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Chapter 1: Introduction

Among the various natural language processing (NLP) problems, one general but fun-
damental type of problems is structured prediction. Structured prediction problems map
structured input (sentences) to structured output (tag sequences, parse trees, semantic
graphs, translated/paraphrased/compressed sentences). Many classical NLP tasks like
Part-Of-Speech tagging, constituent/dependency parsing, and machine translation be-
long to it. Structured prediction problems, together with their learning algorithms, are

of central importance in NLP area.

1.1 Typical Structured Prediction Problems

Most structured prediction problems in NLP area takes a sentence, i.e., a sequence of
words, as input, but their output structures vary based on different problems, which
means different time complexities in searching for the optimal output results. In this
section we will have a brief survey of the different structured prediction problems.

The first type of structured prediction problem is sequence labeling problem. As its
name suggests, this type of problem tries to assign a label for each word in the input
sequence, which means its output is also a sequence. A typical sequence labeling problem
is Part-Of-Speech (POS) tagging problem, which labels each word in the input sentence
with a label from a predefined label set that represents the functionality of the word (i.e.,
verb, noun, pronoun, etc.) in the sentence. The determination of the labeling for one
word depends on the syntactic role of the word in the sentence, which means in theory
the whole sentence need to be considered in assigning the POS tag. However, in practice,
for efficiency consideration, only the segment near the word is considered, which we will
discuss later in Section 2.1. An example of POS tagging is demonstrated in Figure 1.1.

Another example of sequence labeling task is Named Entity Recognition (NER), which
labels those words or phrases in the sentences that are mentions of some entities of certain
predefined types. Since NER labels spans of the input sequence, it usually labels the

beginnings and continuations of the mentions. Figure 1.1 also show an example of NER



Rolls-Royce Motor Cars Inc. said

POS tagging NNP NNP NNP NNP VBD
NER B-ORG [-ORG [-ORG I-ORG -

it expects its U.S. sales

POS tagging PRP VBZ PRP$ NNP NNS
NER - - - B-LOC -

to remain steady at about
POS tagging TO VB JJ IN IN
NER - - - - -

1,200 cars in 1990

POS tagging CD NNS IN CD )
NER - - - B-DAT -

Figure 1.1: Examples of sequence labeling problems: POS tagging and Named Entity
Recognition (NER). The input is an English sentence (sequence), the output is an se-
quence of annotations for each word in the input sentence. The POS tagging annotations
are syntactic part-of-speech tags. The NER annotations are labels of the associated en-
tity types, where B- and I- mean the beginning of an entity mention, and the continuation
of an entity mention, respectively.

labeling. In this example, there are 4 types of entities recognized: person (PER), location
(LOC), organization (ORG), and DATE (DAT).

One step further from the sequence labeling problem we have the classical parsing
problem where the input is still a sentence, but the output is a parse tree. Parsing
problem usually deals with two types of parses: constituent parsing, or syntactic parsing,
and dependency parsing.

Constituent parsing parses the input sentences to a syntax tree following a given
context-free grammar. An example parse tree is shown in Figure 1.2 (a), based on the

following context-free grammar:

S — NP VP
VP — VB PP
NP — DT NN

NN — cat
VB — sit



S

%\
/\ A |
DT NN VBD .

\\\A

The cat sat IN NP root

VAN

on DT NN m
| TN N

the mat The cat sat on the mat

(a) constituent parsing (b) unlabeled dependency parsing

Figure 1.2: Examples of the parsing problem.

Constituent parsing is one of the most important core NLP tasks since its outputs are
very useful in linguistic analysis. There are various parsing similar to constituent parsing,
but defined for different grammars, such as tree-adjoining grammar (TAG) [24], and
combinatory categorial grammar (CCG) [1].

Another type of parsing different from previous parsing methods where the parsing
rules, i.e., the grammar, is not explicitly defined is dependency parsing. In dependency
parsing, a tree edge points from a tail word to a head word, indicating that the the tail
word modifies the head word. One tail word can only modify on one head word, while
one head word can be the modified by many tail words. Figure 1.2 (b) shows an example
of dependency parsing for sentence “The cat sat on the mat.”.

Both constituent parsing and dependency parsing are defined in the syntactic domain,
i.e., they convey some syntactic information in the tree structure. Corresponding to the
syntactic parsing, in the semantic domain, the meaning of a natural language sentence
can also be represented by structures of either trees like lambda expressions coupled
with CCG [64], lambda dependency-based compositional semantics (A-DCS) [32], or
graphs like abstract meaning representation (AMR) [4]. The task to derive the semantic
parse tree is called semantic parsing. Figure 1.3 shows an example of the semantic
parse tree with meaning representation of first-order logic lambda expression. In this

representation, the composition of sub lambda expressions still forms a tree, which is the



Az.(and (state x) (border z texas))

/\

Az.(state x) Az.(border z texas)

Az.x Az.(state x) Ay.A\z.(border x y) texas

\

\ ! |

\ ! |
\ 1 |
\ 1

NL: What states border Texas ?

Figure 1.3: An example of semantic parsing. The natural language sentence is parsed
into a semantic parse tree which has the meaning representation as its root. The meaning
representation is a lambda expression of first-order logic. The dashed lines represent
the grounding from natural language phrases to predicates/expressions in the meaning
representation domain.

derivation tree. The searching for the correct derivation tree is similar to the syntactic
parsing problem, and can either be guided by CCG, or follow the strategy of dependency
parsing.

However, there is one key component that differs semantic parsing from syntactic
parsing that in semantic parsing, how a natural language phrase corresponds to a first-
order logic predicate in the knowledge base is not clear during the decoding time. For
example, in Figure 1.3, the word “state” may mean the country United States, or a state
like Oregon. This introduces extra ambiguity in the structured prediction problem,
as well as in the structured learning problem where these correspondences need to be
learned.

Machine Translation task is, to some extent, similar to semantic parsing task in
that it also converts the input sentence to another structure that represents the same
meaning. In semantic parsing, this structure can be a sequence of lambda expression
or a graph, while in machine translation this structure is another sentence in a different
language.

This shared property suggests that there are many common aspects between semantic

parsing and machine translation.



source: mao 210 zail dianzt shang

/N \ \ v

target: The cat sat on the mat

Figure 1.4: An example of the translation problem. The source sentence (sequence
of words) in Chinese is translated to a target sentence (sequence of words) in English.
The dashed lines represent the corresponding translation of each source word in English,
which is also known as alignment. The output sequence corresponds to the input se-
quence, but not in the one-to-one mapping manner as in sequence labeling examples in
Figure 1.1. Words deletion and reordering are necessary in translation.

1. In machine translation, how a phrase in source language can be translated to a
phrase in target language, i.e., the translation rule, is unknown, and needs to be
learned, similar to how a natural language phrase can be grounded to a first-order

logic predicates is learned in semantic parsing.

2. Given the translation rules, how to compose these rules to translate the source sen-
tence to target language is just another search for the correct translation derivation,

which is similar to searching for the derivation tree in semantic parsing.

Figure 1.4 shows an example of machine translation where the translation rules are
explicitly labeled by dashed lines.

The last task we discuss, natural language inference, which is also known as recog-
nizing textual entailment (RTE), is different from all previous tasks in that its input is
still structured, but its output is a label of whether the input hypothesis sentence can be
inferred from the input premise sentence. However, natural language inference can still
be viewed as a structured prediction problem not only because of its structured input,
but also because of the structured internal inference to determine the final output label.

In practice, the sentence entailment task usually involves more than a single entail-
ment relation. For example, in the Stanford Natural Language Inference dataset [8]
there are three relations (entailment, contradiction, unrelated). In Natural Logic [34]
there is a refined set of seven relations (equivalence, forward entailment, reverse entail-

ment, negation, alternation, cover, independence).



nobody can without a shirt enter nobody can without clothes enter

Figure 1.5: An example of sentence entailment [34]. The dashed lines represent the
node-wise entailment relations between nodes of the two trees. ¢« 3 b =0 C a means b
can entail a. Note that for this task, although the output label is not structured, the
internal entailment inference is structured.

Figure 1.5 shows a simple example of sentence entailment, in which the premise sen-
tence, “nobody can enter without a shirt”, entails the hypothesis sentence “nobody can
enter without clothes”. This entailment is determined by aligning the syntax trees of
each sentence and identifying the entailment relation node-by-node with special consid-

erations about the scope of negation.

1.2 Challenges in Structured Prediction and its Learning Algorithms

The structured search space of structured prediction casts new challenges for both the
prediction algorithm and the learning algorithm.

In the perspective of searching for the correct output structure, the number of possible
derivations is exponential to the size of the input, due to the combinatorial explosion
property of the structured labels. As a result, brute-force searching for the optimal
output is not affordable in time complexity. Two approaches are widely used to ease this

problem:

1. Many structured prediction problems either have internal overlapping structures, or



can be approximated by simplified models with overlapping structures. Dynamic
programming technique is often used to leverage this overlapping structure by
decomposing the problem into small overlapping subproblems. A typical example
of this approach is the Hidden Markov Model (HMM) that makes the Markov
assumption for the POS tagging task that the probability of one tagging decision
approximately only depends on the immediately preceding one or two word tag
pairs. This approximation reduces the search time for the output sequence from

exponential to polynomial. (Section 2.1)

2. Even with dynamic programming, the reduced search time is usually high-order
polynomial that is not affordable in practice. To overcome this scalability issue, a
typical choice is to resort to approximated search like beam search. Beam search
can significantly reduce the search time, but it can also highly sacrifice the accuracy,
especially when the search parameters are not aware of the approximation in the

search algorithm.

In the perspective of statistical learning, to optimize the model for a structured pre-
diction problem can be viewed as a special case of the multi-class classification problem.
But, instead of the typical multi-class classification with a (small) fixed number of out-
put classes, there are exponentially many output classes in structured prediction. Exact
(brute-force) search for the output class, as mentioned above, is no longer practical, and
inexact (approximated) search is usually the default choice.

Many conventional machine learning algorithms have their corresponding structured
variants for structured prediction tasks. For example, Perceptron [46] becomes Struc-
tured Perceptron [13]; logistic regression becomes Conditional Random Field (CRF) [31];
Support Vector Machine (SVM) [55] becomes structured SVM [54] and Max-Margin
Markov Networks (M®N) [52]. Furthermore, neural network models also evolve to its
structured version like neural CRF [17, 18].

As we will discuss in Chapter 3, simply changing the searching algorithm for conven-
tional machine learning algorithms is not enough, since the model parameters learned are
unaware of the change and could lead to non-optimal output class in the approximated

setting.



1.3 Structured Learning with Natural Annotations

There is another challenge we need to mention for structured learning problem, which is
not inherently a challenge from the structured learning algorithms, but a challenge for
better training.

Nowadays, most popular structured learning algorithms rely on large training cor-
pora to achieve state-of-the-art performance. The discriminative training algorithms like
structured Perceptron and CRF all are trained on large training corpora to learn useful
complex features to discriminate bad examples from correct ones. The neural network
models also need on large training corpora to overcome the overfitting problem caused
by the huge parameter space.

The availability of large training corpora, especially those that require careful hu-
man annotation is always an issue for structured learning. For example, for parsing
task, annotating natural language sentences with parse trees requires prior knowledge
in linguistics, which is highly non-trivial even for widely used languages like English.
Another example is for the machine translation task, where to annotate one translation
derivation, i.e., what are the translation rules being used, and how the rules are applied,
is hardly possible.

Several approaches address this issue. One possible solution, Uptraining [43], is to
manually annotate a small portion of the training data, and then train a structured
learning model over this small portion of data, which is being used to automatically
annotate a large portion of unannotated data. However, mistakes of the model from the
small dataset can contaminate the automatic annotation, and to select the automatic
annotations that are confident becomes of great importance [58]. Another approach is to
apply domain adaptation method [15] to a structured learning model that is trained on
an annotated corpus in some domain and then convert it to another domain that lacks
annotated data. However, designing the conversion procedure is not trivial and usually
requires domain-specific knowledge.

Here we will discuss a different approach: instead of relying on data annotated by
professionals, we lower the required standard of the annotation so that we only require
weak annotation that even unprofessional people can annotate the training data. We
call this weak annotation natural annotation.

Note that this natural annotation idea is not new in literature. Many structured



learning algorithms exploit weakly annotated corpus and achieve accurate models.

1. One typical example is the machine translation task, where the annotation is par-
allel sentence pairs of a source language and a target language, rather than an-
notation of the translation rules and how these rules are composed to form the
translation derivation. The parallel texts are usually easy to find. For example,
the EUROPARL corpus consists of documents from the Europe Parliament in 21

European languages [25].

2. Semantic parsing task also uses natural annotations so that the structured learning
model can learn from question answer pairs [28, 5]. In this case, correct semantic
parses will derive correct answers and, thus, will be rewarded, and incorrect parses

will be penalized.

3. Similarly, the entailment task can benefit from natural annotations. Note that in
our example (Figure 1.5), to annotate the tree node correspondence and node-wise
entailment relation is time consuming and impractical. Annotating the sentence-
level entailment relation is a far easier task, and we would like to learn our struc-

tured model from this weak annotation.

With natural annotations training corpora are significantly easier to collect. Com-
paring with the standard fully annotated corpus for constituent parsing, Penn Treebank
[35], which contains ~ 40k tree parse annotation, standard machine translation corpora
usually contain millions of sentence pairs.

The common property of those structured learning tasks from natural annotations is
that, instead of knowing the whole searching derivation from the full annotation, we can
only observe partial weak annotation. This means that, during our structured learning,
we need to hallucinate the correct searching derivations that agree with the natural
annotations and use these derivations as the target to reward. In other words, these
derivations are hidden, or latent, to our models. This technique will be discussed in
Chapter 4.

