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In this work we consider the dependence of solutions to a partial differential equa-

tions system on its data. The problem of interest is a coupled model of nonlinear

flow and transport in porous media, with applications, e.g. to environmental mod-

eling. The model of flow we consider is known as the non-Darcy model, and its

solutions: the velocity, and pressure unknowns, depend on the coefficients of per-

meability and inertia, and other data such as boundary conditions. In turn, the

transport solutions depend on the velocity of the fluid, and on boundary and initial

conditions. Furthermore, one can be interested in a particular quantity computable

from the flow and transport solutions, and represented by a functional. In this work

we evaluate rigorously the sensitivity, i.e., the derivative, of the solutions, or of the

quantity of interest, upon the data.

Due to its delicate nature, the sensitivity is evaluated either in a direct way,

called Forward Sensitivity, or via an adjoint method, which only uses a variational



form. Our first contribution is that we find a way to find the sensitivity for the

coupled flow and transport model without having to solve multiple flow problems.

Second, we prove the well-posedness of the flow problem, and set up the numer-

ical approximation using the framework similar to that of expanded mixed finite

element methods.

Next, the numerical approximation of the problem leads to a nonlinear system

of discrete equations, which is difficult to solve. To aid in solving this system,

we propose to take advantage of sensitivity analysis, which is used in a novel way

within a homotopy framework. The theoretical results in this thesis are illustrated

with numerical simulations. The code, in Python, for the examples is provided.
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Chapter 1 Introduction

In this work we formulate several new ideas which are applied to a model problem

of flow and coupled transport in porous media. Problems like this are important

in groundwater modeling, and in optimization of, e.g., groundwater contamination

scenarios. Since most such models do not have solutions in closed form, one resorts

to computational algorithms which approximate their solutions.

As computational abilities have increased through advances in computer hard-

ware, the desire to solve ever more complicated models has increased as well. More

accurate models of physical phenomena allow scientists and engineers to make bet-

ter predictions. Since computational power is limited, it is desirable to find ways

to decrease the computational cost of solving a system, but without sacrificing the

accuracy.

One way of decreasing computational cost is to use the simplest model that

captures the necessary details of the system. In particular, one traditional way has

been to use linearizations of nonlinear models. Another direction is to test how

much accuracy is needed in order to determine a particular quantity of interest.

Finally, one other way of decreasing cost is finding more efficient algorithms to

find the solution to the model. In this work we explore several methods in these

directions. In particular, we consider a nonlinear flow model known as the non-

Darcy model which includes additional inertia terms added to the linear Darcy



2

flow model. The nonlinear model is needed when the flow rates are high, and it

models additional resistance of the fluid to the medium.

Before choosing a model, and implementing its numerical approximation, it is

important to know that the models of interest are well-posed. A problem is well-

posed if it has a unique solution that is continuously dependent on its parameters.

Well-posedness is more easily proved for linear problems, and is generally not

immediate for nonlinear problems. Typically, increasing the complexity of the

problem increases the difficulty of proving that the problem is well-posed. One

of our contributions in this work is a proof that the nonlinear flow model called

the non-Darcy model is well-posed; this is demonstrated using recently published

analysis results. To our knowledge, this is the first proof of the well-posedness of

the non-Darcy model in this framework.

Next, we consider the dependence of the flow solutions upon the parameters

representing the physical model. For instance, in fluid flow in porous media a

resistance term combing the inverse permeabilities as well as inertia terms appears.

The resistance term requires some data which are obtained empirically, and one

is interested in knowing how the solution to a model varies with changes in the

parameters. In this work, sensitivity analysis is explored with that variation in

mind.

Sensitivity analysis has many different uses and contexts. In this work, we

discuss sensitivity of a model as finding the derivative of the solution to a numerical

model with respect to the model parameters. Those derivatives show how the

solution varies as the parameters change. That information can be used, e.g, for
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model reduction, and for statistical analyses, as well as for informing how accurate

measurements need to be for the model to give accurate results.

The mathematical problem of finding the sensitivities, i.e., the derivatives of

a solution with respect to the model parameters, can be quite delicate, since it

requires more regularity from the solutions than the theory usually guarantees. In

addition, the problem of finding sensitivities can be quite complex if the number,

or the dimension, of parameters is large. Therefore, different avenues for finding

sensitivities have been explored, including forward and adjoint approaches. These

have been primarily defined for scalar equations; see [44, 41, 15, 46, 42, 61, 47, 16,

45, 43]. In this work we extend these approaches to a coupled system; see Chapter

3.

Next, we apply our sensitivity methods to find the solution to a nonlinear

model. In general, these may be difficult to find, especially for stationary problems.

Once the existence and uniqueness of a solution are verified, a method for finding or

approximating that solution must be found. Typically, one finds a series of linear

problems that may be solved instead of the nonlinear model. A classical example

is Newton’s method, which uses local linear approximations to the problem to find

a root. Another class of methods for finding the solution to a nonlinear model are

continuation methods. In those methods, a path between an easy to solve problem

and a difficult to solve problem is followed. In this work, sensitivity analysis and

numerical continuation are combined into a novel set of methods; see Chapter 5.

This work is organized as follows. In Chapter 2, mathematical preliminaries

and some nonlinear model problems are developed. Since sensitivity analysis is
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concerned with the derivatives, some generalized notions of derivatives will be

presented including distributional derivatives and Frechet derivatives. Sobolev

spaces are introduced and some basic theorems are presented. A simple algebraic

model is developed which is used in later chapters to show, in a simple setting, how

some techniques are used. A nonlinear flow model is presented and the velocity

from the flow model is used as the velocity in a coupled transport model. The well-

posedness of all of the models is presented. The nonlinear flow model is shown to

be well-posed using recently published results. Numerical methods are developed

and presented for the nonlinear flow model and the coupled transport model, solved

with traditional stable approaches.

In Chapter 3, sensitivity analysis is introduced and developed for the coupled

fluid flow and transport model. The existence of sensitivities is shown and the

general sensitivity equation is developed. The forward sensitivity method and

the adjoint sensitivity method are described and applied to the couple flow and

transport model. To the author’s knowledge, the sensitivity of a coupled system

has not been discussed elsewhere. Chapter 4 consists of some examples applying

the results from Chapter 3.

In Chapter 5, a novel application of the sensitivity equation to numerical con-

tinuation is shown. Numerical continuation is a solution method based on tracing

a homotopy between an easy to solve problem and a more difficult problem of

interest. In the present work, a related linear problem is used as the easy to solve

problem and the nonlinear problem is is the more difficult problem. Several algo-

rithms are presented which demonstrate how the sensitivity equation may arise in
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numerical continuation. A superior method is shown in the novel Quasi-Newton

continuation method.

In Chapter 7, model adaptivity is explored. Model adaptivity is concerned

with approximating the modeling error, that is, the error incurred from the choice

of model. It is proposed that the modeling error may be approximated using a

homotopy such as the one developed in Chapter 5. The method is applied to the

nonlinear flow problem.

In the Appendix, example source code, written in Python, is provided. The

examples include the numerical implementations used for the experiments in this

work.
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Chapter 2 Preliminaries and Model Problems

In this chapter some mathematical background, the models of interest, and numer-

ical methods are introduced to provide the reader with the necessary background.

Section 2.1 introduces the mathematical background that will be used including

abstract notions of derivatives including distributional derivatives in Section 2.1.1.1

following [69] and Frechet derivatives in Section 2.1.1.2 following [22], and Sobolev

spaces in Section 2.1.2, following [10], which are Banach spaces of functions with

derivatives.

Throughout this work, we will define various functional spaces defined over an

open bounded region Ω of flow and transport, with sufficiently smooth boundary

∂Ω. We will omit writing “in Ω.”, if the region Ω is clear from the context.

We will introduce several model problems. Many models can be expressed in

the form

Lu+N (u) = f, (2.0.1)

where u is the unknown that is sought, L is the linear part of the model, and N is

the non-linear part of the model. Before other analyses on the problem can begin,

the problem must be shown to be well posed.

Recall that a problem is well posed if (1) a solution exists, (2) the solution is

unique, and (3) the solution depends continuously on the data. Also of interest in
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this work is differentiability with respect to the data, but this latter property is

frequently not easy to prove with standard techniques.

The model problems we consider are as follows. First, for illustration, we

develop a simple algebraic model; see Section 2.2. Second, we describe a nonlinear

fluid flow model in porous media known as the non-Darcy model; see Section 2.3.

A transport model coupled to the flow is discussed in Section 2.4.

The model problems are shown to be well-posed in Section 2.2.1, Section 2.3.1,

and Sections 2.4.1-2.4.2, respectively. For the algebraic model, the differentiability

with respect to the parameters is also shown in Section 2.2.2.

For the nonlinear flow and transport models, the numerical algorithm for find-

ing the solution is described in Section 2.3.2 and Sections 2.4.3-2.4.4, respectively.

The nonlinear flow solver consists of two parts: a linear flow solver and a New-

ton iteration. The linear flow model is solved using cell-centered finite difference

methods which are described in Section 2.3.2.1. Hereby we mention that the cell-

centered finite difference method is equivalent, up to quadrature error, to a mixed

finite element method; this is described in Sections 2.3.2.2-2.3.2.6. The Newton

iteration for the flow model is described in Section 2.3.2.7.

The transport model is discretized in time and space, as shown in Section 2.4.3.

The space discretization is based on the finite volume method which is described

in Section 2.4.4.



8

2.1 Mathematical Preliminaries

In this section, two forms of generalized derivatives are explored: distributional

derivatives and Frechet derivatives. Also, spaces of functions with derivatives,

known as Sobolev spaces, are introduced.

2.1.1 Generalized Derivatives

It is often necessary to consider functions which are not smooth enough for differ-

ential equations to be applied to them directly. In those cases, it is necessary to

develop a more general definition of the derivative of a function. First, the notion

of a distributional derivative in one dimension is developed. Next, the definition

is extended to multiple dimensions to define partial derivatives. Finally, a more

general class of derivatives in Banach spaces is introduced.

Recall the following definition.

Definition 2.1. A function f is said to have compact support in Ω ⊂ Rd if

{x : f (x) 6= 0} is a compact subset of Ω.

Functions with compact support allow integration on compact sets which often

simplifies calculations. In particular, the following sets are often used.

Definition 2.2. The set of functions with compact support and derivatives of

order at least k, is denoted Ck
0 (Ω). The set of infinitely differentiable functions

with compact support is denoted C∞
0 (Ω).
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2.1.1.1 Distributional Derivatives

It is simple to construct examples of functions in one dimension which are not

differentiable. A classic example is the function f (x) = |x|. This function is well

behaved except at x = 0 where the derivative changes abruptly. Let φ ∈ C∞
0 (R)

and, formally, perform an integration by parts. Let A be large enough so that

φ (x) = 0 for |x| ≥ A, then

∫ ∞

−∞
f ′ (x)φ (x) dx =

∫ A

−A

f ′ (x)φ (x) dx

= f (A)φ (A)− f (−A)φ (−A)−
∫ A

−A

f (x)φ′ (x) dx

= −
∫ ∞

−∞
f (x)φ′ (x) dx. (2.1.1)

This equality will guide the development of distributional derivatives.

It will help to have a definition of distributions. The following follows the

formulation in [69].

Definition 2.3. A distribution f is a continuous and linear functional f : C∞
0 (Ω) →

R. For φ ∈ C∞
0 (Ω) denote f (φ) = (f, φ). By linear it is meant that

(f, aφ+ bψ) = a (f, φ) + b (f, ψ) , (2.1.2)

and by continuous, it is meant that if {φn} ⊂ C∞
0 (Ω) is a sequence of functions
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that converge uniformly to φ ∈ C∞
0 (Ω), as do their derivatives, then

(f, φn) → (f, φ) as n→ ∞. (2.1.3)

Next, the convergence for distributions is defined.

Definition 2.4. A sequence {fn} of distributions is said to converge weakly to f

if

(fn, φ) → (f, φ) as n→ ∞, (2.1.4)

for all φ ∈ C∞
0 (Ω).

Keeping in mind the motivation in (2.1.1), the following definition for the

derivative of a distribution is given.

Definition 2.5. For any distribution f , define its derivative ∂f by the formula

(
∂xj

f, φ
)
= −

(
f, ∂xj

φ
)
. ∀φ ∈ C∞

0 (Ω) (2.1.5)

Higher-order derivatives are defined using multi-index notation. If Ω ⊂ R, then

the xj may be omitted.

Definition 2.6. Let α = (α1, α2, . . . , αd) be a multi-index (that is, a d-tuple

of non-negative integers). Denote |α| =
∑d

i=1 αi. Then denote the higher-order

partial derivative of f by

∂αf = ∂α1
x1
∂α2
x2

· · · ∂αd
xd
f, (2.1.6)
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where ∂kxj
f is defined by the formula

(
∂kxj

f, φ
)
= −

(
∂k−1
xj

f, ∂xj
φ
)
, ∀φ ∈ C∞

0 (Ω) . (2.1.7)

2.1.1.2 Frechet Derivatives on Banach Spaces

Following Chapter 8 of [22], another derivative is introduced.

Definition 2.7. Let E,F be Banach spaces and A ⊂ E an open set. Let f, g : A→

F be continuous mappings. Then f and g are tangent at x0 ∈ A if

lim
x→x0
x 6=x0

‖f (x)− g (x)‖F
‖x− x0‖E

= 0, (2.1.8)

which requires f (x0) = g (x0) since f, g are continuous. Then f is differentiable at

x0 ∈ A if there is a linear mapping u : E → F such that

f (x0) + u (x− x0) , (2.1.9)

is tangent to f at x0. Call u the Frechet derivative of f at x0 and denote it Df (x0).

This notion may be extended to partial derivatives.

In what follows we will deal with derivatives with respect to a parameter of

solutions to some equations. In this context, the solutions are defined implicitly,

thus we recall the Implicit Function Theorem.

Definition 2.8. Assume Z, Y,Q are Banach spaces, and let F : Z × Q → Y be
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continuous on a neighborhood of U of the point (z0, q). F is said to have a strong

partial Frechet derivative with respect to z if there exists a linear mapping {∂zF}

that is the Frechet derivative of F in the component z. That is

lim
z→z0
z 6=z0

‖F (z, q)− F (z0, q)− {∂zF} (z − z0, q)‖Y
‖z − z0‖Z

= 0. (2.1.10)

The above definitions are equivalent to the usual derivative when both are

applicable. As is true for derivatives on the real line, the Implicit Function Theorem

applies.

Theorem 2.9 (Implicit Function Theorem [68]). Assume Z, Y,Q are Hilbert spaces,

and let F : D (F ) ⊂ Z × Q → Y be continuous on a neighborhood U of the point

(z0, qo) ∈ int [D (F )]. If

• F (z0, q0) = 0

• F has a strong partial Frechet derivative ∂zF (z0, q0)

• [∂zF (z0, q0)]
−1 exists and is bounded

then there exist open neighborhoods U,W with z0 ∈ U ⊂ Z, q0 ∈ W ⊂ Q such

that for any q ∈ W , the equation F (z, q) = 0 has a unique solution z = u (q) ∈

U and the mapping u : W → U is continuous. Thus u (q) satisfies the equation

F (u (q) , q) = 0 for q ∈ W . Moreover, if ∂qF (z0, q0) exists, then u (q) is Frechet

differentiable at q0 and the derivative is

∂qu (q0) = − [∂zG (z0, q0)]
−1 ◦ [∂qG (z0, q0)] . (2.1.11)
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2.1.2 Sobolev Spaces

Sobolev spaces are an important class of function spaces which arise naturally in

the analysis of partial differential equations. In this section the exposition in [10] is

followed closely. Let Ω ⊂ Rd, d = 1, 2, or 3 with a Lipschitz continuous boundary

Γ = ∂Ω.

Definition 2.10. Lp (Ω) is the subspace of measurable functions,

Lp (Ω) =

{
v :

(∫
Ω

|v|p dx
)1/p

= ‖v‖Lp(Ω) < +∞

}
, (2.1.12)

for any integer p ≥ 1. In particular L2 (Ω), the square integrable functions on Ω,

are often of interest.

We have the following theorem.

Theorem 2.11. For p ≥ 1, the normed space
(
Lp (Ω) , ‖·‖Lp(Ω)

)
is a Banach

space. [48]

The Riesz Representation Theorem and Corollary for L2 (Ω) are often applied.

Theorem 2.12 (Riesz Representation Theorem [48]). Let p > 1 and 1
p
+ 1

q
= 1.

Then l ∈ (Lp (Ω))∗ iff there exists a unique g ∈ Lq (Ω) such that

l (f) =

∫
Ω

fgdx, f ∈ Lp (Ω) . (2.1.13)

Furthermore, g satisfies ‖l‖(Lp(Ω))∗ = ‖g‖Lq(Ω).
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Corollary 2.13 (Riesz Representation Theorem for L2 [48]). l ∈ (L2 (Ω))
∗ iff

there exists a unique g ∈ L2 (Ω) such that

l (f) =

∫
Ω

fgdx, f ∈ L2 (Ω) . (2.1.14)

Furthermore, g satisfies ‖l‖(L2(Ω))∗ = ‖g‖L2(Ω).

Another set of useful spaces are the Sobolev spaces.

Sobolev spaces are defined by

Wm,p (Ω) = {v ∈ Lp (Ω) : Dαv ∈ Lp (Ω)∀ |α| ≤ k} , (2.1.15)

where

Dαv =
∂|α|v

∂α1
x1 · · · ∂αn

xn

, |α| = α1 + · · ·+ αn, (2.1.16)

in the sense of distributions. In particular, the spaces

Hk (Ω) = W k,2 (Ω) , (2.1.17)

will be used. On this space, we will use the semi-norm

|v|m,Ω =

∑
|α|=m

|Dαv|2L2(Ω)

1/2

, (2.1.18)

and the norm

‖v‖m,Ω =

(∑
k≤m

|v|2k,Ω

)1/2

. (2.1.19)
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Note that L2 (Ω) = H0 (Ω), which leads to the notation |v|0,Ω to denote the norm

‖v‖L2(Ω). It is often written |v|0 and ‖v‖L2 when there is only one space of interest.

Of particular interest are L2 (Ω), H1 (Ω), H1
0 (Ω), H2 (Ω), and H2

0 (Ω).

Definition 2.14. Denote by D (Ω) the space of indefinitely differentiable functions

having a compact support in Ω, and by Hk
0 (Ω) the completion of D (Ω) for the

topology defined by the norms 2.1.19.

There are other definitions which are equivalent, but this definition will suffice

for Ω with Lipschitz continuous boundary.

Definition 2.15. With a Lipschitz continuous boundary, there exists an operator

γ0 : H
1 (Ω) → L2 (Γ) which is linear and continuous, such that γ0v is the trace of v

on Γ for every smooth v. Call γ0v the trace of v on Γ and denote it by v|Γ. Identify

H
1/2 (Γ) = γ0

(
H1 (Ω)

)
, (2.1.20)

with

‖g‖H1/2(Γ) = inf
v∈H1(Ω)
γ0v=g

‖v‖H1(Ω) . (2.1.21)

Then

H1 (Γ) ⊂ γ0
(
H1 (Ω)

)
⊂ L2 (Ω) ≡ H0 (Γ) , (2.1.22)

where every inclusion is strict. Similarly, the traces of functions in H2 (Ω) are

H3/2 (Γ) = γ0
(
H2 (Ω)

)
, (2.1.23)
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with norm

‖g‖H3/2(Γ) = inf
v∈H2(Ω)
γ0v=g

‖v‖H2(Ω) . (2.1.24)

This can be generalized to traces of higher-order derivatives, as well. If the bound-

ary is smooth enough, then it is possible to define ∂v
∂n
|Γ ∈ H1/2 (Γ) for v ∈ H2 (Ω).

Intuitively, the Sobolev spaces with fractional order can be considered as having

regularity properties that are between the properties of the integer orders nearby.

Definition 2.16. Let

H1
0 (Ω) =

{
v : v ∈ H1 (Ω) , v|Γ = 0

}
, (2.1.25)

and

H2
0 (Ω) =

{
v : v ∈ H1 (Ω) , v|Γ = 0,

∂v

∂n
|Γ = 0

}
. (2.1.26)

Theorem 2.17 (Poincaré Inequality). For v ∈ H1
0 (Ω), the Poincaré inequality is

|v|0,Ω ≤ C (Ω) |v|1,Ω , (2.1.27)

and the seminorm |·|1,Ω is therefore a norm on H1
0 (Ω), equivalent to ‖·‖1,Ω.

Next, consider functions that vanish on part of the boundary.

Definition 2.18. Suppose Γ = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. Define

H1
0,D (Ω) =

{
v : v ∈ H1 (Ω) , v|D = 0

}
, (2.1.28)
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then

H1
0 (Ω) ⊂ H1

0,D (Ω) ⊂ H1 (Ω) . (2.1.29)

The dual space of H1/2 (Γ) is often used.

Definition 2.19. Let H−1/2 (Γ) =
(
H1/2 (Γ)

)∗ be the dual space of H1/2 (Γ) with

dual norm

‖v∗‖−1/2,Γ = sup
v∈H1/2(Γ)

〈v, v∗〉
‖v‖1/2,Γ

, (2.1.30)

where 〈·, ·〉 denotes the duality between H−1/2 (Γ) and H1/2 (Γ).

It is sometimes convenient to write, formally,
∫
Γ
v∗vdx instead of 〈v∗, v〉.

A few important issues arise in treating these spaces. If Γ0 is a part of Γ, then

φ ∈ H1/2 (Γ0) cannot be extended by the zero function outside of Γ0 to a function

in H1/2 (Γ) even in the case that D (Γ0) is dense in H1/2 (Γ0). In the dual sense, if

Γ = Γ1 ∪ Γ2, one does not get all of H−1/2 (Γ) by patching functions of H−1/2 (Γ1)

and H−1/2 (Γ2). This has consequences in the analysis of finite element methods

since one often encounters H1/2 (∂T ) and H−1/2 (∂T ) where T is an element in the

partition of Ω.

Another important space is H (div; Ω).

Definition 2.20. Let

H (div; Ω) =
{
u : u ∈

(
L2 (Ω)

)d
,∇ · u ∈ L2 (Ω)

}
, (2.1.31)
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where ∇ · u is the divergence of u, with the norm

‖u‖div,Ω =
(
|u|20,Ω + |∇ · u|20,Ω

)1/2
. (2.1.32)

For u ∈ H (div; Ω), it is possible to define

u · n|Γ ∈ H−1/2 (Γ) . (2.1.33)

This space will occur in the analysis of mixed finite element methods constantly.

Functions belonging to H (div; Ω) satisfy an integration by parts formula.

Theorem 2.21 (Integration By Parts). For u ∈ H (div; Ω), the following formula

for integration by parts holds

∫
Ω

p∇ · udx+
∫
Ω

u · ∇pdx = 〈u · n, v〉 , ∀p ∈ H1 (Ω) . (2.1.34)

2.2 An Algebraic Model

As a particular case of (2.0.1), consider the simple non-linear algebraic equation

βu |u|+ u = −kp, (2.2.1)

with β ≥ 0. Relating parts of this equation to (2.0.1), identify Lu = u, N (u) =

βu |u|, and f = −kp. Below, it will be shown that this problem is well-posed and

the differentiability with respect to the parameters β and kp will be explored. To
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show that the problem is well posed, a unique solution must be found and it must

be shown that it depends continuously on the parameters β and kp.

2.2.1 A Unique Solution

If β = 0, then the unique solution is easy to obtain as u = −kp. If β 6= 0, then there

are two possibilities. First, if u > 0, the quadratic formula yields u = −1±
√
1−4βkp
2β

.

Since the square root gives a positive value and subtracting a positive value from

−1 will give a negative number, it must be that u = −1+
√
1−4βkp
2β

. Also, since

u > 0,
√
1− 4βkp > 1 so kp < 0. Second, if u < 0, the quadratic formula

yields u = −1±
√
1+4βkp

−2β
. Since u < 0, it must be that −1 ±

√
1 + 4βkp > 0.

