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The Earth’s surface is experiencing unprecedented change. Humanity’s growing 

population, expanding land-use footprint, and increasing global emissions of atmospheric 

greenhouse gases affect a vast number of species on Earth and the functioning of virtually 

all ecosystems. Given the vital interactions and feedbacks between the Earth’s land 

surface and climate, measurements that link surface conditions and climate can provide 

crucial information on biospheric change. Land surface temperature (LST) is one of the 

most important parameters in the physical processes of surface energy and water balances 

at local through global scales. Interactions between the land surface and the atmosphere 

and the resulting exchanges of energy and water have a substantial impact on climate. 

This dissertation presents new methodologies developed using satellite-derived LST in 

conjunction with other biophysical datasets to monitor, quantify, map and understand 

critical Earth system changes from global to ecoregional scales. 

It has long been known that temperature is one of the key environmental controls 

and stressors to which an organism may be subjected. Its influence is fundamental, 

ranging from controls on chemical reactions that drive key processes on Earth, such as 

photosynthesis and respiration, to its role in defining large-scale species distributions and 

biome patterns. Climatological data can be developed for two kinds of surface 

temperatures: near-surface air temperature and the skin temperature, or LST. Although 



 

correlated with air temperature, LST differs from air temperature in its physical meaning, 

magnitude, and measurement techniques. LST can be estimated from measurements of 

thermal radiance coming from the land surface, retrieved from satellite, and mapped 

globally. In vegetated areas, satellite-derived LST measures the canopy surface 

temperature, and is more closely connected to the biophysical characteristics of the land 

surface, such as the land cover type, vegetation density, and water and energy fluxes of a 

specific area. LST provides important insights into high temperature extremes associated 

with droughts and heat waves, and the thermal tolerances and exposures for species and 

ecosystems. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST product 

is measured across every 1-km
2
 pixel of the Earth’s surface. This is an important 

distinction from air temperature measurements from weather stations that have an 

inequitable global distribution including few stations across remote areas of the Earth’s 

surface, and cannot give detailed spatial patterns.  

 We describe a new global change indicator based on an annual global measure of 

the Earth’s maximum land surface temperature (LSTmax) and demonstrate its value to 

examine critical Earth system functions (Chapter 2). LSTmax provides a unique 

integrated measure of the ecosystems thermal condition that is especially powerful at 

minimizing synoptic and seasonal variability and highlighting changes associated with 

extreme climatic events and significant land cover changes. We questioned whether 

maximum thermal anomalies could be indicative of heat waves and droughts, a melting 

cryosphere, and tropical forest disturbance from 2003 to 2014. The 1-km
2
 LSTmax 

anomalies detected complex spatial patterns associated with heat waves and droughts 

across the Earth’s surface, peaking in 2010 and 2012 with 5% (16%) of the Earth’s 

surface experiencing anomalies greater than 4°C (2°C). Our findings show that entire 

biomes are experiencing shifts in their maximum surface temperature distributions in 

association with extreme climatic events and large-scale land surface changes. These 

directional shifts in components of the Earth’s integrated LSTmax histograms are 

associated with melting of ice sheets, severe droughts in tropical rainforests, and with the 

incremental effects of forest loss in tropical forests. We conclude that with continued 



 

warming, the Earth’s integrated maximum temperatures will experience greater and more 

frequent directional shifts, increasing the likelihood that critical thresholds will be 

surpassed resulting in regional scale transitions that are tipping points in the global 

climate system.  

In a regional assessment responding to the acute concern about increasing forest 

stress and tree mortality and its direct link to combinations of drought and high 

temperatures (Chapter 3), we developed and applied a new forest vulnerability index 

(FVI) that identifies when and where forests have been experiencing increasingly high 

surface temperatures and greater growing season water deficits across the Pacific 

Northwest region (PNW: Oregon and Washington) of the USA during the MODIS Aqua 

era (since 2003). Our technique incorporates the alterations to canopy water and energy 

exchange processes caused by drought and high temperatures with MODIS LST and 

evapotranspiration (ET) data, and with Parameter-elevation Relationships on Independent 

Slopes Model (PRISM) precipitation (P) data. The FVI’s monthly assessment over the 

growing season revealed a possible trajectory toward more extreme conditions indicated 

by a trend toward cooler and wetter conditions in the spring, followed by a rapid 

transition to widespread warmer and drier trends in August and September. Area of 

increased vulnerability was concentrated in the months of August and September, with 

peak vulnerability occurring at separate times for different forest types. Overall, 

increased vulnerability rates were highest in drier forest type groups, such as Ponderosa 

Pine, Juniper, and Lodgepole Pine. Western Larch and Fir/Spruce/Mountain Hemlock 

groups occupy moister sites but also had relatively high proportion of increased 

vulnerability. The Douglas-fir group had the second largest total area of increased 

vulnerability due to its large areal extent in the study area. Based on an analysis using 

imagery viewed in Google Earth, we found that areas with increased vulnerability are 

associated with greater amounts of visible health decline and mortality. The FVI is a new 

way to conceptualize and monitor forest vulnerability based on first-order principles and 

has the potential to be generalized to other geographical areas.  



 

In Chapter 4 we utilize the FVI and its intermediary datasets on canopy energy 

and water exchange trends to investigate the Swiss needle cast (SNC) epidemic in the 

Oregon Coast Range. SNC is caused by an ascomycete fungus endemic to the PNW, and 

is having important consequences on the region’s coastal Douglas-fir forests. Seasonal 

changes in temperature and/or precipitation regimes, such as we detected in Chapter 3 of 

this dissertation, have the potential to shift conditions in favor of pathogens, resulting in 

widespread epidemics. Foliar fungi diseases such as SNC are thought to be especially 

responsive to climate changes. Previous research has verified that spring and early 

summer leaf wetness is a key factor in SNC disease epidemiology. In this study, we 

investigate the relationship between climatic trends detected during the spring and early 

summer months (May – August) along the Pacific Coast of Oregon from 2003 to 2012, 

and the distribution of forests with visible symptoms of SNC in 2012. Our objectives 

were to: 1) Calculate the relationship between LST and water balance (WB) trends and 

pixel-level presence/absence of SNC symptoms. 2) Compare the relationship between 

private and public forest lands to make inferences about the effects of forestry practices 

on forest vulnerability to SNC intensification. We find evidence that recent short-term 

directional climate changes may have contributed to the recent increases in SNC 

symptoms in Douglas-fir forests, and that this influence was stronger on private lands. 

The LST trends had greater explanatory power than WB trends, and the interactions 

between monthly LST trends increased the explanatory power of LST, whereas this effect 

was minimal for WB. The trends of the May and August LST together explained 7% of 

the deviance in SNC symptom distribution on private land, and 2% on public land. When 

combined with proximity to coast (strongest explanatory variable), May and August LST 

explained 14% of the deviance in SNC symptom expression on private land, and 8.7% on 

public land. Adding the WB factor did not improve the deviance explained in presence of 

SNC symptoms. This study indicates that early spring and mid-summer LST contains 

valuable information on leaf wetness, possibly contrasting both early season wetness and 

late season dryness, both of which are important to the epidemiology of SNC. 



 

The results from this dissertation highlight the immense value of the LST 

measurement in tracking critical changes in the Earth system. While questions remain 

regarding upper temperature thresholds that may trigger biome shifts or widespread forest 

die-offs, our results help to fill the knowledge gap about how these temperature changes 

are impacting the Earth’s ecosystems. The methodologies and tools developed here offer 

new and important opportunities for long-term monitoring that will continue to increase 

our understanding of these key land surface-climate interactions. 
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Chapter 1: Introduction  

The Aqua spacecraft was launched on May 4, 2002, just a few months before I 

entered the Masters of Science Program at The University of Montana’s College of 

Forestry and Conservation. Aqua is a major satellite mission of the National Aeronautics 

and Space Administration (NASA) Earth Observing System (EOS), and part of a 

coordinated series of polar orbiting and low inclination satellites for long-term global 

observations to improve understanding of the Earth as an integrated system (King et al. 

1999). The satellite is in a near-polar, sun synchronous orbit at an altitude of 705 km, 

crossing the equator going north at 1:30 in the afternoon and south at 1:30 in the 

morning, local time (Parkinson 2003). Aqua’s afternoon overpass time has critical 

implications for my own research. The Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument is one of six Earth-observing instruments onboard the Aqua 

spacecraft. Among the suite of measurements the MODIS instrument provides across 

every 1-km
2
 pixel of the Earth’s surface is the radiometric surface temperature, also 

called land surface temperature (LST), or land skin temperature (Norman and Becker 

1995). This unique form of temperature measured from the Aqua MODIS instrument is 

the key dataset used in this dissertation.   

When we check the weather forecast, or hear the daily temperature reported on 

the news, we are given the air temperature, also called “near-surface” air temperature. Air 

temperature is a very specific type of temperature, measured 1.5 to 2.0 meters above the 

ground level at official weather stations with sensors protected from radiation and 

adequately ventilated. This common standard ensures the intercomparability between the 

measurements recorded at disparate locations across the Earth’s surface. However, these 

stations often experience relocations, changes in instrumentation and/or exposure, effects 

of land-use changes such as urbanization, and changing observing practices, all of which 

can introduce biases that are often undocumented (Karl et al. 2006). Nonetheless, with 

more than a century of instrumental data, air temperature is a popular and useful metric 

for summarizing the state of global climate (Hansen et al. 2006; Pielke 2007). MODIS 

measures something different: land surface temperature. As described in detail in this 



 

 

2 

dissertation (Chapters 2 and 3), LST differs fundamentally from air temperature in its 

physical meaning, magnitude, and measurement techniques (Jin and Dickinson 2010). 

LST is defined as the radiation emitted by the top of the land surface, hence the term 

“skin temperature,” or the temperature you would feel if you touched the land surface. 

“Land surface” refers to the canopy surface in vegetated areas, or soil surface in bare 

areas (Wan et al. 2004). Because air is such a poor heat conductor, LST in mid-summer 

can be 30ºC - 40ºC higher than air temperature (Mildrexler et al. 2011a). We interact with 

LST constantly in our daily lives. Imagine the searing heat of beach sand (i.e. LST) on a 

hot summer day, when running from shade patch to water is the only way to avoid 

burning your feet, compared to the air temperature 1.5 m (nearly 5 feet) above the sand. 

Or imagine returning to your car in a parking lot on an especially sweltering summer day 

and finding that the handle is too hot to touch (i.e. LST). And the expression that it’s “hot 

enough to fry an egg on the sidewalk.” These are examples of LST.   

Early on in my Master’s studies my Advisor, Dr. Steven Running, told me about 

the new high quality LST product available from the Aqua satellite. This new LST 

product was developed under the direction of Dr. Zhengming Wan, and incorporated 

some of the most rigorous studies of the emissivity of land surface materials at that time 

(Wan and Li 1997). However, no one was yet using this promising new LST product for 

ecological research. Dr. Running told me to have a look at this LST data, with one very 

important caveat. He suggested I start by looking at the annual maximum surface 

temperatures to remove the large synoptic variability that affects surface temperature at 

daily to seasonal time scales (Prata et al. 1995). This suggestion stemmed from years of 

experience using LST to help understand energy and moisture fluxes at the Earth’s 

surface (Nemani and Running 1989; Nemani et al. 1993; Nemani and Running 1997).  

At the time, climatic extremes and extreme events were beginning to emerge as 

one of the most important facets of climate change (Easterling et al. 2000; Smith 2011). 

For decades, most climate impact studies had been on the mean climate variables, such as 

mean temperature (Mearns et al. 1984). Minimum and maximum temperatures were 

viewed as short-term deviations and regarded as extraordinary and non-representative 
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measurements (Jentsch et al. 2007). In a changing climate, however, the increasing 

variability is more important than averages in driving extreme events, and the relative 

importance of variability as a driver increases as the events become more extreme (Katz 

and Brown 1992). For example, consider a typical distribution of a climate variable that 

is normally distributed, such as the daily maximum temperature. The extremes are 

represented by the tails of the distribution that occur infrequently (i.e., values that are far 

from the mean or median value of the distribution) (Meehl et al. 2000). As future climate 

change shifts the distribution, there will be an increase in extreme events on one end and 

a decrease at the other (Meehl et al. 2000; Peterson et al. 2008). Moreover, the frequency 

of extremes changes nonlinearly with the change in the mean of a distribution, such that a 

slight change in the mean can result in a large change in the frequency of extremes 

(Mearns et al. 1984). Additionally, other aspects of the distribution may change, such as 

an increase in the standard deviation in a future warmer climate, causing more extreme 

events on both ends of the frequency distribution (Meehl et al. 2000).  

Annual maximum LST (LSTmax) focuses on the high temperature extreme over 

an annual period at each pixel across the Earth’s surface (Chapter 2). Thus the LSTmax 

measurement is constantly tracking conditions that fall within the upper tail of the overall 

annual surface temperature distribution. This is a powerful focus, as some of the most 

relevant climate change impacts are related to climatic extremes, rather than the mean 

climate values. Moreover, amplification of extreme temperatures can occur even when 

the global mean shows no such trend (Seneviratne et al. 2014). Annual maximum value 

compositing of the Aqua LST data results in operational (e.g. Aqua’s afternoon overpass 

is near the peak of diurnal fluctuation), and ecological (e.g. the relationship between 

vegetation density and LSTmax is strongly coupled) advantages that together provide a 

unique and informative annual monitoring metric for integrating the biophysical 

influence of land cover and the consequences of changes across the Earth’s land surface 

(Mildrexler et al. 2011b).  

Concurrent with the emergence of climatic and weather extremes in climate 

change research was the increased recognition of the ecological impacts of extreme 
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events on ecosystem dynamics, such as phenological cycles of plants (Peñuelas and 

Filella 2001; Rich et al 2008), population dynamics in a variety of species (Sunday et al. 

2012; Kerr et. al 2015), and effects on ecosystem structure, function, and carbon stocks 

(Turner 2010; Running 2008). Extreme events (i.e. severe drought and heavy rain) caused 

phenological shifts in plants of the same magnitude as one decade of gradual warming 

(Jentsch et al. 2009), and a large mountain pine beetle outbreak in Canada switched the 

entire nations forests from a carbon sink to a carbon source (Kurz et al. 2008). 

Additionally, weather extremes such as heat waves, droughts, heavy downpours, floods, 

hurricanes, and changing storm patterns have tremendous and increasing socio-economic 

consequences, necessitating improved understanding, predictability, and management 

responses to such events (Melillo et al. 2014). Extreme events are forecasted to increase 

in magnitude and frequency along with ongoing climate warming, potentially having far-

reaching consequences for society, ecology and evolution (Jentsch et al. 2009; Allen et al. 

2015; McDowell and Allen 2015). 

Early examination of the Aqua MODIS LSTmax data led me to perform a pixel 

specific differencing between the first two full years of data (i.e. 2004 minus 2003). This 

revealed significant increased LSTmax values in remarkably close association with 

forested areas burned by wildfire in 2003. I brought a hardcopy image to Steve Running’s 

office to see what he thought of this discovery. It was an exciting moment and I 

remember leaving the office with directions to couple LSTmax with a vegetation index 

product for disturbance detection. This was the conception of the MODIS Global 

Disturbance Index, possibly the first disturbance detection algorithm to use changes in 

extreme maximum surface temperatures to map abrupt disturbances at 1-km spatial 

resolution (Mildrexler et al. 2007). Although somewhat coarse for a disturbance detection 

methodology, our approach successfully detected a variety of large-scale ecological 

disturbances including impacts from wildfires, hurricanes, droughts, and large-scale 

logging (Mildrexler et al. 2009; Joyce et al. 2014). It was applied successfully by others 

to detect the impacts of wildfires, insect infestations and change information associated 

with agricultural outputs in Canada (Coops et. al 2009), wildfire in China (Tao et al. 
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2013), and applied globally at 500 m resolution (McDowell et al. 2015). Not only did this 

research confirm that annual maximum value composting removed the synoptic 

variability associated with seasonal to daily LST, it showed that significant changes in 

LSTmax were closely associated with verified ecological disturbances.   

Furthering this research, we applied annual maximum value compositing to the 

Aqua MODIS 8-day LST Climate Model Grid data (0.05 spatial resolution) to address a 

long-standing curiosity about climate: where is the hottest spot on Earth? To achieve this, 

we created the first global maps of the highest surface temperatures experienced at every 

pixel across Earth’s surface over an annual period, and then analyzed each pixel to 

identify the hottest spot on Earth (Mildrexler et al. 2006; Mildrexler et al. 20011b). Iran’s 

Lut Desert dominated the highest land skin temperatures during our analysis, but we also 

revealed that the highest LSTmax on Earth was not always in the same place (Mildrexler 

et al. 2011b). This research also provided an outstanding opportunity to educate people 

about the difference between satellite-derived skin temperature and air temperature. Still, 

we knew that the bigger science challenge was in using the global, wall-to-wall LSTmax 

data to study the heterogeneity of the Earth’s maximum thermal state.  

Chapter 2 of this dissertation represents the completion of many years of key 

research based on the Earth’s LSTmax from the MODIS sensor onboard NASA’s Aqua 

spacecraft (Mildrexler et al. 2006; Mildrexler et al. 2011b; Parkinson 2013). For the first 

time my coauthors and I have applied annual maximum value composite to the entire 

Earth’s surface using the 1-km
2
 resolution LST Aqua MODIS data and present a new 

global indicator of integrated Earth system change. Our understanding of change 

detection using LSTmax includes the effects of abrupt disturbances due to human or 

natural causes, critical thermal thresholds such as phase change driven temperature shifts 

due to ice melt, and forest stress expressed via anomalously high temperatures 

experienced during droughts and heat waves. We apply our indicator to three key topics 

in Earth system science; vegetation disturbance, cryosphere melt, and heat waves.  

Forest ecosystems have always been my greatest passion and research focus. 

Thus, when my PhD advisor, Dr. Warren Cohen, approached me with the opportunity to 
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develop an index of forest vulnerability to rising temperatures and increasing drought, I 

seized the opportunity. While many research papers had implicated increasing 

temperatures in forest stress and die-off events globally (Adams et al. 2009; Allen et al. 

2015; Williams et al. 2013), few were using LST to track where these increasing 

temperature patterns were occurring on the landscape (see Toomey et al. 2011 for an 

exception). Chapter 3 of my dissertation describes the development and application of a 

new forest vulnerability index (FVI) associated with drought and high temperatures 

across the Pacific Northwest (PNW) region. While applied to the PNW region, the 

formulation is robust across one of the largest hydrological gradients in North America 

indicating that the metrics may be transferable to different ecosystems and larger areas, 

especially those characterized by a summer seasonal drought cycle. 

The final study (Chapter 4) examines the relationship between the intensification 

of Swiss needle cast in the Douglas-fir forests of the Oregon Coast Range, and the 

unexpected discovery of the prevalence of wetter and cooler conditions we found in the 

spring and early summer with our forest vulnerability analysis. This chapter links the FVI 

to on the ground forest changes relevant to forest management in the PNW. Specifically, 

we quantified the relationship between Swiss needle cast symptoms and the FVI and its 

input variables (LST, water balance) within the region’s most vulnerable forest areas. 

This analysis displays how the FVI and input variables have enormous potential to 

evaluate a variety of ecosystem changes associated with changing temperature and 

precipitation regimes. 