Just like the input and output of structured prediction problems, these latent compo-
nents are structured, and searching over the possible structured space is time consuming,
which introduces further difficulties for this kind of structured learning problem with la-

tent variables.
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In later chapters, we will first establish a mathematical framework for structured
prediction and structured learning, and then discuss how introducing latent variables will

affect the properties of the structured learning models both theoretically and practically.
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Chapter 2: Structured Prediction Problems

In this chapter we first establish the mathematical formalization for the structured pre-
diction problem based on a simple sequence labeling task: Part-Of-Speech (POS) tagging.

Then we will see how this framework adapts to different structured prediction problems.

2.1 Mathematical Formalization for Sequence Labeling

We start with the very simple sequence labeling task, POS tagging, to establish the
mathematical formalization. This formalization will be used in later sections to analyze
the properties of structured prediction and structured learning. An example of POS
tagging task is illustrated in Figure 1.1.

For sequence labeling task, the input
r=(x122...2y) € X
is a sequence of words of length m. The output is also a sequence of labels of length m:

y=(ny2...ym) €Y,

where each y; € T is assigned label for word z;, and 7T is the set of all possible labels
tags. In the POS tagging task, 7 is the set of all POS tags. We also define Y(x) to be
the set of all possible sequences of labels for input sentence .

The structured prediction problems we are interested in is to find the best output

sequence y* for a given input sentence z, under some scoring function F : X x ) — R:

y* = argmax F(x,y). (2.1)

yeY(x)
Usually the scoring function F'(,-) is modeled by some statistical model with parameters
w. So F' can also be written as Fy. This problem is called the inference problem

since the goal is to infer the best label sequence y* for the input z. It is also called the
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decoding problem since it can be viewed as to find the best interpretation y* for the
coded sequence .

As we mentioned in Chapter 1.2, solving the decoding problem for even the simple
POS tagging problem has high time complexity. Note that for each label y; in the label
sequence, the number of possible choices is equal to the size of all possible POS tags,
|7|. The number of all possible label sequences |Y(x)| = |T|™, and a linear search over
all possible sequences takes O(|T|™) time, which is not affordable even for a small m.

To address this issue, two strategies are usually applied: dynamic programming and

approximated search.

2.1.1 Exact Inference: Viterbi Algorithm

The technique of dynamic programming relies on the properties of the scoring function
Fw in Equation 2.1.

In practice, the scoring function Fy, is usually defined to be decomposable:

Fw($,y1y2 cee yi—lyi) = Fw(xvylyQ e yi—l) + fw(yi;$ay1y2 e yi_1),

where we abuse the notation so that Fy, can be applied to partial sequence, and the
stepwise score function fw(yi;x,y1y2 ... yi—1) evaluates the score of assigning label y; to
word x; given all the previous label assignment history y1y2 ... yi—1.

To simplify the calculation, we usually assume the label assignment is a Markov
process, i.e., the assignment of label y; only depends on a label history of fixed length
k, Yi—g+1-..9. This means that the calculation of the stepwise scoring function only

depends on the local structure near y;:

JwWisz,yiy2 - Yi—1) = fw (¥ T, Yickg1 - - Yiz1)-

Under this assumption, the scoring function can be decomposed to be the sum over local

partial sequences:
m

Fo(,y) = Y fwlis &, Yiokr1 - - Yio1)
i=1

The dynamic programming algorithm relies on this decomposability to avoid unnec-
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essary calculation. Let Gy (z,y;—g+t2...y;) be the maximal score of a label sequence of
length ¢ for sentence x, which ends with a sequence y;_yo...y; of length £ —1. Gy, can

be calculated recursively:

Gw (T, Yi—k+2- - Yi) =, max kaw Yis Ty Yjokt1 - - - Yj—1)
bAd 17 J

= max Gw(Z,Yi—k+1---Yi-1) + fw(Ui; T, Yiekt15 - - - Yi-1)

Yi—k+1

Similarly we can have the recursive calculation of Equation 2.1:

max Fy(x,y) = max T, i
Jmax Fy(w,y) = max wa Yii T Yi k1 Yic1)

= max Gw(T,Ym—k+2---Ym)
yey(z)

= max G(T,Ym—kt2---Ym)
Ym—k+25--Ym

= max G(xyymfk+1 ---ym—l) +fw(ym;$7ymfk+1 -~-ym—1)
Ym—k+15--Ym

This recursive expansion indicates that the maximal score over all possible label se-
quences can be calculated in a dynamic programming fashion: at step i, Gw (z, Yi—k+2 - - - Yi)
can be calculated precisely by enumerating over all Gy (2, ¥i—g+1 - - - yi—1) and try to ap-
pend y;, which needs O(|7]) time. The total time needed for calculating the optimal
label sequence takes O(m|7¥) time. This dynamic programming algorithm for inference

the output structure is called Viterbi Algorithm.

2.1.2 Inexact Inference: Beam Search

Viterbi algorithm decreases the time complexity of the inference problem from O(|7|™) to
O(m|T|¥) without affecting the accuracy of the searching under the Markov assumption.
However, O(m|T¥) is still not fast enough if the label set T is big.

Further speedup can be achieved by sacrificing the accuracy of the searching, i.e.,
approximated search. One widely used approximated search algorithm is beam search.

In beam search, at step ¢ to find the candidate labels for y;, only top b values of
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Gw(Z,Yi—g+1---yi—1) are kept and further expanded to Gw (=, Yi—gt2 ... Yi)-

More formally, we can define the beam search recursively:

Bo(z; w) = {¢},
Bi(z;w) = top’({yi ko ¥ilvi € T, ¥ips1-.-¥io1 € Bi1(z;w)}), (2.2)

where top? takes the top b candidates of form y;_j 5 . . . y;, ranked by the scoring function
Gw over a prefix of the label sequence.

With beam search, the time complexity for the inference problem for POS tagging
is O(mb|T]), i.e., linear to the length of the input sentence, which is sufficiently fast in

practice.

2.2 Discussion of General Structured Prediction Problems

The above formalization in Chapter 2.1 can easily be adapted to other structured pre-
diction problems. Here we briefly discuss the other variations of this formalization to

accommodate different structures like trees and structured latent variables.

2.2.1 Syntactic Parsing

For parsing problems, the input is still a sequence of words, but the output is a tree.
The output tree structure introduces several issues.

The first and most obvious problem is the much larger search space. There are
O(m'™) possible trees for a given input sequence of length m, which means exhaustive
search is not possible in practice even for very short sentences. Several algorithms have

been used to speedup the searching for the best parse derivations in practice.

1. For constituent parsing, tabular parsing, i.e., CKY parsing, is the default parsing
algorithm. CKY parsing can be viewed as a 2-dimensional variation of previous
Viterbi algorithm, where the candidates for each span in the sentence is kept in
a table. Candidates for a new span is generated after all the spans that the new
span depends on have been explored. For binarized grammar, CKY algorithm
takes O(m?) time to parse a sentence. However, even with CKY algorithm, the

O(m?) time complexity is still not affordable for long sentences and large dataset.



step ‘ action stack buffer arc added
0 - root The cat ...
1 SHIFT root The cat sat ...
2 SHIFT root The cat sat on ...
3 LEFT-REDUCE root cat sat on ... The cat
4 SHIFT root cat sat on the ...
Ha LEFT-REDUCE root sat on the ... cat” sat
6a, SHIFT root sat on the mat
7a | RIGHT-REDUCE root sat the mat saton
8a, SHIFT root sat the mat
9a, SHIFT root sat the mat
10a | LEFT-REDUCE root sat mat the mat
11la | RIGHT-REDUCE root sat sat” mat
5b SHIFT root cat sat on the mat
6b | RIGHT-REDUCE root sat the mat sat" on
b SHIFT root cat sat the mat
8b SHIFT root cat sat the mat
9b LEFT-REDUCE root cat sat mat the mat
10b | RIGHT-REDUCE root cat sat sat" mat
11b | LEFT-REDUCE root sat cat” sat
12 | RIGHT-REDUCE root root “sat

15

Table 2.1: Incremental dependency parsing transitions for sentence “The cat sat on the

mat” to generate the dependency tree in Figure 1.2 (b).

Two derivations that both

reach the correct dependency parse are shown in this table. Their different transitions
are marked with “a” and “b” respectively.
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In practice, beam search is widely used to reduce the searching time.

2. Another widely used inference algorithm for both constituent parsing and depen-
dency parsing is incremental parsing like shift-reduce parsing [39]. Take depen-
dency parsing for an example. The shift-reduce parsing consists of a sequence
of parsing states. Each parsing state is composed of a stack, a buffer, and an
arc set. Parsing transitions are applied to parsing states to generate new states.
There are three kinds of transitions: SHIFT, LEFT-REDUCE, and RIGHT-REDUCE.
The SHIFT transition pops the top word from the buffer and pushes it onto the
stack. The LEFT-REDUCE transition pops the top two items, sg and s, from the
stack, adds an dependency relation s1“"sg into the arc set, and pushes sy onto the
stack. The RIGHT-REDUCE transition is similar to LEFT-REDUCE, but adds arc
$17sp to the arc set instead. Exemplary parsing sequences for sentence “The cat
sat on the mat” to generate the dependency tree in Figure 1.2 (b) are shown in
Table 2.1. Shift-reduce parsing is usually combined with beam search to achieve

linear inference time.

3. Some other inference algorithms are also available. One example is the Minimum
Spanning Tree algorithm [37] that first assigns a penalty to every potential edges
between each pair of words, and then finds a minimum spanning tree as the depen-
dency tree. Linear programming is also used to find the tree that have the highest

score, but under the tree structure constraint [36].

Another issue in the parsing problem is that, there can be more than one paths that
generate the correct output tree, which is known as the spurious ambiguity. For example,
in the example in Table 2.1, both of the two derivations can generate the correct parse
tree. They differ in when to add the left arc pointing from “sat” to “cat”, but it does not
affect the final output tree. This kind of spurious ambiguity does not occur in the simple
sequence labeling problem like POS tagging, since in the sequence labeling problem all of
the searching steps are observed given the label sequence. But for the parsing problem,
only the final output tree is annotated, rather than the complete search steps. Recall
our discussion in Chapter 1.3, this is exactly another example of latent factors in our
inference model. However, due to the simplicity of parsing derivations, we usually just

ignore this spurious ambiguity problem and simply choose one fixed correct derivation
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as the reference derivation as the inference goal.

2.2.2  Semantic Parsing & Machine Translation

Due to the similarities between the semantic parsing problem and the machine translation
problem, we discuss them together. As we mentioned in Chapter 1.3, both of these two
problems involve two parts of hidden factors: the rules to be applied and how these
rules are composed. To directly annotate these two factors is impractical, and a more
natural way is to annotate the output structure, i.e., lambda expressions or translated
sentences. In other words, the spurious ambiguity problem in both semantic parsing and
machine translation is more serious than in syntactic parsing problem, and to fully model
this spurious ambiguity problem, latent models are introduced, which we will discuss in
Chapter 4.

Besides the spurious ambiguity problem, the inference is also harder, especially for
machine translation problem, due to the larger search space. In general, there are two
paradigms of inference algorithms for machine translation. The first one is phrase-based
machine translation [26], which generates the translated sentence in a left-to-right order.
At each step, it picks a phrase in the source sentence, translates it and appends the trans-
lated phrase to the end of the partial translated target sentence. The other paradigm
is syntax-based machine translation [59, 12]. Syntax-based machine translation is based
on a synchronous grammar which is learned from the training corpus. At inference time,
the source sentence is parsed following the left side of the synchronous grammar, while
on the target side a translated sentence is generated following the right side of the syn-
chronous grammar. Both of these two inference algorithms will be discussed in later

chapters.

2.2.3 Sentence Entailment

Sentence entailment task differs from previous tasks in that the output of sentence entail-
ment problem is not structured. However, the inference of the output label for sentence
entailment problem involves a search in the structured space for tree node alignment and
node-wise entailment labeling.

Example of the inference algorithm for sentence entailment are based on tree edits
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[34, 57], where the premise tree is changed step by step to match the hypothesis tree,

and at each step the edit can change the entailment relation between the two sentences.
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Chapter 3: Structured Learning Algorithms

In this chapter we inspect the widely used structured learning algorithms, Structured
perceptron [13], and Conditional Random Field (CRF) [31].

As we mentioned in Chapter 1.2, all structured learning algorithms have their original
non-structured versions in the machine learning domain. We listed these algorithms with

their non-structured versions in Table 3.1.

3.1 Structured Perceptron

The first structured learning algorithm we investigate is Structured Prediction, due to
its extreme simplicity. However, in next chapter we will show that, even with such a

simple learning method, some properties of the learning process is still unknown.

3.1.1 Binary Perceptron

We start from the standard perceptron for binary classification, and later extend it to
structured classification.

Perceptron [46] is a binary classifier based on a linear prediction function:

F(x) = 1 W'X>b’

0 otherwise

where the input x is a vector, the parameter w is a weight vector, and b is bias. A widely
used technique to simplify the representation is to augment x by appending a value 1 at
the end:

X = (x17x27" . 7mm71>7
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binary/multi-class classification structured learning
generative model nave bayes HMM
logistic regression (maximum entropy) CRF
discriminative model perceptron Structured perceptron
SVM structured SVM / M3N

Table 3.1: Relations between various structured learning models and their non-structured
versions. The last two columns illustrate the non-structured classifiers and how they are
extend to their structured versions. For example, Hidden Markov Model (HMM) is a
structured extension of the nave bayes model for binary classification.

