


AN ABSTRACT OF THE DISSERTATION OF

Yu Zhang for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on September 19, 2006.

Title: Multi-Antenna OFDM Systems in the Presence of Phase Noise and

Doubly-Selective Fading

Abstract approved:

Huaping Liu

Orthogonal frequency division multiplexing (OFDM), which has been very at-

tractive for future high rate wireless communications, is very robust to channel mul-

tipath fading effect while providing high transmission data rate with high spectral ef-

ficiency. Multiple antennas can be combined with OFDM to increase diversity gain

and to improve spectral efficiency through spatial multiplexing and space-time cod-

ing (STC). This dissertation focuses on performance analysis and detection schemes

of multi-antenna OFDM systems in the presence of phase noise and doubly-selective

fading where channel is both time-selective and frequency-selective.

In space-time coded OFDM (ST-OFDM), channel time variations cause not

only intercarrier interference (ICI) among different subcarriers in one OFDM sym-

bol, but also intertransmit-antenna interference (ITAI). We quantify the impact of time-

selective fading on the performance of quasi-orthogonal ST-OFDM systems by deriv-

ing, via an analytical approach, the expressions of carrier-to-interference ratio (CIR)

and signal-to-interference-plus-noise ratio (SINR). We also evaluate the performance

of five different detection schemes and show that all these schemes suffer from an irre-

ducible error floor.



Multiple-input multiple-output (MIMO) antennas combined with OFDM are

very attractive for high-data-rate communications. However, MIMO-OFDM systems

are very vulnerable to time-selective fading. We apply frequency-domain correlative

coding in MIMO-OFDM systems over doubly-selective fading channels and derive the

analytical expression of CIR to demonstrate the effectiveness of correlative coding in

mitigating ICI.

When applied in fast fading channels, common ST-OFDM receivers usually

suffer from an irreducible error floor. We apply frequency-domain correlative coding

combined with a modified decision-feedback (DF) detection scheme with low com-

plexity to effectively suppress the error floor of quasi-orthogonal ST-OFDM over fast

fading channels.

Similar to single-antenna OFDM, MIMO-OFDM suffers from significant per-

formance degradation due to phase noise and time-selective fading. After characteriz-

ing the common phase error (CPE) caused by phase noise and ICI caused by phase noise

as well as time-selective fading, we derive a minimum mean-squared error (MMSE)-

based scheme to mitigate the effect of both phase noise and Doppler frequency shift.

We also evaluate and compare the performance of various detection schemes combined

with the proposed CPE mitigation scheme.

Throughout the dissertation, theoretical performance analysis is always pre-

sented along with corroborating simulations.
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Multi-Antenna OFDM Systems in the Presence of Phase Noise and

Doubly-Selective Fading

1. INTRODUCTION

1.1. Background and Motivation

The demand for capacity in cellular and wireless local area networks (WLAN)

has grown in a literally explosive manner during the last decade. In particular, the need

for wireless Internet access and multimedia applications require an increase in informa-

tion throughput with orders of magnitude higher than data rates made available by to-

day’s technology. One major technological breakthrough that will make this increase in

data rate possible is the use of multiple antennas at transmitters and receivers in the sys-

tem. The antenna elements in a multiple-input multiple-output (MIMO) system [1, 2]

could be exploited to achieve larger coverage area and/or higher data throughput than

traditional single-antenna systems. In a rich-scattering environment, MIMO systems

could provide high spectral efficiency through spatial multiplexing. The transmit and

receive antenna elements in a MIMO system could also be used to provide spatial di-

versity and to mitigate the effect of multipath fading. To achieve full transmit diversity,

it is necessary to code across both space and time domains through space-time coding

(STC) [3–5].

There are two main types of space-time codes: space-time trellis code (STTC)

and space-time block code (STBC). Orthogonal STBC was originally proposed in [3]

for systems with two transmit antennas. The orthogonal design was then generalized to

systems with an arbitrary number of transmit antennas [5]. Since complex orthogonal
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STBCs with full spatial diversity and full transmission rate do not exist for more than

two transmit antennas [5], quasi-orthogonal design with rate one but partial diversity

was investigated in [6,7]. Recently, quasi-orthogonal STBC with constellation rotation

was proposed in [8, 9] to provide full diversity.

Mobile wireless channels exhibit time-varying multipath fading, and the rapid-

ity of which can be quantified by the Doppler shift. STBCs are typically designed as-

suming a quasi-static channel. Time-selective fading will cause intertransmit-antenna

interference (ITAI) in orthogonal codes. For quasi-orthogonal codes, channel time vari-

ations cause ITAI among all symbols instead of pairs of symbols and the pairwise

maximum-likelihood (ML) decoding scheme [8] becomes suboptimal. To mitigate

ITAI caused by channel time variations, many schemes have been studied: a simpli-

fied linear quasi-ML decoder for orthogonal STBC with two transmit antennas was

proposed to cancel ITAI when the channel varies from one signaling interval to an-

other [10]; a low-complexity receiver was proposed to lower the bit-error-rate (BER)

floor of orthogonal STBC with four transmit antennas using the conventional ML de-

coding method [11]; and a two-step zero-forcing (ZF) scheme was applied to cancel

ITAI and to eliminate the error floor of quasi-orthogonal STBC [12].

For high-speed signaling that requires a wide signal bandwidth, wireless chan-

nels could introduce frequency-selective fading, and the effect of multipath delay must

be considered in system design. Orthogonal frequency division multiplexing (OFDM)

[13] techniques have been investigated extensively to combat the effect of multipath de-

lay. Over the last decade, OFDM has been widely adopted and implemented in wire and

wireless communications, such as digital terrestrial TV broadcasting (DTTB), digital

subscriber line (DSL), European high performance local area networks (HIPERLAN),

WLAN and wireless metropolitan area networks (WMAN). OFDM is a block modu-

lation approach which transmits a block of symbols in parallel over a number of sub-
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carriers. The simultaneous transmission of those subcarriers effectively increases the

symbol duration, resulting in negligible intersymbol interference (ISI) that multipath

delay might cause. OFDM may be combined with multiple antennas at the transmit-

ter and receiver to increase diversity gain and to improve system spectral efficiency in

frequency-selective environments [14].

OFDM is effective in avoiding ISI that multipath delay might cause. However,

it is sensitive to time-selective fading which destroys the orthogonality among different

subcarriers in one OFDM symbol, causing intercarrier interference (ICI) [15, 16]. An-

other disadvantage of OFDM is its sensitivity to phase noise, which is a random process

caused by the fluctuation of the transmitter and receiver oscillators [36]. It is widely

accepted that phase noise in OFDM has two major effects [18,37]: common phase error

(CPE), a constant rotation to the signal constellation, and ICI due to the loss of orthog-

onality among subcarriers caused by the fast changes of the oscillator phase. The CPE

term is the same for all subcarriers within one OFDM symbol interval and changes

slowly from one symbol to another. If phase noise level is low, CPE approximately

equals the mean of the phase deviation of an oscillator within one OFDM symbol. The

ICI term is a random process. Schemes which compensate phase noise in OFDM sys-

tems have been proposed in [20,24]. In [22], the signal-to-interference-plus-noise ratio

(SINR) expression for single-antenna OFDM systems with various phase-noise levels

and different number of subcarriers was derived.

MIMO antennas can be combined with OFDM to improve spectral efficiency

through spatial multiplexing [14] and to achieve spatial diversity through STC [23,24].

Support of high mobility in MIMO-OFDM systems is critical for many applications

(e.g., IEEE 802.16e). Similar to single-antenna OFDM, performance of MIMO-OFDM

is also highly sensitive to channel time selectivity. Error performance of MIMO-OFDM

systems in the presence of time-selective fading was analyzed in [25]. Besides, MIMO-
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OFDM is highly vulnerable to phase noise. CPE estimation schemes for MIMO-OFDM

systems were derived in [26] and in [27] a decision-directed approach for compensation

of phase noise in MIMO-OFDM systems was studied. In OFDM systems with Ns

subcarriers, the OFDM symbol duration could be Ns times of the data symbol period.

Consequently, ITAI caused by channel time variations in space-time coded OFDM (ST-

OFDM) systems is much more pronounced than in common STC systems.

1.2. Outline of the Dissertation

The objective of this dissertation is to address various aspects related to multi-

antenna OFDM systems in the presence of phase noise and doubly-selective fading,

which include performance analysis, channel estimation and equalization, receiver de-

sign and signal detection.

In Chapter 3, we study the impact of time-selective fading on quasi-orthogonal

ST-OFDM systems over frequency-selective Rayleigh fading channels. We quantify

the impact of Doppler frequency shift by deriving, via an analytical approach, the ex-

pressions of carrier-to-interference ratio (CIR) and SINR. We observe that system error

performance is insensitive to changes in vehicle speeds and the channel power-delay

profile, but very sensitive to changes in the number of subcarriers. We also evaluate

the performance of five different detection schemes in the presence of time-selective

fading. We show that, although there exist differences in their relative performances,

all these detection schemes suffer from an irreducible error floor.

MIMO-OFDM systems are very vulnerable to time-selective fading as channel

time variations destroy the orthogonality among subchannels, causing ICI. In Chapter 4,

we apply frequency-domain correlative coding in MIMO-OFDM systems over doubly-

selective fading channels to mitigate ICI. We derive an analytical expression of CIR
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to quantify the impact of time-selective fading and demonstrate the effectiveness of

correlative coding in mitigating ICI in MIMO-OFDM systems.

In quasi-orthogonal ST-OFDM systems, channel time variations cause not only

ICI among different subcarriers in one OFDM block, but also ITAI. When applied in

fast fading channels, common ST-OFDM receivers usually suffer from an irreducible

error floor. In Chapter 5, we apply frequency-domain correlative coding combined

with a modified decision-feedback (DF) detection scheme to effectively suppress the

error floor of quasi-orthogonal ST-OFDM over fast fading channels. We also derive

the analytical expressions of CIR and ITAI when frequency-domain correlative coding

is applied at the transmitter to quantify the impact of time-varying fading. The effec-

tiveness of the proposed scheme in mitigating the effects of channel time selectivity

is demonstrated through comparison with existing schemes such as ZF, two-step ZF

(TS-ZF), and sequential DF estimation.

In Chapter 6, we analyze the effects of phase noise to MIMO-OFDM systems

over doubly-selective Rayleigh fading channels. Similar to single-antenna OFDM,

MIMO-OFDM suffers from significant performance degradation due to phase noise and

time-selective fading. We derive the expressions for CIR and SINR. After characteriz-

ing CPE caused by phase noise and ICI caused by phase noise as well as time-selective

fading, we then derive a minimum mean-squared error (MMSE)-based scheme to mit-

igate the effect of both phase noise and time-selective fading. We also evaluate and

compare the performances of various detection schemes combined with the proposed

CPE mitigation scheme. Through numerical results, we examine the relative perfor-

mances and the potential error floors of these detection schemes.

This dissertation is concluded in Chapter 7. Most of results presented in this

dissertation have been published or accepted for publication in [28–32].
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1.3. Notation Summary

In this dissertation, scalar variables are written as plain lower-case letters, vec-

tors as bold-face lower-case letters, and matrices as bold-face upper-case letters. Some

further used notations and commonly used acronyms are listed in the following:

E[·] Expectation

var(·) Variance

cov(·) Covariance

(·)T Transpose

(·)∗ Complex conjugate

(·)H Hermitian transpose

(·)1/2 Matrix square-root

(·)† Pseudoinverse

| · | Absolute magnitude

‖ · ‖F Frobenius norm

δ(·) Dirac delta function

tr(·) Sum of diagonal elements

J0(·) Zero-order Bessel function of the first kind

vec(V ) Vector obtained by vertically stacking the columns of matrix V

⊗ Kronecker product

IN N ×N identity matrix

{A}ij (i, j)th element of matrix A

AWGN Additive white Gaussian noise

BER Bit-error-rate

BPSK Binary phase shift keying
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CIR Carrier-to-interference ratio

CP Cyclic prefix

CPE Common phase error

CSI Channel state information

DTTB Digital terrestrial TV broadcasting

DF Decision-feedback

DFT Discrete Fourier transform

DSL Digital subscriber line

FEC Forward error correction

IBI Interblock interference

ICI Intercarrier interference

IDFT Inverse discrete Fourier transform

i.i.d. Independent and identically distributed

ITAI Intertransmit-antenna interference

ISI Intersymbol interference

HIPERLAN-LAN European high performance local area networks

LS Least square

MIMO Multiple-input multiple-output

ML Maximum-likelihood

MMSE Minimum mean-squared error

MRC Maximum ratio combing

MSE Mean-square error

OFDM Orthogonal frequency division multiplexing

QPSK Quaternary phase shift keying

rms Root-mean square
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SDFSE Sequential DF sequence estimation

SER Symbol-error-rate

SINR Signal-to-interference-plus-noise ratio

SNR Signal-to-noise ratio

ST-OFDM Space-time coded OFDM

STBC Space-time block code

STC Space-time coding

STTC Space-time trellis code

TS-ZF Two-step zero-forcing

WLAN Wireless local area networks

WMAN Wireless metropolitan area networks

WSSUS Wide sense stationary uncorrelated scattering

ZF Zero-forcing
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2. OVERVIEW

2.1. Multi-Antenna OFDM Systems Model

2.1.1. Space-Time Coded OFDM Transmitter

Consider a MIMO-OFDM system with Nt transmit antennas, Nr receive an-

tennas, and Ns subcarriers. The channel is frequency-selective Rayleigh fading and is

modeled as quasi-static, allowing it to be constant over an OFDM block and change

independently from one block to another.

Input symbol sequence {a(0), a(1), · · · , a(NtNs− 1)} is serial-to-parallel con-

verted into Nt sequences, each of length Ns, as

ap(k) = a(k + (p− 1)Ns); k = 0, · · · , Ns − 1, p = 1, · · · , Nt.

Each of the Ns sequences {a1(k), a2(k) · · · , aNt(k)}, k = 0, · · · , Ns − 1, is mapped

to a matrix Ψk of size Nt×N (N is the number of time burst defined in STC) by using

the orthogonal space-time block coding scheme given in [5]

{a1(k), a2(k) · · · , aNt(k)} ⇒ Ψk, k = 0, · · · , Ns−1. (2.1)

For instance, if we apply the Alamouti code [3] for a system with two transmit antennas,

Ψk is obtained as

Ψk =




a1(k) −a∗2(k)

a2(k) a∗1(k)


 (2.2)

Then we take the inverse discrete Fourier transform (DFT) of {Ψ0, · · · ,ΨNs−1} as

Sm =
1√
Ns

Ns−1∑

k=0

Ψk · ej 2π
Ns

mk, m = 0, · · · , Ns−1 (2.3)

where j =
√−1, to form the transmitted signals represented in a matrix form as

S = [ST
0 , ST

1 , · · · , ST
Ns−1]

T (2.4)
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where Sm is given by

Sm =




s1,0(m) · · · s1,(N−1)(m)

... . . . ...

sNt,0(m) · · · sNt,(N−1)(m)




. (2.5)

It is easy to recognize that {sp,n(m)}, p = 1, . . . , Nt, n = 0, . . . , N − 1, m =

0, . . . , Ns−1, are transmitted in parallel using the Ns subcarriers and Nt antennas over

N time intervals. Thus, each transmitted symbol is coded onto the space, time, and

frequency dimensions through the ST-OFDM process.

2.1.2. MIMO Wireless Channel

In a frequency-selective fading channel with L resolvable paths, there exists

mutual interference between adjacent OFDM blocks. This interblock interference (IBI)

could be cancelled by adding a cyclic prefix (CP) of length cp (cp ≥ L) to each trans-

mitted block. At the receiver, the CP is discarded, leaving IBI-free information-bearing

signals. The channel matrix H is block-circulant with Ns ×Ns blocks expressed as

H =




H(0) · · · 0 H(L− 1) · · · H(1)

...
...

