in the lasR rhlR mutant 

and highest levels in the qteE qslA mutant. We used principle component analysis 

(PCA) to generalize our observations of differences among all of our strain-growth 

phase expression profiles. All log phase profiles clustered tightly, with early 

stationary phase-strain combinations driving nearly 80 percent of the variation in our 

data set (Figure 4.9b). Stationary phase profiles clearly segregated into two groups 

representing those strains with anti-activators and those without. This clustering is 

consistent with their general expression patterns in the heatmap (Figure 4.9a).  



115 

 

 

 

Figure 4.9 Absolute expression of all induced genes. (a) Absolute expression was 

calculated as the Z-score for individual samples among rows of both log and early 

stationary phase regularized log (rlog) values generated in DESeq2 using three 

biological replicates (n=3). Rows selected represent only genes induced in our 

stationary phase analysis (1002 unique loci total) and are clustered by average 

linkage. I, Group I genes; II, Group II genes; III, Group III genes; WT, wild-type. (b) 

Principal component analysis (PCA) of absolute expression results depicted in (A). 

WTL and WTS, wild-type in log and early stationary phase; QTL and QTS, qteE in 

log and early stationary phase; QSL and QSS, qslA in log and early stationary phase; 

QQL and QQS, qteE qslA in log and early stationary phase; RRL and RRS, lasR rhlR 

in log and early stationary phase, respectively. Superimposition of tightly clustered 

samples obscures some labels. (c) Comparison of all induced genes in QS and qteE 

qslA anti-activator regulons in early stationary phase. Venn diagram variables are not 

quantitatively scaled. 

 

Most of the quorum-activated regulon determined in this study showed 

overlap with genes affected by anti-activation, so we questioned whether other genes 

induced in the absence of both anti-activators also correspond to other larger, 

previously identified QS regulons (Hentzer and Givskov, 2003; Schuster et al., 2003; 

Wagner et al., 2003). We assembled a list of all genes identified as quorum-activated 

in our analysis along with those of the other three studies identified in Section 4.3.4. 

This yielded a list of 627 unique genes in an ‘extended’ QS regulon. Comparison with 
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the 934 genes induced in the qteE qslA mutant showed that 411 genes are shared with 

the extended QS regulon (Figure 4.9c). This large overlap represents fully two-thirds 

of all genes of the extended QS regulon and nearly half of those induced in the qteE 

qslA mutant. Despite considerable reorganization and updates since previous 

functional profiles of QS were published, we found good agreement in the functional 

distribution of genes between each anti-activator regulon (Figure 10). Generally, 

removal of anti-activators simply increased the number of genes in groups already 

represented in the WT QS regulon. This is consistent with the idea that most genes in 

the anti-activator regulons are QS-dependent. It is plausible that anti-activator 

deletion allows an increase in the levels of active R-protein to an extent that is not 

normally achieved under physiological conditions. The set of genes activated under 

these conditions could then still be considered “quorum-sensing dependent”. 

 

Figure 4.10 Functional classification of induced genes. Functional classes and 

annotations were retrieved from the Pseudomonas Genome Database. Bars represent 

percent of each functional class represented in induced gene lists, scaled to the wild-

type percentage of all genes. Induced gene lists for each sample were assembled from 
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differentially expressed (DE) genes in early stationary phase as determined in 

DESeq2 using three biological replicates (false discovery rate α=0.05, n=3). 

 

4.4 Discussion 

Anti-activation through binding of R-proteins is a potent mechanism in 

modulation of the quorum-activation threshold in P. aeruginosa QS. The currently 

known collection of anti-activator proteins, QteE, QscR, and QslA, was previously 

shown to have somewhat parallel effects in their roles of preventing premature 

activation of QS (Siehnel et al., 2010; Seet and Zhang, 2011; Gupta and Schuster, 

2013; Chugani and Greenberg, 2014). Here, we demonstrate additive, overlapping 

effects for each anti-activator in the modulation of the quorum-activation threshold. 

Our results draw on evidence of QS promoter activity, QS phenotypes, and anti-

activator transcriptional profiles to show a group of anti-activator proteins confer a 

distinct, but combinatorial effect in their regulation of QS. These results paint a 

considerably more complex picture of the factors influencing the P. aeruginosa QS 

activation threshold than previously presented.    