The global, regional, and ecoregional research presented in this dissertation 

reflects my interest in ecology across spatial scales, ranging from pressing Earth science 

research needs to local-scale applied forest management issues. This dissertation 

develops new methodologies for utilizing a key Earth science dataset (i.e. LST) to 

address a variety of important research needs, providing information that will support 

management decisions and help predict the response of ecosystems to future changes.  
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Abstract 

Measurements that link surface conditions and climate can provide critical information 

on important biospheric changes occurring in the Earth system. As the direct driving 

force of energy and water fluxes at the surface-atmosphere interface, land surface 

temperature (LST) provides information on physical processes of land cover change and 

energy balance changes that air temperature cannot provide. Annual maximum land 

surface temperature (LSTmax) is especially powerful at minimizing synoptic and 

seasonal variability and highlighting changes associated with extreme climatic events and 

significant land cover changes. We questioned whether maximum thermal anomalies 

from satellite observations could detect heat waves and droughts, a melting cryosphere, 

and tropical forest disturbance from 2003 to 2014. The 1-km
2
 LSTmax anomalies 

detected complex spatial patterns associated with heat waves and droughts across the 

Earth’s surface, peaking in 2010 and 2012 with 5% (16%) of the Earth’s surface 

experiencing anomalies greater than 4°C (2°C). Our findings show that entire biomes are 

experiencing shifts in their LSTmax distributions driven by extreme climatic events and 

large-scale land surface changes. These directional shifts in components of the Earth’s 

LSTmax histograms are associated with melting of ice sheets, severe droughts in tropical 

rainforests, and with the incremental effects of forest loss in tropical forests. As climate 

warming and land cover changes continue, it is likely that the Earth’s maximum 

temperatures will experience greater and more frequent directional shifts, increasing the 

possibility that critical thresholds in the Earth’s ecosystems and climate system will be 

surpassed resulting in profound and irreversible changes. 
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Introduction 

The Earth’s ecosystems are experiencing change that is unprecedented in human 

history (Steffen et al. 2007; IPCC 2013). These changes, primarily driven by humanity’s 

expanding land-use footprint and increasing global emissions of atmospheric greenhouse 

gases threaten to initiate potentially irreversible changes in the Earth system (Rockström 

et al. 2009; Hansen et al. 2012). For example, investigations into the effects of climate 

change on the cryosphere have implicated increasing temperatures in the melting of 

glaciers and thinning of ice sheets, and the Greenland Ice Sheet (GrIS) has been one of 

the largest contributors to global sea-level rise over the past 20 years (Lenaerts et al. 

2013; Khan et al. 2014; Yin et al. 2011; McMillan et al. 2016). In tropical forests the 

persistent effects of increasingly severe droughts, decreases in rainfall, and the 

interactions with ongoing forest loss, suggest the potential for large-scale degradation of 

these forests (Malhi et al. 2008; Marengo et al. 2011; Saatchi et al. 2013; Hilker et al. 

2014; Zhou et al. 2014). An urgent goal of Earth science research today is the 

development of indicators to measure global changes and their consequences on climate 

that are relevant and communicable to society and decision-makers (Janetos et al. 2012). 

Land Surface Temperature (LST) is one of the most important parameters in the physical 

processes of surface energy and water balances at local through global scales (Mannstein 

1987; Li et al. 2013; Wan et al. 2004). Its retrieval from remotely sensed thermal infrared 

data provides spatially continuous LST measurements with global coverage to examine 

the thermal heterogeneity of the Earth’s surface, and the impact on surface temperatures 

resulting from natural and human-induced changes (Jin and Dickinson 2010; Li et al. 

2015). Here we present a new global change indicator based on an annual global measure 

of the Earth’s maximum land surface temperature (LSTmax) and demonstrate its value to 

examine critical Earth system functions. We questioned whether maximum thermal 

anomalies could be indicative of heat waves and droughts, a melting cryosphere, and 

tropical forest disturbance. 

Most global temperature analyses are based on station air temperatures. Although 

correlated with air temperature, LST differs fundamentally in its physical meaning, 
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magnitude, and measurement techniques (Jin and Dickinson 2010). LST measures the 

emission of thermal radiance from the actual land surface where the incoming solar 

energy interacts with and heats the ground, or the surface of the canopy in vegetated 

areas. This quality makes LST a good indicator of energy partitioning at the land surface-

atmosphere boundary and sensitive to changing surface conditions (Li et al. 2013; 

Mildrexler et al. 2009). By comparison, standard weather station air temperature is 

measured 1.5 m above the ground level with sensors protected from radiation and 

adequately ventilated. Because air is such a poor heat conductor, as midsummer 

temperature goes up, and more thermal energy is concentrated at the Earth’s surface, 

LSTmax increases more rapidly than the corresponding maximum air temperature 

(Mildrexler et al. 2011a). LST is more closely connected to the biophysical 

characteristics of the land surface, such as the land cover type, vegetation density, and 

water and energy fluxes of a specific area compared with air temperature (Oyler et al. 

2016). Moreover weather stations have an inequitable global distribution including few 

stations across remote areas of the Earth’s land surface, and cannot give detailed spatial 

patterns (Kogan 1997; Daly et al. 2008; Mu et al. 2013; Li et al. 2015). For example, in 

this study we examine ice sheets and rainforests due to their importance in the global 

climate system. With the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor onboard the Aqua satellite, LST is measured at every 1-km pixel across the 1.7 

million km
2
 Greenland ice sheet. By comparison, the Greenland Climate network consists 

of 18 weather stations where air temperature is recorded, about 1 station for every 94,000 

km
2
. Such a small number of monitoring stations limits our ability to understand what is 

happening across the entire area. The same is true for other remote regions of the Earth 

such as the Amazon and Congo rainforests, where sparse weather station coverage limits 

monitoring capability (see Fig. 1 in Mildrexler et al. 2011a), whereas remotely sensed 

LST provides spatially exhaustive coverage. These differences allow LST to magnify the 

land surface dynamics in a way that air temperatures cannot, offering a new and unique 

measure of biospheric change. 
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In recent decades an increase in the frequency and the total land area affected by 

extreme high temperature events such as droughts combined with heat waves have been 

linked to global warming (Seneviratne et al. 2014; Perkins et al. 2012). Extremely hot 

summertime outliers that once covered 1% of the Earth’s land area, now cover about 10% 

of the land area (Hansen et al. 2012). Such extremes amplify moisture deficit, heat stress, 

and result in an increase in tree mortality and wildfire (Allen et al. 2015; Mitchell et al. 

2014; Teskey et al. 2014). The frequency and severity of extreme droughts and heat 

waves are predicted to increase in the future (Cook et al. 2014; IPCC 2013; Jentsch et al. 

2007; Mitchell et al. 2014; Moritz et al. 2012; Fischer and Schär 2010). The global 

increase in high-temperature related extreme events portends the potential for regional-

scale transitions in land cover once physical and/or physiological thresholds are 

surpassed, some of which are critical thresholds in the global climate system (Grimm et 

al. 2013; Chapin et al. 2008; Christidis et al. 2015). For instance, the cryosphere’s ice and 

snow-covered surfaces have extremely cold LSTmax values, and play an important role 

as a climate buffer through the physics of phase change (Kenney et al. 2014). As ice 

sheets are exposed to warmer conditions, increased surface melt lowers the albedo, 

resulting in increased absorption of solar radiation and a positive feedback with further 

temperature increase and more surface melt (Tedesco et al. 2011; He et al. 2013). 

Tropical forest ecosystems are critical in cooling the Earth’s surface temperatures, 

contain large stores of carbon, support tremendous biological diversity, and in this 

century face the dual threats of forest clearing and stress from climate change (Lee et al. 

2011; Li et al. 2015; Malhi et al. 2008; Marengo et al. 2011). Climate model predictions 

indicate that extreme dry events may increase with climate change, pushing tropical 

forests toward a climatically induced tipping point and possible biome level degradation 

(Cox et al. 2008; Malhi et al. 2009). Here we utilize the high resolution and spatially 

continuous global coverage of the LST data to: 1) examine LSTmax anomalies and their 

association with verified heat waves from 2003 to 2014; 2) monitor large-scale ice 

warming and phase change driven temperature shifts in the cryosphere; and 3) investigate 
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changes in surface temperatures in evergreen broadleaf forests (EBF) in accordance with 

the 2005 and 2010 droughts, and in response to forest loss. 

 

The uniqueness of annual maximum land surface temperatures  

Multiple lines of research have found that the daytime LSTmax from the Aqua 

MODIS sensor is a unique and informative annual monitoring metric for integrating the 

biophysical influence of land cover and the consequences of changes across the Earth’s 

land surface. The Aqua satellite’s equatorial afternoon overpass time of approximately 

13:30 allows for near ideal retrievals of maximum daily LST as it is temporally 

coincident with the maximum daily temperature of the land surface (Sinclair 1922; Wan 

et al. 2004). Measurements close to the peak of diurnal fluctuation better reflect the 

thermal response of rising leaf temperatures due to decreased latent heat flux as stomata 

close, and soil litter surfaces dry, accentuating differences in LST among vegetation 

cover types (Mildrexler et al. 2007). Focusing on the Earth’s maximum surface 

temperatures provides important insights into high temperature extremes associated with 

droughts and heat waves, and the thermal tolerances and exposures for different biomes 

and species.  

Satellite-derived LST is influenced by synoptic weather variability (wind-speed, 

cloud cover, humidity, radiation loading, etc.) on a continual basis, and has high natural 

variability (Friedl and Davis 1994; Nemani and Running 1997). While temperatures over 

land surfaces generally vary strongly in space and time (Prata et al. 1995; Li et al. 2013), 

annual maximum value compositing removes the natural synoptic variability associated 

with daily to seasonal LST while focusing on the maximum temperature in a given area. 

For a specific location and in the absence of change, the LSTmax metric has relatively 

low interannual variability. Moreover, the timing of LSTmax generally occurs during the 

year’s driest clear sky conditions. This, in turn, imposes a strong limitation on the 

partitioning among the sensible and latent heat fluxes (H and LE respectively) that 

largely control the surface temperature in the surface energy balance (Bateni and 

Entekhabi 2012; Sandholt et al. 2002). Thus, LSTmax measurements provide unique 
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information on how the partitioning between H and LE varies and affects the expression 

of LSTmax across the Earth’s surface in this moisture-limited condition. Since plants are 

the primary site for the exchange of water, energy, and momentum between the land and 

the atmosphere, the vegetated fraction of the Earth’s surface has important effects on the 

magnitude and relative partitioning of the turbulent fluxes (H + LE). Indeed, a strong 

relationship has been observed between LSTmax and vegetation density over a wide 

range of land cover types (Mildrexler et al. 2007; Nemani et al. 1993; Goward et al. 

1985; Smith and Choudhury 1990; Sandholt et al. 2002). The variations in land surface 

properties and vegetation densities across the Earth’s surface give LSTmax a unique 

biogeographic influence. For example, forests, with their relatively deep root systems, 

can tap groundwater even during dry conditions and through transpiration, partition a 

larger proportion of incoming solar radiation to LE, cooling their surface temperature 

compared to other land cover types (Mildrexler et al. 2011a).  

The complete global coverage and 1-km
2
 resolution of the LST data provides 

detailed spatial information that can be examined at local (Zhou et al. 2012), regional (Jin 

and Mullens 2012; Van De Kerchove et al. 2013), as well as global scales (Mildrexler et 

al. 2011b; Li et al. 2015). Spatially continuous global LSTmax maps provide the means 

to visually assess the patterns of the highest temperatures across both large-scale natural 

vegetation density and type gradients (Fig. 2.1A and 2.1B)—such as the transition from 

the tropical rainforests of the Congo to the Sahara Desert—and relatively small-scale land 

cover changes due to irrigation and urban development (Fig. 2.1C). This scalability 

facilitates focusing on different regions of the Earth’s land surface to explore the driving 

factors that contribute to changes in the higher-level global measurement (Fig. 2.1D). 

Thus, LSTmax has the potential to indicate large-scale shifts in the Earth’s biosphere, 

while also retaining its physical meaning and significance across every 1-km
2
 pixel of the 

Earth’s land surface.  

The annual LSTmax histograms include every 1-km
2
 pixel across the global land 

surface and display a distinctive multimodal distribution influenced by the biophysical 

and biogeographic factors of the Earth’s ecosystems (Fig. 2.1D). Barren deserts, 
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shrublands and grasslands in hot dry environments are reflected in the high temperature 

mode (~ 50° - 65°C) of the global histogram (Fig. 2.1D). Ice/Snow areas account for the 

low temperature mode (~ −30° - 0°C) including the high kurtosis at 0°C, the ice melt 

point. The central mode of the global histogram (~ 20° - 35°C) is driven by forest cover 

types. These annual histograms illustrate that the Earth has a unique maximum thermal 

signature with relatively low interannual variability across 12 years of LSTmax data, 

reflecting two important global-scale land surface dynamics. First, in any given year, the 

vast majority of the Earth’s land surface is undisturbed (Potter et al. 2003; Mildrexler et 

al. 2009; Goward et al. 2008). Second, the aggregate effects of natural disturbances 

globally on the surface energy balance, such as from the loss of vegetation to fire and the 

regrowth from natural succession, act to average each other out (Bowman et al. 2009). By 

starting from this integrated global perspective, we have developed an understanding that 

bulk shifts in any component of the histogram signal potential major climate or human-

induced changes in the Earth’s system. Using the MODIS land cover as a mask, LSTmax 

data can be extracted for specific cover types and land cover specific histograms analyzed 

for change. 

 

Data and Methods 

The key datasets used in this study are global satellite-derived LST and land cover 

data from the MODIS sensor from 2003 to 2014. We also used Landsat derived forest 

loss data and continental perimeter maps for classification and comparison of the LST 

data. Our approach involves several key steps. 1) Annual maximum value compositing of 

the 1-km
2
 LST data and calculation of LSTmax annual histograms. 2) Calculation and 

spatial analysis of the global LSTmax pixel-specific anomalies and their association with 

verified heat waves and droughts. 3) Calculation of Ice/Snow LSTmax histograms and 

examination of interannual variations and spatial patterns related to ice melt in Greenland 

and Antarctica. 4) Calculation of EBF LSTmax histograms and examination of 

interannual shifts and anomalies associated with drought and forest loss in South America 
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and Africa, where the EBF forest area is predominantly within the Amazon and Congo 

rainforests respectively.  

 

MODIS Aqua LST data 

We used the collection 5 MODIS 8-day Aqua daytime LST (MYD11A2) from 

2003 to 2014 at 1-km
2
 spatial resolution. The MODIS LST products have been validated 

within 1 K at multiple sites in relatively wide ranges of surface and atmospheric 

conditions (Wan et al. 2004; Wan 2008). Refinements to the collection 5 LST product 

have minimized the main sources of uncertainty caused by cloud contamination and in 

accurately estimating the surface emissivity, and significantly improved the accuracy and 

stability of the MODIS LST products (Wan 2008). Annual maximum value compositing 

was applied to the LST data, selecting independently for each pixel the maximum 8-day 

LST over a one-year period from all 8-day composites labeled as reliable by the MODIS 

quality control and combined into one seamless image representing the highest LST 

recorded at every 1-km
2
 pixel on the Earth’s surface for a given year. LSTmax has been 

used to pinpoint global hot spots (Mildrexler et al. 2011b), map large-scale ecological 

disturbances and human induced land cover change at regional and continental scales 

(Lambin and Ehrlich 1995; Li et al. 2015; Mildrexler et al. 2007; Mildrexler et al. 2009), 

examine the degree to which different land cover types regulate LSTmax and how it 

varies compared with air temperature globally (Mildrexler et al. 2011a), and to better 

understand the maximum thermal characteristics of the global land surface (Mildrexler et 

al. 2011b). 

LSTmax anomaly maps 

Biophysical data such as LST are easily interpreted as a relative anomaly, or 

departure from a baseline condition (Janetos et al. 2012). The LSTmax anomaly is 

calculated on an annual basis as pixel-wise anomalies from each pixel’s long-term data 

record mean (2003-2014). 

LSTmaxAnomaly annual  =  LSTmax current year   –  LSTmax data record mean  (1) 



 

 

16 

The LSTmax anomalies are calculated relative to the 2003-2014 average where normal is 

the 0 point and departures are mapped in 2°C increments. 

 

MODIS Land Cover data 

The MODIS collection 5.1 Land Cover product (MCD12Q1) provides annually 

updated land cover maps with a spatial resolution of 1-km
2 

(Cai et al. 2014). The primary 

objective of the MODIS Land Cover product is to facilitate the inference of biophysical 

information for use in regional and global modeling studies and therefore must be 

discernible with high accuracy and directly related to physical characteristics of the 

surface, especially vegetation (Friedl et al. 2002). A classification scheme developed by 

the International Geosphere-Biosphere Programme (IGBP) groups the Earth’s surface 

into 17 major classes. This provided a consistent grouping method to compute the land 

cover specific LSTmax statistics and provide biophysical interpretation. We used land 

cover specific masks to extract the annual LSTmax and anomaly data for specific cover 

types and develop cover specific histograms. To reduce uncertainties related to annual 

changes in the land cover map, we used the land cover data from 2003 to match with our 

first full year of MODIS Aqua LST data and held this layer constant for all other years 

(2003-2014).  

 

Forest loss data  

Forest loss was derived from 30-m
2
 spatial resolution Landsat-based annual forest 

change data (Hansen et al. 2013). Forest loss from 2000 to 2012 were aggregated from 

30-m to 1-km in sinusoidal projection and mosaicked to global geotiff files. Each change 

layer gives the percentage of Landsat change pixels that experienced forest loss during 

each year within a 1-km grid. Cumulative losses were computed as the total percentage of 

forest cover loss that occurred between 2000 and 2012. To examine the effects of 

significant large-scale forest loss on LST in the EBF cover type, we used a threshold of 

30% forest loss, indicating that at least 30% of the MODIS 1-km pixel had experienced 

forest loss during the study period. While more subtle temperature responses are likely at 
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lower thresholds, the 30% threshold is effective for our purpose of demonstrating the 

generalized broad-scale temperature response from significant forest loss (Sulla-Menashe 

et al. 2014). To examine the effect of forest loss on LSTmax we utilized two approaches. 

First, to determine if persistent increases in the LSTmax of EBF were associated with 

areas that experienced forest loss, we computed the mean temperature change between 

the first (2003 - 2008) and second half (2009 - 2014) of the study period (globally and for 

South America) at each pixel, and then compared the changes with areas that experienced 

greater than 30% forest loss from 2002 to 2012. Second, we compared the temperature 

change for pixels that experienced greater than 30% forest loss to those that experienced 

less than 30% forest loss between the first year (2003) and the last year (2014) of our 

study period. Because forest loss has such persistent effects on LSTmax change, we 

found a very strong spatial correspondence between our LSTmax and forest loss datasets 

despite their minor temporal offset.   

 

Results  

Global heat waves  

We used the spatially continuous1-km
2
 annual LSTmax anomaly data to monitor 

for extreme heat events from 2003 to 2014 (Fig. 2.2). We found that positive anomalies 

with temperatures ranging from 2°C to over 8°C above the mean LSTmax correspond 

with major droughts and heat waves across the global land surface (Table 2.1). Area 

affected by positive anomalies peaked in 2010 and 2012 with 5% (16%) of the Earth’s 

surface experiencing anomalies greater than 4°C (2°C) for both years (Table 2.2). The 

2010 peak coincides with widespread and severe heat waves in Russia, Kazakhstan, 

Mongolia, and China (Sun et al. 2014), and the Amazon and Congo rainforests (Marengo 

et al. 2011; Zhou et al. 2014). In 2012 positive LSTmax anomalies stretched across the 

northern hemisphere in accordance with widespread summer heat waves in North 

America (Wang et al. 2014; Cattiaux and Yiou 2013; Karl et al. 2012) and northern 

Eurasia (Schubert et al. 2014). The 2012 positive anomaly over Greenland was the most 
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extreme melt year ever recorded across the GrIS with satellite monitoring (Nghiem et al. 

2012).  

Focusing on several high profile heat waves reveals complex spatial patterns 

detected across a variety of ecosystems (Fig. 2.3; boxes in Fig. 2.4 give locations of heat 

waves). The LSTmax anomalies associated with extreme heat waves generally display a 

core area of intense positive anomalies surrounded by anomalies of decreasing intensity 

grading out into the landscape (Fig. 2.3). For example, the most intense anomalies (>6°C) 

of the 2003 European heat wave were concentrated in France with smaller patches in 

Germany (Fig. 2.3A). Surrounding these areas were anomalies ranging between 4 - 6°C 

that connect the higher intensity patches together, and spread into Spain, England, across 

Germany and into eastern Europe. These areas were further surrounded by anomalies 

ranging between 2 - 4°C. Together these positive anomalies give a spatially defined 

footprint of the 2003 European heat waves most extreme surface temperatures. In 2007 

heat waves affected both western and southern/eastern North America (Fig. 2.3B). 

