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PERIODICITY AND PARTITION CONGRUENCES

1 INTRODUCTION

This thesis consists of a chapter of background materials, beyond this introduction,

and two chapters of our main work and results followed by a short conclusion. In Chap-

ter 2, we give a summarized and general introduction of partition theory as follows: In

Section 2.1, we give a very brief background of partitions, overpartitions, partition gen-

erating functions, some well-known congruences and their historical context. Indeed,

these topics are considered as a regular part of any standard literature in Number Theory.

In Sections 2.2 and 2.3, we go over the concepts of plane partitions and plane overpar-

titions in order to give the reader a technical introduction to the main area of this thesis.

Also, we define a new object called k-rowed plane overpartition as a restricted form of

plane overpartitions with at most k rows. Using a result of Vultic [41] that provides the

generating function for plane overpartitions which can fit in a box with finite dimensions,

we obtain the generating function for k-rowed plane overpartitions. In Section 2.4, we

study the notion of periodicity of q-series and apply a result of Kwong [24] to calculate

the minimum periodicity of certain type of combinatorial functions that are generated by

finite multisets. Also, we include some results to be used later and mostly in Chapter 3.

In Chapter 3, we extend recent work of Mizuhara, Sellers and Swisher [33] which

gives a method to prove congruences modulo ` of `-rowed plane partitions where ` is
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a prime number. This method relies on the periodicity of the following finite product

which exists as a factor in the generating function for such plane partitions,

F`(q) :=
`−1∏
n=1

1

(1− qn)n
. (1.1)

There is a finite positive integer π`(F`) which represents the minimum periodicity of

F`(q), and can be calculated by a formula of Kwong [24]. This is defined fully in Section

2.4.

One can obtain a congruence modulo ` by checking only a finite number of terms.

In particular, let the function pl`(n) count the number of plane partitions with at most

` rows. Then Mizuhara, Sellers, and Swisher [33] show that if ai, bj are nonnegative

integers less than ` such that for all 0 ≤ n < π`(F`)/`, the following holds

s∑
i=1

pl`(n`+ ai) ≡
t∑

j=1

pl`(n`+ bi) (mod `), (1.2)

then (1.2) holds for all n ≥ 0.

Our first goal of Chapter 3 is to generalize this result to a wider class of partition

functions and include prime power moduli, which we do in Theorem 3.3. Thus, for a

prime ` and a positive integer N , our general technique is to consider a certain type of

combinatorial functions of the form

G(q) :=
∞∑
n=0

λ(n)qn ≡

(
∞∑
n=0

α(n)qn

)
·

(
∞∑
n=0

β(n)q`
Nn

)
(mod `N),

where the q-series A(q) :=
∑∞

n=0 α(n)qn is periodic modulo `N with minimum period-

icity denoted by π`N (A) that is divisible by `N . The following identity is a more general

version of (1.2),

s∑
i=1

λ(n`N + ai) ≡
t∑

j=1

λ(n`N + bi) (mod `N). (1.3)
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We show that once the identity (1.3) holds up for 0 ≤ n < π`N (A)/`N , then it holds for

all n ≥ 0.

Second, we apply our extended periodicity technique to prove and establish new

and existing congruences for several combinatorial functions. For example, we show

several new and existing k-rowed plane partition congruences for small primes. In fact, a

few congruences for this type of partition have been discovered since 1964, for example

see [11] and [17]. Our result is an automated formula to reach some of these congruences

and establish new identities. As an example of new congruences, we prove that for all

n ≥ 0,

pl8(8n) + pl8(8n+ 1) ≡ pl8(8n+ 3) (mod 2),

pl9(9n+ 1) ≡ pl9(9n+ 8) (mod 3).

This will be seen in Theorem 3.7.

For restricted plane overpartitions, we apply our periodic approach to obtain the

following congruences for 4-rowed plane overpartitions which states that for all n ≥ 0,

pl4(4n+ 1) + pl4(4n+ 2) + pl4(4n+ 3) ≡ 0 (mod 4)

which will be seen in Theorem 3.9.

Furthermore, we obtain a few equivalences modulo 3 and 5 for a restricted type of

regular partitions as follows. For all integers n ≥ 0,

p(3n+ 1, 2) + p(3n+ 2, 2) ≡ 0 (mod 3),

p(10n+ 6, 4) + p(10n+ 7, 4) + p(10n+ 8, 4) ≡ 0 (mod 5),
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p(10n+ 2, 4) + p(10n+ 3, 4) + p(10n+ 4, 4) ≡ 0 (mod 5),

where for positive integers n and m, p(n,m) denotes the number of partitions of n into

parts ≤ m. This will be seen in Theorem 3.10.

In Chapter 4, we mainly focus on plane overpartition congruences modulo small

powers of 2. Let the function pl(n) denote the number of unrestricted plane overparti-

tions of an integer nwhile the function plk(n) denotes the number of plane overpartitions

of n with at most k rows. These are defined fully in Section 2.3.

In Section 4.1, we establish several examples of restricted and unrestriced plane

overpartition congruences modulo 4. Let po(n) count the number of overpartitions of

n into odd parts. A congruence relation modulo 4 between unrestricted plane partitions

and overpartitions into odd parts is obtained as follows. For all n ≥ 0,

pl(n) ≡ po(n) ≡


2 (mod 4) if n is a square or n is twice a square,

0 (mod 4) otherwise,
(1.4)

where the second congruence in (1.4) is a result of Hirschhorn and Sellers [[21], Theorem

1.1]. As a consequence, we show that for all n ≥ 0,

pl(4n+ 3) ≡ 0 (mod 4).

We establish a pattern of k-rowed plane overpartition congruences modulo 4 for

each even k ≥ 2. Specifically, let ` be the least common multiple of all odd integers

between 1 and k− 1. Then we prove that for any odd prime p < k, for all n ≥ 1, and for

1 ≤ r ≤ ordp(`), where ordp(`) is the unique highest power such that pordp(`)|`,

plk(`n+ pr) ≡


0 (mod 4) if r is odd,

2 (mod 4) if r is even.
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Moreover, for all n ≥ 1,

plk(`n) ≡


0 (mod 4) if k ≡ 0 (mod 4),

2 (mod 4) if k ≡ 2 (mod 4).

Since ordp(`) is finite, then we get a finite family of congruences modulo 4 for each

positive even integer k. This will be seen in Theorem 4.7.

For example, the following hold for all n ≥ 1,

pl4(3n) ≡ 0 (mod 4),

pl6(15n+ 3) ≡ 0 (mod 4),

pl8(105n+ 5) ≡ 0 (mod 4),

pl10(315n+ 7) ≡ 0 (mod 4).

In addition, for odd positive integers k, we obtain an equivalence relation modulo

4 between k-rowed plane overpartitions and unrestricted overpartitions. In other words,

the following holds for each n ≥ 0 and for each k ≥ 0,

pl2k+1(2n+ 1) ≡ p(2n+ 1) (mod 4).

As a consequence, along with a result of Hirschhorn and Sellers [20], we obtain

the following infinite family of congruences modulo 4. That is, for all k ≥ 0, n ≥ 0, and

α ≥ 0,

pl2k+1(9
α(54n+ 45)) ≡ 0 (mod 4).
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We prove a pattern of congruences modulo 4 between plk(n) and p(n) for each

odd k ≥ 5. specifically, let k ≥ 2 and ` be the least common multiple of all positive even

integers ≤ 2k. Then for all integers n ≥ 1,

pl2k+1(`n+ 2j) ≡ p(`n+ 2j) (mod 4),

where j ≥ 2, j ≡ 0 (mod 2) and 2j−1 ≤ k. Moreover, if k ≡ 0 (mod 2), then for all

integers n ≥ 0

pl2k+1(`n) ≡ p(`n) (mod 4).

This will be seen in Theorem 4.12.

Also, we establish and prove several examples of k-rowed plane overpartition con-

gruences modulo 8 for k = 4, 8. For example, we show that for all n ≥ 1,

pl4(6n+ 3) ≡ 0 (mod 8),

pl8(210n+ 3) ≡ 0 (mod 8),

which will be seen in Theorem 4.16. We also prove a few congruences modulo 8 for

unrestricted overpartitions. For example, we show that for all nonsquare odd integers

n ≥ 0,

p(n) ≡ 0 (mod 8), (1.5)

which will be seen in Theorem 4.17.

As a consequence of (1.5), we obtain the following result which gives an infinite

family of overpartition congruences modulo 8. For any integer α ≥ 3, and β ≥ 0, we

show that in Corollary 4.18 for each n ≥ 0,

p(2α3βn+ 5) ≡ 0 (mod 8). (1.6)
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For k-rowed plane overpartitions with odd k, we obtain the following equivalence

modulo 8 with at most 5 rows. For all n ≥ 0,

pl5(12n+ 1) ≡ p(12n+ 1) (mod 8), (1.7)

pl5(12n+ 5) ≡ p(12n+ 5) (mod 8). (1.8)

By combining the identities (1.6) and (1.7), we obtain an infinite family of 5-rowed

plane overpartition congruences modulo 8. For any integers α ≥ 3 and β ≥ 1, and n ≥ 0,

pl5(2
α3βn+ 5) ≡ 0 (mod 8).

Both (1.7) and (1.8) will be seen in Theorem 4.20.

Finally, in Chapter 5, we conclude with some final remarks.
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2 BACKGROUND MATERIALS

2.1 Partitions and Overpartitions

A general problem in additive number theory is to write an integer n into a nonin-

creasing sequences of integers called parts that sum to n, where these parts come from a

set or multiset of integers and to count all possible ways of obtaining such sequences.

A partition π of a positive integer n is a nonincreasing sequence of positive integers

λ1, . . . , λk that sum to n. We write n = λ1 + · · · + λk = |π|, to denote the size of a

partition, and call λi the parts of the partition π.

The total number of partitions of n is denoted by p(n). We can define p(n) on the

set of all integers by setting p(0) = 1 and p(n) = 0 for all n < 0. For example, the

partitions of n = 5 are given by

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Thus, p(5) = 7.

The function p(n) is also known as the unrestricted partition function to emphasize

that no restrictions are imposed upon parts of the partitions counted.

We can represent a partition π of n graphically by a Ferrers-Young diagram. A

Ferrers-Young diagram of a partition π of n is a left-justified rectangular array of n

boxes, or cells, with a row of length λj for each part λj of π, ordered from top to bottom.

For example, the Ferrers-Young diagram of π = 6 + 4 + 3 + 1 is as follows.
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FIGURE 2.1: Ferrers-Young diagram of |π| = 14

Generating functions are important tools to study partition functions and their arith-

metic properties. A generating function for a sequence of integers is a formal power

series whose nth coefficient corresponds to the nth term of the sequence.

The generating function for p(n) is due to Euler [15] and is given by the following

infinite product representation

∞∑
n=0

p(n)qn =
∞∏
n=1

1

1− qn
. (2.1)

Euler’s idea was to expand each term of the product into formal power series for

|q| < 1 and then grouping all coefficients associated with the same power of q. In other

words,

1

1− q
· 1

1− q2
· 1

1− q3
· · · =(1 + q + q1+1 + q1+1+1 + · · · )(1 + q2 + q2+2 + q2+2+2 + · · · )

(1 + q3 + q3+3 + q3+3+3 + · · · ) · · ·

= 1 + q + q2 + q1+1 + q3 + q2+1 + q1+1+1 + · · ·

= p(0) + p(1)q + p(2)q2 + · · ·

=
∞∑
n=0

p(n)qn.

Note that we do not evaluate the power series at a particular value of q, so we do not need

to deal with convergence.
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Ramanujan’s beautiful partition congruences [38], which state that for all n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5) (2.2)

p(7n+ 5) ≡ 0 (mod 7) (2.3)

p(11n+ 6) ≡ 0 (mod 11), (2.4)

have inspired a vast number of mathematicians to study and investigate special arithmetic

properties of partitions, as well as interesting restricted partition functions and general-

izations. For example see work of Andrews and Berndt [8], Atkin and Swinnerton-Dyer

[9], Garvan [18], Ono [37] and many others [13], [29], [39] to mention a few.

Ramanujan conjectured [38]:

“It appears that there are no equally simple properties for any moduli involving primes

other than these three (i.e. m = 5, 7, 11).”

In other words, the identities (2.2), (2.3), and (2.4) were the only congruences of form

p(`n+ t) ≡ 0 (mod `)

for all integers n ≥ 0, where ` is prime, and t some fixed integer. In 2003, Ramanujan’s

conjecture was proved by Ahlgren and Boylan [4].

Since Ramanujan, mathematicians have been searching for more examples of such

congruences and many of the type

p(An+B) ≡ 0 (mod `)

have been found for integers A,B. The question then arises whether or not the partition

function p(n) is divisible by an arbitrary prime for some arithmetic progressions. The

answer is addressed by Ono [37] who proves a surprising result which states for a prime
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m ≥ 5 and each positive integer k, a positive proportion of primes ` have the property

that

p

(
mk`3n+ 1

24

)
≡ 0 (mod m),

for all nonnegative integers n relatively prime to `. This has been extended to all integers

n coprime to 6 by Ahlgren [3].

One can also consider partitions where the parts are restricted to a specific set S of

integers. For example, let S be a set containing positive integers, then p(n;S) denotes

the number of partitions of n into parts from S. Clearly p(n) = p(n;N).

Let p(n, k) count the partitions of n into parts each at most k. The generating

function of such partitions [7] is given by

∞∑
n=0

p(n, k)qn =
∞∑
n=0

p(n;Sk)q
n =

k∏
n=1

1

1− qn
, (2.5)

where Sk = {1, 2, . . . , k}.

We can also consider partitions where parts are from a multiset S such that each

repeated number is treated independently. The generating function of such partitions is

given by
∞∑
n=0

p(n;S)qn =
∏
n∈S

1

1− qn
. (2.6)

For example, consider the multiset

S = {11, 12, 21, 22, 23, 3},

where repeated numbers have different indices. Then p(2;S) = 6 since the partitions of

2 with parts from S are

21, 22, 23, 11 + 11, 11 + 12, 12 + 12.
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Note that the order in the multiset gives an implied order to the repeated numbers. In

particular,
∞∑
n=0

p(n;S)qn =
1

(1− q)2(1− q2)3(1− q3)
. (2.7)

In fact, it is not easy to determine generating functions for all restricted partitions.