...

H(L− 1) · · · H(1) H(0) 0 · · ·
...

...
...

0 · · · H(L− 1) · · · H(1) H(0)




(2.6)

where 0 is a zero matrix of size Nr × Nt. Each nonzero block of H represents the

MIMO spatial channel matrix of size Nr×Nt for a particular path l and is expressed as

H(l) =




h1,1(l) · · · h1,Nt(l)

... . . . ...

hNr,1(l) · · · hNr,Nt(l)




, l = 0, · · · , L−1 (2.7)
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where hi,j(l), 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nt, is zero-mean complex Gaussian with unit

variance. In a practical scenario, insufficient spacing among antennas will cause spatial

correlation. Thus, the channel matrix H(l) can be written in a general form as [33]

H(l) = D1/2Hw(l)B1/2, l = 0, · · · , L−1 (2.8)

where Hw(l) is an Nr×Nt matrix whose elements are independent and identically dis-

tributed (i.i.d.) complex Gaussian random variables with zero mean and unit variance,

and D = D1/2(D1/2)H and B = B1/2(B1/2)H are, respectively, the receive and the

transmit correlation matrices. For example, the correlation matrices for a 2× 2 MIMO

system are written as [34]

D =




1 ρ

ρ∗ 1


 (2.9a)

B =




1 µ

µ∗ 1


 (2.9b)

where ρ and µ are the complex antenna correlation coefficients.

2.1.3. Space-Time Coded OFDM Receiver

The received signal matrix R can be expressed as

R = HS + V (2.10)

where V = [V T
0 , V T

1 , · · · , V T
Ns−1]

T is an additive white Gaussian noise (AWGN) ma-

trix whose elements are i.i.d.. Thus, E[vec(V ) · vec(V )H ] = σ2INrNsN , where σ2

is the variance of the zero-mean noise samples when the transmitted symbol energy

is normalized to unity. Since H has the block Toeplitz structure, it has the following

eigen-decomposition

H = UH
Nr

ΛUNt (2.11)
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with

UNr = U ⊗ INr , UNrU
H
Nr

= INrNs (2.12a)

UNt = U ⊗ INt , UNtU
H
Nt

= INtNs (2.12b)

where U is the Ns ×Ns unitary DFT matrix given by

U =
1√
Ns




1 1 · · · 1

... · · · ...

1 e−j 2π
Ns

(Ns−1) · · · e−j 2π
Ns

(Ns−1)(Ns−1)




(2.13)

and Λ is a block diagonal matrix whose (k, k)th block is given by

Λk =
L−1∑

l=0

H(l) · e−j 2π
Ns

kl

= D1/2

(
L−1∑

l=0

Hw(l) · e−j 2π
Ns

kl

)
B1/2, k = 0, · · · , Ns − 1. (2.14)

At the receiver, a matrix X is generated by multiplying R with UNr as

X = [XT
0 , XT

1 , · · · , XT
Ns−1]

T

= UNrR

= ΛUNtS + UNrV (2.15)

where

Xk = ΛkΨk + W k, k = 0, · · · , Ns − 1 (2.16)

and

W k =
1√
Ns

Ns−1∑
m=0

V m · e−j 2π
Ns

mk. (2.17)

Note that W = [W T
0 , W T

1 , · · · , W T
Ns−1]

T has the same distribution as V , i.e., all

elements of W are i.i.d. with zero mean and variance σ2.

It has been shown [14] that the maximum diversity order achievable in a MIMO

system with Nt transmit antennas, Nr receive antennas, and L resolvable multipath
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components is NtNrL. However, the conventional ST-OFDM scheme described above

is suboptimal in that it is not capable of exploiting frequency diversity in a frequency-

selective environment subject to the property of OFDM; it achieves a diversity order of

only NrNt.

2.1.4. Achieving Full Diversity for Space-Time Coded OFDM

Due to the property of OFDM which converts the frequency-selective fading

channel into flat fading channel, conventional ST-OFDM cannot achieve maximum

diversity order. We then present a simple design of ST-OFDM to achieve full spatial

and frequency diversities over frequency-selective fading channels.

Consider a multi-antenna OFDM system with Nt transmit antennas, Nr receive

antennas, and Ns subcarriers over a frequency-selective Rayleigh fading channel with

L resolvable paths. The channel is modeled as quasi-static, allowing it to be constant

over an OFDM block and change independently from one block to another. The number

of subcarriers Ns is chosen to be such that Ns/L is an integer. Input symbol sequence

{a(0), a(1), · · · , a((Ns/L)Nt−1)} is serial-to-parallel converted into Nt sequences of

length Ns/L as

ap(f) = a

(
f +

p− 1

L
Ns

)
(2.18)

where p = 1, · · · , Nt, f = 0, · · · , Ns/L − 1. Each of the Ns/L − 1 sequences

{a1(f), a2(f) · · · , aNt(f)}, f = 0, · · · , Ns/L − 1, is mapped to a matrix Φf by us-

ing the orthogonal space-time block coding technique given in [5] as

{a1(f), a2(f) · · · , aNt(f)} ⇒ Φf , f = 0, · · · ,
Ns

L
−1. (2.19)



14

Matrix Φf is of size Nt ×N , where N is the number of time burst defined in STC. We

then construct Ns matrices of the same size as Φf using the repetition coding technique

Ψl Ns
L

+f = Φf , f = 0, · · · , Ns/L−1; l = 0, · · · , L−1 (2.20)

through which each Φf is repeated L times, forming {Ψ0, · · · ,ΨNs−1}.

Following the analysis in the aforementioned sections of ST-OFDM systems

over quasi-static channels, we obtain

X = [XT
0 , XT

1 , · · · , XT
Ns−1]

T

= ΛUNtU
H
Nt

Ψ + UNrV (2.21)

where Ψ = [ΨT
0 ,ΨT

1 , · · · ,ΨT
Ns−1]

T and Ψl, l = 0, · · · , Ns−1, was defined in (2.20).

Thus, we have

Xk = ΛkΨk + W k, k = 0, · · · , Ns − 1 (2.22)

where

W k =
1√
Ns

Ns−1∑
m=0

V m · e−j 2π
Ns

mk. (2.23)

Substituting (2.20) into (2.22) yields
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X0 = Λ0Φ0 + W 0

X1 = Λ1Φ1 + W 1

...

X Ns
L
−1 = ΛNs

L
−1ΦNs

L
−1 + W Ns

L
−1

X Ns
L

= ΛNs
L

Φ0 + W Ns
L

X Ns
L

+1 = ΛNs
L

+1Φ1 + W Ns
L

+1

...

X 2Ns
L
−1 = Λ 2Ns

L
−1ΦNs

L
−1 + W 2Ns

L
−1

...

X L−1
L

Ns
= ΛL−1

L
Ns

Φ0 + W L−1
L

Ns

X L−1
L

Ns+1 = ΛL−1
L

Ns+1Φ1 + W L−1
L

Ns+1

...

XNs−1 = ΛNs−1ΦNs
L
−1 + W Ns−1.

Each transmitted matrix Φf , f = 0, · · · , Ns/L − 1, is received in L duplicates, each

of which is multiplied by a channel matrix corresponding to a different subcarrier. The

minimum distance between the indexes of any two subcarriers carrying the same trans-

mitted signal Φf is Ns/L. If maximum ratio combing (MRC) [35] is applied to com-

bine the L duplicates, a maximum frequency diversity order of L can be achieved. In

a practical system, the achievable frequency diversity order depends on the correlation

among the L channel matrices.

To analyze the performance of the scheme, we consider, without loss of gener-

ality, detection of transmitted matrix Φ0 only. For simplicity of illustration, we focus

on a MIMO system with two transmit antennas and two receive antennas employing
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the complex orthogonal STBC given in [3]. Thus

Φ0 =




a1(0) −a∗2(0)

a2(0) a∗1(0)


 . (2.24)

Let

Λk′ =




λ11(k
′) λ12(k

′)

λ21(k
′) λ22(k

′)


 , k′ = 0,

Ns

L
, · · · ,

L−1

L
Ns (2.25)

and

W k′ =




w11(k
′) w12(k

′)

w21(k
′) w22(k

′)


 , k′ = 0,

Ns

L
, · · · ,

L−1

L
Ns. (2.26)

Following the ML decoding procedure for orthogonal STBC described in [3] and MRC,

we obtain the detected symbol for a1(0) in (2.24) as

â1(0) = a1(0) +

∑

k′

2∑
i=1

[λ∗i1(k
′)wi1(k

′) + λi2(k
′)w∗

i2(k
′)]

∑

k′

2∑
i=1

2∑
j=1

|λij(k
′)|2

(2.27)

where the sum over k′ is extended to all values of k′ (k′ = 0, Ns

L
, · · · , L−1

L
Ns). It has

been shown [14] that the maximum diversity order achievable in a MIMO system with

Nt transmit antennas, Nr receive antennas, and L resolvable multipath components is

NtNrL. The proposed scheme achieves full spatial and frequency diversities if channel

coefficients λij(k
′), k′ = 0, Ns

L
, · · · , L−1

L
Ns, are mutually independent.

The analysis becomes more difficult in a practical scenario. This is because

that channel matrices for different subcarriers are typically correlated and λij(k
′) for

different values of k′ may not have the same variance.

Consider a channel model with L resolvable multipath components given as

(Eq. (2), [41])

h(τ) =
L−1∑

l=0

αlδ(τ − τlTs) (2.28)
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where αl is the zero-mean complex Gaussian random variable and τl is the delay of the

lth path normalized with respect to the OFDM symbol duration Ts, which also equals

the sampling period. The channel has a power-delay profile θ(τl) = e−τl/τrms , where

τrms represents the root-mean square (rms) delay spread. We assume that delays τl

are independently and uniformly distributed over the CP cp. Let the correlation matrix

(frequency correlation) of the channel coefficients at the L different subcarriers that

involve transmitted signal Φ0 be

Cij = E[M ijM
H
ij ] = C (2.29)

where M ij = [λij(0), λij(
Ns

L
), · · · , λij(

L−1
L

Ns)]
T , i = 1, 2, j = 1, 2, and correlation

characteristics are assumed independent of antenna indexes. Each of the off-diagonal

entries of C is a function of the distance between two different subcarriers, ω (Ns

L
≤

ω ≤ L−1
L

Ns), and is expressed as (Appendix A, [41])

c(ω) =
1− e−P (1/τrms+2πjω/Ns)

τrms(1− e−P/τrms)( 1
τrms

+ 2πj ω
Ns

)
. (2.30)

Note that here both τrms and ω are represented in terms of number of samples, rather

than actual values in seconds or radians/s.

Performance of the proposed scheme for a MIMO-OFDM system with Nt = 2,

Nr = 2, and Ns = 128 is simulated. Within each OFDM block, the Alamouti code [3]

with quaternary phase shift keying (QPSK) is applied. Two cases are simulated: 1)

cp = L = 2, τ0 = 0, τ1 = 2, and 2) cp = L = 3, τ0 = 0, τ1 = 2, τ2 = 3. Symbol-

error-rate (SER) performance of the proposed scheme with different values of τrms is

shown in Fig. 2.1. For comparison, SER curves of three baseline systems (conventional

ST-OFDM without frequency diversity, with frequency diversity 2, and with frequency

diversity 3, all with full spatial diversity) are also included in the same figure. It is

observed that with the same set of values of L, cp, and τl, performance of the proposed
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FIGURE 2.1. Error performance of the repetition coding scheme.

scheme depends on the value of τrms. A smaller τrms results in a larger difference in

the power of different channel coefficients λij(k
′), which causes a higher SER. Also,

a large value of |c(ω)| between two subcarriers carrying the same transmitted signal

results in a loss of frequency diversity. With τrms = 20, the proposed scheme performs

very close to the baseline systems. It is also found that the proposed scheme will lose

full frequency diversity as the ratio τl/τrms increases.

It should be mentioned that the increase in diversity is achieved at the expense

of data throughput loss with a factor of L−1
L

. Nevertheless, the scheme analyzed is very

simple to implement and no feedback of channel state information (CSI) is needed to

exploit frequency diversity in a frequency-selective environment. Thus it could be very

useful when system diversity order is a more important design consideration.
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2.2. Phase Noise Model

Phase noise φ(t), generated at both transmitter and receiver oscillators, may

be described as a continuous Brownian motion process or a random Wiener process

with zero mean and variance 2πβt, where β denotes the two-sided 3-dB linewidth of

the Lorentzian power density spectrum of the free-running carrier generator [36]. As

a random Wiener process, phase noise has independent Gaussian increments and its

power is a monotonically increasing function of time. This indicates that its power

could be infinitely large as time increases. However, if restricted to a finite period,

phase noise can be modeled as a filtered Gaussian random variable [37].

If discrete phase noise model is of interest, we need to consider discretized

Brownian motion φ(n) = φ(nTs), where Ts is the data symbol period. Thus we have

φ(n + 1) = φ(n) + ς(n), where ς(n) ∼ N (0, 2πβTs) is a Gaussian random variable

with zero mean and variance σ2
ς = 2πβTs.
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3. IMPACT OF TIME-SELECTIVE FADING ON SPACE-TIME CODED
OFDM SYSTEMS

3.1. Introduction

Mobile wireless channels exhibit time-varying multipath fading, and the rapid-

ity of which can be quantified by the Doppler shift. OFDM is effective in avoiding ISI

that multipath delay might cause. However, it is sensitive to time-selective fading which

destroys the orthogonality among different subcarriers in one OFDM symbol, causing

ICI [15,16]. STC is a technique to achieve transmit diversity in a multi-antenna system

by coding across both space and time domains [4]. STBC was originally proposed in [3]

for systems with two transmit antennas. The orthogonal design was then generalized

to systems with an arbitrary number of transmit antennas [5]. Quasi-orthogonal STC

design with rate one but partial diversity was investigated in [6, 7]. Recently, quasi-

orthogonal STBC with constellation rotation was proposed in [8, 9] to provide full di-

versity. STBCs are typically designed assuming a quasi-static channel. Time-selective

fading will cause ITAI in orthogonal codes. For quasi-orthogonal codes, channel time

variations cause ITAI among all symbols, and the pairwise ML decoding scheme [8] be-

comes suboptimal. To mitigate ITAI caused by channel time variations, many schemes

have been studied, which include a simplified linear quasi-ML decoder [10], a low-

complexity receiver using the conventional ML decoding method [11], and a TS-ZF

scheme [12].

Multiple antennas can be combined with OFDM to achieve spatial diversity

and/or to increase spectral efficiency through spatial multiplexing [14]. For a multi-

antenna OFDM system in a frequency-selective environment, STC schemes must be

extended to include the frequency element, forming ST-OFDM [23, 24]. Similar to

single-antenna OFDM, ST-OFDM is also sensitive to the Doppler shift and frequency
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errors which destroy the orthogonality among subcarriers, causing ICI [25]. In an

OFDM system with Ns subcarriers, the OFDM symbol duration could be Ns times

of the data symbol period. Consequently, ITAI caused by channel time variations in an

ST-OFDM system is much more pronounced than in a common STC system.

While the problems caused by time-selective fading in ST-OFDM have been

recognized, the exact quantitative impact of which has not been well understood yet.

In this chapter, we analyze, via mainly an analytical approach, the impact of both ICI

and ITAI to the performance of quasi-orthogonal ST-OFDM systems in the presence

of time-selective Rayleigh fading. We also compare five detection schemes - the ZF

scheme [38], the TS-ZF scheme [12], the MMSE scheme [38], the decorrelating DF

scheme [39], and the MMSE-DF scheme [40] - and evaluate their SER floors.