Removal of anti-activators increased the magnitude of PlasB-gfp expression in 

every strain tested (Figure 4.2). This result confirms a critical role for the mechanism 

of anti-activation in the general control of the quorum-activation threshold in P. 

aeruginosa. Owing to the social nature of QS-mediated intercellular communication 

and gene regulation, several QS-controlled products including LasB elastase are 

metabolically costly to produce, providing vulnerability to overinvestment of 

resources or exploitation by neighboring cells (Frank, 2010; Schuster et al., 2013). 

Indeed, deletion of QteE or QscR individually may yield increased LasB secretion 

that provides increased population fitness in media requiring QS-regulated protease 

for growth, but those mutants also suffer a fitness cost (Gupta and Schuster, 2013). 

The presence of multiple anti-activators implies a redundant ‘failsafe’ mechanism for 

ensuring this fitness cost is kept low, but our observations of PlasB-gfp expression 

indicate each may have a distinct role in this mechanism. Our results are consistent 

with the notion of anti-activators effectively preventing short-circuiting. However, 

removal of all three anti-activators did not drive PlasB-gfp expression levels higher 
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than that of the qteE qslA and qslA qscR mutants in a ‘short-circuit’ effect. It is 

possible that yet another regulator is preventing constitutive activation in the absence 

of our selected anti-activators in these conditions. In the case of nutrient starvation for 

example, higher levels of RelA further increase the alternative stationary phase 

sigma-factor RpoS, leading to premature lasB induction (van Delden et al., 2001). 

The stringent response is not active in CAA medium, so the maximum lasR level in 

our conditions may not be sufficient for demonstrating short-circuiting. Our results 

are consistent with the notion of anti-activators effectively preventing short-

circuiting. Removal of QslA only produced increases in expression half that seen in 

strains lacking QteE or QscR alone (Figure 4.2c). However, removal of either QteE or 

QscR from the strain lacking QslA drove levels to nearly three times that of any 

single anti-activator mutant. These data suggest a synergistic effect between anti-

activators may be possible. This synergism could be due to cooperative protein-

protein interactions among anti-activators in their binding of R-proteins, a mechanism 

in contrast to the current model of independent anti-activator binding and repression 

of R-proteins (Figure 4.1). QscR binds LasR forming a heterodimer presumably 

similar to LasR dimer formation (Lintz et al., 2011), but QscR is not particularly 

closely related to LasR (Chugani and Greenberg, 2014), so their exact binding may in 

fact be distinct. QslA dimers obscure the LasR dimerization interface in the N-

terminal ligand binding domain (Fan et al., 2013). The direct binding orientation of 

QteE to R-proteins has not been determined. With these potentially disparate avenues 

of R-protein and anti-activator binding, a cooperative mechanism of interaction is 

plausible. Further evidence for this possibility is presented later in our discussion. In 

contrast, removal of QscR and QteE together produces an expression profile nearly 

superimposable with the corresponding single mutants. Together, these results are 

consistent with our initial hypothesis that individual anti-activators may have distinct 

roles in the modulation of the QS threshold. For example, the list of regulatory inputs 

that effect QS regulation is extensive (Schuster and Greenberg, 2006), and individual 

anti-activators could be regulated dynamically and independent of each other, thereby 

permitting multiple pathways of QS threshold modulation. Our analysis of absolute 

expression of QS components and anti-activators in our wild-type RNA-seq data 
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found generally constitutive expression of anti-activators, while R-proteins are up-

regulated in stationary phase (Section 4.3.4, Figure 6). However, the limited 

resolution of our absolute expression data to two time points in a single growth 

medium leaves room for further definition in the regulation of anti-activators. In a 

separate study, qRT-PCR analysis of qslA transcription revealed a constitutive 

expression pattern in LB medium (Seet and Zhang, 2011), but the regulatory 

dynamics of qteE and qscR, in addition to those of qslA under varying growth 

conditions, are not entirely clear.  