For example, consider the partitions of an integer n into parts the are neither repeated

nor consecutive. Such a generating function is not easy to obtain directly. However, a

Rogers-Ramanujan identity [7] which states that the number of partitions of n into parts

congruent to 1 or 4 modulo 5 is equal to the number of partitions into parts that are neither

repeated nor consecutive. Thus, the generating function for these partitions can be given

by
∞∑
n=0

p(n;S)qn =
∞∏
n=1

1

(1− q5n+1)(1− q5n+4)
,

where S = {5n+ 1, 5n+ 4 | n ∈ N}.

An overpartition of a positive integer n is a partition of n in which the first oc-

currence (equivalently, the final occurrence) of a part may be overlined. We denote the

number of overpartitions of n by p(n) and define p(0) := 1.

For example, the 14 overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

An overpartition can be interpreted as a pair of partitions one into distinct parts corre-

sponding with the overlined parts and the other unrestricted. Thus, it is easy to see that

the generating function for overpartitions is given by

P (q) :=
∞∑
n=0

p(n)qn =
∞∏
n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · . (2.8)
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Overpartitions have been studied extensively by Corteel, Lovejoy, Osburn, Bring-

mann, Mahlburg, Hirschhorn, Sellers, and many other mathematicians. For example, see

[10], [13], [19], [20], [21], [26], [27], [29] and [32] to mention a few.

The well-known Jacobi triple product identity [6] is given by

∞∏
n=1

(1− q2n)(1 + zq2n−1)(1 + z−1q2n−1) =
∞∑

n=−∞

znqn
2

, (2.9)

which converges when z 6= 0 and |q| < 1. Letting z = 1 in (2.9), one can observe one of

Ramanujan’s classical theta functions

φ(q) :=
∞∑

n=−∞

qn
2

=
∞∏
n=1

(1− q2n)(1 + q2n−1)2. (2.10)

Replacing q by −q in (2.10), we get

φ(−q) =
∞∑

n=−∞

(−1)nqn
2

=
∞∏
n=1

(1− q2n)(1− q2n−1)2 =
∞∏
n=1

(1− qn)

(1 + qn)
=

1

P (q)
.

(2.11)

Note that φ(q) can be written as

φ(q) = 1 + 2
∞∑
n=1

qn
2

.

Thus, the generating function of overpartitions has the following 2-adic expansion,

P (q) =
1

φ(−q)
=

1

1 + 2
∑∞

n=1(−1)n2qn2

=1 +
∞∑
k=1

2k(−1)k

(
∞∑
n=1

(−1)n
2

qn
2

)k

=1 +
∞∑
k=1

2k
∑

n2
1+···+n2

k=n

(−1)n+kqn

=1 +
∞∑
k=1

2k
∞∑
n=1

(−1)n+kck(n)qn, (2.12)
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where ck(n) denotes the number of representations of n as a sum of k squares of positive

integers.

Several overpartition congruences modulo small powers of 2 have been found us-

ing the 2-adic expansion formula (2.12). For example, Mahlburg [32] proves that

{n ∈ N | p(n) ≡ 0 (mod 64)}

is a set of density 1?. Later, Kim [22] generalized Mahlburg’s result modulo 128.

Furthermore, Mahlburg conjectures [32] that for any integer k ≥ 1,

p(n) ≡ 0 (mod 2k),

for almost all integers n.

Overpartition congruences modulo small powers of 2 can be derived from the fact

proved by Hirschhorn and Sellers [[21], Theorem 2.1] that states

P (q) = φ(q)P (q2)2. (2.13)

Iterating (2.13) yields that [[21], Theorem 2.2]

P (q) = φ(q) φ(q2)2 φ(q4)4 φ(q8)8 · · · .

Thus,

∞∑
n=0

p(n)qn =

(
1 + 2

∑
n≥1

qn
2

)(
1 + 2

∑
n≥1

q2n
2

)2(
1 + 2

∑
n≥1

q4n
2

)4(
1 + 2

∑
n≥1

q8n
2

)8

· · ·

?The sequence A of positive integers a1 < a2 < · · · has a density δ(A) if

δ(A) = lim
n→∞

A(n)

n
.

For more details about arithmetic density of integers, one may see [36].
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In Chapter 4 [see Lemma 4.1], we will show that for all k ≥ 1,

φ(q)2
k ≡ 1 (mod 2k+1). (2.14)

By (2.12) and (2.14), we obtain the following general equivalence modulo 2k, for k ≥ 2,

∞∑
n=0

p(n)qn ≡
k−2∏
j=0

(
φ(q2

j

)
)2j
≡ 1 +

k−1∑
j=1

2j
∞∑
n=1

(−1)n+jcj(n)qn (mod 2k). (2.15)

Thus, for the case k = 2, we obtain

∞∑
n=0

p(n)qn ≡ φ(q) ≡ 1 + 2
∞∑
n=1

qn
2

(mod 4), (2.16)

which yields for each nonsquare integer n ≥ 1,

p(n) ≡ 0 (mod 4). (2.17)

Manipulating the generating function of overpartitions, Hirschhorn and Sellers

[19] employed elementary dissection techniques of generating functions and derived a

set of overpartition congruences modulo small powers of 2. For example, they prove that

for all n ≥ 0,

p(9n+ 6) ≡ 0 (mod 8),

p(8n+ 7) ≡ 0 (mod 64).

For a modulus that is not a power of 2, Hirschhorn and Sellers [20] prove the first

infinite family of congruences for p(n) modulo 12 by showing first that for all n ≥ 0,

and all α ≥ 0,

p(9α(27n+ 18)) ≡ 0 (mod 3).
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Together with the fact 9α(27n+ 18) is nonsquare for all n ≥ 0, α ≥ 0, and hence by the

help of (2.17), it follows that for all α, n ≥ 0,

p(9α(27n+ 18)) ≡ 0 (mod 12). (2.18)

Several examples of overpartition congruences have been found. For more exam-

ples of overpartition congruences, one may refer to work of Chen and Xia [12], Fortin,

Jacob and Mathieu [16], Treneer [40] and Wang [42].

Now, let po(n) denote the number of overpartitions of n into odd parts. The gener-

ating function [21] is given by

P o(q) :=
∞∑
n=0

po(n)qn =
∞∏
n=1

1 + q2n−1

1− q2n−1
. (2.19)

Similar to (2.13), The generating function P o(q) can be written as [see [21], The-

orem 2.3],

P o(q) = φ(q)P (q2), (2.20)

and the iteration of (2.20) yields [[21],Theorem 2.4],

P o(q) = φ(q)φ(q2)φ(q4)2φ(q8)4 · · · (2.21)

For modulus 4, we then easily get
∞∑
n=0

po(n)qn ≡ φ(q)φ(q2) ≡ 1 + 2
∑
n≥1

qn
2

+ 2
∑
n≥1

q2n
2

(mod 4).

As a consequence, Hirschhorn and Sellers obtain Theorem 1.1 of [21] as following.

Theorem 2.1 (Hirschhorn, Sellers, [21]). For every integer n ≥ 1,

po(n) ≡


2 (mod 4) if n is a square or twice a square,

0 (mod 4) otherwise.
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Similar to (2.15), we have the following general equivalence modulo 2k for all

k ≥ 2,

∞∑
n=0

po(n)qn ≡ φ(q) φ(q2) φ2(q4) · · ·φ(q2
k−1

)2
k−2

(mod 2k).

Later in Chapter 4, we will revisit the equivalences (2.15), (2.17), and Theorem

2.1.

2.2 Plane and Restricted Plane Partitions

Each partition can be considered as a one dimensional array of parts, and MacMa-

hon [30] extended this idea to a two-dimensional array. A plane partition λ of a positive

integer n is a two-dimensional array of positive integers ni,j that sum to n, such that the

array is the Ferrers-Young diagram of a partition, and the entries are nonincreasing from

left to right and also from top to bottom. Letting i denote the row and j the column of

ni,j, this means that for all i, j ≥ 0,

ni,j ≥ ni+1,j,

ni,j ≥ ni,j+1.

Correspondingly, the entries ni,j are called the parts of λ, and the number of plane parti-

tions of n is denoted by pl(n).

For example, pl(3) = 6 since the plane partitions for n = 3 are as follows,
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3 2 1 1 1 1

2
1

1 1
1

1
1
1

FIGURE 2.2: The plane partitions of n = 3

One can visualize a plane partition as a pile of blocks by stretching each part ni,j

in Ferrers-Young diagram into ni,j blocks that stack on top of each other. For example,

the plane partition of n = 31 given in Figure 2.3

5 4 4 3 1
3 2 1
2 2 1
1 1
1

FIGURE 2.3: A plane partition of n = 31

can be visualized as in Figure 2.4,

5

3
2

11

4

22
1

4

11

3

1

FIGURE 2.4: A plane partition of n = 31 in 3 dimensions

where the numbers on top correspond to the entries in the Ferrers-Young diagram.
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Also, one can visualize plane partitions as a tuple of partitions where each entry in

the tuple represents a Ferrers-Young diagram stacked on top each other. The correspond-

ing decomposition for the plane partition of n = 31 in Figure 2.3 is as follows.

FIGURE 2.5: A tuple partition of n = 31

Thus, we get a tuple partition of n = 31 given by (5+3+3+2+1, 4+2+2, 4+1, 3, 1).

MacMahon’s challenge was to establish a nice generating function for pl(n). How-

ever, it was not easy, it took him nearly twenty years (see [7],[30]) to prove that

PL(q) =
∞∑
n=0

pl(n)qn =
∞∏
n=1

1

(1− qn)n
. (2.22)

He also considered [30] a restricted form of plane partition that has at most r rows and c

columns. The generating function is given by

PLr,c(q) =
∞∑
n=0

plr,c(n)qn =
r∏
i=1

c∏
j=1

1

1− qi+j−1
, (2.23)

where plr,c(n) denotes the number of plane partitions of n with at most r rows and c

columns. By fixing r and letting c −→ ∞, one obtains the generating function for r-

rowed plane partitions, which are plane partitions with at most r rows. The generating

function is given by

PLr(q) =
∞∑
n=0

plr(n)qn =
r∏
i=1

∞∏
j=1

1

1− qi+j−1
=
∞∏
n=1

1

(1− qn)min{r,n}
, (2.24)

where plr(n) denotes the number of r-rowed plane partitions of n.
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The r-rowed plane partitions are also referred as r-line partitions, for examples one

may see work of Cheema and Gordon [11], Gandhi [17].

Agarwal and Andrews [2] define a partition π of m allowing n copies of parts n to

be a partition in which a part of size n ≥ 1 comes in n different subscripts (or colors)

denoted by n1, n2, . . . , nn. For example, the partitions with n copies of n of m = 3 are

33, 32, 31, 22 + 11, 21 + 11, 11 + 11 + 11.

Now, consider M to be the multiset of the positive integers

M = {1, 21, 22, 31, 32, 33, 41, 42, 43, 44, . . . },

and let PM(m) be the number of partitions of m with n copies of n [2]. By standard

techniques in partition theory (see [7]) the generating function of PM(m) is given by

∞∑
m=0

PM(m)qm =
∞∑
m=0

p(m;M)qm =
1

(1− q)
· 1

(1− q2)2
· 1

(1− q3)3
· · ·

=
∞∏
n=1

1

(1− qn)n
. (2.25)

Note that the left side of (2.25) is the generating function for MacMahon’s plane parti-

tions, thus indeed pl(n) = PM(n), for all n ≥ 0. However, the combinatorial proof given

by MacMahon that (2.25) is the generating function of pl(n) is not easy [31].

Also, Agarwal [1] defines the k-color partitions as partitions of n copies of n with

subscripts ≤ k and denotes Pk(n) as the number of k-color partitions. For example,

P2(3) = 5 since the only partitions with subscripts ≤ 2 are

32, 31, 22 + 11, 21 + 11, 11 + 11 + 11.

He proves a bijection between k-rowed plane partitions enumerated by plk(n) and k-

color partitions numerated by Pk(n) for all n ≥ 0 [1]. This bijection makes it easier to
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look at the k-rowed plane partitions in terms of k-color partitions since it brings back the

two dimensional partitions to one dimensional partitions.

Several congruences of Ramanujan type have been found for different partition

functions. However, not many plane partition congruences have been found since MacMa-

hon’s discovery. In 1964, Cheema and Gordon [11] obtained the following congruences

for 2 and 3-rowed plane partitions.

Theorem 2.2 (Cheema, Gordon, [11]). For all n ≥ 0,

pl2(5n+ 3) ≡ 0 (mod 5)

pl2(5n+ 4) ≡ 0 (mod 5)

pl3(3n+ 2) ≡ 0 (mod 3).

Three years later, Gandhi [17] found more congruences of this type and proved the

following theorem.

Theorem 2.3 (Gandhi, [17]). For all n ≥ 0,

pl2(2n+ 1) ≡ pl2(2n) (mod 2)

pl3(3n+ 1) ≡ pl3(3n) (mod 3)

pl4(4n) ≡ pl4(4n+ 1) ≡ pl4(4n+ 2) (mod 2)

pl4(4n+ 3) ≡ 0 (mod 2)

pl5(5n+ 2) ≡ pl5(5n+ 4) (mod 5)

pl5(5n+ 1) ≡ pl3(5n+ 3) (mod 5).
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2.3 Plane and Restricted Plane Overpartitions

Corteel, Savelief and Vuletić [14] define plane overpartitions as a generalization

of the overpartitions as follows.

Definition 2.4 ([14]). A plane overpartition is a plane partition where

(1) in each row the last occurrence of an integer can be overlined or not and all the

other occurrences of this integer in the row are not overlined and,

(2) in each column the first occurrence of an integer can be overlined or not and all

the other occurrences of this integer in the column are overlined.

