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Functional control at the nanoscale forms the foundation of biological systems.

These work at the cellular level by manipulating ions and molecules. Nanoscale devices

that give functional control at this scale are also becoming an important component in

diverse fields such as electronics, medicine, engineering, and manufacturing. Moreover,

scientific advances are making it technologically viable to control and observe matter at

the atomic level. Computational techniques are an integral part in designing and under-

standing these systems, as they reveal the processes that are experimentally unobservable

and allow for inexpensive screening and predictions. Since the atomistic nature of matter

plays a major role at the nanoscale, classical all-atom molecular dynamic simulations are

widely employed.

We concentrate on thermal transport, ion transport, and nonlinear interactions at

the nanoscale. For thermal transport, in particular, we develop a rigorous approach to

computing thermal conductance by coupling a system of interest to two large “extended

reservoirs” that act as heat source/sinks. Within this setup, we prove that the “intrinsic

conductance” of the system can be obtained by having the extended reservoirs be large

and weakly coupled to Langevin baths.

For ion transport, we show that subnanoscale pores in monolayer graphene mem-

branes display selectivity (not unlike biological ion channels but weaker) even when the

graphene pores do not have charge or functional groups. The selectivity appears because

the ions translocating through these pores lose some water from their solvation shell and

different ions have different energy dehydration penalties. We also demonstrate that such



selectivity can be tuned by adjusting the pore radius and number of graphene layers. This

will enable the optimization of water flow and ion rejection for applications such as filtra-

tion and desalination. We also develop a finite-size scaling model to compute the effect

of bulk electrolyte dimension on the ionic resistance. This separates the pore and the

bulk electrolyte contribution to the total ionic resistance in molecular dynamics simula-

tions. Additionally, in collaboration with an experimental group, we show that graphene

is a good choice for a transparent cap for spectroscopy of water as it only has a minor

influence on the structure of water.
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NONLINEAR BEHAVIOR OF THERMAL AND ION TRANSPORT

AT THE NANOSCALE

1. INTRODUCTION

With the remarkable advancement in the ability to visualize, control, and simulate

matter up to the atomic scale, past decade has seen significant progress in nanotechnology

and has opened new avenues in diverse fields such as biotechnology, molecular biology,

medicine, surface science, engineering, material science just to mention few. Although

the basic physics – from classical to quantum – needed for understanding the dynamics

of nanoscale systems were developed several decades ago, their application at such length

scale, however, produces novel and surprising effects not seen at macro-scale. Thus, on

the one hand, nanoscale science has galvanized the advancement of technology, and on the

other hand, it has advanced our basic understanding of nature.

Nanoscale science and modern computers have mutually benefited from each other;

with nanotechnology contributing to the continuous development of computational capa-

bilities and in return computational technique becoming an integral part of the study of

nanoscale systems. The advancement in the modern computer has made it possible to

simulate complex systems at atomic level details, which helps to understand the physics

that are elusive in experiments. The importance of computational technique for the future

of science is highlighted by 2013 Nobel Prize in Chemistry being awarded to computa-

tional chemist Martin Karplus, Michael Levitt and Arieh Warshel for their development

of multiscale methods for complex systems.
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1.1. Transport at nanoscale

Transport properties at the nanoscale are interesting because the functions of nano-

scale systems – whether they are biological such as DNA or artificial such as nanosensors

– depend not only on the structure but also on the dynamics of the system. Transport

properties at this length scale are fundamentally different than at macro level because the

continuum approximations fail and it becomes necessary to consider the atomic details of

the system [4]. All type of transport phenomena involving the exchange of mass, energy,

charge, momentum, or angular momentum is of interest in the nanoscale science among

which I will be focusing on the thermal and the ion transport.

1.1.1 Thermal transport and Fourier’s law

Management of heat energy is essential for any power consuming or heat dissipating

device, but this is especially the case for the nano- and micro- scale devices. On the

one hand, thermal energy can be used to power these devices, for example, the nanoscale

thermoelectric generator can drive current in the nanoscale electronic device. On the other

hand, proper management of heat is critical for the basic operation of nano- and micro-

scale devices. Besides the technological applications, it is also interesting to understand

how Fouriers law behave in microscale. Fourier’s law of thermal transport,

~JH = −κ∇T, (1.1)

is an empirical law that relates heat current ~JH to the temperature gradient∇T , where the

proportionality constant κ is called thermal conductivity. However, proving the Fourier’s

law from the first principle remains a challenge in Theoretical Physics [5]. Thermal trans-

port through a system can also reveal the structural properties of the system and thus

can be used to analyze the properties of the nanoscale systems.
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1.1.2 Ion transport through nanoscale pores

Ion transport through nanoscale pores is a common process in various biological

phenomena. Ion channels, in particular, play a crucial role in physiological functions such

as the generation of electrical activity in the nerves and muscle, volume regulation of cells,

intracellular signaling and so on. In fact, ion channels are often an important target for new

drug discovery since malfunctioning ion channels can cause several diseases [6]. However,

these ion channels are very complex and various factors such as charge and dipole moments,

structural changes of the protein and dehydration control their function. Solid state

nanopores on the contrary are much simpler and can mimic aspects of biological pores.

Ion transport through these pores have several interesting applications. Ion transport

through nanopores is getting further attention due to the discovery of atomically thick

membranes such as graphene, MoS2 and hexagonal BN.

1.2. Graphene nanopores

Graphene is a two-dimensional material with atomic-scale thickness consisting of the

hexagonal lattice with carbon atoms at each vertex. Theoretical description of graphene

dated back to 1940’s [7] and was observed under the electron microscope as early as 1960’s

[8]. It was isolated in a stable two-dimensional form in 2004 [9], for which Andre Geim and

Konstantin Novoselov were awarded the Nobel Prize in Physics in 2010. Graphene has

drawn the widespread attention of researchers due to its unique electronic and physical

properties.

Recent studies have shown that pores can be drilled through graphene with atomic

level precision [2, 10, 11]. Along with its flexible, exceptional mechanical strength, and bio-

compatibility, graphene is an ideal material for application such as bio-sensing, chemical-

sensing, and filtration. The detailed understanding of ion transport process in graphene

nanopore is crucial for its intended applications.
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1.3. Surface interactions at nanoscale

Nanoscale systems have a much larger surface to volume ratio than macro-scale

systems which enhance the contact between different materials and hence increases the

reactivity. Thus the nanomaterials can be useful catalysts for chemical reactions as well

as an excellent candidate for applications such as filtration and purification. At the same

time, surface interactions play a much more important role in these systems and also give

rise to unusual behavior not seen at the macro scale.

1.4. Applications

This section provides brief descriptions of some of the key applications of thermal

transport and ion transport at the nanoscale.

1.4.1 Thermal management at nanoscale

Heat transport plays important roles in nanotechnology as often it hinders the minia-

turization of electronics device [12]. Nanoscale devices such as heat diode [13] and heat

transistors [14, 15] are being studied for controlling thermal current at the nanoscale and

on-chip micro-refrigerator [16] are also possible solution maintaining the temperature of

nano device. However, heat is not just a hindrance to the development of nanotechnol-

ogy, and thermal transport has some interesting applications in this field. For example,

temperature control can be used to fine-tune electronic current in nanoscale device [17],

particularly at the superconducting regime. Material such as DNA, which have rapidly

rising thermal conductance in a narrow temperature range may be used to engineer nano-

scale thermal switch [12]. In the growing field of nanomedicine researchers are studying

the use of heat energy for the targeted treatment of tumor and cancer cell [18]. All of these

applications requires the detailed understanding of thermal transport at the nanoscale.
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1.4.2 Ion Channel targeted drug discovery

Biological ion channels are essential components of cell operation. They pump

ions and other species across biological membranes by opening and closing in response to

stimuli. Malfunctioning of these pores causes numerous diseases; thus ion-channel targeted

drug discovery is very compelling. However, the immense complexity of these pores makes

it tough to delineate the role of different factors in their function. For example, the

dehydration process is important for understanding the behavior of ions and the selectivity

of biological channels, but it is hard to study its effect in such complex systems. Study

of ion transport through solid state nanopore is much simpler and can reveal important

details about the ion transport process, which can be utilized to understand the overall

working mechanism of the ion channel. The dynamic mechanism of ion transport through

confined geometry is necessary to understand the mechanism that leads to malfunctioning

of these pores.

1.4.3 DNA and Protein sequencing

One of the interesting applications of ion transport through nanopores is for sequenc-

ing of DNA and protein. Biological pores such as alpha-hemolysin have been successfully

used to identify all four DNA bases [19]. However, the natural pores are very sensitive

to environmental conditions and are difficult to control outside the lab condition [20].

Studies are being carried out to use solid state nanopore including graphene nanopore

for sequencing DNA by analyzing the blockade current as it is pulled through the pore

using some external force. Such sequencing technique will be revolutionary in the medical

field as such technique will not only be inexpensive but also ultra-fast as well. However,

several challenges have to be overcome before such technology can be implemented at the

commercial level. Understanding ion transport through nano- and subnano- scale pore is

crucial for developing the capability to analyze the blockade ionic current and discriminate

the individual base pair of DNA.



6

1.4.4 Bio and Chemical Sensing

Besides DNA and protein sequencing, nanopores can also be used for other biosens-

ing application. These pores can be made selective, either be functionalizing them, or by

proper control of their size. Such pore will be able to discriminate different species based on

their size, charge, or functional group, thus making them suitable for sensing application

[21]. Ion transport through nanoscale channels is also utilized to scan biological membrane

and other surfaces using the technique known as Scanning Ion Conductance Microscopy

[22]. The method has been demonstrated to able to examine biological membrane in vivo

without artificial label [23].

1.4.5 Molecular sieving and desalination

Another application of ion transport through graphene and graphene-based nanopores

is in molecular sieving and desalination. Since graphene is only one atom thick, porous

graphene membrane allows very fast flow of water through them. The pore sizes in

graphene can be controlled up to atomic level thus these pores can be engineered for

letting one set of molecules/particles to flow and blocking others based on their ionic or

solvated size. Porous graphene has also been shown to be able to separate gasses.

1.5. Outline

The remaining chapters in this thesis are organized as follows:

• Chapter 2 provides the details of the methods used in the remainder of this thesis.

• Chapter 3 contains work done in collaboration with Kirill A Velizhanin, Chih-Chun

Chien, Yonatan Dubi, where we studied the crossover behavior of thermal conduc-

tance in harmonic and anharmonic lattices similar to Kramars’ transition rate theory

in chemical reactions.

• Chapter 4 contains work done in collaboration with Massimiliano Di Ventra. We

explored the dehydration based selectivity in graphene nanopores.



7

• Chapter 5 explores the ion selectivity in multilayer graphene nanopores.

• Chapter 6 contains the study of access resistance in graphene nanopores.

• Chapter 7 includes the work done in collaboration with Evgheni Strelcov, Hongx-

uan Guo, Alexander Yulaev, Jian Wang, Narayana Appathurai, Stephen Urquhart,

John Vinson and Andrei Kolmakov from experimental groups at National Institute

of Standards and Technology (NIST), Canadian Light Source Inc. and University

of Saskatchewan. The work demonstrated that bilayer graphene does not signifi-

cantly distort the electronic structure of water in the first few water layers and thus

graphene-capped channel ultra-high vacuum spectromicroscopy of water.

• Appendices cover some mathematical derivations used in the thesis.
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2. THEORY AND METHODS

The general method used in this thesis is to solve the Newtonian equation of motion

of the particles under the influence of external force as well as frictional force and noise.

The equation on its own is simple, but the complexity comes due to the sheer number

of particles involved and interaction between them. The number of interactions increases

very fast with the number of particles as N2; thus various approach is used to reduce

the computational complexity. In this chapter, I will present in detail the computational

techniques used in the thesis.

2.1. Langevin Dynamics

Langevin Dynamics [24] is an effective way of including stochastic forces – random

noise and friction in the equation of motion and hence approximate the effect of degrees of

freedom that has been neglected. The equation of motion of a particle under the influence

of noise and friction is given as

~F (xn) + ~fn(t) = mẍn, (2.1)

where, ~F (xn) is the sum of external forces and fn(t) = ηn(t) − γnẋn(t) is the random

force. The noise ηn(t) and friction coefficient γn are related by the fluctuation-dissipation

relation

〈ηn(t)ηm(t′)〉 = 2γnkBTnδnmδ(t− t′). (2.2)

One can approximate the effect of solvent and environment using the proper choice

of γ.
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2.2. All-atom Molecular Dynamics Simulation

Atomic scale details are often required for understanding the behavior of nanoscale

systems whether they are biological systems such as ion channels, proteins, nucleic acids

or they are artificial nanoscale devices. To this end, all-atom MD simulation [25] allows

one to explore the system with atomic level details. These simulations are computation-

ally expensive since even a nanoscale system can have millions of atoms. Typically in MD

simulation one uses periodic boundary condition to minimize the finite size effects. Thus

MD simulation is well suited for systems with periodic boundary condition such as crystal

structures. However such boundary conditions are also well suited for fluidic systems. An-

other limiting factor in these calculations is the integration time-step required to capture

the fastest atomic interactions. The vibrations of covalent bonds are the most rapid inter-

actions encountered in MD simulations and the time step should be in few femtoseconds

or less to accurately calculate these interactions. Thus typical MD simulations are in the

order of nano- to micro- seconds. However, with increasing computational power even

millisecond long simulations are becoming feasible. With the current rate of progress, it

won’t be distant future when it is possible to simulation an entire cell with atomistic detail.

Force Fields

Even the smallest nanoscale biological systems or artificial devices will have thousands

of atoms and thus cannot be solved using the first principle. The approach used in

classical Molecular Dynamics is to ignore the electronic degree of freedom and calculate

the dynamics of the system considering each atom as a single particle. The effective

potential, also known as the force field, in all-atom MD has two parts:bonded interaction

and non-bonded interaction.

2.2.1 Bonded interaction

Bonded interactions are due to chemical bonding between atoms, which can be ionic

or covalent. They include three terms: Bond Stretching, Angle Bending, and Torsional
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interaction.

Bond Stretching

An accurate representation of the bond stretching interaction is the Morse potential

Ebond = D
[
1− e−a(x−xm)

]2
(2.3)

where, D is the depth of the potential well and xm is the equilibrium bond length. Morse

potential becomes flat at a large bond separation – representing the bond breaking. For

small bond stretching, which is generally the case in MD simulations, Hooke’s law is a

good approximation

Ebond = kB(x− xm)2. (2.4)

Angle Bending

Similar to the bond stretching, angle bending is also represented as a simple Hooke’s law,

Eangle = kθ(θ − θm)2, (2.5)

where, θm is the equilibrium bond angle.

Torsional term

The energy due to the bond torsion (also known as dihedral energy) is calculated as

Edehydral = kχ[1 + cos(nχ− δ)], (2.6)

where χ is the torsion angle and δ is the phase factor.

2.2.2 Non-bonded interactions

Non-bonded interactions occur between every pair of atoms that aren’t chemically

bonded. Non-bonded interactions include electrostatics interaction and van der Waals

interaction.
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Electrostatic interaction

The computation of electrostatic interactions between charged particles is the most nu-

merically intensive calculation because the electrostatic forces decay rather slowly with

distance. The electrostatic potential energy due to N charged particles q1, q2, ..., qN with

position vectors ~r1, ~r2, ..., ~rN is given as

E =
∑
i

∑
j>i

qiqj
4πεo|~rij |

=
1

2

∑
i

∑
j 6=i

qiqj
4πεo|~rij |

. (2.7)

Such direct calculation using Coulomb law is not practical for large system such as the one

that includes explicit solvent. In a system with N particles, where each particle interacts

with other N − 1 particles the numerical complexity of electrostatic interaction scale as

N2. One of the ways to deal with the problem is to use a cutoff distance beyond which the

electrostatic energy is considered zero. However, for a periodic system, some numerical

techniques can be used to do full electrostatic calculation without using cutoffs.

Particle Mesh Ewald (PME)

Particle Mesh Ewald (PME) method [26] allows the calculation of full electrostatics for

system with periodic boundary condition (PBC). With PBC, the total energy is:

E =
∑
i

∑
j 6=i

qiqj
8πεo|~rij |

+
∑′

n1,n2,n3

∑
i

∑
j

qiqj

8πεo|~rij + n1
~T1 + n2

~T2 + n3
~T3|

(2.8)

=
∑

n1,n2,n3

∑
i

∑′

j

qiqj

8πεo|~rij + n1
~T1 + n2

~T2 + n3
~T3|

where,
∑′

n1,n2,n3

is sum with not all nis zero,
∑′

j

is sum with j 6= i for n1 = n2 = n3 = 0;

~T1, ~T2, ~T3 are translation vectors of the periodic system; and qi are charge.

The basic idea in PME method is to break Eq. 2.8 into short and long range

interactions. The short range interaction converges quickly in the real space, and the

long-range interaction converges in the reciprocal space.

For this purpose the point charge is replaced with charge distribution function. ρi(r)
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which satisfies the Poisson’s equation.

∇2φi(r) = −ρi(r)
εo

Giving

E =
∑

n1,n2,n3

∑
i

∑′

j

∫
r

∫
r′

ρi(~r)ρj(~r
′
)d3~rd3 ~r

′

8πεo|~r − ~r ′ + n1
~T1 + n2

~T2 + n3
~T3|

(2.9)

Van der Waals interaction

Van der Waals interactions occur between nearby atoms which are not chemically bonded.

These interactions are strongly repulsive below a threshold and weekly attractive beyond

it. The repulsive interactions are mainly due to Pauli Exclusion force and the attractive

interactions are due to induced dipole. The attractive van der Waals, however, decay

rapidly with distance. Lennard-Jones potential is usually used to represent van der Waals

interactions.

VLJ = ε

[(rm
r

)12
− 2

(rm
r

)6
]

(2.10)

where, ε is the depth of the potential well and rm is the equilibrium distance.

2.2.3 Hydrogen Bonding

A hydrogen bond is an electrostatic attraction between a hydrogen atom of one

polar group (called donor) and an electronegative atom of another polar group (called

acceptor). Such interaction occurs between polar groups which have hydrogen atom cova-

lently bonded to a highly electronegative atom such as nitrogen, oxygen or fluorine. Since

a hydrogen bond is a phenomenological description of the electrostatic interaction between

polar groups, it is usually not necessary to have an explicit H-bond term in all-atom MD

simulation. Nonetheless, H-bond plays an important role in the behavior of water and

organic molecules.
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2.2.4 Water Models

One of the most important distinctions between all-atom MD simulation and other

forms of numerical simulations (such as Brownian Dynamics) is the use of explicit water.

At nanoscale water plays an important role in the dynamics of the system and cannot be

taken as just the background noise. However, the inclusion of explicit water is also the

major computational cost of all-atom MD simulation.

FIGURE 2.1: Tip3p and Tip4p water models with their respective parameters illustrated
in the diagram. ‘O’ and ‘H’ represent Oxygen and Hydrogen respectively where as ‘M’
represent the “lone pair” which have zero mass but carry all negative charge.

The two water models I used are Tip3p and Tip4p [27] illustrated in the Fig. 2.1

which are the most commonly used water models. Tip3p have three sites representing the

two hydrogens and one oxygen atoms. Tip4p has an additional massless site called lone

pair that carries the negative charge of the oxygen atom. The extra degree of freedom in

Tip4p helps better represent the electrostatic properties of water.

Water model can also be either rigid or flexible, and for rigid water model, there

are algorithms to keep it rigid such as SHAKE [28] or RATTLE [29]. There are several

models with a higher number of sites, but the computational cost increases proportionally

to the number of sites.
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2.2.5 Solvation shell of ions in water

An ion dissolved in water form a solvation shells (also called hydration layers) around

it as shown in Fig. 2.2 which is due to the strong electrostatic interaction between the ion

and the water dipole. Such shells increase the effective size of the ion in the solution. Ions

translocating through pores and channel smaller than it’s hydrated size has to shed some of

the water molecules from their solvation shell. There is energy penalty associated with the

removal of water molecules from the solvation shell of an ion which is called dehydration

energy. The dehydration barrier results in nonlinear behavior in ion transport through

nanoscale pores and can also lead to ion selectivity. We will be discussing these phenomena

in detail in Chapters 4 and 5.

FIGURE 2.2: A snapshot of MD simulation showing the first solvation shell around a
K+ and a Cl− ion in water. The red and the white spheres represent oxygen atom and
hydrogen atom respectively.

2.2.6 Free energy calculation

The free energy of a system along a reaction coordinate is important information

in understanding the dynamics of the system along the path. However, often enough,

potential along the reaction coordinate is not smooth, and system may spend so much

time in a particular state that it become practically impossible to get the good statistically

average for the rest of the path. One way to overcome such problem is the Adaptive Biasing

Force (ABF) method [30, 31]. In ABF method, a biasing force just enough for the system
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to overcome potential barrier is applied so that system moves under random forces along

the reaction coordinate. The biasing force needed in turn can be use to calculate the

potential landscape of the system.

2.3. Coarse-Grain Models

All-atom MD simulation being computationally expensive may not be practical for

the study of phenomena that occur at larger time scale. Also, the atomic level details are

not necessary for all cases or can be approximated by some phenomenological model. I

will use coarse-grain model to study the thermal transport through DNA.

2.3.1 1D models for DNA denaturation

Bases in a DNA are bonded to their neighboring bases in the same chain by covalent

bonds and bonded to the complementary bases in the second chain by hydrogen bonds.

Because the covalent bonds are much stronger than hydrogen bonds one can ignore the

extension of covalent bonds (say xn) compare to the extension of hydrogen bonds (say

yn). With this approximation, the fluctuation of DNA reduces to one-dimensional form:

H =
1

2

∑
n

ẏ2
n +

∑
n

V (yn) +
∑
n

W (yn, yn+1) (2.11)

where, V is the onsite potential, and W is the nearest neighbor coupling.

PB model

Morse potential can be used to represent the onsite potential. However it is not

clear what should be the form of the nearest neighbor interaction. The simplest choice is

to use a harmonic coupling and thus the hamiltonian becomes

H =
1

2

∑
n

ẏ2
n +

∑
n

Dn(1− eayn)2 +
∑
n

kn
2

(yn − yn−1)2, (2.12)
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where, Dn, kn, and a are coefficients that depends on the interaction pair. This model is

called Peyrard-Bishop (PB) model [32].

PBD model

PB model was later modified to account for the sharp melting curve of DNA by

introducing an anharmonic coefficient depended on the extension of bond nearest for the

neighbor coupling,

H =
1

2

∑
n

ẏ2
n +

∑
n

Dn(1− eayn)2 +
∑
n

kn
2

[1 + ρe−α(yn+yn−1)](yn − yn−1)2, (2.13)

where, ρ and α are constants. This model is called Peyrard-Bishop-Dauxois (PBD) model

[33, 34].

JB model

Marc Joyeux and Sahin Buyukdagli [35] presented an alternative to PBD model for

DNA denaturation. They argue that PBD model do not take into account that stacking

interactions are necessarily finite. So they argue that this potential should be of the form

W (yn, yn+1) = min[
1

2
∆H,

1

2
K(yn − yn+1)2].

They choose following form of potential.

W (yn, yn+1) =
∆H

2
(1− e−b(yn−yn+1)2) + kB(yn − yn+1)2

Here the first term is the switch function which switch the potential from harmonic to a

constant as (yn − yn+1)2 increases and second term is added to account for the stiffness

of sugar/phosphate bond, without which each strand would break into smaller strands at

large (yn − yn+1)2. Nevertheless, kB is much smaller than K used in PBD model.

The results from transfer integral method Fig. 2.3.1 shows that this model gives similar

melting curve as PBD model.
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FIGURE 2.3: Melting curve of DNA according to the various 1D model.

The melting curves for homogeneous DNA strands using all those three models are

shown in Fig. 2.3.1. The melting temperature is different for different models. It is

sharper for the anharmonic models (PBD and JB) and less sharp for the harmonic model

(PB).

2.4. Summary

Thus in this chapter, I laid out the general methodology used for my research and

presented the technique to deal with the computational complexities that arise due to a

large number of particles involved in our problems. The other chapters in this thesis will

deal with case-specific problems.
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3. CROSSOVER BEHAVIOR OF THE THERMAL
CONDUCTANCE AND KRAMERS’ TRANSITION RATE

THEORY

Kramers’ theory frames chemical reaction rates in solution as reactants overcoming

a barrier in the presence of friction and noise. For weak coupling to the solution, the

reaction rate is limited by the rate at which the solution can restore equilibrium after a

subset of reactants have surmounted the barrier to become products. For strong coupling,

there are always sufficiently energetic reactants. However, the solution returns many of

the intermediate states back to the reactants before the product fully forms. Here, we

demonstrate that the thermal conductance displays an analogous physical response to the

friction and noise that drive the heat current through a material or structure. A crossover

behavior emerges where the thermal reservoirs dominate the conductance at the extremes

and only in the intermediate region are the intrinsic properties of the lattice manifest.

Not only does this shed new light on Kramers’ classic turnover problem, this result is

significant for the design of devices for thermal management and other applications, as

well as the proper simulation of transport at the nanoscale. The work in this chapter is

performed in collaboration with Kirill Velizhanin, Chih-Chun Chien and Yonatan Dubi

and has been previously published in Ref. [36] and have been presented in 2015 APS

March Meeting [37].

3.1. Introduction

Thermal transport is an important process in micro- and nano-scale technologies.