Anti-activation is part of a larger group of QS-dampening mechanisms that 

include transcriptional repression (RsaL) and dilution or environmental degradation 

of signal to prevent advancement of the QS threshold (de Kievit et al., 1999; Hense 

and Schuster, 2015). Here, we show that anti-activation alone can prevent premature 

activation of QS. Deletion of anti-activator genes can reduce the time and hence, the 

cell density, until high-level activation of QS genes is achieved (Figures 4.2, 4.4 and 

4.7). Key here is expression magnitude at a given time point, but also expression rate 

– accelerating expression rates and high-level expression early in growth effectively 

represent advancement. This allows full wild-type levels of expression to be reached 

much earlier in mutants than when anti-activators are present. All anti-activator 

mutants showed increases in expression rates, but the most dramatic rate increases 

that effectively demonstrate threshold advancement were characteristic of multi-

deletion mutants lacking QslA (Figure 4.2). These observations suggest a key role for 

QslA in determining not only the timing and magnitude of QS activation, but also the 

expression rate. Further evidence for the QS advancement effect was mirrored in 

absolute expression of the quorum-activated regulon of 79 genes, were maximal 

expression of many genes is reached in log phase in the absence of anti-activators 

(Figure 4.8, left panel). Our observations of PlasB-gfp induction kinetics are similar to 

those published previously for qteE and qscR single mutants in that deletion of either 

anti-activator alone produces stronger effects on magnitude than timing of expression 

(Gupta and Schuster, 2013)(Figure 4.2c). However, our results show that deletion of 

some combinations of anti-activators can advance timing of QS activation, and QslA 

in particular is implicated in this role.  
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Sequential peaks in PlasB-gfp expression rates in our kinetic experiments are of 

similar magnitude in wild-type, but expression skews towards the earlier, presumably 

Las-controlled peak in all anti-activator mutants (including multiple deletions) with 

the exception of the qslA single mutant. Similar kinetic experiments conducted with 

both the wild-type and an isogenic lasR mutant showed the first expression peak 

disappears in the absence of LasR (Gupta and Schuster, 2013), providing further 

support for the notion of sequential wild-type expression peaks corresponding to Las 

and Rhl system induction. In light of this, our observations indicate that anti-

activators may primarily target LasR rather than RhlR. Such a relationship is intuitive 

considering that typical Las induction comes earlier than Rhl, and that induction of 

the Rhl system is generally subordinate to Las (Schuster and Greenberg, 2006). 

However, more direct evidence is needed to support this interaction model, as the 

independent effects of anti-activators on LasR and RhlR activity are not entirely 

clear. QteE is known to interact and destabilize both LasR and RhlR, but interaction 

with the latter was shown in the absence of LasR where competition between the two 

R-proteins for QteE binding was absent (Siehnel et al., 2010). QscR was also reported 

to associate with both LasR and RhlR in vitro in the absence of signal using 

fluorescence anisotropy (Ledgham et al., 2003). However, direct evidence of the 

QscR-RhlR interaction in vivo, as well as the biological relevance of this association, 

is still needed. On the other hand, QslA was not shown to significantly abrogate 

RhlR-mediated transcription of rhlI in the E. coli heterologous host (Seet and Zhang, 

2011), further supporting the Las-dominant interaction model described above.  

QscR is different than other anti-activators in that it can also respond to 

signals and effectively act as a transcriptional activator on its own (Lequette et al., 

2006). QscR exhibits promiscuity in its response to AHL signals; in addition to 

3oxoC12-HSL generated by LasI, QscR responds to 3oxoC10 similarly, and an even 

stronger response was observed for C10 and C12HSL ligands, adding an additional 

layer of complexity to QscR activity (Lee et al., 2006a). Transcription of qscR may 

also be under tighter control than other anti-activators. QscR transcription is regulated 

by both the global regulator VqsR (Liang et al., 2012) and LasR itself, but a qscR 

mutant also affects Las system induction through repression of lasI transcription 
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(Chugani et al., 2001), creating an interconnected negative regulatory feedback loop 

reminiscent of RsaL. How other anti-activators are regulated in response to growth 

phase, signal concentration, nutritional status, and environmental conditions remain 

open questions. Future experimentation in determining anti-activator induction 

kinetics in variable conditions and the effects of over-expression will aide in this 

pursuit. 