Similar to plane partitions, plane overpartitions can be represented in the form of

Ferrers-Young diagrams. For example, a plane overpartition for n = 31 is given in Figure

2.6.

5 4 4 3 1
3 2 1
2 2 1
1 1

1

FIGURE 2.6: A plane overpartition of n = 31

The total number of plane overpartitions of n is denoted by pl(n). For example,

there are 16 plane overpartitions for n = 3 given in Figure 2.7.
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3 3 2 1 2 1 2 1 2 1 1 1 1 1 1 1

2
1

2
1

2

1
2
1

1 1
1

1 1
1

1
1̄
1̄

1̄
1̄
1̄

FIGURE 2.7: The plane overpartitions of n = 3.

Corteel, Savelief and Vuletić [14] use various methods to obtain the following

generating function for plane overpartitions,

PL(q) :=
∞∑
n=0

pl(n)qn =
∞∏
n=1

(1 + qn)n

(1− qn)n
. (2.26)

Using the notation of Lovejoy and Mallet [28], the generating function of plane

overpartitions is also known as the generating function of n-color overpartitions. From

the previous section, n-color partition is a partition in which each number n may appear

in n colors, with parts ordered first according to size and then according to color ?. An

n-color overpartition is defined similarly to be an n-color partition in which the final oc-

currence of a part nj may be overlined. For example, there are 16 n-color overpartitions

of 3,

33, 32, 31, 33, 32, 31, 22 + 11, 22 + 11, 22 + 11, 22 + 11, 21 + 11, 21 + 11,

21 + 11, 21 + 11, 11 + 11 + 11, 11 + 11 + 11.

?We note that this is slightly different notation from what is usually meant by n-color partition, in
which each part regardless of size may appear in one of n colors.
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Similar to restricted plane partitions, we define a restricted form of plane overpar-

titions called k-rowed plane overpartitions.

Definition 2.5 (Al-Saedi,[5]). For an integer k ≥ 1, a k-rowed plane overpartition π of

an integer n is a plane overpartition of n with at most k rows.

The total number of k-rowed plane overpartitions of n is denoted by plk(n) and we

define plk(0) := 1. For example, pl2(3) = 14 as we see the 2-rowed plane overpartitions

of n = 3 listed in Figure 2.8.

3 3 2 1 2 1 2 1 2 1 1 1 1 1 1 1

2
1

2
1

2

1
2
1

1 1

1

1 1
1

FIGURE 2.8: The 2-rowed plane overpartitions of n = 3.

Now, let the function plk,c(n) count the total number of plane overpartitions with

at most k rows and c columns. Vuletić [41] finds and proves the generating function for

such plane overpartitions in the following theorem.

Theorem 2.6 (Vuletić, [41]). The generating function for plane overpartitions which fit

in an k × c box is
∞∑
n=0

plk,c(n)qn =
k∏
i=1

c∏
j=1

1 + qi+j−1

1− qi+j−1
.

We apply Theorem 2.6 to obtain the generating function of k-rowed plane overpar-

titions.

Lemma 2.7 (Al-Saedi,[5]). For a fixed positive integer k, the generating function for

k-rowed plane overpartitions is given by

PLk(q) :=
∞∑
n=0

plk(n)qn =
∞∏
n=1

(1 + qn)min{k,n}

(1− qn)min{k,n} . (2.27)
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Proof. By fixing k and letting c→∞ in Theorem 2.6, we get

k∏
i=1

∞∏
j=1

1 + qi+j−1

1− qi+j−1
=

(1 + q)(1 + q2)2 · · · (1− qk−1)k−1

(1− q)(1− q2)2 · · · (1− qk−1)k−1
·
∏
n≥k

(1 + qn)k

(1− qn)k

=
∞∏
n=1

(1 + qn)min{k,n}

(1− qn)min{k,n} .

2.4 Periodicity and a Theorem of Kwong

In this Section, we shed light on the periodicity of a certain type of q-series, their

minimum periodicity modulo integers and how to find such periodicity. Kwong and oth-

ers have done extensive studies on the periodicity of certain rational functions, including

partition generating functions, for example see [23], [24], [25], [34], and [35]. We will

apply a result of Kwong [24] that provides us a systematic formula to calculate the min-

imum periodicity modulo prime powers of such periodic series.

Let

A(q) =
∞∑
n=0

α(n)qn ∈ Z[[q]]

be a formal power series with integer coefficients, and let d, ` and γ be positive integers.

We say A(q) is periodic with period d modulo ` if, for all n ≥ γ,

α(n+ d) ≡ α(n) (mod `).

The smallest such period for A(q), denoted π`(A), is called the minimum period of A(q)

modulo `. A(q) is called purely periodic if γ = 0. In this work, periodic always means

purely periodic.
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Note that if π is a period of A(q), then π ≥ π`(A). By Division Algorithm, there

are two integers s and t such that π = sπ`(A) + t and 0 ≤ t < π`(A). By the periodicity

of A(q), we observe that

α(n+ t) = α(n+ π − sπ`(A)) ≡ α(n) (mod `),

and hence t is a period but t < π`(A), so it must be that t = 0. Thus, the minimum

period of A(q) divides all other periods of A(q).

For example, consider the q-series A(q) =
∑∞

n=0 α(n)qn, which generates the

sequence α(n) := 4n+ 1 for all n ≥ 0. Note that α(n+ 2k)−α(n) = 8k ≡ 0 (mod 8)

for all n ≥ 0 and k ≥ 1. Thus, A(q) is periodic modulo 8 and for each k, there is a period

of length 2k. Thus, the minimum period modulo 8 is π8(A) = 2.

Before we state a result of Kwong [24], we recall some necessary definitions from

work of Mizuhara, Sellers, and Swisher [33]. For an integer n and prime `, define ord`(n)

to be the unique nonnegative integer such that

`ord`(n) ·m = n,

where m is an integer and ` - m. In addition, we call m the `-free part of n.

For a finite multiset of positive integers S, we define m`(S) to be the `-free part of

lcm{n|n ∈ S}, and b`(S) to be the least nonnegative integer such that

`b`(S) ≥
∑
n∈S

`ord`(n).

We now state Kwong’s theorem.

Theorem 2.8 (Kwong,[24]). Fix a prime `, and a finite multiset S of positive integers.

Then for any positive integer N ,

A(q) =
∞∑
n=0

p(n;S)qn
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is periodic modulo `N , with minimum period

π`N (A) = `N+b`(S)−1 ·m`(S).

For example, let S = {11, 12, 21, 22, 23, 41, 42, 5}. Then p(n;S) is generated by the

following q-series

A(q) :=
∞∑
n=0

p(n;S)qn =
∏
n∈S

1

(1− qn)
=

1

(1− q)2(1− q2)3(1− q4)2(1− q5)
.

Letting ` = 2 in Theorem 2.8, we obtain

2b2(S) ≥
∑
n∈S

2ord2(n) = 2 · 20 + 3 · 21 + 2 · 22 + 20 = 17.

Thus b2(S) = 5, lcm{n : n ∈ S} = 20, and hence m2(S) = 5. Using Theorem 2.8, for

a positive integer N , the minimum period of A(q) modulo 2N is π2N (A) = 2N+4 · 5.

We note that Theorem 2.8 can be applied to calculate the minimum periodicity

modulo prime powers of any q-series of the form

Rk(e1, e2, . . . , ek; q) :=
1

(1− q)e1(1− q2)e2 · · · (1− qk)ek
, (2.28)

where k is a positive integer and ei are nonnegative integers for 1 ≤ i ≤ k. For the

positive integers ei, consider the multiset of positive integers ij associated with ei for

1 ≤ j ≤ ei, that is, define

Sk,e := {ij|1 ≤ i ≤ k, ei ≥ 1, 1 ≤ j ≤ ei},

where e := (e1, e2, . . . , ek). Then by standard partition theory arguments, we observe

that
∞∑
n=0

p(n;Sk,e)q
n = Rk(e1, e2, . . . , ek; q).

Thus by using Theorem 2.8, we immediately obtain the following lemma.
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Lemma 2.9 (Al-Saedi, [5]). Fix a prime ` and a nonnegative integerN , thenRk(e1, e2, . . . , ek; q)

is a periodic q-series modulo `N with minimum period

π`N (Rk) = `N+b`(Sk,e)−1 ·m`(Sk,e).

For example, let k = 4, and e = (1, 0, 2, 3). Then

R4(1, 0, 2, 3; q) =
1

(1− q)(1− q3)2(1− q4)3

generates partitions with parts from the multiset

S4,e = {1, 31, 32, 41, 42, 43}.

In particular, for ` = 3 and N = 1, we calculate b3(S4,e) using that

3b3(S4,e) ≥ 30 + 2 · 31 + 3 · 30 = 10.

Hence b3(S4,e) = 3. Also, we see that m3(S4,e) = 4. Thus by Lemma 2.9, the minimum

period modulo 3 of R4(1, 0, 2, 3; q) is given by

π3(R4) = 33 · 4 = 108.

Letting ` be a prime, we consider the special case of Lemma 2.9 with k = ` − 1

and ei = i for 1 ≤ i ≤ `− 1. Then

F`(q) = R`−1(1, 2, . . . , `− 1; q) =
`−1∏
n=1

1

(1− qn)n
,

where F`(q) was defined in (1.1).

We then have the following immediate corollary to Lemma 2.9 which is a particular

case of Corollary 2.4 given by Mizuhara, Sellers, and Swisher in [33].



29

Corollary 2.10. For a prime `, and a positive integer N , F`(q) is periodic modulo `N

with minimum period

π`N (F`) = `N+b`(S`−1,e)−1 ·m`(S`−1,e),

where e = (1, . . . , `− 1).
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3 USING PERIODICITY TO OBTAIN PARTITION
CONGRUENCES

The goal of this Chapter is to generalize a result of Mizuhara, Sellers, and Swisher

[33] which uses periodicity to study plane partition congruences of the form

s∑
i=1

pl`(n`+ ai) ≡
t∑

j=1

pl`(n`+ bi) (mod `), for all n ≥ 0. (3.1)

Theorem 3.1 (Mizuhara, Sellers, Swisher [33]). Fix positive integers s, t and nonneg-

ative integers 0 ≤ ai, bj ≤ ` − 1 for each 1 ≤ i ≤ s, 1 ≤ j ≤ t. For a prime `,

if
s∑
i=1

pl`(n`+ ai) ≡
t∑

j=1

pl`(n`+ bi) (mod `)

holds for all n < π`(F`)/`, then it holds for all n ≥ 0.

Theorem 3.1 states that for a prime `, one can look only at a finite set of values

of pl`(`n + ai) and their finite sums for 0 ≤ n < π`(F`)/` to determine if there is a

congruence of the form (3.1) that holds for all n. For example, taking ` = 2, if there is

a congruence of the form (3.1) for pl2(n), then it must be one of the following possible

choices

pl2(2n) ≡ 0 (mod 2)

pl2(2n+ 1) ≡ 0 (mod 2)

pl2(2n) ≡ pl2(2n+ 1) (mod 2).

If any of the congruences above holds for each 0 ≤ n < π2(F2)/2, then it holds for all

n ≥ 0. The reason this technique works is because F`(q) is periodic, as seen in Corollary

2.10.
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Theorem 3.1 was used in [33] to prove several plane partition congruences, some

previously known to Gandhi [17] and others previously unknown.

Theorem 3.2 (Mizuhara, Sellers, Swisher [33]). The following hold for all n ≥ 0,

pl2(2n+ 1) ≡ pl2(2n) (mod 2) (3.2)

pl3(3n+ 2) ≡ 0 (mod 3) (3.3)

pl3(3n+ 1) ≡ pl3(3n) (mod 3) (3.4)

pl5(5n+ 2) ≡ pl5(5n+ 4) (mod 5) (3.5)

pl5(5n+ 1) ≡ pl3(5n+ 3) (mod 5) (3.6)

pl7(7n+ 2) + pl7(7n+ 3) ≡ pl7(7n+ 4) + pl7(7n+ 5) (mod 7). (3.7)

The identities (3.2), (3.4),(3.5) and (3.6) were originally shown by Gandhi [17],

while (3.3) and (3.7) are proved in [33].

3.1 The Main Theorem

We now state and prove the main result of this Chapter. We generalize Theorem

3.1 to a wider class of q-series, and to include prime power moduli.

Theorem 3.3 (Al-Saedi, [5]). Fix a prime `, and let N,K, δ be any positive integers.

Let A(q), B(q) ∈ Z[[q]] such that A(q) :=
∑∞

n=0 α(n)qn is periodic modulo `N with
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minimum period π`N (A) = δK and suppose thatB(q) :=
∑∞

m=0 β(m)qm, where β(0) ≡

1 (mod `N) and β(m) ≡ 0 (mod `N) for m 6≡ 0 (mod δ). Define

G(q) := A(q) ·B(q) :=
∑
k≥0

λ(k)qk.

Fix positive integers s, t and nonnegative integers 0 ≤ ai, bj ≤ δ − 1 for each 1 ≤ i ≤

s, 1 ≤ j ≤ t. If

s∑
i=1

λ(δn+ ai) ≡
t∑

j=1

λ(δn+ bj) (mod `N),

holds for all 0 ≤ n < π`N (A)/δ, then it holds for all n ≥ 0.

Proof. Let ` be a prime, andN,K, δ be any positive integers. Suppose thatA(q), B(q) ∈

Z[[q]] such that A(q) :=
∑∞

n=0 α(n)qn is periodic modulo `N with minimum period

π`N (A) = δK and B(q) :=
∑∞

m=0 β(m)qm, where β(0) ≡ 1 (mod `N) and β(m) ≡ 0

(mod `N) for m 6≡ 0 (mod δ). Let

G(q) := A(q) ·B(q) :=
∑
k≥0

λ(k)qk.

Since β(m) ≡ 0 (mod `N) for m 6≡ 0 (mod δ), then

B(q) ≡
∑
m≥0

β(mδ)qmδ (mod `N).