Since the square root gives a positive value and subtracting a positive value from

−1 will give a negative number, it must be that u = −1+
√
1+4βkp

−2β
. Also, since

−1 +
√
1 + 4βkp > 0, it must be kp > 0. All of that leads to the unique solution

u =


−kp, if β = 0,

−1+
√
1−4βkp
2β

, if β 6= 0 and kp ≤ 0,

1−
√
1+4βkp
2β

, if β 6= 0 and kp ≥ 0.

(2.2.2)

As long as β 6= 0 it is easy to see that this is continuous in β and kp. We would

like to know that limβ→0 u (β) = −kp, that is that u is continuous at β = 0. If
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kp ≤ 0, using L’Hopital’s rule

lim
β→0

−1 +
√
1− 4βkp

2β
= lim

β→0

−4kp
2
√
1−4βkp

2

= lim
β→0

−kp√
1− 4βkp

= −kp. (2.2.3)

Similarly, if kp ≥ 0,

lim
β→0

1−
√
1 + 4βkp

2β
= lim

β→0

−4kp
2
√
1+4βkp

2

= lim
β→0

−kp√
1 + 4βkp

= −kp. (2.2.4)

So the unique solution depends continuously on the data; that is, the problem is

well posed.

2.2.2 Differentiability With Respect to the Parameters

Next, it is useful to show that the solution is differentiable with respect to the

parameters β and kp. Using implicit differentiation with respect to β, formally,

{∂βu} = − u |u|
2β |u|+ 1

, (2.2.5)
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which is continuous in β since β |u| ≥ 0 and u is continuous in β, and so the

differentiation was justified. Also

{∂kpu} = − 1

2β |u|+ 1
, (2.2.6)

which is continuous in kp for the same reasons as above.

2.3 Fluid Flow in Porous Media

For a thorough treatment of fluid flow in porous media see [6]. In this work, a

model is derived based on [26]; we also follow [27, 25, 23].

Three equations are required in order to develop a model for fluid flow in porous

media: conservation of momentum, conservation of mass, and an equation of state.

The equation for conservation of momentum describes the relationship between the

velocity u and the gradient of pressure p:

κ (x, ρ, u)u+∇p = g (x) . (2.3.1)

Here κ (x, ρ, u) is the (non-linear) resistance tensor, ρ is the density, and g ∈

(L2 (Ω))
2 represents gravity-like effects. In general, κ is a full tensor which can be

determined from measurements or homogenized from microscale data [24, 31]. See

[59, 58] specifically for finding κ from pore-scale simulations.
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The form of κ is taken to be

κ (x, ρ, u) = K−1 + β (x, ρu) , (2.3.2)

as in [27], where K−1 and β (x, ρu) are symmetric, uniformly positive definite

tensors with components in L∞ (Ω). A tensor β (x) is symmetric, uniformly positive

definite if there exist constants 0 < βm ≤ βM , independent of x, such that βm ‖u‖ ≤

u·β (x)u ≤ βM ‖u‖. Taking β (x, ρu) ≡ 0 results in the Darcy system. Let β (x, ρu)

be diagonal. If κ has off-diagonal terms, then it is said to be anisotropic.

The equation for conservation of mass is

φ (x) ∂tρ+∇ · u = f (x, t) . (2.3.3)

In this equation φ (x) is the porosity. The function f (x, t) represents sources and

sinks of mass such as wells. Since κ is uniformly, symmetric positive definite, it is

invertible. It is possible to use the inverse of κ to write this as one equation, but

that will not be done.

The equation of state is an equation which relates ρ and p so that one of the

variables may be eliminated. To simplify the problem assume that ρ and φ are

constants equal to one:

κ (x, u)u+∇p = g (x) ,

∇ · u = f (x) .
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In this case, take f ∈ L2 (Ω). For simplicity of notation, x is sometimes omitted

so that

κ (u)u+∇p = g,

∇ · u = f.

In this work,

κ (x, u) = K−1 (x) + β (x)

 |u1|

|u2|

 , (2.3.4)

where K−1 (x) and β (x) are symmetric uniformly positive definite tensors and

β (x) is diagonal.

Since Ω is a bounded domain, it will also be important to introduce boundary

conditions. Let ΓD ⊂ ∂Ω be the part of the boundary where Dirichlet conditions

are to be satisfied and ΓN ⊂ ∂Ω be the part of the boundary where Neumann

conditions are to be satisfied. It is assumed that Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅.

With that notation, the following system of equations are complete

∇ · u = f (x) , in Ω, (2.3.5)

κ (u)u = −∇p+ g (x) , in Ω, (2.3.6)

p = pD (x) , on ΓD, (2.3.7)

u · n = uN (x) , on ΓN . (2.3.8)

Call that system of equations the strong form of the flow model.
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2.3.1 Well-Posedness of the Nonlinear non-Darcy Flow Model

Proving the well-posedness for a non-linear flow model presents some difficulties.

First we overview approaches known from the literature for related models, and

next we prove one of our main contributions.

2.3.1.1 Related Models

Here we provide literature overview on non-Darcy flow models and their analyses.

The models considered are similar to, but not exactly the same as our model of

flow (2.3.5)-(2.3.8). An important distinction is that our model is not an evolution

model while all of the following models are.

In [23], models of the form

G (ρ, v) +∇p = 0, x ∈ Ω, t ≥ 0, (2.3.9)

φ∂tρ+∇ · (ρv) = f, x ∈ Ω, t ≥ 0, (2.3.10)

p = p (ρ) , (2.3.11)

or an equivalent system of the form

G (ρ,m) +∇p = 0, x ∈ Ω, t ≥ 0, (2.3.12)

φ∂tρ+∇ ·m = f, x ∈ Ω, t ≥ 0, (2.3.13)

p = p (ρ) , (2.3.14)
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where m = ρv is the momentum, are considered. The model considered in this

work does not have the time derivative, but has a similar form to (2.3.9)-(2.3.11)

or (2.3.12)-(2.3.14).

The existence and uniqueness of a solution are proved by invoking a theorem

from [38]. Finally, a finite element method (see Section 2.3.2.2) for the approxi-

mation of the solution is developed. In particular, the lowest order mixed finite

element spaces are advocated and analyzed for the spatial derivatives. The time

derivative is approximated using a difference quotient as in Section 2.4.3.

Another similar problem in addressed in [25]. Their model is of the form

ε∂tρ+∇ · ρv = 0,

(ρc)∗ ∂tT + (ρc)f v · ∇T −∇ · [(λ∗ (T ) +D (v)) · ∇T ] = 0,

and one of the following momentum equations

µ (T ) v +K · (∇p+ ρg) = 0,

ρ

ε
∂tv + µ (T )K−1v + cjρσ (v) +∇p+ ρg = 0.

They assume the fluid is “incompressible but dilatable” which they define with the

constitutive equation

ρ = ρ0 (1− β (T − T0)) .
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It is also assumed that

µ (T ) = λ0e
γ(T−T0),

Dij (v) = αL |v|−1 vivj + αT |v|−1 (|v|2 δij − vivj
)
.

The terms (ρc)f and (ρc)s are the fluid and solid head capacity and (ρc)∗ =

ε (ρc)f + (1− ε) (ρc)s. Next, λ∗ (T ) is the thermal conductivity of the medium,

D the dispersion tensor, µ (T ) the viscosity, and K the permeability. The term

σ (v) is allowed to take several forms which are related to the permeability of the

Darcy form of the equation. The thermal terms and the time dependence are the

primary differences with the problem we are concerned with. The main result of

the paper is to give some assumptions that guarantee the existence and uniqueness

of a solution.

In [4], a class of problems with the form

g (x, |u|B)u = −Π∇p,

is analyzed. The term |u|B is defined by

|u|B =
√

(B (x)u, u),

where B (x) is a positive definite tensor with bounded entries. It is required that

g (x, 0) > 0. In the analysis, the spatial variable is eliminated by assuming that Π

and B are the identity matrix. It is further assumed that g (0) > 0 and g′ (s) ≥ 0
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for all s ≥ 0. Those assumptions allow them to write

G (|u|) = g (|u|)u = |∇p|

and

u = −K (|∇p|)∇p,

where

K (|∇p|) = 1

g (G−1 (|∇p|))
.

It is shown that F (y) = K (|y|) y is monotone. Two initial boundary value prob-

lems are considered. Both use the following equations:

∂tp = ∇ ·K (|∇p|)∇p, in Ω× (0,∞) ,

p (x, 0) = p0 (x) , in Ω,

p · n = 0, on Γe × (0,∞) .

Two types of boundary conditions are considered: Dirichlet conditions are consid-

ered with the form

p (x, t) = φ (x, t) , on Γi × (0,∞) ,

and a total flux condition with the form

−
∫
Γi

K (|∇p|)∇p · n = Q (t) , on Γi × (0,∞) .
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Uniqueness is proved for both problems.

2.3.1.2 Well-posedness proof

Our model is a special case of a model studied in [66], and so we would like to

apply the following theorem from that paper.

Theorem 2.22 (Theorem 3.2 of [66]). Let V and Q be real Hilbert spaces, and

let there be given the operators E1, A : V → V ′, B : V → Q′, E2, C : Q →

Q′. Assume E1 and E2 are continuous, linear, symmetric, and nonnegative, B is

continuous and linear, and A and C are maximal monotone with (for simplicity)

A (0) 3 0, C (0) 3 0. Denote by V1 and Q2 the spaces V and Q with respective

semiscalar products arising from E1 and E2, and let their (Hilbert space) duals be

designated by V ′
1 and Q′

2. Assume the following:

• The operators E1, A, and B satisfy

lim
‖u‖V +‖ξ‖V ′→+∞

with ξ∈A(u)

(
|u|2V1

+ ξ (u) + ‖Bu‖2Q′

)
= +∞. (2.3.15)

• The operator B : V → Q′ has closed range. (Then the same holds for

B′ : Q→ V ′.)

• The operators E2 and C satisfy

lim
‖η‖Q′→+∞

with η∈C(p)

(
|p|2Q2

+ η (p)
)
= +∞. (2.3.16)
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• There is a constant K such that for every h ∈ Q′ and ε > 0, the condition

p ∈ KerB′ : (εR2 + E2) p (q) = h (q) for all q ∈ KerB′ (2.3.17)

implies that ‖p‖Q ≤ K ‖h‖Q′.

Then the resolvent system u ∈ V , p ∈ Q:

E1u+ ξ +B′p = g, ξ ∈ A (u) in V ′, (2.3.18)

E2p−Bu+ η = f, η ∈ C (p) in Q′ (2.3.19)

has a solution for each pair g ∈ V ′
1 and f ∈ Q′

2.

We will take E1 = 0, E2 = 0, A (u) = κ (u)u, B′ the negative of the gradient

operator, B the divergence operator, and C = 0. In that case, (2.3.18)-(2.3.19)

becomes

κ (u)u−∇p = g, in V ′,

∇ · u = −f, in Q′,

which is the system in (2.3.5)-(2.3.8).

Remark 3.1 of [66] tells us that (2.3.15) holds if A maps bounded sets into

bounded sets, and satisfies the growth condition

lim
‖u‖V →+∞

ξ∈A(u)

(
ξ (u) + ‖Bu‖2Q′

)
= +∞.
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Another simplification comes from Remark 3.2, which tells us that (2.3.16) holds

if C = 0. Finally, Remark 3.3 tells us that (2.3.17) is satisfied if C = 0 and E2 = 0.

The following corollary summarizes the findings so far.

Corollary 2.23. Let V = H (div; Ω) and W = L2 (Ω). The system

κ (u)u−∇p = g, in V ′, (2.3.20)

∇ · u = −f, in W ′, (2.3.21)

with κ defined by (2.3.4) is well posed for f ∈ W ′ and g ∈ V ′ since

• The divergence operator is continuous and linear with closed range.

• The operator κ (u)u satisfies κ (0) 0 = 0.

• The operator κ (u)u maps bounded sets into bounded sets.

• The growth condition

lim
‖u‖V →+∞

ξ∈A(u)

(
u · κ (u)u+ ‖∇ · u‖2W ′

)
= +∞ (2.3.22)

is satisfied.

• The operator κ (u)u is a monotone operator.

Proof. It is well known that the divergence operator is continuous and linear with

closed range [65]. Since κ (0) = K−1 is a positive definite tensor

κ (0) 0 = 0.
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Let S ⊂ V be a bounded set, then there exists C > 0 such that ‖u‖V ≤ C for

all u ∈ S. Let u ∈ S, then

‖κ (|u|)u‖ =

∥∥∥∥∥K−1u+
n∑

i=1

|u|αi β−1
i u

∥∥∥∥∥
≤

∥∥K−1u
∥∥+ ∥∥∥∥∥

n∑
i=1

|u|αi β−1
i u

∥∥∥∥∥
≤

∥∥K−1u
∥∥+ n∑

i=1

|u|αi
∥∥β−1

i u
∥∥

≤
∥∥K−1

∥∥ ‖u‖+ n∑
i=1

|u|αi
∥∥β−1

i

∥∥ ‖u‖
≤

(∥∥K−1
∥∥+ max

1≤i≤n
|u|αi

n∑
i=1

∥∥β−1
i

∥∥)C
≤

(
CK + n max

1≤i≤n
|u|αi max

1≤i≤n

∥∥β−1
i

∥∥)C
≤

(
CK + Cβ max

1≤i≤n
|u|αi

)
C

Replacing the norms of the tensors is justified since K−1 and β−1
i have bounded

entries. Since |u| ≤ c ‖u‖V for some c > 0 we have

‖κ (|u|)u‖ ≤
(
CK + Cβ max

1≤i≤n
|u|αi

)
C

≤
(
CK + max

1≤i≤n
(c ‖u‖V )

αi

)
C

which is a constant independent of u. So κ (|u|)u maps bounded sets into bounded

sets.
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Next,

lim
‖u‖V →+∞

ξ∈A(u)

(
u · κ (|u|)u+ ‖∇ · u‖2W ′

)
≥ lim

‖u‖V →+∞
ξ∈A(u)

u · κ (|u|)u

≥ lim
‖u‖V →+∞

ξ∈A(u)

u · κ (0)u

= lim
‖u‖V →+∞

ξ∈A(u)

u ·K−1u

= +∞,

so the growth condition is satisfied.

Finally, it remains to show that the operator A (u) = κ (|u|)u is monotone. Let

u, v ∈ V , then

(A (u)− A (v) , u− v) =

K−1u+ β

 |u1|

|u2|

u, u− v


−

K−1v + β

 |v1|

|v2|

 v, u− v


=
(
K−1 (u− v) , u− v

)
+

β
 |u1|

|u2|

u− β

 |v1|

|v2|

 v, u− v


Since K−1 is positive definite,

(
K−1 (u− v) , u− v

)
≥ 0.
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Let M = max (|u1| , |v1|) and m = min (|u1| , |v1|), then

u21 |u1|+ v21 |v1| =M3 +m3

and

|u1v1 (|u1|+ |v1|)| ≤Mm (M +m) =M2m+Mm2

so

(u1 |u1| − v1 |v1|) (u1 − v1) ≥M3 +m3 −M2m−Mm2

=
[
M2 −m2

]
(M −m)

≥ 0.

In the same way,

(u2 |u2| − v2 |v2|) (u2 − v2) ≥ 0.

Since the entries of β (x) are nonnegative,

β
 |u1|

|u2|

u− β

 |v1|

|v2|

 v, u− v

 ≥0,

so A (u) = κ (|u|)u is monotone.

Remark 2.24. The present theory makes it difficult to use a more general form for
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β. For instance, if

β =

 β11 β12

β12 β22


and

|u| =

 |u1|

|u2|

 ,
then

β |u| =

 β11 |u1| β12 |u2|

β12 |u1| β22 |u2|

 .
A theorem in [49] states that the product β |u| is positive definite iff β |u| is normal,

that is

β |u| (β |u|)T = (β |u|)T β |u| . (2.3.23)

The entry in the first row and first column on the left side of (2.3.23) is

β2
11 |u1|

2 + β2
12 |u2|

2

and on the right side of (2.3.23) is

β2
11 |u1|

2 + β2
12 |u1|

2 ,

which are not equal unless |u1| = |u2|.
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Remark 2.25. Another form for κ (u) was proposed in [27] with

κ (u) = K−1 + β |u|

where

|u| =

√√√√ d∑
i=1

u2i .

That choice of κ (u) will not suffer from the problems in Remark 2.24, but will

have another problem. An example will show some of the difficulty in that choice.

Let

β =

 10000

1
10000

 .
Choose u = (1, 0)T and v =

(
1
5
, 100

)T then |u| = 1 and

|v| =
√

250001

25
> 100.

Then

(β (|u|u− |v| v) , u− v) = 10000 (|u|u1 − |v| v1) (u1 − v1)

+
1

10000
(|u|u2 − |v| v2)

= 8000− 1600 |v| − 1

100
|v|

< 0.

That is, the operator β (·) is not monotone.
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2.3.2 Numerical Algorithm for the Nonlinear Flow Model

There are two pieces to the solver that will be developed: solving the linear flow

problem with anisotropy, then solving the non-linear flow problem. The linear

flow problem may be solved by applying the results in [2]. In [2], a method is

proposed which is based on the mixed finite element method. It is shown that

the mixed finite element method is equivalent, up to the error in the numerical

quadrature, to a cell-centered finite difference method. It is proposed that the non-

linear flow problem may be solved by using an approximate Newton’s method. A

similar method was proposed in [27], however, in that paper only diagonal tensors

were allowed. The proof of convergence of the method is not provided, however

numerical experiments have demonstrated the effectiveness of the method. See

Listing 1 for the implementation.

2.3.2.1 Cell-Centered Finite Difference Methods for Elliptic Equa-

tions

Consider the equation

−∇ · (κ∇p) = f. (2.3.24)

Let κ be a symmetric uniformly positive definite tensor. Then the equation (2.3.24)

is elliptic. For well-posedness, we need to impose boundary conditions. There are

many options for boundary conditions that will close the system, but in this work

Dirichlet conditions which fix p and Neumann conditions which fix κ∇p are used.
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It is not sufficient to use only Neumann conditions, but only Dirichlet conditions

will suffice.

For simplicity of presentation, two spatial dimensions will be used. Equations

of this type arise naturally in many settings including the study of fluid flow in

porous media, where κ can be a full tensor. A full tensor arises in the study of fluid

flow in porous media when there is anisotropy in the medium. For an exposition

on a simpler model (κ ≡ I), see [12] or [40]. In [40], a higher order method is

explored. The following is related to the method presented in [2] and [62].

For an illustration of the computational grid used for the cell-centered finite

difference method, see Figure 2.3.1. Let x0 < x1 < · · · < xNx and y0 < y1 < · · · <

yNy be given sequences defining the grid. Let xi+1/2 =
xi+xi+1

2
and yj+1/2 =

yj+yj+1

2
.

Define ∆xi = xi+1 − xi and ∆yj = yj+1 − yj. The pressure will be approximated

at the centers of the cells, that is

pi+1/2,j+1/2 ≈ p

(
xi + xi+1

2
,
yj + yj+1

2

)
. (2.3.25)

The difficulty is, then, to approximate the differential equation above. First, dis-

cretize the divergence operator and approximate κ∇p at the cell edges by

[∇ · (κ∇p)]i+1/2,j+1/2 =
[κ∇p] |xi+1,yj+1/2,1 − [κ∇p] |xi,yj+1/2,1

∆xi

+
[κ∇p] |xi+1/2,yj+1,2 − [κ∇p] |i+1/2,yj ,2

∆yj
, (2.3.26)

where the last subscript indicates which component of κ∇p is used. Next, consider
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Figure 2.3.1: The computational grid for the Cell-Centered Finite Difference
Method. The pressure p is approximated at cell-centers

(
xi+ 1

2
, yj+ 1

2

)
marked by

•. The stencil for pi+ 1
2
,j+ 1

2
includes ∂dp at the points indicated by 2 and D. At

the points indicated by 2, only the derivative in the normal direction is approxi-
mated. At the points indicated by D, both the derivatives in the normal and the
parallel directions are approximated. The derivative in the parallel directions ∂dp
are approximated by interpolation.
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the form of κ∇p. Suppose that at a given point,

κ =

 κ11 κ12

κ12 κ22

 , (2.3.27)

then  κ11 κ12

κ12 κ22


 ∂xp

∂yp

 =

 κ11∂xp+ κ12∂yp

κ12∂xp+ κ22∂yp

 . (2.3.28)

These calculations suggest that ∂xp and ∂yp must be approximated at each

cell edge. In particular, for the direction perpendicular to the cell edge, simply

approximate using the usual difference quotient. That is

∂xp|xi,yj+1/2
≈ ∂xpi,j+1/2 =

pi+1/2,j+1/2 − pi−1/2,j+1/2

∆xi
,

∂yp|xi+1/2,yj ≈ ∂ypi+1/2,j =
pi+1/2,j+1/2 − pi+1/2,j−1/2

∆yj
. (2.3.29)

For the direction parallel to the cell edge, it is necessary to interpolate the deriva-

tive. This leads to

∂xpi+1/2,j =
(∆xi+1 −∆xi−1)∆yj

(∆xi +∆xi−1) (∆xi +∆xi+1) (∆yj +∆yj−1)
pi+1/2,j−1/2

+
(∆xi+1 −∆xi−1)∆yj−1

(∆xi +∆xi−1) (∆xi +∆xi+1) (∆yj +∆yj−1)
pi+1/2,j+1/2

+
∆yj

(∆yj +∆yj−1) (∆xi +∆xi+1)
pi+3/2,j−1/2
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− ∆yj
(∆yj +∆yj−1) (∆xi +∆xi−1)

pi−1/2,j−1/2

+
∆yj−1

(∆yj +∆yj−1) (∆xi +∆xi+1)
pi+3/2,j+1/2

− ∆yj−1

(∆yj +∆yj−1) (∆xi +∆xi−1)
pi−1/2,j+1/2 (2.3.30)

and

∂ypi,j+1/2 =
∆xi (∆yj+1 −∆yj−1)

(∆yj +∆yj−1) (∆yj +∆yj+1) (∆xi +∆xi−1)
pi−1/2,j+1/2

+
∆xi−1 (∆yj+1 −∆yj−1)

(∆yj +∆yj−1) (∆yj +∆yj+1) (∆xi +∆xi−1)
pi+1/2,j+1/2

+
∆xi

(∆xi +∆xi−1) (∆yj +∆yj+1)
pi−1/2,j+3/2

− ∆xi
(∆xi +∆xi−1) (∆yj +∆yj−1)

pi−1/2,j−1/2

+
∆xi−1

(∆xi +∆xi−1) (∆yj +∆yj+1)
pi+1/2,j+3/2

− ∆xi−1

(∆xi +∆xi−1) (∆yj +∆yj−1)
pi+1/2,j−1/2. (2.3.31)

Finally, a single expression is necessary. Let fi+1/2,j+1/2 be the value of f at the

cell center, then

−∆xi∆yjfi+1/2,j+1/2 = ∆yj [κ∇p] |xi+1,yj+1/2,1 −∆yj [κ∇p] |xi,yj+1/2,1

+∆xi [κ∇p] |xi+1/2,yj+1,2 −∆xi [κ∇p] |i+1/2,yj ,2

= ∆yj [κ11∂xp+ κ12∂yp] |xi+1,yj+1/2

−∆yj [κ11∂xp+ κ12∂yp] |xi,yj+1/2

+∆xi [κ12∂xp+ κ22∂yp] |xi+1/2,yj+1,2
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−∆xi [κ12∂xp+ κ22∂yp] |i+1/2,yj ,2. (2.3.32)

In the case of a homogeneous κ and uniform grid, this results in

−∆xi∆yjfi+1/2,j+1/2 = −4κ11pi+1/2,j+1/2

+κ11
(
pi+3/2,j+1/2 + pi−1/2,j+1/2

)
+κ22

(
pi+1/2,j+3/2 + pi+1/2,j−1/2

)
+
κ12
2

(
pi−1/2,j−1/2 + pi+3/2,j+3/2

)
−κ12

2

(
pi+3/2,j−1/2 + pi−1/2,j+3/2

)
. (2.3.33)

It is shown in [2, 62] that the method constructed using cell-centered finite dif-

ferences is equivalent, up the the error in numerical quadrature, to a mixed finite

element method. The equivalence is demonstrated below.

As mentioned above, the regularity requirements on the data are reduced using

the finite element method, with respect to the finite difference approaches.