It is often in a precarious position: On the one hand, thermal management strategies,

including the engineering of low-resistance interfaces, become increasingly important as

elements in electronic devices approach the atomic level. On the other hand, phononics

– phonon analogues of electronics – seek tunability and inherently nonlinear behavior to

make functional devices [38]. Thermal transport is thus at the forefront of nanotechnology
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FIGURE 3.1: Thermal conductance and Kramers’ transition rate problem. (a) Schematic
representation of a one-dimensional lattice of length N , with Nr sites on each side con-
nected to independent Langevin reservoirs at temperatures TL and TR. (b) Kramers’
problem where noise assists the escape of a classical particle from a metastable state. The
green contour of the double-well potential outlines the region where the classical particle
is subject to Langevin dynamics. (c) A modified double-well potential where the barrier is
deformed horizontally into a region (thick black line) where only ballistic dynamics occurs,
i.e., no friction or noise.

research. Its impact in a broad array of applications has sparked advanced methods of

the fabrication, control, and measurement of transport in, e.g., carbon nanotubes and

single-molecule junctions [39, 40, 38].

Moreover, thermal transport is at the center of one of the major unresolved puzzles

in theoretical physics, the absence of a derivation of Fourier’s law of heat conduction from

a microscopic Hamiltonian [5, 41, 42, 43, 44, 45]. This is related to the seminal work of

Fermi, Pasta and Ulam (FPU) [46, 47, 48], which demonstrated that nonlinearity does not

always lead to thermalization. The considerations of FPU also apply to the emergence of a

well-defined thermal conductivity. The role of nonlinearity – in addition to the description

of the thermal reservoirs and interfacial regions – is thus the central topic of many studies

examining thermal transport (see Refs. [49, 41, 50] for recent reviews).

In this work, we demonstrate that thermal transport goes through three physically
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distinct regimes as the coupling to the surrounding environment – the reservoir that sup-

plies the heat – changes. For weak coupling, energy input from the reservoir limits the heat

current through the entire system. For strong coupling, the lattice dynamics are distorted

by the presence of the reservoir and this dominates the conductance. Thermal transport

is determined by the intrinsic parameters of the lattice only in the intermediate regime.

These three distinct regimes exist regardless of whether the system has a well-defined

conductivity or not, as we will show by theoretically studying paradigmatic examples of

thermal transport [51, 41, 49, 52, 53]. The dependence of thermal conductance on the

strength of coupling to reservoirs is physically analogous to the friction-induced turnover

in Kramers’ reaction rate problem for chemical reactions in solution.

3.2. Methods

Harmonic Lattices. The harmonic lattices we consider are described by the

Hamiltonian

H =
1

2

N∑
n=1

mẋ2
n +

D

2

N∑
n=1

x2
n +

K

2

N∑
n=0

(xn − xn+1)2, (3.1)

where xn is the coordinate of the nth oscillator, m is the mass, D is the strength of the

on-site potential, and K is the nearest-neighbor coupling constant. The entire lattice is

split into three regions: Nr ≥ 1 sites on the left end (L) and on the right end (R) serve

as extended reservoirs as each site (i.e., oscillator) in these regions is coupled to its own

“external” Langevin reservoir of temperature TL and TR , see Fig. 3.1(a). The friction

coefficient γ gives the strength of the coupling to the external reservoirs and is taken to

be the same on the both ends for simplicity. The remaining N − 2Nr sites in the middle

comprise the free lattice (F ). This is a generalization of a widely used model that sets

Nr ≡ 1 [51, 54, 49]. In addition to being a prototypical model of thermal transport, it is

also relevant to realistic systems, such as the high- and low-temperature limits of coarse-

grained models of DNA [55, 12], where the on-site potential term represents the binding

of interstrand base pairs. We also connect two additional sites x0 and xN+1 to the ends
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of the lattice, which are fixed at zero. The Langevin equations of motion are

mẍn +Dxn +K[2xn − xn−1 − xn+1] = fn(t), (3.2)

where the l.h.s. describes the Hamiltonian dynamics and the r.h.s. is the reservoir-induced

noise and friction forces, fn(t) = ηn(t)− γnẋn(t). The noise ηn(t) and friction coefficient

γn are related by the fluctuation-dissipation relation

〈ηn(t)ηm(t′)〉 = 2γnkBTnδnmδ(t− t′). (3.3)

The three regions of the lattice (L, F and R) are encoded in equations of motion by setting

γn =

 γ, n ∈ L orR

0, n ∈ F
(3.4)

and Tn = TL or TR for n ∈ L or R, respectively. Here, a collection of independent

(uncorrelated) single site Langevin reservoirs approximates the contact to the thermal

reservoir [56]. When TL = TR = T , the lattice will relax into an equilibrium state at

temperature T , as guaranteed by the fluctuation-dissipation theorem. When TL 6= TR, a

heat current will flow (we assume TL > TR without loss of generality).

The current flowing from site n to n+ 1 is given by [51, 56]

Jn = K〈ẋn+1xn〉, (3.5)

where the average is over the statistical ensemble. For n ∈ F , Jn will be independent of

n, i.e., Jn ≡ J , in the steady state.

We note that thermal transport occurs ballistically in a frictionless harmonic lattice.

This results in a diverging conductivity, which can be defined as limN→∞(N − 2Nr)σ at

fixed Nr. However, the conductance, σ, is well defined and is rapidly converging to its

value corresponding to an infinite lattice, as shown in the inset of Fig. 3.2. Henceforth,

we always assume N → ∞ at fixed Nr for homogeneous harmonic lattices. Dimensional
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analysis shows that the conductance of a uniform harmonic lattice in the limit N → ∞
takes the form (see Appendix for the derivation)

σ =
J

∆T
= kB

√
K

m
C

(
D

K
,

γ√
mK

,Nr

)
, (3.6)

where ∆T = TL − TR and C is a as of yet unknown dimensionless function of three

dimensionless arguments. This expression implies that harmonic lattices with distinct

values of parameters are nevertheless physically similar if
√
K/m, D/K, γ/

√
mK, and

Nr are identical. Such models can be said to form a “similarity class”. In what follows,

all the figures pertaining to the harmonic case are plotted in natural units, i.e., γ is

plotted in units of
√
mK, σ is plotted in units of kB

√
K/m, etc. Note that we use ∆T

defined with the external reservoir temperatures TL and TR, as these are the ones typically

set/measured experimentally.

For the anharmonic lattice, the setup is the same as for harmonic lattices, but with

the equation of motion given by its respective Hamiltonian.

Numerical Methods. For anharmonic lattice the evolution of the coordinates is

computed using the Brünger-Brooks-Karplus integrator with a time step of 10 fs. The

total length of the simulation varies from 0.1 ms to 2 ms depending on the convergence of

current. The temperature difference between the hot and cold reservoirs was maintained

at 9.3K for all calculations. The parameters used are same as in Ref. [34], i.e., D̃ = 0.04

eV, a = 44.5 nm−1, K̃ = 4 eV/nm2, ρ = 0.5, b = 3.5 nm−1, and m = 300 u.

3.3. Results

The first model we examine is a classical one-dimensional (1D) uniform lattice of N

harmonic oscillators as described in Eq. (3.1). Figure 3.2 shows the thermal conductance,

defined as the heat current divided by ∆T = TL − TR, for an infinite harmonic lattice

with Nr = 100. A detailed description of the calculation is given in Appendix. Three

qualitatively distinct regimes, which are labeled (1), (2) and (3), are apparent in the
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FIGURE 3.2: The thermal conductance of a harmonic lattice with D/K = 1, Nr = 100,
and N → ∞. The numerical results are shown as the thick black line. The analytical
results for Nr ≡ 1, Eq. (3.10), are plotted as σCL(γ) (red circles) and σCL(Nrγ), i.e., the
horizontal axis is scaled with Nr (blue squares). The inset shows the dependence of σ on

N − 2Nr at γ = 0.1
√
mK.

figure. We start by examining regime (2), where the conductance depends on γ only very

weakly. The magnitude of the conductance on this plateau coincides with the intrinsic

conductance of the lattice. For the anharmonic lattice we consider later on, the intrinsic

conductance behaves as ∼ 1/N at large N , so there is a well-defined intrinsic conductivity

in this plateau region, defined as the conductance multiplied by N in the limit N →∞.

3.3.1 Intrinsic conductance

We find the intrinsic conductance of the harmonic lattice by solving an auxiliary

problem of heat current between two semi-infinite ballistic (i.e., no friction) lattices. These

lattices are initially disconnected and equilibrated at respective temperatures TL and TR.

When connected, the heat current flowing from left to right is JL→R = kBTLl
−1
L

∑
q>0 vq,

where vq is the group velocity of a phonon with momentum q (restricted to phonons

moving to the right, i.e., q > 0) and lL is the length of the left lattice. Essentially,

this expression is just the amount of classical energy stored in a specific phonon mode in
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equilibrium (kBTL), multiplied by its group velocity (vq) and the local phononic density

of states (1/lL). Similarly introducing JR→L, taking the limit lL, lR → ∞, and defining

the total current as J = JL→R − JR→L, we obtain the intrinsic conductance as

σ2 ≡
J

∆T
=
kB
2π

∫
Ω
dq vq =

kB
2π

∫
Ω
dq
dω(q)

dq
=
kBΩ

2π
, (3.7)

where Ω = ωmax − ωmin is the phonon bandwidth. This conductance is also expressible

as σ2 = v̄q/2, where v̄q is the group velocity averaged over the entire band, which gives

additional insight into its form. The eigenmodes of the Hamiltonian, Eq. (3.1), obey ω2 =[
D + 4K sin2(q/2)

]
/m, so that ωmin =

√
D/m, ωmax =

√
(D + 4K)/m, and, therefore,

the phonon bandwidth is

Ω =

√
K

m

[√
D/K + 4−

√
D/K

]
. (3.8)

Accordingly, the intrinsic conductance becomes

σ2 =
kB
2π

√
K

m

[√
D/K + 4−

√
D/K

]
. (3.9)

The intrinsic conductance is the maximum possible conductance of a harmonic system

between two equilibrium reservoirs at different temperatures: No matter how much energy

the reservoirs can pump into the system, the free lattice itself can not usher the energy

from source (L) to sink (R) faster than the rate allowed by its intrinsic conductance. The

magnitude of σ2 is plotted in Fig. 3.2 (thin dashed line), showing an excellent agreement

with the numerically calculated conductance in regime (2) (hence the subscript of σ2).

We also note that decreasing D – the onsite confining potential – and holding all other

factors fixed increases the conductance, an effect that is observed in models of DNA

denaturation [55, 12]. This is purely due to the increasing bandwidth.

Casher-Lebowitz formula. The other two regimes, (1) and (3), become physically

transparent when using the Casher-Lebowitz formula [51] for a single-site reservoir at each
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end (i.e., Nr ≡ 1)

σCL(γ) =
kBγ

2πm

∫ 2π

0
dq

sin2 q

1 + 2γ2

mK

[
1 + D

2K − cos q
] . (3.10)

It is readily seen that the small and large γ expansion of the expression yields σCL ∝ γ

and σCL ∝ 1/γ, respectively. In fact, very general perturbative arguments suggest that

these σ ∝ γ and σ ∝ 1/γ regimes are generic for arbitrary harmonic lattices, as we show

in Appendix.

Eq. (3.10) is plotted in Fig. 3.2 as a function of two different arguments: the bare

friction coefficient, σCL(γ) (red circles), and the scaled friction coefficient, σCL(Nrγ) (blue

squares). As is seen in the figure, they coincide with numerical results at large and small

γ, respectively, which we will now explain.

Small γ regime. The small γ expansion of Eq. (3.10) is σCL = kBγ
2πm

∫ 2π
0 dq sin2 q =

kBγ
2m . This expression reflects the fact that energy is pumped in/out of the system via the

end sites at a rate proportional to γ, and this rate is much smaller (at low γ) than the

one the free lattice can carry intrinsically, σ2. At these conditions (i.e., kBγ/m � σ2),

the heat input by the noise term in Eq. (3.2) is so inefficient that the system has enough

time to equilibrate at some global temperature T ′. In this quasi-equilibrium state the

noise-induced heat current entering the left reservoir is JL = γ
mkB(TL−T ′), and similarly

for the right reservoir JR = γ
mkB(TR − T ′). At the steady state J = JL = −JR, which

yields T ′ = TL+TR
2 , so that the conductance of the entire system becomes σ = kBγ

2m , in full

agreement with the low-γ expansion of Eq. (3.10) above.

These quasi-equilibrium-based considerations can be straightforwardly generalized

to the case of extended reservoirs of arbitrary size Nr yielding

σ1(γ) =
kBNrγ

2m
≡ kBΓ

2m
, (3.11)

i.e., the heat is pumped into the system at a rate proportional to cumulative friction

constant Γ = Nrγ. This is the reason why Casher-Lebowitz formula (3.10), once plotted

as a function of the cumulative friction constant, σCL(Nrγ), coincides with the numerical
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FIGURE 3.3: Comparison of numerical (circles, square, diamonds) and analytical results
(dashed lines) in the small Γ regime at D/K = 1 for different sizes of extended reservoirs,
Nr.

results in Fig. 3.2 at low γ. The agreement between Eq. (3.11) and numerical results in

the weak friction regime is emphasized in Fig. 3.3 where conductances for a range of Nr

exactly overlap with kBΓ/2m at small friction.

Eq. (3.11) is only valid at sufficiently small Γ. When kBΓ
2m becomes higher than σ2,

the free lattice cannot transfer all the heat the Langevin reservoirs are able to supply. At

that point, i.e., γ ≈ γ12 = 2mσ2/kBNr (marked in Figs. 3.2 and 3.3), the conductance of

the overall system levels off and regime (2) is established.

Large γ regime. The large γ expansion of Eq. (3.10) is

σ3 =
kBK

2γ

(
1−
√
mD

2K
Ω

)
. (3.12)

At large γ, the noise term in Eq. (3.2) can efficiently supply heat to a lattice site. How-

ever, this site is effectively decoupled from the adjacent sites since the very large friction

overdamps its motion resulting in the reservoir site becoming “off-resonant” from the rest
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of the lattice. We will discuss this in detail in the next section. Heuristically, however, the

efficiency of heat transfer from the reservoir site to the free lattice has to be proportional

to a phonon group velocity and to a time the reservoir site can stay coherent with the rest

of the lattice. The latter is given by the decoherence time of an overdamped oscillator,

1/γ, so the conductance becomes (averaging over all phonon modes) σ3 ≈ 1
γ

∫
Ω dω vq(ω).

This coincides with Eq. (3.12) up to a constant prefactor.

This heuristic argument is directly applicable to the case of extended reservoirs

(Nr > 1). Indeed, the reservoir site directly connected to the free lattice is the one

that excites phonons in the free lattice and the remaining Nr − 1 reservoir sites (on the

left or on the right) are decoupled from the lattice by at least another order of 1/γ.

This entails that the heat conductance is independent of Nr in the large-γ regime, which

agrees with the numerical results in Fig. 3.2. When σ3(γ) reaches σ2 as γ decreases to

γ ≈ γ23 = kBK
2σ2

(
1−

√
mD
2K Ω

)
(marked in Fig. 3.2), there is a crossover from regime (3)

to (2). That is, as γ decreases the reservoir site becomes coherent enough to efficiently

transfer heat to the free lattice, so the finite intrinsic conductance of the free lattice, σ2,

becomes the limiting factor.

The plateau and tilt. Regime (2) is just a crossover point at Nr = 1 [Eq. (3.10)],

but it becomes a pronounced plateau at Nr � 1 as shown in Fig. 3.3. This is because the

position of the crossover between regimes (2) and (3), γ23, does not depend on Nr, but

the one between regimes (1) and (2), does as γ12 ∝ 1/Nr. At sufficiently large Nr the two

crossovers are thus well separated, establishing a plateau in between.

Closer inspection of the numerical results reveals that the “plateau” is in fact tilted,

see Fig. 3.4. The linear fit of this tilted plateau yields an intercept with the γ = 0 axis

numerically close to σ2 and the slope independent (within the fitting accuracy) of any

parameters of the lattice.

We demonstrate below that once Nr → ∞, the conductance becomes σ2 as γ → 0

(the order of taking the two limits is important: the limit of Nr → ∞ is assumed to be

taken first, i.e., Γ = Nrγ →∞). When γ is finite, though, the conductance falls off linearly

with γ with a universal slope. This tilt can be understood via the inhomogeneity of the
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lattice. For example, connecting lattices that have only partially overlapping phonon

bands results in a poor conductance due to scattering at the interfaces [57]. In our

situation, the phonons in the extended reservoirs and the free lattice are different because

of a finite phonon lifetime in the former (due to friction) and an infinite lifetime in the

latter. Within the extended reservoir, each phonon has a spread in frequency δω ≈ γ.

This smearing results in imperfectly overlapping bands at the band edges, which in turn

leads to a decreasing conductance as γ increases.

The more rigorous understanding of the tilt can be achieved by considering phonon

scattering at the interface between a free lattice and a lattice with uniform friction γ

(K and D are the same for both). For a phonon of frequency ω incoming from the free

lattice, the solution within the free lattice is xn(t) = eiqn−iωt +Ae−iqn−iωt, where A is the

reflection amplitude. The solution in the lattice with friction is xn(t) = Beiq
′n−iωt, where

q′ has a non-zero imaginary component due to the finite phonon lifetime. Imposing the

boundary conditions, the reflection amplitude is

A(q) = −1− e−i(q′−q)
1− e−i(q′+q) , (3.13)

where cos q′ = cos q − iγω/2K and ω = ω(q) is the phonon dispersion relation for a

free lattice. The two limiting cases are A = 0 at γ → 0 and |A| = 1 at γ → ∞ with

0 < |A| < 1 at any finite γ. This justifies the heuristic argument above that phonons with

and without friction are indeed different resulting in a finite reflection amplitude at the

friction/frictionless interface. At finite γ, the reflection is most significant near the band

edges (i.e., within δω ≈ γ of ωmin or ωmax).

In equilibrium at temperature T , the momentum-resolved current from the free

lattice to the extended reservoir is J(q) = kBTvq [1−R(q)] for q > 0, where R(q) = |A(q)|2

is the reflection coefficient. It is difficult to directly evaluate the current from the extended

reservoir to the free lattice, but at equilibrium this current has to fully compensate the one

entering the reservoir from the free lattice. Using this correspondence, we can now write

down the current from a reservoir to the free lattice even at non-equilibrium conditions.

This results in the following set of balance equations for a heat current in a system of a
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free lattice between two extended reservoirs,

JL(q)−R(q)J(−q) = J(q),

JR(−q)−R(q)J(q) = J(−q), (3.14)

where J(q) is the current within the free lattice and JL(R) is the current from the left

(right) reservoirs. For example, the first equation states that the current from left to right

within the free lattice equals the current from the left reservoir plus the portion of “left”

current, J(−q), reflected by the interface with the right reservoir. Solving these equations

and integrating over all phonon modes,
∫ π

0 dq [J(q) + J(−q)], we obtain

σ(γ) =
kB
2π

∫ π

0
dq vq

1−R(q)

1 +R(q)
, (3.15)

which is similar to Eq. (3.7), except for the quotient within the integrand. This quotient is

strictly positive and always less than 1 – it represents the non-vanishing thermal resistance

of the interfaces due to phonon scattering and is known as the Kapitza resistance [58].

The low-γ expansion of Eq. (3.15) produces a very simple result

σ(γ) ≈ σ2 −
π

48

kBγ

m
, (3.16)

shown in Fig. 3.4 by blue crosses. As is seen, the universal tilt of −πkB/48m is independent

of lattice parameters (except for mass) and in excellent agreement with numerical results

in the plateau region. Furthermore, it turns out that Eq. (3.15) evaluated at arbitrary γ

(red circles) does not only exactly reproduce the tilted plateau but also the high-γ regime

(3). In particular, the large-γ expansion of Eq. (3.15) results in Eq. (3.12). Therefore,

Eq. (3.15) is exact in the limit of Nr →∞ and is valid for the “moderate to strong friction”

regime. The only regime it cannot reproduce is regime (1) since the limit Nr → ∞ has

been taken in the scattering calculation, which stretches the plateau all the way to γ = 0.
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FIGURE 3.4: Comparison of the exact numerical results (thick black line) for the con-
ductance with the semi-analytical result, Eq. (3.15), shown by red circles. The model
parameters are D/K = 1 and Nr = 100. Thin dashed line shows σ2. The inset shows that
the semi-analytic result also works in the large γ regime. For weak friction, Eq. (3.15)
reduces to Eq. (3.16), shown by blue crosses.

3.3.2 Kramers’ theory

The crossover behavior discussed above is the thermal transport analog of the

Kramers’ theory for the classical transition rate of a particle out of a metastable well

in the presence of friction and noise [59, 60], as depicted in Fig. 3.1(b) for a double-well

potential. The rate constant for the transition is k(Eb, γ) = k0(γ)e−Eb/kBT , where Eb is

the height of the energy barrier and the prefactor k0(γ) depends on γ. Kramers demon-

strated that k0(γ) ∼ γ when γ is small. In general, the energy supplied by the noise to

a particle in a certain well is lost either to friction or to the particle leaving this well by

overcoming the barrier. The latter energy loss channel dominates when γ is very small so

the friction can be essentially neglected. At these conditions, the transition rate is limited

by the low rate at which noise can supply energy needed for a particle to overcome the

barrier. This rate is linear with respect to γ, resulting in k0(γ) ∼ γ. This behavior is

indeed analogous to regime (1) in the thermal transport problem, where the free lattice

is very efficient in carrying heat, so the heat current is limited by the rate at which the
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Langevin reservoir can input energy into the system, Eq. (3.11).

On the other extreme, as γ becomes very large, Kramers showed that k0(γ) ∼ 1/γ.

In this regime, the dynamics of the particle in the Kramers’ problem becomes increasingly

non-ballistic due to the strong friction and noise. This results in the high probability of re-

crossings, i.e., even if the particle overcomes the barrier and crosses the surface separating

the wells, the very strong noise can still push it back thus preventing its thermalization

in the new potential well [60]. The probability of re-crossings grows with γ resulting in

k0(γ) ∼ 1/γ.

In order to illustrate the re-crossing phenomenon in the Kramers’ problem and

emphasize its similarity to the large-γ regime (3) of the thermal transport problem, we

deform the barrier in the Kramers’ problem as shown in Fig. 3.1(c). Specifically, we

“stretch” the very top of the barrier into a horizontal ballistic region (i.e., no friction/noise)

of a finite length (this is in contrast with the example of Section VII.E of Ref. [59], where

dissipation is present everywhere). This modification does not affect the transition rate

since if a particle enters this region with a certain velocity, it will leave this region with

the same velocity (remember that, within our model, there is no friction in the horizontal

region). The only thing that changes by adding this “stretching” is the time required for

a particle to cross the barrier – irrelevant in the steady state.

Once a particle reaches the top of the barrier going from the left, it propagates freely

along the ballistic region until it reaches the onset of the right well. Upon hitting this

onset, the particle immediately becomes subject to noise which, if strong enough, can kick

it back to the ballistic region, so the particle might end up in the the well it originally came

from. Thus, the particle can be thought of as being reflected off the boundary between

ballistic and non-ballistic regions. This is the phenomenon of re-crossing – the top of the

barrier can be crossed multiple times without thermalization in either of the potential

wells.

This perspective demonstrates the analogy to thermal transport at “moderate to

strong” γ. Indeed, we were able to describe the thermal transport in regime (2) and

regime (3), see inset in Fig. 3.4, by considering reflections of phonons off the boundary
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between the free lattice (no friction) and one of the reservoirs (friction is present). The

ballistic region and the two potential wells in the deformed double-well potential are then

respective analogs of the free lattice and the extended reservoirs in the thermal transport

problem.

This deep physical similarity between the two problems, when looked upon from

the perspective of particle (or phonon) reflection, calls for qualitatively similar behavior

as the magnitude of friction varies. Indeed, Eq. (3.15) gives σ ∼ 1/γ at large γ, which

matches k0(γ) ∼ 1/γ in Kramers’ problem. Furthermore, at intermediate values of γ, the

general Kramers’ solution reduces to the transition state theory (TST) rate kTST which

does not depend on γ [59, 60]. More accurately, the Kramers’ rate equals to kTST with

negative corrections linear with respect to γ, so that kTST is always an exact upper limit

of the Kramers’ rate. This happens as well in the thermal transport problem where the

conductance in regime (2) is given by Eq. (3.16). In this equation, σ2 – an exact upper

limit – is an intrinsic conductance of the free lattice, which does not depend on friction.

We note that similar arguments can be applied to a version of the Kramers’ problem

where a classical particle escapes a single metastable potential well [59]. In this formu-

lation, Kramers’ problem becomes analogous to a problem of thermal transport through

the interface between a free lattice and a lattice with uniform friction studied by us when

discussing the tilt of the plateau. In particular, the low probability of phonon transmission

through the interface between these two lattices at large γ is analogous to the particle

escape rate scaling as 1/γ in the Kramers’ problem of a metastable potential well.

The appealing picture developed above is based on very general and intuitive physi-

cal arguments and is, therefore, expected to be valid beyond the specific case of a uniform

harmonic lattice. Indeed, below we discuss the two important cases of (i) a harmonic lat-

tice with disorder and (ii) an anharmonic lattice. We demonstrate the existence of three

distinct regimes of thermal transport and, therefore, the similarity to Kramers’ problem.
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3.3.3 Disordered Harmonic Lattice

The Hamiltonian for a harmonic lattice with mass disorder reads as

H =
1

2

N∑
n=1

mnẋ
2
n +

D

2

N∑
n=1

x2
n +

K

2

N−1∑
n=1

(xn − xn+1)2. (3.17)

The mass disorder is realized by sampling mass uniformly and independently for each

lattice site within the interval mn = m± δm = m(1.0± 0.3), so that the mean mass, m,

is the same as in the non-disordered case, Eq (3.1). The central “free” part of the lattice

is kept to be N − 2Nr = 60 sites long. The sizes of the extended reservoirs are Nr =1, 10

and 100 (the same on the left and on the right in each calculation).