Let β′(m) := β(mδ) for all m ≥ 0. Thus

∑
k≥0

λ(k)qk ≡

(
∞∑
n=0

α(n)qn

)
·

(∑
m≥0

β′(m)qmδ

)

=
∑
k≥0

 b kδ c∑
i=0

α(k − iδ)β′(i)

 qk (mod `N).

Therefore, for k ≥ 0,
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λ(k) ≡
b k
δ
c∑

i=0

α(k − iδ)β′(i) (mod `N). (3.8)

Hence letting k = nδ + j in (3.8), for n ≥ 0 and 0 ≤ j ≤ δ − 1, we obtain

λ(nδ + j) ≡
n∑
r=0

α(rδ + j)β′(n− r) (mod `N). (3.9)

Notice that by (3.9), for any n ≥ 0, the congruence

s∑
i=1

λ(nδ + ai) ≡
t∑

j=1

λ(nδ + bj) (mod `N) (3.10)

is equivalent to

s∑
i=1

n∑
r=0

α(rδ + ai)β
′(n− r) ≡

t∑
j=1

n∑
r=0

α(rδ + bj)β
′(n− r) (mod `N),

or in particular to

n∑
r=0

β′(n− r)

(
s∑
i=1

α(rδ + ai)

)
≡

n∑
r=0

β′(n− r)

(
t∑

j=1

α(rδ + bj)

)
(mod `N).

To prove (3.10) holds for all n ≥ 0, it thus suffices to prove that the congruence

s∑
i=1

α(nδ + ai) ≡
t∑

j=1

α(nδ + bj) (mod `N) (3.11)

holds for all n ≥ 0.

By the hypothesis, (3.10) holds for all 0 ≤ n < π`N (A)/δ. Thus for 0 ≤ n <

π`N (A)/δ, we see that
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n∑
r=0

β′(n− r)

(
s∑
i=1

α(rδ + ai)

)
≡

n∑
r=0

β′(n− r)

(
t∑

j=1

α(rδ + bj)

)
(mod `N).

(3.12)

Letting n = 0, (3.12) implies that β′(0)(
∑s

i=1 α(ai)) ≡ β′(0)(
∑t

j=1 α(bj)) (mod `N).

Since β′(0) ≡ 1 (mod `N), thus
∑s

i=1 α(ai) ≡
∑t

j=1 α(bj) (mod `N). For n ≥ 1,

s∑
i=1

α(nδ + ai) +
n−1∑
r=0

β′(n− r)

(
s∑
i=1

α(rδ + ai)

)
≡

t∑
j=1

α(nδ + bj) +
n−1∑
r=0

β′(n− r)

(
t∑

j=1

α(rδ + bj)

)
(mod `N). (3.13)

We see recursively from (3.13) that for all 0 ≤ n < π`N (A)/δ,

s∑
i=1

α(nδ + ai) ≡
t∑

j=1

α(nδ + bj) (mod `N).

To finish the proof, it suffices to prove that (3.11) holds for all n ≥ π`N (A)/δ.

By hypothesis, there is some K ∈ N such that π`N (A) = Kδ. Fix an arbitrary integer

n ≥ π`N (A)/δ = K. By the Division Algorithm, we can write n = xK + y where

0 ≤ y < K. Thus for each 1 ≤ i ≤ s, and 1 ≤ j ≤ t, we have

nδ + ai = x · π`N (A) + (yδ + ai),

nδ + bj = x · π`N (A) + (yδ + bj).

From this we see that

nδ + ai ≡ yδ + ai (mod π`N (A)),

nδ + bj ≡ yδ + bj (mod π`N (A)).
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SinceA(q) is periodic modulo `N with minimum period π`N (A), then for each 1 ≤ i ≤ s,

and 1 ≤ j ≤ t,

α(nδ + ai) ≡ α(yδ + ai) (mod `N),

α(nδ + bj) ≡ α(yδ + bj) (mod `N).

Since 0 ≤ y < K = π`N (A)/δ, we have by our hypotheses that

s∑
i=1

α(yδ + ai) ≡
t∑

j=1

α(yδ + bj) (mod `N).

Therefore,

s∑
i=1

α(nδ + ai) ≡
s∑
i=1

α(yδ + ai) ≡
t∑

j=1

α(yδ + bj) ≡
t∑

j=1

α(nδ + bj) (mod `N),

as desired.

The generality of Theorem 3.3 gives potential for many more applications, which

we discuss further in Section 3.2. Two such examples for plane partitions which we

prove in Theorem 3.7 are as follows. For all n ≥ 0,

pl8(8n) + pl8(8n+ 1) ≡ pl8(8n+ 3) (mod 2),

pl9(9n+ 1) ≡ pl9(9n+ 8) (mod 3).

Before we end this section, we state and prove inductively on N the following

elementary lemmas to be used later.

Lemma 3.4. For any prime ` and positive integers j and N ,

(1− qj)`N ≡ (1− qj`N ) (mod `). (3.14)
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Proof. For N = 1. By the Binomial Theorem,

(1− qj)` =
∑̀
n=0

(
`

n

)
(−1)nqjn.

Since ` is prime, then for 1 ≤ n ≤ `− 1,
(
`
n

)
≡ 0 (mod `) and hence

(1− qj)` ≡ (1− qj`) (mod `).

Suppose that (3.14) is true for all 1 ≤ k ≤ N − 1. Thus implies

(1− qj)`N =
(

(1− qj)`N−1
)`
≡ (1− qj`N−1

)` ≡ (1− qj`N ) (mod `).

Lemma 3.5. For any prime ` and positive integers j and N ,

(1− qj)`N ≡ (1− qj`)`N−1

(mod `N). (3.15)

Proof. Note that (3.15) is true for N = 1. Now suppose it is true for some N > 1. So

we have for some polynomial Y (q),

(1− qj)`N = (1− qj`)`N−1

+ `NY (q).

Thus, we get

(1− qj)`N+1

=
(

(1− qj`)`N−1

+ `NY (q)
)`

= (1− q`j)`N +
∑̀
n=1

(
`

n

)(
`NY (q)

)n (
(1− qj`)`N−1

)`−n
≡ (1− q`j)`N (mod `N+1),

as desired.
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3.2 Applications Of The Main Theorem

3.2.1 Plane Partition Congruences Involving Prime Powers

In work of Gandhi [17], Mizuhara, Sellers, and Swisher [33], elementary combi-

natorial methods were used to prove some plane partition congruences modulo primes

and prime powers. With less effort and a different technique, we apply Theorem 3.3 to

reprove some of these congruences and establish new equivalences.

We observe in the following lemma that the restricted plane partition generating

functions PL`N (q) are always of the shape needed in Theorem 3.3, where ` is a prime

and N is a positive integer.

Lemma 3.6 (Al-Saedi, [5]). For a prime ` and a positive integer N , then

PL`N (q) ≡ F`N (q) ·
∑
m≥0

β(m)q`
Nm (mod `),

PL`N (q) ≡ F`N (q) ·
∑
m≥0

β′(m)q`m (mod `N),

where β(m), β′(m) ∈ N.

Proof. We recall the generating function of `N -rowed plane partitions from (2.24)

PL`N (q) = F`N (q) ·
∞∏

n=`N

1

(1− qn)`N
.

By Lemma (3.4) and Lemma(3.5), one can easily see that
∞∏

n=`N

1

(1− qn)`N
≡

∞∏
n=`N

1

(1− qn`N )
(mod `),

where ∑
m≥0

β(m)q`
Nm :=

∞∏
n=`N

1

(1− qn`N )
.
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Similarly,

∞∏
n=`N

1

(1− qn)`N
≡

∞∏
n=`N

1

(1− qn`)`N−1 (mod `N),

where

∑
m≥0

β′(m)q`m :=
∞∏

n=`N

1

(1− qn`)`N−1 .

Therefore,

PL`(q) ≡ F`N (q) ·
∞∏

n=`N

1

(1− qn`N )
(mod `) ≡ F`N (q) ·

∑
m≥0

β(m)q`
Nm (mod `),

PL`(q) ≡ F`N (q)·
∞∏

n=`N

1

(1− qn`)`N−1 (mod `N) ≡ F`N (q)·
∑
m≥0

β′(m)q`m (mod `N).

Theorem 3.7 (Al-Saedi, [5]). The following hold for all n ≥ 0,

pl4(4n+ 3) ≡ 0 (mod 2) (3.16)

pl4(4n) ≡ pl4(4n+ 1) ≡ pl4(4n+ 2) (mod 2) (3.17)

pl8(8n) + pl8(8n+ 1) ≡ pl8(8n+ 3) (mod 2) (3.18)

pl8(8n+ 5) ≡ pl8(8n+ 6) ≡ pl8(8n+ 7) ≡ 0 (mod 2) (3.19)

pl9(9n+ 1) ≡ pl9(9n+ 8) (mod 3). (3.20)

We note that (3.16) and (3.17) are shown by Gandhi [17], and (3.19) is previously

reported in [33], while (3.18) and (3.20) are new to the literature.
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Proof. We note that

∞∑
n=0

pl4(n)qn =
1

(1− q)(1− q2)2(1− q3)3
·
∞∏
n=4

1

(1− qn)4

=

(
1

(1− q)(1− q3)3

)
·

(
1

(1− q2)2
·
∞∏
n=4

1

(1− qn)4

)
.

By Lemma 2.9,

A(q) =
∞∑
n=0

α(n)qn :=
1

(1− q)(1− q3)3

= 1 + q + q2 + 4q3 + 4q4 + 4q5 + 10q6 + 10q7 + 10q8 + 20q9 + 20q10 + 20q11 + 35q12 + · · ·

is periodic modulo 2 with minimum period π2(A) = 12. Also, we use Lemma 3.4 to

observe that

B(q) =
∞∑
n=0

β(n)qn :=
1

(1− q2)2
·
∞∏
n=4

1

(1− qn)4

≡ 1

(1− q4)
·
∞∏
n=4

1

(1− q4n)
(mod 2).

Thus β(0) = 1 and β(n) ≡ 0 (mod 2) for all n 6≡ 0 (mod 4), and hence the seriesB(q)

and its coefficients satisfy the desired conditions of Theorem 3.3.

We see directly by expanding the generating function of PL4(q) that the congru-

ences

pl4(4n+ 3) ≡ 0 (mod 2),

pl4(4n) ≡ pl4(4n+ 1) ≡ pl4(4n+ 2) (mod 2)

hold for n = 0, 1 and 2. For ` = 2, N = 1, δ = 4, we apply Theorem 3.3 and conclude

that the equivalences (3.16) and (3.17) hold for all n ≥ 0.
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To prove the congruences (3.18) and (3.19), again we use Lemma 3.4 to observe

that

∞∑
n=0

pl8(n)qn =
1

(1− q)(1− q2)2(1− q3)3(1− q4)4(1− q5)5(1− q6)6(1− q7)7

·
∞∏
n=8

1

(1− qn)8

≡ 1

(1− q)(1− q2)2(1− q3)3(1− q5)5(1− q6)6(1− q7)7

·

(
1

(1− q16)
·
∞∏
n=8

1

(1− q8n)

)
(mod 2).

By Lemma 2.9, the quotient

A(q) =
∞∑
n=0

α(n)qn :=
1

(1− q)(1− q2)2(1− q3)3(1− q5)5(1− q6)6(1− q7)7

is periodic modulo 2 with minimum period π2(A) = 25 ·105. Maple programming shows

that the congruences

pl8(8n) + pl8(8n+ 1) ≡ pl8(8n+ 3) (mod 2),

pl8(8n+ 5) ≡ pl8(8n+ 6) ≡ pl8(8n+ 7) ≡ 0 (mod 2)

hold for all 0 ≤ n < π2(A)
8

= 420. Thus for ` = 2, N = 1, δ = 8, Theorem 3.3 confirms

that the congruences (3.18) and (3.19) hold for all n ≥ 0.

To prove (3.20), we use the same method to see that

∞∑
n=0

pl9(n)qn =
1

(1− q)(1− q2)2(1− q3)3(1− q4)4(1− q5)5(1− q6)6(1− q7)7(1− q8)8

·
∞∏
n=9

1

(1− qn)9

≡ 1

(1− q)(1− q2)2(1− q4)4(1− q5)5(1− q6)6(1− q7)7(1− q8)8
·
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1

(1− q9)
·
∞∏
n=9

1

(1− q9n)

)
(mod 3).

Again, by Lemma 2.9, the quotient

A(q) =
∑
n≥0

α(n)qn :=
1

(1− q)(1− q2)2(1− q4)4(1− q5)5(1− q6)6(1− q7)7(1− q8)8

is periodic modulo 3 with minimum period π3(A) = 34 · 280. Again by maple program-

ming, we confirm that for all 0 ≤ n < π3(A)
9

= 2520,

pl9(9n+ 1) ≡ pl9(9n+ 8) (mod 3),

as desired.

3.2.2 Plane Overpartition Congruences

Before we prove the main result of this section as an application of Theorem 3.3,

we show below that for a prime ` and a positive integer N , the restricted plane overparti-

tion generating function PL`N (q) is of the form A(q) ·B(q) where A(q) and B(q) satisfy

the conditions in Theorem 3.3.

Lemma 3.8 (Al-Saedi, [5]). For a prime ` and a positive integer N , then

PL`N (q) ≡ Rk(m1, . . . ,mk; q) ·
∑
m≥0

β(m)q`
Nm (mod `),

PL`N (q) ≡ Rk′(m
′
1, . . . ,m

′
k′ ; q) ·

∑
m≥0

β′(m)q`m (mod `N),

for some positive integers k, k′ and nonnegative integersm1, . . . ,mk,m
′
1, . . . ,m

′
k′ , β(m), β′(m).

Proof. First, let N = 1. By Lemma 2.7, the generating function of `-rowed plane over-

partitions is given by

PL`(q) =
(1 + q)(1 + q2)2 · · · (1 + q`−1)`−1

(1− q)(1− q2)2 · · · (1− q`−1)`−1
·
∏
n≥`

(1 + qn)`

(1− qn)`
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=
(1 + q)(1 + q2)2 · · · (1 + q

`−1
2 )

`−1
2

(1− q)(1− q2)2 · · · (1− q(`−1))`−1
· (1 + q

`−1
2

+1)
`−1
2

+1 · · · (1 + q`−1)`−1 ·
∏
n≥`

(1 + qn)`

(1− qn)`
.