Interestingly, a cold summer anomaly also occurred in Texas during 2007. As a result the 

2007 LSTmax anomaly map for North America displays the juxtaposition of negative 

(cool) and positive (hot) anomalies. The Siberian heat wave (Fig. 2.3C), the 2011 Texas 

and Oklahoma heat wave (D), and the 2012 Greenland heat wave (E) each show a similar 

general pattern of a core area of the most intense positive anomalies surrounded and 

connected by less intense positive anomalies. These heat waves were associated with 

continent-wide reductions in ecosystem productivity (Ciais et al. 2005; Zhao and 

Running 2010; Schwalm et al. 2012), heat stress-induced damages to natural and 

agricultural systems (Cattiaux and Yiou 2013; Bréda et al. 2006; Long et al. 2013), 

unusually large and intense wildfires and air pollution (Wendler et al. 2011; 

Shaposhnikov et al. 2014), die-offs of plants and animals (Bréda et al. 2006; McKechnie 

et al. 2012; Allen et al. 2015), spread of infections (Baker-Austin et al. 2016), and 

widespread loss of human life (Bouchama 2004; Sun et al. 2014; Fouillet et al. 2008; 

Elliot et al. 2014). Low maximum temperature anomalies generally imply cooler summer 

conditions that are less notable from a meteorological point of view. Nonetheless the 
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LSTmax negative anomalies are associated with verified climatic events, such as the cool 

summers of 2004 and 2009 in much of the central portion of the U.S., the cool spring and 

summer of 2007 in Texas (Fig. 2.3B), and Australia’s wet, cool summer in 2011.  

Recent extreme heat events, such as those shown in Figure 2.3, are redrawing the 

temperature records of the planet, breaking records on daily to seasonal timescales 

(Barriopedro et al. 2011; Lewis and Karoly 2013). To visualize the footprint of 

increasingly extreme heat waves on the planet’s highest temperatures, we extracted the 

year during which the highest LSTmax occurred from 2003 to 2014 across the global 

land surface. The resulting map shows the temporal juxtaposition of large, overlapping 

severe heat waves, particularly in the northern hemisphere, such as the 2003 European 

heat wave (light pink), and the 2010 Siberian heat wave (light green) superimposed on 

other major heat waves from 2006 and 2012 (Fig. 2.4). The 2012 positive anomaly in 

Greenland dominated the highest LSTmax over large areas of the ice sheet. North 

America shows the footprint of numerous extreme events such as the 2003 heat wave in 

western North America, and the 2004 heat wave in southeast Alaska (Fig. 2.4). The 

highest LSTmax values in the central and southeastern U.S. occurred during the heat 

waves in 2006, 2011, and 2012. In Australia, record-breaking heat waves in 2009 and 

2013 dominate the timing of highest LSTmax over large areas of the continent. The 2005 

drought had a strong footprint in Africa. In South America, the 2009 heat wave in La 

Plata Basin (green) and the 2013 heat wave in Argentina (orange) dominated the timing 

of the highest LSTmax in those areas. While patterns in tropical rainforests are generally 

more mixed, the 2010 heat wave was the dominant year during our study period for 

highest LSTmax in these forests.   

Cryosphere melt  

To isolate the Earth’s year round ice and snow-covered lands for melt detection, 

we extracted the 1-km
2
 LSTmax data from 2003 to 2014 for all pixels classified as 

Ice/Snow by the MODIS land cover map of 2003. The global Ice/Snow LSTmax 

histogram accounts entirely for the low temperature mode in the global histogram (Fig. 

2.1D), including the sharp spike at 0°C (32°F), the ice melting point (Fig. 2.5). During 
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the melt phase change process, considerable energy is spent in the physical process of 

breaking hydrogen bonds rather than increasing the surface temperature, resulting in a 

convergence of surface temperatures around the ice melt temperature range. Close 

examination of the melting point peak reveals large shifts between years (2011-2014 

shown on Fig. 2.5 inset graph). In 2012 the peak reached its highest level, representing 

about 32,000 km
2 

of the ice and snow covered land surface, higher than any other year by 

over 10,000 km
2
. Interestingly, once melt occurs, surface temperatures warm rapidly 

indicated by the relatively tiny fraction of the Earth’s surface with LSTmax between 0° 

and 10°C (Figs. 2.5 and 2.1D). This suggests that the phase change acts as a climatic 

buffer that once overcome, results in a rapid surface temperature increase.  

To examine the location of ice melt, we mapped the temperature range associated 

with the ice melt peak (~ −1.0° - 0.5°C) for 2011 – 2014 and compared Greenland and 

Antarctica, which together contain 99% of the freshwater ice on Earth. The maps show 

ice melt concentrated in the northern hemisphere, and especially on the GrIS where large 

areas around the coastal margin show LSTmax values within the ice melt range each year 

(Fig. 2.6). The increased surface melt during 2012 is clearly visible, indicating that the 

LSTmax histogram shifts are tracking major melt changes in the cryosphere. In 

comparison, Antarctica’s LSTmax stayed mostly below the ice melt range (Fig. 2.6).  

The LSTmax histogram plotted specifically for Greenland verifies that melt on 

the GrIS drove the observed shifts in the global Ice/Snow melt peak, including the 2012 

maximum that corresponds to the year of record melt and a widespread positive LSTmax 

anomaly (Fig. 2.7). Spatial patterns reveal that the 2012 LSTmax positive anomalies were 

most intense in the northern interior part of the GrIS (Fig. 2.7A), which includes the cold 

polar areas at high altitudes where historical melt has been very rare (Clausen et al. 1988; 

Nghiem et al. 2012). However, in 2012 the pronounced positive anomalies resulted in 

surface temperatures that crossed the melt point in the cold polar areas. Also of 

importance is the shift toward warmer temperatures in 2012 for the entire LSTmax 

distribution of the GrIS relative to the other years, with the coldest temperatures rising to 

around −10°C, and a substantial increase in area of ice within the −5° to 0°C temperature 
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range (Fig. 2.7B). In comparison, much of Antarctica’s Ice/Snow environment 

maintained cooler annual maximum surface temperatures in the −30° to −5°C range, and 

a much smaller peak at the melt point.  

Tropical forest droughts  

We isolated the LSTmax data for all EBF globally using the 2003 MODIS land 

cover. These tropical forests account for a portion of the central mode in the global 

LSTmax histogram and consistently regulate LSTmax between about 25° and 35°C (Fig. 

2.8). The LSTmax histograms reveal a biome-level shift toward higher temperatures in 

2010 (Fig. 2.8), the year Amazonia experienced a widespread and severe drought 

(Marengo et al. 2011). Severe drought also affected the Amazon rainforest in 2005 

(Marengo et al. 2008). While these recent Amazonian droughts are well documented, in 

situ observations of drought effects are more limited in the central African rainforests. 

However, recent studies have presented observational evidence for widespread decline in 

vegetation greenness in Congolese forests in the past decade (Zhou et al. 2014). Our data 

indicates the potential of a whole biome-level extreme maximum temperature shift in 

2010. We investigated the LSTmax anomalies and distributions for South America 

(Amazon rainforest) and Africa (Congo rainforest), which contain the two largest 

rainforests on Earth.  

We found that positive LSTmax anomalies affected both the Amazon and Congo 

rainforests during the major droughts of 2005 and 2010 (Fig. 2.9). In the Amazon in 

2005, positive anomalies were concentrated in the southwestern region (Fig. 2.9A), 

where patterns of drought impact on the forest canopy were most severe (Saatchi et al. 

2013). In 2010 the positive LSTmax anomalies were much more widespread and intense 

(4° - 8°C) throughout the Amazon (Fig. 2.9B), driving a bulk shift in the 2010 LSTmax 

histogram for South America’s EBF (Fig. 2.9C). The Congolese rainforests experienced 

positive anomalies during 2005, especially in their central, and more intense in their 

eastern extent (Fig. 2.9D). The 2010 positive anomalies in the Congo were also 

widespread, but generally less intense than in the Amazon (Fig. 2.9E). These widespread 
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anomalies drove directional shifts toward higher temperatures in Africa’s EBF in 2005 

and 2010 (Fig. 2.9F).  

Tropical forest loss 

It is well established that forest loss increases the LSTmax in tropical forests 

(Mildrexler et al. 2011a; Li et al. 2015). Thus, the cumulative effect of deforestation on 

LSTmax should over time shift the annual histograms toward higher temperatures. We 

found a shift toward higher LSTmax values between the first half (2003 - 2008) and the 

second half (2009 - 2014) of the study period for all EBF globally, and for the EBF in 

South America (Fig. 2.10A and 2.10B). In the Amazon, the area of forest loss between 

2002 and 2012 was largely concentrated in the “arc of deforestation” along the southern 

edge of the Amazon forest (Fig. 2.10C). The significant mean temperature changes 

(>2.5°C) showed strong spatial association with areas of forest loss, and were nearly 

uniform toward higher temperatures (Fig. 2.10D). This indicates that the cumulative 

effects of forest loss over time are driving shifts in the EBF LSTmax histograms toward 

higher temperatures. 

We also isolated EBF that experienced greater than 30% forest loss during our 

study period, and plotted their temperature change against areas that experienced less 

than 30% forest loss. The areas of 30% or greater forest loss experienced a much greater 

shift toward higher temperatures (Fig. 2.11A and 2.11B). A typical forest loss scene in 

the Amazon reveals the tight spatial coupling between forest loss and LSTmax increases 

of more than 5°C at the local scale (Fig. 2.11C). Zooming in closer reveals the 

temperature changes in areas of visible forest loss (Fig. 2.11D). Compared to the area of 

increased temperature, very little area shows a reduction in LSTmax that would indicate 

recovery from previous forest loss.  

 

Summary and Discussion  

Our results document that the Earth’s maximum surface temperatures are 

experiencing biome-scale bulk shifts toward anomalously high temperatures in 

association with large-scale extreme climatic events, and land use change. Large-scale 
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directional shifts in maximum temperatures indicate important changes in the surface 

energy balance that push ecosystems and biomes toward critical thresholds. We found 

these shifts in the cryosphere in conjunction with the extreme melt of the GrIS, and in 

tropical rainforests caused by widespread and severe drought and the cumulative effects 

of forest loss. Interestingly, the peak years with positive LSTmax anomalies (2010 and 

2012) were the same years we detected bulk shifts in the temperature distribution for 

entire biomes. This highlights the need to improve our understanding of the 

teleconnections within the Earth’s global environment that manifest such widespread and 

extreme global heat waves that are projected to become more common in a future warmer 

world (Wang et al. 2014; Schubert et al. 2014; Hansen et al 2012).  

Biome-level bulk shifts in the LSTmax distribution indicates the potential for 

thermal stress thresholds to be crossed for large areas, resulting in profound and 

irreversible changes. For example, 98.6% of the GrIS was under melt in 2012 (Nghiem et 

al. 2012) in conjunction with widespread positive LSTmax anomalies and a large 

increase in the ice melt peak of Greenland’s histogram (Fig. 2.7). Melt occurred in the 

high polar altitudes of the GrIS in some areas where the last significant melt event is 

recorded in the 1889 ice layer (Claussen et al. 1988). Ice loss from the GrIS has rapidly 

accelerated during the last four years of our study period (2011-2014) accounting for an 

increasing proportion of global sea level rise, and the greatest ice loss occurred during the 

exceptionally warm summer of 2012 (McMillan et al. 2016). The 2012 LSTmax 

distribution for the GrIS provides a glimpse into how future ice summer temperature 

distributions will look under a melt regime characterized by 100% summer surface melt 

extent, a threshold reaching condition that will likely trigger tipping points in the ice 

sheet melt regime (Box et al. 2012). The unique phase change driven component to the 

Ice/Snow histogram will also provide valuable insights into future ice melt changes in 

Antarctica.  

Demonstrating the importance of wall-to-wall global LST coverage, we found 

that the Amazon and Congo rainforests experienced widespread LSTmax anomalies and 

large-scale directional shifts toward higher temperatures in 2010, and to a lesser extent in 
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2005. The 2010 LSTmax anomalies show how large, severe droughts can rapidly shift an 

entire forest biome toward a condition of increased thermal stress (Fig. 2.9). Given that 

the 2010 drought caused a widespread reduction in vegetation greenness, increased 

mortality, and reduced growth that may have shut down the entire Amazon rainforest 

carbon sink (Lewis et al. 2011; Xu et al. 2011; Feldpausch et al. 2016), the effects of the 

2010 LSTmax anomalies on the Congolese forests were most likely also severe. This is 

consistent with the gradual decline in photosynthetic capacity and moisture content 

observed in the Congolese forests over a similar time period (Zhou et al. 2014). It is not 

surprising that in comparison with 2005, the 2010 drought had a much stronger effect on 

shifting the LSTmax distribution in the Amazon rainforest. While both Amazonian 

droughts were severe, the 2010 drought caused declines in greenness spanning an area 

that was nearly five times greater compared to 2005 (Xu et al. 2011). Research into the 

effects of recent sub-continental hotter droughts on tree mortality have found that 

consecutive multi-year events cause progressive drying of the forest canopy and 

reductions in soil moisture that can result in widespread mortality of dominant trees 

species (Breshears et al. 2005; Asner et al. 2016). Extreme drought events have legacy 

effects on forest ecosystems that can last for several years, potentially reducing the 

resiliency of ecosystems to subsequent drought events (Anderegg et al. 2015; Saatchi et 

al. 2013). As the area affected by extreme high temperatures increases (Hansen et al. 

2012), so will the exposure of ecosystems to anomalously high temperatures, reducing 

recovery time, and pushing ecosystems closer to resilience limits across scales potentially 

not yet witnessed before.  

Forest cover changes are a key driver of anthropogenic climate change (Bonan 

2008). Thus, the ability to detect human-induced forest loss is a critical aspect of the 

LSTmax global indicator. The shift in the mean LSTmax toward higher temperatures 

between the first half and the second half of our study period demonstrates how the 

temperature effects of annual forest cover changes accrue over time (Fig. 2.10). While the 

changes detected here are from a 2003 land cover baseline, by 2003 over 837,000 km
2
 of 

Amazonian forests had already been lost (Malhi et al. 2008). Given the increases in 
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LSTmax we detected from 2003 to 2014 in association with forest loss, the historic forest 

loss has driven much more widespread increases in LSTmax with commensurate impacts 

on regional climate. Together, the effects of forest loss and climate change amplify one 

another, and our analysis provides a new integrated way to examine these critical 

changes.  

This study has shown the immense value of a single, unique measurement in 

tracking critical changes in the Earth system. The focus on changing thermal regimes has 

the potential to detect the shifts of ecosystems toward thresholds of profound change 

(Mildrexler et al. 2016) and our global, semi-automated annual analysis is easily 

repeatable for continuous monitoring of the entire Earth’s land surface. These are 

important distinctions from disturbance detection approaches that employ complex 

algorithms to provide detailed information on abrupt disturbances and land cover change, 

but are rarely applied annually over the entire Earth’s land surface. As part of a global 

disturbance monitoring system, our efficient global analysis could identify areas for 

further examination with higher spatial resolution imagery, such as the 30-m Landsat 

product (McDowell et al. 2015). Moreover, given the trade-offs regarding disturbance 

detection accuracy with coarse resolution imagery (McDowell et al. 2015), and the link 

between warming temperatures and increasing rates of disturbance (Allen et al. 2015), we 

contend that our methodologies focus on large-scale directional shifts in surface 

temperatures provides a more informative first-look global change indicator in 

comparison with coarse-scale disturbance detection information alone.  

A 12-year period is insufficient to attribute the LSTmax changes to anthropogenic 

climate change or establish long-term trends. Nonetheless, our results show a clear 

response of the cryosphere and tropical forests to changes in maximum temperature. Over 

time, extreme temperature events, especially heat waves and droughts, play an important 

role in redefining the Earth’s surface thermal maxima (Fig. 2.4), and ultimately the global 

LSTmax histograms. We conclude that with continued warming, the Earth’s integrated 

maximum temperatures will experience greater and more frequent directional shifts. This 

will increase the likelihood that critical thresholds will be surpassed resulting in regional 
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scale transitions that are tipping points in the global climate system (Chapin et al. 2008; 

Hilker et al. 2014). Given the unique qualities of the LSTmax measurement, and the 

importance of continuing this annual analysis for future trend detection, data continuity in 

satellite-derived LST is imperative. Subsequent research will investigate the ability of the 

LSTmax indicator to detect slower biome shifts, such as changes in woody plant cover in 

the Arctic that are altering the surface energy balance, and the ongoing land degradation 

in the Sahel of Africa. 
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Figures and Tables  

Fig. 2.1. (A) Continuous global map of the mean annual maximum daytime LST 

(LSTmax) from 2003 to 2014 displays a heterogeneous thermal environment, and close 

association with the land cover type of the Earth’s surface. (B) 2003 MODIS Land Cover 

dataset (Friedl et al. 2010) with classification system abbreviations defined as Evergreen 

Needleleaf Forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Needleleaf 

Forest (DNF), Deciduous Broadleaf Forest (DBF), Mixed forests (MF), Shrublands 

(Shrub), Savannas (Savan), Grassland (Grass), Permanent Wetlands (Pwet), and 

Croplands (Crop). Note that in this figure, we combined Open and Closed Shrublands 

into Shrub, and Woody Savannas and Savannas into Savan. (C) The high spatial 

resolution (1-km
2
) LST data detects temperature effect of irrigation in a semi-arid desert 

in Idaho, USA and urbanization in South Carolina, USA. LST and land cover 

classifications are the same as in 1A and 1B. (D) The global maximum thermal signature 

of the Earth’s land surface from 2003 to 2014 reveals low interannual variability and a 

multimodal distribution. Area under annual density curves sum to 1.  
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Fig. 2.2. LSTmax annual anomaly maps from 2003 to 2014 mapped in two degree 

Celsius intervals capture the spatial extent of major droughts and heat waves in detail, 

providing a powerful visual comparative evaluation for heat waves globally. 
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Fig. 2.3. Heat waves and LSTmax anomalies for (A) 2003 European heat wave, (B) 2007 

North American heat waves (and cold anomaly in Texas and Oklahoma), (C) 2010 

Siberian heat wave, (D) 2011 Texas and Oklahoma heat wave, and (E) 2012 Greenland 

heat wave.  

 

 



 

 

30 

Fig. 2.4. The year during which the highest LSTmax occurred from 2003 to 2014 at every 

1-km
2 

pixel across the global land surface shows the temporal footprint of numerous 

large-scale heat waves. Boxes correspond to location of heat waves shown in Figure 2.3.  
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Fig. 2.5. The LSTmax histogram for all pixels labeled as Ice/Snow by MODIS Land 

Cover (2003) illustrates the unique and critical role of ice and snow-covered lands in 

regulating the expression of the Earth’s upper temperature limit, and reveals a strong 

kurtosis at the melting point with large interannual variability (inset graph).  
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Fig. 2.6. Spatial location of Ice/Snow pixels with temperatures below (<−1°C), within 

(−1° - 0.5°C) and above (>0.5°C) the ice melt temperature range for Greenland (top 

panel) and Antarctica (bottom panel). Note that the ice surface temperature of −1°C is 

used as a melt detection threshold (Nghiem et al. 2012).   
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Fig. 2.7. (A) Spatial patterns of 2012 LSTmax positive anomalies extend across 

Greenland and are most intense in the northern interior of the ice sheet, which includes 

cold polar areas at high altitudes. (B) The entire distribution for Greenland shifted toward 

higher temperatures in 2012, with a substantial increase in the melting point kurtosis.  

  

Fig. 2.8. (A) The LSTmax histograms and (B) anomaly distributions for all pixels labeled 

as EBF by MODIS Land Cover (2003) shifted toward higher temperatures and positive 

anomaly in 2010 during a short-term severe drought.  
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Fig. 2.9. Spatial patterns of LSTmax anomalies in the EBF during the droughts of 2005 

(A and D) and 2010 (B and E) for the Amazon (top panel) and Congo (bottom panel) 

rainforests. The LSTmax histograms for all EBF pixels in South America (C) and Africa 

(F).  
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Fig. 2.10. Histograms reveal shifts toward higher mean LSTmax between the first half 

(2003-2008) and the second half (2009-2014) of the study period for all EBF globally (A) 

and for South America (B). Spatial patterns of pixels with greater than 30% cumulative 

forest loss in the Amazon EBF from 2002 to 2012 (C) also experienced significant mean 

temperature increases (> 2.5°C) between the first (2003-2008) and the second half (2009-

2014) of the study period (D). 
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Fig. 2.11. (A and B) The difference between the 2003 and 2014 LSTmax histograms for 

all EBF globally illustrate the large shift toward warmer temperatures associated with 

greater than 30% forest cover loss. (C) Major temperature increases are closely 

associated with deforested areas in the Amazon (black crosshatch) and (D) visible signs 

of forest loss in Google Earth. 
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Table 2.1. Documented cases of drought and/or heat waves detected from 2003 to 2014. 