Figure 3.5(a) shows the heat conductance versus γ for a harmonic lattice with mass

disorder. The presented numerical results are statistically averaged over the disorder. The

crossover behavior is indeed present. Furthermore, when Nr increases the plateau starts

to form as it was the case for the homogeneous lattice. However, the magnitude of the

conductance at the plateau, σ2(dis), is approximately an order of magnitude lower than

σ2(hom) (dashed black line), the latter being the intrinsic conductance of the homogeneous

lattice. This is due to disorder-induced finite phonon mean free path being shorter than

N − 2Nr = 60, which lowers the conductance.

3.3.4 Anharmonic Lattice

To investigate the crossover behavior in an anharmonic lattice we examine the ther-

mal conductance in a paradigmatic nonlinear lattice – the Peyrard-Bishop-Dauxois (PBD)

model [32, 34, 33]. The PBD model is a one dimensional lattice that represents nonlinear

fluctuations of DNA as it denatures. Here, we are primarily interested in the crossover be-

havior for a highly nonlinear lattice, rather than the physics of the denaturation transition

where the double helix separates into two single strands (the transport physics described

by this model has been discussed elsewhere, see Refs. [55, 12]). The Hamiltonian takes on

the form

H =
1

2

N∑
n=1

mẋ2
n +

N∑
n=1

V (xn) +

N∑
n=1

W (xn, xn+1), (3.18)
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FIGURE 3.5: (a) The thermal conductance of a disordered harmonic lattice with Nr =1,
10 and 100 (black circles, red squares and blue diamonds) and N −2Nr = 60. The system
is the same as that in Fig. 3.2, i.e., D/K = 1, except for the mass which is now sampled
uniformly and independently for each site within the interval mn = m(1±0.3). The dashed
line gives the intrinsic conductance for a homogeneous lattice, σ2(hom), demonstrating
that the disorder significantly decreases the heat conductance of the lattice, σ2(dis) at
the plateau. The curve is averaged over 100 to 1000 realizations of the disorder so that
magnitude of the error due to the incomplete averaging over disorder is comparable to
the thickness of the lines. (b) The thermal conductance of anharmonic PBD lattice with
Nr = 20 and N = 100 for various average temperatures T . The error bars are computed
using the range of fluctuations of the cumulative current for the final 10 % of the simulation
time.
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where xn represents the base-to-base distance within the nth base pair. The on-site Morse

potential V (xn) = D̃(e−axn − 1)2 represents the hydrogen bonding between the bases and

the coupling term W (xn, xn+1) = K̃
2 (1 + ρe−b(xn+xn+1))(xn − xn+1)2 gives the stacking

interaction. We note that with small amplitude fluctuations (at low temperature) this

model is harmonic with parameters D = 2D̃a2 and K = K̃(1 + ρ). Similarly, at high

temperature, the model is harmonic with parameters D = 0 and K = K̃. In between, the

model displays highly nonlinear behavior.

The results of simulations, shown in Fig. 3.5(b), clearly demonstrate three regimes

of thermal transport. Specifically, σ(γ) ∼ γ and σ(γ) ∼ 1/γ at small and large γ, re-

spectively. Regime (2), where σ(γ) ≈ constant, is most pronounced at lower temperatures

because the extended reservoir size is kept fixed and the conductance is lowest at this point,

see the discussion below. We have shown elsewhere that this regime has a well-defined

conductivity [12].

Unlike the harmonic model, the intrinsic conductance of nonlinear lattices does in

general depend on temperature. In case of the PBD model, the intrinsic conductance of the

lattice increases as the average temperature increases across the denaturation transition,

which is apparent in the increase of the conductance plateau. This increase is due to the

decrease in nonlinearity of the model as the transition is crossed from below. Moreover,

the length of the plateau region shortens due to the increasing conductance. At higher

temperatures, the crossover from Regime (1) to Regime (2) happens at a larger γ, as the

rate of heat input from the reservoir (∼ γ) has to compete with the intrinsic conductance of

the complete reservoir/lattice system. A similar shift in the crossover happens for Regime

(2) to Regime (3). In addition to this model, the crossover behavior has been observed

in other anharmonic lattices, such as the FPU lattice [41]. We note that for anharmonic

lattices the heat conductance can scale nontrivially with the length and temperature,

which will result in an intricate interplay between these variables, the extended reservoir

size, and the width of the plateau region, as seen in Fig. 3.5(b).
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3.4. Discussion

We elucidated the mechanisms behind the crossover behavior of thermal transport

as the strength of coupling to the reservoirs is varied. The evidence suggests that this

behavior is universal, applying to harmonic, anharmonic, and disordered systems. It

is also guaranteed to exist in higher dimensional harmonic systems as well, due to the

closed form expression of transport in arbitrary lattices. This phenomenon parallels the

physical behavior observed in Kramers’ transition state problem. Our results illuminate

the regime where the intrinsic conductance is manifest. It is in this regime where nonlinear

fluctuations, disorder, etc., dominate the conductance and where thermal transport can

be used to probe physical processes, such as DNA denaturation [12, 55]. We also note

that in many physical systems, the friction coefficient γ depends on frequency, giving rise

to memory in the equations of motion [61, 49, 54]. We expect a crossover to still occur

when the overall coupling to the external reservoirs is tuned. The intermediate regime,

however, may display more complex behavior due to how the reservoirs affect modes at

different frequency scales. We leave this study for a future investigation.

Moreover, non-equilibrium molecular dynamic simulations is the standard tool in

the study of thermal transport in nanoscale systems (see, e.g., [62, 63, 64, 65, 40, 66,

67, 68, 69]). In these simulations the strength of coupling to the environment (in the

form of, e.g., Langevin or Nose-Hoover thermostats) is a free parameter. It is relatively

innocuous when a well-defined conductivity exists. However, when both ballistic and

diffusive effects are present – as is the case at the nanoscale – the choice of this coupling

affects the calculation of the thermal conductance. It thus must be chosen to appropriately

simulate the property of interest, whether it is the thermal conductance of the device or

the intrinsic conductance of the functional system. This is especially important when

extracting scaling exponents of the conductance versus temperature or lattice length in

nonlinear and disordered systems, as both quantities nontrivially affect the conductance

and the crossover behavior can spuriously influence the predicted scaling.
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4. DEHYDRATION AS A UNIVERSAL MECHANISM FOR ION
SELECTIVITY IN GRAPHENE AND OTHER ATOMICALLY

THIN PORES

Ion channels play a critical role in regulating cell behavior and in electrical signaling.

In these settings, polar and charged functional groups – as well as protein response – com-

pensate for dehydration in an ion-dependent way, giving rise to the ion selective transport

critical to the operation of cells. Dehydration, though, yields ion-dependent free energy

barriers and thus is predicted to give rise to selectivity by itself. However, these barri-

ers are typically so large that they will suppress the ion currents to undetectable levels.

Here, we establish that graphene displays a measurable dehydration-only mechanism for

selectivity. This fundamental mechanism – one that depends only on the geometry and

hydration – is the starting point for selectivity for all channels and pores. Its likely detec-

tion in graphene pores resolves conflicting experimental results, as well as presents a new

paradigm for characterizing the operation of ion channels and engineering molecular/ionic

selectivity in filtration and other applications. This work was done in collaboration with

Massimiliano Di Ventra and was published in [70] and presented in Biophysical Society

61st Annual Meeting [71].

4.1. Introduction

Ionic transport through protein pores underlies many biological processes. Various

factors, such as the presence of charges and dipole moments, structural transitions of the

pore, dehydration of ions, make the dynamics of biological pores very complex [72, 73, 74,

75, 76, 77, 78]. Solid-state nanopores can delineate these contributions to transport. For

instance, a competition of hydrated ion size and pore radius was predicted to result in a

drastic drop in ionic conduction [79, 80] – in a way analogous to quantized conductance in

electronics – and subsequently observed in graphene laminates [81]. These studies [79, 80],

as well as others [82, 83, 84, 85], show that, as expected, ions have different free energy
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FIGURE 4.1: Schematic of ion transport through a graphene nanopore. (a) An applied
bias across the membrane drives an ionic current so that, when the pore is sufficiently
small, the ions have to partially shed their hydration layer in order to translocate through
the pore. Red and blue spheres represent K+ and Cl− ions, respectively. Water is shown
as a continuum even though we use an all-atom model for this work. (b) A potassium
ion and (c) a chloride ion crossing the pore maintain significant hydration, unlike in long,
narrow pores. Carbon at the edge of the pore, oxygen, and hydrogen are gray, cyan, and
white spheres, respectively.

barriers due to dehydration, allowing dehydration to yield selectivity on its own. However,

the large free energy barriers for ions to enter a long pore greatly suppress the current

from all ions, making this selectivity difficult to resolve [86].

Due to its atomic thickness, one expects graphene may provide a suitable membrane

to detect and exploit dehydration-only selectivity, as we will discuss here. Several recent

experiments give tantalizing results in this direction. For instance, Ref. [2] finds that the

graphene membrane they use has a small – but measurable – conductance when no pores

are present, which they attribute to defect channels. Salts, XCl, with X=Cs+, Rb+, K+,

Na+ and Li+, give conductances that slightly deviate from what their bulk conductivities

would predict. However, as their Table 1 and our Table 4.3 show, the discrepancy is small

(less than 50 %). In fact, if the defect channels – the structure of which is not known – are
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cation selective due to the presence of negative charges, the bulk properties almost perfectly

predict the observations. Moreover, the difference in hydration energies is large and not

expected a priori to give such a small deviation in conductance. The considerations here

suggest that dehydration is likely not responsible for the small deviation in membrane-only

conductance in Ref. [2].

In a similar vein, Ref. [3] finds weak monovalent cation selectivity over divalent

cations for sub-2 nm pores. However, the pores had a large variability in conductance

over time (see their Fig. 3). Within these uncertainties, the data may be explained by

the different mobilities alone, as we show in Table 4.4. Moreover, Ref. [87] recently found

highly selective (K+ over Cl−) graphene pores, where a charged graphene membrane is

the likely cause since the selectivity persists for large pore sizes. These membranes also

showed a weak monovalent cation selectivity over divalent cations for pores that were 2 nm

to 15 nm in diameter. Indeed, for pores in the 2 nm to 6 nm range, the selectivity was the

same magnitude as that observed by Ref. [3], who also indicate their pores are charged.

These considerations suggest, as well, that dehydration is not the cause of selectivity in

Ref. [3].

The strongest evidence for a hydration effect in transport comes not from nanopores

but from nanochannels in graphene laminates. Ref. [81] show that channels with a height of

≈ 0.9 nm allow atomic and small molecular ions to permeate but exclude larger molecular

ions, and this exclusion is correlated with hydrated radius (as those authors discuss,

adsorption may be playing a role in addition to steric hindrance of the water shell).

This height, though, is above the scale necessary to mimic and understand biological ion

channels.

Another recent study, however, finds selectivity of K+ over Cl− in porous graphene

[1]. This selectivity drops rapidly when the (mean) pore diameter increases by about

0.1 nm to 0.2 nm. Those authors attribute this selectivity to the presence of charges.

However, this rapid drop in selectivity is a tell-tale signature of dehydration. Moreover,

this is selectivity of a mono-atomic ion over another (ones with almost identical mobilities),

just as in biological systems. We will show that the selectivity they find (≈ 1.8 to 2.5 for a
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pore radius of ≈ 0.2 nm) is consistent with the partial dehydration ions experience when

going into atomically “thin” pores with a radius in the sub-nanometer scale. This is the

first direct evidence of dehydration-only in selectivity nanopore experiments.

4.2. Methods

4.2.1 Molecular Dynamics

Graphene has carbon atoms located at the points r̂nm = mâ1 + nr̂2 for m, n ∈ Z,

where â1 = a(3,
√

3)/2 and â2 = a(3,−
√

3)/2 are the 2D lattice vectors and a ≈ 0.14

nm is the C-C bond length. We open a pore of nominal radius rn at the center of each

membrane by removing carbon atoms satisfying the condition x2 + y2 < r2
n, with x, y the

coordinates of the atom in the z = 0 plane. We then immerse the membrane in an aqueous

ionic solution, typically with 1 mol/L salt concentration, consistent with experiments. We

use the CHARMM27 force field to model the atoms. The carbon atoms are type CA and

water molecules are TIP3P from the CHARMM27 force field.

We perform all-atom molecular dynamics (MD) simulations using NAMD [88] with

a time step of 1 fs and periodic boundary conditions in all directions. We use a cutoff of 1.2

nm for non-bonded interactions, i.e., van der Waals and electrostatics. However, we use

a full electrostatic calculation every 4 fs via the particle-mesh Ewald (PME) method [26].

We first minimize the energy of the system for 4000 steps (4 ps) and then heat it to 295 K

in another 4 ps. A 0.5 ns NPT (constant number of particles, pressure and temperature)

equilibration using the Nose-Hoover Langevin piston method [89] – to raise the pressure

to 101 325 Pa (i.e., 1 atm) – followed by 1.5 ns of NVT (constant number of particles,

volume and temperature) equilibration generates the initial atomic configuration. An

electric field perpendicular to the plane of the membrane drove the ionic current through

the pore. We set the Langevin damping rate to 0.2/ps for carbon and water (via its

oxygen atoms) during these runs. Test runs show that damping hydrogen atoms does not

affect the results. Damping the ions, however, affects the current as it changes the ionic

mobility.
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We fix the outer edge of the graphene membrane but the bulk of the membrane

has no confinement other than the C-C bonds of graphene. The production runs vary

from 100 ns to 1.1 µs based on convergence of the current and other properties of interest.

When calculating the water density around an ion fixed at the origin (e.g., in the center

of the pore when it is not fluctuating), the parameters are the same except there was no

external electric field present.

We use the Adaptive Biasing Method (ABF) [30, 31] in the colvar module of NAMD

to perform the free energy calculation. In this method the reaction coordinate, ζ (z for

the setup here), is divided into equally spaced bins and the free-energy difference along ζ,

is calculated by integrating the equation

〈fζ〉k = −
〈
∂U(X)

∂ζ
− ∂ln|J |

∂ζ

〉
k

≡ −dF (k)

dζ
, (4.1)

where 〈fζ〉k and F (k) are the mean force and free energy at bin k, X are the cartesian

coordinates, and |J | is the Jacobian of the transformation to cartesian coordinates. The

ABF method applies an iterative biasing force, f̄n(k), which is the average of all force

samples after n MD steps in the bin k. This force enables the system to overcome free-

energy barriers during an unconstrained MD run and allows for a more uniform sampling

along the reaction coordinate. In our simulation, we calculate the one-dimensional free

energy profile along the z-axis in bins of width 0.01 nm from z = −1.5 nm to z = 1.5 nm.

We perform ABF calculation on three windows, (−1.5 nm 6 z 6 −0.5 nm), (−0.5 nm

6 z 6 0.5 nm), and (0.5 nm 6 z 6 1.5 nm), and also symmetrize the final result about

z = 0 for better sampling. Also, we confine the ion within a cylinder of radius 0.2 nm

centered at the origin, where a bounding potential with force constant ≈ 43 eV/nm2 turns

on outside of the 0.2 nm cylinder. In each bin, 800 samples of the instantaneous force are

accrued prior to the full application of the ABF. This biasing force scales up linearly by a

factor of 0 to 1 from 400 samples to 800 samples and no biasing force is applied below 400

samples. The total simulation consists of about 120 runs of 10 ns each for each window.

We use the Block Standard Error (BSE) method [90] to compute the error bars for
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all plots. The BSE is given by

BSE =
sτ
√
τ√
T
, (4.2)

where T is the total simulation time (the time of the MD trajectory), τ is a length of time

used to partition the simulation into many contiguous blocks, and sτ =
√∑

i(〈Iτ 〉i−〈IT 〉)2
(Nb−1)

is the standard deviation of the mean current, 〈Iτ 〉, within each of the Nb blocks. The

BSE depends on τ when the latter is very small (i.e., when τ is smaller than the timescale

required to get independent reads of the current) or very large (τ ≈ T ). In the first case,

the dependence is due to the fluctuations in the mean being correlated and, in the later

case, the estimate of the standard deviation having too few data points. However, the

BSE is fairly constant over a broad range of τ in between, which is the value we used to

estimate errors. The error bars in the plots are ±1 BSE unless otherwise indicated.

4.2.2 Pore radius and area

As noted above, we open pores by removing carbon atoms with coordinates satis-

fying x2 + y2 < r2
n. There is a range of rn that give the same pore size due to the discrete

nature of the membrane. We choose rn to be the maximum of this range. This rn also

gives the distance of the carbon atoms at the pore edge to the center of the pore, see

Fig. 4.2 (in other words, the radius of the largest circle that will fit into the pore).

When comparing to experimental results, however, these nominal radii may or may

not correspond to the values reported. For instance, Ref. [1] defines the pore area by where

electron density is not observed in Transmission Electron Microscopy (TEM) images. This

will roughly correspond to rn−σC where σC ≈ 0.17 nm is the van der Waals (vdW) radius

of carbon. This is approximately where the electron density vanishes. Moreover, the actual

area available for transport is smaller than nominal area due to the finite size of ions and

carbon atoms (note, however, that the flexibility of the pore edge will tend to slightly

increase the area available). These factors have negligible effect in larger pores but are

significant for sub-nanoscale pores. We found that in general the maximum radial spread

of the ion inside the pore is given by: ρmax ≈ rn − σC (see Fig. 4.3). Thus, we define the

effective pore radius as rp = rn − σC and effective area of the pore as Ap = πr2
p. This
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ca b d
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FIGURE 4.2: Membrane & pore structure. The images show a small section of the
graphene membrane (2.1 nm by 2.1 nm) containing the pore. (a-d) The top panels show
the nominal radii, rn = 0.38 nm, 0.51 nm, 0.62 nm, and 0.71 nm. (e-h) The bottom panels
show the corresponding effective radii, rp = 0.21 nm, 0.34 nm, 0.45 nm, and 0.54 nm.

definition is both supported by the simulation and should correspond to experimentally

observed values. Table 4.1 reports the nominal and effective radii.

rn (nm) 0.38 0.51 0.62 0.71 0.86 0.93 1.11 1.24 1.36 1.48

rp (nm) 0.21 0.34 0.45 0.54 0.69 0.76 0.94 1.07 1.19 1.31

TABLE 4.1: Radii for various pores. Here, rn is the nominal radius of the pore (it
defines the construction of the pore for the simulations) and rp = rn − σC is the effective
radius, where σc is the vdW radius of carbon. The quantity rp = rn − σC also gives the
radius that would be observed in experiments due to electron density around the carbon
atoms and bonds.

4.2.3 Current definition and electric field

The ionic current was calculated using two definitions:

Iz(t) =
1

∆tLz

N∑
i=1

qi[zi(t+ ∆t)− zi(t)], (4.3)

and

Ip(t) =
1

∆t

N∑
i=1

qi(Θ[Zi(t+ ∆t)]−Θ[Zi(t)]), (4.4)
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FIGURE 4.3: Transport area and current definition. (a) The maximum (cutoff of
99 %) radial spread (ρ2 = x2 + y2) of ions inside the pore is roughly equal to rp nm. That
is, when looking at the integrated density of translocation events from 0 to ρ, 99 % of the
events fall between 0 and ρmax. (b) Current calculated from the two different definitions
Ip (solid line) and Iz (dashed line). Connecting lines are shown as a guide to the eye.

where Θ is the Heaviside step function and ∆t = 1 ps is the measurement time (we record

the atomic configuration every ∆t increment). The first definition takes into account the

motion of all ions in the z-direction and the second definition counts ions crossing the

pore. These definitions give the same value for the current so long as the simulation is

converged with respect to the total simulation time (see Fig. 4.3(b)).

We found that about 80 % of the potential drops within a sphere of radius rp from

the center of the pore for larger pores (see Fig. 4.4). Thus, the electric field inside the

pore can be estimated as E ≈ 0.8V/2rp. For the smallest pore, however, the electric field

is more accurately estimated by E ≈ V/L with L = 1 nm. This is because vdW repulsion

of the ions by the carbon prevents the charge layers from getting closer than about 1 nm.

We tested the effect of box size on the current by comparing different box sizes, a

large box (with fixed cross-sectional area 7.4 nm × 7.4 nm and relaxed height 6.9 nm), a

small box (with fixed cross-sectional area 3.7 nm × 3.7 nm and relaxed height 3.4 nm), and

a extended small box (with fixed cross-sectional area 3.7 nm × 3.7 nm and relaxed height

6.9 nm). The current and selectivity is in agreement (to within the errors reported) for all

box sizes when the pore is small and at low voltages, as the current is dominated by the
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high pore resistance. The latter allows well-defined charge layers to develop and persist.

However, for larger pores, the current was smaller by about 20 % for the larger box size.

Since both box sizes have the same voltage and same concentration of ions, the difference

in current is likely due to a smaller access resistance and lack of well-defined charge layers

in the boxes with smaller cross-sectional area, as the pore diameter approaches the edge

of the box. For the smallest pore size calculations, we use the extended small box, as it

considerably reduces errors due to convergence in time, i.e., we can run microsecond long

simulations, which are necessary when the currents are so small.
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FIGURE 4.4: Electric field (a) Potential drop along the z-axis for various pore sizes
and (b) a map of the potential for a pore of radius 0.21 nm. For larger pores, most of
the potential drop (about 80% shown by the two dotted horizontal lines) occurs within
a distance rp from the center of pore. The electric field can thus be approximated by
E ≈ 0.8V/2rp. However, for small pores the entire potential drop occurs over 1 nm
due to vdW repulsion of the ions by the graphene membrane. In Fig. 4.5, we use the
approximate electric field for larger pores in the expression ezνnνµνApE for the whole
range of values reported. This overestimates the field for smaller pores, but will approach
the right value as the pore size increases. Note, as well, that K+ tends to come closer to
the graphene membrane due to its smaller vdW repulsion. This results in the potential
drop occurring mostly on the anion side and, when the voltage is increased enough to
substantially polarize water, in the effective barrier for K+ decreasing before that for Cl−.
Connecting lines are shown as a guide to the eye. The potential map were produced using
the method described in [91].
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4.3. Results

Atomically thin pores, such as graphene or MoS2, display more intricate behavior

– compared to long pores and channels – when reaching the scale of the hydration lay-

ers. Molecular dynamics (MD) simulations show that the ionic current through graphene

pores (see the schematic in Fig. 4.1) exhibits nonlinear behavior as the pore radius, rp, is

reduced to the sub-nanometer scale. This nonlinear behavior is seen as a rapid drop in

the ionic current, Fig. 4.5(a,b), and an excess noise in the current. At these length scales

the pore edge begins to deform the hydration layers, increasing the energy barrier for ions

to cross the pore.
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FIGURE 4.5: Selective behavior of graphene pores as a ratio of cation (IK) to anion
(ICl) currents versus the pore radius (as determined by MD simulations). For large pores
(rp & 2 nm), the ionic current is due to bulk flow but limited by the pore’s cross-sectional
area, Ap, available for transport. In this situation, the contribution to the current from
species ν is proportional to ezνnνµν (times Ap and the electric field, E, in the vicinity of
the pore due to a 1 V applied bias, where zν is its valency, nν its number density, and
µν its mobility (shown as red and blue lines for K+ and Cl−, respectively). Thus, for
potassium and chloride, the ratio is IK/ICl = µK/µCl ≈ 1, as the relative mobility of K+

to Cl− is 1/1.04 . When the pore is very small, though, the relative cationic contribution
to the total current increases. This is due to a higher dehydration energy of the anion
compared to the cation. Connecting lines are shown as a guide to the eye. Error bars are
±1 Block Standard Error (BSE) everywhere unless indicated otherwise.
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FIGURE 4.6: Free energy and hydration in graphene pores. (a) The free energy change of
an ion to go from bulk into a pore with radius rp = 0.21 nm versus the ions’ z coordinate.
(b) Schematic of the simulation showing the cylindrical region where a K+ (red sphere)
or a Cl− (blue sphere) ion is confined for the ABF calculation. In the smallest pore and

at 1 V, the relation IK/ICl = A0e
(∆FK−∆FCl)/kBT ≈ 3.5, where A0 ≈ 1, kB is Boltzmann’s

constant, and T is temperature, implies that the free energy change of Cl− should be about
30 meV larger than that for K+. This is consistent with the ABF calculation (between
20-40 meV depending on where we measure the difference). (c) Oxygen density from
water around a potassium or a chloride ion fixed at the center of the rp = 0.21 nm pore.
Within the first hydration layer, there are 〈n〉 = 5.2 and 〈n〉 = 5.8 waters around K and
Cl, respectively, which is approximately 1/4 less than in bulk in both cases. The loss of
hydration is not as drastic as in long, thin solid-state pores. Also, the peaks in the oxygen
density are further away for Cl− compared to K+, reflecting the electrostatic repulsion of
the negative partial charge on oxygen by the anion. This larger distance affects the ability
of anions to remain hydrated in the smallest pores – cations have a smaller effective size
and thus have more opportunities to translocate without loosing hydration. Error bars in
(a) are ±1 BSE.