By factorizing the denominator of the front quotient above, observing that for any k ∈ N,

(1 + qk)k

(1− q2k)2k
=

1

(1− qk)k(1− q2k)k
,

we note that there exist nonnegative integers s1, s2, . . . , s`−1 so that

(1 + q)(1 + q2)2 · · · (1 + q
`−1
2 )

`−1
2

(1− q)(1− q2)2 · · · (1− q(`−1))`−1
=

1

(1− q)s1(1− q2)s2 · · · (1− q`−1)s`−1
.

Furthermore,

(1 + q
`−1
2

+1)
`−1
2

+1 · · · (1 + q`−1)`−1 ·
∏
n≥`

(1 + qn)`

(1− qn)`

= (1 + q
`−1
2

+1)
`−1
2

+1 · · · (1 + q`−1)`−1 · (1 + q`)`(1 + q`+1)` · · ·
(1− q`)`(1− q`+1)` · · · (1− q2(`−1))` · · · (1− q2`)` · · ·

=

(
(1 + q

`+1
2 )

`+1
2

(1− q`+1)`
· · · (1 + q`−1)`−1

(1− q2(`−1))`

)
·
(

(1 + q`)`(1− q`+1)` · · ·
(1− q`)`(1− q`+2)` · · · (1− q2`)` · · · (1− q2(`+1))` · · ·

)
=

1

(1− qt1)r1 · · · (1− qtj)rj
·
∏
i≥1

1

(1− qni)`
,

for some nonnegative integers ri and positive integers ti and ni. Therefore,

PL`(q) =
1

(1− q)s1(1− q2)s2 · · · (1− q`−1)s`−1(1− qt1)r1 · · · (1− qtj)rj
·
∏
i≥1

1

(1− qni)`
.

Combining terms, we see that there exist nonnegative integers m1,m2, . . . ,mk such that

PL`(q) =
1

(1− q)m1(1− q2)m2 · · · (1− qk)mk
·
∏
i≥1

1

(1− qni)`

= Rk(m1, . . . ,mk; q) ·
∏
i≥1

1

(1− qni)`
.

We can repeat the same process for N > 1 to obtain

PL`N (q) =
(1 + q)(1 + q2)2 · · · (1 + q`

N−1)`
N−1

(1− q)(1− q2)2 · · · (1− q`N−1)`N−1
·
∏
n≥`N

(1 + qn)`
N

(1− qn)`N
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=
(1 + q)(1 + q2)2 · · · (1 + q

`N−1
2 )

`N−1
2

(1− q)(1− q2)2 · · · (1− q(`N−1))`N−1
· (1 + q

`N−1
2

+1)
`N−1

2
+1 · · · (1 + q`

N−1)`
N−1·

∏
n≥`N

(1 + qn)`
N

(1− qn)`N
.

Observing that the terms

(1 + q
`N−1

2
+1)

`N−1
2

+1 · · · (1 + q`
N−1)`

N−1

∏
n≥`N

(1 + qn)`
N


can be canceled by some terms in the denominator of the infinite product∏

n≥`N

1

(1− qn)`N
.

Thus, there exist nonnegative integers m1, . . . ,mk and positive integers ni such that

PL`N (q) =
1

(1− q)m1(1− q2)m2 · · · (1− qk)mk
·
∏
i≥1

1

(1− qni)`N

= Rk(m1, . . . ,mk; q) ·
∏
i≥1

1

(1− qni)`N
.

Using Lemma 3.4 and Lemma 3.5, the rest follows.

As an example of Lemma 3.8, for ` = 2, 3, 5, we have the following generating

functions,

PL`(q) =



1
(1−q2) ·

(
1

(1−q)2 ·
∏∞

n=2
(1+qn)2

(1−qn+1)2

)
if ` = 2

1
(1−q)2(1−q4) ·

(
1

(1−q2)3(1−q3)3 ·
∏∞

n=3
(1+qn)3

(1−qn+2)3

)
if ` = 3

1
(1−q)2(1−q2)3(1−q3)(1−q4)2(1−q8)2 ·

(
1

(1−q3)5(1−q4)5(1−q5)5(1−q7)5 ·
∏∞

n=5
(1+qn)5

(1−qn+3)5

)
if ` = 5.

Note that
∞∑
n=0

plk(n)qn =
∞∏
n=1

(1 + qn)min{k,n}

(1− qn)min{k,n} =
∞∏
n=1

(
1− qn

1− qn

)min{k,n}



44

≡ 1 (mod 2).

Thus, for any k, n ≥ 1,

plk(n) ≡ 0 (mod 2).

Theorem 3.9 (Al-Saedi, [5]). The following holds for all n ≥ 0,

pl4(4n+ 1) + pl4(4n+ 2) + pl4(4n+ 3) ≡ 0 (mod 4). (3.21)

Proof. Observe that

PL4(q) =

(
(1 + q)(1 + q2)2(1 + q3)3

(1− q)(1− q2)2(1− q3)3

)
·

(
∞∏
n=4

(1 + qn)4

(1− qn)4

)

=

(
1

(1− q)(1− q3)3
· (1 + q)

(1− q2)2
· (1 + q2)2

(1− q4)4
· (1 + q3)3

(1− q6)4

)
·(

(1 + q4)4(1 + q6)4 · (1 + q5)4

(1− q5)4
·
∞∏
n=7

(1 + qn)4

(1− qn)4

)

=

(
1

(1− q)2(1− q2)3(1− q3)6(1− q6)

)
·(

(1 + q6)4 · (1 + q4)4(1 + q5)4

(1− q4)2(1− q5)4
·
∞∏
n=7

(1 + qn)4

(1− qn)4

)
.

Note that for all n ≥ 1,

(1 + qn)4

(1− qn)4
=

(
1 +

2qn

1− qn

)4

≡ 1 (mod 4).

Therefore,

(1 + q5)4

(1− q5)4
·
∞∏
n=7

(1 + qn)4

(1− qn)4
≡ 1 (mod 4). (3.22)

Also, we note that,

(1 + q6)4 ≡ 1 + 2q12 + q24 (mod 4), (3.23)
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(1 + q4)4

(1− q4)2
≡ (1 + q4)2 (mod 4). (3.24)

So, we let

A(q) =
∞∑
n=0

α(n)qn :=
1

(1− q)2(1− q2)3(1− q3)6(1− q6)
,

B(q) =
∞∑
n=0

β(n)qn := (1 + q6)4 · (1 + q4)4(1 + q5)4

(1− q4)2(1− q5)4
·
∞∏
n=7

(1 + qn)4

(1− qn)4
.

We see that by (3.22), (3.23) and (3.24) that

B(q) ≡ (1 + 2q12 + q24)(1 + q4)2 (mod 4).

Then by Lemma 2.9,

A(q) = R6(2, 3, 6, 0, 0, 1)

is periodic modulo 4 with minimum period π4(A) = 25 · 3. By a calculation in Maple,

we observe that

pl4(4n+ 1) + pl4(4n+ 2) + pl4(4n+ 3) ≡ 0 (mod 4),

for all 0 ≤ n ≤ π4(A)/4. Hence letting ` = N = 2, δ = 4 and applying Theorem 3.3,

the congruence (3.21) holds for all n ≥ 0.

3.2.3 Congruences of partitions with parts at most m

Let m and n be positive integers. Define p(n,m) to be the number of partitions of

n into parts with size at most m. By (2.5), the generating function of p(n,m) is given by

Q(q,m) :=
∞∑
n=0

p(n,m)qn =
1

(1− q)(1− q2) · · · (1− qm)
,

which follows using the notation in Section 2.1 that

Q(q,m) =
∞∑
n=0

p(n;Tm)qn,
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where Tm = {1, 2, · · · ,m}. Using Lemma 2.9 for a prime `, one can see that

π`(Q(q, `− 1)) = ` ·m`(T`−1), (3.25)

π`(Q(q, `)) = `2 ·m`(T`). (3.26)

Theorem 3.10 (Al-Saedi, [5]). The following holds for all n ≥ 0,

p(3n+ 1, 2) + p(3n+ 2, 2) ≡ 0 (mod 3) (3.27)

p(10n+ 6, 4) + p(10n+ 7, 4) + p(10n+ 8, 4) ≡ 0 (mod 5) (3.28)

p(10n+ 2, 4) + p(10n+ 3, 4) + p(10n+ 4, 4) ≡ 0 (mod 5). (3.29)

Proof. Observe that by (3.25), π3(Q(q, 2)) = 6 and note for 0 ≤ n ≤ π3(Q(q, 2))/3 = 2,

p(1, 2) + p(2, 2) = 3 ≡ 0 (mod 3),

p(4, 2) + p(5, 2) = 6 ≡ 0 (mod 3).

Therefore, by Theorem 3.3 for A(q) = Q(q, 2), B(q) = 1, N = 1, ` = δ = 3, the

identity (3.27) holds for all n ≥ 0.

For ` = 5, π5((Q(q, 4)) = 60. By a calculation in Maple, we verify the coefficients

of Q(q, 4) modulo 5 in the following tables.
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TABLE 3.1: Restricted Partitions Modulo 5 for (3.28)

n p(10n+ 6, 4) p(10n+ 7, 4) p(10n+ 8, 4)

0 4 1 0

1 4 2 4

2 1 0 4

3 3 1 1

4 0 2 3

5 0 0 0

From Table 3.1 we note the congruence

p(10n+ 6, 4) + p(10n+ 7, 4) + p(10n+ 8, 4) ≡ 0 (mod 5)

holds for all n = 0, 1, 2, 3, 4, 5.

Furthermore, the following table contains the values of p(10n+ i, 4) modulo 5 for

i = 2, 3, 4 and for 0 ≤ n ≤ 5.

TABLE 3.2: Restricted Partitions Modulo 5 for (3.29)

n p(10n+ 2, 4) p(10n+ 3, 4) p(10n+ 4, 4)

0 2 3 0

1 4 4 2

2 1 0 4

3 1 3 1

4 0 4 1

5 0 0 0
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We have from Table 3.2 for all n = 0, 1, 2, 3, 4, 5,

p(10n+ 2, 4) + p(10n+ 3, 4) + p(10n+ 4, 4) ≡ 0 (mod 5).

By applying Theorem 3.3 for A(q) = Q(q, 4), B(q) = 1, δ = 10 and N = 1 we deduce

that (3.28) and (3.29) hold for all n ≥ 0.
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4 PLANE OVERPARTITION CONGRUENCES MODULO
POWERS OF 2

This chapter contains two sections. In Section 4.1, we will investigate congruences

modulo 4 for restricted and unrestricted plane overpartitions. Also, we will revisit the

overpartition function p(n) and provide several examples of congruence relations mod-

ulo 4 between overpartitions and plane overpartitions. In Section 4.2, we establish and

prove several examples of restricted plane overpartition congruences modulo 8. Also,

we prove a few congruence relations modulo 8 between overpartitions and the 5-rowed

plane overpartions.

4.1 Plane Overpartition Congruences Modulo 4

First, we define throughout the formal power series

f(q) :=
1 + q

1− q
= 1 + 2q + 2q2 + 2q3 + · · · . (4.1)

Note that for every positive integer n ≥ 1,

f(qn) =
1− qn

1− qn
≡ 1 (mod 2).

Thus, we obtain

∞∑
n=0

pl(n)qn =
∞∏
n=1

(1 + qn)n

(1− qn)n
=
∞∏
n=1

f(qn)n ≡ 1 (mod 2).

Before we prove next result, we give the following lemmas.
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Lemma 4.1. For all k ≥ 1,

(1 + 2S(q))2
k

≡ 1 (mod 2k+1), (4.2)

where S(q) ∈ Z[[q]] is a q-series with integer coefficients.

Proof. We induct on k. It is easy to see that (4.2) is true for k = 1. Now suppose that

(4.2) is true for 1 ≤ j ≤ k − 1. Then by induction there is a q-series T (q) ∈ Z[[q]] such

that (1 + 2S(q))2
k−1

= 1 + 2kT (q). Thus,

(1 + 2S(q))2
k

=
(

(1 + 2S(q))2
k−1
)2

=
(
1 + 2kT (q)

)2
≡ 1 (mod 2k+1),

as desired.

Lemma 4.2. For all integers n, k ≥ 1,

f(qn)2
k ≡ 1 (mod 2k+1).

Proof. Let S(q) :=
∑

m≥1 q
m. We observe that S(q) = q

1−q , and so

f(qn) =
1 + qn

1− qn
= 1 +

2qn

1− qn
= 1 + 2S(qn). (4.3)

The conclusion then follows by Lemma 4.1.

Recall that po(n) denotes the number of overpartitions of a positive integer n into

odd parts and po(0) = 1.

Theorem 4.3. For every integer n ≥ 1,
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pl(n) ≡ po(n) ≡


2 (mod 4) if n is a square or twice a square,

0 (mod 4) otherwise.

Proof. We observe by (2.26) and Lemma 4.2, the generating function for plane overpar-

titions

∞∑
n=0

pl(n)qn =
∞∏
n=1

(1 + qn)n

(1− qn)n
=
∞∏
n=1

f(qn)n

=
∞∏
n=1

f(q2n)2nf(q2n−1)2n−1

≡
∞∏
n=1

f(q2n−1) (mod 4)

=
∞∏
n=1

(1 + q2n−1)

(1− q2n−1)
(mod 4)

=
∞∑
n=0

po(n)qn (mod 4).

Thus for all n ≥ 1,

pl(n) ≡ po(n) (mod 4).

By Theorem 2.1, for all n ≥ 1,

po(n) ≡


2 (mod 4) if n is a square or twice a square,

0 (mod 4) otherwise,

and the result follows.