Our transcriptome analysis produced a list of 79 quorum-activated genes, or 

roughly 1.4% of all P. aeruginosa genes, notably smaller than previous microarray 

studies that suggest “hundreds” of QS-activated genes (6 – 10% of genome) (Hentzer 

et al., 2003; Wagner et al., 2003; Schuster and Greenberg, 2006). Considering our 

choice of a semi-defined medium (CAA) that limits the final densities of bacteria to 

almost half that of previous studies (using LB broth), this difference is perhaps 

unsurprising. However, almost 90% of the genes we identified were also identified in 

at least one of the microarray studies (Figure 4.5b), supporting the notion of a core 

QS regulon conserved in P. aeruginosa suggested elsewhere (Schuster and 

Greenberg, 2006; Chugani et al., 2012). The large number of additional genes 

induced in anti-activator mutants could draw into question if these genes are all QS-

dependent. It is possible that some of the genes identified as induced in anti-activator 

mutants are not regulated directly through canonical QS. Considering roughly half of 

all genes induced in the strain lacking QteE and QslA were not shared with 

previously identified QS-activated gene sets (Figure 4.9c), a subset of these genes 

could conceivably be induced through a yet undetermined QS-independent 

mechanism. It is also possible that the large number of genes affected by 

simultaneous qteE and qslA inactivation, but not present in the extended QS regulon, 

are activated through canonical QS but are not induced under standard culture 

conditions as R-protein levels are not high enough. All possible environmental 

conditions for QS gene expression have not yet been explored, and it is plausible that 

high levels of R-proteins are achieved under some relevant physiological conditions. 

The differences between each of our anti-activator regulons and the QS regulon could 

simply stem from the fact that each deletion results in a different level of free, active 

LasR: the higher the level of free LasR, the more promoters are bound and activated 
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due to decreased competition for active LasR. This mechanism is most plausible with 

the nested anti-activator differentially expressed genes identified in the logarithmic 

phase of growth (Figures 4.4a and 4.6a), where almost all qteE genes are a subset of 

qslA genes, and almost all qslA genes are a subset of qteE qslA genes. Differential 

interaction of anti-activators with RhlR could also play a role. Epistasis analysis 

could be used to address these possibilities, an approach that showed epistatic 

interactions in the functioning of parallel QS circuits in V. harveyi (Henke and 

Bassler, 2004). In our case, lasR and/or rhlR mutations would need to be introduced 

into strains harboring mutations in qteE and/or qslA. Such analyses could enable a 

better understanding of the regulatory interactions and dependencies of anti-activation 

in a QS-independent context. Transcriptome profiling experiments utilizing mutants 

lacking both anti-activators and LasR or RhlR or both will allow exploration of this 

possibility. 

Finally, evaluation of functional annotations of induced genes in our strains 

showed few substantive differences in their overall functional class distribution, and 

all were largely similar to the quorum-activated regulon distribution (Section 3.7, 

Figure 10). Our results were generally consistent with previous analyses of the 

content of QS regulons (Schuster et al., 2003; Schuster and Greenberg, 2006). QS is 

responsible for global gene regulation in P. aeruginosa (Schuster and Greenberg, 

2006), including genes involved in growth and central metabolism, biosynthesis and 

transport of secondary metabolites, and signal transduction mechanisms, so our 

findings are also in support of the proposed mechanisms of anti-activators as 

suppressors of QS regulon expression, specifically. 

We conclude that anti-activation mechanisms conferred by QteE, QscR, and 

QslA differentially suppress the magnitude of QS-gene activation. Loss of anti-

activation advances the effective timing of QS-gene activation, but the magnitude of 

this effect is dependent on the specific combination of anti-activators deleted, with 

loss of QslA in combination with another anti-activator conferring the greatest effect. 