Algorithm 1 Learning algorithm for perceptron.
1: Input: training set D = {(xM,yM), (x®,y@), ... xN yM} € X x Y, number
of iterations I
Output: weight vector w
w <« (0,0,...,0)
fori=1,...,1 do
for j=1,...,N do
if yx0) . w <0 then

return w

so that bias b can be dropped. The simplified prediction function is:

Fx) = 1 w-x>0

0 otherwise

Algorithm 1 shows the learning process of perceptron. In general, perceptron opti-
mizes the parameter w to minimize the errors among the training examples in an online
fashion. For each example, it checks whether current weight w can successfully classify
it. If not, perceptron will update the parameter w by moving it towards the direction of
the input x.

A great property of perceptron is its convergence guarantee. It can be proved that for
a linear separable dataset, perceptron will eventually find the optimal w that correctly
classifies all examples in the dataset [46]. We show the proof here since it will be used
later for structured cases.

Denote R to be the maximal radius of the training examples, R = max;||x®|. As-
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sume the training set D is separable by a unit oracle weight vector u with margin ~:

Y= max min YX-U.
u:[|uf|=1 (x,y)€D
Theorem 1 (convergence of binary perceptron [46]). For a separable dataset D =
{X(i),y(i)}fv with optimal margin v and radius R, perceptron terminates after t updates,

2
where t < &
¥

Proof. Let w! be the weight vector before the t'" update. Suppose t'" update occurs

on example (x',y"). Following properties hold:

L yi(u-xt) >~ (margin on unit vector)
2. yt(wt-xt) <0 (Algorithm 1 Line 6)
3. ||x'? < R? (radius)

The update formula can be rewritten as:

t+1

with = wl g%t (3.1)

|wi*1|| is bounded in two directions:

1. Dot product both sides of Equation 3.1 with oracle vector u:

u'Wt—H :u~wt+yt(u'xt)
>u-wh+y (margin)

> Z v =ty (by induction)
t
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Algorithm 2 Learning algorithm for averaged perceptron.
1: Input: training set D = {(xM,yM), (x@,y@), ... xN yM} € X x Y, number
of iterations I
Output: weight vector w
w <« (0,0,...,0)
we < (0,0,...,0)
c+1
fori=1,...,1 do
for j=1,...,N do
if yx0) . w <0 then
w — w + y@x0)
We — W + cyPx0)

cc+1
return w — w./c

_ =
=]

2. Take the norm of both sides of Equation 3.1:

w2 =[lw' + y'x )
w2 P + 2w
<[whI? + 1) (Property 2)
<|[w'|* + R? (radius)

= Z R? =tR? (by induction)
t

Combining the two bounds for wit! leads to:
% < W < eR?

which indicates ¢t < 5—22. O

Theorem 1 gives a guarantee that perceptron will correctly classify the training set
after a bounded number of updates. But the weight vector w learned by perceptron might
be overfitted so that it can only classify the training set, while can not achieve similar
performance when applied to other similar datasets. This problem is usually handled

by using a separate development dataset to stop the training when perceptron overfits,
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and/or adding regularizers to limit the complexity of the model. Average perceptron
[20] can also ease this problem by averaging the weights learned at each step to achieve a
large margin effect similar to SVM. Algorithm 2 shows the average perceptron algorithm
which is adapted from [16].

3.1.2 Structured Extension

perceptron can be extended to handle structured learning problem [13]. Due to its

simplicity, structured perceptron is a very popular structured learning algorithm.
Recall our formalization of the structured prediction problem in Chapter 2.1, where

the input is a structure x € X and the output is also a structure y € ). For structured

perceptron, the scoring function Fy, is defined as:
Fy(z,y) = ®(z,y) - w,

where ® is a feature function that extracts the structured features from structures x and
y and maps them to a vector. In most cases, ® is defined to satisfy decomposability so
that dynamic programming can be used in the inference problem.

One example feature function ® for the POS tagging task can be defined as:

m
@(ZE, y) = Z @(ZE? yif2yi71yi)7
i=1

where we abuse the notation to use ® to represent the stepwise feature function over a

partial label sequence. The stepwise scoring function fy can be written as:

fw(Yis 2, yi—2yi—1) = ®(z, Yi—2yi—1Yi) - W.

An exemplary stepwise feature function can use the features defined in Table 3.2.

Under this definition, the objective function of the structured prediction is:

y* = argmax ®(z,y) - w.
yeV(z)

The learning algorithm for structured perceptron is shown in Algorithm 3.
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Ti9, Ti 1, Ti, Tiyl, Tit2, Ti-2,

Yi—2, Yi—1, Yi

Yi—o|yi—1|yi, vi—1lys,

Ti—2lYis Tim1|Yi> TilYis Tiv1|Yi, Tiv2|Yis Tima|ys,
$i72|yi71|yia $i71|yi71|yia $i|yi71|yia
Tip1[Yim1lYi, Tivalyi-1lYi, Ti—2|yi—1|ys

atomic features

combined features

Table 3.2: An exemplary feature set for POS tagging task.

Algorithm 3 Learning algorithm for structured perceptron.
Input: training set D = {(z(M,yM), (2@, y@) ... (™), 4N} feature map @

Output: weight vector w

Let A®(z,y,2) 2 ®(z,y) — ®(x, 2)

w «+ (0,0,...,0)
repeat
for each (x,y) € D do
z < argmax, ey, ®(z,y) - w
if z £ y then
W w+ AP(x,y, 2)

._.
@

until Converged
: return w

—_
—

3.1.3 Convergence of Structured Perceptron

In general, structured perceptron shares the same convergence property as binary per-
ceptron. However, in practice approximated search is usually used by default in the
decoding for structured perceptron, due to the exponentially large search space, which
violates the conditions in Theorem 1. Figure 3.1 shows a counter example in POS tagging
combined with beam search where the convergence guarantee is not satisfied.

This problem is first observed and handled with a strategy called “early update”
in [14]. This strategy is based on the intuition that, in the beam search, the reference
derivation should always survive the beam. So they update the weight vector w when
the reference derivation falls out of the beam by penalizing the top derivation in the
beam and rewarding the reference derivation. This strategy works well and is used in
most structured perceptron applications by default. The theoretical explanation for this

method is proposed in [23].
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Dataset D ={(z,y)}
x ‘ fruit flies fly
y| N N VvV .
Search sapce V() ={N} x{N, V} x{N, V} x {.}
Features  ®(z,y) = (#n-n(y), #v-.(y))
Training process:

iter | label z | A®(z,y,2) | A®-w | new w
0 (0,0)
1 |[NNN.| (=1,+1) 0 | (-1,1)
2 | NVN.| (+1,+1) 0 (0,2)
3 |NNN. | (=1,41) 2 (—-1,3)
4 | NVN.| (+1,41) 2 (0,4)

. infinite loop ...

Figure 3.1: A POS tagging example where standard structured perceptron does not
converge. The dataset only contains one sentence “fruit flies fly.”. The simplified tagging
set 7 ={N,V,.}. The simplified feature function only counts the number of “N-N” tag
bigrams (#n-n(y)), and the number of “V-.” tag bigrams (#y_, (y)). The Viterbi
decoding algorithm is greedy, i.e., beam size b = 1. [23]

best in the beam

full
(standard)

C
Correct > * o =
Se U @ T © o)
Qence |$ €3 g
>
worstin the beam lastvalid ~ invalid
falls off update update!
the beam biggest
violation

Figure 3.2: Update methods for structured perceptron with beam search.
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To theoretically explain why the convergence guarantee does not hold, following [23],
we rewrite the structured perceptron version of the convergence proof here.

First, in the step-by-step search setting, the training set D actually consists of prefixes
of sequences, since the update can occur at any prefix of a given sequence.

Assume the training set D is separable by feature map ® and unit oracle vector u
with optimal margin

max min  u-A®(z,y,z). 3.2
u:f|ul|=1 (z,y)€D, 274y (9,2) (3:2)

Let R = max(, y)ep, .-y AP(X,y, 2) be the radius.

m7y

Theorem 2 (convergence of structured perceptron [23]). For a separable dataset D =
{:U(i),y(i)}lN with optimal margin v and radius R under feature map ®, structured per-

ceptron terminates after t updates, where t < 5—22.

t*" update occurs

Proof. Let w! be the weight vector before the t** update. Suppose
on example (z¢,'), and the top candidate z # y'.

Following properties hold:

L u-A®(z! oyl 2) >y (margin on unit vector)
2. wh-A® (2l 9yt 2) <0 (Algorithm 3 Line 7)
3. [[A® (2t 4, 2)||? < R? (radius)

The update formula is:
witl = wl + A®(2! ot 2). (3.3)
[wi*t|| is bounded in two directions.
1. Dot product both sides of Equation 3.3 with oracle vector u:

u-wit =u-wh +u- A®(2h, o, 2)
>u-wh (margin)
> Z v =ty (by induction)
t
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2. Take the norm of both sides of Equation 3.3:

w2 =lw' + A",y 2)|?
=[[W'* + [AR(", ', 2)|° + 2w - AR (2" y, 2)

<[lw'|* + [|A®(2", ¢, 2)| (Property 2)

<|w'||* + R? (radius)

= Z R® =tR? (by induction)
t

Combining the two bounds for w't! leads to:
which indicates ¢t < 5—22. O

To theoretically explain why standard perceptron does not always converge with
beam search, note that Property 2 in the above proof, which is called “violation” in
[23], is required in the second part of the proof. However, this is not necessarily always
true. As shown in Figure 3.1, A® - w is positive for some updates, which violates the
convergence property.

Furthermore, this observation points out that, as long as the update satisfies the
violation property, the convergence property holds.

For early update, since at the step where the reference falls out of the beam, the

reference candidate y ranks lower than the top candidate z:
P(r,y) w< P(r,2) - w=AP(z,y,2) - w < 0.

Thus, the convergence is still guaranteed.

This observation further points out a new update strategy, “max-violation” update
[23], which updates at the step where the score difference between the partial reference
candidate and the top candidate in the beam is maximal (Figure 3.2). The intuition
behind this is that at such step the structured perceptron can learn most, and, thus,
converges faster. However, there is no theoretical proof for the convergence of max-

violation update.
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3.2 Conditional Random Field

Conditional Random Field (CRF) [31] is another popular discriminative learning algo-
rithm for structured prediction problems. It is designed to handle general structured
prediction problem. But here we only discuss a simple version of CRF for sequence

labeling problem.

3.2.1 Conditional Random Field with Exact Search

As a discriminative model, CRF models the probability of an output y € Y(x) as:

Pr(y|x) = exp[w - ®(z,y)],

1
Z(x)
where the denominator Z(z) normalizes the result to a probability distribution:

Z(Jj) = Z eXp[W : q)(x,y/)],

y'eY(x)

and @ is a feature function defined similarly to the feature function in perceptron.

The scoring function Fy,(z,y) for CRF now is defined to be the probability of output
y given input x: Fy(z,y) = Pr(y|x). For the inference problem, the denominator Z(x)
is usually ignored since it is shared by all possible output y. So the inference problem
is simplified to find the output y with maximum w - ®(z,y). In this case, as long as
the feature function ® is decomposable to be the summation over features of partial
sequence labels, the Viterbi inference algorithm is still applicable to find the optimal
output sequence.

For the learning problem, the formal objective function for CRF learning is to mini-

mize the negative conditional log likelihood over the training examples:

(w)=— Y logPr(y|z)

(z,y)€D

=— Z log Z(lx) exp[w - ®(z,y)] (3.4)

which is a convex function and can be optimized by methods like improved iterative
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Algorithm 4 SGD Learning algorithm for CRF.

Output: weight vector w
w <« (0,0,...,0)
repeat
for each (z,y) € D do
! 1 / !
Calculate Pr(y'|x) < VAG] exp|®(z,y’) - w] for Vy' € Y(x)
W~ W+ ¢(l‘7 y) - Zy’ey(z) Pr(y/)@(iva y/)
until Converged
9: return w

®

Input: training set D = {(z(M,yM), (2@, y@) .. (™), 4N} feature map @

scaling [6], gradient descent, and quasi-newton methods.

Here we derive the gradient for the objective function in Equation 3.4:

H(w)  — Yayer) Ologexplw - B(z, )] — log Z(x)

ow ow
== ) [®@y) - > Pry|x)®(z,¢)
(z,y)€D y'eY(z)

(3.5)

CREF is usually trained in a batch mode with L-BFGS, a quasi-newton method. Here,

to stress its similarity between perceptron, we instead choose stochastic gradient descent
(SGD) training, which is also widely used [48, 18, 70]. The key idea is that with SGD

there can be a lot more updates on the model parameters so ideally the model can be

trained faster.

The stochastic objective function for CRF is

Uw;x,y) = —log Pr(ylz) = —log exp[w - ®(z,y)]

1
Z(x)
The stochastic gradient (corresponding to Equation 3.5) is

ol (w; x,y)

o = @@y + Y P [2)®(,y)

y'€Y(x)

The SGD version of CRF is shown in Algorithm 4.

Both batch training and stochastic training for standard CRF are guaranteed to
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converge since the objective function of CRF (Equation 3.4) is convex.

3.2.2 Conditional Random Field with Inexact Search

The major issue remains with stochastic gradient descent is about the second term in
Equation 3.6 (Line 6 in Algorithm 4). The update step needs to iterative over all possible
output structures in )(z), calculates the probability of each structure, and combines
the structure features weighted by the corresponding probabilities. Calculating this
probability can be done with dynamic programming algorithm similar to the Viterbi
Algorithm, but still the time needed is not affordable, since there can be exponentially
many output structures.