3.2. System Model

We focus on a space-time block coded multi-antenna OFDM system with P

transmit antennas, one receive antenna, and Ns subcarriers in a time-selective Rayleigh

fading environment. Input symbols {a(i)} are assumed to have the following properties

E[a(i)] = 0

E[a(i)a∗(j)] =





1, i = j

0, i 6= j
.

The input sequence {a(i), i = 0, · · · , NsP − 1} is serial-to-parallel converted into P

sequences, each of length Ns, as

ap(k) = a(k + (p− 1)Ns), p = 1, · · · , P, k = 0, · · · , Ns − 1. (3.1)

Each of the Ns sequences {a1(k), · · · , aP (k)}, k = 0, · · · , Ns − 1, is mapped to a

matrix Ψk of size P × P by using a quasi-orthogonal space-time block coding scheme



22

(e.g., the 4 × 4 quasi-orthogonal scheme given in [8]). Then we take the inverse DFT

(IDFT) of {Ψ0, · · · ,ΨNs−1}, forming the transmitted signals as1

Sm =
1√
Ns

Ns−1∑

k=0

Ψk · ej 2π
Ns

mk, m = 0, · · · , Ns−1. (3.2)

Note that Sm is a P × P matrix, which represents the transmitted signals on the mth

subcarrier. If we define

Ψ = [ΨT
0 , · · · , ΨT

Ns−1]
T , (NsP × P ) (3.3a)

S = [ST
0 , · · · , ST

Ns−1]
T , (NsP × P ) (3.3b)

then S can be written as

S = (U ⊗ IP )HΨ (3.4)

where U is the unitary DFT matrix with {U}ij = 1/
√

Nse
(−2π

√−1/Ns)ij , 0 ≤ i, j ≤
Ns−1. In frequency-selective fading channels with L resolvable paths, there exists IBI.

To minimize this IBI, a CP of length cp (cp ≥ L) is added to each OFDM symbol. At the

receiver, the CP is discarded, leaving IBI-free, information-bearing signals. Combined

with the characteristics of time-selective fading, the Ns ×NsP spatiotemporal channel

1Note that this is not the only way to construct ST-OFDM. We adopted it because of its mathe-

matical convenience. Implementation of this scheme requires P ×P IDFT operations. If IDFT

is done before STBC mapping, then only P IDFT operations are needed.
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matrix H t is expressed as2

H t =




hT
t,0(0) · · · 0T hT

t,L−1(0) · · · hT
t,1(0)

...
...

...

hT
t,L−1(L− 1) · · · hT

t,1(L− 1) hT
t,0(L− 1) · · · 0T

...
...

...

0T · · · hT
t,L−1(Ns − 1) · · · hT

t,1(Ns − 1) hT
t,0(Ns − 1)




(3.5)

where L is less than or equal to Ns, 0 is a P × 1 zero vector, and each nonzero block

of H t contains the P × 1 channel vector ht,l(n) for a particular path l at time nTs (Ts

is the data symbol period) expressed as

ht,l(n) = [ht,1,l(n), · · · , ht,P,l(n)]T , l = 0, · · · , L− 1, n = 0, · · · , Ns − 1. (3.6)

In the case of quasi-static fading3 that allows the channel coefficients to be constant

over an OFDM symbol and change independently from one symbol to another, H t has

a block-circulant structure. Without loss of generality, we omit the index of OFDM

symbol period t in the following discussion.

Assuming a wide sense stationary uncorrelated scattering (WSSUS) channel

[25], all elements of hl(n) are modeled as independent complex Gaussian random vari-

ables with zero mean and equal variance. Let the power of the first path h0(n) be

normalized, i.e., all elements of h0(n) have unit variance. The model of the channel

with L resolvable multipath components can be expressed as (Eq. (2), [41])

h(τ) =
L−1∑

l=0

ρlδ(τ − τlTs) (3.7)

2The index in the parenthesis following ht,l is the time index.

3Quasi-static fading models are appropriate to describe slow fading channels.
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where ρl is the zero-mean complex Gaussian random variable, and τl is the delay of the

lth path normalized with respect to Ts. The delays {τl} are assumed to be uniformly

distributed over the CP cp. The channel has an exponential power-delay profile θ(τl) =

e−τl/τrms , where τrms represents the rms delay spread, which is also normalized with

respect to Ts. Since the channel is time-varying, the relationship between the channel

coefficients for path l of antenna p at times nTs and (n + m)Ts can be described by

using the auto-regressive model as [10, 12]

hp,l(n + m) = αmhp,l(n) + βp,l(n + m) (3.8)

where

αm =
E

[
hp,l(n) · h∗p,l(n + m)

]

e−
τl

τrms

= J0(2πmfdTs) (3.9)

where fd is the Doppler shift, J0(·) is the zero-order Bessel function of the first kind,

and βp,l(n) are independent (for different indices p, l, and n) complex Gaussian random

variables with zero mean and variance

σ2
β =





1− α2
m, l = 0

e−
τl

τrms (1− α2
m), l 6= 0.

(3.10)

The received signals can be expressed in an Ns × P matrix as

R = HS + V (3.11)

where V = [v0, · · · , vNs−1]
T (Ns×P ) is the AWGN matrix whose elements are i.i.d..

Hence

E[vec(V ) · vec(V )H ] = σ2INsP (3.12)

where σ2 is the variance of the zero-mean noise samples when the transmitted symbol

energy is normalized to unity.
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In the special case of a quasi-static fading, hl(n) = hl, n = 0, · · · , Ns − 1.

Thus, H becomes a block-circulant matrix and has the following eigen-decomposition

H = UHΛ(U ⊗ IP ) (3.13)

where Ns × NsP matrix Λ = diag[λT
0 , · · · , λT

Ns−1] is a block diagonal matrix whose

(k, k)th block is given by

λk =
L−1∑

l=0

hl · e−j 2π
Ns

kl, k = 0, · · · , Ns − 1. (3.14)

Analysis of the receiver under quasi-static fading is straightforward. The received R is

processed by multiplying it with U , forming Ns × P matrix X as

X = [x0, · · · , xNs−1]
T

= UR

= ΛΨ + UV . (3.15)

Let xk = [x1(k), · · · , xP (k)]T , wk = [w1(k), · · · , wP (k)]T , and W = UV =

[w0, · · · , wNs−1]
T (Ns × P ). From Eq. (3.15), xk can be obtained as

xT
k = λT

k Ψk + wT
k , k = 0, · · · , Ns − 1 (3.16)

where

wk =
1√
Ns

Ns−1∑
m=0

vm · e−j 2π
Ns

mk. (3.17)

Note that W has the same first and second order statistics as V , i.e., all elements of W

are i.i.d. with zero mean and variance σ2. It is clear from Eq. (3.16) that ICI does not

exist in the ST-OFDM system over quasi-static channels.

The P symbols in each column of Ψk are transmitted from the P transmit anten-

nas simultaneously during every OFDM symbol period. If the channel is time-invariant

over P consecutive OFDM symbol periods, the pairwise ML scheme [8] can be used to

detect pairs of transmitted symbols, instead of symbol by symbol, and there is no error

floor in BER performance.
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3.3. Impact of Time-Varying Fading

3.3.1. CIR and SINR in the Presence of Time-Varying Fading

For OFDM systems over fast fading channels, channel estimation is generally

carried out by transmitting pilot symbols in given positions of the frequency-time grid

[42, 43]. We assume hereafter that CSI is known at the receiver. In the presence of

time-selective fading, H is no longer a block-circulant matrix. Consequently, G =

UH(U ⊗ IP )H is no longer a block diagonal matrix as Λ given in Eq. (3.13). This

shows that time-selective fading causes ICI, which is represented by the off-diagonal

blocks of G. For this more general case, we can rewrite Eq. (3.15) as

X = [x0, · · · , xNs−1]
T = GΨ + W (3.18)

where

xT
k = gT

k,kΨk +
Ns−1∑

k′=0,k′ 6=k

gT
k,k′Ψk′ + wT

k , k = 0, · · · , Ns − 1 (3.19)

and gk,k′ = [g
(1)
k,k′ , · · · , g

(P )
k,k′ ]

T , k, k′ = 0, · · · , Ns − 1, is the (k, k′)th block of G.

Apparently, the second term on the right-hand side of Eq. (3.19) represents ICI.

To make the rest of the analysis in this chapter clearer and easier to understand,

we focus on using the 4 × 4 (i.e., P = 4) quasi-orthogonal STBC with constellation

rotation given in [8], which is replicated here as

Ψk =




a1(k) −a∗2(k) ejφa3(k) −e−jφa∗4(k)

a2(k) a∗1(k) ejφa4(k) e−jφa∗3(k)

ejφa3(k) −e−jφa∗4(k) a1(k) −a∗2(k)

ejφa4(k) e−jφa∗3(k) a2(k) a∗1(k)




(3.20)

where the rotation angle φ depends on the signal constellation. The analysis procedures

and conclusions drawn for this specific case can be easily extended to different number

of antennas and code structures (e.g., the 8× 8 code given in [8]).



27

ICI can be well quantified by using CIR [44]. In order to quantify the effects of

time-varying fading, we derive CIR as a function of the number of subcarriers and the

normalized Doppler shift (fdTs). Let us define three vectors:

yk = [x1(k), x∗2(k), x3(k), x∗4(k)]T

zk = [w1(k), w∗
2(k), w3(k), w∗

4(k)]T

ψk = [a1(k), a2(k), ejφa3(k), ejφa4(k)]T .

From Eq. (3.19), yk can be expressed as

yk = M k,kψk +
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′ + zk (3.21)

where

M k,k′ =




M
(1,2)
k,k′ (0) M

(3,4)
k,k′ (0)

M
(3,4)
k,k′ (2(Ns + cp)) M

(1,2)
k,k′ (2(Ns + cp))


 , k, k′ = 0, · · · Ns − 1 (3.22)

with

M
(i,j)
k,k′ (n) =




g
(i)
k,k′(n) g

(j)
k,k′(n)

g
(j)∗
k,k′ (n + Ns + cp) −g

(i)∗
k,k′(n + Ns + cp)


 . (3.23)

By letting g
(p)
k,k′(0) = g

(p)
k,k′ , p = 1, · · · , 4, we have

g
(p)
k,k′(q(Ns + cp)) = J0(2πfd(Ns + cp)Ts)g

(p)
k,k′ [(q − 1)(Ns + cp)] + ε

(p)
k,k′(q(Ns + cp))

(3.24)

where {ε(p)
k,k′(q(Ns + cp)), q = 1, 2, 3} are independent complex Gaussian random

variables with zero mean and variance

σ2
εk,k′

= (1− J2
0 (2πfd(Ns + cp)Ts)) · var(g

(p)
k,k′). (3.25)

Note that the spaced-time correlation function Eq. (3.9) is for channel coefficients in

the time domain. In obtaining Eq. (3.24) in the frequency domain, we have applied the

time-frequency relationship G = UH(U ⊗ IP )H and Eqs. (3.8) and (3.9).
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Let Υ be an Ns ×Ns matrix given by

Υ =




var(g
(p)
0,0) · · · var(g

(p)
0,Ns−1)

... . . . ...

var(g
(p)
Ns−1,0) · · · var(g

(p)
Ns−1,Ns−1)




. (3.26)

As shown in APPENDIX A, for a particular antenna index p, Υ has a circulant structure

as

Υ =




γ0 γ1 · · · γNs−1

γNs−1 γ0 · · · γNs−2

...
...

...

γ1 γ2 · · · γ0




. (3.27)

Since elements of gk,k′ are i.i.d. Gaussian random variables [25], Eq. (3.27) applies to

all antennas. It is also shown in the APPENDIX A that γk′ defined in Eq. (3.27) has a

closed-form expression as

γk′ =
1

N2
s

L−1∑

l=0

[
Ns + 2

Ns−1∑
i=1

(Ns − i) αi cos

(
2π

Ns

k′i
)]

e−
τl

τrms , k′ = 0, · · · , Ns − 1.

(3.28)

With Eq. (3.28), g
(p)
k,k′(q(Ns + cp)) in Eq. (3.24) can be obtained by substituting γk′ into

Eq. (3.25). As a result of channel time-variations, γk′ 6= 0 for k′ 6= 0, which causes

ICI. In the presence of time-varying fading, CIR for quasi-orthogonal STBC given in

Eq. (3.20) applied in an OFDM system is obtained as
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CIR =
E

[‖M k,kψk‖2
F

]

E

[
‖

Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′‖2
F

]

=
tr

{
E

[
M k,kψkψ

H
k MH

k,k

]}

tr



E




(
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′

)(
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′

)H







=

E

[
3∑

q=0

4∑
p=1

|g(p)
k,k(q(Ns + cp))|2

]

E

[
Ns−1∑

k′=0,k′ 6=k

3∑
q=0

4∑
p=1

|g(p)
k,k′(q(Ns + cp))|2

]

=
γ0

Ns−1∑

k′=1

γk′

=

L−1∑

l=0

[
Ns + 2

Ns−1∑
i=1

(Ns − i) αi

]
e−

τl
τrms

Ns−1∑

k′=1

L−1∑

l=0

[
Ns + 2

Ns−1∑
i=1

(Ns − i)αi cos

(
2π

Ns

k′i
)]

e−
τl

τrms

=

Ns + 2
Ns−1∑
i=1

(Ns − i)J0(2πifdTs)

Ns−1∑

k′=1

[
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos

(
2π

Ns

k′i
)] . (3.29)

In deriving the 4th equality of Eq. (3.29), we have applied the property that g
(p)
k,k′(q(Ns+

cp)), p = 1, · · · , 4, have the same variance. Note that CIR is independent of the channel

power-delay profile and the number of resolvable paths. Furthermore, SINR of this

quasi-orthogonal ST-OFDM system is obtained as
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SINR =
E

[‖M k,kψk‖2
F

]

E

[
‖

Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′ + zk‖2
F

]

=
tr

{
E

[
M k,kψkψ

H
k MH

k,k

]}

tr



E




(
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′

)(
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′

)H

+ zkz
H
k








=
4γ0

4
Ns−1∑

k′=1

γk′ + σ2

(3.30)

where γk′ was given in Eq. (3.28). Moreover, the channel time variations over four

consecutive OFDM symbols as seen in the 4 × 4 matrix M k,k′ given in Eq. (3.22)

introduce, as mentioned in Section 3.1, additional ITAI among elements of ψk.

3.3.2. Detection

In a quasi-static fading channel, the received signal can be directly processed

by a space-time decoder. In a time-varying fading channel, detection could be done as

follows. Let ICI and noise terms in Eq. (3.21) be represented by a single variable dk as

dk =
Ns−1∑

k′=0,k′ 6=k

M k,k′ψk′ + zk. (3.31)

Various schemes have been proposed for detection of quasi-orthogonal STBC over

time-selective fading channels. For example, a TS-ZF detector was proposed in [12],

assuming perfect CSI at the receiver. The main objective of this scheme is to lower the

error floor due to ITAI caused by channel time selectivity. However, quasi-orthogonal

ST-OFDM systems over time-selective multipath fading channels not only suffer from

ITAI, but also ICI, especially when Ns is large. Thus, the TS-ZF scheme will not be

very effective for the system being addressed in this chapter.
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In a simpler ZF detector, yk is processed as

Θkyk = ΘkM k,kψk + Θkdk (3.32)

where Θk = M−1
k,k. Then the least square (LS) criterion can be used to detect the

transmitted signal as

âp(k) =





argmin︸ ︷︷ ︸
a(i)∈A

|[Θk]pyk − a(i)|2, p = 1, 2

argmin︸ ︷︷ ︸
a(i)∈A

|[Θk]pyk − ejφa(i)|2, p = 3, 4
(3.33)

where A is the symbol alphabet and [Θk]p is the pth row of Θk.