Corollary 4.4. The following holds for all n ≥ 0,

pl(4n+ 3) ≡ 0 (mod 4).
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Proof. Note that for all n ≥ 0, 4n + 3 is not a square since positive odd squares are 1

modulo 4. Also, 4n + 3 is odd so it can not be twice a square for all n ≥ 0. The result

then follows by Theorem 4.3.

The following theorem gives a congruence relation modulo 4 between pl(n) and

ordp(n) for each odd prime p|n.

Theorem 4.5. For any integer n ≥ 1,

pl(n) ≡ 2 ·
∏

odd prime p|n

(ordp(n) + 1) (mod 4). (4.4)

Proof. Following the same procedure in Theorem 4.3, we note that

∞∑
n=0

pl(n)qn ≡ f(q) · f(q3) · f(q5) · · · (mod 4)

≡

(
1 + 2

∑
m≥1

qm

)
·

(
1 + 2

∑
m≥1

q3m

)
·

(
1 + 2

∑
n≥1

q5m

)
· · · (mod 4)

≡ 1 + 2
∑
m≥1

qm + 2
∑
m≥1

q3m + 2
∑
m≥1

q5m + · · · (mod 4)

≡ 1 + 2
∑
m≥1

(qm + q3m + q5m + · · · ) (mod 4). (4.5)

Now for any integer n ≥ 1, by the fundamental theorem of arithmetic, n can be

written as a product of prime powers. Thus,

n = 2α0pα1
1 · · · p

αk
k , (4.6)

where pi are primes and α0, αi are nonnegative integers for each i = 1, . . . , k. Thus

ordpi(n) = αi for each i = 1, . . . , k. Note that the term qn will occur in the series

∑
m≥1

(qm + q3m + q5m + · · · )
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when m = n/d in qdm where d is an odd divisor of n. In terms of the prime factorization

of n in (4.6), the number of odd divisors of n is given by
k∏
i=1

(αi + 1) =
k∏
i=1

(ordpi(n) + 1) =
∏

odd prime p|n

(ordp(n) + 1).

Thus the coefficient of qn in (4.5) is then given by

2 ·
∏

odd prime p|n

(ordp(n) + 1).

As a consequence of Theorem 4.3 and Theorem 4.5, we obtain the following result.

Theorem 4.6. If n is neither a square nor twice a square, then∏
odd prime p|n

(ordp(n) + 1)

is an odd number.

Next Theorem gives a systematic pattern of congruences modulo 4 for even rowed

plane overpartitions.

Theorem 4.7. Let k ≥ 2 be a positive even integer, Sk := {j | j odd , 1 ≤ j ≤ k − 1}

and ` be the least common multiple of the integers in Sk. Then for any odd prime p < k,

1 ≤ r ≤ ordp(`), and n ≥ 1,

plk(`n+ pr) ≡


0 (mod 4) if r is odd,

2 (mod 4) if r is even.

Moreover, for all n ≥ 1,

plk(`n) ≡


0 (mod 4) if k ≡ 0 (mod 4),

2 (mod 4) if k ≡ 2 (mod 4).
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Proof. Let k ≥ 2 be even. We first observe that the generating function of the k-rowed

plane overpartitions can be rewritten modulo 4 using (2.27) and Lemma 4.2 to obtain

∞∑
n=0

plk(n)qn =
∞∏
n=1

(1 + qn)min{k,n}

(1− qn)min{k,n} =
∞∏
n=1

f(qn)min{k,n}

= f(q)f(q2)2 · · · f(qk−1)k−1 ·
∏
n≥k

f(qn)k

≡ f(q)f(q3) · · · f(qk−1) (mod 4)

≡

(
1 + 2

∑
n≥1

qn

)
·

(
1 + 2

∑
n≥1

q3n

)
· · ·

(
1 + 2

∑
n≥1

q(k−1)n

)
(mod 4)

≡ 1 + 2
∑
n≥1

qn + 2
∑
n≥1

q3n + · · ·+ 2
∑
n≥1

q(k−1)n (mod 4).

Thus, we see that

∞∑
n=0

plk(n)qn ≡ 1 + 2
∑
i∈Sk

∑
n≥1

qin (mod 4)

≡ 1 + 2
∑
i∈Sk

∑
in6≡0(mod `)

qin + 2
∑
i∈Sk

∑
n≥1

q`n (mod 4)

≡ 1 + 2
∑
i∈Sk

∑
in6≡0(mod `)

qin + 2|Sk|
∑
n≥1

q`n (mod 4)

≡ 1 + 2
∑
i∈Sk

∑
in6≡0(mod `)

qin + k
∑
n≥1

q`n (mod 4),

where the last congruence is obtained using the fact that |Sk| = k/2. Thus, we obtain

that

plk(`n) ≡


0 (mod 4) if k ≡ 0 (mod 4)

2 (mod 4) if k ≡ 2 (mod 4).

Now for a prime p ∈ Sk and s := ordp(`), we let

∑
n≥1

α(n)qn :=
∑
n≥1

(
qn + qpn + qp

2n + · · ·+ qp
sn
)
.
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For any m ≥ 1 and 1 ≤ r ≤ s, the term qm`+p
r will occur in the above series when

n = m` + pr, m`+p
r

p
, . . . , m`+p

r

pr
, arising from the terms qn, qpn, . . . , qprn, respectively.

The term qm`+p
r can not be obtained from

∑
n≥1 q

pin for i > r, since pi does not divide

m`+ pr. Thus

α(m`+ pr) = r + 1 ≡


0 (mod 2) if r is odd

1 (mod 2) if r is even.

Observe that

∑
j∈Sk

∑
n≥1

qjn =
∑
n≥1

(
qn + qpn + · · ·+ qp

sn
)

+
∑

j∈Sk−{pi:0≤i≤s}

∑
n≥1

qjn

=
∑
n≥1

α(n)qn +
∑

j∈Sk−{pi:0≤i≤s}

∑
n≥1

qjn.

Thus, we obtain

∞∑
n=0

plk(n)qn ≡ 1 + 2
∑
n≥1

α(n)qn + 2
∑

j∈Sk−{pi:0≤i≤s}

∑
n≥1

qjn (mod 4). (4.7)

Also, we note that for all n,m ≥ 1, if j ∈ Sk−{pi : 0 ≤ i ≤ s}, then jn 6= `m+pr for all

1 ≤ r ≤ s. If not, then there are two positive integers n0,m0 such that jn0 = `m0 + pr,

and thus n0 = (`m0 + pr)/j. Since by the choice of `, we have that j divides `, then j

must divide pr which contradicts that j 6= pi for all 0 ≤ i ≤ s. Thus terms of the form

q`n+p
r will arise in

∑
j∈Sk

∑
n≥1 q

jn only from
∑

n≥1 α(n)qn.

Now, If we extract the terms of the form q`n+p
r and replace n with `n+ pr in (4.7),

we find that,

∑
n≥1

plk(`n+ pr)qn ≡ 2 ·
∑
n≥1

α(`n+ pr)qn ≡ 2(r + 1)
∑
n≥1

qn (mod 4).



56

Thus, modulo 4,

plk(`n+ pr) ≡ 2α(`n+ pr) = 2(r + 1) ≡


0 (mod 4) if r is odd,

2 (mod 4) if r is even.

As an application of Theorem 4.7, we give a few examples in the following corol-

lary.

Corollary 4.8. The following hold for all n ≥ 1,

pl4(3n) ≡ 0 (mod 4),

pl6(15n+ b) ≡ 0 (mod 4), for b ∈ {3, 5},

pl6(15n) ≡ 2 (mod 4),

pl8(105n+ b) ≡ 0 (mod 4), for b ∈ {0, 3, 5, 7},

pl10(315n+ b) ≡ 0 (mod 4), for b ∈ {3, 5, 7},

pl10(315n+ b) ≡ 2 (mod 4), for b ∈ {0, 9},

pl12(3465n+ b) ≡ 0 (mod 4), for b ∈ {0, 3, 5, 7, 11},

pl12(3465n+ 9) ≡ 2 (mod 4).
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Proof. For the first congruence, letting k = 4, we have that S4 = {1, 3}, and ` = 3.

Since k ≡ 0 (mod 4), by Theorem 4.7, for all n ≥ 1

pl4(3n) ≡ 0 (mod 4).

Now to see the second and third congruences, let k = 6, then S6 = {1, 3, 5} and ` = 15.

The only primes in S6 are 3 and 5 with ordp(`) = 1 for p = 3, 5. Hence r = 1 is the only

choice for 1 ≤ r ≤ ordp(`). Thus by Theorem 4.7, for all n ≥ 1,

pl6(15n+ 3)≡ 0 (mod 4),

pl6(15n+ 5)≡ 0 (mod 4).

Moreover, k = 6 ≡ 2 (mod 4) which yields that for all n ≥ 1,

pl6(15n) ≡ 2 (mod 4).

The rest of the identities can be proved similarly.

In addition, we prove the following theorem which gives an equivalence modulo 4

between the k-rowed plane overpartition function for odd integers k and the overpartition

function.

Theorem 4.9. Let k be a nonnegative integer. Then, for all n ≥ 0,

pl2k+1(2n+ 1) ≡ p(2n+ 1) (mod 4). (4.8)

Proof. Clearly, for k = 0, pl1(n) = p(n), for all n ≥ 0. Now, for k ≥ 1, we first define

g(q) :=
1

f(q)
,
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and note that by Lemma 4.2 and (4.3) that

g(q) ≡ f(q) = 1 + 2
∑
n≥1

qn (mod 4). (4.9)

Recall the generating function of 2k + 1-rowed plane overpartions (2.27),
∞∑
n=0

pl2k+1(n)qn =
∞∏
n=1

(1 + qn)min{2k+1,n}

(1− qn)min{2k+1,n} =
∞∏
n=1

f(qn)min{2k+1,n}

= f(q)f(q2)2 · · · f(q2k)2k ·
∏

n≥2k+1

f(qn)2k+1

≡ f(q)f(q3) · · · f(q2k−1) ·
∏

n≥2k+1

f(qn) (mod 4),

where the last congruence is by Lemma 4.2. Thus, we have by (4.9) that
∞∑
n=0

pl2k+1(n)qn ≡ g(q2)g(q4)g(q6) · · · g(q2k) ·
∞∏
n=1

f(qn) (mod 4)

≡ f(q2)f(q4)f(q6) · · · f(q2k) ·
∞∏
n=1

f(qn) (mod 4)

≡

(
1 + 2

∑
n≥1

q2n

)
·

(
1 + 2

∑
n≥1

q4n

)
·

(
1 + 2

∑
n≥1

q6n

)
· · ·(

1 + 2
∑
n≥1

q2kn

)
·

(
∞∑
n=0

p(n)qn

)
(mod 4).

Note that for all n ≥ 1, p(n) ≡ 0 (mod 2), and hence 2p(n) ≡ 0 (mod 4). Conse-

quently,
∞∑
n=0

pl2k+1(n)qn ≡

(
1 + 2

∑
n≥1

(
q2n + q4n + q6n + · · ·+ q2kn

))
·

(
∞∑
n=0

p(n)qn

)
(mod 4)

≡ 2
∑
n≥1

(
q2n + q4n + q6n + · · ·+ q2kn

)
+
∞∑
n=0

p(n)qn (mod 4).

(4.10)

Thus, for all k ≥ 0, n ≥ 0,

pl2k+1(2n+ 1) ≡ p(2n+ 1) (mod 4),
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as desired.

Corollary 4.10. The following holds for every integer n ≥ 0,

pl(2n+ 1) ≡ p(2n+ 1) (mod 4). (4.11)

Proof. Note that for every integer n ≥ 1, the plane overpartitions of n have at most n

rows. Thus, we obtain for any k ≥ n,

pl(n) = plk(n).

By Theorem 4.9, for k ≥ n,

pl(2n+ 1) = pl2k+1(2n+ 1) ≡ p(2n+ 1) (mod 4).

Next result gives an infinite family of restricted plane overpartitions congruences

modulo 4.

Corollary 4.11. For all k, n ≥ 0, and α ≥ 0,

pl(9α(54n+ 45)) ≡ pl2k+1(9
α(54n+ 45)) ≡ 0 (mod 4).

Proof. Recall that in [20], Hirschhorn and Sellers show that 9α(27n + 18) is nonsquare

for all α, n ≥ 0. Thus by (2.17), we have p(9α(27n + 18)) ≡ 0 (mod 4) for all n ≥ 0

and α ≥ 0. For any odd integer n, 9α(27n + 18) is odd. Replacing the odd integer n by

2n+ 1, the result follows by Theorem 4.9 and Corollary 4.10.

Next result gives a pattern of congruences modulo 4 between plk(n) and p(n) for

odd k.
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Theorem 4.12. Let k ≥ 2 and ` be the least common multiple of all positive even integers

≤ 2k. Then for all integers n ≥ 1,

pl2k+1(`n+ 2j) ≡ p(`n+ 2j) (mod 4), (4.12)

where j ≥ 2, j ≡ 0 (mod 2) and 2j−1 ≤ k. Moreover, if k ≡ 0 (mod 2), then for all

integers n ≥ 0

pl2k+1(`n) ≡ p(`n) (mod 4). (4.13)

Proof. Recall from the proof of Theorem 4.9 and (4.10) that

∞∑
n=0

pl2k+1(n)qn ≡ 2
∑
n≥1

(
q2n + q4n + q6n + · · ·+ q2kn

)
+
∞∑
n=0

p(n)qn (mod 4).