2.3.2.2 Mixed Finite Element Methods

Finite element methods are numerical methods for solving partial differential equa-

tions, which are particularly useful for complicated domains with irregular bound-

aries, and for solutions with low regularity.

Similarly to the finite volume method, they decompose the domain into a collec-

tion of elements. In contrast to the finite volume method, finite element methods
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treat the differential equation in weak form. On each element, a basis for a finite

dimensional subspace of the test functions and the solutions is found and a system

of equations is derived. This process is described in more detail below.

The most common type of finite element methods are Galerkin finite element

methods, but in this work mixed finite element methods are of primary interest.

Mixed finite element methods have the advantage of producing a conservative

velocity [2, 10].

2.3.2.3 Elements and Function Spaces

Since the connection between finite element methods and finite difference methods

is of interest, only rectangular elements will be considered. The following definition

from [9] will be necessary.

Definition 2.26. A partition T = {T1, T2, . . . , TM} of Ω into triangular or quadri-

lateral elements is called admissible provided the following properties hold:

• Ω =
⋃M

i=1 Ti.

• If Ti ∩ Tj consists of exactly one point, then it is a common vertex of Ti and

Tj.

• If for i 6= j, Ti∩Tj consists of more than one point, then Ti∩Tj is a common

edge of Ti and Tj.

When every element has diameter at most 2h it is convenient to write Th.
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It is important in the present systems to approximate the space H (div;T )

where T is an element. Since the elements are rectangles, the spaces RT[k] will be

used. The spaces RT[k] are rectangular elements which approximate the solution

with functions formed as tensor products of polynomials of degree k + 1 in one

direction combined with polynomials of lower degree in other directions. The

space RT[k] is formally defined below.

The implementation in Listing 1 use RT[0], but it is useful to develop the

theory in general. Let K̂ = (−1, 1)2 be the reference element. Then the following

definitions are needed.

Definition 2.27. On the element K, define Pk (K) to be the space of polynomials

of degree less than or equal to k. Then define

Pk1,k2 (K) =

p (x1, x2) : p (x1, x2) =
∑
i≤k1
j≤k2

aijx
i
1x

j
2

 , (2.3.34)

the space of polynomials of degree less than or equal to k1 in x1 and less than or

equal to k2 in x2. Then define

Qk (K) = Pk,k (K) . (2.3.35)

With those spaces in mind, define RT[k].
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Definition 2.28. Let RT[k] be defined by

RT[k] = (Qk)
2 + xQk,

= Pk+1,k × Pk,k+1,
(2.3.36)

and

dimRT[k] = 2 (k + 1) (k + 2) . (2.3.37)

Moreover, for qk ∈ RT[k],

∇ · qk ∈ Qk, (2.3.38)

and

q · n|ei ∈ Pk (ei) , (2.3.39)

where ei is an edge. Also, let

RT 0
[k] =

{
q ∈ RT[0] : ∇ · q = 0

}
. (2.3.40)

Note that RT[0] will allow the approximate solution (ph, uh) to satisfy

‖u− uh‖Hdiv
= O (h) ,

‖p− ph‖L2 = O (h) ,

where (p, u) is the exact solution.

In this work we do not study the approximation error between u and uh, but

rather focus on the modeling error and solution techniques.



45

2.3.2.4 Saddle Point Problems

Many problems of interest can be expressed in the form of a saddle point problem.

Definition 2.29. Let V be a Hilbert space, A : V → V ′ a continuous linear

operator, B : V → Q′ a linear operator and BT : Q → V ′ it transpose. A saddle

point problem has the form

Au+BTp = f, in V ′,

Bu = g, in Q′.
(2.3.41)

Problems of this form arise naturally in some applications. It is sometimes

possible to eliminate the variable u and solve for p using the relation

g = BA−1
(
f −BTp

)
.

The theory for saddle point problems with linear operators is developed in [10].

The classical method for solving saddle point problems is Uzawa’s Algorithm.

From [9], the basic algorithm and two methods of implementation are given. Sup-

pose the system has been discretized so that A ∈ Rn×n, B ∈ Rm×n.

Algorithm 2.30 (Uzawa’s Algorithm). [9] Let p0 ∈ Rm. Find uk and pk so that

Auk = f −BTpk−1.

pk = pk−1 + α (Buk − g) .
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It is sufficient that α < 2
∥∥BA−1BT

∥∥−1.

To implement the method directly requires an extra multiplication by A−1 in

every iteration than is necessary if the algorithm is implemented carefully.

Algorithm 2.31 (Gradient Based Uzawa’s Algorithm). [9] Let p0 ∈ Rm and

Au1 = f −BTp0. For k = 1, 2, . . . , compute

qk = g −Buk,

λk = BT
k ,

hk = A−1λk,

αk =
q′kqk
λkhk

,

pk = pk−1 − αkqk,

uk+1 = uk + αkhk.

In order to speed up convergence, it is often necessary to use conjugate direc-

tions.

Algorithm 2.32 (Uzawa’s Algorithm with Conjugate Directions). [9] Let p0 ∈ Rm

and Au1 = f −BTp0. Set d1 = −q1 = Bu1 − g. For k = 1, 2, . . . , find

λk = BTdk,

hk = A−1pk,

αk =
q′kqk
p′khk

,

pk = pk−1 + αkdk,
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uk+1 = uk − αkhk,

qk+1 = g −Buk+1,

βk =
q′k+1qk+1

q′kqk
,

dk+1 = −qk+1 + βkdk.

Uzawa’s algorithm often has slow convergence, so it is beneficial to try to

express a model in a way that avoids the use of Uzawa’s Algorithm.

Example. The following example illustrates the use of Uzawa’s Algorithm.

Consider solving the problem

κu+∇p = G,

∇ · u = F,

p|∂Ω = 0,

on a cell-centered finite difference grid in (0, 1)× (0, 1). Let the grid be defined by

pi+jN = p
(

i+1
N+1

, j+1
N+1

)
for i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , N − 1}, ui+j(N+1) =

u
(

i
N
, j+1
N+1

)
for i ∈ {0, . . . N} and j ∈ {0, . . . , N − 1}, uN(N+1)+i+jN = u

(
i+1
N+1

, j
N

)
for i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , N − 1}. Let h = 1

N+1
be the grid spacing.

The gradient operator may be approximated by ∇p
(

i
N
, j+1
N+1

)
≈ pi+jN−pi−1+jN

h

and ∇p
(

i+1
N+1

, j
N

)
≈ pi+jN−pi+(j−1)N

h
in the interior of the domain. The operator ∇h

which represents the finite difference approximation of the gradient has dimension

2 (N + 1)N ×N2. Row i+ j (N + 1) for i ∈ {1, . . . N − 1} and j ∈ {0, . . . , N − 1}
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corresponds to the gradient on the cell edge at
(

i
N
, j+1
N+1

)
and has entries 1

h
and − 1

h

in columns i+jN and i−1+jN , respectively. Row j (N + 1) for j ∈ {0, . . . , N − 1}

corresponds to the gradient on the boundary and has entry 1
h

in column jN . Row

N + j (N + 1) for j ∈ {0, . . . , N − 1} also corresponds to the gradient on the

boundary and has entry − 1
h

in column N − 1 + jN . Row N (N + 1) + i+ jN for

i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , N − 1} corresponds to the gradient on the cell

edge at
(

i+1
N+1

, j
N

)
and has entries 1

h
and − 1

h
in columns i+jN and i+(j − 1)N . Row

N (N + 1) + i for i ∈ {0, . . . , N − 1} corresponds to the gradient on the boundary

and has entry 1
h

in column i. Row N (N + 1) + i + N2 for i ∈ {0, . . . , N − 1}

also corresponds to the gradient on the boundary and has entry − 1
h

in column

i+ (N − 1)N .

The divergence operator may be approximated by

divhu

(
i

N + 1
,

j

N + 1

)
≈
ui+j(N+1) − ui−1+j(N+1)

h

+
uN(N+1)+i+jN − uN(N+1)+i+(j−1)N

h
.

The operator divh which represents the finite difference approximation of the diver-

gence operator has dimension N2×2 (N + 1)N . Row i+jN for i ∈ {0, . . . , N − 1}

and j ∈ {0, . . . , N − 1} corresponds to the divergence at
(

i+1
N+1

, j+1
N+1

)
and has en-

tries 1
h

in columns i + j (N + 1) and N (N + 1) + i + jN as well as entries − 1
h

in

columns i− 1 + j (N + 1) and N (N + 1) + i+ (j − 1)N .

Note that ∇h and divh are negative transposes of one another. This fact is
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easily checked for the case N = 2. The operators are given by

∇h =
1

h



1

−1 1

−1

1

−1 1

−1

1

1

−1 1

−1 1

−1

−1



,

divh = −∇T
h .

By a simple rearrangement, this discretization can be put into a form that may

be solved using Uzawa’s algorithm. Given N , let ∇h and divh be given as above.

Find uh, ph that satisfy

κuh +∇hph = G,

−divhuh = −F,

ph|∂Ω = 0.
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Algorithms 2.31 and 2.32 are implemented for this experiment in Listing 10.

With N = 10 (i.e., with 10 × 10 = 100 pressure unknowns), the gradient based

implementation takes 440 iterations and the conjugate gradient based implemen-

tation takes only 15 iterations. In what follows, the system is decoupled so that

the slow convergence of Uzawa’s algorithm may be avoided.

2.3.2.5 Approximation of Integrals and Relation to Cell Centered Fi-

nite Differences

Now we discuss how the mixed finite element method is related to the cell-centered

finite difference implementation. Through this relationship we know that, even for

not very regular solutions, the cell-centered approximations converge. In turn, the

implementation is easier since the velocity unknowns can be easily eliminated. We

follow known work cited below.

Since the integrals encountered in the formulation of a finite element method

cannot be computed exactly, methods for approximating the integrals are nec-

essary. Two one dimensional integration methods: the midpoint rule and the

trapezoidal rule are useful [62, 2].

Definition 2.33. Let f ∈ C2 [a, b] and let h = b− a, then there exists ξT ∈ (a, b)

such that ∫ b

a

f (x) dx =
h

2
[f (a) + f (b)]− h3

12
f ′′ (ξT ) . (2.3.42)

The quantity h
2
[f (a) + f (b)] defines the trapezoidal rule. There exists ξM ∈ (a, b)
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such that ∫ b

a

f (x) dx = hf

(
a+ b

2

)
+
h3

3
f ′′ (ξM) . (2.3.43)

The quantity hf
(
a+b
2

)
defines the midpoint rule.

For proofs see [12].

Consider solving

∫
Ω

κu · v −
∫
Ω

p∇ · v =

∫
Ω

G · v, (2.3.44)∫
Ω

w∇ · u =

∫
Ω

Fw, (2.3.45)

in Ω = (0, 1) × (0, 1). This is a weak formulation of (2.3.5)-(2.3.6). Let ph =∑
pi,jξi,j where ξi,j is a characteristic function for cell i, j and let

uh|Ωi,j
(x, y) =

 ψi−1/2 (x)ui−1/2 + ψi+1/2 (x)ui+1/2

φj−1/2 (y)uj−1/2 + φj+1/2 (y)uj+1/2

 ,

where ψi−1/2 is a basis polynomial of degree one supported only on Ωi−1,j∪Ωi,j and

φj−1/2 is a basis polynomial of degree one supported only on Ωi,j−1 ∪ Ωi,j. Using

wh = ξi,j, the discrete analog of (2.3.45) is

∆xi∆yjFi,j =

∫
Ωi,j

∇ · u

= ui+1/2 − ui−1/2 + uj+1/2 − uj−1/2. (2.3.46)

Next, the momentum equation will be treated using a combination of the midpoint
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and trapezoidal rules.

First, the x-direction will be considered. Let vh =
(
ψi+1/2,j, ξi+1/2,j

)
be a test

function that is linear in the x-direction and constant in the y-direction. Note that

vh is supported on Ωi,j ∪ Ωi+1,j. The first term of (2.3.44) is approximated by

∫
Ω

κu · vh =

∫
Ωi,j

κu · vh +
∫
Ωi+1,j

κu · vh

=

∫
Ωi,j

κ1
(
ψi−1/2 (x)ui−1/2 + ψi+1/2 (x)ui+1/2

)
ψi+1/2,j

+

∫
Ωi,j

κ2
(
φj−1/2 (y)uj−1/2 + φj+1/2 (y)uj+1/2

)
ξi+1/2,j

+

∫
Ωi+1,j

κ1
(
ψi−1/2 (x)ui−1/2 + ψi+1/2 (x)ui+1/2

)
ψi+1/2,j

+

∫
Ωi+1,j

κ2
(
φj−1/2 (y)uj−1/2 + φj+1/2 (y)uj+1/2

)
ξi+1/2,j

=
∆xi +∆xi+1

2
∆yjκ1ui+1/2 + c (∆x)3 (∆y)3 . (2.3.47)

The second term of (2.3.44) is, exactly,

∫
Ω

p∇ · vh =

∫
Ωi,j

pi,jψi+1/2,j +

∫
Ωi+1,j

pi+1,jψi+1/2,j

= ∆yj (pi,j − pi+1,j) .

The source term in (2.3.44) is approximated, in the same way as in (2.3.47), by

∫
Ω

G · vh =
∆xi +∆xi+1

2
∆yjGi+1/2 + c (∆x)3 (∆y)3 .
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This leads to a method where

ui+1/2 = 2
∆yj

∆xi +∆xi+1

κ−1
1 (pi,j − pi+1,j) + κ−1

1 Gi+1/2. (2.3.48)

In an analogous way, the y-direction may be approximated using

vh =
(
ξi,j + ξi,j+1, φi,j+1/2

)
.

This decouples the saddle point problem since, if ph were known, it would be

possible to find uh using those formulas. Substituting (2.3.48) into (2.3.46) yields

∆xi∆yjFi,j = 2
∆yj

∆xi +∆xi+1

κ−1
1 (pi,j − pi+1,j)

−2
∆yj

∆xi−1 +∆xi
κ−1
1 (pi−1,j − pi,j)

+2
∆xi

∆yj +∆yj+1

κ−1
2 (pi,j − pi,j+1)

−2
∆xi

∆yj−1 +∆yj
κ−1
2 (pi,j−1 − pi,j)

+κ−1
1

(
Gi+1/2 −Gi−1/2

)
+ κ−1

2

(
Gj+1/2 −Gj−1/2

)
,

which can be rearranged so that it has the form of a cell-centered finite difference

method similar to Section 2.3.2.1.

In Section 2.3.2.1,
(
xi+ 1

2
, yj+ 1

2

)
was the cell-center where p was approximated

while in this section (xi, yj) is the cell-center where p is approximated. This dif-

ference is only a difference in notation and does not reflect a difference in the

approximation.
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2.3.2.6 Mixed Finite Element Method for the Linear Flow Model

The interpretation of RT [0] solutions provided in Section 2.3.2.3 above is very

useful for linear problem with diagonal κ which does not depend on u. For our

nonlinear flow problem, we encounter a full tensor, and thus follow different work

[2]. Another approach is considered in [27].

In [2], anisotropic linear flow problems are considered. A method is proposed

which has an auxiliary velocity variable. In particular, uh ∈ Vh, uh ∈ V̂h, and

ph ∈ Wh are sought which solve

(∇ · uh, w) = (f, w) , ∀w ∈ Wh, (2.3.49)

(uh, v) = (ph,∇ · v)− (pD, v · n)ΓD , ∀v ∈ V 0
h , (2.3.50)

(κuh, v) = (uh, v) + (g, v) , ∀v ∈ V̂h, (2.3.51)

(uh · n, µ)ΓN = (uN , µ)ΓN , ∀µ ∈ Λh. (2.3.52)

The following conditions are required for the theorems from [2]:

(C1) Given f ∈ L2, pD, and uN , there exists a unique solution p ∈ H2 (Ω)

such that

‖p‖2 ≤ C
[
‖f‖0 + ‖pD‖3/2,ΓD + ‖uN‖1/2,ΓN

]

where C depends on Ω, κ, and uN ,

(C2) ∇ · Vh = Wh,
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(C3) Vh · n|∂Ω = Λh,

(C4) V N
h ⊂ V̂h,

(C5) κ is uniformly positive definite in Ω.

Those conditions are used in several theorems.

Theorem 2.34 (Theorem 3.1 from [2]). Assume (C1)-(C5). Let

Ah = ‖uh‖0 + ‖uh‖0 + ‖uh · n‖0,ΓN + ‖ph‖0

+ ‖
√
uNλh‖0,ΓN + ‖λh‖−1/2,ΓN

CD = ‖f‖0 + ‖pD‖1/2,ΓD + ‖uN‖1/2,ΓN .

If (uh, uh, ph, λh) is a solution of (2.3.49)-(2.3.52), then

‖∇ · uh‖0 ≤ ‖f‖0 ,

Ah ≤ CCD

where C depends on Ω, ‖κ‖1,∞, and ‖uN‖0,∞,ΓN .

Corollary 2.35 (Corollary 3.2 from [2]). Assume (C1)-(C5). There exists a unique

solution to (2.3.49)-(2.3.52).

Theorem 2.36. [Theorem 3.3 from [2]] Assume that (C1)-(C5) are satisfied. Let

l be the degree of polynomials in Wh, k be the degree of polynomials in Vh, and m

be the degree of polynomials in Λh. There exists a constant C independent of h
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and dependent on Ω, p, u, ‖K‖0,∞, and ‖uN‖0,∞,ΓN such that

‖u− uh‖0 + ‖u− uh‖0 + ‖
√
uN (λ− λh)‖0,ΓN ≤ Chj,

‖∇ · (u− uh)‖−s ≤ Chj+s,

‖(u− uh) · n‖0,ΓN ≤ Chj,

where 1 ≤ j ≤ min (k,m), 0 ≤ s ≤ l, and 0 ≤ j ≤ l. If 0 ≤ s ≤ min (k, l,m)− 1,

Ω is (s+ 2) regular, and C depends also on ‖κ‖s+1,∞ and ‖uN‖s+2,∞,ΓN , then for

any 0 ≤ j ≤ min (k, l,m),

‖p− ph‖−s ≤ Chj+s,

‖λ− λh‖−s−1/2,ΓN ≤ Chj+s+1/2.

With those theorems established, a cell-centered finite difference stencil is de-

rived for the pressure using the lowest-order RTN spaces on rectangles. Note that

in this case, k = l = m = 1 in Theorem 2.36.

Corollary 2.37. If the conditions of Theorem 2.36 are met, then on the lowest-

order RTN spaces on rectangles the following estimates hold

‖u− uh‖0 + ‖u− uh‖0 + ‖
√
uN (λ− λh)‖0,ΓN ≤ Ch,

‖∇ · (u− uh)‖0 ≤ Ch,

‖(u− uh) · n‖0,ΓN ≤ Ch,
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and

‖p− ph‖0 ≤ Ch,

‖λ− λh‖−1/2,ΓN ≤ Ch3/2.

On an element E ∈ Th, let

Vh (E) =
{
(α1x1 + β1, α2x2 + β2)

T : αi, βi ∈ R
}

Wh (E) = {α : α ∈ R}

and on an edge or face e,

Λh (e) = {α : α ∈ R}

for d = 2. The standard nodal basis is used, where for Vh,Λh the nodes are at the

midpoints of the edges of the elements and for Wh the nodes are at the midpoints

of the elements (cell centers). Also choose V̂h = Vh.

Appropriate quadrature rules are used to set up a system of equations which

can be solved. The solutions u, u ∈ Vh and p ∈ Wh are sought such that

(∇ · u,w) = (f, w) w ∈ Wh

(u, v)TM = (p,∇ · v)− (pD, v · n)ΓD v ∈ Vh

(κu, v)TM = (u, v)T + (g, v)T v ∈ Vh

(u · n, µ)ΓN = (uN , µ)ΓN µ ∈ ΛN
h
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where (·, ·)M and (·, ·)T mean application of the midpoint and trapezoidal rules,

respectively, and for v, q ∈ Rd,

(v, q)TM = (v1, q1)T×M + (v2, q2)M×T

That is, one computes the integral by applying the trapezoidal rule in the ith

direction and the midpoint rule in the other direction.

In summary, the method used here is similar to the one applied in [62]. The

main advantage is that off-diagonal terms are allowed in [2], while [62] is only

applicable if the tensor is diagonal. It has been shown that the stencil for the

method developed in [2] reduces to the stencil used in [62] when both are applicable.

In this work we implemented the approach in this section keeping track of κ

dependent on the unknown velocity uh. The implementation in Listing 1 allows for

the use of anisotropy, but the examples in this work will only use diagonal terms

in the tensor κ.

2.3.2.7 Newton Iteration for the Nonlinear Flow Model

With the above method for solving the linear problem, the non-linear problem will

be solved using a general Newton-Krylov solver from Scipy [34, 5, 37] which expects

to have a function to compute the residual. A method for computing the residual

is presented in Algorithm 2.38. See [35] for a description of the convergence theory

for such solvers.
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Algorithm 2.38 (Newton-Krylov Residual). Given p, do the following:

• Find u so that κ (|u|)u = −∇hp.

• Find the residual ∇h · u.

The Newton-Krylov iteration is then computed with an inexact line search.

2.4 Coupled Flow and Transport

Once the velocity is known from the flow model, it may be of interest to consider

the transport of a solute in the fluid. Let c (x, t) denote the concentration of the

solute at position x and time t. It is assumed that the presence of the solute does

not affect the flow. In general, the conservation of mass for the solute is written

∂t (φc) +∇ · (cu) +∇ · F = s (x, t) , (2.4.1)

where u is taken from the flow model (2.3.5)-(2.3.8). The term cu is the advective

flux and represents transport due to movement of the fluid. The term F is the

diffusive flux and represents transport due to diffusion.

Define F using Fick’s First Law of diffusion[19]:

F = −D∇c, (2.4.2)

where D is the diffusion/dispersion tensor. As usual, it is assumed that D = D (x)

is a symmetric non-negative definite constant tensor.
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If φ (x, t) = 1, and inserting Fick’s First Law of diffusion into 2.4.1, then

∂tc+∇ · (cu) = ∇ · (D∇c) + s (x, t) . (2.4.3)

To close the system of equations, initial and boundary conditions are needed:

c (x, 0) = c0 (x) , x ∈ Ω, (2.4.4)

c (x, t) = cI (x, t) , x ∈ ΓI , (2.4.5)

D∇c · n = 0, x ∈ ΓO, (2.4.6)

where

ΓI = {x ∈ Γ : u · n < 0} , (2.4.7)

ΓO = {x ∈ Γ : u · n ≥ 0} , (2.4.8)

that is, the inflow and outflow parts of the boundary, respectively.

It remains to show that the model is well-posed. There are two situations to

consider when verifying the well-posedness of the transport model. First, if D ≡ 0

then there is no diffusion and the problem is hyperbolic. In that case the method

of characteristics may be applied. If D 6= 0, then there is diffusion and the problem

is parabolic. In that case, the results in [38] will be applied.
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2.4.1 Well-Posedness If D ≡ 0

For simplicity of exposition, the source term s (x, t) is omitted and it is assumed

that ∇ · u = 0. The two dimensional case is considered. In the case that D ≡ 0,

(2.4.3) becomes

∂tc+∇ · (cu) = 0.

Using the product rule, this is equivalent, since ∇ · u = 0, to

∂tc+ u · ∇c = 0.

This may be written less compactly as

∂tc+ u1∂xc+ u2∂yc = 0

where u = (u1, u2)
T . It may be verified that if x (t) and y (t) satisfy

dx

dt
= u1 (x (t) , y (t)) ,

dy

dt
= u2 (x (t) , y (t)) ,

then d
dt
c (x (t) , y (t)) = 0. So if u1 and u2 are Lipschitz continuous in x and y,

then there are unique solutions x (t) and y (t) for any initial data x (0) = x0 and

y (0) = y0. This may be shown using Picard’s existence theorem. We call the curve
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(x (t) , y (t)) a characteristic of c.

In order to find the value c (x0, y0, t0) for t0 > 0 it is sufficient to solve the

differential equations

dx

dt
= u1 (x (t) , y (t)) ,

dy

dt
= u2 (x (t) , y (t)) ,

backwards in time with x (t0) = x0 and y (t0) = y0 so that c (x (0) , y (0) , 0) may

be evaluated. If the characteristic passes through the boundary at some t1 > 0,

then the value of c at that boundary point is used.