When the MMSE detection scheme is applied, the cost func-

tion E
[
‖ψk − Ẃ

H

k yk‖2
F

]
is minimized by finding an appropriate coefficient matrix

Ẃ k. With some algebraic manipulations, it is shown that the optimal matrix is given

by

Ẃ k =
(
M k,kM

H
k,k + Ń k

)−1

M k,k (3.34)

where

Ń k =




4
Ns−1∑

k′=1

γk′ + σ2 4J́1

Ns−1∑

k′=1

γk′ 4J́2

Ns−1∑

k′=1

γk′ 4J́3

Ns−1∑

k′=1

γk′

4J́1

Ns−1∑

k′=1

γk′ 4
Ns−1∑

k′=1

γk′ + σ2 4J́1

Ns−1∑

k′=1

γk′ 4J́2

Ns−1∑

k′=1

γk′

4J́2

Ns−1∑

k′=1

γk′ 4J́1

Ns−1∑

k′=1

γk′ 4
Ns−1∑

k′=1

γk′ + σ2 4J́1

Ns−1∑

k′=1

γk′

4J́3

Ns−1∑

k′=1

γk′ 4J́2

Ns−1∑

k′=1

γk′ 4J́1

Ns−1∑

k′=1

γk′ 4
Ns−1∑

k′=1

γk′ + σ2




(3.35)

with J́i = J0(2πfdi(Ns + cp)Ts), i = 1, 2, 3. Thus the MMSE criterion is given by

ψ̂k = Ẃ
H

k yk = MH
k,k

(
M k,kM

H
k,k + Ń k

)−1

yk. (3.36)
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The decorrelating DF and the MMSE-DF schemes have been shown to provide bet-

ter performances than the ZF and the MMSE schemes [45]. In the decorrelating DF

detection, yk is premultiplied by L−1MH
k,k as

ỹk = L−1MH
k,kyk

= L−1MH
k,kM k,kψk + L−1MH

k,kdk

= LHψk + ek (3.37)

where LH is an upper triangular matrix obtained by using the Cholesky decomposition

as

R = MH
k,kM k,k = LLH .

The pth component of ỹk is given by

[ỹk]p = LH
p,p[ψk]p +

4∑
i=p+1

LH
p,i[ψk]i + [ek]p (3.38)

which contains only interference from (4 − p) signals. The last component [ỹk]4

contains no interference, so a decision for this transmitted signal can be made first:

â4(k) = dec{e−jφ[ỹk]4}, where dec(·) is the slice function corresponding to the spe-

cific modulation scheme applied. The next signal can be detected by subtracting

the interference contribution from the fourth signal using the previous decision as

â3(k) = dec{e−jφ([ỹk]3 − LH
3,4â4(k)ejφ)}. This procedure is repeated until all sig-

nals are detected. The MMSE-DF scheme is the one that minimizes the average energy

of [ỹk]p − ap(k), p = 1, 2 and [ỹk]p − ejφap(k), p = 3, 4 under the assumption that

previously detected signals in the feedback filter are correct. Details of this scheme can

be found in [40, 46].
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FIGURE 3.1. CIR comparisons with different fading rates (Ns = 12).

3.4. Numerical Results and Discussion

In simulations, we assume a system with four transmit antennas and one receive

antenna, employing QPSK modulation. The 4× 4 quasi-orthogonal STBC given in [8]

and replicated in Eq. (3.20) is applied (φ = π/4 used in simulation). The time-selective

Rayleigh fading channel is assumed to have three resolvable multipath components, and

the channel Doppler shift is calculated based on a carrier frequency of fc = 2GHz.

Fig. 3.1 shows the impact of data symbol period Ts (Ns = 12) and vehicle

speed on CIR by using the analytical expression given in Eq. (3.29). Note, again, that

CIR does not depend on the channel power-delay profile of the channel. CIR curves

are compared for three different vehicle speeds chosen as vs = 30, 60, and 100Km/h,



34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

−10

0

10

20

30

40

50

60

70

Ts (s)

C
IR

 (
dB

)

N
s
 = 12

N
s
 = 64

N
s
 = 128

N
s
 = 256

FIGURE 3.2. CIR comparisons with different number of subcarriers (vs = 30Km/h).

which are typical for urban and suburban environments. It is clearly observed that CIR

is inversely proportional to Ts and vehicle speed, which makes sense, as a larger Ts or

vs makes the quasi-orthogonal ST-OFDM system more vulnerable to time variations of

the channel coefficients.

In Fig. 3.2, CIR curves of the system under vs = 30Km/h for different number

of subcarriers in one OFDM symbol (Ns = 12, 64, 128, and 256) are obtained. It is

observed that given the same data symbol duration Ts, CIR decreases significantly as

the number of subcarriers increases.

Shown in Fig. 3.3 are the simulated SER performances of the system when a ZF

detection scheme is employed. The power-delay profile related parameters are τ0 = 0,

τ1 = 2, τ2 = 3, and τrms = 20. The OFDM symbol is assumed to have Ns = 12
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subcarriers, and data symbol period is Ts = 1/(2 × 106) seconds. Performances with

different vehicle speeds (vs = 30, 60, and 100Km/h) are compared. In the same figure,

the curve of the quasi-orthogonal ST-OFDM system over a time-invariant multipath

fading channel is used as the baseline performance. When the number of subcarriers

is small (Ns = 12 in Fig. 3.3), the system performs almost the same for any of the

vehicle speeds applied, and they all approach the baseline performance. As the number

of subcarriers increases, however, system performance deteriorates dramatically. This

is clearly shown in Fig. 3.4, where the vehicle speed is vs = 30Km/h and all other

parameters are the same as those applied to generate Fig. 3.3. From the SER versus

Es/N0 curves with Ns = 12, 64, 128, and 256, it is observed that the error floor
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increases as Ns increases. The main reason is that a larger number of subcarriers within

one OFDM symbol not only causes a more severe ICI, but also increases the time

interval ((Ns +cp)Ts) in Eq. (3.25), causing a greater amount of ITAI within one STBC

matrix.

In Figs. 3.3 and 3.4, the same exponential power-delay profile is applied. Fig.

3.5 shows the impact of different power-delay profiles on the SER performance. Three

cases are simulated: (1) a uniform power-delay profile as defined in [41], Appendix A,

which results unit variance of all elements of H; (2) τ0 = 0, τ1 = 2, τ2 = 3; and (3)

τ0 = 0, τ1 = 7, τ2 = 10. Other parameters applied are τrms = 10 for cases (2) and

(3), vs = 30Km/h, Ns = 12, and Ts = 1/(2 × 106) s. For comparison, the baseline
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performance curve shown in Figs. 3.3 and 3.4 is also shown in Fig. 3.5. For the set

of channel parameters chosen, it seems that the channel profile only affects the system

performance slightly.

In Fig. 3.6, we compare the performances of five different detection methods:

the ZF, the TS-ZF, the MMSE, the decorrelating DF (also known as the ZF-DF) and

the MMSE-DF schemes. Other than that Ns = 128, all other parameters are the same

as those applied for Fig. 3.4. The ML scheme is used as the benchmark for other

detection schemes. Since these schemes are not specifically optimized for ST-OFDM

systems over time-varying fading channels for which ICI should be dealt with, error

floors are observed for all of them. To effectively cancel the error floor, the receiver

must deal with both ICI and ITAI. We believe that frequency-domain correlative coding
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[47] combined with a sequential nulling and cancellation process [48] could be one of

such schemes, although discussions of its details are beyond the scope of this chapter.

As a result of dividing the total bandwidth into many narrowband subcarriers,

each subcarrier in an OFDM system suffers from flat fading, and system performance

degradation is dominated by the weakest subcarrier. To protect data against deep fades

an individual subcarrier may experience, an effective technique is to employ forward

error correction (FEC) codes, which is often combined with an interleaver before mod-

ulation of input data onto subcarriers. This will effectively spread the same infor-

mation bit onto many subcarriers which may experience fading of low correlations.

The receiver must perform channel decoding after the normal detector (e.g., the ZF or

MMSE detector). Fig. 3.7 shows the simulated BER curves of the quasi-orthogonal
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ST-OFDM system with rate 1/2 convolutional codes of different constraint lengths (3

and 7). Ns = 128 is adopted and all other parameters are the same as those applied for

Fig. 3.4. Although, as expected, the outer channel encoding improves system perfor-

mance, there is still a need of other techniques to effectively eliminate the error floor

caused by time-selective fading.

We have assumed perfect CSI for all numerical results so far. In practi-

cal systems, however, there exist channel estimation errors. It is beyond the scope

of this chapter to discuss channel estimation schemes for time-varying fading chan-

nels. To assess its impact, channel estimation error is emulated by introducing

an error with a normalized average mean-square error (MSE) defined as MSE =
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E
[
‖Ĥ −H‖2

F

]
/E [‖H‖2

F ]. The performance results of quasi-orthogonal ST-OFDM

systems with various MSE values are shown in Fig. 3.8, where Ns = 64 and other

parameters are the same as those applied in Fig. 3.4. It is observed that when the MSE

value of channel estimation errors is small (e.g., 10−3), the performance degradation is

negligible.

3.5. Conclusions

We have analyzed the impact of channel time selectivity on the performance of

quasi-orthogonal ST-OFDM systems. Specifically, we have quantified ICI and evalu-

ated ITAI caused by channel time variations. Performances of five detection schemes
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are compared, and it seems that none of them can effectively eliminate the error floor

of ST-OFDM in a time-selective environment. It is also observed that an increase in

Doppler shift, symbol duration, or number of OFDM subcarriers lowers the achievable

CIR. With a symbol duration of Ts = 5× 10−7 s and a small Ns (e.g., 12), system SER

performance is quite insensitive to changes in vehicle speeds and the channel power-

delay profile. However, with the same Ts and even a low vehicle speed (e.g., 30Km/h),

SER performance is very sensitive to changes in the number of subcarriers.
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4. FREQUENCY-DOMAIN CORRELATIVE CODING FOR MIMO-OFDM
SYSTEMS OVER FAST FADING CHANNELS

4.1. Introduction

OFDM, though effective in avoiding ISI due to multipath delay, is sensitive to

time-selective fading, which destroys the orthogonality among different subcarriers in

one OFDM symbol and thus causes ICI [15, 16]. If not compensated for, ICI will re-

sult in an error floor, which increases as Doppler shift and symbol duration increase.

To combat ICI caused by time-selective fading or frequency offset in single-antenna

OFDM systems, various methods [47, 49–51], including frequency-domain correlative

fading [47] and partial response coding [51], have been studied. The scheme in [47]

can be viewed as a special type of frequency-domain partial response coding with cor-

relation polynomial F (D) = 1−D.

To improve spectral efficiency, MIMO antennas can be combined with OFDM

to achieve spatial multiplexing [14], which forms MIMO-OFDM. Supports of high mo-

bility (e.g., IEEE 802.16e) in MIMO-OFDM systems are critical for many applications.

Similar to single-antenna OFDM, MIMO-OFDM is also sensitive to channel time se-

lectivity.

In this chapter, we apply frequency-domain correlative coding originally pro-

posed in [47] for single-antenna OFDM systems to MIMO-OFDM to improve system

robustness to time-selective fading. While the analysis in [47] considered a simple case

in which ICI is caused by a single parameter - the frequency offset normalized to the

subcarrier separation, we consider a more comprehensive and realistic scenario which

includes not only the spatial elements, but also the time-varying and frequency-selective

aspects of the channel. We focus on deriving, via a rigorous analytical approach, a

tractable, closed-form expression of CIR as a function of channel Doppler shift, num-
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ber of subcarriers, OFDM symbol duration, and the power-delay profile of the multi-

path fading channel. With the CIR expression derived, we can quantify the impact of

time-selective fading and the improvement due to correlative coding in MIMO-OFDM.

4.2. System Model

Consider a MIMO-OFDM system with Nt transmit antennas, Nr receive anten-

nas, and Ns subcarriers which employs binary phase shift keying (BPSK) modulation.

Input symbols ai ∈ {1,−1} are assumed to be i.i.d. with normalized energy. The

correlative coding to encode ai is achieved through the frequency-domain polynomial

F (D) = 1 − D [47], which generates a new sequence bi = ai − ai−1 with E[bi] = 0

and

E[bib
∗
j ] =





2E[a2
i ] = 2, i = j

−E[a2
i ] = −1, |i− j| = 1

0, otherwise.

(4.1)

It is well known that the general form of MIMO-OFDM over slowly fading channels

(i.e., the channel is time-invariant over several OFDM symbol periods) can be expressed

as [14]

yk = Λkxk + nk (4.2)

where xk and yk represent, respectively, the transmitted and received data for all anten-

nas on subcarrier k, Λk is an Nr × Nt matrix whose (i, j)th element, {Λk}ij , denotes

the channel frequency response between transmit antenna j and receive antenna i, and

nk is an Nr × 1 vector denoting the zero-mean AWGN with covariance σ2
nINr for all

antennas on subcarrier k.
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4.3. Effects of Time-Selective Fading

In a time-selective fading environment, the NsNr ×NsNt spatiotemporal chan-

nel matrix H in one OFDM symbol period is expressed as

H =




H0(0) · · · HL−1(0) · · · H1(0)

... . . . ...

0 · · · HL−1(Ns − 1) · · · H0(Ns − 1)




(4.3)

where L is the number of resolvable paths and 0 is an Nr ×Nt zero matrix. Each non-

zero block of H contains the Nr ×Nt channel matrix H l(n) for path l at time nTs (Ts

is the data symbol period).

Assuming a WSSUS channel, all elements of H l(n) are modeled as indepen-

dent complex Gaussian random variables with zero mean and equal variance. The

channel is assumed to have an exponential power-delay profile θ(τl) = e−τl/τrms [41],

where τl is the delay of the lth path and τrms is the rms delay spread. Since the channel

is time-variant, the relationship between the channel coefficients for path l at times nTs

and (n + m)Ts can be described as [12]

{H l(n + m)}ij = αm{H l(n)}ij + βl,ij(n + m) (4.4)

where

αm =
E

[{H l(n)}ij{H l(n + m)}∗ij
]

e−τl/τrms
= J0(2πmfdTs) (4.5)

fd is the maximum Doppler shift and βl,ij(n) are independent complex Gaussian ran-

dom variables with zero mean and variance e−
τl

τrms (1 − α2
m). It is observed that the

channel matrix H in (4.3) is no longer a block-circulant matrix as the case of slowly

fading channels. Consequently, G = (U ⊗ INr)H(U ⊗ INt)
H is no longer a block di-

agonal matrix, where U is the unitary DFT matrix with {U}ij = 1/
√

Nse
(−2π

√−1/Ns)ij ,
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0 ≤ i, j ≤ Ns − 1. This shows that time-selective fading causes ICI, which is repre-

sented by the off-diagonal blocks of G. Let Gij denote the (i, j)th block of G. Eq.

(4.2) can be rewritten as

yk = Gkkxk +
Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk, k = 0, · · · , Ns − 1. (4.6)

Let Υij be an Ns ×Ns matrix given by

Υij =




var({G00}ij) · · · var({G0,Ns−1}ij)

... . . . ...

var({GNs−1,0}ij) · · · var({GNs−1,Ns−1}ij)




, 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nt.