In particular, graphene pores with rp = 0.21 nm and in 1 mol/L KCl display se-

lectivity of K+ over Cl− despite containing no charges or dipoles, as shown by the MD
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simulations in Fig. 4.5(c). This observation is remarkable, since no electrostatic repulsion

or specific interaction with the membrane is needed for its appearance. The selectivity and

sharp rise in resistance was also seen for lower concentrations of KCl, i.e., this behavior is

not due to ion-ion interactions or some other many-body effect.

To quantify the energetic differences of K+ and Cl−, we performed Adaptive Biasing

Force (ABF) calculations for the smallest pore size. The ABF results, Fig. 4.6(a,b),

demonstrate that – without an applied voltage – the K+ is between 20-40 meV (depending

on where we measure the difference) more favored to be in the pore compared to Cl−,

although both have to pay a substantial energy penalty. These equilibrium energy barriers

are determined by the partial dehydration of the ions. When ions are in the atomically

thick pore, water molecules can rearrange just outside of the pore to maintain significant

hydration of the ion (see Fig. 4.6c). Ions only have to lose about 1/4 of their inner

hydration water molecules in order to be at the pore center. In long, thin pores, a much

larger dehydration occurs (about 3/4), as water molecules can only be at opposite ends

of the ion (see Refs. [79, 80]). This will lead to related, but different, nonlinearities in the

current.

The difference in energy barriers is due to a smaller dehydration energy of K+

compare to Cl−, which can be estimated from the relation,

∆Eν(rp) = (1− f1ν(rp))E1ν , (4.5)

where f1ν is the fraction of water remaining in the 1st hydration layer and E1ν is energy

of the 1st hydration layer [79, 80]. This energy penalty is about 0.27 eV for K+ and 0.37

eV for Cl− when using f1ν ≈ 0.75 (see Fig. 4.6(c)). Moreover, the fraction f1ν can be

approximated purely on geometric grounds: When an ion is in the center of the smallest

pore, water molecules can not enter the pore due van der Waals (vdW) interactions with

the carbon and the ion. The area available for water is composed of two spherical caps of

radius r1ν – the radius of the first hydration layer – on either side of the membrane. The

fractional area left is 1− d/2r1ν where d is the thickness of the membrane as seen by the

water molecules near the pore edge. This thickness is d ≈ 0.2 nm, slightly smaller than
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FIGURE 4.7: Current & selectivity versus voltage. Current-voltage character-
istics for K+ and Cl− for the pore of radius 0.21 nm at 1 mol/L KCl (top panels).
The selectivity of K+ over Cl− in the same pore (bottom panel). For small volt-
ages, the ions display roughly linear behavior. Thus, we fit a piece-wise linear model
for current taking each region to be linearly related to the differential conductance
gν = ezνnνe

(−∆Fν/kBT )µνAp/L = g0νe
(−∆Fν/kBT ). Around 1.1± 0.1 V the energy barrier

for potassium drops from (0.09± 0.004) eV to (0.06± 0.002) eV, whereas that of chloride
drops from (0.12 ± 0.001) eV to (0.08 ± 0.008) eV around (2.38 ± 0.04) V. This change
in conductance with voltage results in a rise and fall of selectivity. This piece-wise local
conductance model (solid lines) can not capture all the features observable in the MD
simulations (data points), but it captures the suppression of the current by the free en-
ergy barrier and how that barrier changes with voltage. Around 1.1 ± 0.1 V the energy
barrier for potassium drops from ≈ 0.09 ± 0.004 eV to ≈ 0.06 ± 0.002 eV, whereas that
of chloride remains approximately constant at ≈ 0.12± 0.001 eV. This results in sharper
rise in the potassium current and, hence, selectivity. Error bars are ±1 BSE.

the distance between water and the graphene membrane, as water molecules can move

into the corrugated openings at the pore edge. This gives f1ν ≈ 0.7 for both ions, when

using r1ν = 0.33 and 0.31 nm for K+ and Cl−, respectively [80], in agreement with the

full MD calculation.

The free-energy difference from the ABF calculation for each ion is about half of

the value estimated using Eq. (4.5). To show why, we examine the net water dipole in

the first layer when the ion is inside and outside the pore. The net dipole is reduced by

about 5% to 10 %. Therefore, when about 25% of the water is lost, the remaining waters

orient more strongly and the energy barrier is not 25% of the 1st hydration layer energy,
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but less than half of that. The energy barrier is thus qualitatively in agreement with

what Eq. (4.5) predicts but reduced due to stronger orientation of the remaining water

dipoles (which is possible because interference from water-water interactions decreases).

Finally, we note that other effects, such as polarization of graphene and different functional

groups and/or pore shape (i.e., different atomic scale structure and graphene edge type),

will change the observed barrier. However, when charges or static dipoles are absent,

the main contribution to the free energy barrier is due to fractional dehydration – as

qualitatively captured by Eq. (4.5). These barriers will differ from ion to ion, giving rise

to weak selectivity (and, in some cases, giving rise to selectivity of anions over cations).

This selectivity will thus appear in other atomically thin pores, such as MoS2.

The selectivity also depends on the applied voltage, as seen in Fig. 4.7. The in-

creasing selectivity from 0.25 V to 1 V is due to the lower barrier for K+ vs. Cl−. In this

region, the current contribution from each ion species ν can be fit with the form,

Iν = gνV + cν , (4.6)

where ,

gν = ezνnνe
(−∆Fν/kBT )µνAp/L, (4.7)

and cν is a constant. This form of the current cannot capture all of the intricate behavior,

but it does capture the main feature – the suppression of the current by the dehydration

free energy barrier. The magnitude of cν reflects behavior below 0.25 V, which is a regime

that is difficult to reach with all-atom simulations. Given cν , the differential conductance,

Eq. (4.7), determines the selectivity as the voltage increases. This conductance depends

on the valency, density, mobility, and free energy barrier of ion ν, as well as the electric

field E and pore area Ap. Taking the electric field to be V/L with L = 1 nm (in agreement

with the fields found from the MD simulations) and Ap = πr2
p, the nonequilibrium free

energy barriers are 0.09±0.004 eV and 0.12±0.001 eV for K+ and Cl−, respectively. These

values are slightly less than the equilibrium free energy barriers from the ABF calculation

in Fig. 4.6. As we discuss below, this is likely because of water polarization in the pore
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that helps ions to move through. The value of other parameters, especially Ap and the

voltage range, also affect the extracted free energy barriers both in equilibrium and out

of equilibrium (computationally, for instance, sampling a smaller area in Fig. 4.6 (a,b)

will lower the barrier, and fitting the IV curve at lower voltages will increase the barrier

extracted). We note, though, that the difference in free energies between K+ and Cl− is

the same in equilibrium and at low voltages.

Using the parameters for K+ and Cl− in Eq. (4.6), the selectivity will increase with

voltage until it saturates at
IK

ICl
=
gK

gCl
, (4.8)

which fits very well with the selectivity data from MD, as shown in Fig. 4.7. However,

we see that at ≈ 1 V, the selectivity starts to increase still further. Indeed, the differen-

tial conductance of K+ increases at ≈ 1 V due to an effective lowering of the barrier to

0.06±0.002 eV. This lower barrier is due to a polarization-induced chaperoning of the ion

across the pore. As the local electric field increases with voltage, water becomes increas-

ingly polarized in the vicinity of the pore and also increases its density there. When, for

instance, K+ sees a pore containing polarized water where the oxygen atoms are pointing

towards the ion, it can more easily move to the pore edge and be taken through to the

other side. The K+ responds to this at lower voltages than Cl− due to – surprisingly – its

vdW interaction with carbon, which allows the charging layer of K+ to be closer to the

membrane than Cl−.

4.3.1 Current behavior at the sub-nanoscale

The abnormal behavior of ionic current as the radius of the pore decreases to the

sub-nanometer scale is seen in the sharp rise in the pore resistance and noise in the cur-

rent, Fig. 4.8. As mentioned earlier, at these length scales, the pore edge begins to deform

the hydration layers around the ions, which increases the energy barrier for ions to cross

the pore.
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Sharp rise in (a) the free energy barrier and (b) the noise in the current at the sub-

nanoscale. An “average” free energy barrier is estimated as ∆Fν = kBT log
(
qνnApµνE

Iν

)
,

where qν , µν , n are the charge, average mobility (of K+ and Cl−), and particle concen-
tration. The error in ∆Fν is thus kBTδIν/Iν , where δIν is BSE in Iν . The noise in
current, ∆Iν(τ) is measured by standard deviation of the mean current within blocks of
length τ = 10 ns. The relative noise in the current, ∆Iν(τ)/Iν increases sharply due to
the fluctuations in hydration layer configurations that allow or prohibit passage of ions
through the pore [80]. The errors in ∆Iν is estimated as ∆Iν√

2(Nb−1)
[92]. Connecting lines

are shown as a guide to the eye.

4.4. Selectivity

4.4.1 Experimental observation of selectivity

Ref. [1] found that graphene membranes with a distribution of pore sizes (in the

sub-nanoscale) display selective behavior for K+ over Cl−. In that work, this is indicated

by a nonzero membrane potential Em. We use the relation

Em =
kBT

e
ln

(
PK[K]o + PCl[Cl]i
PK[K]i + PCl[Cl]o

)
(4.9)

or, rearranging,

eeEm/kBT =

PK
PCl

[K]o + [Cl]i
PK
PCl

[K]i + [Cl]o
(4.10)
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to estimate the selectivity from the reported membrane potential (Em = 3.3 ± 1 mV,

where we keep the second digit to not introduce rounding error, [K]i = [Cl]i = 0.17 mol/L,

[K]o = [Cl]o = 0.5 mol/L , T = 297 K, and e is the magnitude of the electron charge). We

obtain S̃ = PK/PCl = 1.3 ± 0.1 as an “average” selectivity for their distribution of pore

sizes. The ratio PK/PCl is the concentration-imbalance equivalent of IK/ICl.

To compare with our numbers, we need to extract out the value for a particular

pore size. For a membrane with a distribution of pore sizes, the observed selectivity S̃

can be estimated as

S̃ =

∑
p IpK∑
p IpCl

=

∑
p SpIpCl∑
p IpCl

≈
∑

p SpAp∑
pAp

, (4.11)

or,

S̃ =

∑
p IpK∑
p IpCl

=

∑
p IpK∑

p(1/Sp)IpK
≈

∑
pAp∑

p(1/Sp)Ap
, (4.12)

where Sp (Ap) is the selectivity (area) for a pore of radius rp. The approximate expressions

in each equation assume that the current is proportional to area, but without a free energy

barrier. This is a strong approximation and requires that the smallest pore sizes (i.e.,

with radii of about 0.15 nm and below) to be dropped from the sum (as their current

contribution is negligible and not necessarily proportional to area). The sum is thus over

the data in Table 4.2, which is from the selective membrane (5 min etch time) of Ref.

[1]. This gives S = 1.8 ± 0.3 from (4.11) and S = 2.5 ± 1 from (4.12), where we again

keep the second digit to not introduce rounding error. The difference in the selectivity

estimated from the two equations is due to the fact that they did not take into account

the free energy barrier at smaller radii. The error is calculated based on the error in S̃

only, as the error in area is not reported in Ref. [1]. However, the error due to area is

expected to be much smaller than the approximations in the equations.

We note a few important limitations of this comparison between the experiments

and our calculations. The lowest voltage in our simulations is still order of magnitude

larger than the equivalent potential difference in the experiments. The regime below 0.25

V is very difficult to reach using all atom MD simulation for these pore sizes. More-

over, current experimental techniques cannot control the functionalization of graphene
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Ap (nm2) 0.2 0.123 0.108 0.321 0.368

rp (nm) 0.25 0.20 0.19 0.32 0.34

Sp S S S 1 1

TABLE 4.2: Current-carrying pores from the selectivity measurement of Ref. [1]. We
assign a selectivity S for all pores with rp ≈ 0.2 nm and 1 for larger pores. There are
also many pores with smaller radii, but we expect these pores to carry negligible current
(and thus, even though they will be selective, they do not contribute to the observed
selectivity). We do not include them in this table.

Salt (XCl) CsCl RbCl KCl NaCl LiCl

σ (pS) 67 70 64 42 27

κ (10−3 S m−1) 1.42 1.42 1.3 1.19 0.95

EX (eV) 3.1 3.4 3.7 4.6 5.7

µbulk (10−8 m2V−1s−1) 8.0 7.92 7.62 5.19 4.01

µpore (10−8 m2V−1s−1) 4.25 3.59 4.29 1.63 1.03

σXCl (pS) 67 66-63 65-67 55-52 50-48

σX (pS) 67 66-57 64-68 43-26 34-16

TABLE 4.3: Leakage conductance (σ), bulk conductivity of cations and anions together
(κ), and hydration energy (EX) of the cation X, as reported by Ref. [2]. Note that the
reported bulk conductivity is four order of magnitude smaller than that used in their
nanopore current measurements. We take the cation mobilities from bulk and effective
mobilities in a biological pore from Ref. [93]. We make two estimates of the range of
the conductance: One for σXCl (assuming both the cation and anion contribute) and the
other for σX (assuming only the cation contributes). The first value in the range uses
the bulk mobility and the second value uses the effective mobility. We note that even
though graphene is atomically thick (and not the same pore used to calculate the effective
mobility), it still can have, e.g., local water structure that reduces mobility. We use the
effective mobilities of Ref. [93] only as an estimate. These ranges show that the deviation
of the relative conductance from that predicted by bulk mobilities can easily be due to
cation-only conductance (e.g., due to local charges) and/or effective mobilities through
the defect channels responsible for the leakage conductance.

nanopores (and functionalization/surface species of graphene itself) which depends on the

fabrication method and other random factors. Since it is not clear what groups will be

present and where, we choose the simplest pore – the one with no functionalization. As

well, some functionalization will introduce charges/dipoles to the pore region. However,

if these are close (either on the pore rim or nearby), they will not give rise to the weak

selectivity observed, but rather strong selectivity.

Garaj et al. [2] report that the leakage current (current through a graphene mem-

brane when the pores have yet to be constructed) deviates from what the bulk conductivity

would predict, which they attribute to the dehydration of the cations. Taking the conduc-
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tance of CsCl to be the reference value, we can estimate the conductance of other salts

XCl as

σXCl =
σCsCl

(µCs + µCl)
(µX + µCl). (4.13)

As shown in Table 4.3, different effective mobilities of ions inside of pores explains some

of the deviation. In fact, since the leakage conductance varies greatly from membrane

to membrane (by a factor of two [2]), different effective mobilities alone may explain the

deviation to within experimental uncertainties.

An alternative (or complementary) explanation is that the defect channels – the

structure of which is unknown – are cation selective due to the presence of negative

charges. In this case, the estimated conductance is

σX =
σCs

µCs
µX. (4.14)

This estimate accurately explains the observations by itself. Relying on dehydration re-

quires a convoluted explanation – or minuscule dehydration, e.g., a 1/100th fractional

removal of water – to account for the differences between K+, Na+, and Li+ when com-

paring to Cs+. For instance, Na+ and Li+ have a much larger hydration energies than

Cs+, Rb+, or K+, and thus one expects that, if dehydration is a factor, the membrane

conductance would go from cation and anion both contributing (for Cs+, Rb+, and K+)

to just anion contributing (for Na+ and Li+). In other words, NaCl and LiCl should have

the same conductance, but they differ by 50 %.

We also note that ion transport for different cations was measured in Ref. [3], where

the authors claim to have observed hydration-based selectivity. However, their selectivity

can be explained based on difference in cation mobilities. Selectivity with respect to KCl

can be captured via the normalized conductance

SXCl/KCl =
σXCl/(µX + µCl)

σKCl/(µK + µCl)
. (4.15)

As shown in Table 4.4, the selectivity has a large range due to large variation of the
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cation(X) K+ Li+ Ba2+ Ca2+ Mg2+

µX (10−8 m2V−1s−1) 7.62 4.04 6.56 6.17 5.5

device 3 (rp = 0.36± 0.10)

σ (nS) 2.3 ± 1.2 1.1± 1.1 1.0±0.8 0.7± 0.5 0.4± 0.03

SXCl/KCl 1 0.00 - 2.60 0.06 - 1.76 0.06 - 1.25 0.11 - 0.41

SX/K 1 0.00 - 3.77 0.07 - 1.90 0.07 - 1.40 0.13 - 0.49

device 4 (rp = 0.50± 0.10)

σ (nS) 4.2 ± 0.3 2.2± 1.3 1.4 ±0 1.5±0.1 1.3± 0.1

SXCl/KCl 1 0.25 - 1.17 0.34 - 0.40 0.34 - 0.45 0.31 - 0.39

SX/K 1 0.37 - 1.69 0.37 - 0.43 0.38 - 0.51 0.37 - 0.46

device 8 (rp = 0.39± 0.06)

σ (nS) 2.6±1.5 1.3±0.1 2.3±1 2±1 1±1

SXCl/KCl 1 0.39 - 1.65 0.32 - 3.22 0.28 - 3.01 0.00 - 2.00

SX/K 1 0.57 - 2.40 0.35 - 3.48 0.31 - 3.37 0.00 - 2.39

TABLE 4.4: Chloride salt conductance (σ) of three different devices holding the chloride
concentration constant at 100 mM [3]. The quantity SXCl/KCl is selectivity quantified by
assuming both cation and anion contribute, Eq. 4.15, and SX/K by assuming only cations
contribute, Eq. 4.16. The selectivity is shown as a range based on the error in σ (the
actual range – the range of the data measured in Ref. [3] – is larger than shown here).
Only bivalent ions in device 4 and Mg2+ in device 3 potentially show selective behavior.
However, selectivity of this magnitude was observed in Ref. [87] for large pores, where
dehydration can not be playing a role.
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conductance. This makes it difficult to determine if there is any selectivity at all. Only

the bivalent ions in device 4 and Mg2+ in device 3 have the entire range of SXCl/KCl less

than 1. Moreover, the experimental results seem to indicate the presence of negative

charges near the pore (see Fig. 3d in Ref. [3]), which would mean that most of the current

is carried by the cations. Thus, selectivity should be quantified as

SX/K =
σXCl/µX

σKCl/µK
. (4.16)

This shows that (4.15) overestimates the deviation from non-selective behavior. Even if

one ignores the large variation in the measured conductance in individual devices (and from

device to device), the selectivity reported is consistent with the charge-based selectivity

observed in Ref. [87]. Those latter results were in pores much bigger than hydrated

ions, indicating that the selective behavior is likely due to differences how bivalent versus

monovalent ions screen a charged membrane.

4.4.2 Dehydration and selectivity

Figure 4.9 shows the water density around the ion in the pore and the radial dis-

tribution function of oxygen, gO. In our simulation, the number of oxygen atoms in first

hydration layer around K+ and Cl− in bulk water are 7.4 and 6.8, respectively, and, when

placed in the center of a rp = 0.21 nm pore, 5.8 and 5.2. This is loss of about 1/4 of the

water molecules from the innermost layer. Even though the fractional dehydration for K+

and Cl− are nearly equal the energy penalty is higher for Cl− as its inner hydration layer

is more strongly bound compare to K+. As we increase the applied voltage, both ions

were able to remain more hydrated while crossing the pore due to polarization-induced

chaperoning of the ions. This results in a lower free energy barrier for transport, as seen

from Fig. 4.10.
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FIGURE 4.9: Water density quantified by the oxygen density. (a) The contour
plots show either a potassium or a chloride ion fixed at the center of the pore. The pore
radius is shown in the upper left corner of each panel. The hydration layers are visible as
the high density region around the ion. As the pore size gets smaller, the hydration layers
around the ion are distorted by the pore edge. The ions remain fairly well hydrated. (b)
The radial distribution function of oxygen atoms around K+ and Cl− in bulk and at the
center of a rp = 0.21 nm pore for zero bias showing partial dehydration. The number of
water molecules in first hydration layer of K+ and Cl− are 6.8 and 7.4 in bulk and 5.2
and 5.8 at the center of pore, respectively, i.e., a loss of about 1/4 of the water molecules
from first hydration layer. Connecting lines are shown as a guide to the eye.

4.5. The effect of the ion concentration

In order to confirm that the anomalous behavior of current and weak selectivity is

not due to a many-body effect but rather to single ion behavior, we repeat the selectivity

calculations for lower concentrations of KCl. Both the anomalous behavior of current and

weak selectivity are still present in concentrations as low as 0.1 mol/L, at which point

there were only a few ions of each type in the smallest simulation box size (hence, box

size errors start to become significant).

4.6. Discussion

There are thus two facets of selectivity: the mechanism and the nonlinear features

with voltage. The former depends on the dehydration energy and the pore geometry, and
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FIGURE 4.10: Polarization induced chaperoning of ions. (a) The z-component of
polarization of water molecules in the pore region. With increased voltage water molecules
are strongly polarized along the applied field. The polarized water molecule enable the
ions approaching the pore to stay hydrated and hence assist them to cross the pore. (b)
The distance (|~rC − ~rν |) between an ion ν (or an oxygen/hydrogen from water) crossing
the pore and the nearest carbon atom versus voltage. At higher voltage ions are able
to enter the repulsive zone (r < σ) of vdW potential of carbon atom which effectively
increases the area of transport. This is partly responsible for the increased current at
higher voltages. However, the main cause of the latter is the chaperoning of ions across
the pore by polarized water, which happens at lower voltage for K+ compare to Cl− due
to the charge layer of the former being closer to the graphene membrane, see Fig. 4.4(a).

the latter depends on structural changes of water in the pore as the voltage increases

(as well as vdW interactions). Since both are dependent only on geometry and ion char-

acteristics in bulk water, these features will be present for other atomically thin pores

and channels. This mechanism for nonlinearities and selectivity gives a simple predictions

that can be tested experimentally by examining multilayer graphene, MoS2 pores, or other

pores.

Moreover, selectivity has recently been observed in graphene membranes [1, 87].

In Ref. [1], the selectivity is weak, giving an average ratio of translocation rates of about

1.3±0.1 for potassium to chloride at zero applied bias but in the presence of a concentration

gradient across the membrane. That alone may be due to effective mobilities, but, in this

case, the pores’ structures are known. This experiment has a distribution of pore sizes for
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FIGURE 4.11: Selectivity and pore resistance for three different concentrations.
(a) Selectivity and (b) pore resistance for 0.1 mol/L, 0.5 mol/L, and 1.0 mol/L KCl. The
solid line is the fit of resistance of the form, R = a

rp
+ b

r2p
[94, 10]. Here, the 1/rp term

is due to access resistance and the 1/r2
p term is due to the pore resistance. Note that

this deviation from normal behavior is quite large as the axis is on a logarithmic scale.
The persistence of selectivity and the sharp rise in pore resistance at lower concentrations
confirms that the behavior is not due to ion-ion interactions or some other many-body
effect. Connecting lines are shown as a guide to the eye.

each membrane. Assuming the smallest pores make a negligible contribution to the current

– and thus do not affect the average selectivity even though they are themselves selective –

and the largest pores have no selectivity, the experimental observations yield a selectivity

in the range ≈ 1.8 to 2.5 for a rp = 0.21 nm pore. This is larger than potential variation

due to effective mobilities and agrees well with the dehydration-induced selectivity of ≈ 2.3

that we find at low voltages. In Ref. [87] the selectivity is much higher (≈ 100), even for

large pores (rp in the 1 nm to 10 nm range, i.e., well above the size of hydration layers).

In both experiments, though, the selectivity was attributed to the presence of charges on

the graphene.

Our results indicate, however, that weak selectivity is the consequence of differ-

ent dehydration energies and fractional removal of water (determined by the hydrated

ion size and pore geometry) – i.e., not due to local charges or dipoles, which would re-

sult in the much higher selectivities observed in Ref. [87] and in biological pores. While
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rp (nm) 0.21 0.34 0.54 0.76 0.94 1.19 1.39 1.83 2.36

l (nm) 3.7 3.7 3.7 3.7 3.7 7.4 7.4 7.4 7.4

IK (nA) 0.032 0.23 1.13 2.40 3.57 5.7 8.1 13.6 21.8

ICl (nA) 0.009 0.17 1.13 2.32 3.61 5.5 8.0 13.9 20.8

IK/ICl 3.7 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE 4.5: Current for various radii. The table shows the current for 1.0 mol/L
KCl solution for the box of height h = 6.9 nm for various radii. The edge of the box
is l = b = 7.4 nm for larger pores (rp > 1 nm) and l = b = 3.7 nm for smaller pores.
The latter allows for much longer simulations, which are needed to achieve convergence.
The error in the current is shown in Fig. 4.5. The Block Standard Error determines the
number of significant digits in this and the following tables.