A straightforward alternative to solve this issue is beam search. Many works using
CRF have adapted beam search with stochastic update [48, 18, 70]. With beam search,
in the searching for the possible output structures ¢y’ € )Y (x), only the top b structures
are kept and used later to calculate the probability distribution Pr(y’|x) under current
model weight parameter. More formally we can define the new output space under beam
search:

V() = Buu(as w),

where By, (z; w) is the set of candidates that survives the beam search defined in Equa-
tion 2.2.

Despite the wide usage and good performance of CRF with beam search, there was
relatively little known about its theoretical properties, especially about the convergence.

A recent research [48] discuss about the convergence property of CRF with beam
search. Here we just briefly state the results here! and skip the proof. We will come
back to the proof again in later chapter.

Denote w* to be the optimal weight vector that minimizes the conditional log likeli-
hood objective of CRF with exact search:

w* = argmin /(w). (3.7)

w

It is shown in [48] that ¢(w*) can be approximated by CRF with beam search with

! Our formalization is slightly different from the formalization in [48] since we do not have the
regularization term in the objective function and we do not consider the learning rate.
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arbitrary precision as long as the beam size b is sufficiently large.
With exact search, the stepwise SGD update term is shown in Equation 3.6. We

rewrite it here:

ol(w;x,y)

Viwiz,y) = ——5

=-®(x,y)+ > Pry|x)®(z,y)
y'€Y(z)

With beam search, the stepwise SGD update term is:

Viw;z,y) = —®(x,y)+ > Pry/|a)®(z,y).
Y €Vw ()

The difference between the exact update term and inexact update term

S(w;iz,y) = Vi(w;a,y) — Vi(w;z,y),
can be arbitrarily close to 0 with a sufficiently large beam size b:
o(wiz,y) < e
Let 7 be an approximation-based bound of the difference between £(w) and £(w) s.t.

[Ve(w) = Vi(w)] - (w —w*) <,

where Vg(w) 2 E(z,4) [VE(W; x,y)], which is the expected update term over all data for
a given weight w. 7 is controlled by the beam size b since increasing b can make Vg(w)
arbitrary-close to V/{(w).

We also need some assumptions about the properties of the objective function:

1. ¢(w) is strongly convex with modulus ¢,: Vw, w’,

UW') = bw) + (W' = w)V(w) + 2 [[w = w]”.

2. V{(w) is Lipschitz continuous differentiable with constant ¢: Vw,w’,

IVe(w') = VE(w)|| < g[w' = w.
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Then we have the convergence theorem for CRF with beam search:

Theorem 3 (convergence of CRF with beam search [48] ). Let € be a target degree of

convergence, CRF with beam search will converge if beam size b satisfies

More precisely, let w¥ be the initial weight vector, after t updates where

0__ %2
. log (Al =w"I?)
- c )

CRF with beam search converges towards the optimum objective s.t.
E[0(w") — {(w*)] < e.

This theorem gives the convergence guarantee for CRF with beam search where only
the top b candidate output structures are sampled. It states that, as long as the beam

size b is sufficiently large, CRF with beam search will converge.

3.2.3 Conditional Random Field vs. Structured Perceptron

The differences between the update functions of structured perceptron (Equation 3.3)
and CRF optimized with SGD (Equation 3.6) are relatively small: they both reward
the features from the correct output derivation, and penalize the incorrect derivation(s).
Actually we can approximate structured perceptron by CRF with SGD by using the
Viterbi output as an approximation of the set of all possible output structures weighted
by the probabilities. More specially, structured perceptron can be viewed as CRF with
SGD and beam search of beam size b = 1.

To summarize, structured perceptron can be viewed as a two-fold approximation of
standard CRF: first an online approximation using SGD, and second a hard Viterbi

approximation (using beam search with beam size 1).
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Chapter 4: Latent Variable Structured Learning: Theory

As we mentioned in Chapter 1.3, for many structured learning tasks, only part of the
output derivation is easy to annotate by human. With only partially known reference,
the structured learning problem is more difficult, but also becomes capable of dealing
with more complicated tasks.

The general approach for structured learning with natural annotations is to model the
unknown full annotations as latent variables, and search for the correct full annotations
that agree with the partially known references. This latent variables are structured
just like the structured output, which means even bigger search space, further slowing
down the decoding process. More importantly, the structured latent variables in the
search space violates many theoretical properties for the structured learning algorithms
in Chapter 3, so that the theoretical convergence properties no longer always hold for
structured perceptron and CRF with latent variables. Furthermore, we investigate the
application of inexact search in the expectation-maximization algorithm in NLP, which
also involves structured latent variables, but is generative instead of discriminative like

perceptron and CRF.

4.1 Mathematical Formalization for Latent Variable Sequence La-

beling

We continue our formalization for the simple sequence labeling problem in Chapter 2.1
and augment it with a latent variable model. We use this example to establish the math-
ematical framework for latent variable structured learning, extend it to other structured
learning tasks, and then discuss the theoretical properties of latent variable structured
learning models.

The key difference between a sequence labeling model with and without latent vari-
ables is that, for latent variable models, the output of the decoding procedure is not
the labeled output y, but a latent label h € H(y) instead. H is a mapping function

that maps a label y to the set of structured latent variables that are consistent with y.
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Usually y can be induced from h € H(y) easily. We will show two examples of this latent
variable mapping later in this section.

With this latent variable mapping, the decoding procedure does not directly search
for output label y, but for the latent representation h. We can redefine the infer-

ence/decoding problem in Chapter 2.1 in two ways:

1. We use the label sequence y corresponding to the latent label sequence h with the

hight score as the output:

Y= argmax Fy(z,h). (4.1)
yeY(z) s.t. heH(y)

2. We use the label sequence y whose corresponding latent label sequences have the

highest aggregated score:

y* = argmax Z Fyu(x,h). (4.2)
veY(@) hem(y)

For the correct output y, there can be more than one corresponding latent label
sequences h € H(y). All of these hs are considered correct since from them we can induce
y equally. But still we can have a special inference problem which we call constrained
inference or forced decoding which searches for the correct latent label sequence with the

highest score that matches the output y:

h* = argmax Fy(z, h). (4.3)
heH(y)

In Chapter 1.3, we present several exemplary structured learning tasks like machine
translation, semantic parsing, and sentence entailment, for which introducing latent
variables is straightforward and reasonable due to the necessity of natural annotations.
For the very simple sequence labeling task like POS tagging, it seems there is no need
for latent variables at first glance. However, actually we can augment the sequence
labeling model with latent variables either for better modeling of the labeling procedure
(Chapter 4.1.1), or for better generalization of the labeling procedure (Chapter 4.1.2).

Here we give two examples of the latent variable mapping, corresponding to two

different variants of the sequence labeling problem.
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4.1.1 Decomposable Latent Variable Sequence Labeling

Consider the fact that the POS tags represent the functionalities of the words in the
sentence. It is quite reasonable that a more refined representation of these functionalities
might model the sentence better. In other words, a more refined label set might model the

1 This is particularly helpful for sequence labeling

functionalities with higher accuracy.
applications like POS tagging over the the Chinese TreeBank [61] tag set where the
granularity of POS tag set is not refined enough.

Following this intuition, we improve the sequence labeling model with an augmented
label set that is hidden from the annotator. For example, we can split the POS tag NN
for nouns in singular form to two different POS tags: NN; for countable nouns and NNo
for uncountable nouns which can help determine the tag of the following verb. But in
the perspective of the annotator, these two tags are the same and both countable nouns
and uncountable nouns will be annotated as NN.

More formally, for a given label set T, there is a mapping function H that maps a

label y; € T to a set of k latent labels:
H(y;) = {hy; 1, Py 2, hy, i }- (4.4)
We assume the mapped latent label sets for different labels y;,y; € 7 do not overlap
H(y;) N H(y;) = 0. (4.5)

For a sentence x = (z1x2...x,) and annotated label sequence y = (y1y2...Ym), the
corresponding latent label sequence is h = (hihs ... hy,) where h; € H(y;).

We abuse the notation of H to define the mapping over a sequence of the original
label set: H(y) = H(y1) X H(y2) X -+ X H(y;,). We also use H(7) to denote the split
label set from the reference label set T .

This type of latent model splits the output labels into disjoint latent labels. The
key property of it is that each output structure can be decomposed into sub-structures
(e.g., prefixes in the POS tagging problem) that directly correspond to several latent

sub-derivations. In other words, the output structure casts strong and direct constraints

! This observation also works for constituent parsing tasks where a refined label set can improve
parsing accuracy [44].
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on the structure of the derivations in the latent space.

In the decomposable latent variable structured learning, for each feature in the latent
variable model with augmented latent labels, we can easily determine the corresponding
feature with the unaugmented label set, because between the output derivation and
the latent derivation, the only variance is the label set, and the structure remains the
same. For example, for a feature containing only NNi, its corresponding feature with
the unaugmented label set can be derived by replacing NN; with the unsplit label NN.
Based on this observation, it seems to be helpful to leverage the information in the
(unaugmented) output space to help prove the convergence in the (augmented) latent

space, which is the key intuition behind the proof of Theorem 4.

4.1.2 Non-Decomposable Latent Variable Sequence Labeling

A more difficult variant of the sequence labeling problem is the grapheme-to-phoneme
conversion problem [7]. In grapheme-to-phoneme conversion, each grapheme (letter)
is labeled with its phoneme (pronunciation). However, some graphemes can be silent,
which means they do not have corresponding phonemes; some graphemes can have more
than one corresponding phonemes, for example grapheme “x”. Also the phonemes are
annotated at word-level, i.e., the grapheme-phoneme alignment is not annotated.

Take the word “fixing” for example, its annotated pronunciation is [fiksiy]. However,
the correspondences (alignments) between the graphemes and the phonemes are un-
known. There can be several alignments for the pronunciation of “fixing”. One example

is:

“fixing” _ f i X ing
[fiksiy] ] [1] [ks] [1p]
Another example is:
“fixing” _ f i X - i n g
[frksmy] [f] [1] [k] [s] [1] - ]

The goal of grapheme-to-phoneme conversion is to learn a model to correctly convert

a word to its pronunciation.
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We formalize the grapheme-to-phoneme conversion problem following [7]. Denote
x = (1,...,Tm),z; € X as the word, and y = (y1,...,Ym),¥i € YV as the annotated

pronunciation. For a given word x, the inference or decoding problem is to find:

y* = argmax Fy (z,y),
yeV(z)
where Y(z) is the set of possible output phonemes, and Fy, is the scoring function.

We can view the grapheme-to-phoneme conversion problem as a co-segmentation
problem, i.e., the grapheme and its corresponding phoneme are grouped together as
a co-segment. There can be more than one schemes to co-segment the word and its
pronunciation. For example, in the first example of word “fixing” there are 4 co-segments,
while in the second example there are 7 co-segments. The co-segment scheme is latent
and we denote it with h = (hy, ..., hg) € H(z,y), where k is the number of co-segments,
and each h; is actually a pair of (x;1...Zim;, Yi1--- yzm;) s.t. 1) the co-segments cover
all graphemes and phonemes; and 2) different co-segments do not overlap.

The score of a joint word-pronunciation pair Pr(z,y) under a specific co-segment

h € H(z,y) can be modeled as a score based on all co-segments:
Fy(h) = Fy(h1,..., hg). (4.6)

The score of a joint word-pronunciation pair Pr(z,y) can be calculated by summing over

all possible co-segment schemes:

Fulz,y)= > Fu(h).

heH(z,y)

Note that this summarization corresponds to the second definition of the decoding prob-
lem in latent variable structured learning (Equation 4.2).

Comparing with the decomposable latent variable learning, it is difficult to decom-
pose the output structure to sub-structures that directly correspond to structures in the
latent space. In other words, there are no strong and direct constraints from the output
structure to restrict the searching in the latent space. For the grapheme-to-phoneme
conversion task, the output structure, i.e., the sequence of phonemes, does not provide

sufficient constraints on the latent structures, i.e., the sequence of phonemes and the



38

segmentation. Without this strong constraint, the convergence of the non-decomposable

latent variable structured learning is a totally new problem.

4.2 Latent Variable Structured Perceptron

For structured perceptron, we usually choose the first version of the inference problem
(Equation 4.1):

Y= argmax Fa(z, h).
yeY(z) s.t. heH(y)

Introducing the latent variable means the reference derivation is no longer fixed. In this
case, we can choose to update the perceptron by rewarding the correct latent derivation
with the highest score, and penalizing the incorrect Viterbi latent derivation.

The formal update function is:
witl — wt + A®(z, h, h), (4.7)

where
h = argmaxw' - ®(x, h),
heH(y)

h= argmax w'-®(z,h).

hey')y' €V(x)

For the convergence of latent variable structured perceptron, we start with our exam-
ple of latent variable sequence labeling based on [49], and then we will try to generalize
the conclusion to general latent variable structured prediction tasks.

It is proved that the convergence guarantee for decomposable latent variable struc-
tured perceptron in the sequence labeling task (Chapter 4.1.1) still holds [49]. More
specially, this convergence proof guarantees that, if the latent variables model the latent
label set H(7) which is split from label set 7, and the structured perceptron for the
original problem with label set 7 converges, then the new latent variable structured
perceptron also converges.