We note for odd r > 1, then 2r - `m + 2j , as well 2i - `m + 2j for i > j. Thus, we get

for all m ≥ 1, the term q`m+2j will occur in the series

2
∑
n≥1

(
q2n + q4n + q6n + · · ·+ q4kn

)
,

only when n = `m+2j/2, `m+2j/4, `m+2j/8, . . . , `m+2j/2j, arising from the terms

q2n, q4n, q8n, . . . , q2
jn, respectively. Thus, the coefficient of q`m+2j in the above series is

2
∑j

i=1 1 = 2j ≡ 0 (mod 4) since j ≡ 0 (mod 2). Therefor, for all n ≥ 1,

pl2k+1(`n+ 2j) ≡ p(`n+ 2j) (mod 4),

as desired for (4.12). To prove (4.13), since k ≡ 0 (mod 2), we replace k by 2k in (4.10)

to obtain

∞∑
n=0

pl4k+1(n)qn ≡ 2
∑
n≥1

(
q2n + q4n + · · ·+ q4kn

)
+
∞∑
n=0

p(n)qn (mod 4). (4.14)
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Note that for all m ≥ 1, the term q`m will occur in the series

2
∑
n≥1

(
q2n + q4n + · · ·+ q4kn

)
,

when n = `m/2, `m/4, . . . , `m/4k, arising from the terms q2n, q4n, . . . , q4kn, respec-

tively. Thus, the coefficient of q`m in the above series is 2
∑2k

i=1 1 = 4k ≡ 0 (mod 4).

Therefor, for all n ≥ 0,

pl4k+1(`n) ≡ p(`n) (mod 4),

where ` here is the least common multiple of all even positive integers ≤ 4k.

As an application of Theorem 4.12, we give a few examples in the following corol-

lary.

Corollary 4.13. The following hold for every integer n ≥ 1,

pl5(4n) ≡ p(4n) (mod 4),

pl7(12n+ 4) ≡ p(12n+ 4) (mod 4),

pl9(24n+ b) ≡ p(24n+ b) (mod 4), for b ∈ {0, 4},

pl11(120n+ 4) ≡ p(120n+ 4) (mod 4),

pl13(120n+ b) ≡ p(120n+ b) (mod 4), for b ∈ {0, 4},

pl15(840n+ 4) ≡ p(840n+ 4) (mod 4),

pl17(1680n+ b) ≡ p(1680n+ b) (mod 4), for b ∈ {0, 4, 16}.

Proof. Note that for k = 2, 3, 4, 5, 6, 7, 8, the least common multiple of the positive even

integers ≤ 2k is ` = 4, 12, 24, 120, 120, 840, 1680, respectively. By Theorem 4.12, the

result follows.
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4.2 Plane Overpartition Congruences Modulo 8

Before we give the main results of this section, we state and prove the following

lemmas.

Lemma 4.14. Let a, b, c ∈ N such that gcd(a, b) = 1. Then there are c − 1 pairs of

positive integers (n,m) such that an+ bm = abc.

Proof. Suppose that an + bm = abc. Then an = abc − bm and so b|an, and since

gcd(a, b) = 1, we must have b|n. So n = bN for some N ∈ N. Similarly, a|m and so

m = aM for some M ∈ N. We see then that abN + abM = abc and thus N + M = c.

Hence, if (n,m) ∈ N2 satisfies an+ bm = abc, then it is equivalent to say there is a pair

(N,M) ∈ N2 such that N + M = c. Note that there are c − 1 pairs (N,M) ∈ N2 such

that N +M = c since the possible ways are 1 + (c− 1), 2 + (c− 2), . . . , (c− 1) + 1.

The next lemma has a flavor of periodicity and restricted partitions.

Lemma 4.15. Let a, b, c ≥ 2 be integers such that a, b and c are pairwise relatively

prime. Let Mc be the number of pairs of positive integers (n,m) ∈ N2 with an+ bm = c

where Mc := 0 if no such pairs exists. Then,

Mc = p(c; {a, b}),

where p(c; {a, b}) is the number of partitions of c into parts from the set {a, b}. Moreover,

for every integer N ≥ 1 and a prime `,

Mc+π
`N
≡Mc (mod `N),
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where π`N is the minimum period modulo `N of the q-series
∞∑
n=0

p(n; {a, b})qn =
1

(1− qa)(1− qb)
(4.15)

which generates the partitions with parts from {a, b}.

Proof. Note that if there are two positive integers n and m such that an + bm = c, then

c can be partitioned into parts form {a, b} as follows

a+ · · ·+ a︸ ︷︷ ︸
n-times

+ b+ · · ·+ b︸ ︷︷ ︸
m-times

= c.

Thus, any pair of positive integers n and m that satisfy an + bm = c corresponds to a

partition of c into parts from {a, b}. Likewise, since gcd(a, b) = gcd(a, c) = gcd(b, c) =

1, then any such partition of c must involve both a and b, and hence any corresponding

integers n and m must be positive. By considering all such pairs (n,m), we then obtain

Mc = p(c; {a, b}).

By Theorem 2.8, the q-series (4.15) is periodic modulo `N for any integer N ≥ 1 and a

prime `, with minimum period π`N = `N+b`({a,b})−1 ·m`({a, b}). Thus,

Mc+π
`N

= p(c+ π`N ; {a, b}) ≡ p(c; {a, b}) = Mc (mod `N).

The first theorem in this section gives a few examples of 4 and 8-rowed plane over-

partition congruences modulo 8. One may find more of this type using similar methods

of proof.

Theorem 4.16. For all integer n ≥ 1,

pl4(12n) ≡ 0 (mod 8), (4.16)
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pl4(6n+ 3) ≡ 0 (mod 8), (4.17)

pl8(210n) ≡ 0 (mod 8), (4.18)

pl8(210n+ 3) ≡ 0 (mod 8), (4.19)

pl8(210n+ 9) ≡ 0 (mod 8), (4.20)

pl8(210n+ 105) ≡ 0 (mod 8). (4.21)

Proof. Observe that by (2.27) and Lemma 4.2, we have that
∞∑
n=0

pl4(n)qn = f(q)f(q2)2f(q3)3
∏
n≥4

f(qn)4

≡ f(q)f(q2)2f(q3)3 (mod 8)

≡

(
1 + 2

∑
n≥1

qn

)
·

(
1 + 2

∑
n≥1

q2n

)2

·

(
1 + 2

∑
n≥1

q3n

)3

(mod 8)

Thus,
∞∑
n=0

pl4(n)qn ≡ 1 + 2
∑
n≥1

qn + 4
∑
n≥1

q2n + 6
∑
n≥1

q3n+ (4.22)

4
∑
m,n≥1

q2(n+m) + 4
∑
m,n≥1

q3(n+m) + 4
∑
m,n≥1

qn+3m (mod 8)

For any k ≥ 1, the term q12k will occur in the series∑
n≥1

qn,
∑
n≥1

q2n,
∑
n≥1

q3n

when n = 12k, 6k, 4k, arising from the terms qn, q2n, q3n, respectively. Also, the term

q12k will occur in the series∑
m,n≥1

q2(n+m),
∑
m,n≥1

q3(n+m),
∑
m,n≥1

qn+3m (4.23)
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when n+m = 6k, 4k and n+3m = 12k, arising from the terms q2(n+m), q3(n+m), qn+3m,

respectively. We use Lemma 4.14 to count the appearances of q12k in the three series of

(4.23) and catalog the results in the following table.

TABLE 4.1: Coefficients of q12k in the series of (4.23)

an+ bm = abc a b c j coefficient of qabcj in
∑

n,m≥1 q
j(an+bm)

n+m = 6k 1 1 6k 2 6k − 1

n+m = 4k 1 1 4k 3 4k − 1

n+ 3m = 12k 1 3 4k 1 4k − 1

Thus by Table 4.1, the coefficient of q12k in the series on the right hand side of (4.22) is

2 + 4 + 6 + 4(6k − 1) + 4(4k − 1) + 4(4k − 1) ≡ 0 (mod 8),

which proves (4.16).

To prove (4.17), we observe that for any k ≥ 1, the term q6k+3 will occur in the

series ∑
n≥1

qn,
∑
n≥1

q3n

from (4.22) when n = 6k + 3, 2k + 1, arising from the terms qn, q3n, respectively. Also,

the term q6k+3 will occur in the series

∑
m,n≥1

q3(n+m),
∑
m,n≥1

qn+3m (4.24)

from (4.22) when n+m = 2k+1, n+3m = 6k+3 arising from the terms q3(n+m), qn+3m

respectively. However, the term q6k+3 does not occur in the series

∑
m,n≥1

q2n,
∑
m,n≥1

q2(n+m), (4.25)
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because 6k + 3 is not divisible by 2 for every integer k ≥ 1. Again, we use Lemma 4.14

to conclude the number of occurrences of q6k+3 in the series of (4.24) in the following

table

TABLE 4.2: Coefficients of q6k+3 in the series of (4.24)

an+ bm = abc a b c j coefficient of qabcj in
∑

n,m≥1 q
j(an+bm)

n+m = 2k + 1 1 1 2k + 1 3 2k

n+ 3m = 6k + 3 1 3 2k + 1 1 2k

Thus by Table 4.2, the coefficient of q6k+3 in the series on the right hand side of (4.22) is

2 + 6 + 4 · 2k + 4 · 2k ≡ 0 (mod 8),

which proves (4.17).

We now prove (4.19) while (4.18) can be proved similarly with less effort. We

observe that by (2.27) and Lemma 4.2 that

∞∑
n=0

pl8(n)qn = f(q)f(q2)2f(q3)3f(q4)4f(q5)5f(q6)6f(q7)7
∏
n≥8

f(qn)8

≡ f(q) f(q2)2 f(q3)3 f(q5) f(q6)2 f(q7)3 (mod 8)

≡

(
1 + 2

∑
n≥1

qn

)
·

(
1 + 2

∑
n≥1

q2n

)2

·

(
1 + 2

∑
n≥1

q3n

)3

·

(
1 + 2

∑
n≥1

q5n

)
·

(
1 + 2

∑
n≥1

q6n

)2

·

(
1 + 2

∑
n≥1

q7n

)3

(mod 8).

Thus we have

∞∑
n=0

pl8(n)qn ≡ 1 + 2
∑
n≥1

qn + 4
∑
n≥1

q2n + 6
∑
n≥1

q3n + 2
∑
n≥1

q5n + 4
∑
n≥1

q6n + 6
∑
n≥1

q7n
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+ 4
∑
m,n≥1

q2(n+m) + 4
∑
m,n≥1

q3(n+m) + 4
∑
m,n≥1

q6(n+m) + 4
∑
m,n≥1

q7(n+m)

+ 4
∑
m,n≥1

qn+3m + 4
∑
m,n≥1

qn+5m + 4
∑
m,n≥1

qn+7m

+ 4
∑
m,n≥1

q3n+5m + 4
∑
m,n≥1

q3n+7m + 4
∑
m,n≥1

q5n+7m (mod 8).

For any k ≥ 1, the term q210k+3 will occur in the series

∑
n≥1

qn,
∑
n≥1

q3n

when n = 210k + 3, 70k + 1 arising from the terms qn, q3n respectively. Also, the term

q210k+3 will occur in the series

∑
m,n≥1

q3(n+m),
∑
m,n≥1

qn+3m,
∑
m,n≥1

qn+5m

∑
m,n≥1

qn+7m,
∑
m,n≥1

q3n+5m,
∑
m,n≥1

q3n+7m,
∑
m,n≥1

q5n+7m,

when 3(n + m), n + 3m,n + 5m,n + 7m, 3n + 5m, 3n + 7m, 5n + 7m = 210k + 3

arising from the terms

q3(n+m), qn+3m, qn+5m, qn+7m, q3n+5m, q3n+7m, q5n+7m

respectively. Since 210k + 3 is not divisible by 2, 5, 6, 7, so the term q210k+3 will not

occur in any of the following q-series,

∑
n≥1

q2n,
∑
n≥1

q5n,
∑
n≥1

q6n,
∑
n≥1

q7n,
∑
m,n≥1

q2(n+m),
∑
m,n≥1

q6(n+m),
∑
m,n≥1

q7(n+m).

Again, by applying Lemma 4.14, the appearances of q210k+3 in the series

∑
m,n≥1

q3(n+m),
∑
m,n≥1

qn+3m, (4.26)
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are given in the following table.

TABLE 4.3: Coefficients of q210k+3 in the series of (4.26)

an+ bm = abc a b c j coefficient of qabcj in
∑

n,m≥1 q
j(an+bm)

n+m = 70k + 1 1 1 70k + 1 3 70k

n+ 3m = 210k + 3 1 3 70k + 1 1 70k

Now for n+ 5m,n+ 7m = 210k + 3, we have the following enumerations

5 · 1 + (210k − 5 + 3), 5 · 2 + (210k − 10 + 3), . . . , 5 · 42k + 3,

7 · 1 + (210k − 7 + 3), 7 · 2 + (210k − 14 + 3), . . . , 7 · 30k + 3.

Thus, we have 42k, 30k pairs of m and n for n+ 5m,n+ 7m = 210k + 3, respectively.

For 3n+ 5m = 210k + 3, then 5m = 210k + 3− 3n and so 3|m. Thus, counting

for 3n + 5m = 210k + 3 is equivalent to counting for 3n + 15m = 210k + 3 which is

equivalent to n+ 5m = 70k + 1 and the later has the following enumerations

5 · 1 + (70k − 5 + 3), 5 · 2 + (70k − 10 + 3), . . . , 5 · 14k + 3.

Hence, we obtain 14k possible pairs n and m such that 3n+ 5m = 210k + 3. Similarly,

we have 10k pairs of positive integers m and n such that 3n+ 7m = 210k+ 3. Thus, the

following table catalogs the coefficients of the term q210k+3 in the following series

∑
m,n≥1

qn+5m,
∑
m,n≥1

qn+7m,
∑
m,n≥1

q3n+5m,
∑
m,n≥1

q3n+7m. (4.27)
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TABLE 4.4: Coefficients of q210k+3 in the series of (4.27)

an+ bm = 210k + 3 a b coefficient of q210k+3 in
∑

n,m≥1 q
an+bm

n+ 5m = 210k + 3 1 5 42k

n+ 7m = 210k + 3 1 7 30k

3n+ 5m = 210k + 3 3 5 14k

3n+ 7m = 210k + 3 3 7 10k

Now, we only need to check the coefficient of q210k+3 in the series
∑

m,n≥1 q
5n+7m.