V (V) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

IK (pA) 2.3 7.0 15 32 52 87 113 153 167 197 210 234

ICl (pA) 1.0 2.2 4.5 9 12 15 16 17 21 29 41 55

IK/ICl 2.3 3.0 3.2 3.7 4.4 5.6 7.1 9.1 8.0 6.8 5.1 4.2

TABLE 4.6: Current for various voltages. The table shows the current for 1.0 mol/L
KCl solution through the smallest pore rp = 0.21 nm for various voltages. For these
calculations, we use the box height h = 6.9 nm and the smaller cross section, l = b = 3.7
nm. The error in the current is shown in Fig. 4.10

charges/dipoles can not be ruled out as an explanation for the results of Ref. [1], they would

need to be far from the pore, or only present in a minority of pores in order to generate weak

selectivity. This would leave unexplained why a small increase in pore radius eliminates

selectivity. Screening can play a role here, suggesting that changing the molarity of the

solution – thereby changing when selectivity disappears as the pore radius increases – is a

simple test to determine the presence of local charges/dipoles. The other effects we predict

– nonlinear features in the current-voltage characteristics and enhanced selectivity – should

pore bulk
〈pr〉 (D) 〈n〉 〈pr〉 (D) 〈n〉

K+ 2.02 5.2 1.60 6.8

Cl− 1.81 5.8 1.54 7.4

TABLE 4.7: Dipole orientation. The average radial component of individual water
dipole 〈pr〉 and average number of water dipoles 〈n〉 in the first hydration layer of K+ an
Cl− ions in the smallest pore (rp = 0.21 nm) and in the bulk. The dipole moment of water
in our model is 2.35 in units of Debye (0.021 e nm). The dipoles are strongly oriented in
the pore compare to bulk but have fewer dipoles and hence there is a decrease in total
dipole moment.
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Atoms (X) K Cl H O C

εX (meV) 3.773 6.505 1.89 6.596 3.036

rX (nm) 0.176 0.227 0.022 0.177 0.199

TABLE 4.8: Lennard-Jones parameters for individual elements. The vdW poten-
tial between two atoms at a distance d, is calculated using the Lennard-Jones relation,

VLJ = εm

[(
rm
d

)12 − 2
(
rm
d

)6]
, where the parameter rm = r1+r2 is the equilibrium distance

and εm =
√
ε1ε2 is the well depth of the interaction.

be observable experimentally. These results elucidate selectivity and dehydration effects in

transport when going from the nanoscale [2, 11, 10, 95, 96] to sub-nanoscale channels and

pores. It should help design and understand the behavior of solid-state pores that serve as

hosts for other nanoscale probes, i.e., localizing and interrogating molecules or nanoscale

structures, such as DNA sequencing with ionic [19, 97, 98, 99, 100, 101, 102, 103, 101] or

transverse electronic currents [104, 105, 106, 107, 108, 109, 110].

Moreover, selectivity in biological ion channels is complex and due to many compet-

ing interactions and processes. Indeed, dehydration is so important in tiny biological ion

channels that it is only the presence of charges, dipoles, and protein structure/dynamics

that allows ions to pass by counteracting dehydration. Indeed, selectivity occurs because

the pore interacts with ions in an ion-dependent manner, e.g., due to the atomic config-

uration in the protein’s selectivity filter [72]. Our work, however, demonstrates for the

first time that graphene pores will allow one to measure selectivity due to dehydration

only, therefore delineating its contribution in more complex biological systems. This will

allow one to characterize ion transport behavior in confined geometries without the effect

of protein structure, surface charges, etc. This will likely lead to the development of ex-

perimental model systems to mimic and understand biological channels.

Finally, one of the core challenges with the use of solid state membranes for filtration

and other applications is to engineer selectivity. Site-specific chemical functionalization

of, e.g., graphene, is currently not possible. Our results suggest that the geometry, which

is significantly more controllable, can be designed to give selectivity that is not currently

possible in solid state systems via the use of charges or dipoles. Moreover, these results
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will shed light on the role of the electrostatic environment and functionalization intro-

duced by the fabrication process, as well as other conditions such as pH. Together with a

characterization of pore functionalization, solid-state pores will thus allow – for the first

time – to experimentally delineate the contributions to transport in more complex biolog-

ical pores and for the optimization of porous structures for applications.
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5. IONIC SELECTIVITY AND FILTRATION FROM
FRAGMENTED DEHYDRATION IN MULTILAYER

GRAPHENE NANOPORES

Selective ion transport is a hallmark of biological ion channel behavior but is a

major challenge to engineer into artificial membranes. Here, we demonstrate, with all-

atom molecular dynamics simulation, that bare graphene nanopores yield measurable ion

selectivity that varies over one to two orders of magnitude simply by changing the pore

radius and number of graphene layers. Monolayer graphene does not display dehydration-

induced selectivity until the pore radius is small enough to exclude the first hydration layer

from inside the pore. Bi- and tri-layer graphene, though, display such selectivity already

for a pore size that barely encroaches on the first hydration layer, which is due to the more

significant water loss from the second hydration layer. Measurement of selectivity and

activation barriers from both first and second hydration layer barriers will help elucidate

the behavior of biological ion channels. Moreover, the energy barriers responsible for

selectivity – while small on the scale of hydration energies – are already relatively large, i.e.

several kBT . For separation of ions from water, therefore, one can exchange longer, larger

radius pores for shorter, smaller radius pores, giving a practical method for maintaining

exclusion efficiency while enhancing other properties (e.g., water throughput). This work

was published in [111].

5.1. Introduction

Ion transport is vital to physiological processes in the cell [112, 6, 75], where mem-

brane ion channels control ion motion through the interplay of protein structural tran-

sitions, precisely placed dipoles and charges, and dehydration. Nanotechnologies seek to

mimic and exploit the same physical mechanisms for membrane filtration and desalina-

tion. However, biological systems are complex and make use of sophisticated assembly

methods, ones that we are still not able to utilize in artificial devices. Recent work on
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FIGURE 5.1: Dehydration of ions going through multilayer graphene pores.
(a) A nanopore through trilayer graphene. As K+ (red) translocates through the pore,
it retains only part of its hydration. In this case, the pore radius is rp = 0.34 nm and
the first hydration layer is essentially complete. The second hydration layer, though, is
significantly diminished due to the carbon of the graphene (grey) preventing the water
molecules (cyan and white) from fluctuating about 0.5 nm away from the ion, except along
the pore axis. (b) Water density quantified by its oxygen location around K+ and Cl−
ions in bulk and mono-, bi-, and tri-layer graphene (shown as grey bars) pores with radius
rp = 0.34 nm. The white dotted circles demarcate the first and the second hydration
layers. The first hydration layers remain but acquire some additional structure. The
second hydration layer is greatly reduced (see Fig. 5.2 and Table 5.2 ). For this pore size,
the free energy barrier due to the second layer dehydration significantly contributes to the
ion currents and selectivity.

two-dimensional channels in graphene laminates demonstrates ion selectivity [113] by con-

straining the channel height. However, one-dimensional channels – pores – give additional

control over the confining geometry, where, for instance, recent theoretical results [70]

show that experiments on sub-nanoscale, monolayer graphene pores display dehydration-

only selectivity [1]. Using all-atom molecular dynamics (MD) and theoretical arguments,

we will show that the most fundamental of all processes – dehydration of ions – can be

reliably tuned in bare graphene nanopores by controlling only the pore radius and number

of graphene layers. This gives rise to selectivity across one to two orders of magnitude

before ion currents drop to unmeasurable levels.
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FIGURE 5.2: Free energy barriers and dehydration. (a) Free energy barrier versus
K+ and Cl− location, z, on the pore axis as they cross mono-, bi-, and tri-layer graphene
pores with radius 0.34 nm. As the number of layers increases, the energy barrier becomes
more substantial and a difference between the two ion types appears. (b) Fractional
dehydration in the first and second layer (f1ν and f2ν) for K+ and Cl−, where the ion is
at the position of its free energy maximum in the pore. When the pore radius is less than
the first hydration layer radius (about 0.3 nm), then both the first and second hydration
layers lose a substantial amount of their water molecules (upper left panel). However,
with just a slightly larger pore radius, rp = 0.34 nm, the first hydration layer retains most
of its water but the second layer still loses a significant number of water molecules (upper
right panel). The free energy barriers (lower panels) will increase with the number of
graphene layers, as a “short pore” interferes less with the hydration than the longer pores.
However, while dehydration is the mechanism by which selectivity occurs, water loss is
not the sole predictor of selectivity. As Eq. 5.1 shows, one also needs the hydration layer
energies. The Cl− ion has a larger hydration energy and, thus, even for the same fiν , Cl−
will be selected against. Error bars are ±1 standard error from five parallel simulations.

5.2. Results

This range of achievable selectivities is possible due to the ability to separately

control the pore radius and length at the nanoscale, i.e., in the regime that influences the
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hydration layer properties via the confinement. Fig 5.1 shows how the hydration layers

change for mono- to tri-layer graphene pores. As an ion goes from bulk into the pore, it

can not bring its whole hydration layer with it, but rather some of the water molecules

are blocked from entering the pore. The shedding of some of the hydration gives a free

energy barrier, a simple estimate of which is

∆Fν =
∑
i

fiνEiν , (5.1)

where fiν (Eiν ) is the fractional dehydration (energy) in the ith hydration layer [79, 80].

The fractional dehydration depends on the confinement via the pore radius and length

(number of graphene layers), as this reduces the volume available for water to hydrate the

ion. That is,

fiν =
∆ni
ni
≈ ∆Vi

Vi
, (5.2)

with the total hydration number ni, and volume Vi, of a ith hydration layer in the bulk

and the reduction of the respective quantities ∆Vi and ∆ni in the pore. The quantity

∆Vi comes from pure geometric arguments – it is the volume excluded by the presence of

carbon atoms in the graphene – and the approximation in Eq. 5.2 agrees well with the

loss of water molecules computed from MD simulations (shown in Fig. 5.1b).

For the radius rp = 0.34 nm pore in Fig. 5.1a, this simple analytic estimate predicts

that there should be a small amount of dehydration in the first layer, increasing when going

from mono- to bi-/tri-layer graphene. But for the multilayer graphene, second hydration

layer is significantly reduced. However, due to the much larger hydration energy of the

first layer [80], both hydration layers influence the magnitude of the ion currents and thus

the selectivity. Moreover, the contribution to the dehydration free energy barrier from

hydration layer i will “level off” when the length is greater than about twice its radius,

i.e., when part of the hydration layer can no longer reside outside of the pore.

This is exactly what is seen from free energy computations using MD simulations.

Fig. 5.2a shows the free energy barrier for K+ and Cl− moving through the pore. Mono-

layer graphene interferes very little with the hydration. To the extent that this membrane
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dehydrates the ions, the remaining water molecule can partially compensate for this effect

by more strongly orienting their dipole moment with the ion. When the number of layers

increases, however, the energy barriers change in size and shape. For both bi- and tri-layer

graphene, the dehydration is more substantial and, when accounting for the larger Cl−

hydration energy, it starts to differentiate between the two ions. That is, the relative

barriers are predominantly influenced by the hydration energies of the different ions. As

the confinement increases – decreasing the pore radius and increasing the pore length –

more water will be lost from the hydration layers and ions with larger hydration energies

will be more effectively filtered by the pore and selected against. Fig. 5.2b shows this

effect, i.e., how the dehydration and free energy barriers increase with increasing number

of graphene layers.
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FIGURE 5.3: Selectivity of graphene pores. The selectivity, IK/ICl, is at an ap-
plied bias of 1 V, although the permeation rates should follow similar trends. Selectivity
increases as pore radius decreases and when the the number of layers increases. Tri-
layer graphene with rp = 0.34 nm gives a similar selectivity as monolayer graphene with
rp = 0.21 nm. Moreover, if only ion filtration is of interest, then these two pore sizes can
be exchanged. For bi- and tri-layer graphene, we use Eq. 5.6 for rp = 0.21 nm, as the
currents are too small to reliably determine computationally. Those points have a dashed
line connecting them to the remaining plot. The error bars are ± 1 Block Standard Error
(BSE).
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Free energy barriers and ionic currents

The free energy barriers are the primary factor in determining permeation rates and

ion currents. For instance, the current in the pore is related to the free energy barrier and

electric field E according to [80]

Iν = ezνµeffEApnνe
−∆Fν/kBT , (5.3)

where e is the electric charge, z the ion valency, µeff the effective mobility in the pore, Ap

is the area of the pore and nν the bulk ion density.

The effective pore resistivity is

ρeff =
EAp
Iν

=
e∆Fν/kBT

ezνµeffnν
= ρν

µν
µeff

e∆Fν/kBT , (5.4)

which gives

ln
ρeff/ρν
µν/µeff

= ∆Fν/kBT. (5.5)

Here, ρν (µν) are the bulk resistivity (mobility). As shown in Fig 5.6(b), the logarithm of

the effective resistivity correlates well with the free energy barrier in the pore, suggesting

that any consequence of effective mobilities can be neglected to first approximation.

Selectivity

For atomically thin graphene membranes, one expects that the effective mobility is

ill-defined. Even still, the results given in the Fig. 5.6 show that the change in effective

mobility of ions in the pore can be ignored to first approximation, giving selectivity as

IK

ICl
≈ e(∆FK−∆FCl)/kBT . (5.6)

This is, however, only an estimate: The energy landscape has some ion-dependent spatial

structure (which introduces additional factors into the current) and it changes when a bias

is applied. For instance, the applied field orients the water dipoles, which can subsequently
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assist ions in crossing the pore [70].

Using nonequilibrium MD, we directly compute IK/ICl where possible and use

Eq. 5.6 otherwise. Fig. 5.3 shows the selectivity for pores of radii ranging from 0.21 nm

to 1.4 nm in mono-, bi-, and tri-layer graphene. Just as the above theoretical arguments

and free energy simulations indicate, the relative current of K+ increases compared to Cl−

as the pore radius approaches the hydration. The magnitude of this selectivity depends

on the pore radius as well as the number of graphene layers. This provides a method

to control selectivity beyond just changing the pore radius. We note that the pores are

electrically neutral and mobility of both K+ and Cl− ions are nearly equal. Hence, the

selectivity is due to differences in their hydration energies of the ions. All ion types will

thus display mutual selectivity. We also note that chemical functionalization of the pore

and of the graphene can modify energy barriers, especially when, e.g., the chemical groups

are strongly polar or charged under some ionic conditions. When this occurs, the sign of

the charge matters, and anions, for instance, may be excluded from the pore. However,

the effect we discuss will never-the-less be present between cations, where Eqs. 5.1 and 5.2

can estimate the selectivity.

The selectivity that is measurable experimentally will be limited by the the minimum

resolvable current. The Cl− current is about 5 pA for the 0.34 nm tri-layer pore (see Table

5.1). However, currents as low as 1 pA are measurable in experiments [114], thus a several

fold change in selectivity should be detectable as the pore size and length vary. According

to Ref. [115], the water flow rate only decreases by about 20% when going from mono- to

bi- layer graphene when the pore size is kept constant and there is no additional inter-layer

spacing. Increasing the number of layers to increase selectivity (or ion exclusion overall)

will not significantly reduce water flow for applications such as desalination. Moreover, for

a given selectivity or ion exclusion, one can use a larger pore with more layers, increasing

the overall water throughput (as the area available for transport is larger).

These results indicate that to achieve a given selectivity, one can exchange a rp =

0.21 nm monolayer pore with a tri-layer pore of a larger radius (rp = 0.34 nm). These pore

sizes are both clearly small, but this indicates that, when dealing with nanostructures, there
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is flexibility on how to create the desired ion exclusion. Pore sizes are easily controllable

with individual pores fabricated with transmission electron microscopes [2, 10, 11] and

techniques are under development to fabricate large scale membranes with precise control

[1, 3]. Moreover, we examine only pores with high symmetry. Varying the pore aspect

ratio can further tune ion selectivity and conductance.
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FIGURE 5.4: Free energy barrier for K+ (red line) ion, Cl− (blue line) ion, and their
difference (green line) to translocate along the z-axis through pores of radius 0.21 nm, 0.34
nm and 0.48 nm in monolayer, bilayer and trilayer graphene. The free energy barriers, as
well as their difference, increase with decreasing pore radius and with increasing number
of graphene layers, thus making the pore more selective. Error bars are ±1 standard error
from five parallel simulations.

“Quantized” ionic current

Since ionic current density is related to free energy barrier as Jν = Jν0e
−∆Fν and

the energy barrier is related to the number of water losts from the solvation shell, the ionic

current is expected to have a step-like feature with respect to the pore size as it determines

the extent of dehydration. We see such step-like features in current density, as shown in
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FIGURE 5.5: Fractional dehydration in the first and the second hydration layers for
K+ and Cl− ions translocating through pores of radius 0.21 nm, 0.34nm and 0.48 nm in
monolayer, bilayer and trilayer graphene. Just like the free energy barrier, the dehydration
increases with the decrease in the pore radius and with the increase in the number of
graphene layers. Fractional dehydration is always smaller in the first hydration layer
compare to the second hydration layer. However, due to the larger energy of the first
hydration layer, it can have a larger contribution to the free energy barrier. Error bars
are ±1 standard error from five parallel simulations.

Fig. 5.6(b). However, the pore sizes themselves are “discretized” at this length scale (and

not perfectly circular), it is hard to determine if these features are sharp. Irregularly

shaped nanopores may allow one to examine intermediate pore sizes and determine if

these step features are indeed sharp. We leave this to a future study, although it is clear

from Fig. 5.6(a) that there is a change in current density when the second (for bi- and tri-

layer graphene) and first hydration layers (for all cases) are encroached upon.
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and tri- layer graphene. In each case, ln[ρeff ] correlates with the maximum free
energy barrier. (b) Current densities in the pore, JK = IK/πr

2
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2
p,

and their ratio versus rp for mono-, bi- and tri- layer graphene membranes. There is
no selectivity (IK/ICl ≈ 1) until both the length and radius of the channel significantly
encroach on the hydration layers. This occurs for a larger radius for bi- and tri- layer
graphene as both the first and second hydration layer are more significantly diminished
due to the larger pore length. Moreover, J is fairly constant for rp greater than the second
hydration layer radius (≈ 0.6 nm) and starts to drop as pore size decreases further. The
drop is much sharper below the first hydration layer (≈ 0.3 nm) to the extent that it
completely vanishes for bi- and tri- layer graphene. The error bars are ± 1 Block Standard
Error (BSE)

5.3. Discussion

Ion transport through sub-nanometer channels, where dehydration is inevitable, is

a key process in biology. Ion transport at this scale is also increasingly important in

applications, such as nanopore sequencing (both ionic [19, 116, 95] and electronic [104,

105, 107]), desalination [117] and filtration [118]. Graphene membranes and laminates, as

well as other atomically thick membranes, are playing a central role, where selective ion

transport and ion exclusion is desired [1, 87, 70, 119, 120, 81, 113]. Moreover, fundamental

studies demonstrate the possibilities of seeing ionic analogs of electric phenomena, such as

quantized ionic conductance [79, 80] and ionic Coulomb blockade [108, 121]. Examining
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pores with intermediate pore radii (but “non-circular”) may show that there is a notion of

quantized ionic selectivity, that for, e.g., trilayer graphene, as the pore radius is reduced,

the second hydration layer first gives raise to selectivity, and then the first layer.

Our results form the basis for engineering and understanding selectivity and exclu-

sion with multilayer graphene pores, where both the radial and longitudinal lengths can

be controlled at the sub-nanoscale level. This is a feat not easily achievable with other

approaches, i.e., solid state [79, 80] or carbon nanotubes [83, 84, 85] are not ideal for

tuning dehydration-based selectivity, despite some success in making ultra-thin solid state

pores[122]. Channel/pore geometry gives a range of possibilities for designing selective

pores, on top of which chemical functionalization [82] and other factors can be used to

modify their behavior.

5.4. Methods

5.4.1 All-atom MD simulations

We use multilayer graphene with AB stacking with a C-C bond length of ≈ 0.14

nm and inter-layer distance of ≈ 0.335 nm. We open a pore of nominal radius rn at

the center of each membrane by removing carbon atoms whose coordinates satisfy the

condition (x− xc)2 + (y− yc)2 < r2
n, where (xc, yc) is the center of mass in each graphene

membrane. However, the pore radius, rp, is measured from the inner edge of carbon atoms

(taking the inner edge to be their vdW radius) around the pore. The graphene membrane

has a square cross-section of 7.2 nm by 7.2 nm, which we immerse in an aqueous KCl

solution of concentration 1 mol/L that extends 5 nm on both sides of the membrane.

We perform all-atom molecular dynamics (MD) simulations using NAMD2 [88] with

a time step of 2 fs and employ periodic boundary condition in all directions. The water

model in our simulation is rigid TIP3p from the CHARMM force field. Non-bonded

interactions (van der Waals and electrostatic) have a cutoff of 1.2 nm but, we perform a

full electrostatics calculation every 8 fs using particle-mesh Ewald (PME) method [26]. We
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prepare the system using VMD[123] and then equilibrate the system using NAMD2. The

equilibration steps are (1) minimizing the energy of the system for 4000 steps, (2) heating

it to 295 K in another 8 ps, (3) a 1 ns NPT (constant number of particles, pressure and

temperature) equilibration using the Nose-Hoover Langevin piston method[89] to raise the

pressure to 101325 Pa (i.e., 1 atm), and (4) a 3 ns of NVT (constant number of particles,

volume and temperature) equilibration.

We use real-time, all-atom molecular dynamics simulations to calculate the ionic

current through the equilibrated system by applying an electric field perpendicular to the

plane of the membrane. We set the Langevin damping rate to 0.2/ps for carbon and water

(via its oxygen atoms) during these runs. We freeze the carbon atoms at the outer edge

of the graphene membrane, but the rest of the carbon atoms in the graphene membrane

are only confined by C-C bonds.

5.4.2 Solvation Shells

To calculate the solvation shells for each ion, we fix the ion in the center of a pore

and run equilibrium NVT simulations. Fig. 5.7 shows the solvation shell around K+ and

Cl− ions fixed at the center of 0.21 nm pore on mono-, bi- and tri- layer graphene. A

similar plot for 0.34 nm pore is shown in Fig. 5.1b. In monolayer graphene, the ion at the

center of the pore can maintain most of its first hydration shell. However, in bi- and tri-

layer graphene there is a greater loss of water from first hydration layer. The dehydration

is even stronger in the second hydration layer, loosing about 50%, 80%, and 90% of water

molecules in mono-, bi-, and tri- layer graphene, respectively. The water molecules around

the ion in the pore are spatially localized, thus giving fragmented solvation shells.

5.4.3 Free Energy Calculations

We calculate the free energy profile of an ion crossing the pore by using the Adaptive

Biasing Force (ABF) method [30, 31] as implemented in NAMD2. We compute the free

energy barrier within a cylinder of radius rp and height of 3 nm centered at the origin.

fig. 5.4 shows the free-energy profile for both K+ and Cl− ions and the difference in the

free energies of these two ions along the z-axis. The free energy barrier for each ion
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FIGURE 5.7: Water density (within the y = 0 plane) quantified by its oxygen location
around K+ and Cl− ions in bulk and mono-, bi-, and tri-layer graphene (shown as grey
bars) pores with radius rp = 0.21 nm. The white dotted circles demarcate the first and the
second hydration layers. The bi- and tri- layer graphene significantly excludes both the
first and second hydration layers. For monolayer graphene, however, most of the hydration
layers are still present due to the atomic thickness of the membrane (See Table 5.2).

increases as we decrease the pore radius or increase the number of graphene layers. Also,

the difference in the free energy barriers of K+ and Cl− increases for decreasing pore

radius and increasing number of graphene layers. The free energy barriers appear due to

dehydration of ions in the pore (see Fig. 5.5). As pore radius decreases and the number of

graphene layer increases, the fractional dehydration in the solvation shell of ion increases,

as shown in Fig. 5.2b.

5.4.4 Tables of Data
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monolayer

rp (nm) 0.21 0.34 0.48 0.57 0.6 0.73 0.79 0.96 1.11 1.2

IK (nA) 0.048 0.325 1.027 1.563 1.874 2.770 3.176 5.034 6.614 7.848

ICl (nA) 0.006 0.282 1.033 1.589 1.794 2.842 3.291 4.944 6.688 7.627

IK/ICl 7.50 1.15 0.99 0.98 1.04 0.97 0.96 1.02 0.99 1.03

bilayer

rp (nm) 0.16 0.34 0.48 0.57 0.6 0.73 0.79 0.97 1.11 1.2

IK (nA) 0 0.099 0.610 0.984 1.192 1.934 2.301 3.882 5.430 6.328

ICl (nA) 0 0.045 0.606 0.987 1.229 2.090 2.547 4.062 5.471 6.264

IK/ICl - 2.21 1.01 1.00 0.97 0.93 0.90 0.96 0.99 1.01

trilayer

rp (nm) 0.14 0.34 0.48 0.57 0.6 0.73 0.79 0.97 1.11 1.2

IK (nA) 0 0.059 0.446 0.819 0.949 1.586 2.050 3.280 4.755 5.380

ICl (nA) 0 0.005 0.430 0.684 0.981 1.701 2.062 3.479 4.699 5.727

IK/ICl - 10.94 1.04 1.20 0.97 0.93 0.99 0.94 1.01 0.94

TABLE 5.1: K+ and Cl− currents and their ratio in pores of various radii in monolayer,
bilayer and trilayer graphene. We measure the currents by counting the ions that cross
through the pore. There were no ion crossing events for the smallest pore in bilayer and
trilayer graphene.