The key intuition behind the proof is that the new separation margin g with latent

label set H(7') can be induced from the original separation margin ~.
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Recall the original separation margin ~ is defined in Equation 3.2:

¥ = max min  u-A®(z,y,z).
w:|lul|=1 (z,y)€D, 27y ( )

The new separation margin with the latent labels is:

YH = u- A®(x, h,b).

max min

u:l|luf|=1 (z,y)€D,heH(y),h' €H(2),y#=

Consider the feature mapping ® for the latent label set. This feature function ®
is actually also “augmented” from the old feature space to a new feature space to ac-
commodate the enlarged label set. More specially, a feature ¢; that uses the unigram
label y; is augmented to a new set of possible features using h; € H(y;), i.e., the number
of new augmented features is k; = |H(y;)|. Similarly consider a feature ¢; that used
label bigrams of y; and y;. The label set augmentation introduces k; = [H(y;)| - [H(y})|
new features. For the original feature mapping ® of n features, in general feature ¢; is

augmented to k; features where 0 < ¢ < n.

Theorem 4 (Separation Margin of Sequence Labeling with Latent Splitting Label Set
[49] ). Given the feature space augmentation vector k = (ki,ka,...,ky), if the origi-
nal feature space can be separated with an oracle unit vector u = (uy,ug,...,u,) by a

separation margin vy, then the new latent feature space can be separated by a margin

yua > /T

where T = />0 ku?.

Proof. Construct a new vector ug of length >""" | k; from the oracle unit vector u in the

original feature space as follows:

k1 ko kn
ug = (g, U, Uy e U, Uy ey Upy).

Consider latent feature vector ®(z,h) = (B,..., fl,ﬁ’%,..., 52,...,5%,...,57’?") of

length Y | k; where h € H(y). The feature vector in the original space is ®(z,y) =

(at,a?,... a™). Since the latent feature is mapping from the original feature, and each

feature is an indicator of either 0 or 1, o; = Zf;l @7 .
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Then for h € H(y) and b’ € H(y/)

upr - A®(x, h, h')
ki

=" Y (8 - 87))
i=1 j=1

= uia; - aj)

=1
=u-A®(z,y,y) >~

This means uy is an oracle vector that separates every training example in the
latent feature space by margin . Thus there exists an oracle unit vector ug /7 that
separates every training example in the latent feature space by margin vg = /7T where
T = />0 kiu?. O

With this new separation margin, the proof from Theorem 2 can be used to prove

the convergence of structured perceptron for latent variable sequence labeling task.

4.3 Latent Variable CRF

As we discussed in Chapter 3.2.3, structured perceptron can be viewed as a two-step
approximation of CRF. Applying CRF for sequence labeling is straightforward. Knowing
that the convergence guarantee no longer holds for structured perceptron, we also analyze
the impact of latent variable for CRF learning.

Note that there are two definitions of the inference problem for latent variable struc-
tured learning.

With the first definition (Equation 4.1), the inference problem of CRF is:

Y= argmax Pr(h|x)
yeY(z) s.t. heH(y)

= argmax exp[w - ®(z, h)], (4.8)

yeV(x) st. heH(y) Z(T)
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where
Z(x) = max exp[w - ®(z, h)].
VeV () heH(y)

The new negative conditional log likelihood objective function is:

log max Pr(h|z
(1%2[) phax (hlz)

1
(x%éjlo hgl}?(};) 7@) exp[w - ®(x, h)].

Clearly the introduction of the latent variable h makes the new objective function
no longer convex. So the convergence proofs for original CRF and for CRF with inexact
search no longer hold.

On the other hand, with the second definition of the inference problem (Equation 4.2),
the inference problem of CRF is:

y* =argmax Z Pr(h|z)
veX(@) heH(y)

exp[w - ®(z, h)], (4.9)

= argmax
vEV(@) 4y £ (@)

where

Z Z exp[w - ®(z, h)].

y'€Y(x) heH(y)

The corresponding negative conditional log likelihood objective function is:

Z log Z Pr(h|z)

(z,y)eD heH(y)

> s 3

(z,y)eD heH(y)

1
which is still not a convex function.
At first glance under the second definition the CRF learning objective is preferable in

the theoretical perspective since it is checks all latent states that are correct. However,

in practice, enumerating all latent structures h € H(y) is still time consuming and is
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usually calculated with approximation like beam search. In this scenario, the inference
problem under the first definition (Equation 4.8) is a special case of the inference problem

under the second definition (Equation 4.9).

4.4 Expectation-Maximization with Inexact Search

Another widely used machine learning algorithm in NLP is the Expectation-Maximization
(EM) algorithm. Different from structured perceptron and CRF, EM model by default
includes latent variables, which makes its objective non-convex. In practice for efficiency
considerations we usually apply inexact search for the latent variables in EM, which
makes the convergence even harder to predict.

Here we first introduce some EM examples and then discuss the properties of EM
with inexact search in the expectation step.

We formalize the sequence labeling problem following [7] with a generative model.
Denote z = (21,...,%m),z; € X as the word, and y = (y1,...,Ym/),yi € Y as the
annotated label. For the POS tagging task, m’ = m, while for the grapheme-to-phoneme

conversion task, m’ # m. For a given word z, we aim to find:

y* = argmax Pr(z, y),
yeV(x)
where Y(z) is the set of possible output labels.

We denote the latent labels with h = (hq,..., hi) € H(z,y), where k is the number
of latent labels. For the POS tagging task, each h; is a latent tag, £k = m. For the
grapheme-to-phoneme conversion task, each h; is actually a co-segment, i.e., a pair of
(i1 - Timgs Yin - - Yim! ) s.t. 1) the co-segments cover all graphemes and phonemes;
and 2) different co-segments do not overlap.

The probability of a sentence-label pair Pr(z,y) under a specific latent label h €

H(z,y) can be written as:
Pr(h;z,y) = Pr(hq,..., hy). (4.10)

The probability of a joint sentence-label pair Pr(z, y) can be calculated by summing over
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all possible latent label schemes:

Pr(z,y) = Z Pr(h).

heH(z,y)

Note that this summarization corresponds to the second definition of the decoding prob-
lem in latent variable structured learning (Equation 4.2).
Similar to the sequence labeling problem, we can simplify the calculation of Equa-

tion 4.10 by applying a M-gram Markov assumption:

Pr(h;z,y) = H Pr(hilhi—n+1s- -5 hic1),

where Pr(h;|h;—pr41, ..., hi—1) is the parameter of this generative model. We denote the
set of all Pr(h;|hi—pr41,...,hi—1) as w.
To estimate the parameters for this generative model, we use the expectation-maximization
(EM) algorithm. We would like to find the parameter that maximize the log likelihood
of the training set D:

lw)= > logPr(z,y)

(z,y)eD

= Y log > Pr(h). (4.11)

(z,y)ED heH(z,y)

To find the optimal parameter w, EM algorithm iteratively does a series of:

1. expectation step that calculates the soft counts c(hi_pry1,...,hi), which is the
count of M-gram h;_ps41,...,h; weighted by the probability of the latent label h

in which it occurs.

c(hicargrts-- s ha) = > > Pr(hlz,g)nn,_y,,,.h(h)

(z,y)€D heH(z,y)

Pr(h)
B D Brgy v, (412)
(z,y)€D heH(z,y) h'eH(z,y)
where np, ;. ..n;(h) is the number of occurrences of M-gram h;_prq1,...,h; in

latent label h.
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2. maximization step that maximizes the likelihood of the training set given the soft

counts:

c(hi—ns1s - -5 hi)
Pr(h;|h;— coohio) =
r(halhi-p1 ) 2 w oy S s g i)

i— M1 i1

Theoretically there is no guarantee that this EM algorithm converges to the optimal
since the log likelihood objective (Equation 4.11) is not convex.

Furthermore, consider the expectation step (Equation 4.12) where for each word
pronunciation pair (x,y) € D in the training set, EM needs to iterate through all possible
latent labels h € H(x,y). This search space is of size exponential to the length of z and
y and the exact search is not affordable, so in practice we resort to inexact search like

beam search.
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Chapter 5: Latent Variable Structured Learning: Applications

Here we show some applications of latent variable structured learning. We show that the
strong generalizing capability makes latent variable structured learning a very powerful

model in practice.

5.1 Incremental Semantic Parsing

As we discussed in Chapter 1.3, for many NLP tasks it is easier to annotate partial
output (natural annotation), but not the whole output.

Our first application for latent variable structured learning is incremental semantic
parsing.

There are two types of natural annotations for semantic parsing task.

1. Annotation of meaning representations. This is the most straightforward annota-
tion: for each sentence, the corresponding meaning representation is annotated.
There are several different choices for meaning representation: the first-order logic
form [51], the A expression form with first order logic [64], and A dependency-based

compositional semantics [32].

2. Annotation of question answers which annotates the answer to each question while

the meaning representation for the question is hidden [28, 5.

Here we focus on the first type of natural annotation with A expression with first order
logic as the meaning representation, and use latent variable structured perceptron as the

statistical model.

5.1.1 Incremental Semantic Parsing Decoding

We use the Type-driven Incremental Semantic Parsing (T1sp) algorithm [67] to demon-
strate the decoding process of incremental semantic parsing. We use the following run-

ning example in the domain of GEOQUERY dataset:
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top (root) t (boolean)
/\
lo (location) i (integer)
/\
au (admin. unit) nu (nature unit)

/\/\

st (state) ct (city) rv (river) Ik (lake)

Figure 5.1: Type hierarchy for GEOQUERY domain (slightly simplified for presentation).

Q: What is the capital of the largest state by area?

MR: (capital (argmax state size)):ct

Note that the meaning representation is annotated with its type. In the above example
the meaning representation is of type city (ct). Figure 5.1 shows the subtype hierarchy
used in the A expression meaning representation.

Similar to incremental (shift-reduce) dependency parsing, TIiSP maintains a stack
and a queue during the parsing. The stack is initialized to be empty, while the queue is
initialized to be the sentence to be parsed with the first word as the head of the queue.

At each parsing step, TisP choose to perform one of following three actions:

1. shift (sh): Tisp pops one word from the queue, finds a predicate or constant
defined in the domain that matches the word to form a subexpression, and pushes

the subexpression onto the stack.

2. reduce (re): TisP pops the top two subsexpressions sy and s; from the stack, and
checks whether they are applicable/reducible. If sy and s; are reducible!, Tisp
performs the function application and pushes the result subexpression onto the

stack.

3. skip (sk): Tisp pops the top word from the queue, and ignores it. This step is

mainly to skip those semantically vacuous words.

Table 5.1 shows an exemplary parsing derivation for TiSp. There are several issues

we would like to address in the decoding procedure.

! There can be only one way to reduce them.
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step action | stack after action queue typing
0 - 10) what...
1-3 sk 10) capital...
4 shgapital | capital:st — ct of...
7 Shiagest | capitalist — ct argmax:('a—t) = ('a—i) = 'a state...
8  shgtate capitalist — ct argmax:('a —»t) — ('a — i) — 'astate:st - t | by...
9 re~ capitalist — ct (argmax state): (st — i) — st by... binding: 'a = st
11 sh aea | capitalist — ct  (argmax state):(st — i) — st size:lo —i | 7
12 req capitalist — ct (argmax state size):st ? (lo _s)t i)<:<|:0(s?—> i
13 ren (capital (argmax state size)):ct ?

Table 5.1: Exemplary parsing derivation for the running example in TISP.

pattern A-expression templates with polymorphic types
JJS AP:('a—t)— (la—i)—>'a. P
NN AP:"o— '¢c. P

Table 5.2: POS-based meaning representation templates used in the running example
(Table 5.1). .

First, for the shift action, once a word is popped from the queue, TISP needs to
find the best predicate or constant matching this word to be pushed onto the stack. To
figure out which predicate or constant is favorable, Tisp first finds the corresponding
M-expression templates based on the POS tag of the word, and then it instantiates the
templates using predicates that matches the templates in types. For example, the \-
expression templates used for the exemplary parsing derivation (Table 5.1) are listed
in Table 5.2. In step 4, when the word “capital” is shifted, based on its POS tag NN,
template AP : o — 'c . P is chosen. Among all those predicates in the database,
capital : st — ct matches this template and, thus, is used to instantiates the template
to get capital : st — ct to be pushed onto the stack.

Second, for the reduce action where T1SP applies function application, the type sys-
tem requires the type of the argument to be subtype of the type of the function’s argu-

ment. More formally we have

62:5 S<:T

)

Az :T .e1) ea = [z ed]er

where [z — e3] means replace the occurrence of variable x in expression e; with expres-
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sion es. One example of the typed function application is in step 13 where the function
is capital : st — ct, and the argument is (argmax state size):st, which is applicable
to the function since st is a subtype of itself: st <: st. One tricky example is in step
12 where the function is of type (st — i) — st and the argument is of type lo — i. To
make this application sound in types, we need (lo — i) <: (st — i) given that st <: lo in
Figure 5.1. This seems counter-intuitive at first, but it is reasonable since the function
would require its argument (which is a function of lo — i) to not be surprised by any
possible future arguments (which are at most st). More formally this is defined as a

contravariant rule in type theory:

A<:B
BoC<:A>C

Third, besides the types in Figure 5.1, TISP also uses type variables. Consider the
type of the return value of argmax: in questions like “what is the largest river” it should
return value of type rv, while in questions like “what is the largest city” it should return
value of type ct. This means the correct return type of argmax can not be determined
at the time when it is pushed onto the stack. Instead its return type is flexible based
on its arguments. We model this flexibility with type variables in the type theory. One
example is in step 9 of Table 5.1 where the return type of argmax is determined by its
argument state : st, which can be formally written as type variable 'a being bound to
st: 'a =st.

The constraints from the subtype hierarchy and function application can avoid some
unnecessary function applications in the search for the correct parses. However, spurious
ambiguity like Table 2.1 still can not be totally avoided.? This spurious ambiguity can be
caused by how the templates are chosen and grounded in the shift step, and the different
reduce orders that lead to the same result. We treat this ambiguity as latent variables

and handle the learning problem with latent variable structured perceptron.