(4.7)

As shown in APPENDIX A, Υij has a circulant structure, i.e.,

{Υij}i′j′ = γ[j′−i′] =
1

N2
s

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i) J0(2πifdTs) cos

(
2π

Ns

[j′ − i′]i
)}

× e−
τl

τrms , 1 ≤ i′, j′ ≤ Ns (4.8)

where [n] denotes n modulo Ns. CIR of the kth subcarrier for MIMO-OFDM systems

over time-selective fading channels is given by
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C(k)
corr =

E
[{Gkk}ijbkb

∗
k{Gkk}∗ij

]
Ns−1∑

k′=0
k′ 6=k

Ns−1∑

k′′=0
k′′ 6=k

E
[{Gkk′}ijbk′b

∗
k′′{Gkk′′}∗ij

]

=
2γ0

Ns−1∑

k′=1

2γk′ −
Ns−2∑

k′=0
k′ 6=k,k−1

E
[{Gkk′}ij{Gk,k′+1}∗ij + {Gk,k′+1}ij{Gkk′}∗ij

]

=

2

N2
s

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i) J0(2πifdTs)

}
e−

τl
τrms

2

N2
s

Ns−1∑

k′=1

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos

(
2π

Ns

k′i
)}

e−
τl

τrms − θ

(4.9)

where θ =
∑Ns−2

k′=0,k′ 6=k,k−1 Ωk′ . As shown in APPENDIX A, Ωk′ is given as

Ωk′ =
1

N2
s

L−1∑

l=0

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
− τl

τrms

(
e−(2π

√−1/Ns)t
(1)

kk′rs

+ e−(2π
√−1/Ns)t

(−1)

kk′rs

)
. (4.10)

Without correlative coding, the CIR expression given in Eq. (4.9) simplifies to

C =
E

[{Gkk}ijaka
∗
k{Gkk}∗ij

]
Ns−1∑

k′=0
k′ 6=k

Ns−1∑

k′′=0
k′′ 6=k

E
[{Gkk′}ijak′a

∗
k′′{Gkk′′}∗ij

]

=

Ns + 2
Ns−1∑
i=1

(Ns − i)J0(2πifdTs)

Ns−1∑

k′=1

{
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos

(
2π

Ns

k′i
)} . (4.11)

Note that in this case CIR is the same for all subcarriers and is independent of the

channel power-delay profile as well as the number of resolvable paths. Obviously,

C
(k)
corr ≥ C,∀k. Therefore, correlative coding effectively increases CIR. Noteworthily,
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from (4.9), it is easy to see that although C
(k)
corr is different for different subcarriers, the

difference diminishes as Ns increases. As indicated in [47], when frequency-domain

correlative coding with F (D) = 1 − D is used, the signals modulated on subcarriers

are identical with alternate mark inversion code and {ai} can be recovered by using a

ML sequence detector [52].

4.4. Numerical Results and Discussion

In obtaining the numerical results, we consider a system with two transmit an-

tennas and two receive antennas which employs BPSK modulation and adopt the “SUI-

5” channel model [13]. The time-selective Rayleigh fading channel is assumed to have

three resolvable multipath components occurring at 0, 5, and 10µs. These paths are

modeled as independent complex Gaussian random variables and the rms delay spread

of the channel is 3.05µs. The maximum Doppler shift is calculated based on a carrier

frequency of fc = 2GHz.

CIR levels versus Ts calculated using Eqs. (4.9) and (4.11) are plotted in

Fig. 4.1, where the vehicle speed applied is vs = 100Km/h. CIR curves of the

MIMO-OFDM system with different number of subcarriers in one OFDM symbol

(Ns = 8, 24, and 128) are compared. As shown in Fig. 1, frequency-domain cor-

relative coding incorporated in this letter can effectively increase CIR and the improve-

ment is proportional to the number of subcarriers. With Ns = 128, the improvement

is observed to be as high as 3.0dB. The BER performances of MIMO-OFDM systems

with and without frequency-domain correlative coding are compared in Fig. 4.2, where

Ts = 5× 10−7s and vs = 100Km/h are applied. The ML detection scheme [14] is used

when correlative coding is applied. The improvement in the BER performance is also

found proportional to the number of subcarriers.
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FIGURE 4.1. CIR curves of MIMO-OFDM systems with and without frequency-do-

main correlative coding.

4.5. Conclusions

We have applied frequency-domain correlative coding to mitigate the effect of

time-selective fading to the performance of MIMO-OFDM systems. We derived the

analytical expression of CIR as a function of the maximum Doppler shift and power-

delay profile of the channel, the number of subcarriers, and the OFDM symbol duration.

The CIR expression can be used to quantify the amount of ICI caused by channel time

variations. Numerical results indicate that a simple correlative coding scheme with

correlation polynomial F (D) = 1−D can effectively increase CIR of a 128-subcarrier

MIMO-OFDM system by as much as 3.0dB, and the improvement further increases as

the number of subcarriers becomes larger.
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5. DECISION-FEEDBACK RECEIVER FOR SPACE-TIME CODED OFDM
USING CORRELATIVE CODING

5.1. Introduction

One of the disadvantages of OFDM is that it is sensitive to time-selective fading

inherent in mobile communication systems. Time-selective fading causes ICI. Multi-

ple antennas can be combined with OFDM to increase diversity gain and to improve

spectral efficiency. Performance of MIMO-OFDM systems in time-selective fading

environments was analyzed in [25].

Orthogonal STBCs were first proposed in [3] for systems with two transmit

antennas and later generalized to systems with an arbitrary number of transmit anten-

nas [5]. Quasi-orthogonal STBCs with rate one [6, 7, 53] could be applied to provide

partial diversity. STBCs are typically designed assuming a quasi-static channel, and

time-selective fading will cause ITAI among all symbols for quasi-orthogonal codes1.

Therefore, the pairwise ML decoding scheme [6] becomes suboptimal. To mitigate

ITAI caused by channel time variations, many schemes have been studied [10–12].

For ST-OFDM systems over fast fading channels, it is necessary to consider

the impact of ICI and ITAI simultaneously. ITAI caused by channel time variations in

ST-OFDM systems is much more pronounced than in common STC systems. In [54],

a sequential DF sequence estimation (SDFSE) scheme with an adaptive threshold was

proposed to mitigate the performance degradation in orthogonal ST-OFDM systems

with two transmit antennas over time-selective fading channels. However, this scheme

does not seem to be very effective in eliminating the error floor. To mitigate ICI caused

1With quasi-static fading models, ITAI exists only between pairs of symbols with the 4 × 4

codes given in [6].
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by channel frequency errors in single-antenna OFDM systems, a simple design using

frequency-domain correlative coding was analyzed in [47]. For MIMO-OFDM sys-

tems, ITAI can be effectively cancelled through a sequential nulling and cancellation

process [48, 55] if the number of transmit antennas is less than or equal to the number

of receive antennas. Later, a modified decorrelating DF detection scheme was studied

in [56] to reduce the complexity and to improve the numerical stability of such schemes.

To effectively mitigate the error floor due to channel time selectivity for ST-

OFDM systems, the receiver must deal with both ICI and ITAI. In this chapter, we pro-

pose a scheme that combines frequency-domain correlative coding and a modified DF

receiver for quasi-orthogonal ST-OFDM systems in time-varying fading environments.

We show that the proposed scheme is much more effective in lowering the error floor

than existing schemes such as the TS-ZF scheme [12] and the SDFSE scheme [54].

5.2. System Model

Consider a space-time block coded multi-antenna OFDM system with P trans-

mit antennas, one receive antenna, and Ns subcarriers that employs BPSK modulation.

Input symbols ai ∈ {1,−1} are assumed i.i.d.. The correlative coding to encode ai is

achieved through the frequency-domain polynomial F (D) = 1−D [47], which gener-

ates a new sequence bi = ai − ai−1. The encoded sequence {bi, i = 0, · · · , NsP − 1}
is then serial-to-parallel converted into P sequences, each of length Ns, as

b
(p)
k = bk+(p−1)Ns , p = 1, · · · , P, k = 0, · · · , Ns − 1. (5.1)

Each of the Ns sequences {b(1)
k , · · · , b

(P )
k }, k = 0, · · · , Ns − 1, is mapped to a matrix

Ψk of size P × P by using a quasi-orthogonal space-time block coding scheme (e.g.,

the 4 × 4 quasi-orthogonal scheme given in [6]). The transmitted signals are obtained

by taking the IDFT of {Ψ0, · · · ,ΨNs−1}.
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In frequency-selective fading channels with L resolvable paths, a CP of length

cp (cp ≥ L) is added at the beginning of each transmitted OFDM block. Combined

with the characteristics of time-selective fading, the Ns ×NsP spatiotemporal channel

matrix H t during the tth OFDM block period is expressed as Eq. (3.5) in Chapter 3

with each non-zero block of H t contains the P × 1 channel vector ht,l(n) for path l at

time nTs expressed as

ht,l(n) = [h
(1)
t,l (n), · · · , h

(P )
t,l (n)]T , l = 0, · · · , L− 1, n = 0, · · · , Ns − 1. (5.2)

If fading is assumed to be quasi-static, H t has a block-circulant structure. Without loss

of generality, we omit the index of OFDM block period t in the following discussion.

In the special case of quasi-static fading, channel matrix H has the following

eigen-decomposition

H = UHΛ(U ⊗ IP ) (5.3)

where U is the unitary DFT matrix whose (i, j)th element is given by uij =

1/
√

Nse
(−2π

√−1/Ns)ij , 0 ≤ i, j ≤ Ns − 1, Λ = diag[λT
0 , · · · , λT

Ns−1] is an Ns × NsP

block diagonal matrix whose (k, k)th block is given by

λk =
L−1∑

l=0

hl · e−
2π
√−1
Ns

kl, k = 0, · · · , Ns − 1. (5.4)

Thus the received signals can be obtained as

xT
k = [x

(1)
k , · · · , x

(P )
k ] = λT

k Ψk + wT
k , k = 0, · · · , Ns − 1 (5.5)

where wk is a circularly symmetric zero-mean white complex Gaussian noise vector.

It is clear from (5.5) that ICI does not exist in the ST-OFDM system over quasi-static

channels.

The P symbols in each column of Ψk are transmitted from the P transmit anten-

nas simultaneously during every OFDM block period. If the channel is time-invariant
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over P consecutive OFDM blocks, the pairwise ML scheme [6] can be used to detect

pairs of transmitted symbols, instead of symbol by symbol, and there is no error floor

in BER performance.

5.3. The Impact of Time-Varying Fading and Decision-Feedback Receiver Design

5.3.1. ICI and ITAI Caused by Time-Varying Fading

In the presence of time-selective fading, H is no longer a block-circulant ma-

trix. Assuming a WSSUS channel [25], all elements of hl(n) are modeled as inde-

pendent complex Gaussian random variables with zero mean and equal variance. The

channel is assumed to have an exponential power delay profile θ(τl) = e−τl/τrms [41],

where τl is the delay of the lth path and τrms represents the root-mean square delay

spread. Since the channel is time-variant, the relationship between the channel coeffi-

cients for path l of antenna p at times nTs and (n + m)Ts can be described as

h
(p)
l (n + m) = αmh

(p)
l (n) + β

(p)
l (n + m) (5.6)

where

αm =
E

[
h

(p)
l (n) · h(p)∗

l (n + m)
]

e−
τl

τrms

= J0(2πmfdTs) (5.7)

where fd is the Doppler shift and β
(p)
l (n) are independent complex Gaussian random

variables with zero mean and variance

σ2
β =





1− α2
m, l = 0

e−
τl

τrms (1− α2
m), l 6= 0.

(5.8)

Consequently, G = UH(U ⊗ IP )H is no longer a block diagonal matrix as Λ

given in (5.3). This shows that time-selective fading causes ICI, which is represented
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by the off-diagonal blocks of G. For this more general case, the received signals are

given by

xT
k = gT

kkΨk +
Ns−1∑

k′=0,k′ 6=k

gT
kk′Ψk′ + wT

k , k = 0, · · · , Ns − 1 (5.9)

where gkk′ = [g
(1)
kk′ , · · · , g

(P )
kk′ ]

T , k, k′ = 0, · · · , Ns − 1, is the (k, k′)th block of G.

Apparently, the second term on the right-hand side of (5.9) represents ICI. To make the

following analysis clearer and easier to understand, we focus on the 4× 4 (i.e., P = 4)

quasi-orthogonal STBC given in [6], which is replicated here as

Ψk =




b
(1)
k −b

(2)∗
k −b

(3)∗
k b

(4)
k

b
(2)
k b

(1)∗
k −b

(4)∗
k −b

(3)
k

b
(3)
k −b

(4)∗
k b

(1)∗
k −b

(2)
k

b
(4)
k b

(3)∗
k b

(2)∗
k b

(1)
k




. (5.10)

To decode Ψk, (5.9) is processed as

yk = M kkψk +
Ns−1∑

k′=0,k′ 6=k

M kk′ψk′ + zk (5.11)

where ψk = [b
(1)
k , b

(2)
k , b

(3)
k , b

(4)
k ]T , yk = [x

(1)
k , x

(2)∗
k , x

(3)∗
k , x

(4)
k ]T , zk is the noise term

with the same mean and variance as wk, and the equivalent channel matrix is expressed

as

M kk′ =




M
(1,2)
kk′ (0) M

(3,4)
kk′ (0)

M
(3,4)∗
kk′ (2`) −M

(1,2)∗
kk′ (2`)


 , k, k′ = 0, · · · Ns − 1 (5.12)

with

M
(i,j)
kk′ (n) =




g
(i)
kk′(n) g

(j)
kk′(n)

g
(j)∗
kk′ (n + `) −g

(i)∗
kk′ (n + `)


 (5.13)

where ` = Ns + cp. By letting g
(p)
kk′(0) = g

(p)
kk′ , p = 1, · · · , 4, and using the same

auto-regressive model as applied in (5.6), we have

g
(p)
kk′(q`) = J0(2πfd`Ts)g

(p)
kk′((q − 1)`) + ε

(p)
kk′(q`) (5.14)
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where the index in the parenthesis following g
(p)
kk′ is the time index and {ε(p)

kk′(q`)} are

independent complex Gaussian random variables with zero mean and variance

σ2
ε = (1− J2

0 (2πfd`Ts)) · var(g
(p)
kk′). (5.15)

Let Υ be an Ns ×Ns matrix given by

Υ =




var(g
(p)
00 ) · · · var(g

(p)
0,Ns−1)

... . . . ...

var(g
(p)
Ns−1,0) · · · var(g

(p)
Ns−1,Ns−1)




. (5.16)

As shown in APPENDIX A, for a particular antenna index p, Υ has a circulant structure

expressed as

Υ =




γ0 γ1 · · · γNs−1

γNs−1 γ0 · · · γNs−2

...
...

...

γ1 γ2 · · · γ0




. (5.17)

Since elements of gkk′ , k, k′ = 0, · · · , Ns−1, are i.i.d. Gaussian random variables [25],

(5.17) applies to all antennas. It is also shown in APPENDIX A that γk defined in (5.17)

has a closed-form expression as

γk =
1

N2
s

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i) J0(2πifdTs) cos

(
2π

Ns

ki

)}
e−

τl
τrms . (5.18)

With (5.18), g
(p)
kk′(q`) in (5.14) can be obtained by substituting γk into (5.15). As a

result of channel time variations, γk 6= 0 for k 6= 0, which causes ICI. Noteworthily, as

mentioned in [47], the frequency-domain correlative coding method incorporated in this

chapter can effectively enhance system CIR without reducing its bandwidth efficiency.