2.4.2 Well Posedness If D 6= 0

In Chapter III of [38], models of the form

Lu ≡ ∂tc−Mc = ∂xi
fi − f, (2.4.9)

where

Mc =
d∑

i=1

[∂xi
[aij (x, t) ∂xi

c+ ai (x, t) c]− bi (x, t) ∂xi
c− a (x, t) c] , (2.4.10)

are studied. In the present case, D = (aij) is the diffusive term, ai = 0, bi = ui

and a = 0. The model is said to be parabolic if there exist constants ν, µ > 0 such
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that

ν

d∑
i=1

ξ2i ≤
∑d

i=1

∑d
j=1 aij (x, t) ξiξj ≤ µ

d∑
i=1

ξ2i (2.4.11)

for any ξ ∈ Rd. Since D is diagonal with positive entries, the problem is parabolic.

The following conditions will be needed.

(P1) There exists µ1 such that ‖u‖L2(Ω) ≤ µ1.

(P2) The source terms have finite norms, that is there exists a constant µ2

such that

‖f‖22,Ω×(0,T ) =

∫
Ω×(0,T )

d∑
i=1

f 2
i dxdt ≤ µ2,

‖f‖q1,r1,Ω×(0,T ) =

(∫ T

0

‖f‖rLq(Ω) dt

)1/r

≤ µ2.

where q1 and r1 satisfy

1

r1
+

1

q1
=

3

2
,

q1 ∈ (1, 2] , and r1 ∈ [1, 2) ,

The following uniqueness theorem may be applied.

Theorem 2.39 (Uniqueness for Parabolic Models [38, III.3.1]). If the coefficients

of (2.4.9) satisfy (P1) and (P2), then the first boundary value problem for (2.4.9)

cannot have two distinct solutions.
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Also the following existence theorem.

Theorem 2.40 (Existence for Parabolic Models [38, III.5.1]). If (P1) and (P2)

are satisfied and ψ0 (x) ∈ L2 (Ω), then the problem

Lc = −f,

∂nu+ σ (x, t) c|∂Ω×(0,T ) = ψ (x, t) ,

u|t=0 = ψ0 (x) ,

has a solution if there exists µ2 > 0 such that

‖σ‖q2,r2,∂Ω×(0,T ) =

(∫ T

0

‖σ‖r2Lq2 (∂Ω) dt

)1/r2

≤ µ2,

‖ψ‖q2,r2,∂Ω×(0,T ) =

(∫ T

0

‖ψ‖r2Lq2 (∂Ω) dt

)1/r2

≤ µ2,

where q2 and r2 are subject to

1

r2
+

1

2q2
=

1

2
,

q2 ∈ (1,∞] and r1 ∈ [2,∞) .

2.4.3 Numerical Methods for Initial Value Problems

Initial value problems arise naturally for time dependent systems. Below, the finite

volume method for a diffusive transport system will be introduced. The finite

volume method leads to a discretization in space which will require the solution of
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an initial value problem in time.

Definition 2.41. An initial value problem (IVP) takes the form

u′ (t) = f (u (t) , t) , for t > t0, (2.4.12)

u (t0) = u0. (2.4.13)

In general, u may be a vector with n components. In that case, f (u, t) will also

have n components.

Next, the theory needed for the existence and uniqueness of a solution is de-

veloped.

Theorem 2.42. [40] If f is Lipschitz continuous over some region D then there

is a unique solution to the IVP at least up to time T ∗ = min
(
t1, t0 +

a
S

)
, where

S = max
(u,t)∈D

‖f (u, t)‖ .

See [40] for several numerical methods for the IVP. The two simplest methods

are are called the forward and backward Euler methods, respectively.

Definition 2.43. [40] The forward Euler and backward Euler methods are given

by

Un+1 = Un +∆tf (Un) , (2.4.14)

Un+1 = Un +∆tf (Un+1) , (2.4.15)
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respectively, where ∆t is the time step. Both of these methods are first order

accurate.

There are several important methods, which will not be treated in this work,

that have higher accuracy. Some of these methods have been carefully implemented

in standard numerical libraries such as Scipy [34] and will be used for numerical

experiments. Runge-Kutta methods [29] and backward difference formulas [11, 13,

32, 33] are algorithms that may be used.

2.4.4 The Finite Volume Method

The finite volume method is used to approximate the solution of a conservation law.

As the name suggests, the domain Ω is decomposed into a collection of volumes.

With that decomposition complete, the conservation law is discretized. One of the

primary advantages of the finite volume method is that it is conservative. This

section closely follows [39] in the treatment of first order methods.

2.4.4.1 Conservation Laws

A conservation law has the form

∂tc+∇ · F = s (x, t) , (2.4.16)
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where F , called the flux, may take many forms. Only F that are linear in c and

∇c are considered. In particular, let

F (c,∇c) = cu−D∇c, (2.4.17)

where u = u (x) is a vector valued function and D = D (x) is a symmetric positive

definite tensor. For simplicity, take D to be diagonal. In this case, call cu and

D∇c the advective part and diffusive part of the flux function, respectively.

Let V be an arbitrary region where the conservation law is satisfied and that c

and F are sufficiently smooth to apply the divergence theorem. Then,

∂

∂t

∫
V

cdx = −
∫
V

∇ · Fdx

= −
∫
∂V

F · ndx. (2.4.18)

This result indicates that the integral on the left side changes only by considering

the flux on the boundary. This is the basis for the finite volume method which

consists of finding a suitable discretization of this equation.

2.4.4.2 Discretization

In space, the region Ω is discretized into rectangles. That is, let x0 < x1 <

· · · < xNx and y0 < y1 < · · · < yNy , then let Vi,j = (xi, xi+1) × (yj, yj+1). The

discretization is based on taking c to be a constant on each volume at each discrete

time. Denote by Cn
i,j the value of c in Vi,j at time tn. Time is discretized into
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t0 < t1 < · · · < tNt .

There are several difficulties in discretizing the flux function. It is simple to

find discretizations which are consistent with the equations, but it is more difficult

to find stable discretizations. For the advective part of the flux function, an up-

wind flux will be used (and described below). The advective part may be treated

explicitly in time, but may also be treated implicitly. For the diffusive part of

the flux function, approximate ∇c at the cell boundaries, apply D, then take the

discrete divergence. The diffusive part will be treated implicitly in time in order

to avoid a restrictive time step.

When the advective part is treated explicitly in time, the discretization will be

∆x∆yCn+1
i,j −∆tDn+1

i,j = ∆x∆yCn
i,j −∆tAn

i,j +∆tsn
∗

i,j , (2.4.19)

where An
i,j =

[∫
Vi,j

∇ · (cu)
]n
i,j

andDn
i,j =

[∫
Vi,j

∇ · (D∇c)
]n+1

i,j
are discretizations of

the advective and diffusive parts, respectively. When the advective part is treated

implicitly in time, the discretization will be

∆x∆yCn+1
i,j +∆tDn+1

i,j −∆tAn+1
i,j = ∆x∆yCn

i,j +∆tsn
∗

i,j . (2.4.20)

In either case, the source term s, may be evaluated at tn or tn+1. In the absence

of diffusion, it is very advantageous to treat the advective term explicitly since it

is unnecessary to solve a linear system.

If there is diffusion, then there is a need to solve a linear system regardless of

how the advective term is handled.
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2.4.4.3 Discretization of the Advective Part

A possible discretization of the advection part of the flux is discussed below. First,

∫
Vi,j

∇ · (cu) =

∫
∂Vi,j

cu · n

= ∆yj

(
(cu)i−1/2,j − (cu)i+1/2,j

)
+∆xi

(
(cu)i,j−1/2 − (cu)i,j+1/2

)
. (2.4.21)

The difficulty is that C is not continuous at xi−1/2,j, xi+1/2,j, yi,j−1/2, and yi,j+1/2

so the formula cannot be applied directly. Call the quantity cu the flux which

needs to be approximated. Let Fi−1/2,j and Fi,j−1/2 denote the approximation to

(cu)i−1/2,j and (cu)i,j−1/2, respectively. It is convenient to introduce the notation

v+ = max (v, 0) , (2.4.22)

v− = min (v, 0) , (2.4.23)

for a quantity v.

Consider the donor-cell upwind method [39]. This method is simple to imple-

ment and is stable, but there is a restriction on the time step.

First, we provide a description of the method. The flux at the left edge of

the volume is an approximation to the amount flowing from cell Vi−1,j to Vi,j

(or vice versa). If ui−1/2,j > 0, then the flow is from Vi−1,j into Vi,j and so the

amount flowing in during (t, t+∆t) is ∆tui−1/2,jCi−1,j. The description is similar

if ui−1/2,j < 0, except that the flow goes from Vi,j into Vi−1,j.
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Formally, the flux function is given by

Fi−1/2,j = u+1,i−1/2,jCi−1,j + u−1,i−1/2,jCi,j, (2.4.24)

Fi,j−1/2 = u+2,i,j−1/2Ci,j−1 + u−2,i,j−1/2Ci,j. (2.4.25)

The method is stable as long as

∣∣∣∣u1∆t∆x

∣∣∣∣+ ∣∣∣∣u2∆t∆y

∣∣∣∣ ≤ 1. (2.4.26)

Let h = min (∆x,∆y), U1 = maxi,j |u1,i,j|, and U2 = maxi,j |u2,i,j|. It is sufficient

to choose ∆t so that

∆t ≤ h

U1 + U2

.

There are other methods which have less restrictive stability requirements than

the one above, but they are more difficult to implement.

2.4.4.4 Discretization of the Diffusive Part

Proceeding as in the discretization of the advective part,

∫
Vi,j

∇ · (D∇c) =

∫
∂Vi,j

D∇c · n

= ∆yj [D∇c]i−1/2,j −∆yj [D∇c]i+1/2,j

+∆xi [D∇c]i,j−1/2 −∆xi [D∇c]i,j+1/2 . (2.4.27)
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Then approximate

∂xci−1/2,j ≈ Ci,j − Ci−1,j

1
2
(∆xi−1 +∆xi)

, (2.4.28)

∂yci,j−1/2 ≈ Ci,j − Ci,j−1

1
2
(∆yj−1 +∆yj)

. (2.4.29)

Then apply D at each cell edge to the computed components of the gradient.

The method shown here is very similar to the cell-centered method we defined

for the flow.

One significant difficulty in discretizing the diffusive part is the temptation to

use an explicit scheme. An explicit scheme can be used, but it results in the very

restrictive time step ∆t ≤ α∆x2 [12]. If the diffusive term is treated implicitly,

then there is no restriction in the time step [12].

2.5 Summary

In this chapter, the background needed to continue with sensitivity analysis and

its applications have been developed. More general notions of derivatives and

spaces of functions with derivatives were developed in Section 2.1. Theorem 2.9,

the Implicit Function Theorem, will be applied in the next chapter to show the

existence of sensitivities.

In Section 2.3 a nonlinear flow model was developed and analyzed. First, the

system was set up, then in Section 2.3.1, the system was shown to be well posed.

The well-posedness relies on a recently published theorem. Next, some related
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models are discussed in Section 2.3.1.1. The present model is different since it

does not include time dependent velocities. Finally, in Section 2.3.2, a numerical

algorithm for the solution to the nonlinear flow model was developed. The al-

gorithm may be analyzed as a mixed finite element method, but is implemented

using cell-centered finite difference methods.

Finally, in Section 2.4 a coupled transport model was developed. The well-

posedness without and with diffusion were treated in Section 2.4.1 and Section

2.4.2, respectively. Without diffusion, the standard method of characteristics may

be applied, while with diffusion a theorem from [38] is applied. The time dis-

cretization is described in Section 2.4.3 and the spatial discretization, based on the

finite volume method, is described in Section 2.4.4.
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Chapter 3 Sensitivity Analysis

In this work sensitivity analysis is understood as finding derivatives of the solution

to a model, or a quantity of interest derived from the solution, with respect to

model parameters. Other notions of sensitivity analysis, and other techniques

have been explored in literature.

One class of methods is based on changing the model input parameters one at

a time [63, 51, 20]. Another class of methods is based on automatic differentiation,

where software tracks not only the solution, but the derivative of the solution as

well [28]. Finally, a probabilistic notion of sensitivity considers the variance of the

solution in relation to the model parameters [18, 64].

The derivatives with respect to model parameters, which are called sensitivities,

give information about how the model responds to changes in the parameters. As

we mentioned before, there are delicate issues related to this differentiation, and

we explore some below. In the remainder of this work we will assume that the

sensitivities we compute are well-defined as solutions to the PDEs, or their weak

formulations. We will, however, not prove that they are indeed well defined as the

derivatives of the (possibly weak) solutions to the underlying PDEs.

The information on the derivatives may be useful in areas such as model re-

duction where some parameters may be considered constant if the model is not

sensitive to them [30]. Sensitivities may also be of interest since they show the need
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to have precise values for a parameter. Examples and applications for sensitivity

analysis will be developed below.

In this chapter the general theory for sensitivity analysis is developed. In Sec-

tion 3.1, some results about the existence of sensitivities are presented. In Section

3.2 the sensitivity equation is developed, then two formulations for sensitivity anal-

ysis are given: the forward sensitivity analysis (FS) in Section 3.3 and the adjoint

sensitivity analysis (AS) in Section 3.4.

FS will compute the sensitivity of the solution explicitly while AS will set up

an adjoint problem in order to avoid that computation. FS is best applied when

there are many quantities of interest or few parameters.

In turn, AS is best applied when there are few quantities of interest or many

parameters. When the AS methods are applied to the coupled transport model in

Section 3.4.2, the sensitivity of the velocity appears in the adjoint system.

The main contribution from this Chapter is that a method is developed, based

on the AS method for the flow model, which avoids the explicit calculation of the

sensitivity of the velocity.

A further difficulty with the AS transport model is that it is posed backwards-

in-time. One other contributions of this work is that we define a method so that a

transport solver designed for forward-in-time problems can be used for backwards-

in-time problems, thus eliminating the need for special solvers.
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3.1 Existence of Sensitivities

The theory for the well-posedness of a model usually guarantees that the solution

will depend continuously on the model parameters. This is not, of course, sufficient

to guarantee the existence of sensitivities. In Section 2.1.1.2, the Implicit Function

Theorem, Theorem 2.9, will guarantee us the weak existence of sensitivities. This

version of the Implicit Function Theorem is set in abstract function spaces and

may be difficult to apply in some situations.

In some situations it is possible to apply the following theorem.

Theorem 3.1 (Strong Existence of Sensitivities [70]). If f̄α1,...,αj
(x, t) possesses

kth order continuous derivatives in the n + j + 1 variables α1, . . . , αj, t, x1, . . . xn

then the solution of the initial value problem

dx

dt
=f̄α1,...,αj

(x, t)

x (0) =c =



c1

c2
...

cn


possesses kth order continuous derivatives in the n+j variables α1, . . . , αj, c1, . . . , cn.

Furthermore, the derivative dx
dt

possesses kth order continuous derivatives in the

n+ j + 1 variables α1, . . . , αj, t, c1, . . . , cn.

With those theorems in mind, methods for computing the sensitivity of a quan-
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tity of interest can be developed.

3.2 Sensitivity Equation

Consider a differential equation of the form

F (π;x, t, u, ∂tu, ∂xu, ∂xxu, . . . ) = 0, (3.2.1)

for x ∈ Rd, t > 0, and π ∈ RNπ a vector of parameters. Let G (π;u) be a quantity

of interest. In order to find
{

dG
dπ

}
, the vector containing the derivatives of G with

respect to each parameter in π, it is natural to use the chain rule:

{
dG

dπ

}
= {∂πG}+ ∂uG {∂πu} . (3.2.2)

Since G is a given function, it is possible to compute {∂πG} and ∂uG. If F satisfies

one of the existence theorems above, then {∂πu} exists.

The goal is to derive methods to compute {∂πu} (in FS) or to find an alternative

formulation to avoid the computation of the sensitivity (in AS). In particular, in FS,

equation (3.2.2) is used just as it is written while in AS, the explicit computation

of {∂πu} is avoided by solving an adjoint problem.
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3.3 Forward Sensitivity Analysis

Forward sensitivity analysis (FS) explicitly computes the sensitivity of the solution

to the parameter. The sensitivity may be computed using either a continuous form

or a discretized form. In the continuous form, the sensitivity equation is derived

and then solved. In the discretized form, the solver is augmented to produce the

sensitivity automatically using techniques such as automatic differentiation. Only

the continuous form will be considered presently.

Continuing the example from Section 3.2, it is possible to formally differentiate

(3.2.1) to obtain

0 =
dF

dπ
= ∂uF {∂πu}+ [∂∂tuF ] [∂t {∂πu}]

+ [∂∂xuF ] [∂x {∂πu}] +
[
∂{∂xxu}F

]
[∂xx {∂πu}] + · · ·

which is a differential equation for {∂πu}. The differential equation, regardless

of the form of F , is linear since all of the derivatives of F are evaluated at the

known solution u. This indicates that finding the sensitivity {∂πu} may be easier

than solving for u. With that example in mind, the sensitivity equations for the

examples from Chapter 2 may be developed. In Section 2.2, the equations for

the sensitivities were already found in equations (2.2.5) and (2.2.6) by applying

implicit differentiation.
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3.3.1 Sensitivity for Fluid Flow in Porous Media

Recall that the strong form of the nonlinear flow model is shown in (2.3.5)-(2.3.8).

The possibility of a vector of parameters π in κ is denoted by κ = κ (π; |u|). The

system becomes

∇ · u = f (x) , in Ω, (3.3.1)

κ (π; |u|)u = −∇p+ g (x) , in Ω, (3.3.2)

p = pD (x) , on ΓD, (3.3.3)

u · n = uN (x) , on ΓN . (3.3.4)

We define the sensitivity equation for (3.3.1)-(3.3.4) by, formally, differentiating

each equation to arrive at

∇ · {∂πu} = 0, in Ω, (3.3.5)[
κ+ ∂|u|κ (∂u |u| (u))

]
{∂πu} = −∇{∂πp} − {∂πκ}u, in Ω, (3.3.6)

{∂πp} = 0, on ΓD, (3.3.7)

{∂πu} · n = 0, on ΓN . (3.3.8)

It is important to note that the resistance term in equation (3.3.6) depends on

u, but not on {∂πu}.

Thus, the sensitivity system (3.3.5)-(3.3.8), is a linear flow problem even if the

original problem is nonlinear.
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It is also worth noting that the quantity {∂πu} contains components for the

derivatives of each component of the velocity with respect to each parameter.

Each parameter may be considered separately; this results in solving a linear flow

problem for each parameter.

To clarify what is meant by equation (3.3.6), the following specific example is

given. Let

κ (r1, r2, β;u) =

 r1

r2

+ β

 |u1|

|u2|


where r1 > 0, r2 > 0, and β ≥ 0 are parameters. It is of interest to find the sen-

sitivity with respect to the parameter β, namely {∂βu} and {∂βp}. The following

derivatives are needed:

{∂βκ} =

 |u1|

|u2|

 ,
∂|u|κ = β,

∂u |u| =

 sgnu1

∣∣∣∣∣∣∣ sgnu2

 .
Next, the derivative ∂u |u| is a tensor which, for our purposes, maps vectors to

matrices. Then (3.3.6) becomes


 r1

r2

+ 2β

 |u1|

|u2|


 {∂βu} = −∇{∂βp} −

 |u1|

|u2|

u. (3.3.9)
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The gravity-like term

−

 |u1|

|u2|

u,
on the right hand side of (3.3.9), is a known quantity. The equation is linear since

the resistance term does not depend on {∂βu} or {∂βp}.

In [57], the sensitivity of a related nonlinear flow model was explored in one

space dimension.

3.3.2 Coupled Flow and Transport

Recall that the strong form of the transport equation is given in (2.4.3)-(2.4.8). It

will be of particular interest to consider the sensitivity of the transport equation

to parameters in the flow model. Suppose that u depends on the parameter π.

Differentiating equation (2.4.3) with respect to π results in

∂t {∂πc}+∇ · ({∂πc}u+ c {∂πu}) = ∇ · (D∇{∂πc}) . (3.3.10)

The term ∇ · (c {∂πu}) is a source term which may be computed once {∂πu} and

c are known. The form of the sensitivity equation is essentially identical to the

original diffusive transport equation. Upon differentiation with respect to π, the

boundary conditions (2.4.4)-(2.4.6) become

{∂πc} (x, 0) = 0, x ∈ Ω, (3.3.11)
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{∂πc} (x, t) = 0, x ∈ ΓI , (3.3.12)

D∇{∂πc} · n = 0, x ∈ ΓO. (3.3.13)

In [67], the existence of sensitivities of this type are discussed as well.

3.4 Adjoint Sensitivity Analysis

Adjoint sensitivity analysis (AS) is a method to compute the sensitivity of some

quantities of interest by developing an adjoint problem. The quantity of interest

is some function of the solutions to the underlying problem, e.g., flow velocities

found from the nonlinear flow problem. In [61] AS is used for many quantities of

interest. In [8] it is shown how it is possible to reuse quantities which are used in

error estimates to compute the sensitivity of quantities of interest.

The idea in AS is to introduce an adjoint variable, differentiate the system

with the Lagrange multiplier, rearrange the terms, integrate by parts, and finally

solve the adjoint system. The AS method is dependent on the particular choice

of the quantity of interest. In this work we consider linear functionals defined

as an integral of the solution with some kernel. We note that, in general, for

time-dependent problems, AS often results in backward-in-time problems.

Recall that the vector containing derivatives with respect to the parameters in

π is given in equation (3.2.2) and that the differential equation satisfies (3.2.1),

that is F = 0. If a Lagrange multiplier λ is introduced, it will be possible to avoid
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the intermediate computation of {∂πu}. Let

I = G−
∫
λ∗F,

and note that I = G since F = 0.

The method is to differentiate I, rearrange the terms, and integrate by parts.

In this work we develop AS for the coupled flow and transport model.

3.4.1 AS for Fluid Flow in Porous Media

In this section we develop AS for the nonlinear flow problem.

Assume ξ is given, and define an example of a quantity of interest which may

be of interest for a flow problem

H (u) =

∫
Ω

ξ (x)u (x) dx+

∫
∂Ω

ξ∂ (x)u (x) · ndx,

where ξ (x) is a given vector-valued weight function defined in Ω and ξ∂ (x) is a

given scalar-valued weight function defined on ∂Ω.

The goal is to compute {∂πH}, without having to calculate {∂πu} and {∂πp}.

Recall the sensitivity equation is given by (3.3.5)-(3.3.8). In particular, note

that

∫
Ω

µ∇ · {∂πu} dx = 0,
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Ω

v
[
{∂πκ}u+ ∂|u|κ (∂u |u| (u)) {∂πu}+ κ {∂πu}+∇{∂πp}

]
dx = 0,

for any functions µ ∈ H1 (Ω) and v ∈ H (div; Ω).

Then we show how to calculate further

{∂πH} =

∫
Ω

ξ {∂πu} dx+
∫
∂Ω

ξ∂ {∂πu} · ndx+
∫
Ω

µ∇ · {∂πu} dx

−
∫
Ω

v [{∂πκ}u+ κ (π; |u|) {∂πu}+∇{∂πp}] dx

−
∫
Ω

v
[
∂|u|κ (∂u |u| ({∂πu}))u

]
dx

=

∫
Ω

[
ξ −∇µ− ∂|u|κ (∂u |u| (u)) v − κ (π; |u|) v

]
{∂πu} dx

+

∫
Ω

{∂πp}∇ · vdx−
∫
Ω

{∂πκ}uvdx

+

∫
∂Ω

[µ+ ξ∂] {∂πu} · ndx−
∫
∂Ω

{∂πp} v · ndx,

Recall that the goal is to avoid the computation of {∂πu} and {∂πp}. If

[
∂|u|κ (∂u |u| (u)) + κ (π; |u|)

]
v = −∇µ+ ξ, (3.4.1)

∇ · v = 0, (3.4.2)

with the boundary conditions

µ|ΓD
= −ξ∂, (3.4.3)

v · n|ΓN
= 0, (3.4.4)
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then the integrals involving {∂πu} and {∂πp} will be zero. In that case,

{∂πH} = −
∫
Ω

{∂πκ}uvdx. (3.4.5)

The adjoint flow system (3.3.5)-(3.3.8) can be viewed as a linear flow model and

can be solved using the same flow solver as the system (2.3.5)-(2.3.8).