Location Year References/URL 

Europe 2003 Rebetez et al. (2008); Stott et al. (2004) 

Western USA 2003 Bumbaco and Mote (2010) 

Alaska 2004 Wendler et al. (2011) 

Southern Asia 2005 http://earthobservatory.nasa.gov/IOTD/view.php?id=5603 

East Africa 2005 Hastenrath et al. (2007) 

Amazon 2005 Marengo et al. (2008) 

North America 2006 http://www.noaanews.noaa.gov/stories2006/s2759.htm 

Europe 2006 Fouillet et al. 2008; Rebetez et al. (2008)  

Australia  2006 http://www.bom.gov.au/climate/current/month/aus/archiv

e/200611.summary.shtml 

North America 2007 Fuhrmann et al. (2011) 

Southern Europe 2007 Coumou and Rahmstorf (2012); Founda and 

Giannakopoulos (2009) 

Southeast 

Australia 

2009 Coumou and Rahmstorf (2012); Karoly 2009;  

http://www.bom.gov.au/climate/current/statements/scs17d

.pdf 

La Plata basin, 

South America 

2009 Chen et al. (2010); 

http://www.ipsnews.net/2009/01/agriculture-argentina-

worst-drought-in-100-years/ 

Russia; eastern 

Europe 

2010 Barriopedro et al. (2011); Grumm (2011) 

Quebec, Ontario  2010 Bustinza et al. (2013) 

Brazil 2010 Marengo et al. (2011) 

Congo rainforest 2010 Zhou et al. (2014) 

Texas and 2011 Hoerling et al. (2013); Hansen et al. (2012);  Coumou and 

http://www.noaanews.noaa.gov/stories2006/s2759.htm
http://www.bom.gov.au/climate/current/month/aus/archive/200611.summary.shtml
http://www.bom.gov.au/climate/current/month/aus/archive/200611.summary.shtml
http://www.bom.gov.au/climate/current/statements/scs17d.pdf
http://www.bom.gov.au/climate/current/statements/scs17d.pdf
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Oklahoma, USA Rahmstorf (2012); Long et al. (2013) 

USA 2012 Cattiaux and Yiou (2013); Karl et al. (2012); Wang et al. 

(2014) 

Greenland 2012 Nghiem et al. (2012); Neff et al. (2014) 

Russia 2012 https://www.oxfam.org/sites/www.oxfam.org/files/cs-

russia-drought-adaptation-270913-en.pdf 

Eurasia 2012 Schubert et al. (2014) 

Australia 2013 Lewis and Caroly (2013); 

http://www.bom.gov.au/climate/current/annual/aus/2013/ 

Ireland; United 

Kingdom 

2013 Elliot et al. (2014); 

http://www.metoffice.gov.uk/news/releases/archive/2013/

warm-july-stats 

Alaska, USA 2013 http://cms.met.psu.edu/sref/severe/2013/18Jun2013.pdf 

Eastern China 2013 http://news.xinhuanet.com/english/indepth/2013-

08/13/c_132627590.htm 

Argentina 2013 http://www.bbc.com/news/world-latin-america-25564633 

Northern Europe 2014 Baker-Austin et al. (2016); 

http://en.ilmatieteenlaitos.fi/press-release/42503751 

Australia 2014 http://www.bom.gov.au/climate/current/statements/scs48.

pdf 

British Columbia, 

Canada; 

northwestern 

USA  

2014 http://www.cbc.ca/news/canada/british-columbia/b-c-

heat-wave-3-hottest-spots-and-20-records-broken-sunday-

1.2705834; 

http://earthobservatory.nasa.gov/IOTD/view.php?id=8404

2 

https://www.oxfam.org/sites/www.oxfam.org/files/cs-russia-drought-adaptation-270913-en.pdf
https://www.oxfam.org/sites/www.oxfam.org/files/cs-russia-drought-adaptation-270913-en.pdf
http://www.metoffice.gov.uk/news/releases/archive/2013/warm-july-stats
http://www.metoffice.gov.uk/news/releases/archive/2013/warm-july-stats
http://cms.met.psu.edu/sref/severe/2013/18Jun2013.pdf
http://news.xinhuanet.com/english/indepth/2013-08/13/c_132627590.htm
http://news.xinhuanet.com/english/indepth/2013-08/13/c_132627590.htm
http://www.bbc.com/news/world-latin-america-25564633
http://en.ilmatieteenlaitos.fi/press-release/42503751
http://www.bom.gov.au/climate/current/statements/scs48.pdf
http://www.bom.gov.au/climate/current/statements/scs48.pdf
http://earthobservatory.nasa.gov/IOTD/view.php?id=84042
http://earthobservatory.nasa.gov/IOTD/view.php?id=84042
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Table 2.2. Percent global land surface with positive anomalies greater than 2°C and 4°C.  

 

Positive anomalies 

total global land area 

Year >2°C (%) >4°C (%) 

2003 15.1 3.8 

2004 13.3 3.6 

2005 15.5 3.5 

2006 13.9 3.5 

2007 15.1 3.9 

2008 10.6 2.2 

2009 10.4 2.3 

2010 16.0 4.9 

2011 11.5 2.9 

2012 16.3 5.0 

2013 15.8 4.2 

2014 14.9 3.0 
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Abstract  

Increasing forest stress and tree mortality have been directly linked to 

combinations of drought and high temperatures. The climatic changes expected during 

the next decades – large increases in mean temperature, increased heat waves, and 

significant long-term regional drying in the western USA – will likely increase chronic 

forest stress and mortality. The aim of this research is to develop and apply a new forest 

vulnerability index (FVI) associated with drought and high temperatures across the 

Pacific Northwest region (PNW; Oregon and Washington) of the USA during the 

MODIS Aqua era (since 2003). Our technique incorporates the alterations to canopy 

water and energy exchange processes caused by drought and high temperatures with 

spatially continuous MODIS land surface temperature (LST) and evapotranspiration 

(ET), and with Parameter-elevation Relationships on Independent Slopes Model (PRISM) 

precipitation (P) data. With P and ET, we calculate a monthly water balance variable for 

each individual pixel normalized by forest type group (FTG), and then difference the 

water balance with the corresponding normalized monthly mean LST to calculate a 

monthly forest stress index (FSI).  We then extract the pixel-specific (800-m resolution) 

statistically significant temporal trends of the FSI from 2003 to 2012 by month (April to 

October). The FVI is the slope of the monthly FSI across years, such that there is a FVI 

for each month. Statistically significant positive slopes indicate interannual increases in 

stress leading to expected forest vulnerability (positive FVI) for a given month. Positive 

FVI values were concentrated in the months of August and September, with peak 

vulnerability occurring at different times for different FTGs. Overall, increased 

vulnerability rates were highest in drier FTGs such as Ponderosa Pine, Juniper, and 

Lodgepole Pine. Western Larch and Fir/Spruce/Mountain Hemlock groups occupy 

moister sites but also had relatively high proportion of positive FVI values. The Douglas-

fir group had the second largest total area of increased vulnerability due to its large areal 

extent in the study area. Based on an analysis using imagery viewed in Google Earth, we 

confirm that areas with increased vulnerability are associated with greater amounts of 

stress and mortality. The FVI is a new way to conceptualize and monitor forest 
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vulnerability based on first-order principles and has the potential to be generalized to 

other geographical areas.  

 

Keywords: Forest vulnerability index; Stress, Climate change; Drought; Aqua MODIS 

Land surface temperature; Evapotranspiration; Water deficit 
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Introduction 

Terrestrial vegetation plays a critical role in water and energy cycles, with 

transpiration representing about 80 to 90 percent of terrestrial evapotranspiration (ET) 

and absorbing a tremendous amount of solar energy (Jasechko et al., 2013; Trenberth et 

al., 2010). Since climate and the distribution of vegetation are so tightly linked (Mather & 

Yoshioka, 1968; Stephenson, 1990), plants are vulnerable to changes in precipitation, 

temperature, and related variables when those exceed species-specific physiological 

stress thresholds (IPCC, 2013; Allen et al., 2010; McDowell & Allen, 2015; Teskey et al., 

2015). There is considerable uncertainty in how trees will cope with the rapid changes 

occurring in the climate system, including increasing global mean temperatures and a 

changing hydrologic cycle (IPCC, 2013; McDowell et al., 2008; Hartmann et al., 2015). 

The potential for broad-scale climate-induced forest die-off is of particular concern 

because of large carbon storage in forests, and their key role in providing a variety of 

other valuable ecosystem services (Breshears et al., 2005; Kurz et al., 2008; Smith et al., 

2014; Millar & Stephenson, 2015; McDowell & Allen, 2015). Urgently needed are 

remote sensing-based large-area forest stress and mortality detection and attribution 

techniques that can provide a priori assessments of forest status and trends, as in metrics 

that can be used to infer a measure of possible future harm (Smith et al., 2014; Allen et 

al., 2015). Vulnerability metrics should have clear mechanistic links with remotely 

sensed metrics of vegetation that are sensitive to the changes in climate (Smith et al., 

2014).  

Globally, forests are showing signs of stress, such as reduced growth and leaf area 

decline, and increasing tree mortality that can be directly linked to combinations of 

drought and/or high temperatures (Allen et al., 2010; Anderegg et al., 2013; Breshears et 

al., 2005; Griffin & Anchukaitis, 2014; Martinez-Vilalta et al., 2011; Pravalie et al., 

2014; Allen et al., 2015; Vicente-Serrano et al., 2014; Steinkamp & Hickler, 2015). In 

western North America, climate change has been implicated in rapidly increasing 

background mortality rates during recent decades, with widespread die-offs affecting tree 

species across regions, environmental gradients, age and structure classes, and 
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disturbance regimes (van Mantgem et al., 2009; Vogelmann et al., 2009; Williams et al., 

2013; Breshears et al., 2005). Broad-scale drivers of tree mortality known with high 

confidence, such as droughts that are hotter and more widespread due to continued 

warming, imply a future greater level of forest vulnerability, independent of the specifics 

of mortality mechanism (Allen et al., 2015). Higher rates of climate-induced tree 

mortality can cause major shifts in ecosystem structure and function (Breshears et al., 

2005; Allen & Breshears, 1998) that have varied and long-term consequences on 

ecological communities (Anderegg et al., 2013; McDowell et al., 2008). Changes in 

forest structure and composition have important implications for availability and 

distribution of plant and animal habitat, especially in ecosystems dominated by one or a 

few foundational tree species (Ellison et al., 2005). Mortality events change the albedo 

and the latent and sensible heat fluxes, with feedbacks on regional climate (Bonan et al., 

2008; Chapin et al., 2008; Anderson et al., 2011). Even when mortality is not realized, 

severe drought has long lasting effects on forests (Anderegg et al., 2015). A growing 

body of evidence in the literature indicates that there are physical signs of stress and 

decline that indicate an increased risk of tree mortality. The physical expression of forest 

stress associated with vulnerability may manifest initially as poor crown condition and/or 

a decline in leaf area (Dobbertin et al., 2001; Solberg et al., 2004) followed by a 

reduction in growth (Pedersen, 1998; Suarez et al., 2004; Delucia et al., 2000), and then 

by the potential increase in susceptibility to insects and fire (Hicke et al., 2012; 

Westerling et al., 2005). The exceptionally severe 2003 European drought produced 

widespread stress symptoms in many trees (premature leaf fall, yellowing, shedding) and 

resulted in a large number of weakened individuals (low radial growth and small amounts 

of stored carbohydrates) followed by increased mortality rates in 2004 and 2005 in areas 

where weather conditions remained unfavorable (Bréda et al., 2006). An index that 

relates climatic drivers of vulnerability directly to physiological stress factors would 

provide valuable information on forests that are predisposed to increased vulnerability.  

Recent observational and experimental studies have highlighted the potential for 

warmer temperatures to compound the effects of severe drought events and exacerbate 
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regional forest stress and die-off (Adams et al., 2009; Breshears et al., 2005; Williams et 

al., 2013; van Mantgem et al., 2009; Griffin & Anchukaitis, 2014). The increased energy 

load from warmer temperatures during severe drought events acts to heat and stress trees 

(Stephenson 1990; Breshears et al., 2005; Adams et al., 2009). For example, the 

precipitation deficits of the 2012-2014 California drought are anonymously low, but not 

unprecedented. Yet record high temperatures could have exacerbated the drought by 

approximately 36%, resulting in the most severe drought conditions in over a century of 

instrumental observations (Griffin & Anchukaitis, 2014). In the southwestern US 

(SWUS) increasing warm-season vapor pressure deficit (largely controlled by the 

maximum daily temperature) was found to be the primary driver of an ongoing forest 

drought-stress event that is more severe than any event since the late 1500s megadrought 

(Williams et al., 2013). The strong correspondence between temperature-driven forest 

drought-stress and tree mortality, combined with the relatively high confidence in the 

projections of continued warming in the SWUS, portends future intensified forest drought 

stress and increased forest decline (Williams et al., 2013). In a study that estimated 

vulnerability of 15 tree species in the western USA and Canada to significantly warmed 

climate conditions, 30% of the species recorded ranges were deemed vulnerable based on 

the majority of years being unsuitable for the species (Coops & Waring, 2011). 

Projections for the western USA indicate that far greater chronic forest stress and 

mortality risk should be expected in coming decades due to the large increases in mean 

temperature and significant long-term regional drying, as well as the frequency and 

severity of extreme droughts and heat waves (Allen et al., 2015; Cook et al., 2014; IPCC, 

2013; Jentsch et al., 2007; Moritz et al., 2012). Urgently needed is a remote sensing-

based forest vulnerability index (FVI) that explicitly tracks where and when forests are 

becoming increasingly vulnerable to drought and increased temperature stress, to assess 

potential climate change impacts on vegetation and associated feedbacks to the climate 

system (Allen et al., 2015; McDowell et al., 2008; Smith et al., 2014). 

The majority of vulnerability assessments derived from space-borne data are 

conducted a posteriori, such that the disturbances (e.g., drought, wildfire, hurricane) had 
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to occur prior to research being conducted (Smith et al., 2014). Global drought 

monitoring approaches such as the widely applied Vegetation Temperature Condition 

Index and the more recently developed Global Terrestrial Drought Severity Index have 

proven effective at providing information on the extent and severity of drought events 

(Kogan, 1997; Mu et al., 2013). However, these metrics do not track longer term 

(multiple years to decades) forest stress trends, and lack the ability to deliver a priori 

information regarding where vegetation is likely becoming increasingly vulnerable to 

drought and increased temperature stress. An FVI at spatial and temporal scales relevant 

to land management that could be regularly updated would provide managers with 

knowledge of where and when forests are under multi-year stress so that proactive 

remedial actions could be better prioritized to have the greatest effect (Smith et al., 2014; 

Millar &Stephenson, 2015). Our objectives are to: 1) Develop an FVI that detects where 

and during which month of the growing season (April through October) forests are likely 

becoming increasingly vulnerable to climate-induced physiological stress associated with 

drought and high temperatures, and maps vulnerability across the Pacific Northwest 

region (PNW; Oregon and Washington) of the USA. 2) Understand the behavior of the 

FVI relative to its driving factors.  

 

Land Surface Temperature and the Biophysical Link to Plant Canopy Stress   

Climatological data can be developed for two kinds of surface temperatures: near-

surface air temperature (Tair) and land surface temperature (LST) (Jin & Dickinson, 

2010). Tair is measured 1.5 meters above the ground level at official weather stations with 

sensors protected from radiation and adequately ventilated (Karl et al., 2006). Many 

standard drought monitoring indices, such as the Palmer drought severity index (PDSI), 

rely on Tair from the weather station network. The inequitable distribution of weather 

stations over the global land surface and the lack of information in areas with sparse or no 

stations limit the drought monitoring capability and the spatial resolution of the output 

products based on Tair data (Kogan, 1997; Mu et al., 2007; Daly et al., 2008; Mu et al., 

2013). Although correlated with Tair, LST differs from Tair in its physical meaning, 
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magnitude, and measurement techniques (Jin & Dickinson, 2010). LST can be estimated 

from measurements of thermal radiance coming from the land surface, retrieved from 

satellite, and mapped globally. LST from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) measures the canopy foliage temperature in vegetated areas, 

a unique and useful ecological parameter because critical temperature dependent 

physiological processes and associated energy fluxes occur in the vegetated canopy. A 

global analysis of the relationship between remotely sensed annual maximum LST from 

the Aqua MODIS sensor and the corresponding site-based maximum air temperature for 

every World Meteorological Organization station on Earth showed that LST is more 

tightly coupled to the radiative and thermodynamic characteristics of the Earth’s surface 

(Mildrexler et al., 2011b). LST is more sensitive to changes in vegetation density 

compared to Tair and captures additional information on the biophysical controls on 

surface temperature, such as surface roughness and transpirational cooling (Mildrexler et 

al., 2011b). We use LST rather than Tair to emphasize the direct thermal response of 

rising leaf temperatures and plant moisture stress associated with drought and increasing 

temperatures in the FVI.   

 

The FVI and Its Conceptual Foundation  

We developed a conceptual model to demonstrate the multi-year interactions of 

LST and water balance (WB) to developing forest stress and increasing vulnerability 

(Fig. 3.1). WB, calculated as precipitation minus ET (P-ET) and commonly used to 

represent regional water balance (Swenson & Wahr 2006; Mu et al., 2009; Zhang et al., 

2009), is the net flux of water between the atmosphere and the biosphere. At the monthly 

timestep, P-ET provides a measure of the water surplus or deficit for the analyzed month. 

We refer to a positive WB (precipitation exceeds evaporative demand) as a water surplus, 

and a negative WB (evaporative demand exceeds precipitation) as a water deficit. During 

a water deficit, soil drying is occurring, and there is less water available for plants to 

transpire into the atmosphere. Changes in transpiration (latent heat flux) are directly 

coupled to leaf temperature such that an increase in canopy foliage temperature at 
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otherwise similar environmental conditions indicates reduced transpiration (Jones et al., 

1999; Scherrer et al., 2011). Thus LST and WB generally have an inverse relationship 

whereby LST increases and peaks around mid-summer, commensurate with an increasing 

water deficit in the study area (Fig. 3.1). The pixel-specific monthly differences between 

normalized LST and WB result in a forest stress index (FSI) computed at monthly 

intervals over the growing season. In spring during low water stress conditions, forests 

dissipate incoming shortwave solar radiation efficiently through partitioning to the latent 

heat flux (LE) associated with transpiration, and thereby maintain canopy temperatures 

close to that of the surrounding air temperatures (Nemani et al., 1997; Mildrexler et al., 

2011a). The FSI value associated with a water surplus and low thermal stress is low. In 

summer, increasing thermal and/or water stress has the effect of lowering midday 

transpiration and the associated LE (Manzoni et al., 2013). The increased partitioning of 

solar energy to the sensible heat flux results in a thermal response of rising leaf 

temperatures (Scherrer et al., 2011) and higher FSI values. The FSI peaks in July and 

August due to high temperatures and water deficits. During a multi-year drought event, 

thermal and water stress intensify across years resulting in interannual increases in the 

FSI values. Increasing FSI values for a given month across years translate into areas of 

increasing vulnerability detected by the FVI.  

We demonstrated the conceptual model at the previously established Oregon 

Transect Ecosystem Research project sites, which cover much of the broad climate and 

biomass gradient found in the north-temperate zone (Peterson & Waring, 1994), 

particularly in the west (sites indicated by black stars on Fig. 3.3). Monthly LST and WB 

data (described in Data and Methods section) from a three by three 800-m grid centered 

on the six sites (Peterson & Waring, 1994) were plotted against each other as in the 

conceptualized model behavior to evaluate the LST and WB relationship (Fig. 3.2). The 

relationship supports the behavior of LST and WB conceptualized in the FVI model (Fig. 