In addition to ICI, channel time variations in M kk introduce additional ITAI

among elements of ψk, which is illustrated as below. If the channel is time-invariant,



56

time indexes of elements in M kk can be omitted and

MH
kkM kk =




c 0 0 d

0 c −d 0

0 −d c 0

d 0 0 c




(5.19)

where c =
∑4

p=1 |g(p)
kk |2 and d = g

(1)
kk g

(4)∗
kk + g

(1)∗
kk g

(4)
kk − g

(2)
kk g

(3)∗
kk − g

(2)∗
kk g

(3)
kk . Apparently,

there is no interference between pairs (b
(1)
k , b

(4)
k ) and (b

(2)
k , b

(3)
k ) [6]. When the channel

exhibits channel-varying fading, however, (5.19) does not hold and MH
kkM kk should

be expressed as

MH
kkM kk =




%11 %12 %13 %14

%21 %22 %23 %24

%31 %32 %33 %34

%41 %42 %43 %44




. (5.20)

Elements of the first row of the above matrix are expressed as

%11 = |g(1)
kk (0)|2 + |g(2)

kk (`)|2 + |g(3)
kk (2`)|2 + |g(4)

kk (3`)|2 (5.21a)

%12 = g
(1)∗
kk (0)g

(2)
kk (0)− g

(1)∗
kk (`)g

(2)
kk (`) + g

(3)
kk (2`)g

(4)∗
kk (2`)− g

(3)
kk (3`)g

(4)∗
kk (3`)

(5.21b)

%13 = g
(1)∗
kk (0)g

(3)
kk (0)− g

(1)∗
kk (2`)g

(3)
kk (2`) + g

(2)
kk (`)g

(4)∗
kk (`)− g

(2)
kk (3`)g

(4)∗
kk (3`) (5.21c)

%14 = g
(1)∗
kk (0)g

(4)
kk (0) + g

(1)
kk (3`)g

(4)∗
kk (3`)− g

(2)
kk (`)g

(3)∗
kk (`)− g

(2)∗
kk (2`)g

(3)
kk (2`).

(5.21d)

The non-zero items %12 and %13 represent ITAI to pair (1, 4) from pair (2, 3).

5.3.2. Decision-Feedback Receiver Design

In a quasi-static fading channel, the received signal can be directly processed by

a space-time decoder, whereas in a time-varying fading channel, the detection becomes
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more complex if ICI and ITAI are to be dealt with simultaneously. The TS-ZF detector

[12] aims at lowering the error floor due to ITAI. This scheme will not be very effective

for quasi-orthogonal ST-OFDM systems over time-varying channels as ICI could be

severe especially when Ns is large.

The SDFSE with an adaptive threshold [54] for two-antenna, orthogonal ST-

OFDM systems is expected to perform better than the TS-ZF scheme. But this scheme

also suffers from an irreducible error floor. We apply a modified DF scheme for detec-

tion of ST-OFDM systems with correlative coding. Without loss of generality, we still

focus on the code given in (5.10) in describing the proposed receiver. The ICI and noise

terms in (5.11) are represented by a single variable dk as

dk =
Ns−1∑

k′=0,k′ 6=k

M kk′ψk′ + zk. (5.22)

Then we pre-multiply yk by L−1MH
kk, which yields

ỹk = L−1MH
kkyk = LHψk + ek (5.23)

where ek = L−1MH
kkdk and LH is an upper triangular matrix obtained by using the

Cholesky decomposition as R = MH
kkM kk = LLH . The pth component of ỹk is

given by

[ỹk]p = LH
pp[ψk]p +

4∑
i=p+1

LH
pi[ψk]i + [ek]p. (5.24)

The transmitted symbols are detected as

b̂
(4)
k = dec{[ỹk]4}

b̂
(p)
k = dec

{
[ỹk]p −

4∑
i=p+1

LH
pi b̂

(i)
k

}
, p = 1, 2, 3

where dec(·) is the slice function corresponding to (1 − D) correlative coding [47].

Finally, {ai} can be recovered by using a ML sequence detector [52].
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It is well known that performance of the DF scheme described above can be sig-

nificantly improved if signals are ranked according to their relative strength2 and then

followed by a successive cancellation process [48, 55]. The decorrelating DF detection

scheme [56] for spatial multiplexing systems requires that the number of receive anten-

nas be greater than or equal to the number of transmit antennas. Since the equivalent

channel matrix LH in (5.23) is a 4 × 4 matrix, this DF scheme can be employed for

detection of quasi-orthogonal ST-OFDM systems in time-varying environments. The

detection begins with (5.23) by decoding the strongest signal first, followed by a can-

cellation process, which is summarized as follows. Let L(u)|u=4 = L. The following

procedures are repeated for u = 4 to 1:

1. Find the column of (L(u))−1 which has the smallest column norm, and exchange

it with the last column via a unitary transformation P as (L(u))−1P .

2. Find a unitary matrix O which transforms L(u)∗P to an upper triangular matrix

OL(u)∗P . Then, compute the lower triangular matrix O(L(u))−1P .

3. Perform DF detection based on (5.23) using the reordered matrices.

Because this modified DF detection scheme guarantees that the detected signal has the

highest SNR at every step, it should achieve a better BER performance than conven-

tional DF schemes.

2The strongest signal refers to the signal with the highest signal-to-noise ratio (SNR), and the

weakest signal refers to the signal with the lowest SNR.
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FIGURE 5.1. BER versus Eb/N0 for quasi-orthogonal ST-OFDM systems with differ-

ent fading rates (Ns = 16, Ts = 10−6s).

5.4. Numerical Results and Discussion

Simulations are carried out based on the “SUI-5” channel model [13], which is

one of six channel models adopted by IEEE 802.16a for evaluating broadband wireless

systems in 2-11 GHz bands. We consider a system with four transmit antennas and

one receive antenna which employs BPSK modulation and the 4 × 4 quasi-orthogonal

STBC given in (5.10). The time-selective Rayleigh fading channel is assumed to have

three resolvable multipath components, each of which at 0, 5, and 10µs is modeled as an

independent complex gaussian random variable, the rms delay spread is 3.05µs, and the

Doppler shift of the channel is calculated based on a carrier frequency of fc = 2GHz.



60

0 5 10 15 20

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

Time−invariant channel
N

s
 = 64

N
s
 = 128

FIGURE 5.2. BER versus Eb/N0 for quasi-orthogonal ST-OFDM systems with differ-

ent number of subcarriers (vs = 100Km/h, Ts = 10−6s).

Fig. 5.1 shows the simulated BER performance of the system when the modified

DF scheme is employed. The OFDM symbol is assumed to have Ns = 16 subcarriers,

and each data symbol period is Ts = 10−6 seconds. Performances with different vehicle

speeds, vs = 30, 60, and 100Km/h, are compared. In the same figure, the curve of the

quasi-orthogonal ST-OFDM system over a time-invariant multipath fading channel is

used as the baseline performance. When the number of subcarriers is small (Ns = 16

in Fig. 5.1), the system performs almost the same for any of the vehicle speeds, all of

which approach the baseline performance.

As the number of subcarriers increases, however, system performance de-

teriorates rapidly. This is clearly shown in Fig. 5.2, where the vehicle speed is
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vs = 100Km/h and all other parameters are the same as those applied to generate

Fig. 5.1. From the BER versus Eb/N0 curves with Ns = 64 and 128, the error floor

becomes larger as Ns increases. The main reason is that a larger number of subcarriers

within one OFDM block not only causes a more severe ICI but also increases the time

interval in (5.15), causing a greater amount of ITAI within one STBC matrix.

In Fig. 5.3, we compare the performances of three different schemes: the TS-

ZF, the SDFSE, and the proposed scheme which uses frequency-domain correlative

coding and the modified DF detection scheme. All parameters are the same as those

applied for Fig. 5.2. It is observed that the proposed scheme effectively eliminates
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the error floor of the quasi-orthogonal ST-OFDM system, whereas the TS-ZF and the

SDFSE schemes both suffer from an error floor.

The required number of metric calculations for an quasi-orthogonal STBC code-

word (4 consecutive OFDM symbol periods) with the TS-ZF scheme is proportional to

QNs [12], where Q is the constellation size. The number of metric calculations for the

same codeword with the SDFSE scheme is approximately equal to Q2qNs [54], where

2q is the number of subchannels that cause inter-codeword couplings. The computa-

tional complexity of the proposed scheme is approximately P 3Ns. With a typical set

of system parameters (e.g., Q = 2, P = 4, and q = 3), the TS-ZF scheme has the low-

est complexity, and the SDFSE scheme with an adaptive threshold and the proposed

scheme have comparable complexities.

5.5. Conclusions

We have studied a scheme that combines frequency-domain correlative cod-

ing with a modified DF receiver for quasi-orthogonal ST-OFDM systems over time-

selective fading channels. We have analyzed the impact of channel time selectivity on

the performance of such systems. Performances of three detection schemes are com-

pared, and it is found that the proposed scheme can effectively eliminate the error floor

of quasi-orthogonal ST-OFDM systems in fast fading environments.
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6. MIMO-OFDM SYSTEMS IN THE PRESENCE OF PHASE NOISE AND
DOUBLY-SELECTIVE FADING

6.1. Introduction

OFDM is considered a promising transmission technique for wideband wireless

communications. One of the disadvantages of OFDM is its sensitivity to phase noise,

which is a random process caused by the fluctuation of the transmitter and receiver

oscillators [36]. It is widely accepted that phase noise in OFDM has two major effects

[18, 37]: CPE, a constant rotation to the signal constellation, and ICI due to the loss of

orthogonality among subcarriers caused by the fast changes of the oscillator phase. The

CPE term is the same for all subcarriers within one OFDM symbol interval and changes

slowly from one symbol to another. If phase noise level is low, CPE approximately

equals the mean of the phase deviation of an oscillator within one OFDM symbol.

The ICI term is a random process. Schemes which compensate phase noise in OFDM

systems have been proposed in [20,24]. In [22], the SINR expression for single-antenna

OFDM systems with various phase noise levels and different number of subcarriers was

derived.

MIMO antennas have been combined with OFDM to improve spectral effi-

ciency through spatial multiplexing [14]. Similar to single-antenna OFDM, MIMO-

OFDM is also highly sensitive to phase noise. CPE estimation schemes for MIMO-

OFDM systems were derived in [26] and in [27] a decision-directed approach for

compensation of phase noise in MIMO-OFDM systems was studied. Besides phase

noise, time-selective fading also destroys the orthogonality among different subcarriers

within one OFDM symbol and causes ICI [15, 16]. Similar to single-antenna OFDM,

MIMO-OFDM is also vulnerable to channel time selectivity. Error performance of
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MIMO-OFDM systems in the presence of time-selective fading without considering

phase noise was analyzed in [25].

Although the issue caused by phase noise and time-selective fading in MIMO-

OFDM has been recognized, the exact quantitative effect of the combination of the two

has not been well addressed. Phase noise mitigation for MIMO-OFDM in fast time-

varying fading environments has not been well studied either. In this chapter, we ana-

lyze, via mainly an analytical approach, the impact of phase noise to the performance

of MIMO-OFDM systems over doubly-selective Rayleigh fading channels.After char-

acterizing CPE caused by phase noise and ICI caused by phase noise and time-selective

fading, we derive an MMSE-based mitigation scheme to effectively minimize the im-

pact of phase noise. We also compare four detection schemes, ZF, MMSE, decorrelat-

ing DF and MMSE-DF schemes, and evaluate their SER performance.

6.2. System Model

Consider a MIMO-OFDM system with Nt transmit antennas, Nr receive an-

tennas, and Ns subcarriers in a doubly-selective Rayleigh fading environment. Input

data are assumed to be independent variables with zero mean and unit variance. The

time domain data sequence is obtained by taking the IDFT of the data block for each

transmit antenna. A CP with a length longer than the channel length is inserted at the

beginning of each of the data sequences. The data sequences with a CP are then trans-

mitted through Nt independent antennas. At each receive antenna, the CP is removed

and a DFT unit is applied. Let xk = [xk1, · · · , xkNt ]
T and yk = [yk1, · · · , ykNr ]

T de-

note, respectively, the transmitted and received data for all antennas on subcarrier k,

where 0 ≤ k ≤ Ns − 1. The general form of the received signal in MIMO-OFDM

over slowly fading channels (the channel is time-invariant over several OFDM symbol
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periods) is expressed as

yk = ∆kxk + nk (6.1)

where ∆k is an Nr×Nt matrix whose (i, j)th component, {∆k}ij , denotes the channel

frequency response between the jth transmit antenna and the ith receive antenna and

nk is an Nr × 1 Gaussian noise vector on subcarrier k. Elements of nk have zero mean

and variance σ2.

Phase noise φ(t) may be described as a continuous Brownian motion process

with zero mean and variance 2πβt, where β denotes the two-sided 3-dB linewidth of

the Lorentzian power density spectrum of the free-running carrier generator [36]. For

the analysis in this chapter, we need to consider discretized Brownian motion φ(n) =

φ(nTs), where Ts is the data symbol period. Thus we have φ(n + 1) = φ(n) + ς(n),

where ς(n) ∼ N (0, 2πβTs) is a Gaussian random variable with zero mean and variance

σ2
ς = 2πβTs. If we assume that only one oscillator is used to support multiple antennas,

Eq. (6.1) needs to be modified to take into account the effects of phase noise as [22]

yk = ∆kxkI(0) +
Ns−1∑

k′=0
k′ 6=k

∆k′xk′I(k′ − k) + nk (6.2)

where

I(f) =
1

Ns

Ns−1∑
n=0

ej 2πfn
Ns

+jφ(n). (6.3)

Note that CPE and ICI due to phase noise are represented by I(0) and the second term

on the right-hand side of Eq. (6.2), respectively.

6.3. The Impact of ICI Caused by Phase Noise and Time-Varying Fading

In the presence of phase noise and time-selective fading, the effective NsNr ×
NsNt spatiotemporal channel matrix H t during the tth OFDM symbol period with the
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effects of phase noise taken into consideration is expressed as [29] H t =




H t,0(0)ejφ(0) · · · 0 · · · H t,1(0)ejφ(0)

...
...

...

H t,L−1(L− 1)ejφ(L−1) · · · H t,0(L− 1)ejφ(L−1) · · · 0

...
...

...

0 · · · H t,L−1(Ns − 1)ejφ(Ns−1) · · · H t,0(Ns − 1)ejφ(Ns−1)




(6.4)

where L is the number of resolvable paths and 0 is an Nr ×Nt zero matrix. Each non-

zero block of H t contains the Nr × Nt channel matrix H t,l(n) for path l at time nTs.

Note that the index in the parenthesis following H t,l is the time index. For simplicity

of notation, we will omit the time index t which represents the OFDM symbol period

hereafter.

Assuming a WSSUS channel [25], all elements of H l(n) are modeled as inde-

pendent complex Gaussian random variables with zero mean and equal variance. The

channel is assumed to have an exponential power delay profile θ(τl) = e−τl/τrms [41],

where τl is the delay of the lth path and τrms represents the rms delay spread. Since the

channel is time-variant, the relationship between the channel coefficients for path l at

times nTs and (n + m)Ts can be described as [12]

{H l(n + m)}ij = αm{H l(n)}ij + ρl,ij(n + m) (6.5)

where

αm =
E

[{H l(n)}ij · {H l(n + m)}∗ij
]

e−
τl

τrms

= J0(2πmfdTs) (6.6)

fd is the maximum Doppler shift and {ρl,ij(n)} are independent complex Gaussian

random variables with zero mean and variance e−
τl

τrms (1− α2
m).

Had the system been phase noise free and the channel been time-invariant, H

given in Eq. (6.4) would have had the eigen-decomposition H = (U ⊗ INr)
HΛ(U ⊗
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INt), where U is the unitary DFT matrix with {U}ij = 1/
√

Nse
(−2π

√−1/Ns)ij , 0 ≤
i, j ≤ Ns − 1, and Λ is a block diagonal matrix whose (k, k)th block equals ∆k [25].