Also, note that the resistance function for the AS system in equation (3.4.1)

is the same as for the FS system in equation (3.3.6). Based on the preceding, the

following theorem holds.

Theorem 3.2. Suppose that u, p satisfy (2.3.5)-(2.3.8) where κ is dependent upon

some parameter π. Let

H (u) =

∫
Ω

ξ (x)u (x) dx+

∫
∂Ω

ξ∂ (x)u (x) · ndx

be a quantity of interest. The sensitivity of H to the parameter π is given by

(3.4.5), where v satisfies (3.4.1)-(3.4.4).

3.4.2 Coupled Flow and Transport

Now consider the coupled problem of flow and transport; the latter solved for c. In

a direct application of the AS method, one would find that, to find the sensitivity

of some quantity of interest G(c), we would have to solve the transport problem

backward in time, and solve the flow problem repeatedly. The technique developed

below allows us to avoid that.
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Assume ψ is given, and the following quantity of interest for the coupled flow

and transport model is defined as follows

G (c) =

∫
Ω

∫ T

0

ψ (x, t) c (x, t) dtdx, (3.4.6)

where ψ (x, t) is a weight function smooth enough that (3.4.6) is well defined.

Recall that the sensitivity equation for the coupled transport system is given

in (3.3.10)-(3.3.13). In particular, note that

∫
Ω

∫ T

0

[∂t {∂πc}+∇ · ({∂πc}u+ c {∂πu})−∇ · (D∇{∂πc})] qdtdx = 0 (3.4.7)

for any q. Upon differentiation by π and adding the left hand side of equation

(3.4.7), it can be seen that the sensitivity {∂πG} is given by

{∂πG} =

∫
Ω

∫ T

0

ψ {∂πc} dtdx

−
∫
Ω

∫ T

0

[∂t {∂πc} − ∇ · (D∇{∂πc})] qdtdx

−
∫
Ω

∫ T

0

[∇ · ({∂πc}u+ c {∂πu})] qdtdx.

Integration by parts yields

{∂πG} =

∫
Ω

∫ T

0

[ψ + ∂tq − u · ∇q −∇ · (D∇q)] {∂πc} dtdx

−
∫ T

0

∫
Ω

c {∂πu} · ∇qdxdt−
∫
Ω

[
q {∂πc}|Tt=0

]
dx
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+

∫ T

0

∫
∂Ω

[qc {∂πu}+ q {∂πc}u] · ndxdt

+

∫ T

0

∫
∂Ω

[{∂πc}D∇q − qD∇{∂πc}] · ndxdt.

Further integration by parts yields

{∂πG} =

∫
Ω

∫ T

0

[ψ + ∂tq +∇ · (D∇q) + u · ∇q] {∂πc} dtdx

+

∫ T

0

∫
Ω

c {∂πu} · ∇qdxdt−
∫ T

0

∫
∂Ω

qc {∂πu} · ndxdt

+

∫ T

0

∫
ΓI

q (D∇{∂πc}) · ndxdt

−
∫ T

0

∫
ΓO

{∂πc} [D∇q − qu] · ndxdt

−
∫
Ω

q (T ) {∂πc} (T ) dx.

Recall that the goal is to eliminate any term which includes the sensitivity to the

parameter π. If the adjoint variable q satisfies

∂tq + u · ∇q = −∇ · (D∇q)− ψ, x ∈ Ω, (3.4.8)

(D∇q − qu) · n = 0, x ∈ ΓO, (3.4.9)

q = 0, x ∈ ΓI , (3.4.10)

q (T ) = 0, (3.4.11)
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then the sensitivity to the parameter π is eliminated and the simple expression

{∂πG} =

∫ T

0

∫
Ω

c {∂πu} · ∇qdxdt−
∫ T

0

∫
ΓO

qc {∂πu} · ndxdt

is found.

Remark 3.3. The adjoint system (3.4.8)-(3.4.11) is a transport equation which

is posed backward-in-time. The boundary conditions, in this case, are differ-

ent than those posed for the transport problem (2.4.3)-(2.4.8). Note that, since

(3.4.8)-(3.4.11) is solved backward-in-time, ΓI acts as the outflow boundary and

ΓO acts as the inflow boundary. Since the outflow boundary is prescribed Dirichlet

conditions, we expect that a boundary layer may form. On the outflow boundary,

a Robin type boundary condition must be satisfied.

Often, the diffusive effects are ignored. In that case, the following remark will

be helpful.

Remark 3.4. If D ≡ 0, then some simplifications occur. In that case,

{∂πG} =

∫
Ω

∫ T

0

[ψ + ∂tq + u · ∇q] {∂πc} dtdx

+

∫ T

0

∫
Ω

c {∂πu} · ∇qdxdt−
∫ T

0

∫
ΓO

qc {∂πu} · ndxdt

+

∫ T

0

∫
ΓO

{∂πc} qu · ndxdt−
∫
Ω

q (T ) {∂πc} (T ) dx

so it is only necessary to impose

∂tq + u · ∇q = −ψ, (3.4.12)
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q|ΓO
= 0, (3.4.13)

q (T ) = 0, (3.4.14)

which is still a backward-in-time problem.

At first, it seems that the computation of {∂πu} cannot be avoided. It is,

however, possible to use the method developed in Section 3.4.1 in order to avoid

that computation. First, note that

{∂πG} = −
∫
Ω

{∂πu} ·
[∫ T

0

c∇qdt
]
dx−

∫
ΓO

(∫ T

0

cqdt

)
{∂πu} · ndx.

Given ψ, it is possible to solve the adjoint transport problem (3.4.8)-(3.4.11) or

(3.4.12)-(3.4.14) for q. Since c has been computed, it is possible to form

ξ (x) = −
∫ T

0

c∇qdt

for x ∈ Ω and

ξ∂ (x) = −
∫ T

0

cqdx

for x ∈ ∂Ω. With ξ and ξ∂ computed, it is possible to solve the adjoint flow

problem (3.4.1)-(3.4.4) for µ and v. Finally, using Theorem 3.2,

{∂πG} = −
∫
Ω

{∂πκ}uvdx.

This avoids the explicit computation of {∂πu} and {∂πc}.
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In summary, the following theorem holds.

Theorem 3.5. Suppose that u, p satisfy (2.3.5)-(2.3.8) where κ is dependent upon

some parameter π. Further, suppose that c satisfies (2.4.3)-(2.4.8). Let

G (c) =

∫
Ω

∫ T

0

ψ (x, t) c (x, t) dtdx,

be a quantity of interest. Let q satisfy (3.4.8)-(3.4.11) or (3.4.12)-(3.4.14). Let

ξ (x) = −
∫ T

0

c∇qdt (3.4.15)

for x ∈ Ω and

ξ∂ (x) = −
∫ T

0

cqdx (3.4.16)

for x ∈ ∂Ω. Then the sensitivity of G to the parameter π is given by

{∂πG} = −
∫
Ω

{∂πκ}uvdx, (3.4.17)

where v satisfies (3.4.1)-(3.4.4).

Remark 3.6. It is possible to use a solver designed to operate forward-in-time,

without modification, to solve these backward-in-time systems. Let τ = T − t,

then ∂τq = −∂tq. The adjoint transport problem (3.4.8)-(3.4.11) may be rewritten

as

∂τϑ− u · ∇ϑ = ∇ · (D∇ϑ) + ψ, x ∈ Ω, τ ∈ [0, T ] (3.4.18)
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(D∇ϑ− ϑu) · n = 0, x ∈ ΓO, (3.4.19)

ϑ = 0, x ∈ ΓI , (3.4.20)

ϑ (0) = 0, (3.4.21)

where q (t) = ϑ (T − t). The adjoint transport problem without diffusion (3.4.12)-

(3.4.14) may be rewritten in the same way as

∂tϑ− u · ∇ϑ = ψ, (3.4.22)

ϑ|ΓO
= 0, (3.4.23)

ϑ (0) = 0, (3.4.24)

where q (t) = ϑ (T − t). Note that in both cases, u has the opposite sign as in

(3.3.10)-(3.3.13).

3.5 Summary

In this chapter the general theory for sensitivity analysis was developed. In Section

3.1 some theorems guaranteeing the existence of sensitivities were presented. In

Section 3.2, the sensitivity equation was defined and discussed. Two methods for

computing the sensitivity were developed: forward sensitivity (FS) and adjoint

sensitivity (AS).

Forward sensitivity analysis explicitly computes the solution to the sensitivity

equation. In Section 3.3.1, FS was applied to the nonlinear flow model from Section
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2.3. Also in Section 3.3.1, the form of the derivative of the resistance operator was

discussed. In Section 3.3.2, FS was applied to the coupled transport model.

Adjoint sensitivity analysis solves an adjoint problem to avoid the explicit solu-

tion to the sensitivity equation. This has some advantages that will become clear

in the next chapter. One advantage is that regardless of the number of parameters

for which the sensitivity is to be computed, only one linear system needs to be

solved. In Section 3.4.1, AS was applied to the nonlinear flow model from Section

2.3. It was shown that the solution to an adjoint problem, that has the form of

a linear flow problem, may be used to compute the sensitivity of a quantity of

interest. In Section 3.4.2, AS was applied to the coupled transport model. It was

shown that the sensitivity of a quantity of interest may be found by solving a

backwards-in-time transport model and using the results for the AS flow problem.
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Chapter 4 Examples of Sensitivity Analysis

In this chapter, examples of the numerical computation of the sensitivity of the

model problems presented in Chapter 2 are presented using the techniques de-

veloped in Chapter 3. The examples are designed to show the strength of our

approaches, and are overviewed first.

In each example, a flow and transport problem is posed and solved, and the

sensitivity of given quantities of interest are found. The flow problem is governed by

equations (2.3.5)-(2.3.8) and the transport problem is governed by (2.4.3)-(2.4.8).

Computation of the sensitivity using FS will rely on equations (3.3.5)-(3.3.8) for

the flow problem and (3.3.10)-(3.3.13) for the transport problem. Computation of

the sensitivity using AS will rely on equations (3.4.1)-(3.4.5) for the flow problem

and equations (3.4.8)-(3.4.11) or (3.4.12)-(3.4.14) for the transport problem.

In Section 4.2, a pressure driven flow with constant parameters is discussed.

The general form for the solutions in one space dimension is developed. In Section

4.3, a pressure driven flow with smooth parameters is discussed. Since the nu-

merical methods do not yield the exact solution to the flow system, this problem

gives an opportunity to show the order of convergence. In Section 4.4, a pressure

driven flow with discontinuous parameters is discussed. The discontinuity in the

problem presents some difficulty since some derivatives only exist in the sense of

distributions. In the FS method, the distribution must be approximated numeri-
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cally. One advantage of the AS method is that the distribution does not need to

be approximated.

4.1 Setup of examples

Flow problem: boundary conditions and numerics Flows from the west

side (x = 0) to the east side (x = 1) of (0, 1)×(0, 1) will be considered. On the west

and east sides, Dirichlet boundary conditions are prescribed and on the north and

south sides, Neumann no-flow boundary conditions are prescribed. The pressure

on the west side is prescribed to be greater than the pressure on the east side. The

flow and the sensitivity will have analytic solutions which will make it possible to

show the performance of the numerical method. The numerical solution to each

flow problem is found using the solver presented in Listing 1 in the Appendix with

the tolerance for the Newton iteration set to 10−11 and with the initial guess for

the pressure and velocity the solution to the linear (Darcy) system with κ (π; 0).

For the flow problems, two quantities of interest are considered. Let |Ω| repre-

sent the area of Ω. Let

H1 (u) =

∫
Ω

ξ1 (x)u (x) dx

where ξ1 (x) =
[

1
|Ω| , 0

]T
and

H2 (u) =

∫
Ω

ξ2 (x)u (x) dx

where ξ2 (x) =
[
0, 1

|Ω|

]T
. These quantities of interest correspond, respectively, to
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the average value of u1 and u2 in Ω. For the domains we are interested in, |Ω| = 1.

Recall from Chapter 3, that FS sensitivity system (3.3.5)-(3.3.8) and the AS

sensitivity system (3.4.1)-(3.4.4) for the flow problem will have a resistance term

of the form

κsens =
[
κ+ ∂|u|κ (∂u |u| (u))

]
.

One component of that resistance term is {∂u |u|}u. For all of the following ex-

periments, let

|u| =

 |u1|

|u2|

 .
The well-posedness of problems involving that form of |u| was discussed in Chapter

2. It was computed, in Section 3.3.1, that

∂u |u| =

 sgnu1

∣∣∣∣∣∣∣ sgnu2

 .
Then

∂u |u| (u) =

 |u1|

|u2|

 = |u| .

That term will appear in each section below.

The FS flow system (3.3.5)-(3.3.8) has a gravity term that depends on the

parameter π of the form

gπ = −{∂πκ}u,

while the AS flow systems (3.4.1)-(3.4.4), has a gravity-like term that depends on
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the weight function in the quantity of interest

g = ξi.

Transport problem: data an numerics In the transport problems, the bound-

ary and initial conditions are given by

c (x, 0) = 0,

c (0, x2, t) = 1,

D ≡ 0.

Note that {x = (x1, x2) : x1 = 0} is the inflow boundary. The velocity will be taken

from the associated non-linear non-Darcy flow problem.

The numerical solution to the transport problem is found using the solver pre-

sented in Listing 2 in the Appendix.

For the transport problems, one quantity of interest is considered. Let ψ (x, t) =

1
T |Ω| , where |Ω| is the area of the domain Ω, as above, and T is the final time. The

quantity of interest

G (c) =

∫
Ω

∫ T

0

ψ (x, t) c (x, t) dtdx

represents the average value of c in the domain Ω over the interval [0, T ].

Error in Numerical Sensitivities In this chapter, the error in the numerical

approximation of several sensitivities will be computed. By error, we mean the
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absolute value of the difference between the numerically approximated value and

the analytic sensitivity. Since the quantities of interest are defined by integrals

over the domain, their range is the real numbers. This means that the sensitivity

of the quantity of interest is a real number as well.

4.2 West to East With Constant Parameters

In this example, a pressure driven flow with constant coefficients from the west

side to the east side of [0, 1]× [0, 1] is considered. An analytic solution is provided.

Only two parameters are considered and the analytic sensitivity is shown for both.

The analytic solution to the associated transport system is also shown and its

sensitivity to the parameters in the flow problem is computed. The experiment is

implemented in Listing 6 in the Appendix.

Let

κ (k, β; |u|) =

 1
k
+ β |u1|

1
k
+ β |u2|

 ,
f (x) ≡ 0,

g (x) ≡ 0,

pD (x) = 1− x1,

ΓD = {x : x1 = 0 or x1 = 1} ,

uN (x) = 0,

ΓN = {x : x2 = 0 or x2 = 1} ,
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where k > 0 and β ≥ 0. Consider the one dimensional system

u

k
+ β |u|u = −∂xp, (4.2.1)

∂xu = 0, (4.2.2)

p (0) = 1, p (1) = 0, (4.2.3)

where k > 0 and β ≥ 0. The system (4.2.1)-(4.2.3) has solution

p (x) = 1− x,

u (x) =


k, β = 0,

−1+
√

1+4βk2

2βk
, β 6= 0.

A simple substitution will verify that

p (x1, x2) = 1− x1

u1 (x1, x2) =


k, β = 0,

−1+
√

1+4βk2

2βk
, β 6= 0,

u2 (x1, x2) = 0,

also solves the two dimensional problem, that is, the one dimensional problem is

the first component of the solution to the two dimensional problem. The other
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flow examples below will have similar solutions. Note that

lim
β→0+

u1 (x) = lim
β→0+

k√
1 + 4βk2

= k

so the solution is continuous in β.

In the transport problem, let

c (x, 0) = 0,

c (0, x2, t) = 1,

D ≡ 0.

Note that {x = (x1, x2) : x1 = 0} is the inflow boundary. As in the flow problem,

it is possible to treat this problem as a one dimensional problem. The first-order,

linear, constant-coefficient equation has the solution

c (x, t) =


1, x1 < u1t,

0, x1 > u1t.

(4.2.4)

The quantity of interest G (c) may be computed as

G (c) =
1

T

∫ T

0

∫
Ω

c (x, t) dxdt
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=
1

T

∫ T

0



u1t, 0 ≤ t ≤ 1

u1

1, 1
u1
< t

 dt
1

T

[
1

2u1
+ T −

2u1

]

=


u1T
2
, 0 ≤ T ≤ 1

u1
,

1− 1
2u1T

, 1
u1
< T.

(4.2.5)

4.2.1 Flow Sensitivity

The sensitivity of the flow system is computed in three ways. First, the analytic

solution is found which is used in computing the error in the other methods. Next,

the FS flow system is solved. Finally, the AS flow system is solved.

The analytic sensitivity is computed by differentiating the solution given above:

{∂βp} (x) = 0,

{∂kp} (x) = 0,

{∂βu1} (x) =


−k3, β = 0,

√
1+4βk2−2βk2−1

2β2k
√

1+4βk2
, β 6= 0,

{∂ku1} (x) =


1, β = 0,

√
1+4βk2−1

2βk2
√

1+4βk2
, β 6= 0.

It may easily be shown that the sensitivities of the velocity are continuous by
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computing the limit as β → 0:

lim
β→0+

{∂βu1} (x) = lim
β→0+

k − k
√

1 + 4βk2

2β + 10β2k2

= lim
β→0+

−2k3

(2 + 20βk2)
√
1 + 4βk2

= −k3,

lim
β→0+

{∂ku1} (x) = lim
β→0+

1

1 + 6βk2

= 1.

The analytic sensitivity is used to compute the error in the numerical results.

To compute the FS sensitivity, the resistance and source terms must be com-

puted. Differentiation shows that

∂|u|κ =

 β

β

 ,
{∂kκ} =

 − 1
k2

− 1
k2

 ,
{∂βκ} =

 |u1|

|u2|

 .
The resistance term for the sensitivity to k and β is

κsens =

 1
k
+ 2β |u1|

1
k
+ 2β |u2|

 .
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The source term for the sensitivity to k is

gk = −{∂kκ}u =

 u1

k2

u2

k2

 ,
and the source term for the sensitivity to β is

gβ = −{∂βκ}u = −

 u1 |u1|

u2 |u2|

 .
The forward sensitivity is the solution to

∇ · {∂πu} = 0, in Ω, (4.2.6)

κsens {∂πu} = −∇{∂πp}+ gπ, in Ω, (4.2.7)

{∂πp} = 0, on ΓD, (4.2.8)

{∂πu} · n = 0, on ΓN . (4.2.9)

Numerical results for the FS flow are in Table 4.2.1. Recall that the error is

the absolute value of the difference between the numerical approximation of the

sensitivity and the analytic sensitivity computed above. In all of the experiments,

the error is smaller than the tolerance for the flow solver with zero error for several

entries. This is a product of the simplicity of the system and should not be expected

for more complicated systems.

For each quantity of interest with its corresponding weight function ξ, the AS
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Table 4.2.1: West to East Flow With Constant Parameters: Error in FS Flow

Forward Sensitivity Error

{∂kH1} {∂kH2} {∂βH1} {∂βH2}{
k = 1.0
β = 1.0

}
0.00×10+00 1.33×10−15 5.55×10−17 3.78×10−28{

k = 1.0
β = 0.0

}
0.00×10+00 1.44×10−34 0.00×10+00 9.63×10−35{

k = 2.0
β = 1.0

}
1.39×10−17 3.17×10−16 5.55×10−17 4.98×10−28{

k = 1.0
β = 2.0

}
0.00×10+00 2.55×10−16 0.00×10+00 3.01×10−28

sensitivity system is

κsensv = −∇µ+ ξ, (4.2.10)

∇ · v = 0, (4.2.11)

µ|ΓD
= 0, (4.2.12)

v · n|ΓN
= 0. (4.2.13)

As noted in Section 3.4.1, the resistance term is the same as in the FS system.

Once the solution to those systems are found, the sensitivity to each parameter is

computed using the integral

{∂πH} = −
∫
Ω

{∂πκ}uvdx
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Table 4.2.2: West to East Flow With Constant Parameters: Error in AS Flow

Adjoint Sensitivity Error

{∂kH1} {∂kH2} {∂βH1} {∂βH2}{
k = 1.0
β = 1.0

}
0.00×10+00 3.41×10−16 5.55×10−17 1.80×10−16{

k = 1.0
β = 0.0

}
0.00×10+00 1.04×10−17 0.00×10+00 1.73×10−17{

k = 2.0
β = 1.0

}
1.39×10−17 1.38×10−16 5.55×10−17 1.53×10−16{

k = 1.0
β = 2.0

}
0.00×10+00 1.20×10−16 0.00×10+00 3.12×10−17

=



−
∫
Ω

 |u1|

|u2|

uvdx, π = β,

∫
Ω

 1
k2

1
k2

uvdx, π = k.

It is important to note that only one adjoint system needs to be solved re-

gardless of the number of parameters for which the sensitivity is desired. Each

parameter, however, requires the computation of an integral.

Numerical results for the AS flow sensitivity are presented in Table 4.2.2. Re-

call that the error is the absolute value of the difference between the numerical

approximation of the sensitivity and the analytic sensitivity computed above.

In all of the experiments, the error is smaller than the tolerance for the flow

solver with zero error for several entries. This is thanks to the simplicity of the

system and should not be expected for more complicated systems.
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4.2.2 Sensitivity of Transport

As in the flow system, the analytic sensitivity is found and compared to the FS and

AS transport solutions. The sensitivity of G to each parameter can be computed

as

{∂πG} =


T
2
{∂πu1} , 0 ≤ T ≤ 1

u1
,

1
2u2

1T
{∂πu1} , 1

u1
< T.

(4.2.14)

The analytic sensitivity of c to the parameters is useful for verifying the accuracy

of the FS transport solver:

{∂πc} (x, t) = δx1−u1tt {∂πu1} .

This sensitivity only exists in the sense of distributions. The finite volume trans-

port solver approximates the average value of the quantity which involves an inte-

gral. This means that the numerical solution may be accurate since

∫
Vij

{∂πc} (x, t) =


0, if x1 − u1t /∈ Vij,

t {∂πu1} , if x1 − u1t ∈ Vij.

The FS transport system satisfies (3.3.10)-(3.3.13). To solve this numerically,

the source term −∇ · (c {∂πu}) must be computed for each parameter. In the

numerical computations, the source terms are calculated using the numerical values

of c and {∂πu}. In order to verify the numerical computations, it is useful to have
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Table 4.2.3: West to East Flow With Constant Parameters: Error in FS Transport

Forward Sensitivity Error

{∂kG} {∂βG}{
k = 1.0
β = 1.0

}
1.21×10−02 7.45×10−03{

k = 1.0
β = 0.0

}
1.67×10−02 1.67×10−02{

k = 2.0
β = 1.0

}
3.95×10−03 1.23×10−02{

k = 1.0
β = 2.0

}
1.11×10−03 5.56×10−04

the analytic values:

−∇ · (c {∂ku}) =


δx1−u1t, β = 0,

√
1+4βk2−1

2βk2
√

1+4βk2
δx1−u1t, β 6= 0,

−∇ · (c {∂βu}) =


−k3δx1−u1t, β = 0,

√
1+4βk2−2βk2−1

2β2k
√

1+4βk2
δx1−u1t, β 6= 0.

The error in the computed solution to the FS transport system is shown in Table

4.2.3. Recall that the error is the absolute value of the difference between the

numerical approximation of the sensitivity and the analytic sensitivity computed

above. The error in the approximation is of the order of the spatial grid.

The adjoint transport system (3.4.12)-(3.4.14) is solved backwards in time using

the technique suggested in Remark 3.6. With the solution to the adjoint transport

system, the adjoint flow problem with weight functions from (3.4.15) and (3.4.16)
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Table 4.2.4: West to East Flow With Constant Parameters: Error in AS Transport

Adjoint Sensitivity Error

{∂kG} {∂βG}{
k = 1.0
β = 1.0

}
6.66×10−16 4.30×10−16{

k = 1.0
β = 0.0

}
4.72×10−16 4.44×10−16{

k = 2.0
β = 1.0

}
6.47×10−05 2.02×10−04{

k = 1.0
β = 2.0

}
2.14×10−15 1.03×10−15

is solved. Finally, (3.4.17) is used to compute the sensitivity of the quantity of

interest. The numerical results for the transport sensitivity are presented in Table

4.2.4. In every experiment, the AS transport method outperforms the FS transport

method.