3.1) over the large temperature-moisture gradient and major vegetation zones sampled 

along the transect (Fig. 3.2). For example, at all six sites LST peaked around mid-summer 

commensurate with the largest water deficit reflecting the hot dry summers that 
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characterize the PNW region (Fig. 3.2). The magnitude of these fluctuations varied from 

the coastal forests (site 1) with relatively low summer LST and large annual WB 

fluctuations, to juniper forest in the high desert (site 6) with high summer LST and only 

minor fluctuations in WB due to the lack of rainfall. Higher mid-summer LST values 

were evident in the drier forest types located within the rainshadow of the Cascades 

Mountain Range (sites 5 and 6), and in the High Cascades due to high elevation (site 4). 

Mid-summer LST values were also relatively high and WB fluctuations dampened at site 

2 owing to the rainshadow effect of the Coastal Mountain Range. The LST and WB (P-

ET) terms used to develop the FVI closely track the dynamics of the climatic factors that 

limit vegetation growth in the PNW (temperature and water) (Churkina & Running, 

1998; Nemani et al., 2003). 

 

Data and Methods 

Study area 

The PNW region of the USA (Oregon and Washington) covers a broad range of 

forest types and associated (level 3) ecoregions (Fig. 3.3; Omernik, 1987). This study 

focuses on forests, and relies on a Forest Type Groups (FTG) map of the United States 

dataset developed by Ruefenacht et al. (2008). The maritime influence is strong in the 

Coast Range, West Cascades, Puget Lowland, and North Cascades, and thus these 

ecoregions contain moist FTGs such as Hemlock/Sitka Spruce, Douglas-fir, 

Fir/Spruce/Mountain Hemlock, and Alder/Maple (Fig. 3.3). The Eastern Cascades, 

Northern Rockies, and Blue Mountains ecoregions are in the rain shadow of the Cascades 

Mountains and thus harbor drier FTGs including Ponderosa Pine, Western Larch, Juniper, 

and drier Douglas-fir (Fig. 3.3). Fir/Spruce/Mountain Hemlock and Lodgepole Pine are 

present at higher elevations in eastside ecoregions. The forests of the Klamath Mountains 

are primarily classified as within the Douglas-fir FTG, but Ponderosa Pine, White Pine, 

and Western Oak is present. While the precipitation and temperature regimes and 

associated forest types vary substantially across the study area, the region shares a 

common climatic feature of little precipitation in summer months. This low summer 
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precipitation pattern results in typical dry conditions conducive to droughts (Bumbaco & 

Mote, 2010).  

 

Datasets used to calculate the FVI 

We utilize three datasets to map forest vulnerability due to drought and high 

temperatures across the study area; MODIS LST, MODIS ET, and Parameter-elevation 

Relationships on Independent Slopes Model (PRISM) Precipitation. These datasets 

provide systematic and continuous spatial information needed to develop repeatable, 

quantitative long-term measures of forest vulnerability for large areas. 

 

Aqua MODIS land surface temperature (LST)           

Two MODIS instruments, Terra and Aqua, monitor the Earth’s LST as derived 

from the thermal-infrared (TIR) radiation emitted by the land surface (Wan & Li, 1997). 

The first MODIS instrument on the Terra platform was launched on December 18, 1999 

and the second MODIS instrument on the Aqua platform was launched on May 4, 2002. 

The strengths of the MODIS instruments include continuous spatial coverage, high 

geolocation accuracy, high radiometric resolution, and accurate calibration in the visible, 

near-infrared and TIR bands (Wan et al., 2004a). MODIS LST data provides 1-km 

surface temperature measurements from clear-sky pixels retrieved from brightness 

temperatures in bands 31 and 32 with the generalized split-window algorithm (Wan & 

Dozier, 1996). LST from the Aqua MODIS sensor was chosen for this study because of 

Aqua’s afternoon overpass time of approximately 1:30 pm, close to the maximum 

temperature of the land surface. Measurements close to the high temperature peak of 

diurnal fluctuation better reflect the thermal response of rising leaf temperatures due to 

decreased LE as stomata close, and soil litter surfaces dry, accentuating differences in 

LST among vegetation cover types (Mildrexler et al., 2011a). As a result, it is more 

suitable for some regional and global change studies and is particularly well-suited for 

investigations of drought-induced thermal stress (Wan et al., 2004a; Wan et al., 2004b). 

The high-quality satellite-derived LST datasets from MODIS are currently used for a 
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variety of applications including large-scale ecosystem disturbance detection (Mildrexler 

et al., 2009; Coops et al., 2009), drought monitoring (Wan et al., 2004b), land cover 

monitoring (Julien & Sobrino, 2008), agro-meteorology studies (Anderson et al., 2007), 

biodiversity studies (Albright et al., 2011), biophysical studies (Li et al., 2015), and have 

been proposed as an integrative global change metric (Mildrexler et al., 2011b). We 

derived monthly mean LST from the 1-km 8-day Aqua MODIS LST (MYD11A2) data 

for further analysis.   

 

MODIS evapotranspiration (ET) 

The MODIS ET (MOD16A2) data provides 1-km terrestrial modeled total 

evapotranspiration estimates at monthly intervals in mm/month for calculations of water 

and energy balance (Mu et al., 2011). The ET algorithm uses a Penman-Monteith 

approach driven by MODIS land cover, albedo, leaf area index (LAI) and Enhanced 

Vegetation Index, and daily surface meteorological inputs (Mu et al., 2011). Terrestrial 

ET includes evaporation from wet and moist soil, from rainwater intercepted by the 

canopy before it reaches the ground, and the transpiration through stomata on plant leaves 

and stems. MODIS ET was used to quantify the effects of land-use change associated 

with sugar-cane expansion on climate in the Brazilian Cerrado (Loarie et al., 2011), and 

the effects of afforestation on climate at high latitudes (Montenegro et al., 2009). The 

biophysical effects of global forest cover changes were examined using MODIS ET and 

other remote sensing datasets (Li et al., 2015). The MODIS ET is a key input in the 

Global Drought Severity Index (Mu et al., 2013) and has been used to assess spatial and 

seasonal patterns in ET across the pan-Arctic domain (Mu et al., 2009).   

 

PRISM precipitation (P) 

The PRISM data provides 800-m resolution total monthly precipitation (rain plus 

melted snow) in mm/month (Daly et al., 2008). The dataset is a spatial interpolation 

between observational surface stations. PRISM calculates a climate–elevation regression 

for each digital elevation model (DEM) grid cell, and stations entering the regression are 
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assigned weights based primarily on the physiographic similarity of the station to the grid 

cell (Daly et al., 2008). The PRISM method accounts for the major physiographic factors 

influencing climate patterns at scales of 1 km and greater and are the most accurate 

representation of the spatial climate patterns in the western USA (Daly et al., 2008). The 

PRISM datasets have been widely used in climatic and ecosystem response studies 

(http://www.prism.oregonstate.edu/documents/). 

 

Input datasets and uncertainties 

The MODIS LST products have been validated within 1 K at multiple sites in 

relatively wide ranges of surface and atmospheric conditions (Wan et al., 2004a; Wan, 

2008). Refinements to the Version 5 LST product have minimized the main sources of 

uncertainty caused by cloud contamination and in accurately estimating the surface 

emissivity, and significantly improved the accuracy and stability of the MODIS LST 

products (Wan, 2008). For uniform land surfaces with known spectral emissivity 

characteristics, the uncertainty in LST retrieved by the generalized split-window 

algorithm could be equal to or smaller than 0.5 K (Wan & Dozier, 1989; Li & Becker, 

1993). Since emissivity is well-known for dense evergreen canopies, our focus on the 

evergreen dominated forests of the PNW helps minimize uncertainty in the LST product 

(Wan & Li, 1997).   

Uncertainty in the MODIS ET data primarily arise from input data sources and 

algorithm limitations (Mu et al., 2011). The MODIS product inputs and daily surface 

meteorological inputs can introduce biases to ET estimates that are difficult to detect (Mu 

et al., 2011). Algorithm limitations are in part due to the large number of physical factors 

involved in soil surface evaporation and plant transpiration processes. The MODIS ET 

product used in this study is based on an improved ET algorithm. An examination of the 

new ET product at 46 AmeriFlux eddy covariance flux towers showed that the improved 

algorithm estimates capture the magnitudes of the ET measurements better than the old 

ones, reducing the tower-specific mean absolute error of the daily ET from 0.39 mm 
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day−1 with the old algorithm to 0.33 mm day−1 (Mu et al., 2011). For an in-depth 

discussion of MOD16 ET see Mu et al., (2011).  

Estimating uncertainty associated with the PRISM data is difficult because the 

true climate field is unknown, except at a relatively small number of observed points, 

which are themselves subject to measurement and siting uncertainties (i.e. relocations, 

changes in instrumentation and/or exposure, effects of land-use change, and changing 

observing practices; Pielke et al., 2007), and are incorporated into the PRISM dataset 

itself (Daly et al., 2008).  However, a comparison of PRISM with a dynamically 

downscaled weather model (Weather Research and Forecasting model (WRF)) of winter 

precipitation over complex terrain revealed that the two datasets provide a very similar 

overall map of precipitation, with only localized differences, demonstrating a level of 

model simulation skill that has heretofore been lacking (Gutmann et al., 2012). 

Comparison with WorldClim and Daymet datasets demonstrated the benefits of using a 

relatively dense station dataset, and the physiographically sensitive PRISM interpolations 

process resulted in substantially improved climate grids over those of WorldClim and 

Daymet (Daly et al., 2008). Greatest improvements were in the mountainous and coastal 

areas of the western USA. 

 

Forest vulnerability index (FVI) 

The FVI is based on the FSI (Fig. 3.1) calculated at the pixel level for each 

month, from April through October, from the first full year of Aqua LST data (2003) 

through 2012. This seasonal period captures the primary physiologically active months 

for plants during which thermal and water stress tend to occur in our study region, and 

includes the onset and alleviation of these seasonal stress cycles. The ET and monthly 

mean LST were resampled using bilinear interpolation from 1-km to 800-m to match the 

precipitation resolution. The FTG data were resampled to 800-m using a majority rule 

and used as mask to isolate forests in the LST and WB datasets.  To contrast LST and 

WB, as per our conceptual model, it was necessary to normalize those datasets, which 

was done at the FTG level. The normalized LST and WB were calculated as: 
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𝑍𝑖 =
𝑦𝑖–𝑦 

SD𝑦
               (1) 

where 𝑦𝑖 is either the LST or WB for pixel i for a given month in a given year, and ȳ and 

SD𝑦 are the average and standard deviation of LST or WB, respectively, across months 

(April – October) and years (2003 – 2012). The FSI was calculated as 

𝐹𝑆𝐼 = 𝐿𝑆𝑇𝑧 −𝑊𝐵𝑧               (2) 

where FSI is the forest stress index value computed, and LSTz and WBz are the 

normalized LST and WB, respectively.   

The FVI describes the interannual trend (2003 – 2012) of the FSI, on a per month 

basis for each month from April to October, computed at the FTG level. FVI is the slope 

of the monthly values across years (Fig. 3.1), as calculated using ordinary least square 

regression. We chose a p-value of 0.1 to declare statistically significant positive or 

negative FVI slopes to evaluate vulnerability for this initial application, but any p-value 

could be chosen. This results in three general potential FVI outcomes for any given pixel 

on the landscape: a (1) positive or (2) negative statistically significant FVI slope, and (3) 

statistically insignificant slopes. 

 

Filtering abrupt disturbances 

Abrupt, higher intensity disturbances such as wildfires and harvesting can have 

significant effects on LST and WB, resulting in positive FVI values that are not of 

interest for this application. To mask these disturbances, the year and magnitude of 

abrupt disturbances (less than 4 years in duration) were mapped in this study using the 

Landsat-based detection of Trends in Disturbance and Recovery (LandTrendr) algorithm 

(Kennedy et al., 2010). We calculated the proportion of disturbed Landsat pixels, 

weighted by magnitude, within each 800-m pixel from 2000 to 2012. All pixels with 

weighted disturbance >30% were masked, following Sulla-Menashe et al. (2014). There 

is no FVI value associated with masked pixels. 
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Understanding FVI behavior in relation to driving factors  

To understand the behavior of the FVI in relation to LSTz and WBz, we 

computed the slopes of the monthly FSI components, LSTz and WBz, as was done to 

calculate the FVI from the monthly FSI values. To determine the upper and lower 

thresholds for mapping the LSTz and WBz consistently across months, positive and 

negative slopes were separated for each month. For pixels having statistically significant 

FVI values (both positive and negative), the corresponding LSTz and WBz slopes were 

extracted and ranked separately for the positive (ascending) and negative (descending) 

slopes. Once ranked, the values that correspond to the 95
th

 percentile from the zero point 

were found for each set of positive and negative slopes for each month. The maximum 

(positive slopes) and minimum (negative slopes) of the 95
th

 percentile values were then 

applied to map the scale range for each month.  

 

Linking the FVI to observable stress and mortality 

 Connecting the FVI to the physical expression of vulnerability, such as reduction 

in leaf area, growth decline, and mortality is a critical step that needs to be explored in 

detail. For this initial application, we choose to look for direct visual evidence of canopy 

die-off and mortality in association with positive FVI areas in Google Earth. A random 

sample of 132 points was established across Oregon and Washington in forest areas not 

impacted by abrupt disturbances. At each point, the corresponding 800-m FVI pixel 

boundary was extracted and imported into Google Earth for visual interpretation. Then, 

using the time series of high resolution Google Earth images over the study period, 

presence of stress and mortality (dead and dying trees) was recorded at each plot based 

on visual interpretation. Pixels that contained widespread canopy die-off and/or mortality, 

indicated by the presence of dead or dying trees spread across the pixel area, or that 

contained large patches of mortality, indicated by groups of adjacent dead or dying trees, 

were recorded as stressed. All other pixels were recorded as background mortality. 

Correspondingly, each pixels slope (FVI value) and p-value were extracted. Since the p-
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value declares a FVI value statistically significant, we plotted the proportion of 

observations labeled as stressed against p-value.  

 

Results 

FVI maps   

From April to October, we see interesting trends in the FVI from 2003 to 2012 

(Fig. 3.4, top panel). As per our conceptual model, positive FVI values (p-value < 0.1) 

denote increased vulnerability. Negative values, although not explicitly considered in our 

conceptual model, do have potentially important implications (see Discussion section). 

Close examination reveals that positive FVI values do not appear until the month of July, 

and are few and scattered in the southern Blue Mountains and southern East Cascades 

ecoregions. In August large patches of increased vulnerability emerge in the Blue 

Mountains, East Cascades, West Cascades, and Klamath Mountains. Positive FVI values 

can be found in every ecoregion in the study area during August. Additionally, August is 

a major transition period for the trajectory of the FVI values and thus had the most mixed 

patterns of positive and negative FVI values of any month (Fig. 3.4). Area experiencing 

increased vulnerability peaked in September and is most prevalent in the relatively dry 

Northern Rockies, East Cascades and Blue Mountains ecoregions, but is also widespread 

in the Oregon portion of the Coast Range and West Cascades. The Blue Mountains are 

notable for their concentration of area with increased vulnerability in the southeast and 

northeast portions of the ecoregion in September. Interestingly, the large patches with 

positive FVI in August do not persist through September. In October there were no 

positive FVI values.  

The area covered by negative FVI increased from April through June. In April 

and May negative FVI values were limited to portions of the Coast Range, Puget 

Lowland, Cascades, and Northern Rockies. Then in June and July negative FVI was 

widespread across all forested ecoregions (Fig. 3.4). Only a small area was covered by 

negative FVI values during August, and these were essentially absent in September. In 
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October areas of negative FVI again increased in all ecoregions except the Puget 

Lowland.  

The large area of positive FVI values detected in central Oregon during August 

(Fig. 3.4) is associated with Juniper forests (Table 1). The proportion of the Juniper FTG 

with increased vulnerability was nearly threefold higher in August than in September 

(Table 1). California Mixed Conifer had the second highest proportion of area affected by 

increased vulnerability in August (12.3%), and a lesser amount in September, although 

not nearly as dramatic a decrease as for Juniper. Western Oak also had a greater 

proportion of positive FVI values in August than in September. However, for most FTGs 

the area of increased vulnerability peaked in September. For example, in the Ponderosa 

Pine FTG, the area of increased vulnerability went from 5% in August to 32.9% in 

September. Western Larch went from a very low positive FVI proportion in August, to 

the second highest in September (25.8%). Both of these FTGs are primarily located in the 

East Cascades, Blue Mountains, Northern Rockies, North Cascades, and are locally 

abundant in some areas of the Klamath Mountains ecoregions (Fig. 3.3). In the Douglas-

fir FTG, the most important in terms of total areal coverage, the area of vulnerability 

increased substantially from August (1.1%) to September (7.6%). Hemlock/Sitka Spruce 

and Alder/Maple were least affected by increased vulnerability in August and September 

(less than 2%, Table 1), and these FTGs are concentrated within the moist Coast Range 

and Puget Lowland ecoregions. Lodgepole Pine and Fir/Spruce/Mountain Hemlock 

showed large increases in area affected by increased vulnerability from August to 

September. These FTGs tend to occupy higher elevations characterized by extreme 

annual climatic variations (Coops & Waring, 2011).   

 

Behavior of the FVI 

The slopes of LSTz (middle panel) and WBz (lower panel) for each month where 

positive and negative FVI values were detected illustrate the interactions that drive the 

FVI (top panel) (Fig. 3.4). Areas experiencing negative FVI from April through October 

are highly consistent with areas experiencing decreasing interannual monthly 
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temperatures (LSTz slopes). From April through July, area showing decreased 

temperatures in association with negative FVI increased from largely the North Cascades, 

Northern Rockies, and West Cascades to the whole study region. In August, as 

temperature trends turn from decreasing to increasing, the first major areas of positive 

FVI values appear with increasing temperature trends in the western Blue Mountains and 

the southern East Cascades. In September, as positive FVI values surface fully, LSTz 

slopes are positive.  

Trends in water balance (WBz slopes) follow generally similar trends in relation 

to FVI as trends in temperature, with some notable exceptions in June and July. In June, 

in the northwest part of the study area, especially the northern Coast Range and the 

northern part of the North Cascades, trends in water deficit were positive, even while 

trends in the remaining study area were largely in the opposite direction. Interestingly, 

locations where there has been a decreasing trend in WBz slopes are locations where 

there has also been a trend towards decreasing LSTz slopes, the combined effect of which 

has been towards negative FVI values, consistent across the study area more broadly. In 

July, we see decreasing WBz slopes across large areas of the east-southeast region of the 

study area, but little to no effect on the FVI turning positive, suggesting a need for tight 

coupling between trends in LST and WB to turn the FVI positive. August is interesting 

because while the areal extent with negative WBz slopes decreased across the east-

southeast region, some locations where the Juniper type group experienced a positive FVI 

(Table 1) were affected more by negative trends in water balance than trends in 

temperature, a relative anomaly in this regard. In September, where we saw the most 

dramatic increases in FVI values, there was a tight coupling between trends in both 

driving variables.    

 

FVI vs. stress and mortality observations 

The comparison between the FVI and stress and mortality observed in Google 

Earth revealed that as p-value associated with FVI decreased, the proportion of stressed 

plots increased, confirming that positive FVI areas with very low p-values (high 
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statistical significance) are associated with greater amounts of stress and mortality (Fig. 

3.5). Below a p-value of 0.05 (dashed line) the proportion of stressed plots rapidly 

increased in association with these lower and more significant p-values (Fig. 3.5). 

Stressed plots were also present at higher p-values, although at lower proportions, 

possibly highlighting the limitations in directly linking an 800-m integrated pixel with 

visual observations of mortality in Google Earth.   

 

Discussion 

A growing number of studies have linked forest stress and mortality to drought 

and increased temperature stress (van Mantgem et al., 2009; Breshears et al., 2009; 

Williams et al., 2013; Coops & Waring, 2011; Allen et al., 2010; Anderegg et al., 2013; 

Griffin & Anchukaitis 2014; Martinez-Vilalta et al., 2012; Pravalie et al., 2014) 

highlighting the urgent need for metrics that can show where these changes are occurring 

(Smith et al., 2014; Allen et al., 2015). In response we developed and described in detail 

a new index, the FVI, for large-scale assessment of forest vulnerability to drought and 

high temperatures and applied it across the PNW region of the USA from 2003 to 2012. 