2 The spurious ambiguity is more severe in semantic parsing with only annotated question-answer
pairs where even the parse tree is hidden and only the evaluation result of the parse tree is given. Different
parse trees can be evaluated to give the same answer.
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5.1.2 Latent Variable Structured Perceptron for Incremental Se-

mantic Parsing

Due to its similarity to the phrase-based machine translation task, we model the incre-
mental semantic parsing task similar to the latent variable structured perceptron learning
for phrase-based machine translation [62].

To perform a structured perceptron update to correct a search error, we need to

consider two issues:

1. Different from our POS tagging example for structured perceptron without latent
variable, there can be multiple correct latent derivation that lead to the correct

output. This issue has been addressed by Equation 4.7.

2. However, trivially applying Equation 4.7 is problematic since it does not consider
the problem of inexact search. For the problem of incremental semantic parsing,
beam search is also incorporated for decoding efficiency. The decoding process of
incremental semantic parsing is similar to the POS tagging task where a derivation
is a sequence, so the “early update” and “max-violation update” strategies defined

in Figure 3.2 should be adapted to handle latent variables.

More formally for a meaning representation pair (x,y), we denote D(x) to be the
set of all partial and full parsing derivations for input sentence x. For a full derivation
d € D(x), we define mr(z) to be the meaning representation of d. We then can define

the set of (partial and full) reference derivations at step i to be:
good;(x,y) 2 {d € D(z) | |d| = i, 3full derivation d’ s.t. d is a prefix of &', mr(d") = y},
We can also define the set of (partial and full) bad derivations at step i to be:
bad;(x,y) £ {d € D(x) | d & good,(z,y),]d| = i}.
At step 4, the best reference (partial or full) derivation is

di (z,y) 2 argmax w-®(z,d).
degood;(z,y)
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Figure 5.2: Update methods for latent variable structured perceptron with beam search.

In practice, searching over the space of all possible derivations D(x) is very time-
consuming and not affordable. So as usual we resort to inexact search, i.e., beam
search. We define the set of (partial and full) derivations explored in the beam search

as D(z) C D(z). The incorrect Viterbi (partial or full) derivation at step i is

d; (z,y) = argmax  w- ®(x,d),
debad; (z,y)ND(x)

Following [62], we can find the step ¢* where the difference between the score of the

best reference derivation and the score of the incorrect Viterbi derivation is maximal:

i* 2 argmaxw - A®(z, df (x,y), dj (z,y)),

1

and do update at step 7*:
W W+ A®(z,df (2, y), d (2, y)),

where A®(z,d,d') 2 &(z,d) — ®(z,d).
Based on this definition, we can draw the update strategies in Figure 5.2, which is
corresponding to Figure 3.2 for the structured perceptron with beam search without

latent variables.
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GEOQUERY JoBs ATIS

System P R F1 P R F1 P R F1
Z&C05 [64] | 96.3 79.3 87.0 | 97.3 79.3 874 - - -

Z&C07 [65] | 91.6 86.1 88.8 - - - 85.8 84.6 85.2
UBL [29] 94.1 85.0 89.3 | - - - 721 714 717
FUBL [30] 88.6 88.6 88.6 - - - 82.8 82.8 828
Tisp (st) 89.7 86.8 882 | 764 764 764 | 80.7 80.4 805
Tisp 92.9 88.9 90.9 | 85.0 85.0 85.0 | 84.7 84.2 844

Table 5.3: Performances (precision, recall, and F1) of various parsing algorithms on
GEOQUERY, JOBs, and ATIS datasets. TIsP with simple types are marked “st”.

5.1.3 Empirical Evaluation

We evaluate the latent variable structured perceptron with inexact search over three
standard evaluation sets: GEOQUERY, JOBS, and ATIS.

Our feature set consists of Word-Edge features that have been shown to be effective
in constituent parsing [10] and machine translation [62]. In detail we include features
of combinations of the types and leftmost and rightmost words of the top 3 meaning
representations on the stack, the top 3 words on the queue, the grounded predicate
names and the rules being used. To avoid overfitting problem due to very complex
features, we set a budget to each type of atomic feature and only feature combinations
below a fixed budget threshold are used.

We evaluate the performance of TisP with definitions of precision and recall specially

tailored for semantic parsing task, which have widely being used in other semantic parsing

approaches.
Procisi # of correctly parsed questions
recision = )
# of successfully parsed questions
Recall — # of correctly parsed questions

# of questions

We show the performance comparison in Table 5.3. In general, TiSP can achieve
competitive performance in all three datasets.

We also run ablation experiments where the subtype hierarchies for the three tasks
are simplified to contain only entity (e), integer (i), and boolean (t). The results are also
shown in Table 5.3. From these ablation experiments we can see that the refined subtype

hierarchies can indeed improve the search by avoiding unnecessary search branches, and,
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id ‘ rule

70 S — <X,X>

(a1 S — <SX, SX>

ro | X — (Bushi, Bush)

rs | X — (Shalong, Sharon)

ry | X = (huitan, talks)

rs | X — (yu X juzing X, held Xg with Xp)
r¢ | X — (yu Shaléng, with Sharon)

r7 | X = (X juzing Xg, Xg held Xg)

Table 5.4: Exemplary HIERO translation rules. Rules r¢ and r; are glue rules.

thus, improve the search quality.

5.2 Syntax-base Machine Translation

Our second application for latent variable structured learning is syntax-based machine
translation [59, 12]. Syntax-based machine translation contains several different ap-
proaches. Here we focus on one special approach: the hierarchical phrase-based transla-
tion model (HIERO) [12].

5.2.1 HIERO Decoding

Here we first briefly describe the HIERO decoding algorithm, which can be viewed as a
two-step process.

In the first step, HIERO parses following the HIERO synchronous grammar. Table 5.4
shows an exemplary set of translation rules for Chinese-English Translation. As a syn-
chronous grammar, the right hand side of each HIERO rule is a pair describing both the
source sentence and the target sentence. In the source side or the target side, there can
be at most two non-terminals. There are two special rules, r; and ro in Table 5.4, that
are called glue rules which are used to convert non-terminal X to the root non-terminal
S and to concatenate the translations from non-terminals respectively.

In this step, HIERO decoder parses the source sentence using the source sides of
the translation rules. Exemplary source side parse trees are shown as the top trees in

Figure 5.3. In the mean time, HIERO generates the target sentence using the target sides
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S(0:5] Sio:5]
/\ /\
Xpg S[?:u Xj1:5)

Xo:1 X Xus) Xio1] X3 Xa:5]
I o AN |

o Bushi 1 yiu o Shalong 3 juxing 4 huitdn s o Bushi 1 yiu o Shalong 3 juxing 4 huitdn s
o Bush heid 2 taliis 3 V\;ith 4 S\haron 5 o Bush wiﬁh o Sharon 3 heid 4 talks 5

S N XX X

‘ \/
S X S X
\/ \/
S S
(a) gold derivation (b) Viterbi derivation

Figure 5.3:  An example of HIERO translation. (a)—(b): gold and Viterbi derivations
of HIERO translation represented by synchronous trees respectively. The top trees are
in source side and the bottom trees are in target side. The subscript of a node in the
source tree shows the source side span of that node. The dashed lines show the alignment
between source and target words.

of the translation rules. The bottom trees in Figure 5.3 are the corresponding target
parse trees generated from the source parses using rules in Table 5.4.

More formally, the result source parses can be represented as a hypergraph, which is
also called a forest since a hypergraph is an aggregated representation of a group of trees.
In this hypergraph, each node has a signature of form N[;.;), where N, being either S or
X in HIERO, is the non-terminal of the left hand side of the rule used to generate the
subtrees rooted at span [i : j|. Each hyperedge e in the hypergraph is an application of
the translation rule r(e).

Figure 5.4 shows an exemplary hypergraph containing both of the source parses in
Figure 5.3.

From the target tree generated in the first step, we can easily generate the translated
sentence. However, this sentence is usually not fluent enough. To overcome this problem,

we explicitly add a score from a language model to rank the rule combinations that
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Xj0:1] X(2:3] X[1:3] X4:5]

Figure 5.4: A hypergraph containing two derivations: the gold derivation (Figure 5.3
(a)) in solid lines, and the Viterbi derivation (Figure 5.3 (b)) in dashed lines.

produce fluent translation. This is done in the second step of HIERO decoding.
More formally, the second step augment the above hypergraph by adding an extra

mark of language model for each hypergraph node. After the augmentation, each node
axb
[i:5]°
are translated boundary words of span [i : j|. For bigram language model, both a and b

Nj;.;) in the hypergraph is split into multiple nodes of signature IV where a and b
contain one word, since it will be enough to calculate the language model when two spans
are concatenated. One example of the augmented node with bigram language model for
the Viterbi derivation in Figure 5.3 is X‘[’{i:gf*talks since the translation of the node X5
in the Viterbi derivation is “with Sharon held talks” whose boundaries are “with” and
“talks”.

Actually we can represent the HIERO decoding process formally as a deductive sys-
tem. Take the partial translation “with Sharon held taks” in the Viterbi derivation of
Figure 5.3 (b) as an example, which is the result of applying rule 7 in Table 5.4 over

nodes X‘[’{i:gl]l*Shamn and ij}é‘}s*talks, the corresponding deduction is:

withxSharon . talksxtalks .
Xi:3) - 51 X[1:5] -8 - (5.1)
- , .
Xﬁﬁ%}]‘*talks 281+ sa+s(r7) + A
where s; and s9 are the scores for the derivations at nodes X‘fﬁ%‘*s}mon and Xfil})‘]s*talks

respectively, s(r7) is the score from applying translation rule r7, and A is the language

model score which for this example is log Pry(held|Sharon)Prpy (talks|held).
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5.2.2 Latent Variable Structured Perceptron for HIERO

Consider the application of structured perceptron for this problem. As we mentioned be-
fore, fully annotating the parse hypergraph for each machine translation example requires
experts and is very time-consuming. Instead most conventional machine translation sys-
tems are trained on parallel sentence pairs.

For a parallel sentence pair like Figure 1.4, only the correct translation for the source
sentence is annotated. We can only confirm the correctness of a translation derivation
if its translated sentence agrees with the provided reference.

To perform a structured perceptron update to correct a search error for HIERO, we
need to adapt it to the hypergraph search setting. The decoding process of incremental
semantic parsing is similar to the POS tagging task where a derivation is a sequence,
so the “early update” and “max-violation update” strategies defined in Figure 3.2 can
be easily applied. For HIERO decoding the derivation is of tree structure, for which the
“early update” and “max-violation update” strategies are not yet defined. Fortunately,
applying perceptron update in the middle of the search where the derivations are trees
for bottom-up parsing has been investigated in [66], which resembles HIERO decoding.
We use similar approaches as [66] but take the latent variables into consideration.

More formally, consider a sentence pair (x, y), we denote H (x) as the HIERO decoding
hypergraph. We denote D € H(z) if D is a full derivation generated in the decoding
of z, and D belongs to the hypergraph H(x). We say D is a correct derivation if its
translated sentence agrees with the reference sentence y. Note that there can be more
than one full derivations that are correct. We denote the set of correct full derivations,

or good derivations as:
A
good(z,y) ={D € H(x) [ e(D) = y},

where e(D) is the English side, i.e., the translated sentence, of derivation D.
We can also define the partial good translations that cover span [i : j] with node

N;.;) in the hypergraph:
goody, (x,y) = {d € D| D € good(z,y), root(d) = Ny;.;} (5.2)

However, in real decoding time, due to the exponentially large search space, it is im-
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practical to search over the whole derivation hypergraph. We usually resort to inexact
search, i.e., beam search. Furthermore, in practice the searching time with only beam
search is not affordable due to the huge amount of translation rules and different com-
binations of phrases for language model evaluation. Cube-pruning [22] is widely used to
further speedup the searching by introducing more approximation.3

This means that the real decoding hypergraph H () is a subset of the full decoding
hypergraph H(z). We denote the wrong (partial) derivations generated during the real

decoding time in hypergraph H(x) as bad (partial) derivations:
A ~
badN[i;]-] (xvy) = {d €D | D e H(l’,y), TOOt(d) = N[zg]v d ¢ QOOdN[Z-:j] (‘/Ea y)}

Note that the y-good derivations are defined over the full decoding hypergraph H(x)
while the y-bad derivations are defined over the real decoding hypergraph H (). They
are not defined symmetrically.

Following the definition of “max-violation update” in [23, 62, 66|, we define our “max-
violation update” at the hypergraph where the score difference between the incorrect
Viterbi partial derivation and the best reference partial derivation is mazimal.

In detail, we first find the reference partial derivation with the highest score, d™, at

each hypergraph node Nj;;) in the whole hypergraph H (x):

11>

argmax w- ®(x,d),

+
dN[i~j] (.CC, y)
’ degood . . (z,y)

[i:5]

and the incorrect Viterbi partial derivation d~ at each hypergraph node Ny in the
decoding hypergraph H (x):

dy = argmax w - ®(z,d).
de badN[i:]_] (z,y)

(z,y)

[i:5]

Then we find the node N, [’;f*:j*] where the score difference between the previously found

3 Actually this extra approximation can also be problematic for the convergence proof for structured
perceptron since it can be another source of violation. But here we skip the discussion of cube-pruning
for simplicity reason.
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best reference partial derivation and the Viterbi partial derivation is maximal:

* A + —
Nijs.jv) = argmax w - A®(z, dN[i:j] (x,y), dN[i:j] (x,y)),

Nz

and do one max-violation update:

w < w+ AdP(z, d%ﬁ*:j*] (@,9), dz_v[*;*:j*] (z,9)),
where A®(z,d,d') 2 &(z,d) — ®(z,d).