K+ Cl−

rp = 0.21 nm rp = 0.34 nm rp = 0.21 nm rp = 0.34 nm
n1 n2 n1 n2 n1 n2 n1 n2

monolayer 4.7
(3.8)

13.1
(13.2)

7.6
(6.2)

15.9
(15.4)

5.1
(3.8)

15.4
(15.4)

7.7
(6.4)

17.8
(17.6)

bilayer 3.0
(3.1)

5.1
(3.5)

7.3
(6.1)

9.7
(7.9)

2.4
(2.9)

6.5
(3.7)

7.4
(6.1)

11.1
(9.1)

trilayer 4.0
(3.1)

2.1
(3.5)

7.3
(6.1)

8.2
(7.9)

4.0
(2.9)

2.2
(3.8)

7.7
(6.1)

8.8
(8.3)

bulk 6.8 23.0 6.8 23.0 7.4 26.3 7.4 26.3

TABLE 5.2: The average number of water molecules, 〈n〉, in the first and second hydration
layer for K+ and Cl− ions fixed at the center of the two smallest pores and in bulk. The
estimated water loss considering only the geometric confinement is shown in parentheses.
For the geometric estimate, mono-, bi-, and tri- graphene is approximated as a cylindrical
hole of thickness 0.3, 0.6 and 0.9 nm, respectively.
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K+ Cl−

rp = 0.21
nm

rp = 0.34
nm

rp = 0.21
nm

rp = 0.34
nm

monolayer 2.0 1.3 -1.6 -1.5

bilayer 2.2 1.4 -1.9 -1.5

trilayer 2.1 1.3 -1.8 -1.4

bulk 1.4 1.4 -1.4 -1.4

TABLE 5.3: Average dipole orientation along the radial direction in the first hydration
layer of K+ and Cl− in the two smallest pores and in bulk. When more water is excluded,
especially from the first hydration layer, the remaining water more strongly orients its
dipole to energetically compensate for the water loss.
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6. ACCESS RESISTANCE IN GRAPHENE NANOPORES

The effect of the bulk electrolyte on the measured resistance of a constriction – e.g.,

a nanopore – has long been of interest, going all the way back to Maxwell in the context

of electrical conduction. This access or convergence resistance is expected to be inversely

dependent on pore radius, rp, and independent of the bulk dimensions. Experiments and

simulation both give contradictory results for graphene nanopores, some yielding a clear

1/rp dependence and others seemingly lacking such a contribution (and giving only a

1/r2
p dependence). Continuum simulations predict an unambiguous 1/rp dependence, but

can not address the effect of local atomic structure (e.g., the role of charged functional

groups, membrane/pore fluctuations, etc.) that can obscure the behavior of the measured

resistance. Addressing these issues requires all-atom simulations. We demonstrate that

the convergence resistance is accessible with such simulations by using an appropriate finite

size scaling, which we confirm with continuum simulations. The scaling form removes a

contribution dependent on bulk dimensions and extrapolates to the large size limit. We

show that clean graphene nanopores have both 1/rp and 1/r2
p contributions all the way

down to the dehydration limit. This work will be published in future, however I presented

this work in 2017 APS March Meeting [124].

6.1. Introduction

Ion transport through pores and channels plays an important role in physiological

functions [112, 6, 75] and in nanotechnology, with applications such as DNA sequencing

[19, 116, 95], imaging living cells [22, 23, 125], filtration [118], and desalination [117],

among others. These pores localize the flow of ions and molecules across a membrane,

where sensors – e.g., nanoscale electrodes for DNA sequencing [107, 104, 105, 106, 108,

109, 110] – can interrogate the flowing species as they pass through and where functional

elements can selectivity regulate the movement of different species (e.g., ion types).
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FIGURE 6.1: Schematic of a graphene nanopore. The ionic solution is partitioned by
a graphene monolayer (shown as a grey, honey-comb membrane). Potassium (purple) and
chloride (yellow) ions are shown as vdW spheres but water is not shown even though it is
explicitly present in the simulations. The red, shaded region indicates the hemispherical
access – or convergence – region.

In particular, from DNA sequencing [2, 11, 10, 126] to filtration [81, 1, 3, 120],

graphene nanopores and porous membranes are one of the most promising avenues for

applications. Novel fabrication strategies and designs are under development to create

large-scale, controllable porous membranes [1, 3, 87] and graphene laminate devices [81,

113]. Moreover, the atomic thickness makes these systems ideal for interrogating ion

dehydration [70], which both sheds light on recent experiments [1, 3, 87] and will help

dissect the behavior of biological pores [70]. Dehydration has been predicted to give rise

to ion selectivity and quantized conductance in long, narrow pores [79, 80, 83, 84, 85] but

the energy barriers are typically so large that the currents are minuscule, a fact that is

rectified by the use of membranes with atomic thickness [70, 111].

Despite the intense interest in graphene pores, the physical behavior of their re-

sistance is still not understood. Experiments yield contradictory results, some showing a

dominant 1/rp access resistance contribution [2, 127] and some seemingly lacking this con-

tribution [10]. To compound this discrepancy, simulations also yield contradictory results,

some giving 1/rp [128] and others 1/r2
p [95]. We perform all-atom molecular dynamics



81

(MD) simulation using NAMD [88] to resolve the latter, showing that graphene pores, see

Fig. 6.1, have both an access and pore resistance contribution. To do so, we develop a

finite-size scaling analysis that shows that access resistance is accessible in all-atom MD

simulations.

Hall’s form of access resistance [94] is the classic result for ions to converge from

bulk – far away from the pore – to the pore mouth,

RHall =
γ

4rp
, (6.1)

where γ is the electrolyte resistivity and rp is the pore radius. This same form of resistance

is given by Maxwell [129], Holm [130] and Newmann [131] for electrical “contact” resistance

of a circular orifice. The above result assumes a hemispherical symmetry and homogeneous

concentrations (i.e., no concentration gradients, even near the pore, and no charges/dipoles

on the membrane), as well as an infinite distance between the pore and electrode. These

assumptions can hold in linear response and for cleanly fabricated pores (e.g., recent

low-aspect ratio pores show access only resistance following Eq. (6.1) [132]).

This form is independent of bulk dimension, which will hold for experiment so

long as the bulk dimensions are large and balanced 1. In confined geometries, however,

strong boundary effects or unbalanced bulk dimensions modifies this behavior (e.g., in

Scanning Ion Conductance Microscopy the imposed boundary close to the pore causes

the access resistance to deviate from its standard form [23, 133]). In MD simulations, in

particular, the simulation cells are both highly confined and periodic in order to collect

sufficient statistical information on ion crossings. The electric potential is thus simulated

via the application of a field perpendicular to the membrane surface, changing the potential

landscape from that due to electrode surfaces.

To address these issues, we use the form of contact resistance without an infinite

bulk. Its derivation is easier in rotational elliptic coordinates [129, 130, 131, 134], ξ and

1That is, the height of the, e.g., liquid cell should not be disproportionately large compared to its
cross-sectional length.
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FIGURE 6.2: Electric potential and access resistance in MD. (a) The potential
(color map), V , and normalized current density (arrows) when 1 V voltage is applied
across a graphene membrane with a radius rp = 1.43 nm pore. The resistance is large in
the pore region, resulting in the potential drop almost completely across the membrane.
(b) Resistance versus the simulation cell height H (red) and cross-sectional length L (blue)
for the pore in (a). For R versus H (L), we use L = 9.6 nm (H ≈ 14 nm). Equation (6.10)
provides an excellent fit to the MD data. Note that the ansatz predicts R∞ is higher than
where it apparently converges to, which is due to the fact that the bulk dimensions were
not changed in tandem as our ansatz indicates should be done. The value of R∞, though,
is consistent with the proper scaling procedure [see Fig. 6.4]. We will discuss this in more
detail in a later contribution. We use the electrolyte resistivity as the value from MD
simulations of a bulk-only cell (i.e., no graphene membrane), which gives γ ≈ 70 MΩ nm.
Error bars are ±1 Block Standard Error (BSE).

η, which are related to cylindrical coordinates, z and ρ, via

z = rpξη (6.2)

ρ = rp
√

(1 + ξ2)(1− η2). (6.3)

Laplace’s equation then becomes

∂

∂ξ

[
(1 + ξ2)

∂V

∂ξ

]
+

∂

∂η

[
(1− η2)

∂V

∂η

]
= 0. (6.4)

For boundary conditions, we consider a spheroidal electrode, reflecting the equipotential

surfaces that form even when a flat electrode is present, and a circular pore. That is, (1)

V = V0 on the pore mouth (ξ = 0), (2) V = 0 on a spheroidal electrode at distance l

(ξ = l/rp), and (3) ∂V/∂η = 0 on the membrane surface (η = 0).

We first examine Eq. (6.10) with continuum simulations, i.e., using Laplace’s equa-

tion, of both rectangular and cylindrical (finite) cells using the COMSOL Multiphysics
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FIGURE 6.3: Pore and access resistance in continuum simulations. Resistance
versus the bulk dimension L for cylindrical (green circles) and rectangular (black squares)
finite boxes. The membrane height is 1 nm (i.e., approximately that for graphene plus the
charged double layer) and the pore radius is rp = 1 nm (and γ from MD for consistency).
The bulk height is fixed to H = 140 nm in the top panel and the aspect ratio is fixed at
H = 2L in the bottom panel. We fit Eq. (6.10) for L ≤ 32 (solid lines) and extrapolate
to larger L (dashed lines). The fit for small values of L gives a good estimate of the true
resistance, i.e., the small simulation sizes achievable with all-atom MD are sufficient for
obtaining R∞.

finite element solver. Figure 6.3 shows that continuum simulations yield excellent agree-

ment with the ansatz and allow for the extrapolation of R∞ using quite small simulation

cells, which bodes well for the small simulation sizes typical of all-atom MD. Moreover, it

suggests that using the constant aspect ratio cells is better, as it yields less deviation over

all.

Although clearly idealizations, we already see features that reflect these boundary

conditions from all-atom MD. Applying a constant electric field (here, along the z-axis)

to the case of a pore in a graphene membrane gives rise to the flow patterns and fields in

Fig. 6.2. As expected, due to the large pore resistance, a charged double layer forms [135],
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FIGURE 6.4: Pore and access resistance in MD simulations. (a) The three panels
show the resistance versus cross-sectional length for different pore sizes. Here, we use
H = 2L as our ansatz suggests gives “balanced” simulation cell dimensions. Due to this,
though, there are only mild changes in the resistance as L increases from small values to
infinity. If an unbalanced cell is used, large changes in the resistance occur, see Fig. 6.2(b)
and Fig. 6.3 upper panel. Moreover, this can also result in non-monotonic convergence
to R∞. (b) The bulk resistance extracted for the three pores versus the pore radius rp.
This shows agreement with the Maxwell-Hall resistance, so long as the pore radius is
corrected by about 0.2 nm, a correction that is inline with accessible area for transport
due to dehydration energy barriers at the pore edge. Error bars in R are ±1 BSE. The
errors in the fitted values of f and R∞ are approximately ±0.2 and ±1 MΩ, respectively,
for all of the pores. While the error bars are still sizable, the trend is clear: there is a
decay following our ansatz (possibly with some finite size effects or nonlinearities) and the
resistance R∞ follows the Maxwell-Hall form.

with enhanced cation (anion) density on the positive (negative) voltage side. Almost

all the voltage drop occurs just across the membrane [indeed, over about 1 nm, Fig.

6.2(a)]. The potential at the pore mouth (which is essentially the whole pore due to the

atomic thickness) is not constant, but it is roughly so [the asymmetry between cations and

anions (in ion sizes, charges, interactions), as well as other effects, distort the potential

surface]. The deviation is mainly due to the fact that potassium ions come closer to the
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graphene membrane than chloride ions, pushing the potential outward. The equipotential

surfaces have roughly a hemispherical form (with deviation due to both simulation error

– the accumulated simulation time needs to be very large – and also due to atomic scale

features of the graphene, water, and ions). Due to the finite, large voltage, only boundary

condition (3) does not appear to be present. However, we expect them to yield the right

finite-size deviation from the Hall form (assuming, of course, that there are no charges

near the pore, etc.).

Using those boundary conditions, Eq. (6.4) yields

V

V0
= 1− tan−1 ξ

tan−1(l/rp)
. (6.5)

The current through the pore is then

I = −1

γ

∫ rp

0

∂V

∂z

∣∣∣
z=0

ρdρ =
2πrpVo

γ tan−1(l/rp)
, (6.6)

giving the access resistance

Raccess =
γ tan−1(l/rp)

2πrp
≈ RHall

(
1− 2rp

πl

)
, (6.7)

where the approximation is up to O
[ rp
l

]3 2. In confined geometries, one needs to account

for this correction term, especially in MD where the computational cost limits the bulk

dimensions to well below 100 nm.

As one moves away from the membrane, the equipotential surfaces start to become

flatter, taking on a bulk-like form. That is, the flow lines, while pointing radially inward

near the pore entrance/exit, orient along the z-axis further away, as do the electric field

lines. Thus, at some length, l ∼ O(L/2), where L × L is the simulation cross-sectional

2When l is about 2rp, the higher order corrections are small, about 2.6%, likely much smaller than
corrections due to atomic details at this scale.
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area, the resistance transitions from “access like” to “bulk like”, giving the total resistance

R =Rbulk + 2Raccess +Rpore

≈γ(H − 2l)

L2
+ 2

(
RHall −

γ

2πl

)
+Rpore, (6.8)

where the factor of two accounts for both sides of the membrane. The first term – the

bulk-like term – uses the total height H minus the two access-like regions of length l

(note, of course, that this assumes that we have subtracted out the membrane thickness

including charged double layers and that H is reasonably larger than 2l). Figure 6.2(b)

shows that we indeed have this bulk-like region as the resistance increases linearly with

H 3.

If all the linear dimensions of the cell (experimental or theoretical) are large, the

bulk component of the resistance will vanish and the resistance will be

R∞ = 2RHall +Rpore =
γ

2rp
+
γhp
πr2

p

, (6.9)

assuming cylindrical pore of height hp. The computational power to reach this limit with

all-atom MD is substantial. Thus, we would like to be able to extract R∞ without taking

the large cell limit.

We introduced Eq. (6.8) by supposing that there is a boundary between access-

like and bulk-like at l ∼ O(L/2) because, at the cell’s edge (whether periodic or hard

boundary), the resistance certainly can not be access-like. Moreover, this assumes H

is reasonably bigger than 2l, as otherwise one would have “feed” ions to the membrane

surface but without having a true bulk region. The region around l ≈ L/2 is some mix

of access and bulk properties. We can thus introduce factors f1 and f2, both of which

3Some previous studies have shown the dependence of the ionic current on the cell height at constant
voltage [136, 137]. However, in Ref. [136], the dependence is attributed to the difference in the applied
electric field as the height changes – for a fixed voltage, the applied field should decrease as the box height
increases – and, in Ref. [137], the difference is considered insignificant. However, in linear response, the
resistance contribution from the pore should be independent of the applied field or voltage. While we
have 1 V applied bias in order to have properly converged simulations, the main findings hold for smaller
voltages, as continuum simulations demonstrate, and we note that there is roughly linear behavior of the
I-V curve at this voltage, see Ref. [70].
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we expect to be around 1, that quantify the bulk and the access resistance reductions,

γf1L/A and 2γ/(πf2L), respectively. Here, A is the cross-sectional area of the box.

Since these both yield 1/L corrections (as we anticipate the intermediate region will too),

there is really only one factor f = f1 + 2/πf2 ≈ 1.6 for rectangular cross-section and

f = 4f1/π + 2/πf2 ≈ 1.9 for cylindrical cross-section. We will use f as fitting parameter

to extract R∞,

R =γ

(
H

A
− f

L

)
+R∞, (6.10)

with H reasonably bigger than L.

6.2. Results

To test this scaling form, we will need to simultaneously increase L and H to remove

the influence of the bulk-like region. If we take a constant aspect ratio, H = αL, this

reduces Eq. 6.10 to R = γ
(
α−f
L

)
+R∞ (for a rectangular geometry). This suggests that

if we knew f exactly, we could take α = f to remove the L-dependence of R, i.e., obtain

R = R∞ for a finite size simulation cell. Since we do not know f exactly, we will take

α = 2, somewhat larger than the expected value of f , which will simultaneously ensure

that R converges to R∞ from above and reduce the amount that R changes by as L

increases.

We now employ our finite-size scaling ansatz to address the access resistance in

graphene nanopores. Figure 6.4(a) shows the resistance versus L for H = 2L. Using the

extracted R∞, we can determine the behavior versus rp (due to computational cost, we

examine only a small range of rp). We allow, however, for one additional parameter in

fitting R∞ versus rp, i.e., we take rp− δ since ions do not cross too close to the pore edge

(defined here by the van der Waals spheres of carbon). Figure 6.4(b) shows that a best fit

gives a reduction of δ ≈ 0.2, exactly the value one would expect from steric effect of the

hydration (i.e., without incurring an extra energy penalty) and consistent with Fig 6.8.
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The other two fitting parameters (a and hp in aγ/2(rp− δ)−hpγ/π(rp− δ)2) come out to

be a = 1 and hp = 1.4 nm 4. That is, we find the Maxwell-Hall form for the access part

and that the graphene effective thickness is 1.4 nm, which is in agreement with the extent

of the charge double layer.

Thus, when properly defining the pore radius – to that giving the accessible area

for ion transport – this shows that the resistance is a combination of both 1/rp and 1/r2
p

behavior. Structure at the nanoscale – in this case, hydration layers and charge double

layers – can obscure the parameters that appear in R∞, making it difficult to properly

determine the dependence of the resistance on the radius. More generally, there are many

sources of ambiguity: Uncertainties in measured values and in the pore depth (e.g., multi-

layer versus single layer graphene) and pore size (and aspect ratio / non-circularity),

plus unknown charged functional groups or dipoles (that would enhance 1/rp behavior by

creating excess density at the membrane surface that “feeds” the current through the pore

via its circumference), all affect either the balance of 1/rp and 1/r2
p behavior, or how well

one can extract that behavior. This list can also include nonlinearities: MD simulations,

for instance, often use high voltages. We demonstrate in Ref. [70] that around 2 V there is

the onset of polarization-induced chaperoning of ions through the pore. This will tilt the

balance in favor of access resistance as the limiting resistance (and thus the contributions

of 1/rp compared to 1/r2
p). Different membranes and different conditions can thus display

different behavior, but “clean” graphene membranes with pores larger than the hydration

radii of the ions have both access and pore contributions to the resistance for nanometer

scale pores (as the pore radius gets larger, though, access resistance will then dominate,

as seen in Ref. [2]).

4Due to the small number of pores examined, there are no error bars in these quantities.
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6.3. Discussion

Our results demonstrate that one can indeed capture pore and convergence resis-

tance in reasonably sized simulations, despite what one would expects based on long-range

behavior of access resistance [136]. Moreover, our results imply that there is a minimum

simulation size required to fully capture the resistance of the pore and convergence region.

The deviation of access resistance from the Maxwell-Hall form depends on rp/l, thus one

needs the bulk dimension to be many times larger than rp in order to capture its true

behavior. For the simulation cell size that is too small, the potential and densities will

not be fully converged and will be artificially distorted at the periodic boundary (or finite

edge). These distortions obscure the dependence of the resistance versus pore radius.

Designing porous membranes requires an understanding of both the pore and the

influence of the bulk electrolyte. Since the pores are of nanoscale and sub-nanoscale

dimensions (about 1-2 nm in diameter for molecular detection and less than 1 nm for

many biological ion channels and filtration applications), atomic scale details are often

necessary to make effective predictions and to develop phenomenological models that

elucidate the general physical behavior. However, conventional theories on fluid dynamics

and ion-transport may not give correct predictions at this scale. For example, the nearby

electrolytic medium deviates from continuum behavior [138, 139, 140, 141] once atomic

details are taken into consideration. Inevitably, there will be a trade off between the

physical dimensions of these simulations and the time scales (and voltages) reachable.

Our finite-size scaling ansatz, Eq. (6.10), gives a theoretical approach to guide this trade

off and converge the convergence resistance.

6.4. Methods

6.4.1 All-atom MD simulations

Our system consists of a single-layer graphene membrane with a pore in the center

and in 1 Mol/L KCl solution, as shown in 6.1. We built the system using VMD 1.9.1
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(a) (b) (c)

rp rp

rp

FIGURE 6.5: A 6 nm × 6 nm section of the graphene sheet showing the pores with radii
(a) rp = 0.73 nm, (b) rp = 1.43 nm, and (c) rp = 2.09 nm. We construct the pores by
removing all carbon atoms within 0.8 nm and 1.5 nm, respectively, of the pore center and
also removing any dangling bonds. The radius of the pore is, however, defined as the
average distance between the center of the pore and the pore atoms at the edge minus the
van der Waals radius of carbon.

[142] and perform all-atom molecular dynamics simulations using NAMD2 [88] with pe-

riodic boundary condition in all directions. The force field parameters are rigid TIP3P

for water and CHARMM27 for the other atoms. We consider three pore sizes with ra-

dius rp = 0.73 nm, rp = 1.43 nm, and rp = 2.09 nm, as shown in Fig. 6.5. We fix the

outer edge of the graphene membrane but the bulk of the membrane has no confinement

other than the C-C bonds of graphene. The simulations have an integration time step of

2 fs and Langevin damping of 0.2 ps for only carbon and water (via its oxygen atoms).

Non-bonded interactions (van der Waals and electrostatics) have a cutoff of 1.2 nm. How-

ever, full electrostatic calculations occur every 4 time steps using the Particle Mesh Ewald

(PME) method. We first minimize the energy of the system for 4000 steps (8 ps) and

then heat it to 295 K in another 8 ps. A 1 ns NPT equilibration using the Nose-Hoover

Langevin piston method [89] – to raise the pressure to 101 325 Pa (i.e., 1 atm) – fol-

lowed by 3 ns of NVT equilibration generates the initial atomic configuration. An electric

field perpendicular to the plane of the membrane drives the ionic current through the pore.

6.4.2 Pore radius

The radius of the pore is taken as the average distance between the center of the

pore and the pore atoms at the edge minus the van der Waals radius of carbon (0.17
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FIGURE 6.6: Probability distribution of K+ and Cl− ions crossing the pores with radius
(a) rp = 0.73 nm, (b) rp = 1.43 nm, and (c) rp = 2.09 versus the cylindrical coordinate

ρ =
√
x2 + y2. The black arrow at the bottom shows the value of ρ which captures 99

% of crossing event for K+ ions. The insets show scatter plots of ion crossings in the xy
plane.

nm), i.e., the average distance between the center of pore and edge of the carbon atoms.

However, the radius of the accessible area for the transport of ions is at least 0.1 nm to

0.2 nm smaller than rp, as show in Fig. 6.6. This exclusion near the pore edge is due

to vdW repulsion (finite ion size since we already account for carbon’s vdW radius) and

dehydration. Dehydration effects suggest that rp should be corrected by around 0.2 nm.

An alternative – but more complex – approach would be to weight each area element

by a Boltzmann factor that contains the local free energy (e.g., of dehydration or other

interactions).

6.4.3 Error analysis for convergence in time

We compute the error in the MD results using the Block Standard Error (BSE)

method [90]. We divide a single MD run of duration T into number of contiguous blocks
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of equal duration τ . The BSE is given by

BSE =
sτ
√
τ√
T
, (6.11)

where sτ =
√∑

i(〈Iτ 〉i−〈IT 〉)2
(Nb−1) is the standard deviation of the mean current 〈Iτ 〉, within

each of the Nb blocks. The error bars in the plots are ±1 BSE unless otherwise noted.
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FIGURE 6.8: a) K+ and Cl− ion densities, and (b) net charge density when a 1 V voltage
is applied across a graphene membrane with a radius rp = 0.73 nm pore. The peak of
K+ ion concentration is closer to the graphene membrane than that of Cl− due to smaller
ionic size of the former. The z distance between the two peaks is about 1.5 nm.
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6.4.4 Finite size scaling

In Fig. 6.7, we fit a modified form of Eq. 6.9 for L = 8.4 nm, L = 9.6 nm, and

L→∞,

RL =
aLγ

2(rp − δ)
+

hLγ

π(r2
p − δ)

(6.12)

where aL and hL are fitting parameter, and δ = 0.2 nm. For L = 8.4 nm and L = 9.6 nm

the access resistance is larger than Hall’s form due to the unbalanced dimensions of the

cell and the cell’s relative size compared to the differing pore radii. Only when L → ∞
do we get exactly the Maxwell-Hall value. Also the the fitted value of the membrane

thickness is ≈ 1.4 nm. This is consistent with the separation of ion density peak on the

two sides of the graphene membrane as seen in Fig. 6.8.

6.4.5 Electric Fields and Current density

We calculate the electrostatic potential and the charge density using VolMap plugin

of VMD. The current density is the average ion displacement between the snapshots (10

ps) over the length of simulation,

~J(~r) =

∑
i qi~vi(~r)

dV
, (6.13)

where the sum is over all the ions within the volume element dV (with dx = dy = dz = 0.1

nm) at position ~r.

Figure 6.9 shows the flow pattern for three different cross-section cells with a pore

radius rp = 1.43 nm. In each of them the current density J quickly orients along z-axis.

It is also seen from Fig 6.9 that J decreases with A = L2, which can be understood by

looking at the average value of Jz according to our model,

〈Jz〉 =
V

RA
=

V

γ(H − fL) +R∞A
. (6.14)



94

−6

−3

0

3

6

−3 0 3 −6 −3 0 3 6 −6 −3 0 3 6

z
(n
m
)

x (nm)

L =10.8 nm

−6

−3

0

3

6

−3 0 3

x (nm)

L =13.2 nm

−6 −3 0 3 6

x (nm)

L =15.6 nm

−6 −3 0 3 6

FIGURE 6.9: The current density J , showing the flow pattern for different cell cross-
sections from MD simulations of a graphene nanopore with radius rp = 1.43 nm. The flow
quickly orient with the z-axis away from the pore regardless of the cross-sectional area of
the cell. Note that J is not constant with L due to a changing balance of bulk and pore
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radius ρ = 1 nm for rp = 0.73 nm (red line) and radius ρ = 2 nm for rp = 1.43 nm
(green line). The slope of potential drop is constant and equal to bulk resistiviy beyond
|z| & h0/2 (with h0 ≈ 9 for rp = 1.43 nm and h0 ≈ 7 nm for rp = 0.73 nm). But within
|z| . h0/2 the slope increases initially very slowly and then very rapidly near the pore
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6.4.6 Bulk Resistivity

We calculate the bulk resistivity from our MD simulations using a cell without the

graphene membrane/pore. The standard value of the bulk resistivity is γ = 1/ne(µK +

µCl) ≈ 67 MΩ·nm. The value from MD is γMD ≈ 70 MΩ·nm, as shown in Fig. 6.10. It is

to be noted that the actual value of resistivity of 1 M KCl at room temperature observed

in experiments is γexp ≈ 90 MΩ·nm. At the high concentration of KCl (such as 1 mol/L),

the conductance deviates from the linear expression, γ = 1/ne(µK + µCl). However, the

MD results give the conductance according to the linear expression.