This establishes the relationship between the channel frequency response given in Eqs.

(6.1) and (6.2) and the channel coefficients in the time domain.

With the effective channel matrix given in Eq. (6.4), we let G = (U ⊗
INr)H(U ⊗INt)

H , which is no longer a block diagonal matrix. This shows that phase

noise and time-selective fading cause ICI, which is represented by the off-diagonal

blocks of G. Let Gij denote the (i, j)th block of G. The ideal model given in Eq. (6.1)

needs to be generalized to reflect the impacts of both time-selective fading and phase

noise as

yk = Gkkxk +
Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk, k = 0, · · · , Ns − 1. (6.7)

Let Υij be an Ns ×Ns matrix given by

Υij =




var({G00}ij) · · · var({G0,Ns−1}ij)

... . . . ...

var({GNs−1,0}ij) · · · var({GNs−1,Ns−1}ij)




. (6.8)

As shown in APPENDIX B, Υij has a circulant structure expressed as

Υij =




γ0 γ1 · · · γNs−1

γNs−1 γ0 · · · γNs−2

...
...

...

γ1 γ2 · · · γ0




, 1 ≤ i ≤ Nr, 1 ≤ j ≤ Nt. (6.9)

Since elements of Gij are i.i.d. Gaussian random variables [25], Eq. (6.9) applies to

all antennas. It is also shown in APPENDIX B that γk defined in Eq. (6.9) can be

expressed in closed-form as

γk =
1

N2
s

L−1∑

l=0

{
Ns +2

Ns−1∑
i=1

(Ns− i)J0(2πifdTs) cos

(
2π

Ns

ki

)
e−πβTsi

}
e−

τl
τrms . (6.10)
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In order to quantify the combined effects of both phase noise and time-selective fading,

we derive CIR as a function of the two-sided 3-dB linewidth β, the number of sub-

carriers, and the normalized Doppler shift (fdTs). In the presence of phase noise and

time-selective fading, CIR of the kth subcarrier for MIMO-OFDM systems is expressed

as

CIR =

E

[
‖Gkkxk‖2

F

]

E

[∥∥∥∥
Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

∥∥∥∥
2

F

]

=

tr

{
E

[
Gkkxkx

H
k GH

kk

]}

tr

{
E

[( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)H]}

=
γ0

Ns−1∑

k′=1

γk′

=

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i)αie
−πβTsi

}
e−

τl
τrms

Ns−1∑

k′=1

L−1∑

l=0

{
Ns + 2

Ns−1∑
i=1

(Ns − i)αi cos

(
2π

Ns

k′i
)

e−πβTsi

}
e−

τl
τrms

=

Ns + 2
Ns−1∑
i=1

(Ns − i)J0(2πifdTs)e
−πβTsi

Ns−1∑

k′=1

{
Ns + 2

Ns−1∑
i=1

(Ns − i)J0(2πifdTs) cos

(
2π

Ns

k′i
)

e−πβTsi

} . (6.11)

Note that CIR is independent of the channel power-delay profile and the number of

resolvable paths, and is the same for all subcarriers. Furthermore, the SINR expression

of MIMO-OFDM systems in the presence of phase noise and time-selective fading is

given as
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SINR =

E

[
‖Gkkxk‖2

F

]

E

[∥∥∥∥
Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk

∥∥∥∥
2

F

]

=

tr

{
E

[
Gkkxkx

H
k GH

kk

]}

tr

{
E

[( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)H

+ nkn
H
k

]}

=
Ntγ0

Nt

Ns−1∑

k′=1

γk′ + σ2

(6.12)

where γk′ was given in Eq. (6.10).

6.4. Phase Noise Suppression and Data Detection

As mentioned in Section 6.3, Eqs. (6.1) and (6.2) do not hold for MIMO-OFDM

systems in the presence of phase noise and time-selective fading. From Eq. (6.5), we

have
Ns−1∑
n=0

{H l(n)}ije
jφ(n) = {H l(0)}ij

Ns−1∑
m=0

αmejφ(m) +
Ns−1∑
n=1

ρl,ij(n)ejφ(n). (6.13)

Hence

{Gkk}ij

=
L−1∑

l=0

Ns−1∑
n=0

uknu∗k,[n−l]{H l(n)}ije
jφ(n)

=
1

Ns

L−1∑

l=0

e−j 2π
Ns

kl
Ns−1∑
n=0

{H l(n)}ije
jφ(n)

=
1

Ns

L−1∑

l=0

e−j 2π
Ns

kl{H l(0)}ij

Ns−1∑
m=0

αmejφ(m) +
1

Ns

L−1∑

l=0

e−j 2π
Ns

kl
Ns−1∑
n=1

ρl,ij(n)ejφ(n)

(6.14)
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where ukn and u∗k,[n−l] are defined in APPENDIX B. Thus, Eq. (6.7) can be modified

as

yk = Ckkxk
1

Ns

Ns−1∑
m=0

αmejφ(m) + P kkxk +
Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk (6.15)

where

{Ckk}ij =
L−1∑

l=0

e−j 2π
Ns

kl{H l(0)}ij (6.16a)

{P kk}ij =
1

Ns

L−1∑

l=0

e−j 2π
Ns

kl
Ns−1∑
n=1

ρl,ij(n)ejφ(n). (6.16b)

Note that 1
Ns

∑Ns−1
m=0 αmejφ(m) in Eq. (6.15) is similar to I(0) in Eq. (6.2), which is the

CPE term. The term P kkxk carries data symbols, but the distortion P kk is a function

of the phase noise process, which is costly to estimate. Additionally, when Ns is large,

this term is very small due to the scaling factor 1/Ns. Therefore, the term P kkxk will

be treated as noise for the derivation of MMSE-based phase noise mitigation and the

third term on the right-hand side of Eq. (6.15) is the ICI term caused by both phase

noise and time-selective fading.

For OFDM systems over fast fading channels, channel estimates are gener-

ally obtained by transmitting pilot symbols at certain positions of the frequency-time

grid [20, 22, 42, 43]. When significant phase noise is also present, a joint scheme to

simultaneously estimate CPE and CSI is needed. Such a joint estimation appears to

be very challenging because of the mutual coupling effects of phase noise and channel

fading processes as seen from (6.15), and is out of the scope of this chapter. We thus

assume perfect CSI at the receiver, but unknown CPE to make the analytical derivation

tractable. Therefore, the CPE term C(0) = 1
Ns

∑Ns−1
m=0 αmejφ(m) must be estimated. In

the following discussion, pilot signals are transmitted to estimate CPE. We rewrite Eq.

(6.15) as

yk∈Np
= sk∈NpC(0) + ek∈Np (6.17)
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where sk = Ckkxk, ek = P kkxk +
∑Ns−1

k′=0,k′ 6=k Gkk′xk′ + nk, and Np stands for the

set of pilot signals, which will be omitted in the analysis of MMSE for simplicity of

notation. Let Ń k = E
[
eke

H
k

]
. As shown in APPENDIX C, Ń k can be expressed as

Ń k = E
[
eke

H
k

]

=

{
Nt

N2
s

L−1∑

l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)

)
+ Nt

Ns−1∑

k′=1

γk′ + σ2

}
INr . (6.18)

The results given in Eqs. (6.17) and (6.18) allow us to estimate the CPE term.

When an MMSE scheme is applied, the cost function E
[
‖C(0)− Ẃ

H

k yk‖2
F

]
is mini-

mized by finding an appropriate coefficient matrix Ẃ k. With some algebraic manipu-

lations, the optimal matrix in the MMSE sense is determined to be

Ẃ k =
(
sks

H
k + Ń k

)−1

sk. (6.19)

Thus, the MMSE estimate of CPE is given by

Ĉ(0) = Ẃ
H

k yk = sH
k

(
sks

H
k + Ń k

)−1

yk. (6.20)

CPE is the same for each subcarrier within one OFDM symbol. The effects of phase

noise, time-selective fading, and the channel delay spread are jointly minimized through

a single parameter Ĉ(0), which is a function of {βTs, fdTs, τrms, Ns, Nt, σ}. In what

follows, we analyze a few existing detection schemes which incorporate the MMSE

estimate of CPE derived in this chapter, that is, Ĉ(0) given in Eq. (6.20).

From the analysis above, we can relate the transmitted signals and received

signals of the kth subcarrier as

yk = CkkĈ(0)xk + ek. (6.21)

When a simple ZF detection scheme is applied, yk is processed as

ΘkykĈ
−1(0) = ΘkCkkxk + ΘkekĈ

−1(0) (6.22)
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where Θk = C†
kk. Note that when Nr ≥ Nt and a linear detection scheme is adopted,

a diversity order of Nr −Nt + 1 can be achieved. Based on Eq. (6.22), the LS criterion

can be used to detect the transmitted signal as

x̂kp = argmin︸ ︷︷ ︸
x(i)∈A

|[Θk]pykĈ
−1(0)− x(i)|2, p = 1, · · · , Nt (6.23)

where A is the symbol alphabet and [Θk]p is the pth row of Θk.

When the MMSE detection scheme is considered, E
[
‖xk − Ḿ

H

k yk‖2
F

]
is min-

imized by finding an matrix Ḿ k, which is easily obtained as

Ḿ k =
(
CkkC

H
kk|Ĉ(0)|2 + Ń k

)−1

CkkĈ(0) (6.24)

where Ń k was given in Eq. (6.18). Thus the MMSE criterion yields

x̂k = Ḿ
H

k yk

= CH
kkĈ

∗(0)
(
CkkC

H
kk|Ĉ(0)|2 + Ń k

)−1

yk. (6.25)

The decorrelating DF and the MMSE-DF schemes have been shown to provide

better performance than the ZF and the MMSE schemes [45]. In the decorrelating DF

detection, yk is premultiplied by L−1CH
kkĈ

−1(0) as

ỹk = L−1CH
kkĈ

−1(0)yk

= L−1CH
kkCkkxk + L−1CH

kkĈ
−1(0)ek

= LHxk + dk (6.26)

where LH is an upper triangular matrix obtained by using the Cholesky decomposition

as

R = CH
kkCkk = LLH .

The pth component of ỹk is given by

ỹkp = {LH}ppxkp +
Nt∑

i=p+1

{LH}pixki + dkp. (6.27)
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Finally, the transmitted symbols are detected as

x̂kNt = dec (ỹkNt)

x̂kp = dec
(

ỹkp −
Nt∑

i=p+1

{LH}pix̂ki

)
, p = 1, · · · , Nt − 1

where dec(·) is the slice function corresponding to the specific modulation applied.

The MMSE-DF scheme is the one that minimizes the average energy of ỹkp−xkp, p =

1, · · · , Nt, under the assumption that previously detected signals in the feedback filter

are correct. Details of this scheme can be found in [40, 46].

6.5. Numerical Results and Discussion

Simulations are carried out based on the “SUI-5” channel model [13], which is

one of six channel models adopted by IEEE 802.16a for evaluating broadband wire-

less systems in the 2-11GHz band. We consider a system with two transmit antennas

and three receive antennas which employs QPSK modulation. The doubly-selective

Rayleigh fading channel is assumed to have three resolvable multipath components.

These paths are modeled as independent complex Gaussian random variables and have

relative delays of 0µs, 5µs, and 10µs. The rms delay spread of the channel is 3.05µs

and the maximum Doppler shift of the channel is calculated based on a carrier fre-

quency of fc = 2GHz.

Fig. 6.1 shows the CIR values as a function of data symbol period Ts, the

3-dB phase noise linewidth β, and the number of subcarriers Ns within one OFDM

symbol. These curves are obtained by using the analytical expression given in Eq.

(6.11) and simulations based on the maximum Doppler shift under a vehicle speed of

vs = 100Km/h. Simulation results match well with the theoretical results. CIR is

found to be inversely proportional to Ts, Ns, and β; thus, increasing β or Ts makes the
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FIGURE 6.1. CIR comparisons with different number of subcarriers and phase noise

linewidth (vs = 100Km/h).

MIMO-OFDM system more vulnerable to phase noise or time variations of the channel

coefficients.

In Fig. 6.2, SINR versus Es/N0 curves under different values of βTs and vs are

obtained by using Eq. (6.12) and computer simulations. The OFDM symbol is assumed

to have Ns = 256 subcarriers, and data symbol period is Ts = 10−6 seconds. It is

observed that SINR is inversely proportional to βTs. With a fixed but large value of βTs

(e.g., 10−3), however, the difference between SINR curves corresponding to different

vehicle speeds diminishes. This is because when βTs is large, ICI is dominated by phase

noise. On the other hand, with a smaller βTs value such as βTs = 10−4, increasing the

Doppler shift (or vehicle speed) clearly lowers the SINR value.
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FIGURE 6.2. SINR versus Es/N0 for MIMO-OFDM with different vehicle speed and

phase noise variance (Ns = 256, Ts = 10−6s).

Fig. 6.3 shows the SER performance of the proposed MMSE-based phase noise

suppression scheme together with those of a phase-noise-free system and a system with-

out phase noise correction when the MMSE detection scheme given by Eq. (6.25) is

considered. System parameters chosen are: Ns = 128, Ts = 10−7s, β = 10Hz, and

vs = 30Km/h. It is observed that without phase noise correction, even a very mild

amount of phase noise (βTs = 10−6) causes a high error floor. On the other hand, the

proposed scheme significantly reduces the effect of phase noise. Note that performance

of the proposed scheme does not approach that of the phase-noise-free system because

this scheme mitigates only CPE, and it does not eliminate ICI, which is caused by both

phase noise and time-selective fading.
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FIGURE 6.3. SER versus Es/N0 for MIMO-OFDM with phase noise βTs = 10−6

(Ns = 128, Ts = 10−7s, vs = 30Km/h).

Shown in Fig. 6.4 are the simulated SER performances of the system when

the proposed MMSE-based phase noise suppression scheme given by Eq. (6.20) and

the MMSE detection scheme described by Eq. (6.25) are employed. Other parameters

chosen are: Ns = 64, Ts = 10−7s, and vs = 100Km/h. Performances with different

values of the 3-dB phase noise variance (βTs = 10−7, 10−6, 3 × 10−6, and 10−5) are

compared. The performance curve of a phase-noise-free MIMO-OFDM system is used

as the baseline performance. It appears that the scheme works effectively only when

βTs is small.

In Fig. 6.5, we compare the performances of four different detection methods:

the ZF, MMSE, decorrelating DF, and MMSE-DF schemes when the MMSE-based
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ance (Ns = 64, Ts = 10−7s, vs = 100Km/h).

phase noise suppression scheme given by Eq. (6.20) is applied. Other than that β =

30Hz, all other parameters are the same as those applied for Fig. 6.4. Performance

of the MLscheme is used as the benchmark for other detection schemes. Since these

schemes are not specifically optimized for MIMO-OFDM systems with phase noise

over fast time-varying fading channels for which ICI should be dealt with, error floors

are observed for all cases. Note that from Eqs. (6.10) and (6.11), the energy of ICI

due to the phase noise and time-selective fading is found to spread over all subcarriers,

which is different from the assumption in [57] that most of ICI on each subcarrier comes

from several neighboring subcarriers. Consequently, ICI suppression for the scenario

studied in this chapter becomes more challenging than the case dealt with in [57].
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FIGURE 6.5. SER versus Es/N0 for MIMO-OFDM with different detection schemes

(βTs = 3× 10−6, Ns = 64, vs = 100Km/h).