The FVI is based on a measure of instantaneous stress levels over the growing season, the 

FSI (Fig. 3.1). The conception of forest vulnerability as statistically significant trends in 

the FSI for each month across years is a potentially important new way to monitor forest 

vulnerability. The FVI characterizes interannual trends in the FSI, highlighting months 

where forest areas are experiencing longer-term increasing temperatures and water 

deficits, which does not coincide with the month of peak stress annually in our study 

region. The highest FSI values were detected during July (data not shown), but the FVI 

for July was largely decreasing, while the peak months for the FVI were in August and 

September (Fig. 3.4). It should be noted that negative trends in the WBz (WBz slopes) do 

not automatically translate to monthly WBz values that are negative. Even though there is 

a declining trend for a given month in the WBz values (a negative WBz slope), the values 

themselves can still be positive. This could be an important factor in why, even though 

there were negative WBz trends for large areas in June and July, slopes in temperature 

remained negative resulting in a negative FVI. Further study of the joint relationships of 
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opposing temperature and water balance slopes, by FTG, is important, and could reveal 

some interesting physiological and/or biophysical setting that predisposes a given forest 

type to increasing vulnerability.  

The FVI growing season monthly assessment across the PNW reveals a possible 

trajectory toward more extreme conditions indicated by negative FVI values in the 

spring, followed by a rapid transition to widespread positive FVI values that peak in 

August and September (Fig. 3.4), depending on forest type (Table 1). Positive FVI values 

tend to be associated with drier forest types and ecoregions. The proportion of a given 

FTG with positive FVI values generally increased from August to September, although 

there were a few notable exceptions that peaked in August (Juniper, California Mixed 

Conifer, and Western Oak). This indicates that peak vulnerability occurs at different 

times of the growing season for different FTGs, and there may be different sensitivities to 

the types relative to the others with respect to the driving variables. The normalization of 

LST and WB by FTG was critical for elucidating these FTG-specific responses.   

It is important to note that the monthly interval used in this study may not be ideal 

for capturing when peak FVI values occur. For example, it is possible that the second half 

of August and the first half of September are key periods, and that the arbitrarily defined 

monthly boundaries used here diminish some of the FVI signal. Furthermore, the timing 

of peak vulnerability will likely change outside of the study area because LST and WB 

relations will vary with local conditions. However, the conceptual approach, developed 

and tested here should be relevant as an indicator of increasing forest vulnerability to 

climate change more globally. Future work should explore how to fine-tune the analysis 

to better elucidate peak FVI periods and the dynamics of landscape transition periods 

where FVI values are shifting from negative to positive, such as observed here during 

July and August. Moreover, although negative FVI values were not explicitly considered 

in the conceptual development of the FVI, their emergence towards increasing areal 

importance leading up to August and September suggests that the PNW region is 

experiencing more extreme climate conditions from cooler and moister conditions in the 

fall, spring, and early summer months to warmer and drier conditions in the mid- to late-



 

 

61 

summer months. The implication of this on the vegetation could be dramatic in the long 

term.  

Peak vulnerability occurred during September for the majority of FTGs in this 

study (Table 1). In accordance with these findings field work in southwestern Oregon has 

shown that peak moisture stress usually occurs in September near the peak of drought 

(Waring, 1969). Close examination of the September FVI reveals important ecological 

patterns (Fig. 3.4). Large forested areas with positive FVI values were detected along 

semi-arid ecotones in the Northern Rockies, Blue Mountains, and Eastern Cascades 

ecoregions. Ecotonal shifts in vegetation distribution due to climate change are expected 

to be most rapid in semi-arid ecotones (Allen & Breshears, 1998). The drier FTGs that 

occupy the ecotonal boundaries also have the most positive FVI values, especially 

Ponderosa Pine in September and Juniper in August, but also Fir/Spruce/Mountain 

Hemlock in September (Table 1). Even in the relatively wet Puget Lowland, area of 

positive FVI was detected within the rain shadow of the Olympic Mountains. In 

agreement with previous research, our results indicate that increased vulnerability tends 

to be associated with drier conditions (Steinkamp & Hickler, 2015; Allen et al., 2010). 

But, even further, we have detected positive FVI values concentrated in the southern 

portions of the relatively moist Oregon Coast Range and West Cascades ecoregions. A 

latitudinally-induced hydrological gradient extends from relatively wet northwest 

Washington, to drier southwest Oregon. Within relatively moist ecoregions we found a 

potential increase in vulnerability associated with drier environments. Lending 

confidence to this finding is the fact that the FVI is computed specific to each FTG, 

accentuating differences along within class moisture gradients. Juniper and Western Oak 

type groups both peaked in August, and then showed relatively large decreases in their 

proportion with positive FVI values in September. The Juniper group occupies areas that 

receive very little annual precipitation and experience extreme summer drought (Fig. 

3.2), whereas Western Oak occupy a broader range of climates in our study area, 

including lower elevations in the interior valleys characterized by hot, dry summer 

conditions. By September, these areas may be so dry that further increases in LST and 
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water deficit do not occur. However, a drying trend in August, when some moisture is 

still available, may have resulted in the negative WBz slopes and mildly increased 

temperature trends driving the positive FVI (Fig. 3.4).   

As seen in the PNW region, the FVI and its input variables are valuable for 

understanding how temperature and water balance patterns change and interact over the 

course of the growing season. Prior to the summer drought cycle, an interesting 

interaction occurs when the WBz slopes begin turning negative (July) earlier than the 

LSTz slopes (August) (Fig. 3.4). The negative LSTz slopes in July indicate that forests 

have access to groundwater enabling transpirational cooling of the canopy, an important 

factor in determining the negative FVI in July (Fig. 3.4).  This suggests that future 

changes in the hydrologic cycle that affect the spring water balance could have important 

implications for water availability heading into the summer drought cycle in the PNW. 

These interacting changes include reductions in snowpack (Mote et al., 2005), changes in 

the rain-snow transition zone (Klos et al., 2014), and changes in spring precipitation 

(Mote et al., 2010). Changes that cause a shift toward negative WB trends earlier in the 

growing season will likely result in a commensurate earlier increase in LST trends, 

driving earlier positive FVI values. Some models project increases in spring precipitation 

in the PNW ranging from 3% to 8% (Mote et al., 2010). Increasing spring rains could 

help to maintain positive water balance trends later into the growing season by 

replenishing soil moisture and buffering forests heading into the impending summer 

drought cycle (Bumbaco & Mote, 2010). These future WB and LST trends could have 

important effects on forest vulnerability in the PNW in the coming decades.  

The interpretation of FVI significance in relation to p-value is critical. With only 

ten years of data for this initial application, we chose a p-value of 0.1 to maintain a 

relatively conservative threshold, but also to increase the expression of potentially 

ecologically important vulnerability patterns, beyond the more conventional 0.05 

threshold. As we lengthen the data record, it is likely that some trends may reverse 

themselves over different time scales. We will need to consider the appropriate time scale 

to examine the trends in the FSI that drive the FVI. A temporal segmentation approach of 
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the FSI (e.g., the LandTrendr algorithm, Kennedy et al., 2010) may help capture distinct 

trajectories that relate to FVI changes. Incorporating temporal segmentation into the 

analysis will also help minimize the effects of initial conditions which have leverage in 

context of regression on trend estimates. A drought event occurred in 2003, the first year 

of our study (Bumbaco & Mote, 2010). This resulted in relatively high FSI values in 

August and September. However, the landscape still has momentum in the positive FVI 

direction in many different ecoregions driven by warming (positive LSTz slopes) and 

drying trends (negative WBz slopes) once the full decade is considered (2003 – 2012) 

(Fig. 3.4). This indicates that the longer term increases in the FSI trend were not 

diminished by what can be considered conservative initial conditions. The August and 

September p-value maps show a large shift in the distribution of values across the 

landscape during those two months (Fig. 3.6). Adjusting the p-value would have a larger 

effect on the FVI in September than August due to the different distributions. However, 

for both months incremental p-value adjustments relative to the 0.1 threshold changes the 

expression of FVI values mostly along the borders of positive FVI areas.  Decreasing the 

p-value threshold to 0.05 would result in fewer positive FVI values during September, 

but the geographic pattern would remain similar with most positive values detected in the 

Northern Rockies, Blue Mountains, East Cascades, West Cascades, and Oregon Coast 

Range. Of related importance are the effects of abrupt disturbances on the FVI. The 

threshold used to filter abrupt disturbance can be changed to examine the effects of more 

conservative vs. more inclusive thresholds on forest vulnerability patterns. Lowering the 

threshold below the weighted 30% proportion used in this study would result in increased 

confidence of removing areas affected by relatively small disturbances, but may also 

increase errors of commission. Thresholds could also be determined for specific areas. 

For example, a lower threshold may be desirable in areas dominated by harvest, whereas 

a higher threshold may be better suited for areas primarily affected by large-scale natural 

disturbances. The ability to adjust the p-value and threshold used to filter abrupt 

disturbances give the FVI an interactive component that scientists or forest managers (or 

other users of FVI maps) can adjust for their own assessment needs.  
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The areas that the FVI identified as increasingly vulnerable to the effects of 

climate change are either likely to exhibit visible health and vigor effects in the 

immediate future or are already exhibiting those effects (Fig. 3.5). Vulnerability often 

differs by species and with changing environmental conditions. In our study area 

sensitivity to drought varies along an elevational gradient. Dry forests at relatively low 

elevations have high tolerance for drought, whereas high elevation forests have low 

tolerance for drought, and mid-elevation forests have medium tolerance (Haugo et al., 

2010). Climate change has increased the exposure of high and mid-elevation forests to 

drought and high temperatures and, consequently, increased mortality in these systems 

(Westerling et al., 2005). Therefore in our study area we expect that mortality rates 

should be more sensitive to increased positive FVI values in high elevation FTGs that 

exhibit limited drought tolerance (Fir/Spruce/Mountain Hemlock and Lodgepole Pine in 

Table 1). Conversely, drought tolerant species like ponderosa pine have adaptations to 

drought such as sparse canopies, deep rooting systems, and changes in biomass 

allocation, that balance reduced productivity in the short term with drought stress 

avoidance over the long term (Delucia et al., 2000; Williams et al., 2001). Therefore, 

increased stress associated with positive FVI may not as readily manifest as elevated 

mortality in drier portions of our study area (Haugo et al., 2010). Preliminary 

examination between the FVI and mortality measurements from the Forest Inventory and 

Analysis (FIA) plots across Oregon and Washington confirms this expectation (data not 

shown) and indicates a possible greater sensitivity of mortality to a high proportion of 

positive FVI in high (Fir/Spruce/Mountain Hemlock and Lodgepole Pine FTGs) and mid-

elevation forests (Western Larch and Douglas-fir FTGs), relative to low elevation forests 

(Ponderosa Pine, Juniper, Tanoak/Laurel, and Western Oak ). Calculating the FVI at the 

FTG level is essential for varying the interpretation of the FVI in relation to the different 

FTG tolerances for drought and high temperatures.  

This paper has focused on the conceptual development and application of the FVI 

in response to the profound ecological and societal implications of global forest 

vulnerability to hotter drought (Overpeck, 2013; Joyce et al., 2014; Allen et al., 2015). 
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The FVI is based on first principles relating canopy water and energy fluxes to changes in 

climate. We have shown that the FVI areas with low p-values (< 0.05) are associated with 

greater amounts of mortality (Fig. 3.5). We now need to demonstrate the value of the FVI 

in relation to a more robust vulnerability signal (i.e. changes in canopy condition, leaf 

area, and growth rates). As increasingly hot and dry conditions cause reductions in leaf 

area (Dobbertin et al., 2001; Solberg et al., 2004), these changes will be commensurate 

with a reduction in ET and an increase in LST, thus changing the FVI. It is important to 

understand the sensitivity of the FVI to leaf area change, and to separate interannual 

variability in the plant communities LAI from steady reductions of leaf area over years 

(Delucia et al., 2000). Examining the LST and WB variables in isolation will help to 

elucidate the relationship between changes in leaf area, and the effects on the FVI. Hotter 

and drier conditions may also cause stomatal closure earlier in the growing season, 

invoking an earlier increase in LST, with possible feedbacks on vulnerability later in the 

growing season. These and other complex questions that integrate the timing of changing 

ecological responses reaffirm the need for products such as the FVI as inputs to empirical 

models (Allen et al., 2015). Moreover, it is necessary to link the FVI with ground-based 

measurements that record the visual health effects of the forest, structural and 

compositional states, and growth measurements to examine the relationship between the 

FVI, and changes in canopy condition and forest growth. The 800-m resolution of our 

region-wide vulnerability assessment presents a scale mismatch for directly linking the 

FVI to changes in forest canopy condition and/or growth rates associated with forest 

stress. To address this scale mismatch we are developing a framework that integrates the 

FVI with Landsat data, FIA data, and individual-tree models in an effort to link all the 

relevant scales that influence forest vulnerability. Landsat time series (LTS) data is 

promising due to its 30-m resolution and distinct spectral trajectories. Long, slow 

declines in the spectral trajectory of LTS data imply a slow and subtle process for forest 

change unfolding over many years (Kennedy et al., 2010). However, before meaningful 

comparisons can be made with the FVI, it is essential to characterize the relationship 

between the LTS spectral signature and declining canopy condition, just as was done for 
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the LTS spectral trajectories associated with insect activity of varying duration and 

severity (Meigs et al., 2011).  

 

Conclusions 

We developed a FVI that identifies when and where forests have been 

experiencing increasingly high surface temperatures and greater growing season water 

deficits. Our method takes a direct approach to monitoring concurrent changes in canopy 

water and energy exchange processes that have clear mechanistic links to the effects of 

drought and high temperatures on vegetation (Fig. 3.1). By directly linking LST to WB 

for each month (April through October) across years (2003 through 2012), we have 

characterized how the monthly LST and WB trajectories change in relation to one 

another over the growing season to express the FVI. This has revealed that positive FVI 

slopes can result from multiple LST and WB slope combinations, such as occurred during 

August and September in the PNW (Fig. 3.4).  

Ten years of observations from MODIS data are insufficient to establish long-

term patterns or thresholds after which die-off might occur (Hilker et al., 2014). 

However, our results show a clear trend toward warmer and drier conditions in August 

and September across a variety of ecoregions and FTGs. If this trend continues, it 

portends increased forest stress and die-off in the PNW. With longer periods of 

observations we will be able to temporally segment these trends into periods of 

increasing and decreasing climate-induced stress, so that the FVI will serve as a 

monitoring tool for where and when different forest areas are vulnerable, and perhaps 

amenable to management intervention.  

The FVI conceptual foundation is robust across one of the largest hydrological 

gradients in North America (Fig. 3.2) indicating that the metrics may be transferable to 

different ecosystems and larger areas, especially those characterized by a summer 

seasonal drought cycle. However, we emphasize that the WB and LST relations, and thus 

the joint influence on the FVI, will vary with local conditions. Examining the WB and 

LST relations in different areas, such as we did across the PNW (Fig. 3.2), is a good 
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starting point for conceptualizing the joint behavior of LST and WB in relation to the 

FVI.  
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Figures and Tables 

 
Figure 3.1. Conceptual model for the FVI, showing annual fluctuations in LST and WB 

for a hypothetical land area (or pixel) through time. As the water deficit increases during 

drought (increased water stress), LST also increases beyond the range of natural 

variability (increased thermal stress).The FSI is an instantaneous measure of the 

difference between normalized LST and WB variables. The FVI translates the increasing 

FSI values across time into increasing vulnerability. 
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Figure 3.2. LST and WB datasets across the Oregon Transect support the FVI conceptual 

model (Fig. 3.1) and reflect the different climatic regimes and major vegetation zones 

sampled along this large temperature-moisture gradient. Major vegetation zones: Site 1: 

Sitka Spruce; Site 2: Douglas-fir; Site 3: Douglas-fir; Site 4: Subalpine; Site 5: Ponderosa 

Pine; Site 6: Juniper. 
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Figure 3.3. Study area (PNW; the States of Washington and Oregon, USA) showing the 

locations of each FTG and Level 3 Ecoregion boundaries (black lines) from Omernik 

(1987). Spatial distribution of FTGs reflect the dominant west-to-east moisture gradient 

resulting in drier FTGs (Ponderosa Pine, Juniper) in the east part of the study area. 

Ecoregion abbreviations: CR: Coast Range; WC: West Cascades; EC: East Cascades; 

NC: North Cascades; NR: Northern Rockies; BM: Blue Mountains; KM: Klamath 

Mountains; PL: Puget Lowland. Black stars indicate location of Oregon Transect sites 

evaluated in Figure 3.2.  
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Figure 3.4. FVI results for the forests of Oregon and Washington from 2003 to 2012, 

masked by significance (top panel; p-value < 0.1). For simplification, all positive and 

negative values were collapsed into single classes. The slopes of LSTz (middle panel) 

and WBz (lower panel) for each month where positive or negative FVI values were 

detected illustrate the interactions that drive the FVI. The scale range corresponds to the 

global maximum (positive slopes) and global minimum (negative slopes) of the 95
th

 

percentile values from the zero point for each month. 

 

 



 

 

72 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. The proportion of stressed plots, as observed in Google Earth, relative to 

changes in FVI statistical significance (p-value).  
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Figure 3.6. P-values associated with FVI for August and September, 2003 to 2012.  
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Table 3.1. The total area of each FTG, the area not impacted by abrupt disturbances and 

the proportion/area with positive FVI values relative to the area not impacted by abrupt 

disturbances during August and September (p-values < 0.1).  

 
    Area not 

abruptly 

disturbed 

Positive FVI area 

  Total area August September 

Forest Type Group (km
2
) (km

2
)  (%) (km

2
)  (%) (km

2
) 

Juniper 7127 7060 29.0 2047 10.4 733 

Douglas-fir 104988 98993 1.1 1093 7.6 7544 

Ponderosa Pine 41551 39827 5.0 1998 32.9 13084 

Western White Pine 205 10.24 0.0 0 0.0 0 

Fir/Spruce/Mountain Hemlock 36797 35163 0.9 324 14.6 5151 

Lodgepole Pine 6917 6389 4.8 308 21.0 1340 

Hemlock/Sitka Spruce 14344 13242 0.8 100 1.5 200 

Western Larch 518 507 0.9 4 25.8 131 

Other Western Softwoods 807 697 0.8 6 3.8 26 

CA Mixed Conifer 673 657 12.3 81 10.0 66 

Elm/Ash/Cottonwood 265 255 3.5 9 3.3 8 

Aspen/Birch 63 63 2.0 1 7.1 4 

Alder/Maple 7361 7119 0.2 14 1.4 99 

Western Oak 1559 1430 4.7 68 0.7 10 

Tanoak/Laurel 838 740 0.1 1 0.8 6 

Other Western Hardwoods 671 659 1.9 13 1.8 12 

Combined total 224684 212811   6066   28413 
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Abstract 

Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) 

that is having important consequences on tree growth in the Pacific Northwest (PNW) 

region of the USA. Once considered innocuous in PNW forests, SNC symptom 

expression has increased rapidly in extent and intensity in recent decades. Previous 

research has linked the disease epidemiology of SNC to climate, and observations 

indicate a link with forestry practices of the 20th century as well. In this study, we 

investigate the relationship between trends in canopy energy and water flux 

parameters detected during the spring and early summer months (May – August) along 

the Pacific Coast of Oregon from 2003 to 2012, and the distribution of SNC symptoms 

in 2012. Canopy energy and water exchange parameters were calculated with MODIS 

Land Surface Temperature (LST), and evapotranspiration (ET) data, and with 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) 

precipitation data. To evaluate the effects of forestry practices, we stratified the study 

into private and public lands. Proximity to coast had the strongest explanatory power 

of the presence/absence of SNC symptoms, explaining 9.3% of the variance on private 

land and 6.7% on public land. Of the canopy energy and water flux data evaluated, 

trends in LST had the greatest explanatory power, and the combination of an early 

growing season (May) and mid-summer (August) month were the most powerful 

combination. The trends of the May and August LST together explained 7% of the 

deviance in SNC symptom distribution on private land, and 2% on public land. When 

combined with proximity to coast, May and August LST explained 14% of the 

deviance in SNC symptom expression on private land and 8.7% on public land. This 

study indicates that LST contains important information on leaf wetness, possibly 

capturing both early season and late season dynamics important to SNC epidemiology. 