In Fig. 6.11 we plot the potential drop along the z-direction when 1 V potential

is applied across the graphene membrane. At larger distances, ∆z from the pore, the

potential drop, ∆V , is proportional to the bulk resistivity γ, since

∆V = I∆R =
Iγ∆z

A
, (6.15)

where ∆R is the resistance of the region away from the pore.



96

7. ENABLING PHOTOEMISSION ELECTRON MICROSCOPY IN
LIQUIDS VIA GRAPHENE-CAPPED MICROCHANNEL

ARRAYS

Photoelectron emission microscopy (PEEM) is a powerful tool to spectroscopically

image dynamic surface processes at the nanoscale but is traditionally limited to ultra-high

or moderate vacuum conditions. Here, we develop a novel graphene-capped multichannel

array sample platform that extends the capabilities of photoelectron spectro-microscopy

to routine liquid and atmospheric pressure studies with standard PEEM setups. Us-

ing this platform, we show that graphene has only a minor influence on the electronic

structure of water in the first few layers and thus will allow for the examination of min-

imally perturbed aqueous-phase interfacial dynamics. Analogous to microarray screen-

ing technology in biomedical research, our platform is highly suitable for applications

in tandem with large-scale data mining, pattern recognition, and combinatorial methods

for spectro-temporal and spatiotemporal analyses at solid-liquid interfaces. This work

was done in a large collaboration with Evgheni Strelcov (CNST, NIST), Hongxuan Guo

(CNST, NIST), Alexander Yulaev (Department of Materials Science and Engineering,

University of Maryland, College Park), Jian Wang (Canadian Light Source Inc., Canada),

Narayana Appathurai (Canadian Light Source Inc., Canada), Stephen Urquhart (Univer-

sity of Saskatchewan, Canada) , John Vinson (Material Measurement Laboratory, NIST),

and Andrei Kolmakov (CNST, NIST). The full version can be found in Ref [143].

7.1. Introduction

Electron spectroscopy [144, 145] in liquids aims to boost our understanding of the

solid-liquid-gas interface relevant to environmental [146], energy [147, 148], catalysis [149]

and biomedical research [150]. The pressure gap between the liquid or gaseous sample

and the ultra-high vacuum (UHV) partition of the experimental setup (i.e., the electron

energy analyzer) is usually bridged via judiciously designed differentially pumped electron
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FIGURE 7.1: Multichannel array sample design and experimental setup. a)
SEM (5 keV, color coded) image of water filled graphene-capped microchannel sample; the
darker channels correspond to the graphene-capped but empty channels; b) The schematics
of the PEEM and liquid cell setups; c) PEEM images of the water filled MCA collected
at different X-ray energies while crossing the O K-edge; d) The resultant XAS spectra
collected from different ROIs: water-filled (blue circle and spectrum) and empty (red
circle and spectrum) channels. White squares mark the channels that exhibit the dynamic
behavior. The spectra were normalized to incident X-ray intensity

optics [151] in combination with an advanced sample delivery systems [152, 153, 154, 155].

Experimental challenges, however, delayed the application of the photon-in electron-out

imaging techniques to solid-liquid interfaces.

Novel 2D materials such as graphene have recently enabled an alternative, truly

atmospheric pressure, photon-in electron-out X-ray photoelectron spectroscopy (APXPS)

[156, 157, 158, 159, 160] via separation of the liquid or gaseous sample from UHV with

a molecularly impermeable but yet electron transparent membrane. The subnanometer

thickness of these membranes is smaller or comparable to an electron’s inelastic mean

free path (IMFP). Thus, the photoelectrons can traverse the membrane without signifi-

cant attenuation while preserving their characteristic energies. The drastic reduction of

the complexity of the experimental setup allowed the first scanning photoelectron mi-

croscopy (SPEM) measurements to be performed in liquid water through graphene-based

membranes [157]. However, focused X-ray beam raster scanning during SPEM chemical
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mapping impedes real-time or prolonged imaging of dynamic processes and decreases the

lifetime of the membranes [161]. Therefore, an implementation of the full field of view

(FOV) PEEM imaging, is advantageous due to reduced photons density at the sample and

acquisition at video frame rate (see, e.g., Bauer [162] and references therein). Though FOV

photoelectron imaging of the dynamic processes and objects, such as working catalysts or

live cells, in their native high pressure gaseous or liquid environments, was a long-standing

scientific goal, the differential pumping approach, so successful in APXPS, resulted only in

10-1 Pa of near sample pressures so far when applied to the PEEM setup [163]. The near-

sample pressure value was limited mainly by the reduced lifetime of the imaging detector

and possible discharge development between the sample and PEEM objective lens. An

approach, which surmounts these restrictions, was proposed and tested in Ref [164] based

on an environmental cell consisting of two 100 nm to 200 nm thick Si3N4 membranes with

a liquid layer of micrometer thickness in between [165]. The PEEM images of the liquid

interior of the cell can only be obtained within water soft X-ray transparency window (h

285 eV to 532 eV) and in transmission mode. For that Si3N4 membrane facing the PEEM

objective lens was covered with a thin gold photocathode to convert transmitted X-rays

to photoelectrons. These very first feasibility tests were, to the best of our knowledge, the

only PEEM measurements of hydrated samples so far. On the other hand, prior PEEM

research of buried interfaces revealed that the ultra-violet (UV) excited photoelectrons can

be recorded through SiO2 films from the depths exceeding many IMFPs [166]. Therefore,

standard PEEM imaging in liquids and dense gasses can be feasible, in principle, using

photoelectrons, provided that UHV and high-pressure environments are separated with

a thin enough membrane. The latter possibility has been proven recently in an X-ray

(X-)PEEM spectromicroscopy study of thermally induced segregation of nano-bubbles at

a graphene-Ir interface filled with high pressure ( GPa) noble gases [167] .

Here, we develop a novel, versatile microchannel array (MCA) platform that enables

a wide range of photoelectron emission spectromicroscopies in liquids through a graphene

membrane using UV or soft X-rays. Unlike the case of the aforementioned PEEM shadow
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FIGURE 7.2: A snapshot from the MD simulation of water channel capped with a)
graphene and b) gold. This is the full unit cell, and the simulation is periodic in all
directions. Carbon and gold atoms are frozen during the simulation and, since there is
periodicity in all directions, the water molecules can move around the boundary. The
cross-section of the cell is kept fixed during an entire simulation, but the height of the box
was adjusted during equilibration to obtain the targeted pressure and temperature.

imaging of immersed objects in the transmission mode, we were able to collect XAS

spectro-temporal data of dynamic processes at the graphene-liquid interface in operando

and submicron spatial resolution using standard laboratory or synchrotron-based PEEM

equipment.

7.2. Methods

Multichannel array liquid sample platform for PEEM

PEEM at liquid-solid interfaces became possible as a result of successful development of

a UHV compatible liquid sample MCA platform proposed in Ref [161]. Liquid water was

impregnated into the gold coated silica matrix made of an ordered array of 300 m deep and

4 m wide parallel channels (Fig. 7.1 a). The top of the MCA was covered and isolated from

the vacuum with an electron-transparent membrane made of a bilayer graphene (BLG)

stack (Fig. 7.3 b). The bottom of the sample was sealed with a water-immiscible sealant.
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The water filling factor (the ratio between water filled and empty channels) is routinely

in excess of 85 % at the beginning of the experiment in UHV and slowly decays with

time. The lifetime of the liquid inside such a sample usually exceeds a few hours and

is limited mainly by the graphene quality and interfacial diffusion of water molecules.

The MCA sample containing thousands of water filled micro-channels and capped with

BLG was illuminated with monochromatic soft X-rays with an energy between 525 eV

and 560 eV, covering the O K-absorption edge ( 535 eV). Under this excitation, fast

photoelectrons and Auger electrons from the liquid which have the IMFP in excess of

the thickness of the capping BLG membrane are able to escape into the vacuum with

only minor attenuation [168]. These electrons constitute the total electron yield (TEY)

which was used for spatially resolved XAS of the liquid or for spectrally resolved PEEM

imaging (Fig. 7.1 b, c). Water containing areas have a sharp characteristic onset in the

absorption cross-section around h 535 eV and thus can be easily discriminated from the

other substrate materials (graphene, Au) which have a flat photoemission background

across this energy range.

7.2.1 Liquid cell design, graphene transfer, sealing

MCA is based on a commercial silica-based glass matrix used for the fabrication

of the multi-channel electron detectors. Before graphene transfer, the top surface of the

MCA was metallized with Au (200 nm) / Cr (10 nm) film via sputtering. Monolayer

graphene was CVD grown on the surface of a copper foil and coated with a PMMA

sacrificial layer. The Cu foil was etched in 200 mol/m3 ammonium persulfate solution.

The PMMA/graphene stack was then cleaned in deionized (DI) water and wet transferred

onto a monolayer graphene on copper. After drying and annealing of the PMMA/BLG/Cu

stack, the metal foil was etched again and after DI water cleaning the PMMA/BLG was

transferred on to the Au surface of the MCA. After annealing the PMMA was stripped off

by acetone. The acetone was gradually substituted by Isopropyl alcohol and then by DI

water at room temperature. In the last step, the water-filled MCA sample was vacuum

sealed from the back by UV curable glue or liquid Ga. The latter approach provides a
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cleaner graphene-water interface.

7.2.2 PEEM setup

X-ray PhotoEmission Electron Microscopy (X-PEEM) was conducted at the 10ID-

1 SpectroMicroscopy (SM) Beamline of the Canadian Light Source (CLS), a 2.9 GeV

synchrotron. The beamline photon energy covers the range from 130 eV to 2700 eV, with

a 1012 s-1 photon flux at the O K-edge (540 eV) and the beamline exit slit size set at

50 m x 50 m. The plane grating monochromator (PGM) is able to deliver a spectral

resolution of better than 0.1 eV in the measured energy range, and the photon energy

scale was calibrated based on samples with known XAS features. The monochromatic

X-ray beam was focused by an ellipsoidal mirror down to 20 m spot and irradiated on the

sample in PEEM at a grazing incidence angle of 16o. The sample is biased at -20 kV with

respect to PEEM objective. FOV image stacks (sequences) were acquired over a range of

photon energies at the O K-edge. The incident beam intensity was measured by recording

the photocurrent from an Au mesh located in the upstream part of the PEEM beamline,

and was used to normalize the PEEM data acquired from the sample ROIs. X-PEEM

data were analyzed by aXis2000 (http://unicorn.mcmaster.ca/aXis2000.html), and other

routine image processing software packages.

7.2.3 Simulations

We ran all-atom molecular dynamics (MD) simulations using NAMD [88] with a

time step of 1 fs and periodic boundary condition in all directions. The simulation cell

consists of 200 water molecules interfacing two parallel sheets of bi-layer graphene of cross-

section 1.2 nm by 1.2 nm with 2 nm of vacuum between them, as shown in Fig. 7.2a. We

use CA type carbon from the CHARMM27 force field and rigid TIP4p water [27]. Van der

Waals and electrostatic interactions have a cut-off of 0.8 nm but we perform a full electro-

static calculation every 4 fs via the particle-mesh Ewald (PME) method [26]. To get the

production run structures, we minimize the energy of the system in 4 ps and then raise the

temperature to 295 K in another 4 ps. Then, we perform a 1 ns NPT (constant number of

particles, pressure, and temperature) equilibration using the Nose-Hoover Langevin piston
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method [89] to raise the pressure to 101,325 Pa (i.e., 1 atm) followed by 1 ns of NVT

(constant number of particles, volume, and temperature) equilibration to generate the

initial atomic configuration. The Langevin damping rate is 0.1 ps-1 on all atoms except

the carbon atoms (which are fixed during the simulation). The final production run is 0.5

ns of NPT simulation starting with the equilibrated system from which 10 snapshots 50

ps apart were taken for calculating the XAS. Using the structures from MD, we calculate

the oxygen K-edge XAS using the Bethe-Salpeter equation approach implemented within

the OCEAN code [169, 170]. Spectra were calculated and averaged over two perpendic-

ular X-ray polarizations in the plane of the graphene. The MD simulation cells were too

large to carry out X-ray calculations, so each snapshot was cut down to contain only the

single graphene layer surface and the first 128 water molecules placed within a 1.2 nm

by 1.2 nm by 4.0 nm box, leaving a vacuum layer of 0.8 nm between the carbon atoms

and the periodic image of the water. To account for the short electron inelastic mean free

path, we average the contributions of the first 48 oxygen atoms, constituting a depth of

approximately 1.0 nm from the shallowest to deepest water molecule below the surface.

The bulk spectrum is the result of 5 MD snapshots taken from a 226 water molecule cell.

We also perform MD simulations for gold-capped water channels, see Fig. 7.2b.

Here, the simulation cell consists of two sheets of gold each of cross-section 1.24 nm by

1.24 nm separated by 1.58 nm of vacuum on one side and 291 water molecules on the

other. Each sheet has three layers of gold atoms that are frozen during the simulation.

For gold atoms, we use the face-centered cubic (fcc) structure and the parameters for the

van der Waals interaction between gold and water are from the Ref.[171]. The remaining

simulation details are the same as the graphene-capped water channel. Our model does

not take into account polarization of the metal due to interaction with water. Individual

water molecules can produce a significant image potential on gold. For large numbers of

water molecules, however, this image potential becomes insignificant due to the averaging

out of dipole orientations [172]. Other studies show that polarization does not have a

significant effect on interfacial water structure [173]. Since the dominant effect in gold is
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the screening of the core hole, any small structural change due to polarization or other

interactions will not substantially change the XAS spectrum. For determining whether

two water molecules are hydrogen bonded, we use the criteria that the oxygen-oxygen

distance is less than 0.35 nm and the oxygen-oxygen-hydrogen angle is less than 35◦ [174].

The molecules are counted as double donor (DD), single donor (SD), and non-donor (ND)

when the number of hydrogen atoms contributing to hydrogen bonds is two, one, and zero,

respectively.

Oxygen K-edge XAS Calculations

The OCEAN code requires the one-electron wavefunctions of the ground-state system as

an input for the Bethe-Salpeter equation (BSE). For this, we use density functional the-

ory (DFT) within the local density approximation as parameterized by Ceperley, Alder,

Perdew, and Wang [175]. We make use of the QuantumESPRESSO code [176], and take

advantage of an efficient k-point interpolation scheme [177, 178]. The BSE approach

retains two electron-hole interaction terms in addition to the non-interacting DFT Hamil-

tonian; the attractive direct and repulsive exchange. We calculate these explicitly using

a combination of a local and a real-space basis. A pseudopotential inversion scheme is

necessary to reconstruct the all-electron character of the DFT conduction-band states

near the core hole [175]. Within the BSE, the dielectric response of the system screens

the direct interaction, for which we take the random phase approximation coupled with

a model dielectric function to capture the long-range response [179]. We use an energy

cut-off of 952 eV (70 Ryd.) for the DFT calculations and calculate DFT states at the

Gamma point. The k-point interpolation scheme expands this to a 2 2 2 k-point mesh

for the x-ray calculations. For the graphene surface, we use a 1.2 nm by 1.2 nm by 4.0 nm

box containing 128 water molecules and 66 carbon atoms. For the gold, this was changed

to a 1.224 nm by 1.224 nm cross section with 36 gold atoms. The screening calculation

uses 9000 bands, covering a range of 100 eV above the Fermi level. The BSE states include

5100 bands of which approximately 4456 (4390) were unoccupied for the graphene (gold)

surface cells with a metallic surface layer, not all k-points will have the same number of
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FIGURE 7.3: Water structure, hydrogen bonding, and theoretical XAS spec-
trum. a, A snapshot of the bilayer graphene-capped water channel from the MD sim-
ulations. The simulation is periodic in all directions with the full unit cell shown in
Fig. 7.2a. b, Density of water molecules with differing numbers of hydrogen bonds they
donate (DD=double donor, SD=single donor, and ND=non-donor) versus distance from
the graphene sheet. a and b share the same z-axis scale and alignment. The graphene
induces a density oscillation in the water, as well as a change in the relative population of
different donating species. c, The oxygen K-edge XAS spectrum for water at the graphene
interface (green) and the spectrum for bulk water (red) as a function of excitation energy.
The bulk water spectrum was y-offset for clarity. The presence of graphene does not
significantly affect the spectrum of water. This is due to the weak graphene-water in-
teraction: The graphene surface reduces the number of hydrogen bonds, but does not
otherwise align water molecules at the surface. Moreover, the core-hole screening by the
BLG is not strong enough to suppress the pre-edge peak (as it does with gold). Thus, this
peak, as well as the relative location of the main peak are the same for bulk water and
water at the graphene interface. The error bars of the XAS curves denote the variance of
the mean across different MD snapshots.

occupied bands. The local basis for calculating the exchange and short-range components

of the direct interaction consists of four projectors per angular momentum channel for s-d

and three for f. The real-space basis is a regular 24 24 80 grid. The bulk cells contain

226 water molecules within a 1.8 nm by 1.8 nm by 2.1287 nm box and the real-space basis

is a 32 32 40 grid. All other parameters are the same as for the cells with surfaces. The

long-range part of the dielectric response to the core-hole potential is calculated using a

model dielectric function. For all three setups, we used the bulk water dielectric constant

of 1.8.



105

7.3. Results

Figure 7.1c shows a set of four PEEM images of the BLG-capped water filled MCA

recorded at different energies while scanning across the O K-edge. The contrast in these

images originates from spatial variations of the local TEY from the Au-coated MCA ma-

trix and the graphene-capped MCA channels. The graphene-capped channels can either

be filled with liquid water or be empty. A fraction of the channels does not have a graphene

cap and these have the lowest signal in Fig. 7.1 c. As can be seen, the contrast between

water filled and empty channels is minuscule below O-K absorption threshold at h 535 eV

and increases drastically above it. Such sequences of PEEM images constitute a spatial

X-ray absorption chemical map and specific regions of interest (ROI) can be designated for

site-selective XAS. Figure 7.1d compares two such XAS spectra collected from two ROIs:

water filled (blue) and empty (pink) channels. The empty channels show weak spectral

feature at 532 eV characteristic of carbonyl group containing hydrocarbons [180]. These

contaminations have been previously observed in XAS of ice and water [181] and in our

case can also be due to polymethylmethacrylate (PMMA) residue at the BLG membrane

left after graphene transfer [182]. The filled channels, on the other hand, demonstrate

an XAS spectrum with pronounced features and a shape typical of liquid bulk water

probed via TEY or in transmission detection modes (see reviews [183, 184] and references

therein). Such a spectrum is a result or transitions from the strongly localized O 1s core

level of water molecules to unoccupied valence orbitals derived from the gas-phase 4a1 and

2b2 states[185]. The particular feature of these unoccupied orbitals is their p character

(due to the dipole selection rule) that results in their noticeable directionality and spa-

tial extension far beyond hydrogen atoms. Since hydrogen atoms participate in hydrogen

bonding (H-bonding) in water, XAS O K-edge spectra are very responsive to variations

in electronic and/or structural environment around the probed water molecule. In good

accordance with prior XAS works on liquid water [181, 183], our PEEM-derived XAS spec-

trum in Fig. 7.1 d has a characteristic pre-edge ( 535 eV), main peak ( 537.5 eV) features

and a post-edge band around 541 eV. The commonly accepted interpretation of water
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XAS features assigns these pre-peak and main band to the excitation of water molecules

with one broken (or largely distorted H-bond, a so called single-donor (SD) molecules)

while the post-edge band corresponds to the molecular environment with strong H-bonds

(double donor (DD) molecules) and increased tetrahedrality [185].

It is important to emphasize that the XAS spectrum in Fig. 7.1 originates from the first

few layers of water at the graphene-water interface. This interfacial sensitivity of the

through-membrane PEEM spectromicroscopy stems from the attenuating role of the BLG

layer, which has low transparency for slow few eV secondary electrons emitted from deeper

water layers [186]. Therefore, the bulk-like nature of our spectra indicates that interaction

of interfacial water molecules with graphene is very weak and neither the electronic nor

the geometrical structure are strongly affected by the graphene. A previous XAS study of

interfacial water in contact with gold revealed the significant suppression of the pre-edge

peak under similar experimental conditions [187]. Thus, graphene represents a model

benchmark material to study interfacial water behavior with PEEM.

Modelling of the graphene-water interface

To gain deeper insight into these differences, we simulate graphene-water structures with

all-atom molecular dynamics (MD) simulations and perform calculations of the oxygen

K-edge XAS, as described in the Methods. As shown in Fig. 7.3 a, b, the structure of

the water about 1 nm away from the graphene is already bulk-like. The presence of

the graphene does, however, induce water density oscillations (see Fig. 7.4 a) and results

in interfacial water losing about 30 % of its hydrogen bonds (Fig. 7.4 b). The latter

is reflected in the different proportions of donating species of water near the graphene

(Fig. 7.3 b). Despite these changes in interfacial H-bonding and density, the theoretically

computed XAS spectrum is similar to one computed for bulk water (Fig. 7.3c). As with

the experimental results, the characteristic pre-edge peak is present in both spectra and of

approximately the same relative magnitude compared to the main peak. This is in stark

contrast to the aforementioned XAS of liquid water near the gold surface [187], where

it was found that the large increase in broken hydrogen bonds (expected to strengthen
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the pre-edge peak) is overwhelmed by the screening provided by the gold atoms. The

highly effective screening of core holes created near the gold surface weakens the core-

hole potential, blue-shifting XAS spectrum and reducing the intensity of the lower-energy

peaks (see Fig. 7.5b). On the other hand, the BLG layer does not screen the X-ray induced

core hole appreciably, and thus does not suppress the pre-edge peak. In total, for water

near a BLG layer, both the structural and electronic effects of the surface are significantly

weaker than for water-gold interface, resulting in the similarity of the interfacial and bulk

water XAS.

FIGURE 7.4: a) Density profile for water adsorbed on graphene and gold as a function of
distance from the interface. In both cases, oscillations are induced by the presence of the
surface, with gold giving rise to slightly stronger oscillations than graphene; b) Hydrogen
bonds per water molecule vs. distance, z, from the graphene/gold surface. The number
of hydrogen bonds rapidly approaches the bulk value away from the surface. Nearby the
surface, however, the number of hydrogen bonds are depleted by about 30 %.

7.4. Summary

In summary, we developed a novel multichannel, graphene-capped array platform

that is UHV compatible and is able to retain liquid samples for hours. The latter, in

conjunction with high electron transparency of the bilayer graphene, allow us to conduct

spectro-microscopy studies of the graphene-water interface with high temporal resolution
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FIGURE 7.5: The changes in the XAS water spectra with averaging over the first 16, 32,
or 48 water molecules for both a water interfacing graphene and b water interfacing gold.
While both become more bulk-like as further water molecules are included, the changes in
the spectrum of the gold-interfacing water are much more dramatic. Spectra are y-offset
for clarity of presentation.

using standard PEEM instrumentation. The shape of the oxygen K-edge XAS spectra,

measured in TEY mode, were similar to bulk water. This result reveals that bilayer

graphene does not significantly distort the electronic structure of water in the first few

water layers. Our theoretical calculations indicate that this is due to very weak water core-

hole screening by the graphene and weak water-graphene interaction. Since the microarray

comprises a lattice of identical water-filled objects, it is suitable to use this platform in

tandem with powerful data mining, pattern recognition, and combinatorial approaches

for spectro-temporal and spatiotemporal analysis. Using these algorithms, we were able

to discriminate between different scenarios of water radiolysis and detect the appearance

of the metastable wetting water layer at the later stages of bubble formation. Our work

opens up new avenues for investigating electrochemical, catalytic, environmental and other

phenomena in liquids using standard (X)PEEM, SPEM, XPS and LEEM setups.
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8. CONCLUSIONS

Nonlinear dynamics and transport process at the nanoscale are both scientifically

interesting and technologically important. We focused on thermal transport and ion trans-

port at the nanoscale, which can be solved using classical molecular dynamics simulations.

Thermal transport at the nanoscale is key to the operation and efficiency of many devices

and processes, such as thermoelectrics, thermal management of miniaturized electronics,

among others. Ion transport through nanoscale pores, on the other hand, is an integral

part of cell physiology and is also the main component of membrane technologies such as

desalination, nanopore sequencing, and sensing.

For thermal transport at the nanoscale, we gave a new perspective on thermal trans-

port simulations. In particular, we demonstrate that there is a crossover behavior in the

thermal transport, where it first increases then subsequently decrease as the thermal con-

tact with the reservoir is strengthened. This behavior has important implications for both

the tunability of transport – it suggests a route to nonlinearly modulate the conductance

by controlling, eg., surface-molecule interactions – and for its proper numerical simulation.