One issue remains in above definition. Consider the definition in Equation 5.2, where
the reference partial derivations are defined on the whole decoding hypergraph. This is
impractical due to the huge search space.

To efficiently find the correct partial derivations, we do a forced decoding process
which essential implements the definition of Equation 4.3.

We do forced decoding by using a specially designed language model in the second
step of HIERO decoding:

1 ifg=p+1
Prforced(q ’ p) = )
0 otherwise

where p and ¢ are the indices of the boundary words in the reference translation.

With this language model, the nodes in the new decoding hypergraph are of form
N, [’Z*ﬁ If a boundary word does not occur in the reference translation, its index is set to
oo so that the corresponding language model score will always be —oo.

The decoding deductive system now can be adapted for forced decoding. Rule r7 in

Table 5.4 can be written as:

X — <X jdmfng X, X 1 X>,

The deductive step corresponding to Equation 5.1 now can be written as:

Xf’l*é} 1 81 X[%ﬁ] . 89

X4*2 . A s
[1:5] * S1+ s2+ 8(7’7) +
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where A = 1og Prorced (1/4)Prforced (2|1) = —o0, which will be pruned since it does not

lead to reference translation.

5.2.3 Empirical Evaluation

Following [62] we call our latent variable structured perceptron with inexact search for
syntax-based machine translation MAXFORCE. We evaluate this proposed method in
[69] over two Chinese-English corpora, IWSLT09 and FBIS. Our implementation is based
on cdec [19] with its pycdec [9] interface. We compare this method with conventional
parameter tuning methods including n-best MERT [40], hypergraph MERT [27], and PRO
[21].

We design the features for structured perceptron containing two sets

1. All the dense features widely used in all conventional parameter tuning meth-
ods including language model score, direct translation probability p(e|f), lexical
translation probabilities prpx(e|f) and prex(fle), length penalty, counts for the
source and target phrases in the training corpus, and flags for the glue rules and

pass-through rules.

2. For sparse features we use Word-Edge features which are very effective in parsing
[10] and phrase-based MT [62]. Our Word-Edge features consist of combinations
of English and Chinese words, and Chinese characters on the boundary of the
translation rules. To avoid overfitting problem from complex features, we apply a
budget scheme that only simple feature combinations within the given budget are

used.

We first evaluate the translation result over the two datasets with BLEU score [41].
Table 5.5 and Table 5.6 show the comparisons between MAXFORCE and other con-
ventional methods. In addition, we also compare MAXFORCE with the “local update”
method of [33] which update by rewarding the derivation at the root span S|, with the
highest sentence-level BLEU score. The result from local update is ~ 2 BLEU worse than
MAXFORCE.

We also run two ablation experiments to evaluate the components of MAXFORCE

training.
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algorithm # feats | dev | test
n-best MERT 18 44.9 | 479
Hypergraph MERT 18 46.6 | 50.7
Pro 18 45.0 | 49.5

local update perc. 443K 45.6 | 49.1
MAXFORCE 529K | 47.4 | 51.5

Table 5.5: BLEU scores (with 16 references) of various training algorithms on IWSLT09.
IWSLT04 is used as tuning set for MERT and PRO, and as development set for MAX-
FORCE and local update perceptron of [33]; IWSLTO05 is used as test set.

algorithm # feats | dev | test
Hypergraph MERT 18 27.3 | 23.0
Pro 18 26.4 | 22.7
MAXFORCE 4.5M | 27.7 | 23.9

Table 5.6: BLEU scores (with 4 references) of various training algorithms on FBIS.
NISTO06 newswire is used as tuning set for Hypergraph MERT and PRO, and as develop-
ment set for MAXFORCE; NIST08 newswire is used as test set.

T T T T T T T T T
47 /\//’\—/\/-/\
T i g ® f J
o R
S _ & 45 e T ]
2 a5 | i Max-Violation N 2 sparse features
- local updat.e - & 44r dense features T
skip —— Hypergraph MERT -------
30 b standard update i 43 PRO 1
n-best MERT ——
1 1 1 1 1 1 1 1 1 42 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
iteration iteration
(a) (b)

Figure 5.5: (a) Comparison of various update methods over IWSLT09 for latent vari-
able structured perceptron. (b) For IWSLT09, sparse features contribute ~ 2 BLEU to
MAXFORCE, outperforming MERT and PRO.
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The first ablation experiment (Figure 5.5 (a)) compares MAXFORCE with different
update strategies: max-violation [23], local update [33], skip [66] which updates at the
root span only when the update can fix a search error, and standard update. The
difference between standard update and all other update methods is significant (~ 10
BLEU) since standard update does not have any convergence guarantee as we discussed in
Chapter 3.1.3. The difference between skip strategy and the other two update strategies
is ~ 5 BLEU, which can be explained by the fact that there are fewer updates with skip
strategies than the other two.

The other ablation experiment (Figure 5.5 (b)) evaluates the contributions of dif-
ferent features in MAXFORCE. We find that sparse features contribute ~ 2 BLEU to
MAXFORCE, making it outperform MERT and PRO. With only dense features MAX-
FORCE is roughly of the same performance as MERT and PRO.

5.3 Sentence Entailment

Besides semantic parsing and machine translation, we would also like to evaluate the
latent variable structured learning technique in the application of sentence entailment,
together with the neural network model [68].

Recall the sentence entailment problem we discuss in Figure 1.5 where the goal is to
determine whether a sentence (hypothesis) can be inferred from another given sentence

(premise). There are two general approaches to solve this problem.

1. The first approach uses symbolic inference rules to check whether the hypothesis
can be induced from the premise with logic. A typical example is natural logic
[34] where the premise is converted to the hypothesis with a series of sentence
edits of insertion, replacement, and deletion of words. Each sentence edit has a
corresponding logic operation, and the final entailment relation can be calculated
by composing these logic operations together following some composition rules.
Another example is based on semantic parsing [53], where both of the premise and
the hypothesis are first converted to semantic parse trees, and then a series of logic
operations specially designed for semantic parses trees are applied to check if there

is valid entailment relation.

The symbolic inference approaches are vulnerable to the data sparsity problem
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since their underlying models, being either structured perceptron or CRF, depend
on sparse features, which means they can handle those sentences occur in the
training set, but does not generalize well with unseen sentences in the development
and testing sets. This problem is even more severe in sentence entailment task

since usually the training sets for sentence entailment are small.

2. Another approach is based on the strong generalization power of the continuous
representations, i.e., word embedding, and neural networks. One exemplary at-
tempt for solving sentence entailment problem with neural models is [8], where
both the premise and the hypothesis are passed into two neural networks sepa-
rately to get two continuous representations of the meaning of the sentences. After
that these two vectors are passed into another neural network that determine the
relationship between the two sentences. This model shows that with sufficiently
large training set, continuous representations can generalize well and outperform
discrete symbolic models. Another example is [45] where an attention model is in-
troduced to determine for each word in the hypothesis, which word in the premise

is most important in determining the entailment relationship.

The problem with these neural models is that they either ignore the latent en-
tailment relation in the between parts of the sentences of the premise and the
hypothesis [8], or they simply model this relation in a word-by-word way, instead

of the more reasonable tree node-level alignment as in Figure 1.5.

We would like to leverage the structure of the latent alignment to further improve the
sentence entailment performance. This means the node-level attention should follow the
constraints from the structure of the two parses trees, and also the composition of the
entailment relations should happen at the tree node level, rather than at the sentence

level.

5.3.1 Formalization

We first formalize the sentence entailment problem as a structured prediction prob-
lem similar to [38, 2, 60]. The input for the sentence entailment task are two trees: the
premise tree P and the hypothesis tree (). We assume both trees are binarized. The goal

of the sentence entailment task is to predict a label y € {entailment, neutral, contradiction}.
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Premise S

Hypothesis S

.- - S~ ~
‘ two/CD ’Twomen/NNS uare/VBP ‘ hugging/VBG one/CD another/DTw the/DT H women/NNS H are/VBP H sleeping/VBG

_________ entailment BT

Figure 5.6: Exemplary trees for the premise sentence “two women are hugging one
another” and the hypothesis sentence “the women are sleeping”. The syntactic labels
(NP, VP, CD, etc.) are not used in the model. The dashed and dotted lines show the
lowest level of alignments from the hypothesis tree nodes to the premise tree nodes.
The blue dashed lines mark the entailment relations, and the red dotted line marks the
contradiction relation. In the hypothesis tree, tree nodes in blue squares are identified to
be entailment from the premise, and nodes in red squared are identified to contradicts the
premise. By composing these relations from the bottom up, we reach a conclusion that
the sentence-level entailment relation is contradiction. Please also refer to Figure 5.11
for real examples taken from our experiments.
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Note that at first glance, this problem is not a structured prediction problem: the output
is a label rather than a structure such as a sequence or a tree. But here we still consider
this problem as a structured prediction problem since: 1) the input to the problem is
structured; 2) the approach we choose to analyze the input relies on internal structures,

i.e., alignments.

5.3.1.1 Decomposition of the Problem

We can formally write down the goal of the decoding algorithm as to find the label with

the minimal negative log likelihood, given the input pair of trees:

argmin — log Pr(y|P, Q)
y

Then we introduce the internal alignments A € {0, 1}/?/*I”| between tree nodes, where
|-| calculates the number of nodes in a tree. A;; = 1 if and only if node ¢ in hypothesis

tree @) is aligned to node j in premise tree P.

argmin — log Pr(y| P, Q)

y
=argmin — log Z Pr(y, A|P,Q)
Y A
= argmin — log Z Pr(A|P,Q) - Pr(y|A, P, Q)
Y A
= argmin — log Ep,(z|p,q) [Pr(y[A, P, Q)] (5.3)
y

We now have two separate problems to discuss:

e Given the input pair of trees, we need to calculate the probability for alignment
A:
Pr(A|P, Q).

e Given a fixed alignment A, we need to infer the probability of the final label y:

Pr(y|A, P, Q).
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5.3.1.2 Architecture of the Network

Here we first briefly introduce how to construct neural networks to solve the above two
problems separately, and later in the next subsection we will discuss how to jointly train

the model with the alignment A as a latent variable.

T

[ Entailment Composition ]

P Q
[ Binary Tree-LSTM ] [ Binary Tree-LSTM ]
[ Premise Word Embedding ] [Hypothesis Word Embedding]

Figure 5.7: Network architecture for Sentence Entailment task.

As Figure 5.7 shows, we use two networks to compute the alignment and the overall
entailment separately. We assume that there is a meaning representation h computed
for each node in the premise and hypothesis trees, which we will address later in this
subsection.

First, for the alignment, we approximate the global (binary) alignment A to be
consisted of the alignment A; € {0, 1}1X|P | of each node in the hypothesis tree Q inde-
pendently:

A=[AT;AS . AL,

Q|
Pr(A|P,Q) = [[ Pr(AilP, Q).

Pr(A;; = 1|P,Q) is the probability of the node i € @ being aligned to node j € P,
which is defined as

s exp(To([hishy)))
5= exp(Tor 1 ([bis b))

PI‘(A,‘J = 1|P, Q) (54)

where h; and h; are vector representing the semantic meanings of nodes i, j respectively.

T5j 1 is an affine transformation from R?* to R. Equation 5.4 is essentially equivalent to
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Figure 5.8: Network for entailment inference.

the widely used attention calculation in neural networks [3].

Once the alignment is known, we build another network to predict the final entailment
label in a bottom-up manner. This recursive network consists of modules recursively
applied at each tree node on the hypothesis tree. Figure 5.8 shows the recursive module.

In Figure 5.8, we use a vector e; € R" to represent the entailment relation at node
1 € ). We can induce the probabilities final entailment labels from the entailment vector

€00t USIng a single non-linear layer with softmax.
Pr(y|A, P, Q) = softmax(tanh(7; 3(eroot)))-

At each hypothesis node i, e; is calculated recursively given the meaning represen-
tations at the corresponding tree node hZQ, the meaning representations of the aligned

premise tree node hf , J € P, and the entailment information from ¢’s children e; 1, e; 2:
ei = fra([(h; > Aihl] e e). (5.5)
jeP

Finally we talk about how to compute the meaning representation h for each tree
node in the premise tree and the hypothesis tree. In general, h; should be calculated
from the meaning representations h; 1, h; 2 of its two children if node 7 is an internal

node, otherwise h; should be calculated based on the word x € R? in the leaf.

h; = fur(xi,hs 1, hy o). (5.6)
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Note the similarity between Equation 5.5 and Equation 5.6: both of them are cal-
culated recursively bottom-up from children nodes. This means we can use a similar
composition function f(-) to calculate them.

We have various choices for composition function f(-). For example, we can use simple
RNN functions [47]. Alternatively, we can use a convolutional layer to extract features
from x;,h; 1, h; 2 (or [hZQ; EjeP Ai,jhﬁ ,€;.1,€;2), and use pooling as aggregation to form
h; (or €;). In this paper we choose Tree-LSTM [50]. Our model is independent to this
composition function and any high-quality composition function is sufficient for us to
infer the meaning representations and entailment representations.

One thing worth mentioning is that in Tree-LSTM, besides the children representa-
tions h; 1, h; 2 (or e;1, €;2), the composition function also takes another pair of memory
representations c; 1 and c; 2 as input. Take the calculation of the meaning representations

h; as an example. The Tree-LSTM composition function can be written as:
[hy; ¢i] = LSTM(x;, [hi1; €inl, [hi1;¢i2]).

In practice, we use the above LSTM(-, -, -) function as fie and fyg. But we only expose
the output h; (or €;) to the above layers and keep the memory c; visible only to the
LSTM function.