Anti-activators affect an overlapping but distinct set of genes largely governed by QS, 

and do so in a combinatorial fashion. This study further supports the concept of a core 

QS regulon in P. aeruginosa, and provides the ground work for multiple directions of 
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fundamental investigation of anti-activation and gene regulation in bacteria. Our 

transcriptome results will likely aide studies of seeking to determine the roles of anti-

activators in P. aeruginosa pathogenesis, clinical avenues for inhibiting QS, and 

regulation of virulence gene expression. More broadly, our results will also contribute 

to a more detailed understanding of the factors influencing the QS threshold in 

bacteria.  
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Chapter 5 

 

CONCLUSIONS  

  

 Interest in the ways populations of bacteria use communication and 

cooperation in interspecific competition in the natural word has increased in recent 

years. Cooperation among bacteria through the cell-cell communication mechanism 

of acyl-homoserine-lactone (AHL) quorum sensing (QS) is now understood to 

include many behaviors, and the QS control of P. aeruginosa virulence factors is of 

particular clinical importance. In Chapters 3 and 4 of this doctoral dissertation, we 

identified and addressed key open questions related to QS mechanism and social 

implications. Our goals were namely, 1) to determine the molecular genetic basis for 

the preservation of QS-mediated cooperation in the presence of QS cheaters, and 2) to 

investigate the interactions between QS anti-activator proteins in determining the 

quorum sensing threshold. 

 In our first inquiry, we discovered that non-social adaptation in a cooperative 

growth environment can stabilize QS cooperation. Mutations in the transcriptional 

repressor PsdR maximize absolute fitness of individuals as they take up proteolysis 

products. This allows evolved cells to saturate quicker in a mixed population, and 

quickly leads to the fixation of psdR-null mutations in the population. In combination 

with cooperative alleles, isolates with these mutations are still vulnerable to social 

exploitation by non-producing cheats, but they are also able to tolerate a higher 

cheater load. This result highlights a scenario where cycles of social and non-social 

adaptation may allow a temporary stabilization of cooperation, but under strong 

selection for cooperative growth cheaters may persist. In this way, non-social 

adaptation to a growth environment may defer a tragedy of the commons, but not 

eliminate its threat. Other studies have also found this form of adaptive race to 

provide a stabilizing effect on cooperation between synthetic yeast (Waite and Shou, 

2012) and in Pseudomonas fluorescens siderophore production (Morgan et al., 2012). 

Non-social adaptation likely works in concert with environmental variables and other 
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mechanisms to preserve cooperation, including kin selection (smith et al., 2016), 

pleiotropic constraint (Foster et al., 2004), metabolic prudence (Xavier et al., 2011). 

 Our second inquiry focused on the role of anti-activation in determining the 

QS activation threshold in P. aeruginosa. We found deletion of any anti-activator 

significantly increased QS gene expression, but strains with combinations of deletions 

displayed a QS threshold that can be effectively advanced in time in addition to 

expression magnitude. This effect was largely visible in double - or triple-anti-

activator mutants with deleted QslA. Rates of QS gene expression where much higher 

in anti-activator mutants compared with the wild-type. Based on timing of induction 

and maximum expression rate in the wild-type, the greatest increases in expression 

rate appear to correspond to Las system induction. Anti-activator mutants harboring 

QteE and/or QslA deletions all showed differentially expressed genes that overlap 

well with established QS-controlled gene sets, including our own experimentally 

determined wild-type QS regulon. Moreover, QteE and/or QslA deletion showed an 

additive, nested effect where QteE-affected genes are also affected by QslA, which in 

turn were largely also affected in the double mutant. These results paint a picture 

where anti-activation works in an additive, combinatorial fashion to suppress QS in a 

way that may be synergistic in the conditions tested.  Future work would be wise to 

examine the potential for epistatic effects through introduction of lasR and/or rhlR 

deletions into anti-activator backgrounds. This type of epistasis analysis could 

provide further evidence for the dependence of anti-activator differential expression 

on LasR. Our work also lays a mechanistic framework for future biochemical studies 

to evaluate heteromultimer formation between LasR and anti-activators. 

 Our results provide a candid view into the molecular genetics and social 

evolutionary context of P. aeruginosa QS. Future studies will benefit from our 

detailed genetic and evolutionary analysis in Chapter 3, and our mechanistic 

regulatory analysis in Chapter 4. Together, our results contribute novel insight into a 

clinically important and fundamentally relevant process in microbiology. 
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