We also studied ion transport through porous graphene membranes, which is a

promising candidate for ionic sieving and bio-sensing due to their flexibility, mechanical

and chemical stability, and atomic thickness. We observed the nonlinear behavior of

the ionic current through graphene pores as the radius of a pore is reduced to the sub-

nanometer scale. This nonlinear response is characterized by a sharp rise in pore resistance

and noise in the current which is due to the encroachment of the pore edge on the hydration

layers of the ions. Our results show that hydration layers and the atomic structure of

the pore play a defining role in transport properties and give rise to selective behavior.

Moreover, we not only developed a mechanistic understanding of selective transport in

graphene devices but also presented phenomenological models which will be useful in

engineering selectivity.

We also show that one can use layering of graphene (from mono- to bi- to tri- layer)

to tune ion selectivity and exclusion. The layering forces ions to dehydrate more than
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in monolayer graphene for which the atomic thickness allows substantial hydration just

outside the membrane. In essence, layering gives the second knob to the tunability, where

the length of the pore is varied at the atomic scale, the scale necessary to impact hydration

structure. These findings give an ideal approach to understanding/dissecting biological

ion channels by quantifying dehydration and simultaneously yield a method to achieve a

target ion exclusion/selectivity while enhancing water flow rate.

Moreover, we give a simple theoretical method to extract the combined pore and

convergence resistance. Using this method, we resolved a discrepancy between experi-

ments and simulations of ion transport through graphene nanopores. This makes connec-

tions with results in both ionic and electronic transport theory, going all the way back to

Maxwell’s contact resistance of circular orifice, and both theory/computation and exper-

iment. Additionally, we show that graphene does not significantly distort the electronic

structure of water in the first few water layers due to weak water core-hole screening by

the graphene and weak water-graphene interaction. In conjunction with the high electron

transparency of the graphene, this allows one to conduct spectromicroscopy studies of the

graphene-water interface with high temporal resolution using standard PEEM instrumen-

tation.

Thus our work touches the fundamental aspects of nonlinear behavior and transport

properties in the nanoscale science, as well as guide the practical application of various

emerging nanotechnologies.
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188. Brünger, A., Brooks, C. L. & Karplus, M. Stochastic boundary conditions for

molecular dynamics simulations of st2 water. Chemical physics letters 105, 495–

500 (1984).



124

APPENDICES



125

A
Thermal Transport

A1 Dimensional analysis of the uniform harmonic model

The complete list of parameters of the uniform harmonic model introduced in main

article is: m, D, K, γ, kBTL, kBTR, N , Nr. We take m, K and kB∆T = kB(TL − TR) as

fundamental units to make all the other parameters dimensionless. Then, the independent

dimensionless parameters of the model are

D

K
,

γ√
mK

,
TL + TR

∆T
, N and Nr. (A.1)

Using these dimensionless parameters, the exact expression for the heat current through

the lattice can be written as

J

kB∆T

√
m

K
= C

(
D

K
,

γ√
mK

,
TL + TR

∆T
,N,Nr

)
, (A.2)

where C is a dimensionless function of five dimensionless arguments. This very general

expression can be simplified by (i) taking N → ∞ (see inset in Fig. 3.2) and by (ii)

exploiting the fact that the heat current in such a model is proportional to ∆T [see

Eq. (A.17) and the related discussion], then the function C cannot depend on TL and TR.

These considerations result in

J

kB∆T

√
m

K
= C

(
D

K
,

γ√
mK

,Nr

)
, (A.3)

where C is now a dimensionless function of just three dimensionless arguments. The

expression for heat conductance of the 1D uniform harmonic model considered in this

work can then be written in the limit of N →∞ as

σ = kB

√
K

m
C

(
D

K
,

γ√
mK

,Nr

)
. (A.4)
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A2 Numerical solution of Langevin equations of motion

The Langevin equations of motion for a lattice of harmonic oscillators, given by the

Hamiltonian

H =
1

2
pᵀM−1p +

1

2
xᵀKx, (A.5)

are a system of first-order linear differential equations

ẋn = pn/mn,

ṗn +

N∑
m=1

Knmxm + γnpn/mn = ηn(t), (A.6)

where the mass can potentially be site-dependent in order to, e.g., examine mass disorder

as in Disordered Harmonic Lattice discussed in main article. The matrix K contains the

interaction potentials and [M]nm = δnmmn is a diagonal matrix of the masses. These

equations of motion can be expressed as

d

dt
|q(t)〉+ G|q(t)〉 = |η(t)〉, (A.7)

where

|q〉 ⇒

 ~x

~p

 . (A.8)

The non-symmetric matrix G is given by

G =

 0 −M−1

K ΓM−1

 , (A.9)

where Γ is a diagonal matrix of the couplings to the Langevin reservoirs (and tr|Γ| = 2Γ,

where Γ is the cumulative friction coefficient).

The formal solution of Eq. (A.7) is

|q(t)〉 =

∫ t

t0

dt′ e−G(t−t′)|η(t′)〉. (A.10)
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An important class of observables can be expressed as an average of a quadratic form of

|q(t)〉 over the statistical ensemble. For example, the heat current flowing from site n to

site n+ 1 can be written as a statistical average of

Jn = −Kn+1,n

mn+1
pn+1xn. (A.11)

An observable of this class can be represented by an operator O so that

O(t) = 〈q(t)|O|q(t)〉

=

∫ t

t0

dt′
∫ t

t0

dt′′ 〈η(t′)|e−G†(t−t′)Oe−G(t−t′′)|η(t′′)〉. (A.12)

Averaging over the statistical ensemble and using Eq. 3.3 from Methods section of main

article for the auto-correlation function of the random forces, one obtains

O(t) =

∫ t

t0

dt′Tr
[
e−G

†(t−t′)Oe−G(t−t′)F
]
, (A.13)

where F is a diagonal matrix with its only non-zero elements given by

FN+n,N+n = 2γnkBTn, n = 1, 2, ..., N. (A.14)

The spectral decomposition of the particular class of non-symmetric operators G above

necessarily includes left and right eigenvectors, i.e., G =
∑

k λk|kR〉〈kL|, where the com-

ponents of right (column) and left (row) eigenvectors are denoted by [|kR〉]n = vRn,k and

[〈kL|]n =
(
vLn,k

)∗
, respectively. The orthonormality condition is 〈kL|lR〉 =

∑2N
n=1

(
vLn,k

)∗
vRn,l =

δkl. The spectral decomposition of G† is given by G† =
∑

k λ
∗
k|kL〉〈kR|, where |kL〉 = 〈kL|†

and 〈kR| = |kR〉†.
Substituting these spectral decompositions into Eq. (A.13), setting t0 → −∞ to find

the steady-state value of the observable, and integrating, we obtain

O =

2N∑
k,l=1

〈lR|O|kR〉〈kL|F|lL〉
λk + λ∗l

. (A.15)



128

This equation allows one to draw very general conclusions regarding the dependence of

the observable O on temperature without the need to explicitly specify G and O. Since

operators O (e.g., heat current) and G do not typically depend on temperature, and the

operator F in Eq. (A.14) is strictly linear with respect to temperature, O is then a linear

form of T1, T2, ..., TN . Specifically, since in the harmonic lattice case we examine there is

only two independent temperatures, TL and TR, O is necessary a linear form of TL and

TR, i.e.,

O(TL, TR) = αLTL + αRTR, (A.16)

where αL and αR are coefficients that depend only on specific parameters of the system

and nature of operator O, but not temperature. For example, since the heat current has

to vanish at thermodynamic equilibrium, we must have αL = −αR and, therefore,

J ∝ TL − TR. (A.17)

That is, the heat conductance does not depend on temperatures TL or TR at all. These

considerations do not lead to the same conclusion in the case of anharmonic lattices, as

illustrated in Fig. 5(b).

A3 Heat current in 1D harmonic lattices

To use Eq. (A.15) to evaluate the heat current in the lattice of harmonic oscillators,

one needs to construct operators G and O. Below we explicitly construct these matrices

and derive an expression for the heat current.

The system under consideration is a lattice of harmonic oscillators with only nearest

neighbor coupling, which yields a matrix K in Eq. (A.5) that is sparse. For an oscillator

with index n somewhere inside the lattice (i.e., 1 < n < N), the corresponding nth row

of the matrix has only three non-zero components (Kn,n−1,Kn,n,Kn,n+1) = (−K,D +

2K,−K), where K and D are parameters in the Hamiltonian. The end sites, n = 1 and

n = N , are assumed to be coupled to “hard walls”, i.e., to implicit oscillators with indices

n = 0 and n = N + 1, respectively, whose coordinates are kept zero. This results in
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only two non-zero matrix elements in the very first and the very last rows of matrix K:

(K1,1K1,2) = (D + 2K,−K) and (KN,N−1KN,N ) = (−K,D + 2K).

According to Eq. (A.11), the operator Jn corresponding to the heat current from

site n to site n+ 1 has only a single non-zero element

[Jn]N+n+1,n =
K

mn+1
. (A.18)

Substituting this expression, together with Eq. (A.14) and the eigenvectors of G and G†,

into Eq. (A.15) gives

Jn =
2kBK

mn+1

2N∑
k,l=1


(
vRN+n+1,l

)∗
vRn,k

λk + λ∗l

×
N∑
m=1

γmTm
(
vLN+m,k

)∗
vLN+m,l

]
. (A.19)

A4 Heat current in the small γ regime

The most convenient way to analyze the small γ dynamics of the 1D lattice is

to perform a perturbation expansion of eigenvalues and eigenvectors of operator G with

respect to γ. G is at most linear with respect to γ and can be represented as G = G0+γG1,

where G0,1 are independent of γ. The zeroth-order eigenvalues and eigenvectors of G are

then the eigenvalues and eigenvectors of G0,

G0 =

 0 −M−1

K 0

 . (A.20)

The solutions – normal modes of lattice vibrations with no friction – can be found in the

standard way, first by scaling (“mass-weighting”) by S = diag(M1/2,M−1/2),

SG0S
−1 =

 0 −I

M− 1
2 KM−1/2 0

 (A.21)
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and then diagonalizing the mass-weighted coupling M−1/2KM−1/2 via an orthogonal

transformation T. The normal modes of the lattice are

xkn(t) = ukne
±iωkt, (A.22)

where ukn =
[
M−1/2T

]
nk

are the real-valued polarization vectors of the normal modes and

n, k = 1, . . . , N enumerate the lattice sites and modes, respectively.

The eigenvalues and right eigenvectors (hence denoted with R below) of G0 can

be readily constructed from these and they come in pairs. The unnormalized “positive

frequency” solutions are

λ0
k = iωk,

v0,R
n,k ∝ ukn, (A.23)

v0,R
N+n,k ∝ −iωkmnu

k
n,

for k = 1, . . . , N and n = 1, . . . , N . The unnormalized “negative frequency” solutions are

λ0
k = −iωk,

v0,R
n,k ∝ ukn, (A.24)

v0,R
N+n,k ∝ iωkmnu

k
n,

for k = N + 1, . . . , 2N , n = 1, . . . , N , and “extending” ωk = ωk−N and ukn = uk−Nn for

k > N . We have ordered the solution so that when the positive frequency solution takes

on the label k, the negative frequency solution takes on the label k + N . The last two

lines of each of these solutions reflect the simple relationship between momenta and the

time derivative of coordinates, the first line in Eq. (A.6).

The left eigenvectors can be found in a similar way, essentially the position and

momenta change roles including how they are scaled by mass. With the convention that
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[〈kL|]n =
(
vLn,k

)∗
, the unnormalized “positive frequency” solutions are

λ0
k = iωk,

v0,L
n,k ∝ iωkmnu

k
n, (A.25)

v0,L
N+n,k ∝ ukn,

for k = 1, . . . , N and n = 1, . . . , N . The unnormalized “negative frequency” solutions are

λ0
k = −iωk,

v0,L
n,k ∝ −iωkmnu

k
n, (A.26)

v0,L
N+n,k ∝ ukn,

for k = N + 1, . . . , 2N , n = 1, . . . , N , and the same “extension” for k > N . The left and

right eigenvectors clearly obey the right orthogonality relationship, but for each k have

norm ∓2iωk for “positive” and “negative” frequencies, respectively.

The first-order perturbative correction to the eigenvalues of G0 can be found in the

usual manner, i.e.,

λ1
k = γ〈k0

L|G1|k0
R〉. (A.27)

Using this expression, we can now expand the current. To do so, we will make use of

Eq. (A.15). The matrix element 〈kL|F|lL〉 is linear with respect to γ at small γ, i.e.,

putting in the normalized zeroth order states 〈k0
L|F|l0L〉 =

∑
n 2γnkBTnu

k
nu

l
n/
√

4ωkωl.

Thus, we can focus on the quantity

〈lR|Jn|kR〉
λk + λ∗l

(A.28)

and show that it is zeroth order with respect to γ. We separate the summation in

Eq. (A.15) into the off-diagonal (k 6= l) and diagonal (k = l) contributions. Assum-

ing no degeneracy, the former is nonzero and well-behaved when zeroth-order eigenvalues
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and eigenvectors are used since the denominator in Eq. (A.15) does not vanish at k 6= l.

The off-diagonal contribution is thus proportional to γ at small γ.

The diagonal contribution has a vanishing denominator as γ approaches zero, i.e.,

λ0
k is pure imaginary which gives λk+λ∗k = 0+

∑
n γn(ukn)2 +O(γ2). Performing the whole

sum, however, we can pair the “positive” and “negative” frequencies:

N∑
k=1

(〈kR|Jn|kR〉+ 〈(k +N)R|Jn|(k +N)R〉)
〈k0
L|F|k0

L〉
λk + λ∗k

(A.29)

where the last factor is the same for both “positive” and “negative” frequencies. The term

in parenthesis gives(
imn+1u

k
n+1u

k
n

2
+
−imn+1u

k
n+1u

k
n

2
+O(γ)

)
= 0 +O(γ) (A.30)

Thus, the sum over “positive” and “negative” frequencies gives a contribution that is of

order γ. Therefore, the current for small γ is J ∝ γ.

A5 Heat current in the large γ regime

The current in the large γ regime can also be calculated perturbatively in powers

of 1/γ. We consider only single sites at each end connected to Langevin reservoirs, as any

additional sites in the extended reservoir are decoupled from the lattice by higher orders

in 1/γ. Now consider the matrix γG1 +G0, where G0 is the perturbation. The expansion

is complicated by the fact that the “bare” matrix

γG1 =

 0 0

0 ΓM−1

 (A.31)

is highly degenerate, with 2N − 2 zero eigenvalues and 2 non-zero eigenvalues. The latter

two are γ/m1 and γ/mN , which may have an (unimportant) degeneracy, and we can take

two of the zeroth order right (left) eigenvectors to be |N+1〉 and |2N〉 (〈N+1| and 〈2N |).
The degenerate space is spanned by the states |n〉 with n = 1, . . . , N and |N + m〉
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↓ k 6= l→ l ∈ B−1 l ∈ B0 l ∈ B1

l ∈ B−1
1
γ ; 1

γ ; 1
γ 1; 1

γ ; 1 1
γ ; 1; γ

l ∈ B0 1; 1
γ ; 1 1; 1

γ ; 1 1; 1; γ

l ∈ B1
1
γ ; 1; γ 1; 1; γ 1

γ ; 0; γ

TABLE 0.1: Order of the different factors in the current contribution, Eq. A.15, when
k 6= l. Note that cross terms between B1 and B1 are identically zero given our choice of
zeroth order eigenvectors.

with m = 2, . . . , (N −1). The degeneracy is lifted in the normal way: Let P0 project onto

this subspace and diagonalize P0G0P0. This matrix has 2N − 4 eigenvectors with non-

zero eigenvalues. The right eigenvectors with non-zero eigenvalues have the same form as

Eqs. (A.23) and (A.24) except found from the lattice sites 2, . . . , (N − 1) only. The other

two eigenvectors have a zero eigenvalue. Their degeneracy is not broken until the next

order (1/γ), and requires diagonalizing

G = P0G0P0 −
1

γ
P0G0P̃0

1

G1
P̃0G0P0, (A.32)

with P̃0 = (I−P0). This matrix has a simple form

G = −
∑
n6=1,N

1

mn
|n〉〈N + n|+

∑
n6=1,N ;m

Knm|N + n〉〈m|

+
1

γ

∑
n=1,N ;m

Knm|n〉〈m|. (A.33)

Using this, we can search for the remaining two linearly independent and stable right eigen-

vectors with an eigenvalue of order 1/γ. This results in a generalized eigenvalue problem

for the zeroth order right eigenvectors, K|λ0〉 = λB|λ0〉 where [B]nm = δnm (δn1 + δnN ).

When this eigenvector is extended to the full degenerate space (padding it with zeros for

all the momentum components), one has G|λ0〉 ≈ λ/γ|λ0〉.
Starting with these zeroth order eigenvectors, then we can apply perturbation theory
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as usual. This results in three sets of eigenvectors, (B1) ones with eigenvalues that areO(γ)

(|N + 1〉 and |2N〉), (B0) ones that are O(1) (Eqs. (A.23) and (A.24) but in the internal

lattice), and (B−1) ones that are O(1/γ) (K|λ0〉 = λB|λ0〉). We can also delineate these

sets by the subspace on which the zeroth order eigenvectors live (B1 on (|N +1〉 and |2N〉;
B0 on |n〉 with n = 2, . . . , (N − 1) and |N +m〉 with m = 2, . . . , (N − 1); B−1 on |n〉 with

n = 1, . . . , N). Contributions to the eigenvectors outside this subspace will be order 1/γ.

As with the small γ regime, we need to group the different contributions into diagonal

and off-diagonal (and then further distinguish between off-diagonal contributions between

these three groups). We will break down the contributions to Eq. (A.15) in terms of each

of the factors 〈lR|J|kR〉, 〈kL|F|lL〉, and λk + λ∗l .

We start with the diagonal contributions. For eigenvectors in B1, we get contribu-

tions to 〈lR|J|kR〉; 〈kL|F|lL〉; λk + λ∗l of: at most O(1/γ) due to the zeroth order states

living on {|N + 1〉, |2N〉}; O(γ) as, e.g., 〈N + 1|F|N + 1〉 = O(γ); O(γ) because λk ≈ γ.

This gives an overall contribution at most of order 1/γ.

For eigenvectors in B0, we get: O(1) (this is the same calculation as Eq. (A.30) as

the states are eigenstates of G0 on the internal lattice); O(1/γ) because although F is

order γ, the contribution of |N + 1〉 and |2N〉 to the eigenvector are order 1/γ; O(1/γ)

because the eigenvalue has a real part that is order 1/γ (the imaginary part is order 1 but

this cancels in λk + λ∗l ). Thus, the total contribution from a eigenvector in B0 is order

1. However, just like in Eq. (A.30) for the small γ regime, this contribution always has a

paired contribution from the negative (positive) frequency mode, which cancels this order

1 contribution. This gives an overall contribution at most of order 1/γ.

For eigenvectors in B−1, we get: O(1/γ) due to the zeroth order eigenvector living

only on the position component of the vector; O(1/γ) because although F is order γ, the

contribution of |N + 1〉 and |2N〉 to the eigenvector are order 1/γ; O(1/γ) because the

eigenvalue has a real part of order 1/γ. This gives an overall contribution at most of order

1/γ.

For the off-diagonal terms, we give the contributions to each of the three factors

for all the different possibilities in Table 0.1. The highest order contributions from the
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off diagonal are order 1/γ. Thus, the sum over all contributions gives zero for the zeroth

order term and the leading term is order 1/γ.

We note that for both the small γ and large γ regimes, these well-defined pertur-

bation expansions demonstrate that the the zeroth order terms are zero, a fact which

is obvious for the small γ regime (i.e., there would be no driving force for the thermal

current) but not the large γ regime. Moreover, due to the presence of the different tem-

perature reservoirs at each end, the first order expressions are non-zero always unless the

lattice has a broken link. Coupled with the results of the anharmonic lattice, the pertur-

bative expressions give evidence that the presence of these regimes are universal except in

pathological cases.



136

B Ion Transport

Consider a pore in membrane of thickness L. We can use the Nernst-Plank equation

to get the ionic current due to electric field, ∇φ, and concentration gradient, ∇ni for ion

species i with mobility µi and charge qi.

Ji = µikBT∇ni + niqiµi∇φ, (B.1)

where kB is the Boltzmann constant. Now, assuming no variation in radial direction we

can reduce this equation to one dimensional form

Ji = µikBT
dni
dz

+ niqiµi
dφ

dz
(B.2)

Multiplying by eqiφ(z)/kBT we get

Jie
qiφ(z)/kBT = −µikBT

d

dz
[nie

qiφ(z)/kBT ] (B.3)

And, Integrating from z = −L/2 to z = L/2 we get

Ji = µikBT
ni(−L/2)eqiφ(−L/2)/kBT − ni(L/2)eqiφ(L/2)/kBT

L/2∫
−L/2

eqiφ(Z)/kBTdZ

We assume,

ni(−L/2) = ni0e
qiφ(z=−L/2,V=0)/kBT = ni0

ni(L/2) = ni0e
qiφ(z=L/2,V=0)/kBT = ni0

φ(Z) =


V Z/L+ ∆F, −∆L/2 ≤ z ≤ ∆L

V Z/L, otherwise
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Thus the numerator becomes,

ni(−L/2)eqiφ(L/2)/kBT − ni(L/2)eqiφ(−L/2)/kBT = ni0(eqiV/2kBT − e−qiV/2kBT )

= 2ni0 sinh

(
qiV

2kBT

)

And the denominator can be simplified as,

L/2∫
−L/2

eqiφ(Z)/kBTdZ

=

−∆L/2∫
−L/2

eqiφ(Z)/kBTdZ +

∆L/2∫
−∆L/2

eqiφ(Z)/kBTdZ +

L/2∫
∆L/2

eqiφ(Z)/kBTdZ

=

−∆L/2∫
−L/2

eqiV Z/LkBTdZ +

∆L/2∫
−∆L/2

e∆F/kBT eqiV Z/LkBTdZ +

L/2∫
∆L/2

eqiV Z/LkBTdZ

=
e−qiV∆L/2LkBT − e−qiV/2kBT

qiV/LkBT
+ e∆F/kBT

eqiV∆L/2LkBT − e−qiV∆L/2LkBT

qiV/LkBT

+
eqiV/2kBT − eqiV∆L/2LkBT

qiV/LkBT

=
1

qiV/LkBT

[
e−qiV∆L/2LkBT − eqiV∆L/2LkBT + eqiV/2kBT − e−qiV/2kBT

+ sinh

(
qiV∆L

2LkBT

)
e∆F/kBT

]
=

2LkBT

qiV

[
− sinh(

qiV∆L

2LkBT
) + sinh

(
qiV

2kBT

)
+ sinh

(
qiV∆L

2LkBT

)
e∆F/kBT

]
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Ji =µikBT
2ni0 sinh

(
qiV

2kBT

)
2LkBTqiV

[
− sinh

(
qiV∆L
2LkBT

)
+ sinh

(
qiV

2kBT

)
+ sinh

(
qiV∆L
2LkBT

)
e∆F/kBT

]
=µini0

qiV

L

sinh
(

qiV
2kBT

)
[
sinh

(
qiV

2kBT

)
− sinh

(
qiV∆L
2LkBT

)
+ sinh

(
qiV∆L
2LkBT

)
e∆F/kBT

]
=qini0

µiV

L

1−
sinh

(
qiV∆L
2LkBT

)
sinh

(
qiV

2kBT

) (1− e∆F/kBT )

−1

C Brunger, Brooks, Karplus (BBK) method

Langevin equation of motion of a particle under the influence of noise and friction

is given as

~F (xn) + ~fn(t) = mẍn, (C.1)

where, ~F (xn) is the sum of external forces and fn(t) = ηn(t) − γnẋn(t) is the random

force. The noise ηn(t) and friction coefficient γn are related by the fluctuation-dissipation

relation

〈ηn(t)ηm(t′)〉 = 2γnkBTnδnmδ(t− t′). (C.2)

Several numerical algorithms exits for the solution of Langevin Dynamics. One of

the most commonly used algorithm is given by Brunger, Brooks and Karplus [188]

From the Eq. C.1, acceleration of a particle is given by

ẍn(t) =
1

m
[ ~F (xn) + ηn(t)− γnẋn(t)] (C.3)

Thus we get,

xn(t+ ∆t) = xn(t) + ẋn(t)∆t+ ẍn(t)
∆t2

2
+

...
xn

∆t3

6
+O(∆t4) (C.4)
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xn(t−∆t) = xn(t)− ẋn(t)∆t+ ẍn(t)
∆t2

2
− ...
xn

∆t3

6
+O(∆t4) (C.5)

Adding

x(t+ ∆t) + xn(t−∆t) = 2xn(t) + ẍn(t)∆t2 +O(∆t4) (C.6)

Which gives:

x(t+ ∆t) = 2xn(t)− xn(t−∆t) +
∆t2

m
[ ~F (xn) + ηn(t)− γnẋn(t)] +O(∆t4) (C.7)

This propagation equation needs the particle velocity ẋn(t) which can be obtained as

ẋn(t) ≈ xn(t+ ∆t)− xn(t−∆t)

2∆t

Using in Eq. (10) we get,

x(t+ ∆t) = 2xn(t)− xn(t−∆t)

+
∆t2

m
[ ~F (xn) + ηn(t)]

− ∆t

2m
γn[xn(t+ ∆t)− xn(t−∆t)] +O(∆t4)

Rearranging, we get,

x(t+ ∆t) =
2xn(t)− xn(t−∆t) + γ ∆t

2mxn(t−∆t) + ∆t2

m

[
~F (xn) + ηn(t)

]
1 + γ ∆t

2m

(C.8)