Following [63], we can summarize the LSTM function as following:

i; o
fi1 o X;
fio | = o Tarork | hin
0; o h; >
u; tanh

ci=i0u+510c1+f20c¢,,
h; = o; ® tanh(c;),

where i;, f; 1, f; 2, 0; represent the input gate, two forget gates for two children nodes,

and the output gate respectively. Ty o 1 is an affine transformation from RI+2k o RF,
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5.3.1.3 Dual Alignment

We further improve our alignment in Equation 5.4, which does not consider any structural
information of the current tree, nor any alignment information from the premise tree.

We can take a closer look at our conceptual example in Figure 5.6. Note that the
alignment have, to some extent, a symmetric property: if a premise node j is most
relevant to a hypothesis node ¢, then the hypothesis node i should also be most relevant
to premise node j. For example, in Figure 5.6, the premise phrase “hugging one another”
contradicts the hypothesis word “sleeping”. In the perspective of the premise tree, the
hypothesis word “sleeping” contradicts the known claim “hugging one another”. This
indicates that calculating the alignments from both sides can reduce some uncertainty.
This technique is similar to the widely used forward and reversed alignment technique
in the machine translation area.

The calculation of dual alignment is straightforward: we compute the alignment A
from hypothesis to premise and also the alignment A% from premise to hypothesis and

then use the element-wise product
A*=A AR

as the alignment to feed into the entailment composition module. This element-wise
product is a mimic of the intersection operation over two alignments in machine trans-

lation.

5.3.2 Latent Variable Structured Learning with Neural Model

The training of the above model (Equation 5.3) is more involved when taking the latent

structure, i.e., the alignment A, into consideration. Here we first write down the stepwise
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objective function to minimize during the training

g(ya P7 Q) = - logPr(y|P, Q)
= logZPr(y, A|P7 Q)

A

= — logZPI'(A|P, Q) ' Pr(y|A? P, Q)
A

= —logEpya|p,g)[Pr(y|A, P, Q)] (5.7)

Our model can also be viewed as a special case of latent variable CRF: instead of cal-
culating the final probability based on a structured output, e.g., the coarse label sequence,
we calculate the final probability based on a label y, but both the structured output and
the label rely on the latent variable, e.g., refined label sequence in Section 4.1.1 or the
alignment A in our case.

In general, our approach is similar to the training of a latent variable CRF model, i.e.,
minimizing the stepwise negative log likelihood. But this means we need to enumerate all
possible alignments A € {0, 1}|Q|X|P | the number of which grows exponentially fast with
respect to |P| and |@|. This computation is extremely time-consuming and is difficult
to handle for for latent variable CRF models.

Here we propose two approaches to approximately address this issue. The first one is
based on sampling, and the second one is based on further approximation in the stepwise

objective function 5.7.

5.3.2.1 Approximation via Sampling

Here instead of directly minimizing the stepwise objective Equation 5.7, we minimize an
upper-bound of it.
Consider Equation 5.7. Since logarithm is a concave function, using Jensen’s inequal-

ity, we have

E(y7 P7 Q) = - lOg ]EPr(A|P,Q) [Pl‘(y|A, P7 Q)]
<- EPr(A|P,Q) 10g[PI‘(y|A, P, Q)] = Z(yv P, Q)

The upper-bound #(y, P, Q) is easier to minimize since we can approximate the ex-
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pectation over the alignment A via sampling.

In detail, for every input sample (P, Q,y), we first randomly sample an alignment A
based on distribution Pr(A|P, @), and then infer the final entailment probability with
alignment A fixed.

5.3.2.2 Approximation in Objective Function

Alternatively, we can also optimize an approximated objective function. Notice that, as
long as the calculation Pr(y|P, Q) only consists of linear calculations, simple nonlinear-
ities like tanh and softmax, we can have following simplification via first-order Taylor

approximation [60]:

e(y7 P, Q) = —log IEF’r(A|P,Q) [Pr(y|A7 P, Q)]
~ — log Pr(y|Ep,a|p0)[A], P, Q)
= IOgPI'(y‘A,P, Q) = g(yv P’ Q)7

which indicates that, instead of enumerating over all possible alignments and calculating
the label probability for each alignment, we can use the label probability for the expected

alignment as an approximation:
A =Ep,a|pg)A] € RICXIPL

An example of the expected alignment is shown in Figure 5.9.

This approximated objective Z(y, P, Q) is easier to minimize since the computation
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of the expected alignment A can be decomposed into node-level:

Az‘,j = PI‘(AZ'J‘ = 1‘P, Q)

The dual alignment technique can be applied similarly to the expected alignment

calculation.

5.3.3 Empirical Evaluation

We evaluate the performances of our structured attention model and structured entail-
ment model on the Stanford Natural Inference (SNLI) dataset [8], which contains ~ 570k
sentence pairs. We use the binarized trees in SNLI dataset in the experiments.

For word embedding parameters we use GloVe [42] for initialization. During the
training we do not update the word embeddings for known words. For the rest layers,
we initialize the parameters uniformly between -0.05 and 0.05. The lengths of both the
Tree-LSTM meaning representation k, and the entailment relation vector r are set to
150.

We train our model with Adam with hyper-parameters 5, = 0.9, S = 0.999, learning
rate 0.001, minibatch size 32, and dropout rate 0.2.

5.3.3.1 Quantitative Evaluation

We compare the performances of our models with various existing methods [8, 45, 50,
56, 11]. For those methods that do not provide an official implementation for our task,
we use our own implementations. The results are summarized in Table 5.7.

As a baseline, we first use the binary Tree-LSTM to induce the meaning represen-
tations of the premise tree and the hypothesis tree, and then predict the entailment
relation based on the meaning representations of the root nodes (Row 7 of Table 5.7),
which already outperforms the naive sequence LSTM model (Row 6 of Table 5.7). We
further add the simple attention of [45] on top of the binary Tree-LSTM (Row 8 of
Table 5.7), but only achieve limited improvement, since we observe severe vanishing
gradient problem during training.

Composing the entailment relation from bottom up significantly improves the per-
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Method | k | 167  Train  Dev.
1 LSTM sent. embedding [8] 100 221k 84.8 77.6
2 Sparse Features + Classifier [8] - - 99.7 78.2
3 LSTM + word-by-word attention [45] 100 252k 85.3 835
4 mLSTM [56] 300 1.9m 92.0 86.1
5 LSTM-network [11] 450 3.4m 88.5 86.3
6 LSTM sent. embedding (our implement. of [8]) | 100 241k 79.0 784
7 Binary Tree-LSTM (our implementation of [50]) | 100 211k 824 79.9
8 Binary Tree-LSTM + simple RNN w/ attention | 150 220k 82.4 81.8
9 Binary Tree-LSTM + Sampling 150 09m 85.0 84.2
10 + dual alignment 150 09m 858 854
11 Binary Tree-LSTM + Expected Alignment 150 09m 87.0 86.4
12 + dual alignment 150 09m 87.7 87.2

Table 5.7: Comparison between our structured model with other existing methods. Col-
umn k specifies the length of the meaning representations. ||y is the number of param-
eters without the word embeddings.

formance. When using the sampling strategy (Section 5.3.2.1, Row 9 of Table 5.7), we
observe an improvement of ~ 2.4, and adding the dual alignment technique (Row 10 of
Table 5.7) brings another ~ 1.2 improvement.

Binary Tree-LSTM with expected alignment strategy (Section 5.3.2.2, Rows 11 and
12 of Table 5.7) achieves the best performance. Comparing to the sampling strategy, we
find expected alignment learns faster and converges to a higher accuracy, which might
be because in sampling we are only optimizing an upper-bound of the true objective

function.

5.3.3.2 Qualitative Evaluation

We further analyze the results of our model by showing two concrete examples taken from
the SNLI dataset. Picking the most representative examples to demonstrate should be
handled with great carefulness. Ideally we should randomly choose examples from SNLI.
However, in practice we find that most correctly classified examples in the dataset are
trivial, i.e., either with words insertion, deletion, or replacement, and many incorrectly
classified examples involves common knowledge. It seems to be time-consuming to find

meaning insights from randomly selected examples.
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The two examples here are manually chosen with consideration of both generality
and non-triviality: they both involve complex syntactic structure and multi-layers of
entailment composition.

The first example is between the premise “several younger people sitting in front
of a statue” and the hypothesis “several young people are sitting in an auditorium”.
Figure 5.10 (a) and (b) show the expected alignment and dual alignment. Without
dual alignment, the premise word “sitting” tends to be mistakenly aligned to hypothesis
word “auditorium”, since in meaning representation level these words are more relevant
semantically. But looking from the perspective of the premise tree corrects this mistake.

Figure 5.11 (a) draws the alignments of Figure 5.10 (b) between the tree nodes. It
also shows how the final entailment relation is inferred from bottom up. Note that the
hypothesis word “auditorium” contradicts the premise word “statue”, which changes all
the other entailment relations from entailment to contradiction.

The second example is even more interesting. The premise sentence is “a person
taking pictures of a young brunette girl”, and the hypothesis sentence is “a young model
has her first photoshoot”. First, in Figure 5.10 (c¢) and (d), we can observe that with-
out dual alignment, many hypothesis words like “model”, “first”, and “photoshoot” are
incorrectly aligned to premise word “a”, which is similar to the garbage-collection phe-
nomenon in machine translation. Dual alignment fixes all of these mistakes. Figure 5.11
(b) shows how the entailment is inferred internally. Note that in this example, there
are two ambiguous spots. Firstly, “a young brunette girl” is not necessarily a “model”.
Secondly, “taking pictures” is not necessarily “her first photoshoot”. Both of these two

ambiguities are identified in Figure 5.11.



73

\ X
> 4 > 4
O ¥.O 2 L O .0
AQ’ \)Q Q/oQ . ‘é}(\ 0&' « Q\}Q’ ®4® 00(\ Q/OQ ‘0(\ o(‘\" « ‘?‘)0)
F L F & LKL o 2 L & KL S 23

o
N\
several severa

young young

people people

are are .
sitting sitting
in in
an . an
auditorium auditorium

(a) attention (b) dual-attention
o 2 & <&
QS < 3O Q 3
S SN S (O S
¥ Qo 2¥W > ?‘Q @q ¢ 2O &
Al A
young . young .
model model
has| has

her| . her| .
first first] .
photoshoot] photoshoot

(c) attention (d) dual-attention

Figure 5.10: Attention matrices for exemplary sentence pairs. Note that, for brevity
we only show the attentions between each word pair, and skip the attentions of tree
nodes. Some important tree node alignments calculated by our model are highlighted
using the colored boxes, where the colors of the boxes represent the entailment relations
(see Figure 5.11). (a) (b) Premise: several younger people sitting in front of a statue.
Hypothesis: several young people sitting in an auditorium. Dual-attention fixes the
misaligned word “auditorium”. (c) (d) Premise: A person taking pictures of a young
brunette girl. Hypothesis: A young model has her first photoshoot. Dual-attention fixes
the uncertain alignments for “photoshoot” and “model”.
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Figure 5.11: Examples illustrating entailment relation composition. (a) for Figure 5.10
(b); (b) for Figure 5.10 (d). For each hypothesis tree node, the dashed line shows to its
most confident alignment. The three color stripes in each node indicate the confidences
of the corresponding entailment relation estimation: red for contradiction, green for
neutral, and blue for entailment. The colors of the node borders show the dominant
estimation. Note: there is no strong alignment for hypothesis word “are” in (a).



75

Chapter 6: Summary

We reviewed some conventional structured learning algorithms for several popular NLP
tasks. We discussed the theoretical properties of structured perceptron, CRF, and EM,
and their applications in sequence labeling, constituent/dependency parsing, semantic
parsing, machine translation and grapheme-to-phoneme conversion.

We can draw the relations between these structured learning methods in Table 6.1. At
the very beginning we have the generative naive bayes model, whose structured extension
is HMM. By introducing latent variables like latent alignments in grapheme-to-phoneme
conversion (Chapter 4.4) and rule extraction in machine translation to HMM we get EM
model. On the other hand, if we model the system with conditional probability Pr(y|x)
instead of joint probability Pr(z,y), naive bayes model becomes logistic regression model
(also called maximum entropy model), HMM model becomes CRF, and EM becomes
latent variable CRF. This explains the similarity between the inference problems of EM
and latent variable CRF. If we further approximate the inference problem of logistic
regression with a Viterbi approximation, i.e., calculating the label with the maximal
score instead of normalizing the probability, and train the logistic regression in an online
fashion, we can get perceptron. Similarly CRF becomes structured perceptron, and
latent variable CRF becomes latent variable structured perceptron. This relation hints
that some theoretical properties of online latent variable CRF with inexact search can be

applied to latent variable structured perceptron directly since latent variable structured

‘ binary/multi-class ‘ + structured learning ‘ + latent variables
generative \ naive bayes ‘ HMM ‘ EM
+ conditional
logistic regression ‘ CRF ‘ latent variable CRF
discriminative + online + Viterbi (Chapter 3.2.3)
perceptron structured perceptron latent variable
structured perceptron

Table 6.1: Relations between conventional structured and non-structured learning algo-
rithms with and without latent variables.
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perceptron can be viewed as a Viterbi version of online latent variable CRF.

We also demonstrated that latent variable structured learning as a flexible model to
handle a variety of structured learning problems, especially for those problems where full
annotation of the searching process is hard and usually only part of the reference deriva-
tion can be annotated. Our results in semantic parsing and machine translation show
that latent variable structured learning algorithms can simplify the structured model.
The results of latent variable structured learning outperform or on par with the con-
ventional models. Our application in sentence entailment show that the latent variable
structured learning technique is applicable to the neural models, and can effectively help

the training.
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