We find evidence that recent short-term directional climate changes may have 

contributed to the recent increases in SNC symptoms in Douglas-fir forests, and that 

this influence was stronger on private lands. 
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Background 

Climate is one of the key environmental factors controlling forest pathogens 

and can play an important role in containing forest pathogens at low levels when 

climatic conditions are unfavorable (Ayres and Lombardero 2000; Coakley et al. 

1999). However, climate change is now altering the energy and water fluxes across 

virtually all forest ecosystems on Earth with commensurate effects on the coevolved 

relationship between tree species and their associated pathogen (Allen et al. 2010; 

Logan et al. 2003). These seasonal changes in temperature and/or precipitation 

regimes have the potential to shift conditions in favor of pathogens, resulting in 

widespread epidemics (Logan et al. 2003; Brasier 1996; Williams et al. 2000). Tree 

species that benefitted from historical climate conditions which held forest pathogens 

in check may be at the greatest risk (Coakley et al. 1999; Woods et al. 2005). The 

effects of current and projected climatic changes on tree-pathogen interactions are a 

considerable source of uncertainty, with important potential ecological, 

biogeochemical, and socioeconomic consequences (Ayres and Lombardero 2000; 

Maguire et al. 2002; Kurz et al. 2008). 

Most of the concern regarding the vulnerability of forests to future climate 

change has focused on the effects of warmer and drier conditions (Williams et al. 

2013; Allen et al. 2015; McDowell and Allen 2015; Mildrexler et al. 2016; van 

Mantgem et al. 2009) and how these conditions have affected fungal pathogens 

(Brasier 1996; Lonsdale and Gibbs 1996). Climatic changes in the opposite trajectory 

(i.e. toward wetter conditions) might even be favorable to increased growth 

performance in some settings. However, climatic shifts toward wetter conditions can 

cause rapid fungal responses and favor pathogens with effects on host trees that far 

outweigh any benefits to growth (Hawkes et al. 2011). For example, a recent increase 

in summer precipitation appears to be responsible for the dramatic changes in 

Dothistroma needle blight in British Columbia (Woods et al. 2005). A foliar disease in 

temperate forests, Dothistroma historically had only minor impacts on native tree 
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species, and is now causing extensive mortality in lodgepole pines. Foliar fungi 

diseases are thought to be more responsive to climate change than most other forest 

disease organisms, as their ability to sporulate and infect is strongly tied to changes in 

temperature and precipitation (Peterson 1973; Gadgil 1977; Hoff 1985).  

In the Pacific Northwest (PNW) region of the USA, an investigation of forest 

vulnerability to recent directional climate trends (2003 to 2012) found that the region’s 

forests have experienced more extreme climate conditions from cooler and moister 

conditions in the fall, spring, and early summer months to warmer and drier conditions 

in the mid- to late-summer months (Mildrexler et al. 2016). While our Forest 

Vulnerability Index (FVI) was conceptualized around the effects of hotter and drier 

conditions on forests, the emergence of cooler and moister conditions dominated the 

trends for spring and early summer months. During this same period, the region’s 

Douglas-fir forests experienced a large and rapid increase in area of forest exhibiting 

symptoms of Swiss needle cast (SNC), a foliar fungus endemic to the region 

(Ritokova et al. 2016). In this study, we investigate the relationship between climatic 

trends detected during the spring and early summer months (May – August) along the 

Pacific Coast of Oregon from 2003 to 2012, and the distribution of forests with visible 

symptoms of SNC in 2012. Our objectives were to: 1) Calculate the relationship 

between LST and water balance (WB) trends and pixel-level presence/absence of SNC 

symptoms. 2) Compare the relationship between private and public forest lands to 

make inferences about the effects of forestry practices on forest vulnerability to SNC 

intensification. 

Swiss needle cast in the Pacific Northwest 

SNC is a foliar disease specific to Douglas-fir (Pseudotsuga menziesii) and is 

caused by the ascomycete fungus, Phaeocryptopus gaeumannii. Although the forest 

pathogen that causes SNC is native to western North America, the disease was first 

noticed in Switzerland and Germany where Douglas-fir was planted in the early 20
th
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century (Hansen et al. 2000; Rosso and Hansen 2003). It was subsequently found in 

Oregon, but was thought to be innocuous in western North American forests prior to 

1950 due to the absence of physical symptoms (Boyce 1940; Manter et al. 2005). The 

effects of SNC on Douglas-fir include chlorosis, premature needle loss and decreased 

needle retention, and reduction in tree height and diameter (Hansen et al. 2000; Lee et 

al. 2013). The primary mechanism for this reduction in forest productivity is the 

physical obstruction of stomata by the fruiting-bodies (Manter et al. 2000). Stomatal 

occlusion prevents both CO2 uptake and transpiration needed for photosynthesis 

(Manter et al. 2000). Needle abscission typically occurs after 50% or more of the 

stomata are occluded by fruiting bodies (Hansen et al. 2000). A SNC growth impact 

monitoring plot network in the northwest Oregon Coast Range found that between 

1996 and 2015 volume growth was reduced 23 - 50% by SNC (Maguire et al. 2002; 

Ritokova et al. 2016). Douglas-fir is a tremendously important commercial timber 

producing species in the region making these reductions in tree growth a major 

concern in commercial forestry operations (Maguire et al. 2002). 

In the 1970’s and 1980’s epidemic outbreaks of SNC symptoms emerged in 

Christmas tree plantations in Oregon, and later were noticed in forest plantations along 

the Pacific Coast (Hadfield and Douglas 1982; Michaels and Chastagner 1984; Shaw 

et al. 2011). As a result, the first annual aerial survey was initiated in 1996 to 

determine the area of visible symptoms. These surveys have continued through to the 

present, revealing that forested area with visible symptoms increased from 53,050 

hectares in 1996 to 156,630 hectares in 2002 (Ritokova et al. 2016). The area with 

symptoms was reduced from 2003 to 2005 during which two droughts affected the 

Pacific Northwest (Bumbaco and Mote 2005). After this period, symptom expression 

has steadily increased through 2015, peaking at 238,705 hectares (Ritokova et al. 

2016). Evidence suggests that SNC is affected by climate, alone or in combination 

with forestry practices of the 20th century (Rosso and Hansen 2003; Manter et al. 

2005; Stone et al. 2008b; Lee et al. 2013). The temporal period of the FVI (2003 to 
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2012) overlaps with a period of steady increase in SNC symptoms in Oregon, 

providing a good natural experiment to evaluate if short-term directional climate 

changes have been favorable to SNC. 

Oregon’s Coast Range study area  

The most significant area of intensification of SNC symptoms has occurred 

within the Douglas-fir forests of Oregon’s Coast Range, a region well-known for its 

dense conifer forests and productive growing conditions. The Coast Range ecoregion 

extends the length of Oregon’s coastline and is bounded on the west by the Pacific 

Ocean (Fig. 4.1). The terrain ranges from sea level to 1249 m in elevation, and overall 

the climate is maritime, with mild wet winters and cool dry summers (Ohmann and 

Gregory 2002). However, the rugged coastal mountain range and resulting rainshadow 

results in geographic climate variations with extremely wet conditions and associated 

forest types in the west (Picea sitchensis –Tsuga heterophylla), and drier conditions 

and associated forest types in the east (Pseudotsuga menziesii) (Peterson and Waring 

1994). The fungus is common throughout the range of the host, but it causes disease 

symptoms in forests and plantations of the coastal rainforest zone on the western 

slopes of the Oregon Coast Range, especially at low elevations within the coastal fog 

belt where needle wetness is maintained by coastal fog and drizzle (Lee et al. 2013; 

Shaw et al. 2011). 

Historic variations in species composition and forest structure in Oregon’s 

coastal forest ecosystems were primarily associated with climate, natural disturbances 

(i.e. wildfire, windthrow), and local environmental conditions (Ohmann and Spies 

1998; Wimberly and Spies 2001). Simulations of historical variability in Oregon’s 

Coast Range forests show that old-growth forests occupied 25% to 75% of the total 

area at the province scale with wildfire acting as the predominant driver of fluctuations 

(Wimberly et al. 2000). In the modern Coast Range landscape, ownership has 

dramatically altered disturbance regimes and forest structure (Wimberly et al. 2000). 



81 

 

8
1
 

Industrial logging of private lands, especially from the 1960’s to the 1990’s, converted 

many of the old-growth mixed-conifer forests to young even-aged Douglas-fir 

monoculture plantations (Cohen et al. 2002). These forest industry lands typically 

occur in large intensively managed blocks, and the disturbance regime is dominated by 

regularly timed timber harvests at 30- to 60-year rotations (Cohen et al. 2002; 

Wimberly et al. 2000). In contrast, forests in public ownership contain a mix of old 

and young forest as a result of staggering small harvests in space (Cohen et al. 2002). 

Old-growth was estimated to cover about 5% of the Oregon Coast province in the year 

2000 (Wimberly et al. 2000), and nearly all old-growth forest that remains is located 

on the public forest land base (i.e. State and Federal forestland). 

Evidence of climatic and forest structural linkages 

The first observations of SNC in North America provided a contrasting picture 

to that of Europe. Whereas abundant fruiting bodies were present on infected trees in 

Europe, visible symptoms were scarce in western North America, leading to 

speculations about how different seasonal patterns of local climate between the PNW 

and interior Europe were affecting the disease spread. Boyce (1940) pointed to the 

warm, humid summers with episodic rain typical of continental Europe as being more 

conducive to fungal growth, in contrast to the comparatively arid summer climate of 

the PNW. Subsequent research confirmed these climatic influences and found factors 

that affect spring leaf wetness, such as fog frequency and precipitation patterns as 

possible factors affecting disease severity (Hood et al. 1982; Hansen et al. 2000; Rosso 

and Hansen 2003; Manter et al. 2005; Stone et al. 2008a; Maguire et al. 2011; Zhao et 

al. 2011). More specifically, SNC disease severity has been linked with favorable 

weather conditions for pathogen development which includes spring leaf wetness 

during the spore dispersal period (May, June, July, and possibly August) (Manter et al. 

2005; Stone et al. 2008b). Summer conditions have also been found to be important 

factors in epidemiology of SNC (Rosso and Hansen 2003; Zhao et al. 2011). In a study 
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predicting SNC disease distribution and severity, Rosso and Hansen (2003) found that 

July maximum temperature tends to correspond to lower disease values, which they 

attributed to the inhibiting effect of high summer temperatures and dry conditions on 

fungal development.   

To our knowledge this is the first study to evaluate the link between SNC 

affected forest and satellite-derived land surface temperature (LST). LST measures the 

emission of thermal radiance from the surface of the forest canopy, emphasizing the 

direct thermal response of the forest canopy to changing water and energy fluxes (Li et 

al. 2013; Scherrer et al. 2011). Thus, LST differs from air temperature in that it 

measures the actual canopy temperature where surface evaporation and transpiration 

affect partitioning to sensible and latent heat fluxes (Mildrexler et al. 2011a; Kim et al. 

2016). Since springtime leaf wetness and summer dryness are important factors in 

SNC disease epidemiology, we hypothesize that LST may provide valuable 

information on leaf temperature as related to changes in leaf moisture condition.  

Forest management practices, particularly on private lands, are also thought to 

be an important factor in the ecology and epidemiology of P. gaeumannii. The 

homogenous forest structural and compositional conditions of Douglas-fir plantations 

appear to promote spore dispersal and infection, whereas old-growth forests are 

relatively resistant to the disease (Hansen et al. 2000; Maguire et al. 2002; Shaw et al. 

2011; Ritokova et al. 2016). Thus the SNC epidemic is positively correlated with the 

increase in Douglas-fir plantations, and the conversion of mixed-conifer forests to 

young monocultures of Douglas-fir (Hansen et al. 2000; Ritokova et al. 2016). The 

first observations of SNC disease in Switzerland and Germany in 1925 were in 

Douglas-fir plantations (Boyce 1940; Lee et al. 2013), pre-dating the large-scale 

conversion of western North America’s old-growth forests to plantations. This forest 

structural factor of SNC disease epidemiology may have contributed to the difference 

between early observations in European and PNW forests. 



83 

 

8
3
 

Given this forest structural component of SNC disease epidemiology, it is 

possible that seasonal changes in temperature and/or precipitation regimes may relate 

more strongly to the distribution of SNC symptoms on structurally homogenous 

Douglas-fir plantations that dominate private land compared to public land. Thus, we 

analyze private forestlands separate from the more structurally diverse public lands to 

test for differences. We hypothesize that relationships between the estimated variables 

and pixel-level presence/absence of SNC will be higher for private lands than for 

public lands.  

Recent regional LST and water balance trends  

Mildrexler et al. (2016) quantified monthly trends in canopy energy and water 

exchanges across the forests of Oregon and Washington during the growing season 

from 2003 to 2012 (Fig. 4.2) with spatially continuous MODIS LST and 

evapotranspiration (ET), and with Parameter-elevation Relationships on Independent 

Slopes Model (PRISM) precipitation data. Water balance (WB) calculated as 

precipitation (PRISM, 800-m
2
) minus ET (MODIS, resampled to 800-m

2
) and 

commonly used to represent regional water balance (Swenson & Wahr 2006; Zhang et 

al., 2009), is the net flux of water between the atmosphere and the biosphere. MODIS 

data were resampled to 800-m
2
 to match the resolution of the precipitation data. The 

slope of every specific 800-m
2
 pixel for each month across time (e.g., the slope of a 

regression fit to every April from 2003 to 2012 for a given pixel) illustrates complex 

spatial patterns across the large hydrological gradients of the PNW (Fig. 4.2).  

We found a trend toward wetter conditions (characterized by positive slopes 

for WB) for the study area in May and June (Fig. 4.2). Localized exceptions include 

the northern Coast Range which experienced an intense patch of increasing water 

deficit in June, and localized patches in the southern Coast Range that experienced a 

drying trend of varying intensity across months. The emergence of negative WB 

slopes during July in the Coast Range indicates the beginning of a switch toward drier 
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conditions, but most of the forested area retains positive WB slopes through July. In 

August, the switch is complete, and most of the Coast Range forests show a drying 

trend (negative WB slopes). This drying trend is important for SNC because a higher 

vapor pressure deficit (VPD) and lower water potential within the foliage negatively 

affect fungal development and increase needle retention (Zhao et al. 2011; Lee et al. 

2013).  

Related to the trends in WB, the slopes of the LST data were predominantly 

negative for the study area from May to July indicating a trend toward cooler 

conditions (Fig. 4.2). Even in July and August, as WB turned negative, LST continued 

to decrease, possibly due to plenty of water available for transpirational cooling and a 

lag time for LST to respond to changes in available soil moisture (Mildrexler et al. 

2016). The first significant trends toward warmer temperatures in the Coast Range 

appear in August, especially in the northern Coast Range, but most LST trends remain 

negative, although of a lesser magnitude (indicated by light blue color). These 

biophysical datasets indicate that WB and LST trends in May, June, and July are 

consistent with increased leaf wetness, a key factor in SNC disease epidemiology.  

Forest vulnerability index and Swiss needle cast 

Using the LST and WB data shown in Figure 4.2, we formulated a pixel-

specific forest stress index (FSI) that contrasts LST and WB, such that the FSI is low 

when LST is low and WB is high, and the FSI high when LST is high and WB is low 

(Mildrexler et al. 2016). This is done for each month across the years of the MODIS 

time series. We then calculated the pixel-level month-specific FVI as the inter-annual 

slope of the FSI for each month. The FVI is then filtered by p-value to identify where 

on the landscape significant FVI slopes exist. Positive FVI values indicate hotter and 

drier conditions, whereas negative FVI values indicate cooler and/or wetter conditions. 

For a more detailed description of the FVI algorithm and the input datasets and their 

uncertainties, see Mildrexler et al. (2016). 
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Negative FVI dominated the Oregon Coast Range during spring and early 

summer, indicating conditions favorable to SNC (Fig. 4.3). June and July showed the 

strongest trends toward negative FVI. August captures the transition from positive to 

negative slopes across the landscape, and highlights the complex spatiotemporal 

patterns of the regions combined energy and water balance changes (i.e. positive FVI 

can be seen in the northern Coast Range, and negative in the southern portion). The 

right panel displays the spatial extent of the SNC symptomatic Douglas‐fir forest in 

the Coast Range of Oregon detected in the 2012 aerial survey (Fig. 4.3). The 

importance of proximity to coast, a key factor in SNC distribution and severity, is 

clearly visible (Rosso and Hanson 2003). To focus our analysis on the area of 

symptomatic forest, we computed a proximity to coast layer based on the 800-m
2
 

raster data and limited the analysis to the area of visible SNC symptoms in 2012.  

Aerial detection data and logistic regressions 

 We evaluated the relationship between each monthly factor (LST, WB, and 

FVI) and SNC presence/absence individually, and in multi-factor combinations for 

private and public lands (Table 4.1). Prior to data extraction, the ODF aerial detection 

data was converted to raster data and only MODIS pixels with greater than 50% of 

their area affected by SNC symptoms were used in the analysis. Pixels with less than 

50% were discarded. Monthly scatterplots (Appendix: Figs. A-4.1 thru A-4.4) and 

correlations (Appendix: Tables A-4.1 thru A-4.4) for all factors were evaluated to 

check for collinearity. Factors with correlations above 0.7 were not tested together in 

regressions. We then performed logistic regressions using Statsgraphics software to 

examine the relationship between the FVI, LST, and WB variables and pixel-level 

presence/absence of SNC symptoms. Private/ public land classifications were based on 

the forest ownership data (Fig 4.1).  

Overall we found that LST trends had greater power than WB trends in 

explaining SNC symptom distribution (Table 4.1). Combining monthly LST in multi-
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factor regressions increased the explanatory power of LST, whereas this effect was 

minimal for WB. We generally found that a higher percentage of the deviance in SNC 

symptom expression was explained on private land than on public land (all values over 

5% are in bold). Proximity to coast was the single most powerful explanatory factor, 

accounting for almost 10% of the deviance for private land and 6.7% for public land.  

At the individual month level, the slope of the monthly LST values from 2003 

to 2012 explained little of the deviance in SNC symptom distribution on private or 

public land, although May LSTz trends on private lands were an exception, explaining 

nearly 4% of the deviance (Table 4.1). The combination of LST slopes for May, June 

and August explained 7.0% of the SNC symptom occurrence on private land, and 3% 

on public land. Since the slopes of the July and August LST values were highly 

correlated (r = 9.0), these months were not tested together due to collinearity 

(Appendix: Table 4.1). Despite the high correlation between July and August LST 

slopes, the inclusion of August LST values rather than July increased the deviance 

explained from 5.2% to 7.0%. Moreover, the removal of June LST slopes had no 

effect on the total deviance explained, indicating that an early and late season month 

captures most of the deviance in SNC symptom expression that could be explained by 

LST trends on private land. Monthly water balance values individually explained little 

of the deviance on private and public lands (Table 4.1). Multi-factor regressions 

among months increased this to around 3.0% (July and August WB values did not 

show high correlation). FVI values also explained little of the deviance on their own, 

the highest being for May on private land (3.5%). Together, FVI growing season 

values explained 5.6% of the deviance on private land, and 3.3% on public lands.  

We tested multi-factor regressions with LST and WB for May and August and 

found that the addition of WB added little (7.3%) to the deviance explained by LST 

alone (7.0%). When combined with proximity to coast, May and August LST 

explained 14% of the deviance in SNC symptom expression on private land and 8.7% 
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on public land, and the addition of WB did not increase explanatory power (Table 

4.1).  

SNC distribution: Importance of LST trends and private forestlands 

The goal of this exploratory study was to evaluate the relationship between 

short-term directional climate changes detected across the PNW region from 2003 to 

2012 and the recent SNC epidemic. Since forest management has increased host 

abundance and possibly vulnerability to SNC at the landscape scale, we compared 

public and private forests separately to evaluate differences. Proximity to coast had the 

greatest explanatory power because SNC distribution is strongly coupled with the low 

elevation coastal-forest fog belt (Rosso and Hansen 2003). Given the complexity of 

SNC disease epidemiology and the number of factors involved, two interesting 

findings emerge from this study. First, of the canopy energy and water flux data 

evaluated, trends in LST were most effective in explaining the distribution of SNC 

symptoms, and the combination of an early growing season (May) and mid-summer 

(August) month had the most explanatory power. Second, we found that a greater 

percentage of deviance in SNC symptom expression was explained on private land 

than on public land.  