4.3 West to East With Smooth Parameters

In this example, a pressure driven flow with smooth coefficients from the west side

to the east side of [0, 1]× [0, 1] is considered. Three parameters are considered and

the analytic sensitivity is shown for each. The analytic solution to the associated

transport system is also shown and its sensitivity to the parameters in the flow

problem is computed. The experiment is implemented in Listing 7 in the Appendix.
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Let

κ (k, β; |u|) =

 1
k
+ (β + γx1) |u1|

1
k
+ (β + γx1) |u2|

 ,
f (x) ≡ 0,

g (x) ≡ 0,

pD (x) = x1,

ΓD = {x : x1 = 0 or x1 = 1} ,

uN (x) = 0,

ΓN = {x : x2 = 0 or x2 = 1} ,

for given parameters k > 0, β ≥ 0, and γ > −β. In the same way as in Section 4.2

above, the system is equivalent to the following one dimensional system.

u1
k

+ β (x) |u1|u1 = −∂x1p,

∂x1u1 = 0,

p (0) = 1, p (1) = 0,

where β (x) = β + γx1 for given parameters k > 0, β ≥ 0, and γ > −β. The

system has solution

u1 =
−1 +

√
1 + 2k2 (2β + γ)

k (2β + γ)
,

u2 = 0,
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Table 4.3.1: West to East Flow With Smooth Parameters: Flow Solver Error

Error

N p u1 u2
k = 1.0
β = 2.0
γ = −1.0


8 5.88×10−04 5.39×10−13 0.00×10+00

16 1.47×10−04 5.83×10−13 0.00×10+00

32 3.67×10−05 1.95×10−12 0.00×10+00

Order 2.00 - -
k = 2.0
β = 2.0
γ = −1.0


8 8.68×10−04 1.72×10−11 0.00×10+00

16 2.17×10−04 1.81×10−11 0.00×10+00

32 5.43×10−05 3.31×10−11 0.00×10+00

Order 2.00 - -
k = 1.0
β = 1.0
γ = 1.0


8 5.88×10−04 5.17×10−13 0.00×10+00

16 1.47×10−04 6.32×10−13 0.00×10+00

32 3.67×10−05 1.44×10−12 0.00×10+00

Order 2.00 - -
k = 1.0
β = 2.0
γ = 5.0


8 1.36×10−03 2.28×10−15 0.00×10+00

16 3.40×10−04 1.55×10−15 0.00×10+00

32 8.50×10−05 2.05×10−15 0.00×10+00

Order 2.00 - -

p (x1, x2) = −γ
2
u21x

2
1 −

(
βu21 +

u1
k

)
x1 + 1,

This example also provides an opportunity to test the convergence of the flow

solver to the analytic p. The order is not computed for u1 or u2 since the error is

due to stopping a Newton iteration. The results are in Table 4.3.1. In this case,

the error is defined to be the maximum pointwise error in p and u, respectively.

In the transport problem, let

c (x, 0) = 0,
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c (0, x2, t) = 1,

D ≡ 0.

The solution satisfies equation (4.2.4) and the quantity of interest satisfies (4.2.5).

4.3.1 Flow Sensitivity

The analytic flow sensitivity, FS flow sensitivity, and AS flow sensitivity are com-

puted. The analytic sensitivities for u are

{∂ku1} =

√
4βk2 + 2γk2 + 1− 1

k2 (2β + γ)
√

4βk2 + 2γk2 + 1
,

{∂ku2} = 0,

{∂βu1} =
2
√
2k2 (2β + γ) + 1− 2k2 (2β + γ)− 2

k (2β + γ)2
√
2k2 (2β + γ) + 1

,

{∂βu2} = 0,

{∂γu1} =

√
2k2 (2β + γ) + 1− k2 (2β + γ)− 1

k (2β + γ)2
√

2k2 (2β + γ) + 1
,

{∂γu2} = 0,

and the analytic sensitivities for p are

{∂kp} = −γu1 {∂ku1}x21 −
(
2βu1 {∂ku1}+

k {∂ku1} − u1
k2

)
x1,

{∂βp} = −γu1 {∂βu1}x21 −
(
u21 + 2βu1 {∂βu1}+

{∂βu1}
k

)
x1,

{∂γp} = −
(
u21
2

+ γu1 {∂γu1}
)
x21 −

(
2βu1 +

1

k

)
{∂γu1}x1.
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These formulas are useful in verifying the correctness of the algorithms.

The following are needed to compute the sensitivity

∂|u|κ =

 β + γx1

β + γx1

 ,
{∂kκ} =

 − 1
k2

− 1
k2

 ,
{∂βκ} =

 |u1|

|u2|

 ,
{∂γκ} =

 x1 |u1|

x1 |u2|

 .
The resistance for each flow system is

κsens =

 1
k

1
k

+ 2

 β (x1) |u1|

β (x1) |u2|

 .
The source term for the sensitivity to k is

gk = −{∂kκ}u =

 u1

k2

u2

k2

 ,
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Table 4.3.2: West to East Flow With Smooth Parameters: Error in FS Flow

Forward Sensitivity Error

N {∂kH1} {∂kH2} {∂βH1} {∂βH2} {∂γH1} {∂γH2}
k = 1.0
β = 2.0
γ = −1.0


8 2.66×10−15 0.00×10+00 2.53×10−15 0.00×10+00 6.38×10−15 0.00×10+00

16 6.94×10−16 0.00×10+00 6.80×10−16 0.00×10+00 1.69×10−15 0.00×10+00

32 2.58×10−15 0.00×10+00 6.79×10−13 0.00×10+00 6.03×10−15 0.00×10+00
k = 2.0
β = 2.0
γ = −1.0


8 3.47×10−14 0.00×10+00 1.70×10−13 0.00×10+00 3.75×10−13 0.00×10+00

16 2.22×10−14 0.00×10+00 1.09×10−13 0.00×10+00 2.40×10−13 0.00×10+00

32 3.12×10−14 0.00×10+00 1.52×10−13 0.00×10+00 3.36×10−13 0.00×10+00
k = 1.0
β = 1.0
γ = 1.0


8 3.05×10−15 0.00×10+00 2.86×10−15 0.00×10+00 4.38×10−15 0.00×10+00

16 1.19×10−15 0.00×10+00 1.10×10−15 0.00×10+00 1.75×10−15 0.00×10+00

32 6.27×10−15 0.00×10+00 6.87×10−13 0.00×10+00 9.18×10−15 0.00×10+00
k = 1.0
β = 2.0
γ = 5.0


8 1.39×10−17 0.00×10+00 1.39×10−17 0.00×10+00 0.00×10+00 0.00×10+00

16 6.94×10−17 0.00×10+00 1.73×10−16 0.00×10+00 1.39×10−17 0.00×10+00

32 1.39×10−17 0.00×10+00 1.39×10−17 0.00×10+00 6.94×10−18 0.00×10+00

for the sensitivity to β is

gβ = −{∂βκ}u =

 |u1|u1

|u2|u2

 ,
and for the sensitivity to γ is

gγ = −{∂γκ}u =

 x |u1|u1

x |u2|u2

 .
The FS sensitivity is the solution to (4.2.6)-(4.2.9). Numerical results for the FS

flow are in Table 4.3.2. Recall that the error is the absolute value of the difference

between the numerical approximation of the sensitivity and the analytic sensitivity

computed above.

For each quantity of interest with its corresponding weight function ξ, the AS
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sensitivity system is (4.2.10)-(4.2.13). Once the solution to the adjoint sensitivity

systems are found, the sensitivity to each parameter is computed using the integral

{∂πH} = −
∫
Ω

{∂πκ}uvdx

=



−
∫
Ω

 |u1|

|u2|

uvdx, π = β,

−
∫
Ω

 x1 |u1|

x1 |u2|

uvdx, π = γ,

∫
Ω

 1
k2

1
k2

uvdx, π = k.

Numerical results for the AS flow are presented in Table 4.3.2. Recall that the

error is the absolute value of the difference between the numerical approximation

of the sensitivity and the analytic sensitivity computed above.

Both methods perform well on the flow problem. In each case the error is less

than the tolerance used to stop the computation of the solution.

4.3.2 Transport Sensitivity

The sensitivity for the quantity of interest in the transport system satisfies (4.2.14).

The FS transport system satisfies (3.3.10)-(3.3.13). Numerical results for the FS

transport are in Table 4.3.4.
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Table 4.3.3: West to East Flow With Smooth Parameters: Error in AS Flow

Adjoint Sensitivity Error

N {∂kH1} {∂kH2} {∂βH1} {∂βH2} {∂γH1} {∂γH2}
k = 1.0
β = 2.0
γ = −1.0


8 2.64×10−15 0.00×10+00 2.53×10−15 0.00×10+00 6.37×10−15 0.00×10+00

16 6.94×10−16 0.00×10+00 6.66×10−16 8.67×10−19 1.76×10−15 8.67×10−19

32 2.53×10−15 3.93×10−19 2.40×10−15 7.05×10−19 6.04×10−15 4.13×10−19
k = 2.0
β = 2.0
γ = −1.0


8 3.47×10−14 0.00×10+00 1.70×10−13 0.00×10+00 3.74×10−13 0.00×10+00

16 2.22×10−14 0.00×10+00 1.09×10−13 0.00×10+00 2.40×10−13 0.00×10+00

32 3.12×10−14 8.98×10−20 1.52×10−13 3.52×10−19 3.36×10−13 2.54×10−20
k = 1.0
β = 1.0
γ = 1.0


8 3.00×10−15 0.00×10+00 2.84×10−15 0.00×10+00 4.39×10−15 0.00×10+00

16 1.19×10−15 1.73×10−18 1.12×10−15 0.00×10+00 1.69×10−15 1.73×10−18

32 6.30×10−15 4.88×10−19 5.98×10−15 6.51×10−19 9.17×10−15 5.42×10−19
k = 1.0
β = 2.0
γ = 5.0


8 1.39×10−17 0.00×10+00 6.94×10−18 0.00×10+00 3.47×10−18 0.00×10+00

16 5.55×10−17 8.67×10−19 1.39×10−17 0.00×10+00 1.04×10−17 0.00×10+00

32 1.39×10−17 4.04×10−19 6.94×10−18 9.04×10−20 0.00×10+00 5.07×10−20

The adjoint transport system (3.4.12)-(3.4.14) is solved backwards in time using

the technique suggested in Remark 3.6. With the solution to the adjoint transport

system, the adjoint flow problem with weight functions from (3.4.15) and (3.4.16)

is solved. Finally, (3.4.17) is used to compute the sensitivity of the quantity of

interest. Numerical results for the AS transport are in Table 4.3.5. Recall that the

error is the absolute value of the difference between the numerical approximation

of the sensitivity and the analytic sensitivity computed above. The FS transport

sensitivities perform worse than the AS transport sensitivities. The FS transport

sensitivities converge to the true solution with order approximately 1 while the AS

transport converge with order approximately 2.
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Table 4.3.4: West to East Flow With Smooth Parameters: Error in FS Transport

Forward Sensitivity Error

N {∂kG} {∂βG} {∂γG}
k = 1.0
β = 2.0
γ = −1.0


8 4.40×10−03 2.41×10−03 1.21×10−03

16 2.18×10−03 1.19×10−03 5.97×10−04

32 1.08×10−03 5.94×10−04 2.97×10−04

Order 1.01 1.01 1.01
k = 2.0
β = 2.0
γ = −1.0


8 9.57×10−04 2.55×10−03 1.28×10−03

16 3.13×10−04 8.33×10−04 4.17×10−04

32 2.36×10−04 6.28×10−04 3.14×10−04

Order 1.01 1.01 1.01
k = 1.0
β = 1.0
γ = 1.0


8 4.40×10−03 2.41×10−03 1.21×10−03

16 2.18×10−03 1.19×10−03 5.97×10−04

32 1.08×10−03 5.94×10−04 2.97×10−04

Order 1.01 1.01 1.01
k = 1.0
β = 2.0
γ = 5.0


8 3.92×10−03 1.46×10−03 7.32×10−04

16 1.94×10−03 7.24×10−04 3.62×10−04

32 9.65×10−04 3.60×10−04 1.80×10−04

Order 1.01 1.01 1.01
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Table 4.3.5: West to East Flow With Smooth Parameters: Error in AS Transport

Adjoint Sensitivity Error

N {∂kG} {∂βG} {∂γG}
k = 1.0
β = 2.0
γ = −1.0


8 8.97×10−05 4.92×10−05 2.46×10−05

16 2.24×10−05 1.23×10−05 6.15×10−06

32 5.61×10−06 3.08×10−06 1.54×10−06

Order 2.00 2.00 2.00
k = 2.0
β = 2.0
γ = −1.0


8 1.95×10−05 5.21×10−05 2.60×10−05

16 1.65×10−13 4.46×10−13 2.44×10−13

32 1.22×10−06 3.26×10−06 1.63×10−06

Order 2.00 2.00 2.00
k = 1.0
β = 1.0
γ = 1.0


8 8.97×10−05 4.92×10−05 2.46×10−05

16 2.24×10−05 1.23×10−05 6.15×10−06

32 5.61×10−06 3.08×10−06 1.54×10−06

Order 2.00 2.00 2.00
k = 1.0
β = 2.0
γ = 5.0


8 8.00×10−05 2.99×10−05 1.49×10−05

16 2.00×10−05 7.47×10−06 3.73×10−06

32 5.00×10−06 1.87×10−06 9.33×10−07

Order 2.00 2.00 2.00



116

4.4 West to East With Discontinuous Parameters

In this example, a pressure driven flow with discontinuous coefficients from the west

side to the east side of [0, 1]× [0, 1] is considered. The flow is simple enough that

an analytic solution is provided. Five parameters are considered and the analytic

sensitivity is shown for each. The analytic solution to the associated transport

system is also shown and its sensitivity to the parameters in the flow problem is

computed. The experiment is implemented in Listing 8 in the Appendix.

Let

κ (k, β; |u|) =

 1
k(x)

+ β (x) |u1|
1

k(x)
+ β (x) |u2|

 ,
f (x) ≡ 0,

g (x) ≡ 0,

pD (x) = x1,

ΓD = {x : x1 = 0 or x1 = 1} ,

uN (x) = 0,

ΓN = {x : x2 = 0 or x2 = 1} ,

where

k (x) =


k1, x1 < x0,

k2, x1 > x0,
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β (x) =


β1, x1 < x0,

β2, x1 > x0,

for some x0 ∈ (0, 1). To the west of x0 the resistance tensor κ (k, β; |u|) has entries

dependent on k1 and β1 while to the east of x0 the entries depend on k2 and β2.

The discontinuity in κ is of particular interest. The sensitivity to x0 represents the

sensitivity to the location of the discontinuity. In the same way as in Section 4.2

above, the system is equivalent to the following one dimensional system:

u1
k (x)

+ β (x) |u1|u1 = −∂x1p,

∂x1u1 = 0,

p (0) = 1, p (1) = 0.

The solution is

p (x) =


1−

(
u1

k1
+ β1 |u1|u1

)
x1, x1 < x0,(

u1

k2
+ β2 |u1|u1

)
−
(

u1

k2
+ β2 |u1|u1

)
x1, x1 > x0,

u1 =

√
(k1 (1− x0) + k2x0)

2 + 4k21k
2
2 (β2 (1− x0) + β1x0)

2k1k2 (β2 (1− x0) + β1x0)

− k1 (1− x0) + k2x0
2k1k2 (β2 (1− x0) + β1x0)

,

u2 = 0.

The flow solver should be able to compute the solution exactly, but there is one
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Table 4.4.1: West to East Flow With Discontinuous Parameters: Flow Solver Error

Error

p u1 u2

N=10 6.38×10−04 3.54×10−04 9.73×10−12

N=11 1.05×10−10 1.18×10−10 7.66×10−11

possible problem. The grid should be aligned to the discontinuity. In Table 4.4.1,

the error is compared with N = 10 and N = 11 grid points for the experiment

with k1 = 1, k2 = 2, β1 = 3, β2 = 4, and x0 = 0.5. With N = 10 grid points the

grid is not aligned to the discontinuity while with N = 11 it is. The error in this

case is the maximum pointwise difference between the analytic solution and the

numerical solution. The true solution is

p (x) =


1− (u1 + 3 |u1|u1)x1, x1 <

1
2
,(

u1

2
+ 4 |u1|u1

)
(1− x1) , x1 >

1
2
,

,

u1 =

√
233− 3

28
,

u2 = 0.

This example shows that an odd number of grid points are needed to accurately

solve the system.

In the transport problem, let

c (x, 0) = 0,

c (0, x2, t) = 1,
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D ≡ 0.

The solution satisfies equation (4.2.4) and the quantity of interest satisfies (4.2.5).

4.4.1 Flow Sensitivity

Let

s =

√
(k1 (1− x0) + k2x0)

2 + 4k21k
2
2 (β2 (1− x0) + β1x0),

in order to simplify the expressions that follow. The analytic sensitivity of u2 to

any parameter is zero, the analytic sensitivity of u1 is

{∂k1u1} =
x0 (k1 (x0 − 1)− k2x0 + s)

2k21 (β1x0 + β2 (1− x0)) s
,

{∂k2u1} =
4k21k2 (β1x0 + β2 (1− x0))

2k1k2 (β1x0 + β2 (1− x0)) s

+
x0 (k1 (1− x0) + k2x0)− x0s

2k1k2 (β1x0 + β2 (1− x0)) s

+
k1 (1− x0) + k2x0 − s

2k1k22 (β1x0 + β2 (−x0 + 1))
,

{∂β1u1} =
k1k2x0

(β1x0 − β2 (x0 − 1)) s

− x0 (k1 (x0 − 1)− k2x0 + s)

2k1k2 (β1x0 − β2 (x0 − 1))2
,

{∂β2u1} =
k1k2 (−x0 + 1)

(β1x0 + β2 (−x0 + 1)) s

+
(x0 − 1) (k1 (x0 − 1)− k2x0 + s)

2k1k2 (β1x0 + β2 (−x0 + 1))2
,
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{∂x0u1} =
(β2 − β1) (k1 (x0 − 1)− k2x0) + s (β2 − β1)

2k1k2 (β1x0 + β2 (−x0 + 1))2

+
s (k1 − k2) + 2k21k

2
2 (β1 − β2)

2sk1k2 (β1x0 + β2 (−x0 + 1))

+
(k2 − k1) (k1 (1− x0) + k2x0)

2sk1k2 (β1x0 + β2 (−x0 + 1))

and the sensitivity of p is

{∂k1p} =


−x1

((
2β1u1 +

1
k1

)
{∂k1u1} − u1

k21

)
, x < x0,

(1− x1)
(
2β2u1 +

1
k2

)
{∂k1u1} , x > x0

{∂k2p} =


−x1

(
2β1u1 +

1
k1

)
{∂k2u1} , x < x0,

(1− x1)
((

2β2u1 +
1
k2

)
{∂k2u1} − 1

k22
u1

)
, x > x0,

{∂β1p} =


−x1

(
2β1u1 + u21 +

1
k1

)
{∂β1u1} , x < x0,

(1− x1)
(
2β2u1 +

1
k2

)
{∂β1u1} , x > x0,

{∂β2p} =


−x1

(
2β1u1 +

1
k1

)
{∂β2u1} , x < x0,

(1− x1)
((

2β2u1 +
1
k2

)
{∂β2u1}+ u21

)
, x > x0,

{∂x0p} =


−x1

(
2β1u1 +

1
k1

)
{∂x0u1} , x < x0,

(1− x1)
(
2β2u1 +

1
k2

)
{∂x0u1} , x > x0.

The analytic sensitivities are useful for verifying the numerical results.
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For the FS sensitivity, it is necessary to compute

∂|u|κ =



 β1

β1

 , x < x0,

 β2

β2

 , x > x0,

{∂k1κ} =



 − 1
k21

− 1
k21

 , x1 < x0,

 0 0

0 0

 , x > x0,

{∂k2κ} =



 0 0

0 0

 , x < x0,

 − 1
k22

− 1
k22

 , x > x0,

{∂β1κ} =



 |u1|

|u2|

 , x1 < x0,

 0 0

0 0

 , x1 > x0,
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{∂β2κ} =



 0 0

0 0

 , x1 < x0,

 |u1|

|u2|

 , x1 > x0,

{∂x0κ} = δx0

 1
k2

− 1
k1

+ (β2 − β1) |u1|
1
k2

− 1
k1

+ (β2 − β1) |u2|

 .
The resistance for the sensitivity equation is

κsens =

 1
k(x)

+ 2β (x) |u1|
1

k(x)
+ 2β (x) |u2|

 .
The source term is computed as {∂πκ}u for each parameter

π ∈ {k1, k2, β1, β2, x0} .

The source terms all depend on space, but that presents no difficulties for the

numerical implementation. The FS sensitivity is the solution to (4.2.6)-(4.2.9).

The most interesting sensitivity in this example is the sensitivity to x0. Nu-

merically, this is a difficult sensitivity to find since implementing the source term

requires the use of a numerical δ function. An implementation based on [71] may

be found in Listing 11 in the Appendix.

Numerical results for the FS flow are in Tables 4.4.2 and 4.4.3. Recall that the
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Table 4.4.2: West to East Flow With Discontinuous Parameters: Error in FS Flow

Forward Sensitivity Error

N {∂k1H1} {∂k1H2} {∂k2H1} {∂k2H2}{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 3.47×10−17 3.92×10−17 2.50×10−16 1.94×10−16

15 3.75×10−16 7.84×10−16 1.33×10−15 1.19×10−15

45 1.21×10−11 9.32×10−16 2.32×10−11 2.14×10−16{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 1.94×10−16 7.08×10−17 2.08×10−17 2.86×10−16

15 5.55×10−17 1.62×10−15 5.55×10−16 3.87×10−15

45 3.68×10−11 2.63×10−17 2.15×10−11 7.13×10−16

Table 4.4.3: West to East Flow With Discontinuous Parameters: Error in FS Flow

Forward Sensitivity Error

N {∂β1H1} {∂β1H2} {∂β2H1} {∂β2H2} {∂x0H1} {∂x0H2}{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 5.55×10−17 1.22×10−16 0.00×10+00 2.78×10−17 3.33×10−16 1.03×10−16

15 1.14×10−15 2.73×10−16 5.27×10−16 3.03×10−16 5.55×10−16 4.99×10−14

45 7.60×10−11 3.60×10−15 2.71×10−11 7.27×10−16 8.91×10−10 1.10×10−15{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 5.55×10−17 2.78×10−18 5.55×10−17 2.71×10−16 1.67×10−16 2.93×10−16

15 9.44×10−16 1.20×10−15 5.55×10−16 5.42×10−16 9.99×10−16 2.11×10−14

45 5.58×10−11 3.39×10−18 1.11×10−10 7.31×10−18 1.22×10−11 3.36×10−17

error is the absolute value of the difference between the numerical approximation

of the sensitivity and the analytic sensitivity computed above.

For each quantity of interest with its corresponding weight function ξ, the AS

sensitivity system is (4.2.10)-(4.2.13). Once the solution to the adjoint sensitivity

system are found, the sensitivity to each parameter is computed using the integral

{∂πH} = −
∫
Ω

{∂πκ}uvdx.