We have assumed perfect CSI for all numerical results so far. In practical sys-

tems, however, there exist channel estimation errors. It is beyond the scope of this

chapter to discuss channel estimation schemes for time-selective fading channels. To

access its impact, channel estimation error is emulated by introducing an error with a

normalized average MSE defined as MSE = E
[
‖ ˆ̆
H − H̆‖2

F

]
/E

[
‖H̆‖2

F

]
, where H̆

has the same form as Eq. (6.4), except that phase noise terms and OFDM symbol index

are neglected. The performance results of MIMO-OFDM systems with various MSE

values are shown in Fig. 6.6, where all parameters, except β = 10Hz, are the same as

those applied in Fig. 6.5. The proposed MMSE-based phase noise suppression scheme

and the MMSE detection scheme are employed in this simulation. It is observed that the
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performance degradation is negligible only when the MSE value of channel estimation

errors is small (e.g., 10−3).

6.6. Conclusions

We have analyzed the impact of phase noise and channel time selectivity on the

performance of MIMO-OFDM systems. Specifically, we have quantified ICI caused

by phase noise and channel time variations. A phase noise suppression scheme based

on the MMSE criterion is proposed, which is shown to effectively reduce the effect

of phase noise. Performances of four detection schemes are compared, and it seems

that none of them can effectively eliminate the error floor of MIMO-OFDM systems
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in the presence of phase noise and doubly-selective fading. It is also observed that an

increase in the 3-dB phase noise linewidth, the data symbol period, or the number of

OFDM subcarriers lowers the achievable CIR. Moreover, it is found that an increase in

channel estimation error could deteriorate the system performance dramatically.
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7. CONCLUSIONS

OFDM, which is effective in avoiding ISI that multipath delay might cause, is

very vulnerable to time-selective fading introduced by Doppler shift and phase noise,

a random process caused by the fluctuation of the transmitter and receiver oscillators.

Multi-antenna OFDM including MIMO-OFDM and ST-OFDM are capable of achiev-

ing spatial diversity and/or increasing spectral efficiency. However, similar to single-

antenna OFDM, multi-antenna OFDM system is also sensitive to channel time varia-

tions and phase noise.

We have analyzed the impact of channel time selectivity on the performance of

quasi-orthogonal ST-OFDM systems. Specifically, we have quantified ICI and evalu-

ated ITAI caused by channel time variations. Performances of five detection schemes

are compared, and it seems that none of them can effectively eliminate the error floor

of ST-OFDM in a time-selective environment.

Frequency-domain correlative coding has been applied to mitigate the effect of

time-selective fading to the performance of MIMO-OFDM systems. We derive the ana-

lytical expression of CIR as a function of the maximum Doppler shift and power-delay

profile of the channel, the number of subcarriers, and the OFDM symbol duration. The

CIR expression can be used to quantify the amount of ICI caused by channel time varia-

tions. Numerical results indicate that a simple correlative coding scheme can effectively

increase CIR of a 128-subcarrier MIMO-OFDM system by as much as 3.0dB, and the

improvement further increases as the number of subcarriers becomes larger.

In order to suppress the error floor of ST-OFDM systems over fast fading chan-

nels, we have proposed a scheme that combines frequency-domain correlative coding

with a modified DF receiver. Performances of three detection schemes are compared,

and it is found that the proposed scheme can effectively eliminate the error floor of the
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quasi-orthogonal ST-OFDM system even in fast fading environments. It is observed

that an increase in Doppler shift, symbol duration, or number of OFDM subcarriers

lowers the achievable CIR.

Furthermore, we have analyzed the effects of phase noise to MIMO-OFDM sys-

tems over doubly-selective Rayleigh fading channels. Similar to single-antenna OFDM,

MIMO-OFDM suffers from significant performance degradation due to phase noise and

time-selective fading. We derive the expressions of CIR and SINR. After characteriz-

ing CPE caused by phase noise and ICI caused by phase noise as well as time-selective

fading, we then propose an MMSE-based scheme to mitigate the effect of both phase

noise and time-selective fading. We also evaluate and compare the performances of var-

ious detection schemes combined with the proposed CPE mitigation scheme. Through

numerical results, we examine the relative performances and the potential error floors

of these detection schemes.

In summary, we have not only analyzed the performance of multi-antenna

OFDM systems in the presence of phase noise and channel time selectivity, but also

proposed the corresponding solutions to the impairments of phase noise and Doppler

shift on multi-antenna OFDM systems. The proposed methods successfully achieve

outstanding performance with relatively low complexity, and are thus suitable for prac-

tical applications.
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APPENDIX A. Proof that Υ is a circulant matrix

Since Υ in Eq. (3.27) is the same for any antenna index p, we can replace vector

hl(n) of the channel matrix H in Eq. (3.5) with a scalar hp,l(n) (note that OFDM

symbol index is omitted for notation simplicity), forming a new Ns ×Ns matrix

H =




hp,0(0) · · · 0 hp,L−1(0) · · · hp,1(0)

...
...

...

hp,L−1(L− 1) · · · hp,1(L− 1) hp,0(L− 1) · · · 0

...
...

...

0 · · · hp,L−1(Ns − 1) · · · hp,1(Ns − 1) hp,0(Ns − 1)




.

(A.1)

Let us also define

G = {g(p)
ij , i, j = 0, · · · , Ns − 1} = UHUH

Υ = {γ(p)
ij } = {var(g

(p)
ij )}. (A.2)

We note that U = {uij} = [u0, · · · , uNs−1], where uij = 1√
Ns

e−(2π
√−1/Ns)ij . Since Υ

is independent of p, we omit antenna index p in the following discussion. If we denote

H as the sum of L matrices as H =
∑L−1

l=0 H[l], where H[l] is a matrix formed by

cyclic left-shifting the diagonal matrix diag{hl(0), · · · , hl(Ns − 1)} by l columns, we

have

G = UHUH =
L−1∑

l=0

Gl =
L−1∑

l=0

UH[l]U
H (A.3)

where Gl = {gl,ij}. Because

E [hl(n)] = 0, l = 0, · · · , L− 1, n = 0, · · · , Ns − 1

E [hl(r) · h∗l′(s)] = J0(2π|r − s|fdTs)δl−l′e
− τl

τrms , r, s = 0, · · · , Ns − 1 (A.4)
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it is easy to recognize that Υ =
∑L−1

l=0 Υl, where Υl = {γl,ij} = {var(gl,ij)}. Since

the sum of circulant matrices of the same dimension is also a circulant matrix, we only

need to prove that each Υl is a circulant matrix.

For any integer n, let [n] denote n modulo Ns, i.e., [n] is the remainder from

dividing n by Ns. Then gl,ij is obtained as

gl,ij = uT
i H[l]u

∗
j

=
Ns−1∑
n=0

uinu
∗
j,[n−l]hl(n)

= ηT
ijhl (A.5)

where ηij = [ηij0, · · · , ηij,(Ns−1)]
T , ηijn = uinu

∗
j,[n−l], and hl = [hl(0), · · · , hl(Ns −

1)]T . Thus

γl,ij = var(gl,ij) = var(ηT
ijhl)

= ηT
ijcov(hl)η

∗
ij

=
Ns−1∑
r=0

Ns−1∑
s=0

ηijrχ(r, s)η∗ijs

=
Ns−1∑
r=0

Ns−1∑
s=0

χ(r, s)uiru
∗
j,[r−l]u

∗
isuj,[s−l]

=
1

N2
s

Ns−1∑
r=0

Ns−1∑
s=0

χ(r, s)e−(2π
√−1/Ns)tijrs (A.6)

where χ(r, s) = cov(hl(r) ·h∗l (s)), and tijrs = ir− j[r− l]− is+ j[s− l]. It suffices to

show, for any fixed r and s, that [tijrs] = [ir− j[r− l]− is + j[s− l]] = [j − i][s− r].

Also note that an Ns ×Ns matrix B = {bij}, 0 ≤ i, j ≤ Ns − 1, is circulant if

and only if bij = κ[j−i], i.e., if and only if bij depends only on [j−i] and e−(2π
√−1/Ns)k =

e−(2π
√−1/Ns)[k] because e2π

√−1 = 1. Thus from Eq. (A.6), we can conclude that Υl is

a circulant matrix if hl(n), n = 0, · · · , Ns − 1, are finite.

Moreover, from Eq. (A.6), we have
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γij =
L−1∑

l=0

γl,ij

=
1

N2
s

L−1∑

l=0

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
−(2π

√−1/Ns)tijrse−
τl

τrms

=
1

N2
s

L−1∑

l=0

[
Ns + 2

Ns−1∑
m=1

(Ns −m)J0(2πmfdTs) cos

(
2π

Ns

[j − i]m

)]
e−

τl
τrms . (A.7)

Let us define $
(1)
l = E[gl,ij · g∗l,i(j+1)] and $

(−1)
l = E[gl,i(j+1) · g∗l,ij]. Similar to

Eq. (A.6), we have

$
(1)
l =

Ns−1∑
r=0

Ns−1∑
s=0

ηijrχ(r, s)η∗i(j+1)s

=
Ns−1∑
r=0

Ns−1∑
s=0

χ(r, s)uiru
∗
j,[r−l]u

∗
isuj+1,[s−l]

=
1

N2
s

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
−(2π

√−1/Ns)t
(1)
ijrse−

τl
τrms (A.8)

where t
(1)
ijrs = ir − j[r − l]− is + (j + 1)[s− l]. Similar to (A.8), we have

$
(−1)
l =

1

N2
s

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
−(2π

√−1/Ns)t
(−1)
ijrs e−

τl
τrms (A.9)

where t
(−1)
ijrs = ir − (j + 1)[r − l]− is + j[s− l]. Finally, we have

Ωj =E[gij · g∗i(j+1)] + E[gi(j+1) · g∗ij]

=
L−1∑

l=0

$
(1)
l + $

(−1)
l

=
1

N2
s

L−1∑

l=0

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
− τl

τrms (e−(2π
√−1/Ns)t

(1)
ijrs

+ e−(2π
√−1/Ns)t

(−1)
ijrs ). (A.10)
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APPENDIX B. Closed-form expression of {Υ}ij in the presence of phase noise

Since Υ with dimension Ns×Ns in Eq. (6.8) is the same for any antenna index

(i, j), we can replace matrix H l(n) of the channel matrix H in Eq. (6.4) with a scalar

hl(n) (note that OFDM symbol index is omitted for notational simplicity) and replace

the zero matrix 0 with a scalar 0, forming a new Ns × Ns matrix H. If we denote

H as the sum of L matrices as H =
∑L−1

l=0 H(l), where H(l) is a matrix formed by

cyclically left-shifting the diagonal matrix diag{hl(0)ejφ(0), · · · , hl(Ns − 1)ejφ(Ns−1)}
by l columns, we have

G = UHUH =
L−1∑

l=0

Gl =
L−1∑

l=0

UH(l)U
H (B.1)

where U = [u0, · · · , uNs−1] is the unitary DFT matrix. With the conditions that

E

[
hl(n)ejφ(n)

]
= 0, l = 0, · · · , L− 1, n = 0, · · · , Ns − 1

E

[
hl(r)e

jφ(r) · h∗l′(s)e−jφ(s)

]
= E

[
hl(r) · h∗l′(s)

]
E

[
ejφ(r) · e−jφ(s)

]

= J0(2π|r − s|fdTs)δl−l′e
− τl

τrms
−|r−s|πβTs (B.2)

r, s = 0, · · · , Ns − 1

it is recognized that Υ =
∑L−1

l=0 Υl, where Υl is an Ns × Ns matrix and {Υl}ij =

var({Gl}ij). Since the sum of circulant matrices of the same dimension is also a circu-

lant matrix, we only need to prove that each Υl is a circulant matrix.

For any integer n, let [n] denote n modulo Ns, i.e., [n] is the remainder from

dividing n by Ns. The {Gl}ij is obtained as

{Gl}ij = uT
i H(l)u

∗
j = ηT

ijhl (B.3)

where ηij = [ηij0, · · · , ηij,(Ns−1)]
T , ui = [ui0, · · · , ui,(Ns−1)]

T , ηijn = uinu
∗
j,[n−l], and

hl = [hl(0)ejφ(0), · · · , hl(Ns − 1)ejφ(Ns−1)]T . Thus
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{Υl}ij = var(ηT
ijhl) =

Ns−1∑
r=0

Ns−1∑
s=0

ηijrχ(r, s)η∗ijs

=
1

N2
s

Ns−1∑
r=0

Ns−1∑
s=0

χ(r, s)e−(2π
√−1/Ns)tijrs (B.4)

where χ(r, s) = cov(hl(r)e
jφ(r) ·h∗l (s)e−jφ(s)) and tijrs = ir−j[r− l]− is+j[s− l]. It

suffices to show, for any fixed r and s, that [tijrs] = [ir− j[r− l]− is+ j[s− l]] = [j−
i][s− r]. Also note that an Ns×Ns matrix B is circulant if and only if {B}ij = κ[j−i],

i.e., if and only if {B}ij depends only on [j − i] and e−(2π
√−1/Ns)k = e−(2π

√−1/Ns)[k]

because e2π
√−1 = 1. Thus, from Eq. (B.4), we can conclude that Υl is a circulant

matrix if hl(n), n = 0, · · · , Ns − 1, are finite.

Moreover, from Eq. (B.4), we have

{Υ}ij =
L−1∑

l=0

{Υl}ij

=
1

N2
s

L−1∑

l=0

Ns−1∑
r=0

Ns−1∑
s=0

J0(2π|r − s|fdTs)e
−(2π

√−1/Ns)tijrse−
τl

τrms
−|r−s|πβTs

=
1

N2
s

L−1∑

l=0

{
Ns + 2

Ns−1∑
m=1

(Ns −m)J0(2πmfdTs) cos

(
2π

Ns

[j − i]m

)
e−πβTsm

}
e−

τl
τrms .

(B.5)
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APPENDIX C. Variance of equivalent noise in the presence of phase noise

From the assumptions made in Eq. (6.5), it is clear that ρl,ij(n) are independent

Gaussian random variables with

E
[
ρl,ij(n)ρ∗l′,i′j′(n

′)
]

= e−
τl

τrms

(
1− J2

0 (2πnfdTs)
)
δl−l′δi−i′δj−j′δn−n′ .

With some simple manipulations, we have

E

[(
P kkxk

)(
P kkxk

)H]
= E

[
P kkP

H
kk

]

=

{
Nt

N2
s

L−1∑

l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)

)}
INr .

(C.1)

Also it is straightforward that E
[
{Gkk′}ij {Gkk′}∗i′j′

]
= 0, i 6= i′ or

j 6= j′ due to E
[
{H l(n)}ij {H l(n)}∗i′j′

]
= e−

τl
τrms δi−i′δj−j′ and {Gkk′}ij =

∑L−1
l=0

∑Ns−1
n=0 uknu∗k′,[n−l]{H l(n)}ije

jφ(n). Thus, we obtain

E

[( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)( Ns−1∑

k′=0
k′ 6=k

Gkk′xk′

)H]
=

Ns−1∑

k′=0
k′ 6=k

E

[
Gkk′G

H
kk′

]

=

(
Nt

Ns−1∑

k′=1

γk′

)
INr . (C.2)

Since E
[
nkn

H
k

]
= σ2INr , we have

E

[
eke

H
k

]
= E

[(
P kkxk +

Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk

)(
P kkxk +

Ns−1∑

k′=0
k′ 6=k

Gkk′xk′ + nk

)H]

= E

[
P kkP

H
kk

]
+

Ns−1∑

k′=0
k′ 6=k

E

[
Gkk′G

H
kk′

]
+ E

[
nkn

H
k

]

=

{
Nt

N2
s

L−1∑

l=0

e−
τl

τrms

Ns−1∑
n=1

(
1− J2

0 (2πnfdTs)

)
+ Nt

Ns−1∑

k′=1

γk′ + σ2

}
INr . (C.3)