Our finding that short-term directional trends in LST have the strongest 

relationship with SNC distribution (notwithstanding proximity to coast), highlights 

that LST contains implicit information about changing canopy water and energy fluxes 

that are relatable to complex ecological processes such as forest pathogen interactions. 

LST temporal variations contain information about the partitioning of solar radiation 

among the land surface energy balance components (sensible (SH) and latent heat 

(LE)) (Bateni and Entekhabi 2012). Controls on the fluxes, such as from moisture 

limitation over the growing season, impose a strong limitation on the partitioning 

among the sensible and latent heat fluxes and affect the evolution of LST (Bateni and 

Entekhabi 2012). In spring, canopy wetness in the Oregon Coast Range is high due to 
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rainfall, mist, and fog. With plenty of water available to evaporate and transpire from 

the forest canopy, and a low VPD, canopy surface temperature remains relatively cool. 

In August, dry conditions coupled with increased direct solar radiation dry the forest 

canopy, and higher VPD can reduce transpiration, increasing the canopy surface 

temperature. The importance of temperature found in our study is consistent with 

previous work that showed that P. gaeumannii is sensitive to relatively small 

temperature differences, and that spatial variability in SNC disease severity has been 

influenced by regional climate trends (Stone et al. 2008a). Moreover, the importance 

of early growing season (May) and mid-summer (August) temperature trends agrees 

with previous research that found a positive relationship between SNC and spring leaf 

wetness, and a negative relationship between SNC impact and summer temperature 

(Rosso and Hansen 2003; Zhao et al. 2011; Lee et al. 2013). P. gaeumannii spore 

dispersal and infection begins in May, shortly after bud break of Douglas-fir, making 

May a critical month in the life cycle of P. gaeumannii. August captures a period 

when the fungus is susceptible to desiccation as conditions warm and dry (Shaw et al. 

2011; Lee et al. 2013). Thus, May and August together capture temperature changes 

associated with canopy wetness and dryness during critical periods in the development 

stages of the pathogen (Rosso and Hansen 2003).  

Given the importance of leaf wetness in SNC disease epidemiology, it is 

somewhat surprising that the WB trends showed such a poor relationship with SNC 

presence/absence. This may be due in part to the uncertainties associated with the 

PRISM precipitation and the MODIS ET datasets. For example, the MODIS ET 

algorithm uses VPD alone to estimate water stress (i.e. no soil moisture data) which 

results in an underestimation of water stress, an overestimation of ET, and difficulty in 

capturing seasonality in some regions (Mu et al. 2007). Examining the LST and WB 

variables in isolation was key to elucidating the different relationships between these 

variables and the distribution of SNC symptoms.  



89 

 

8
9
 

The higher level of deviance in SNC symptom expression explained on public 

land vs. private land raises questions about how the different structural characteristics 

associated with these land ownerships may affect SNC disease epidemiology. 

Interestingly, while the magnitude of deviance explained differs between land 

ownership patterns, the relative changes among factors show a similar pattern, 

suggesting a consistent difference (Table 4.1). One possible explanation for the 

difference in deviance explained is that the factors may have less explanatory power 

on public lands due to their increased heterogeneity. For example, public lands contain 

a mix of forest successional stages, and natural disturbance regimes maintain a 

stronger presence on public lands compared with private lands. Mixed-conifer forests 

are typical of public lands, as are a variety of stand ages. Public lands are managed for 

a variety of objectives, and these objectives shift in importance across management 

area designations, resulting in another layer of complexity. Taken together, these 

factors contribute to a relatively heterogeneous forest landscape. By comparison, 

industrial private forestlands are generally managed for the sole purpose of timber 

production. Natural disturbances are replaced by cycles of harvesting and reforestation 

that result in even-aged, single-species plantations. These young forests have a more 

homogenous structure than young forests that establish following natural disturbances 

(Hansen et al. 1991). Further insights about the potential effects of forest structure can 

be gleaned from research of SNC in Christmas tree plantations, where epidemic like 

conditions were first observed in the PNW. Practices in Christmas tree plantations, 

such as shearing and fertilizing, are designed to develop trees with dense foliage 

(Hadfield and Douglas 1982). Because infection occurs on newly emerging needles, 

more dense foliage provides more opportunity for infection (Hadfield and Douglas 

1982). Also the close spacing of trees in Christmas tree plantations restricts air 

circulation, keeping foliage wet, favoring infection (Hadfield and Douglas 1982). 

While not as dense as Christmas tree farms, tree plantations are managed much like a 

crop, and are known to have a much greater stand density than forests that regenerate 
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naturally. Plantations often have overlapping forest canopies, resulting in self-pruning 

of the limbs in the lower canopy. These canopy characteristics reduce windspeed and 

increase shading, factors that help to maintain moister conditions that favor SNC 

infection. Moreover, uniform age classes result in low canopy heterogeneity, a key 

factor that drives turbulent heat and moisture exchange with the atmosphere. Lastly, 

overlaying SNC symptoms on a map of forest ownership provides compelling 

evidence that SNC is affecting these two land bases differently. The patterns of SNC 

symptoms reveal close spatial association with private lands along the whole Oregon 

coast, and show a sharp reduction on public lands (Fig. 4.4). Symptoms on public 

lands tend to be small isolated patches, whereas on private lands symptoms have a 

much larger patch size, contain more high severity symptoms, and are nearly 

contiguous across large swaths of private lands (Fig. 4.4).      

Limitations and future research 

While this study does find evidence that short-term directional climate changes 

may have contributed to the recent SNC epidemic, and that this influence was stronger 

on private lands, we present these results with caution. Our study compared monthly 

climate trends computed over a 10-year period to a snap shot of SNC symptoms at the 

end of this period. A 10-year period is too short to evaluate longer-term climate cycles 

that may be important for SNC dynamics (Lee et al. 2013). Second, the majority of the 

deviance in SNC symptoms was not explained by our factors. Clearly other factors are 

important, raising questions about how significant the climate influence is. Having 

said this, very subtle shifts in climate can alter host-pathogen interactions such that 

major changes result (Hansen et al. 2000). At the very least, our study indicates that 

seasonal LST trends contain important information on leaf wetness, possibly capturing 

both early season and late season dynamics important to SNC disease epidemiology, 

and that the effects of forestry practices on vulnerability to SNC warrant further study.  
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Future research should explore the relationship between annual changes in the 

monthly climate data and SNC symptom distribution over a longer time period. This 

would provide more detailed information on how interannual climate variability 

relates to changes in symptom expression. Meteorological data could be used to 

calculate the relationship between the timing and duration of rainfall events, changes 

in LST, and SNC symptoms. This approach may be useful for identify moisture and 

temperature thresholds that best match up with the expression of SNC symptoms.  
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Figures and Tables 

Figure 4.1. Map of Oregon, USA showing the Coast Range ecoregion. Forest land 

ownership patterns from U.S. Geological Survey, Gap Analysis Program, May 2016. 

Public land includes State and Federal lands (Bureau of Land Management, United 

Service Forest Service). 
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Figure 4.2. Changes in land surface temperature (LST) and water balance (WB) from 

2003 to 2012 across the forests of Oregon (adapted from Mildrexler et al. 2016).  
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Figure 4.3. Forest vulnerability index for May through August masked by significance 

(p-value < 0.1). From 2003 to 2012, decreased temperatures and increased water 

balance resulted in negative FVI values (although note emergence of positive FVI 

values in August), conditions favorable to SNC. Spatial pattern of Swiss needle cast 
symptoms in the Coast Range of Oregon detected by the 2012 Oregon Department of 

Forestry (ODF) aerial survey (far right panel).  
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Figure 4.4. Swiss needle cast symptoms overlain on a forest ownership map reveals a 

strong spatial association between SNC symptoms and private lands.  
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Table 4.1. Percent deviance of SNC presence/absence data explained by the various 

factors individually and in combinations.   

  

        Public land 

Deviance explained 

                                                                         Private land 

                                                                          Deviance explained 

Factors                      (%)     (%)  

Geographic 

 

  

   Proximity to coast 9.34  6.7  

Land Surface Temperature 

 

   

   May LSTz 3.91  1.0  

   June LSTz 0.37  0.73  

   July LSTz 0.01  0.08  

   August LSTz 0.45  0.74  

   May, June, July LSTz 5.2  1.63  

   May, June, August LSTz 7.0  3.1  

   May, August LSTz 7.0  2.5  

Water Balance     

   May WBz 1.40  0.0  

   June WBz 0.04  0.31  

   July WBz 0.43  1.54  

   August WBz .06  0.03  

   May, June, July, August WBz 2.9  3.0  

Forest Vulnerability Index 

 

   

   May FVI 3.5 

 

0.55  

   June FVI 0.5  0.35  

   July FVI 0.0  0.16  

   August FVI 0.4  0.64  

   May, June, July, August FVI 5.6  3.3  

LST and WB      

   WBz and LSTz (May, August)         7.3            5.4  

LST, WB and geographic      

   May, August LSTz, proximity to coast 14.0  8.7  

   May, August (LSTz and WBz), proximity to coast    14.0       8.7  
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Chapter 5: Conclusion 

  
Research summary and synthesis 

The Earth’s ecosystems are experiencing change that is unprecedented in 

human history (Rockström et al. 2009). Given the vital interactions and feedbacks 

between the Earth’s land surface and climate, these changes threaten to initiate 

potentially irreversible changes in the Earth system (Hansen et al. 2015; IPCC 2013; 

Rockström et al. 2009). Therefore it is important to develop new ways to measure 

global changes and their consequences on climate that are relevant and communicable 

to society and decision-makers (Janetos et al. 2012; USGCP 2014). Land surface 

temperature (LST) measurements link surface conditions and climate to provide 

critical information on important biospheric changes occurring in the Earth system at 

local through global scales (Mannstein 1987; Li et al. 2013; Wan et al. 2004). This 

dissertation uses satellite-derived LST data from the Aqua MODIS sensor to develop 

new, novel methodologies that address key topics in Earth science research – global 

heat waves, a melting cryosphere, vegetation disturbance, the effects of droughts and 

rising temperatures on forests, and how seasonal shifts in water and energy might 

affect host pathogen interactions.  

In the first study of this dissertation (Chapter 2), we apply a new global change 

indicator based on an annual measure of the Earth’s maximum land surface 

temperature (LSTmax). Using the high-resolution 1-km
2
 Aqua LST data, we have for 

the first time characterized a fundamental aspect of Earth’s surface-climate system, the 

LSTmax distribution. The multi-modality in distributions is reflective of ecosphere 

patterns, and the low interannual variability reflects the robustness of LSTmax against 

the many intra- and interannual variations and fluctuations in LST (Fig. 2.1D). We 

hypothesized that shifts in LSTmax distributions might hence serve as a proxy for 

more deeply rooted shifts in Earth system properties that could indicate drifts of 

ecosystems and biomes toward thresholds of profound change. Our findings show that 



98 

 

9
8
 

entire biomes are experiencing shifts in their LSTmax distributions driven by extreme 

climatic events and large-scale land surface changes. LSTmax anomalies provide 

detailed spatial information on droughts and heat waves that can be used to better 

understand the ecosystem changes associated with extreme high-temperature events, 

which are projected to continue increasing in the future (Hansen et al. 2012). This 

research offers a substantial advancement in turning the unique LSTmax measurement 

into a useful, spatially comprehensive global temperature monitor.  

The role of rising temperatures in driving increased drought stress is evident in 

recent studies of tree vulnerability, mortality, and net primary production (Allen et al. 

2015; McDowell and Allen 2015; Mildrexler et al. 2016; van Mantgem et al. 2009; 

Williams et al. 2013). Rising temperatures coupled with decreasing precipitation are a 

potent combination, especially in semi-arid ecosystems (Adams et al. 2009). One of 

the most promising approaches to gain information about the water status of trees is 

thermal imaging of leaves or forest canopy foliage as a proxy for the energy balance, 

and thus for concurrent transpiration and carbon cycling (Leuzinger et al. 2007; 

Scherrer et al. 2011; Kim et al. 2016; Mildrexler et al. 2016). By incorporating thermal 

observations from the Aqua MODIS sensor with MODIS based ET and PRISM 

precipitation measurements, we developed a new forest vulnerability index (FVI) that 

captures the variable spatial and temporal energy and water balance (WB) changes 

that forests are experiencing during the growing season (April through October), and 

translated this information into maps of forest vulnerability across the Pacific 

Northwest (PNW) region (Oregon and Washington) of the USA (Chapter 3). These 

maps reveal complex temporal and spatial patterns and interactions between LST and 

WB that contribute to the forest vulnerability measurement (Figure 3.4). Our findings 

indicate that the PNW may be on a trajectory toward more extreme climatic 

conditions, from moister and cooler in the Spring and Fall, to warmer and drier in 

Summer. If this trajectory continues, it will have profound implications for the regions 

vegetation.  



99 

 

9
9
 

In examining the emergence of more extreme climatic conditions detected by 

the FVI, we realized that the early spring months displayed trends favorable for a 

native forest pathogen having important effects on the region’s Douglas-fir forests, 

Swiss needle cast (SNC). This led to the final chapter (Chapter 4) in which we 

explored the relationship between climate trends from 2003 to 2012 and the 

distribution of SNC symptoms in 2012. Our finding that LST during the early growing 

season (May) and mid-summer (August) was relatively effective at explaining the 

deviance in SNC symptom presence/absence data reinforces the importance of thermal 

data as a measure of surface moisture status, a key factor in SNC disease 

epidemiology. Our spatially exhaustive remote sensing data allowed us to investigate 

private vs. public land responses with a simple stratification. Although we did find 

some evidence to support the idea that short-term directional climate changes may 

have contributed to the recent SNC epidemic, and that this influence was stronger on 

private lands, additional research is needed to confirm these findings.   

 

Emergent themes  

The LST measurement emerges as a key biophysical dataset for monitoring a 

variety of critical Earth system changes across a broad range of spatial and temporal 

scales. This dissertation has merged the entire Earth’s annual LSTmax into a single 

integrated measure to evaluate biome-level surface temperature changes across ice 

sheets and tropical forests, computed regional-scale LST changes across temperate 

forests at a monthly time-step, and made pixel-specific comparisons with forest 

disease symptom polygons at the local scale. The relevance of LST from local to 

global scales underscores the fundamental role of LST in physical processes of climate 

(Li et al. 2014), and in biological processes ranging from leaf-level physiology to 

biome-level distribution (Teskey et al. 2015). Because temperature is constantly 

changing, it is critical to use temporal compositing approaches of LST that relate 

closely to one’s research question. For example, the LSTmax metric is an extreme 
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condition robust against the complex influences in monthly or daily temperature 

values with direct relevance to high-temperature biome thresholds and the expression 

of extreme events like heat waves. However, since it’s an annual measurement, 

LSTmax could not capture dynamics over the growing season. Thus, our forest 

vulnerability study used a monthly mean LST computation which was critical for 

detecting the evolution of thermal stress over the growing season. Moreover, by 

coupling LST with other complementary biophysical datasets that relate directly to the 

signal of interest, novel mathematical approaches can be developed that magnify 

important ecosystem changes (Mildrexler et al. 2009; Mildrexler et al. 2016).  

The trajectory toward more extreme climatic conditions also emerged as an 

important factor in the forests of the PNW (Fig. 3.4). This was a surprise finding given 

that we set out to detect areas affected by increasing temperatures and drought. 

However, by creating a mathematical model —the forest vulnerability index — that 

captures the relationship between water and temperature trends from one month to the 

next, both hotter and drier, and cooler and wetter trajectories were a possible outcome. 

The increasing water deficits and rising temperatures found in August and September 

were immediately preceded by cooler and moister conditions in April-July. Climatic 

extremes have emerged as a critically important part of climate variability due to their 

disproportionately large effects on ecosystems and society (Easterling et al. 2000; 

Jentsch et al. 2007; Smith 2011). The climatic changes expected during the next 

decades – large increases in mean temperature, increased heat waves, and significant 

long-term regional drying in the western USA – will likely increase chronic forest 

stress and mortality (Allen et al. 2015; Cook et al. 2014; IPCC 2013; Jentsch et al. 

2007; Moritz et al. 2012). However, less is known about the effects of cooler and 

wetter spring conditions should this trajectory continue. Will more rainfall in the 

spring help to offset the effects of increasing temperatures and water deficits in the 

late summer? Or will more heavy rainfall events increase flooding, only to be 

followed by more severe heat waves and droughts? While our analysis does not 
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answer these questions, it does show that divergent climate trends can occur from one 

season to the next, and that forest vulnerability can arise from both hotter and drier, 

and cooler and wetter conditions.  

A final emergent theme from this research is the importance of species-specific 

adaptations and sensitivities to climate change. While we found a variety of forest type 

groups are experiencing hotter and drier conditions, the ecological effects of these 

changes will vary between types. A recent study of water limitations on growth in the 

Cascade Mountains of Oregon found that growth of species in relatively dry 

environments (ponderosa pine, western juniper) tracked climate changes closely, 

whereas species in moist environments (grand fir) did not track temperature or 

moisture-related climate variables (Berner and Law 2015). It is possible that shifts 

toward warmer and drier conditions may cause immediate reductions in the growth of 

dry forest types, but could improve growth in moist forest types where water is not 

limiting and rising temperatures reduce constraints on productivity from frost during 

periods when VPD is low. However, as we have seen in the Oregon Coast Range, 

subtle shifts in climate can also increase forest vulnerability to pathogens, 

exemplifying the complex relationships between species and the climatic conditions to 

which they are adapted. For example, in northern lodgepole pine forests warming 

conditions that might have otherwise improved growth helped trigger widespread 

beetle outbreaks (Kurz et al. 2008). Furthermore, change in growth is only one of the 

potential stress responses. Mortality is another potential response, and in our study 

area sensitivity to drought varies along an elevational gradient. While dry forests may 

show a more immediate response to hotter and drier conditions in terms of growth, 

these forests have evolved mechanisms to cope with hot, dry conditions (Haugo et al., 

2010). On the other hand, moist forests did not evolve in areas that experienced 

seasonal dryness regularly, and may be highly vulnerable to the increasingly severe 

and rapid onset high temperature droughts expected in the coming decades (Hansen et 

al. 2012).  
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Final thoughts 

While change is a constant aspect of ecosystems, human-induced climate and 

land use changes are pushing ecosystems and species toward extreme thresholds of 

profound change. Projections indicate with high confidence that temperatures will 

continue to rise in the future, and every ecosystem on Earth will be affected (IPCC 

2013). Urgently needed are new ways to monitor and understand these impacts, 

especially with metrics that are relevant and communicable to society, land managers, 

and decision-makers. LST is a fundamental aspect of climate and biology, affecting 

ecosystems from local to global scales. This dissertation demonstrates that satellite-

derived LST data from the Aqua MODIS sensor can address key topics in Earth 

science research. As the period of observation lengthens and longer trend detection is 

possible, LST will become an increasingly valuable metric of critical changes in the 

Earth system. Additional efforts are needed to link temperature shifts to physiological 

thresholds, and to link canopy water and energy changes to ground-based 

measurements and observations. Continuity in Earth observation measurements of 

high-quality LST data with continuous spatial coverage is necessary for effectively 

monitoring our rapidly changing planet.  
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Appendices 

Appendix A: Supporting information for Chapter 4  

Figure A-4.1. Matrix scatterplots for May – August LSTz data on private lands.   
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Figure A-4.2. Matrix scatterplots for May – August WBz data on private lands.   
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Figure A-4.3. Matrix scatterplots for May – August LSTz data on public lands.   
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Figure A-4.4. Matrix scatterplots for May – August WBz data on public lands. 
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Table A-4.1. Correlations for May – August LSTz data on private lands. Also shown 

in parentheses is the number of pairs of data values used to compute each coefficient. 

The third number in each location of the table is a P-value which tests the statistical 

significance of the estimated correlations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A-4.2. Correlations for May – August WBz data on private lands. 
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Table A-4.3. Correlations for May – August LSTz data on public lands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A-4.4. Correlations for May – August WBz data on public lands. 

 

 