Since {∂x0u} is not computed, the singular source term is not needed and so the

implementation is easier than the forward sensitivity flow problem. When the
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Table 4.4.4: West to East Flow With Discontinuous Parameters: Error in AS Flow

Adjoint Sensitivity Error

N {∂k1H1} {∂k1H2} {∂k2H1} {∂k2H2}{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 4.16×10−17 1.73×10−18 2.22×10−16 1.38×10−18

15 5.34×10−16 2.85×10−18 1.22×10−15 9.61×10−18

45 1.11×10−11 8.34×10−16 2.23×10−11 2.68×10−16{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 1.39×10−16 6.36×10−18 0.00×10+00 2.96×10−18

15 1.67×10−16 6.85×10−17 6.94×10−18 3.10×10−17

45 3.61×10−11 2.18×10−17 1.81×10−11 2.92×10−18

Table 4.4.5: West to East Flow With Discontinuous Parameters: Error in AS Flow

Adjoint Sensitivity Error

N {∂β1H1} {∂β1H2} {∂β2H1} {∂β2H2} {∂x0H1} {∂x0H2}{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 2.78×10−17 8.67×10−18 8.33×10−17 3.47×10−18 2.78×10−16 5.77×10−17

15 1.61×10−15 2.40×10−17 8.88×10−16 4.17×10−18 4.44×10−16 1.38×10−17

45 7.20×10−11 3.45×10−15 3.60×10−11 2.08×10−16 9.03×10−10 5.99×10−16{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 2.78×10−17 6.94×10−18 8.33×10−17 6.94×10−18 1.11×10−16 1.91×10−17

15 1.11×10−16 3.71×10−17 2.78×10−17 5.64×10−17 3.33×10−16 1.65×10−16

45 5.54×10−11 2.16×10−17 1.11×10−10 1.61×10−17 1.13×10−11 1.60×10−18

sensitivity of the quantity of interest to x0 is computed, the term with δx0 simplifies

in the integral so that a function evaluation is used. Numerical results for the AS

flow are presented in Tables 4.4.4 and 4.4.5. Recall that the error is the absolute

value of the difference between the numerical approximation of the sensitivity and

the analytic sensitivity computed above.

The FS flow and AS flow sensitivity calculations perform very well and have

error smaller than the tolerance used for the solver.
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Table 4.4.6: West to East Transport With Discontinuous Parameters: Error in FS
Transport

Forward Sensitivity Error

N {∂k1G} {∂k2G} {∂β1G} {∂β2G} {∂x0G}

{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 9.02×10−04 3.61×10−03 2.74×10−03 2.74×10−03 6.35×10−03

15 2.94×10−04 1.18×10−03 8.93×10−04 8.93×10−04 2.07×10−03

45 9.74×10−05 3.90×10−04 2.95×10−04 2.95×10−04 6.85×10−04

Order 1.01 1.01 1.01 1.01 1.01{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 3.61×10−03 9.02×10−04 2.74×10−03 2.74×10−03 6.35×10−03

15 1.18×10−03 2.94×10−04 8.93×10−04 8.93×10−04 2.07×10−03

45 3.90×10−04 9.74×10−05 2.95×10−04 2.95×10−04 6.85×10−04

Order 1.01 1.01 1.01 1.01 1.01

4.4.2 Transport Sensitivity

The sensitivity for the quantity of interest in the transport system satisfies (4.2.14).

The FS transport system satisfies (3.3.10)-(3.3.13). Numerical results for the FS

transport are in Table 4.4.6.

The adjoint transport system (3.4.12)-(3.4.14) is solved backwards in time using

the technique suggested in Remark 3.6. With the solution to the adjoint transport

system, the adjoint flow problem with weight functions from (3.4.15) and (3.4.16)

is solved. Finally, (3.4.17) is used to compute the sensitivity of the quantity of

interest. Numerical results for the AS transport are in Table 4.4.7. Recall that the

error is the absolute value of the difference between the numerical approximation

of the sensitivity and the analytic sensitivity computed above. The FS transport

sensitivities perform worse than the AS transport sensitivities. The FS transport

sensitivities converge to the true solution with order approximately 1 while the AS

transport converge with order approximately 2.
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Table 4.4.7: West to East Transport With Discontinuous Parameters: Error in AS
Transport

Adjoint Sensitivity Error

N {∂k1G} {∂k2G} {∂β1G} {∂β2G} {∂x0G}

{
k1 = 2.0, k2 = 1.0
β1 = 0.5, β2 = 1.0

} 5 2.91×10−05 1.16×10−04 8.83×10−05 8.83×10−05 2.05×10−04

15 3.23×10−06 1.29×10−05 9.81×10−06 9.81×10−06 2.27×10−05

45 3.59×10−07 1.44×10−06 1.09×10−06 1.09×10−06 2.53×10−06

Order 2.00 2.00 2.00 2.00 2.00{
k1 = 1.0, k2 = 2.0
β1 = 1.0, β2 = 0.5

} 5 1.16×10−04 2.91×10−05 8.83×10−05 8.83×10−05 2.05×10−04

15 1.29×10−05 3.23×10−06 9.81×10−06 9.81×10−06 2.27×10−05

45 1.44×10−06 3.59×10−07 1.09×10−06 1.09×10−06 2.53×10−06

Order 2.00 2.00 2.00 2.00 2.00
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Chapter 5 Homotopy and Continuation

In this chapter homotopy and numerical continuation will be used to solve the

nonlinear flow model. Two functions are said to be homotopic if one can be con-

tinuously deformed into the other [50]. If two functions are homotopic, then the

continuous deformation of one into the other is called a homotopy [50]. Numeri-

cal continuation refers to methods for approximating a homotopy in order to find

an approximation to the solution of a system [1, 21, 12]. In this chapter, several

novel methods for numerical continuation are presented in which the derivative is

interpreted as the sensitivity of the model to a parameter and the direct inversion

of an operator is avoided.

In Section 5.1, numerical continuation is introduced. In Section 5.2 numerical

continuation is applied to the algebraic model in (2.2.1). Several algorithms for

numerical continuation are developed and applied to the problem. A novel con-

tinuation method is shown in Algorithm 5.3 and bounds for its error are given

in Theorem 5.4. Finally, in Section 5.3, the continuation methods developed in

Section 5.2 are applied to the nonlinear flow problem.
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5.1 Background

Consider first a simple example, an equation on u ∈ R of the form of Equation

(2.0.1).

In order to construct a homotopy, a parameter may be added so that the

equation

F (λ, u) ≡ Lu (λ) + λN (u (λ))− f, (5.1.1)

is solved for λ ∈ [0, 1]. The function F provides a homotopy from the solution

with λ = 0 to the solution with λ = 1. At λ = 0, the solution u (0) may be found

by solving the linear problem

Lu (0) = f. (5.1.2)

At λ = 1, the solution u (1) is the solution to equation

Lu (1) + λN (u (1)) = f. (5.1.3)

The continuation problem is to find a way to proceed from the easily known

solution u0 = u (0) of F (0, u) = 0 to the solution u (1) of F (1, u) = 0. Assume

that u (λ) is the unique solution to the equation F (λ, u) = 0 for each λ ∈ [0, 1].

The set {u (λ) : 0 ≤ λ ≤ 1} can be viewed as a curve in Rn from u (0) to u (1)

parameterized by λ. A continuation method finds a sequence of steps along this

curve.

If u (λ) and F (λ, u) are differentiable with respect to λ, then formally differ-
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entiating (5.1.1) with respect to λ gives

0 = (L+ λN ′ (u)) {∂λu}+N (u) ,

and solving for {∂λu} gives

{∂λu} = − (L+ λN ′ (u))
−1
N (u) . (5.1.4)

Now, given {∂λu} we can think of finding u(λ) by constructing a pseudo-

transient problem, a differential equation to lead us from u(0) to u(λ) for a given

λ. In this pseudo-transient problem λ plays a role of the "time" variable.

Given the solution to (5.1.2), we arrive at an initial value problem in Rn:

u0 = u (0) ,

{∂λu} = − (L+ λN ′ (u))
−1
N (u) .

The solution to this ordinary differential equation will follow the curve

{u (λ) : 0 ≤ λ ≤ 1}

and will give the solution u (1) to the nonlinear system in (5.1.3) which is sought.

This is called numerical continuation [1, 21, 12]. The difficulty in this method is

computing the derivative since it appears to involve a nonlinear operator.

Below we present a method in which the derivative is nothing but the sensitivity
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of the model to a parameter. With this approach, the direct inversion of the

nonlinear operator is avoided.

5.2 Application: An Algebraic Model

In Section 2.2 an algebraic model was given in (2.2.1) which has a solution given

in (2.2.2). Consider the homotopy

λβu (λ) |u (λ)|+ u (λ) = −kp, (5.2.1)

for λ ∈ [0, 1]. To construct an initial value problem, it is necessary to differentiate

(5.2.1) with respect to λ and to find the initial value u0 = u (0). The initial value

is given by

−kp = 0 · βu (0) |u (0)|+ u (0) ,

= u (0) .

Differentiating and solving for {∂λu} yields the initial value problem

{∂λu} = − βu (λ) |u (λ)|
2λβ |u (λ)|+ 1

, (5.2.2)

u0 = u (0) = −kp. (5.2.3)

This problem is well posed since 2λβ |u (λ)|+1 6= 0. It is possible to use numerical

methods to approximate the solution to this initial value problem. Several variants
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Algorithm 5.1 (Forward Euler Algebraic Model Continuation). Given N ≥ 1,
let ∆λ = 1

N
. Let u0 = −kp. For i = 1, . . . , N :

1. Let λi = i∆λ and {∂λu}i = − βui−1|ui−1|
2λi−1β|ui−1|+1

.

2. Let ui = ui−1 +∆λ {∂λu}i.

are developed below. The variants will be based on the Forward Euler method,

an explicit Runge-Kutta method, the Newton continuation method, and the novel

Quasi-Newton continuation method.

These four methods are tested below. In most circumstances the Quasi-Newton

continuation method has performance rivaling the Newton method but at a signif-

icantly lower computational cost.

Forward Euler based approach. A numerical method which is easy to im-

plement is the Forward Euler method [12]. The Forward Euler method is a first

order accurate method that approximates ui+1 ≈ ui +∆λ {∂λu} (ui) where ∆λ is

a given step size. This method is presented because it is simple to implement and

understand. The implementation, given in Algorithm 5.1, can help guide the use

of more complicated approximations. The error from solving using the Forward

Euler method is first order, O (∆λ). To choose ∆λ, pick an acceptable tolerance,

τ , and pick ∆λ < τ .

Runge-Kutta based approach. An obvious way to improve the continuation

method above is to use a higher order method. One possibility is to use an explicit
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Runge-Kutta method [12]. High order explicit Runge-Kutta methods are avail-

able in many software packages including Scipy. To use the Runge-Kutta method

one need only provide the initial value u0 and a function which will compute the

derivative at given u and λ. An advantage of the Runge-Kutta methods provided

in software packages like Scipy [34, 29] is their ability to adaptively control the

step size.

Newton continuation. Another improvement on the Forward Euler continua-

tion method is the Newton continuation method. See [21] for a discussion of this

method. This method allows us to take larger step sizes at the cost of solving a

nonlinear system. The method can be viewed as a predictor-corrector algorithm.

In the predictor step, the Forward Euler approximation is found. In the corrector

step, a nonlinear solver (like Newton’s method) is used to find the true solution.

Since the Forward Euler method should give a reasonable approximation to the

solution sought with the nonlinear solver, fewer iterations should be necessary.

The solution, at λ = 1, that is obtained using the Newton continuation method is

as numerically accurate as solving only with the nonlinear solver since that is the

final step of the algorithm. Newton continuation for a general model of the form

(5.1.1) is shown in Algorithm 5.2.

Quasi-Newton continuation. A simplification of the Newton continuation method,

which will be referred to as Quasi-Newton continuation, is to solve a related linear

system rather than the full nonlinear system in the last step. Theorem 5.4 shows

that Quasi-Newton continuation will maintain accuracy. It is demonstrated, below,
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Algorithm 5.2 (Newton Continuation). Given N ≥ 1, let ∆λ = 1
N

. Let u (0) = u0
be the solution to the linear problem Lu (0) = f . For i = 1, . . . , N :

1. Let λi = i∆λ and {∂λu}i = − (L+ λiN
′ (ui))

−1N (ui).

2. Let ui = ui−1 +∆λ {∂λu}i.

3. Solve the nonlinear problem Lui + λiN (ui) = f using ui as the initial guess.

Algorithm 5.3 (Quasi-Newton Continuation). Given N ≥ 1, let ∆λ = 1
N

. Let
u (0) = u0 be the solution to the linear problem Lu (0) = f . For i = 1, . . . , N :

1. Let λi = i∆λ and {∂λu}i = − (L+ λiN
′ (ui))

−1N (ui).

2. Let ui = ui−1 +∆λ {∂λu}i.

3. Solve the linear problem Lui = f − λiN (ui) for ui.

that it performs almost as well as Newton continuation. Quasi-Newton continua-

tion for a general model of the form (5.1.1) is shown in Algorithm 5.3.

Theorem 5.4. Suppose N (·) is Lipschitz continuous with constant K ≥ 0. Fix

λ ∈ [0, 1] and let u be the solution to

Lu+ λN (u) = f. (5.2.4)

If uQN is the Quasi-Newton approximation to u, then ‖u− uQN‖ = O (h). Further,

if K ‖L−1‖ ≤ 1, then ‖u− uQN‖ ≤ ‖u− uFE‖ where uFE is the Forward Euler

approximation to u.

Proof. Let uFE be the Forward Euler approximation to u, then uFE = u + O (h).
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By definition of the Quasi-Newton approximation to u, uQN satisfies

LuQN + λN (uFE) = f. (5.2.5)

Subtracting (5.2.5) from (5.2.4) and rearranging yields

u− uQN = λL−1 (N (uFE)−N (u)) .

Since N is Lipschitz continuous,

‖u− uQN‖ ≤ λK
∥∥L−1

∥∥ ‖uFE − u‖ .

Since uFE = u+O (h), ‖uFE − u‖ = O (h). If K ‖L−1‖ ≤ 1, then since 0 ≤ λ ≤ 1,

‖u− uQN‖ ≤ ‖uFE − u‖ .

5.2.1 A Simple Algebraic Example

Let β = 2 and kp = −1, then the solution u is sought to

2u |u|+ u = 1.

The exact solution, from (2.2.2), is clearly u = 1
2
.
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To find the solution using the present methods, the initial value problem

{∂λu} = − βu |u|
2λβ |u|+ 1

,

u (0) = 1,

will be solved. In Figure 5.2.1, the error in the Forward Euler method and Quasi-

Newton method for N ∈ [0, 10] is shown. The error decreases rapidly with increas-

ing N for both. The Forward Euler method performs better for smaller values of

N while the Quasi-Newton method performs better for larger values.

The solution path for the Forward Euler, Quasi-Newton, and the Scipy ODE

suite are shown in Figure 5.2.2. All methods use N = 10 steps. All solution paths

are close to each other, but the Scipy ODE suite and Quasi-Newton methods

perform slightly better than the Forward Euler method.

5.3 Continuation Method with Sensitivity for Fluid Flow in Porous

Media

Recall the equations governing fluid flow in porous media (2.3.5)-(2.3.8). For clarity

of presentation, let κL be the linear part of the resistance and let κNL = κNL (|u|)

be the non-linear part of the resistance. Then equations (2.3.5)-(2.3.8) may have

the parameter λ added so that

∇ · u = f (x) , in Ω, (5.3.1)
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κLu+ λκNL (|u|)u = −∇p+ g (x) , in Ω, (5.3.2)

p = pD (x) , on ΓD, (5.3.3)

u · n = uN (x) , on ΓN , (5.3.4)

where λ ∈ [0, 1]. Equations (5.3.1)-(5.3.4) define a homotopy between a linear

Darcy flow problem at λ = 0 and the original nonlinear flow model problem at

λ = 1.

5.3.1 Sensitivity to λ

We find the sensitivity to the parameter λ, formally, by differentiating with respect

to λ. Let

κS (u, |u| , λ) = κL + λκNL (|u|) + λ∂|u|κNL (∂u |u| (u)) ,

then the resulting system is

∇ · {∂λu} = 0, in Ω, (5.3.5)

κS (u, |u| , λ) {∂λu} = −∇{∂λp} − κNL (|u|)u, in Ω, (5.3.6)

{∂λp} = 0, on ΓD, (5.3.7)

{∂λu} · n = 0, on ΓN . (5.3.8)

This is a flow system for the sensitivities {∂λu} and {∂λp}. An important fact

about that system is that it is linear. Also, there is no explicit inversion of an

operator.
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5.3.2 Numerical Continuation

As described above, the sensitivity to λ will be used to find the solution to the

nonlinear flow model. Let u0, p0 solve

∇ · u0 = f (x) , in Ω, (5.3.9)

κLu0 = −∇p0 + g (x) , in Ω, (5.3.10)

p0 = pD (x) , on ΓD, (5.3.11)

u0 · n = uN (x) , on ΓN . (5.3.12)

The task at hand is to find a path from u0, p0 to the solution to the nonlinear flow

model. We will approximate {∂λu} and {∂λp} using (5.3.5)-(5.3.8). As explained

before in Section 5.2, there are several possibilities for solving the resulting initial

value problem including the Forward Euler method, Runge-Kutta methods, Quasi-

Newton, and Newton Continuation. The results below will show that the Quasi-

Newton is a superior method for this problem.

The Forward Euler method to trace the curves from the solution to the linear

problem p0, u0 to the solution to the nonlinear problem pN , uN is presented in Al-

gorithm 5.5. An important consideration in choosing N , is to ensure an acceptable

level of accuracy. Since the Forward Euler method is first order accurate (in ∆λ)

and we expect the error in the pressures to be second order accurate (in ∆x and

∆y), it is necessary to use ∆λ sufficiently small so that the continuation error is

not larger than the error from solving the flow problem. In short, it is sufficient
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Algorithm 5.5 (Forward Euler Flow System Continuation). Given N ≥ 1, let
∆λ = 1

N
. Let p0, u0 solve the linear flow system (5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = i∆λ, κi =
[
κL + λi−1κNL (|ui−1|) + λi−1∂|u|κNL (∂u |u| (ui−1))

]
, and

gi = −κNL (|ui−1|)ui−1 and solve

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN ,

for {∂λp}i , {∂λu}i.

2. Let pi = pi−1 +∆λ {∂λp}i and ui = ui−1 +∆λ {∂λu}i.

that ∆λ ≤ min
{
(∆x)2 , (∆y)2

}
. If N > max

{
N2

x , N
2
y

}
, then

∆λ =
1

N
<

1

max
{
N2

x , N
2
y

} = min
{
(∆x)2 , (∆y)2

}
.

This small step size might remove any advantage of solving the nonlinear problem

in this way. Fortunately, there are higher order methods which allow larger steps

and offer adaptive step sizes. Also, a larger step size might still yield a reasonable

result as an initial guess for a nonlinear solver.

The Runge-Kutta method is also implemented to solve the flow system. The

initial values will be as above and an algorithm to compute the derivative is given

in Algorithm 5.6.

The Newton continuation method is given in Algorithm 5.7. The Quasi-Newton

continuation method is demonstrated in Algorithm 5.8. A reasonable tolerance can
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Algorithm 5.6 (Flow System Derivative). Given u, p, and λ let κλ =[
κL + λκNL (|u|) + λ∂|u|κNL (∂u |u| (u))

]
and gλ = −κNL (|u|)u and solve

∇ · {∂λu} = 0, in Ω,

κλ {∂λu} = −∇{∂λp}+ gλ, in Ω,

{∂λp} = 0, on ΓD,

{∂λu} · n = 0, on ΓN ,

for {∂λp} , {∂λu}.

be selected using similar derivations as for the Forward Euler continuation since

this is a minor modification to that method. If the error in the linear or nonlinear

solver is kept less than the expected error in the pressures and the error from the

Forward Euler method, then the approximation should be reasonable. Since the

residual is used rather than the true error, it is safer to use a smaller tolerance to

assure a reasonable level of error.

5.3.3 Example Problem

To evaluate the algorithms developed above, an an example problem is defined by

κ (u) =

 2 + cos (xy)

2 + sin (xy)

+

 10 |u1|

15 |u2|

 ,
p (1, y) =p (x, 1) = p (0, y) = p (x, 0) = 0,

f (x, y) =4πy cos (4πxy) + 3πx cos (3πxy) ,
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Algorithm 5.7 (Newton Flow System Continuation). Given N ≥ 1, let ∆λ = 1
N

.
Let p0, u0 solve the linear flow system (5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = i∆λ, κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN ,

for {∂λp}i , {∂λu}i.

2. Let p∗i = pi−1 +∆λ {∂λp}i and u∗i = ui−1 +∆λ {∂λu}i.

3. Solve the nonlinear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|ui|)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN ,

for ui and pi using the initial guess p∗i and u∗i .
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Algorithm 5.8 (Quasi-Newton Flow System Continuation). Given N ≥ 1, let
∆λ = 1

N
. Let p0, u0 solve the linear flow system (5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = i∆λ, κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN ,

for {∂λp}i , {∂λu}i.

2. Let p∗i = pi−1 +∆λ {∂λp}i and u∗i = ui−1 +∆λ {∂λu}i.

3. Solve the linear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|u∗i |)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN ,

for ui and pi. If an iterative method is used to solve the linear system, use
the initial guess p∗i and u∗i .
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g (x, y) =

 (2 + cos (xy) + 10 |sin (4πxy)|) sin (4πxy)

(2 + sin (xy) + 15 |sin (3πxy)|) sin (3πxy)


+

 2π cos (2πx) sin (2πy)

2π sin (2πx) cos (2πy)

 .
Consider the system, as usual,

κ (u)u+∇p = g,

∇ · u = f,

with the given Dirichlet boundary conditions. It is easy to verify that

u = [sin (4πxy) , sin (3πxy)]T ,

p = sin (2πx) sin (2πy) ,

is the solution to this problem. Also, note that

κNL (u)u =

 10 |u1|

15 |u2|


 u1

u2

 ,
∂|u|κNL (∂u |u| (u)) =

 10

15


 |u1|

|u2|


 u1

u2

 .
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Further, the resistance term and gravity-like source term for the continuation

method are given by

κλ (λ, u) =

 2 + cos (xy)

2 + sin (xy)

+ 2λ

 10 |u1|

15 |u2|

 ,
gλ == −κNL (|u|)u,

respectively.

The methods and example problem are implemented in Listing 13 in the Ap-

pendix. The example problem is solved with Nx = Ny = 50. In this section the

error from the numerical method is not the focus. Instead, the modeling error is

the primary interest. Unfortunately, there will be numerical error in the solution

which is related to the grid spacing. The solution is shown in Figure 5.3.1. Note

that since this problem has forcing functions, it is expected that the velocity is not

perpendicular to the level lines of the pressure.

To compare the methods, the L2 error in u and p is computed using various

∆λ. A plot is shown with logarithmic scale in Figure 5.3.2. The Forward Euler

method performs far worse than the other methods with more error with ∆λ = 1
49

than the Quasi-Newton method has with ∆λ = 1
7
. The Newton method converges

immediately to the solution since the full nonlinear system is solved regardless of

the choice of ∆λ. The error in the Newton method is set by the stopping criteria for

the nonlinear solver which is set to 1
h2 , the expected error due to the discretization.

The nonlinear solver will only converge quickly if the initial guess is close enough
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Figure 5.3.1: Solution to Flow Example Problem with Nx = Ny = 50.



147

to the solution. The Quasi-Newton method performs very well. With ∆λ = 1
12

,

the Quasi-Newton method has converged to the accuracy expected for the spatial

discretization.

Another comparison is the relative computational cost, shown in Figure 5.3.3.

In this figure, for a given N = 1
∆λ

, the total number of systems that are solved is

shown. For the Forward Euler method, there is one linear system to solve for each

iteration. The Quasi-Newton method requires two linear systems to be solved (one

for the predictor step and another for the corrector step). The Newton method

requires that a nonlinear system to be solved. Something that is obscured by

this figure is that the cost of the Newton iterations is higher than the cost of

the Quasi-Newton and Forward Euler iterations. The Newton method relies on

a nonlinear solver at each step which includes extra overhead as well as solving

a linear system. Since the number of iterations for the Quasi-Newton method is

smaller than the Newton and the cost per iteration is less and since the accuracy

is comparable, it seems that the Quasi-Newton method is a superior method. It

is also worth noting that the accuracy can be brought to the same level as the

Newton method by using the output as an initial guess in the nonlinear solver.

Since a small number of iterations of the Quasi-Newton method leads to a small

error, the nonlinear solver should converge quickly.