Note that the integers a = 5, b = 7 and c = 210k + 3 satisfy the desired conditions

of Lemma 4.15. Thus M210k+3 is the number of the possible pairs of positive integers

(n,m) such that 5n+ 7m = 210k + 3 and

M210k+3 ≡M210k+3+π8 (mod 8),

where π8 is the minimum period modulo 8 of the following q-series

A(q) :=
∞∑
n=0

p(n;S)qn =
1

(1− q5)(1− q7)
.

Letting S = {5, 7}, ` = 2, and N = 3 in Theorem 2.8, then π8 = π8(A) = 280. In other

words, for all n ≥ 0,

M210k+3+π8 = p(210k + 3 + π8(A);S) ≡ p(210k + 3;S) = M210+3 (mod 8).

If we let k = 4j where j ∈ N, then we observe by the periodicity of A(q) that

M210k+3 = p(210k + 3;S) = p(3 + 3j · π8(A);S) ≡ p(3;S) (mod 8) = 0 (mod 8).
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By a similar argument for k = 4j − 1, 4j − 2, 4j − 3, we obtain the following

M210k+3 = p(210k+3;S) ≡



p(3;S) (mod 8) = 0 (mod 8) if k = 4j = 4, 8, 12, . . .

p(73;S) (mod 8) = 2 (mod 8) if k = 4j − 1 = 3, 7, 11, . . .

p(143;S) (mod 8) = 4 (mod 8) if k = 4j − 2 = 2, 6, 10, . . .

p(213;S) (mod 8) = 6 (mod 8) if k = 4j − 3 = 1, 5, 9, . . .

By summing all coefficients of q210k+3 and using Tables 4.3 and 4.4, we get

2 + 6 + 4 · (70k + 70k + 42k + 30k + 14k + 10k +M210k+3) ≡ 0 (mod 8),

which proves (4.19). Similarly, the identities (4.20) and (4.21) can be proved using

the same technique. However, for the sake of completeness, we show in Tables (4.5)

and (4.6) the corresponding coefficients of the terms q210k+9, q210k+105 modulo 8 of the

generating function of 8-rowed plane overpartitions,
∑∞

n=0 pl8(n)qn.

TABLE 4.5: Coefficients of q210k+9, q210k+105 modulo 8 in c
∑

n≥1 q
jn

c
∑

n≥1 q
jn coefficient of q210k+9, q210k+105 in c

∑
n≥1 q

jn

2
∑

n≥1 q
n 2 2

4
∑

n≥1 q
2n 0 0

6
∑

n≥1 q
3n 6 6

2
∑

n≥1 q
5n 0 2

4
∑

n≥1 q
6n 0 0

6
∑

n≥1 q
7n 0 6
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TABLE 4.6: Coefficients of q210k+9, q210k+105 modulo 8 in c
∑

n,m≥1 q
j(an+bm)

c
∑

n,m≥1 q
j(an+bm) coefficient of q210k+9, q210k+105 in c

∑
n,m≥1 q

j(an+bm)

4
∑

n,m≥1 q
2(n+m) 0 0

4
∑

n,m≥1 q
3(n+m) 4(70k + 2) 4(70k + 34)

4
∑

n,m≥1 q
6(n+m) 0 0

4
∑

n,m≥1 q
7(n+m) 0 4(30k + 14)

4
∑

n,m≥1 q
n+3m 4(70k + 2) 4(70k + 34)

4
∑

n,m≥1 q
n+5m 4(42k + 1) 4(42k + 20)

4
∑

n,m≥1 q
n+7m 4(30k + 1) 4(10k + 14)

4
∑

n,m≥1 q
3n+5m 4 · 14k 4(14k + 6)

4
∑

n,m≥1 q
3n+7m 4 · 10k 4(10k + 4)

4
∑

n,m≥1 q
5n+7m 4 ·M210k+9 4(6k + 2)

Now, we only need to show that the number M210k+9 is even. Similar to the argu-

ment above and by applying Lemma 4.15 for a = 5, b = 7 and c = 210k + 9, we obtain

the following,

M210k+9 = p(210k+9;S) ≡



p(9;S) (mod 8) = 0 (mod 8) if k = 4j = 4, 8, 12, . . .

p(79;S) (mod 8) = 2 (mod 8) if k = 4j − 1 = 3, 7, 11, . . .

p(149;S) (mod 8) = 4 (mod 8) if k = 4j − 2 = 2, 6, 10, . . .

p(219;S) (mod 8) = 6 (mod 8) if k = 4j − 3 = 1, 5, 9, . . .

Thus by M210k+9 is being even, the coefficient of q210k+9 modulo 8 in
∑∞

n=0 pl8(n)qn is
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given by summing all coefficients of q210k+9 in Tables (4.5) and (4.6), so we obtain

2+6+4·(70k + 2 + 70k + 2 + 42k + 1 + 30k + 1 + 14k + 10k +M210k+9) ≡ 0 (mod 8),

as desired for the identity (4.20).

For the identity (4.21), by Tables (4.5) and (4.6), the corresponding coefficient

modulo 8 of q210k+105 in the series
∑∞

n=0 pl8(n)qn is congruent to

16 + 4(252k + 128) ≡ 0 (mod 8).

Before we prove the next theorem, we recall from (2.15) that

∞∑
n=0

p(n)qn ≡
k−2∏
j=0

(
φ(q2

j

)
)2j

(mod 2k),

where

φ(q) =
∞∑

n=−∞

qn
2

= 1 + 2
∞∑
n=1

qn
2

as in (2.10).

For the case k = 3,

∞∑
n=0

p(n)qn ≡ φ(q) · φ(q2)2 ≡ 1 + 2
∑
n≥1

qn
2

+ 4
∑
n≥1

q2n
2

+ 4
∑
n,m≥1

q2(n
2+m2) (mod 8).

(4.28)

Thus yields the following useful theorem.

Theorem 4.17. The following holds for all nonsquare odd integers n ≥ 0,

p(n) ≡ 0 (mod 8).



73

Proof. If n is a nonsquare odd integer, then n can not be written as m2, 2m2, or 2(m2 +

k2) for all m, k ≥ 1. Thus by (4.28), the result follows.

As a consequence, we obtain the following result which gives an infinite family of

overpartition congruences modulo 8.

Corollary 4.18. For any integer α ≥ 3, and β ≥ 0, the following holds for each n ≥ 0,

p(2α3βn+ 5) ≡ 0 (mod 8).

Proof. Clearly, for α ≥ 3, and β ≥ 0, we have that 2α3βn+ 5 is an odd integer for each

n ≥ 0. Suppose that there is a positive integerm such that 2α3βn+5 = (2m+1)2. Thus,

we obtain 2α−23βn+ 1 = m(m+ 1). We know that m(m+ 1) is even which contradicts

the fact 2α−23βn + 1 is odd since α − 2 ≥ 1. Thus no such m exists, and 2α3βn + 5 is

not an odd square.

Next, we obtain a result of Hirschhorn and Sellers [19].

Corollary 4.19. The following holds for all n ≥ 0,

p(4n+ 3) ≡ 0 (mod 8). (4.29)

Proof. Similar to the proof of Corollary 4.18, 4n + 3 is a nonsquare odd integer for all

n ≥ 0.

For k-rowed plane overpartitions with odd k, we obtain the following equivalence

modulo 8 for plane overpartitions with at most 5 rows.
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Theorem 4.20. The following holds for all n ≥ 0,

pl5(12n+ 1) ≡ p(12n+ 1) (mod 8), (4.30)

pl5(12n+ 5) ≡ p(12n+ 5) (mod 8). (4.31)

Proof. By Lemma 4.2 and the fact (2.16), 4p(n) ≡ 0 (mod 8) for every integer n ≥ 1,

∞∑
n=0

pl5(n)qn = f(q)f(q2)2f(q3)3f(q4)4
∏
n≥5

f(qn)5

≡ f(q2) f(q3)2 f(q4)3
∞∏
n=1

f(qn) (mod 8)

≡

(
1 + 2

∑
n≥1

q2n

)(
1 + 2

∑
n≥1

q3n

)2(
1 + 2

∑
n≥1

q4n

)3(
1 +

∑
n≥1

p(n)qn

)
(mod 8)

≡ 1 + 2
∑
n≥1

q2n + 4
∑
n≥1

q3n + 6
∑
n≥1

q4n

+ 4
∑
n,m≥1

q3(n+m) + 4
∑
n,m≥1

q4(n+m) + 4
∑
n,m≥1

q2n+4m

+
∑
n≥1

p(n)qn + 2
∑
n,m≥1

p(n)qn+2m + 6
∑
n,m≥1

p(n)qn+4m (mod 8).

We observe that

2
∑
n,m≥1

p(n)qn+2m + 6
∑
n,m≥1

p(n)qn+4m = 2
∑
n,m≥1

p(n)qn+4m−2 + 8
∑
n,m≥1

p(n)qn+4m

≡ 2
∑
n,m≥1

p(n)qn+4m−2 (mod 8).

Thus, we obtain

∞∑
n=0

pl5(n)qn ≡ 1 +
∑
n≥1

(
2q2n + 4q3n + 6q4n

)
+ 4

∑
n,m≥1

(
q3(n+m) + q4(n+m) + q2(n+2m)

)
+
∑
n≥1

p(n)qn + 2
∑
n,m≥1

p(n)qn+4m−2 (mod 8). (4.32)
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Note that 12k + 1 is not divisible by 2,3 and 4. So for any k ≥ 1, the term q12k+1 will

occur in the series ∑
n≥1

p(n)qn,
∑
n,m≥1

p(n)qn+4m−2,

when n = 12k+ 1, 12k+ 1− (4m− 2) arising from the terms qn, q12k+1−(4m−2) respec-

tively for m = 1, . . . , 3k. Hence, the coefficient of q12k+1 in the series on the right hand

side of (4.32) is then given by

p(12k + 1) + 2
3k∑
m=1

p(12k − 4m+ 3).

Note that by Corollary 4.19, for all k ≥ 1 and m = 1, . . . , 3k, we have

p(12k − 4m+ 3) = p(4(3k −m) + 3) ≡ 0 (mod 8).

Thus,

3k∑
m=1

p(12k − 4m+ 3) ≡ 0 (mod 8).

Therefore, for all k ≥ 1,

pl5(12k + 1) ≡ p(12k + 1) +
3k∑
m=1

p(12k − 4m+ 3) ≡ p(12k + 1) (mod 8).

For the case k = 0,

pl5(1) ≡ p(1) (mod 8).

Thus, for every integer k ≥ 0,

pl5(12k + 1) ≡ p(12k + 1) (mod 8),

as desired for (4.30). The congruence (4.31) can be proved similarly.

We lastly end this chapter by combining Theorem 4.20 and Corollary 4.18 to obtain

the following infinite family of 5-rowed plane overpartition congruences modulo 8.
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Corollary 4.21. For any integers α ≥ 3 and β ≥ 1, the following holds for all n ≥ 0,

pl5(2
α3βn+ 5) ≡ 0 (mod 8). (4.33)

Proof. Note that by Theorem 4.20, for all n ≥ 0,

pl5(2
α3βn+ 5) = pl5(12(2α−23β−1n) + 5) ≡ p5(12(2α−23β−1n) + 5) (mod 8).

The rest follows by Corollary 4.18.
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5 CONCLUSIONS

We have generalized the method of Mizuhara, Sellers, and Swisher in [33] to give

a way to determine various congruences based on a bounded number of calculations. We

note that as applications of Theorem 3.3, we obtain new plane partition and plane over-

partition congruences. However, the results are limited to computing capabilities since, at

least in our cases, increasing the primes leads to more involved coefficient calculations.

We hope that further investigations may prove plane partition and plane overpartition

congruences modulo higher primes and prime powers. In addition, it would be interest-

ing to find examples of congruences for other types of combinatorial functions which

can be proved by Theorem 3.3.

In Chapter 4, we established several examples of plane and restricted plane over-

partition congruences modulo 4 and 8. Often, our technique is based on applying Lemma

4.2 up to a small power of 2, then collecting the coefficients of certain terms of the desired

power. Lemma 4.2 can be a very powerful tool to find and prove additional congruences

modulo powers of 2 for any partition function that involves products containing functions

of the form f(qn)m where f is defined by f(q) = 1+q
1−q . For example, the overpartition

function has this property.

Based on computational evidence, we conjecture that for each integer r ≥ 1, and

each k ≥ 1, there exist infinitely many integers n such that

plk(n) ≡ 0 (mod 2r). (5.1)

If this holds, then for infinitely many integers n,

pl(n) ≡ 0 (mod 2r). (5.2)
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Lemma 4.2 might be a powerful tool to tackle such congruences as (5.1). We note

that Theorems 4.9 and 4.20 suggest there might be other arithmetic relations between

plane overpartitions and overpartitions that are worth investigating. Furthermore, com-

putational evidence suggests that there is a relation modulo powers of 2 between over-

partitions and restricted plane overpartitions. Thus, we conjecture that for each r ≥ 1

and each k ≥ 1, there exist infinitely many integers n, such that

plk(n) ≡ p(n) (mod 2r).

Another approach to establish congruences for plane overpartitions modulo pow-

ers of 2 is to look for an iteration formula for plane overpartitions similar to that of

overpartitions given by Theorem 2.2 of [21]. That is, consider

P (q) = φ(q) φ(q2)2 φ(q4)4 φ(q8)8 · · · ,

and let

Gn(q) :=
∞∏

i=n+1

1 + qi

1− qi
=

∞∏
i=n+1

f(qi).

Thus the generating function for plane overpartitions can be rewritten as

PL(q) =P (q) ·G1(q) ·G2(q) ·G3(q) · · ·

=
∞∏
n=1

φ(q2
n−1

)2
n−1

Gn(q).

Investigating properties of Gn(q) might yield congruences modulo higher powers of 2

for plane overpartitions.

One also may look for congruences modulo odd primes or powers of odd primes

for plane and restricted plane overpartitions. Lemma 3.4 and Lemma 3.5 can be a key
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for establishing restricted plane overpartition congruences since generating functions for

this type of partition involve functions of the form

f(qn)` ≡ f(qn`) (mod `),

f(qn)`
N ≡ f(qn`)`

N−1

(mod `N),

for any positive integer N and a prime `.
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