To compare the Scipy ODE suite, the error is compared with similar ∆λ in

Table 5.3.1. The Scipy ODE suite performs slightly better than the Forward Euler

method but is greatly out-performed by the Newton and Quasi-Newton methods.
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Figure 5.3.2: L2 Error in p and u.
The Newton method solves the full system with tolerance 1

h2 for the pressure,
where h is the grid spacing, regardless of N so the error is approximately constant.
The linear flow solver is expected to give the same error as the Newton solver’s
tolerance.
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Figure 5.3.3: Number of System Solutions.
The Newton method takes more system solutions and the solutions are more
costly than the Quasi-Newton and the Forward Euler methods. The Quasi-Newton
method takes approximately double the number of solutions as the Forward Euler
method.

Error in p Error in u
Forward Euler 8.86× 10−3 0.393

Scipy ODE 7.71× 10−3 0.350
Quasi-Newton 1.08× 10−3 0.0678

Newton 1.12× 10−3 0.0677

Table 5.3.1: Error with N = 66 Iterations.
The Forward Euler method and the Scipy ODE suite produce similar error. The
Quasi-Newton and Newton methods produce similar error.
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5.4 Summary

In this chapter, numerical continuation was discussed. In Section 5.1, a homotopy

was presented and an initial value problem for following the homotopy was given.

In Section 5.2, several algorithms were developed to solve the initial value problem

from Section 5.1. The methods for solving the initial value problem are referred

to as numerical continuation.

The simplest method, based on the forward Euler method, is presented in

Algorithm 5.1 for a general nonlinear problem and it is applied to the algebraic

example from Chapter 2 in Section 5.2.1. In Section 5.3, the method is applied to

the nonlinear flow model from Chapter 2. The algorithm is shown in Algorithm

5.5. An advantage of the method is that it has easily computable error bounds,

although the accuracy is far less than some of the other methods.

Another method, based on the same idea as the forward Euler method, is to

use a Runge-Kutta method and software libraries. Commonly available software

libraries will solve an initial value problem given a derivative function and the

initial value. The numerical experiments show that the results are similar to the

forward Euler method.

The standard method for numerical continuation, Newton continuation, is pre-

sented in 5.2. The Newton continuation will converge if the nonlinear flow solver

from Chapter 2 converges since the last step is solving the full nonlinear system.

The disadvantage is that the computational cost for so many nonlinear solutions

may be higher than necessary.
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Finally, a novel Quasi-Newton continuation method is provided in Algorithm

5.3 and it is applied to the algebraic problem in Section 5.2.1. In Section 5.3, the

method is applied to the nonlinear flow model from Chapter 2. The algorithm is

shown in Algorithm 5.8. In Theorem 5.4, the error in the Quasi-Newton method is

shown to be no worse than the forward Euler method. In practical experiments, the

error is much less than the error from the forward Euler method. In the practical

experiments, this method is clearly superior. Since only linear systems are solved,

each iteration is relatively fast when compared to the Newton continuation method

while it also has much faster convergence than the forward Euler method.
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Chapter 6 Model Adaptivity Using Sensitivity Analysis

When modeling a physical problem, such as fluid flow and transport in porous

media, there are several possible sources of error. First, measurements need to be

made which can only have a finite resolution and often present processing problems

[14, 36, 60]. There is also numerical error due to the choice of numerical method

for approximating the solution as discussed in Chapter 2. The topic of this chapter

is model adaptivity, which is concerned with the error due to the choice of physical

model [56, 53, 7, 54, 55, 52]. An example of such a choice is the choice between

the linear Darcy model for fluid flow and the nonlinear flow model presented in

Chapter 2. Approximating the modeling error, that is the error incurred from the

choice of model, aids in the choice of model. This chapter will show one method

for approximating the modeling error.

In [52, 55, 54, 7, 53, 56] residual based error approximations for a quantity of

interest are discussed. One difficulty in the methods in those works is that the error

in the solution to the problem and an adjoint problem have to be estimated. No

general framework for finding the estimates is presented. In this section, sensitivity

analysis, as in Chapter 3.4, will be applied to the problem of approximating the

error in a quantity of interest.

In Section 6.1, the framework for approximating the error in a quantity of in-

terest is developed. It is proposed that a homotopy between a linear model and
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a nonlinear model be followed as in Chapter 5. It is proposed that the sensitivity

of the quantity of interest is computed for various values of the continuation pa-

rameter and the values are integrated with respect to the continuation parameter.

The sensitivity of the quantity of interest may be computed using either FS or AS

from Chapter 3. The integration with respect to the continuation parameter may

be carried out using techniques such as the left hand rule, the trapezoidal rule,

or Gaussian quadrature. In Section 6.2, the methods developed in Section 6.1 are

applied to the nonlinear flow model from Chapter 2.

6.1 Background

Recall, a homotopy for a system of the form (2.0.1) is given in (5.1.1). Suppose

that G (u) is a quantity of interest. The error in the quantity of interest G (·) is

given by

EG = G (u (1))−G (u (0)) ,

where u (0) is the solution to (5.1.2) and u (1) is the solution to (5.1.3). Let

G (λ) = G (u (λ)) ,

then G is a real valued function defined on [0, 1]. Then

dG

dλ
= ∂uG {∂λu} ,
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which may be computed using either FS from Section 3.3 or AS from Section 3.4.

Theorem 6.1. If G (·) is differntiable on [0, 1] and dG
dλ

is Riemann integrable on

[0, 1], then

EG = G (1)−G (0)

=

∫ 1

0

dG

dλ
dλ. (6.1.1)

Proof. Apply the Fundamental Theorem of Calculus [17].

The methods in this chapter are based on integrating dG
dλ

over the interval

λ ∈ [0, 1]. The simplest method for approximating the integral is the left hand

rule which results in

EG ≈ dG

dλ
(0) .

In the following section the trapezoidal rule will also be applied. Another option

for approximating the integral is to use Gaussian quadrature. First, observe that

∫ 1

0

dG

dλ
(λ) dλ =

1

2

∫ 1

−1

dG

dλ

(
λ+ 1

2

)
dλ.

Gaussian quadrature approximates

∫ 1

−1

f (x) dx ≈
n∑

i=1

wif (xi) ,

for some weights wi and nodes xi. The weights wi and nodes xi are chosen so that

the approximation is exact for polynomials of degree 2n − 1 or less. A complete
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treatment of Gaussian quadrature may be found in [3, 12]. The nodes correspond

with the roots of orthogonal polynomials. One example of orthogonal polynomials

that may be used are the Legendre polynomials. In that case, the nodes and the

weights are available through calls to library functions [34]. The only difficulty is

evaluating at the correct points λi = xi+1
2

where xi are the nodes above.

6.2 Fluid Flow in Porous Media

Recall the equations governing fluid flow in porous media (2.3.5)-(2.3.8). For clarity

of presentation, let κL be the linear part of the resistance and let κNL = κNL (|u|)

be the non-linear part of the resistance. Recall that a homotopy between the linear

Darcy model at λ = 0 and the nonlinear flow model at λ = 1 may be constructed

as in (5.3.1)-(5.3.4). Further, recall that the sensitivity to λ satisfies (5.3.5)-(5.3.8).

Let |Ω| represent the area of Ω. Let

H1 (u) =

∫
Ω

ξ1 (x)u (x) dx

where ξ1 (x) =
[

1
|Ω| , 0

]T
and

H2 (u) =

∫
Ω

ξ2 (x)u (x) dx

where ξ2 (x) =
[
0, 1

|Ω|

]T
. These quantities of interest correspond, respectively, to

the average value of u1 and u2 in Ω.
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Two methods to compute the sensitivity of the quantities of interest will be

used: forward sensitivity analysis (FS) and adjoint sensitivity analysis (AS). Re-

call that in FS the sensitivity of the solution is found by solving (3.3.5)-(3.3.8)

while in AS the system (3.4.1)-(3.4.4) is solved which avoids the direct compu-

tation of the sensitivity of the solution. Both methods use the solution to the

system (5.3.1)-(5.3.4) when computing the sensitivity. The left hand rule, the

trapezoidal rule, and Gaussian quadrature will be applied to approximate the in-

tegral in (6.1.1).

The left hand rule approximates

EHi
≈ {∂λHi}|λ=0 .

The left hand rule requires the solution u (0) to the Darcy system. In addition to

the solution u (0) the FS method will require the solution to (5.3.1)-(5.3.4) with

λ = 0 whereas the AS method will require the solution to (3.4.1)-(3.4.4) with

λ = 0. The FS left hand rule method is outlined in Algorithm 6.2 and the AS left

hand rule method is outlined in Algorithm 6.3.

The trapezoidal rule and Gaussian quadrature will be used to approximate the

integral in (6.1.1). The FS method will require the value of {∂λu} (λ) which are

found by solving (5.3.1)-(5.3.4) for several values of λ while the AS method will

require the solution to the adjoint problem (3.4.1)-(3.4.4) for several values of λ.

Both of the systems (5.3.1)-(5.3.4) and (3.4.1)-(3.4.4) use the solution u (λ). To

get an approximation for u (λ), the Quasi-Newton method from Chapter 5 will be
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Algorithm 6.2. Let p0, u0 solve the linear flow system (5.3.9)-(5.3.12).

1. Solve for {∂λp} and {∂λu} the linear system

∇ · {∂λu} = 0, in Ω,[
∂|u|κ (∂u |u| (u0)) + κ (0; |u0|)

]
{∂λu} = −∇{∂λp} − {∂πκ}u, in Ω,

{∂λp} = 0, on ΓD,

{∂λu} · n = 0, on ΓN .

2. Compute {∂λH} (0) =
∫
Ω
ξ (x) {∂λu} dx.

Approximate EH ≈ {∂λH} (0).

Algorithm 6.3. Let p0, u0 solve the linear flow system (5.3.9)-(5.3.12).

1. Solve for µ and v the linear system

∇ · v = 0, in Ω,[
∂|u|κ (∂u |u| (u0)) + κ (0; |u0|)

]
v = −∇µ+ ξ, in Ω,

µ = −ξ∂, on ΓD,

v · n = 0, on ΓN .

2. Compute {∂λH} (0) = −
∫
Ω
{∂λκ}u0vdx.

Approximate EHi
≈ {∂λH} (0).
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used. The FS trapezoidal rule, AS trapezoidal rule, FS Gaussian quadrature, and

AS Gaussian quadrature methods are outlined in Algorithms 6.4-6.7, respectively.

An important comparison is the computational complexity where the FS meth-

ods are superior. The FS methods allow the reuse of the computed sensitivities

from the Quasi-Newton method and so fewer system solutions are needed for a

given number of integration points. Algorithms 6.4-6.7 are implemented in Listing

14 and are applied to the example problem from Section 5.3.3. The estimated error

in the x-velocity is shown in Figure 6.2.1 and the estimated error in the y-velocity

is shown in Figure 6.2.2. Again, the FS methods perform better than the AS

methods. Surprisingly, the Gaussian quadrature methods do not perform as well

as the trapezoidal rule.

6.3 Summary

In this chapter a method for approximating the modeling error was proposed. The

method uses the techniques developed in Chapter 3 for sensitivity analysis and

the homotopy from Chapter 5. Having a good approximation for the error in a

quantity of interest may aid in choosing a model. If the error is known to be small,

then a simpler model may be used.

In Section 6.1, the general framework was given. The Fundamental Theorem

of Calculus was employed to give a simple relationship between the error in the

quantity of interest EG and the integral of the sensitivity of the objective func-

tion with respect to the continuation parameter. The sensitivity of the objective
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Algorithm 6.4. Given N ≥ 1, let ∆λ = 1
N

. Let p0, u0 solve the linear flow system
(5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = i∆λ, κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve for {∂λp}i , {∂λu}i

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN .

2. Let p∗i = pi−1 +∆λ {∂λp}i and u∗i = ui−1 +∆λ {∂λu}i.

3. Solve for ui and pi the linear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|u∗i |)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN .

4. Compute {∂λH} (λi) = −
∫
Ω
ξ (x) {∂λu}i dx.

Approximate
∫ 1

0
{∂λH} dλ = −

∫ 1

0
{∂λH} dλ using the trapezoidal rule:

∆λ

2

N∑
i=1

({∂λH} (λi) + {∂λH} (λi−1)) .
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Algorithm 6.5. Given N ≥ 1, let ∆λ = 1
N

. Let p0, u0 solve the linear flow system
(5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = i∆λ, κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve for {∂λp}i , {∂λu}i

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN .

2. Let p∗i = pi−1 +∆λ {∂λp}i and u∗i = ui−1 +∆λ {∂λu}i.

3. Solve for ui and pi the linear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|u∗i |)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN .

4. Solve for µi and vi the linear system

∇ · vi = 0, in Ω,[
∂|u|κ (∂u |u| (ui)) + κ (λi; |ui|)

]
vi = −∇µi + ξ, in Ω,

µi = −ξ∂, on ΓD,

vi · n = 0, on ΓN .

5. Compute {∂λH} (λi) = −
∫
Ω
{∂λκ}uividx.

Approximate
∫ 1

0
{∂λH} dλ = −

∫ 1

0
{∂λH} dλ using the trapezoidal rule:

∆λ

2

N∑
i=1

({∂λH} (λi) + {∂λH} (λi−1)) .
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Algorithm 6.6. Given a choice of orthogonal polynomials and N ≥ 1, let xi be
the N nodes in [−1, 1] and wi be the corresponding weights. Let λ0 = 0 and let
p0, u0 solve the linear flow system (5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = xi+1
2

.

2. Let κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve for {∂λp}i , {∂λu}i

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN .

3. Let ∆λ = λi−λi−1 and let p∗i = pi−1+∆λ {∂λp}i and u∗i = ui−1+∆λ {∂λu}i.

4. Solve for ui and pi the linear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|u∗i |)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN .

Approximate
∫ 1

0
{∂λH} dλ = −

∫ 1

0

∫
Ω
ξ (x) {∂λu}i dxdλ using Gaussian quadrature:

N∑
i=1

wi {∂λκ}uivi.
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Algorithm 6.7. Given a choice of orthogonal polynomials and N ≥ 1, let xi be
the N nodes in [−1, 1] and wi be the corresponding weights. Let λ0 = 0 and let
p0, u0 solve the linear flow system (5.3.9)-(5.3.12). For i = 1, . . . , N :

1. Let λi = xi+1
2

.

2. Let κi =
[
κL + λiκNL (|ui−1|) + λi∂|u|κNL (∂u |u| (ui−1))

]
, and gi =

−κNL (|ui−1|)ui−1 and solve for {∂λp}i , {∂λu}i

∇ · {∂λu}i = 0, in Ω,

κi {∂λu}i = −∇{∂λp}i + gi, in Ω,

{∂λp}i = 0, on ΓD,

{∂λu}i · n = 0, on ΓN .

3. Let ∆λ = λi−λi−1 and let p∗i = pi−1+∆λ {∂λp}i and u∗i = ui−1+∆λ {∂λu}i.

4. Solve for ui and pi the linear system

∇ · ui = f (x) , in Ω,

κLui + λiκNL (|u∗i |)ui = −∇pi + g (x) , in Ω,

pi = pD (x) , on ΓD,

ui · n = uN (x) , on ΓN .

5. Solve for µi and vi the linear system

∇ · vi = 0, in Ω,[
∂|u|κ (∂u |u| (ui)) + κ (λi; |ui|)

]
vi = −∇µi + ξ, in Ω,

µi = −ξ∂, on ΓD,

vi · n = 0, on ΓN .

Approximate
∫ 1

0
{∂λH} dλ = −

∫ 1

0

∫
Ω
{∂λκ}uvdxdλ using Gaussian quadrature:

N∑
i=1

wi {∂λκ}uivi.
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Figure 6.2.1: Estimated Error in Average Velocity in x-direction
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Figure 6.2.2: Estimated Error in Average Velocity in y-direction
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function may be computed using either FS or AS from Chapter 3. The integration

with respect to the continuation parameter may be done using techniques such as

the left hand rule, the trapezoidal rule, or Gaussian quadrature.

In Section 6.2, the methods developed in Section 6.1 were applied to the non-

linear flow model from Chapter 2. Algorithms were developed using FS and AS

from Chapter 3 and integration techniques such as the left hand rule, the trape-

zoidal rule, and Gaussian quadrature. When applied to an example problem the

FS methods emerged as the superior methods since the error in the quantity of

interest was more accurately predicted and the computational cost was less. Sur-

prisingly, the trapezoidal rule performed better than Gaussian quadrature for the

integration with respect to the continuation parameter.

Besides the advantages of lower computational complexity and better accuracy,

which are enough to warrant its use, the FS methods have an additional advantage

since they are inherently local in nature. If the modeling error were used to choose

the model locally, the local error could be computed using FS with only the cost

of additional integration whereas the AS method would require the solutions to

additional systems. This is a demonstration of the general principle that the FS

method is preferred when there are many quantities of interest and few parameters

since there are potentially many quantities of interest and only one parameter.
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Chapter 7 Conclusions and Future Work

In this work several new ideas were applied to a problem of coupled fluid flow

and transport in porous media. Without access to closed form solutions, it is

important to have computational algorithms to approximate the solutions. This

work explored several methods related to approximating those solutions.

Before implementing a numerical method to approximate the solution, it is

important to verify that the problem is, indeed, well-posed. In this work, the

nonlinear non-Darcy model was shown to be well-posed. It is often much more

difficult to show that a nonlinear problem is well-posed than a linear model. The

proof of the well-posedness of the non-Darcy model relied on recently published

analysis results. To our knowledge, this is the first proof of well-posedness in this

setting.

With the well-posedness of the model problems established, a numerical algo-

rithm was developed to approximate the solution to the problem. Cell-centered

finite difference methods were connected to an expanded mixed finite element

method for the linear Darcy model. Cell-centered finite difference methods of-

fer the advantage that they are relatively easy to implement, but they impose

more severe restrictions on the type of data that is allowed. Meanwhile, finite

element methods are less restrictive for the type of data that are allowed. The

mixed finite element method provides conservative approximations to the velocity
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which are desirable. The expanded mixed finite element method allowed for the

media to be anisotropic. It was proposed that Newton’s method could be applied

to use the Darcy solver to get the solution to the nonlinear non-Darcy system.

Next, the theoretical framework for sensitivity analysis was established. In this

work, sensitivity analysis was discussed as finding the derivative of the solution

to a system with respect to model parameters. There are various applications

beyond the scope of this work for sensitivity analysis including model reduction,

statistical analysis, and gaining insight into how accurately model parameters must

be estimated. The problem of finding sensitivities can be quite delicate since theory

usually does not guarantee the existence of such derivatives. In this work, forward

and adjoint methods for finding sensitivities were developed. In particular, we

believe this is the first example of sensitivity analysis for a coupled system. With

the theoretical framework in place, several examples demonstrating techniques of

sensitivity analysis were shown.

In Chapter 5, a set of novel numerical continuation algorithms were developed.

Numerical continuation methods trace a path between an easy to solve problem

and a more difficult problem. The methods developed in this work combine the

idea of tracing a path with sensitivity analysis. To do this, an initial value problem

was set up with initial value at a linear problem and, using sensitivity analysis, the

derivative with respect to a continuation parameter was found. Several methods for

solving the initial value problem were proposed. In the end, a predictor-corrector

algorithm which we called the Quasi-Newton method was shown to work quite

well.
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Finally, a method for model adaptivity was developed. Model adaptivity is

concerned with approximating the modeling error so that an appropriate model

may be chosen. The continuation methods developed in Chapter 5 were leveraged

to give an estimate of the modeling error from choosing the Darcy model over

the non-Darcy model. It was demonstrated that the Quasi-Newton continuation

method may be used to estimate the error in a quantity of interest.

There are many directions for future work to proceed. The simplest would

be to apply the results to slightly more complicated systems than the problems

in this work. For instance, the examples in this work did not have anisotropy

in the medium. Since the Darcy solver has a larger stencil in the presence of

anisotropy, the continuation method may show even more use in that setting.

Also, the examples in Chapter 4, even though implemented in 2D, were essentially

equivalent to one dimensional problems. Demonstrating that the techniques work

on bona fide two dimensional problems would be an easy extension of the present

work.

Another open question is what other related fluid flow models may be shown

to be well-posed. It was pointed out that the simple addition of anisotropy in the

nonlinear term may pose a problem for the present theory and it was shown that

the form for the magnitude of velocity also deserves delicate treatment. These and

other related models may be well-posed, but the present theory does not show that

they are.

Some extensions to the continuation method may also be possible. One possible

extension is to models with more than one part. An example is a system of the
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form

K−1u+ β |u|u+ γ |u|α u = −∇p.

In such a case, the continuation and modeling error may be applied by adding two

continuation parameters, λ1, λ2 ∈ [0, 1], so that the equation reads

K−1u+ λ1β |u|u+ λ2γ |u|α u = −∇p.

For the modeling error, the extension is immediate, but for numerical continuation

the extension is less obvious. An open question is how to follow a path from

λ1 = λ2 = 0 to λ1 = λ2 = 1. There are many possible paths and defining and

tracing an optimal path is an open question.

Another extension is to explore the composition of models further. For instance,

suppose that a coupled system of flow, transport, and reaction is to be solved which

may be written as

R (T (F )) .

It is possible that each system may be modeled in several ways. For instance, the

flow model may be solved using the Darcy flow model or the non-Darcy flow model,

the transport may include or exclude diffusion, and the reaction system may be

simple if only a few reactive species are present while it may be more complicated if

there are many reactive species present. In such a system, it may be advantageous

to estimate the modeling error using several continuation parameters at each level.
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The system might look something like

NR∑
i=1

λRi Ri

(
NT∑
j=1

λTj Tj

(
NF∑
k=1

λFk Fk

))
,

where NR is the number of reaction systems, NT is the number of transport sys-

tems, and NF is the number of flow systems.

Finally, rather than a continuation method that works in a global way, it may

be possible to develop a continuation method that works more locally. The idea

would be to progress the continuation more quickly in places where the sensitivity

to the continuation parameter is low and more slowly where the sensitivity to the

continuation parameter is high.
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The following source code demonstrates the methods used in this thesis.

Listing 1: flowSolver.py
""" A flow solver based on [Arbogast, Wheeler]. """

import numpy as np
import numexpr as ne
from numpy import zeros,ones,outer
from numpy.linalg import inv
from scipy.linalg import solve
from scipy.optimize import newton_krylov
from scipy.interpolate import interp1d
from scipy.sparse.linalg import LinearOperator ,lgmres

class DarcySolver(object):
def __init__(self,x,y,Boundary ,K=None,f=None,g=None,

solverOptions=None,NDSolverOptions=None):
# Set up the class variables.
self.x,self.y = x,y
self.Nx,self.Ny = len(x)-1,len(y)-1
self.X = (x[1:]+x[:-1])/2.
self.Y = (y[1:]+y[:-1])/2.
# Dx,Dy are the cell dimensions.
self.Dx,self.Dy = x[1:] - x[:-1],y[1:]-y[:-1]
# dx,dy are the distances between cell centers.
self.dx = (self.Dx[1:]+self.Dx[:-1])/2.
self.dy = (self.Dy[1:]+self.Dy[:-1])/2.
# K is the inverse of the resistance tensor.
if K is not None:

self.K = K
self.F = f
self.g = g
self.Boundary = Boundary
self._Kgx = zeros((self.Nx+1,self.Ny))
self._Kgy = zeros((self.Nx,self.Ny+1))
if solverOptions is not None:

self.solverOptions = solverOptions
else:

self.solverOptions = {’tol’:1e-10}
if NDSolverOptions is not None:

self.NDSolverOptions = NDSolverOptions
else:

self.NDSolverOptions = {’f_tol’:1e-10}

def get_F(self):
return self._F

def set_F(self,f):
self._F = f
if self._F is not None:

self.Fdxdy = self._F*outer(self.Dx,self.Dy)
else:

self.Fdxdy = zeros((self.Nx,self.Ny))

F = property(get_F,set_F)
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def get_K(self):
return self._K

def set_K(self,K):
self._K = K

K = property(get_K,set_K)

def get_kappa(self):
raise ValueError("Only K is stored.")

def set_kappa(self,kappa):
Nx,Ny = self.Nx,self.Ny
K = {’11’:zeros((Nx+1,Ny+1)),’12’:zeros((Nx+1,Ny+1)),

’22’:zeros((Nx+1,Ny+1))}
Kij = zeros((2,2))
for i in xrange(Nx+1):

for j in xrange(Ny+1):
Kij[0,0] = kappa[’11’][i,j]
Kij[1,0] = kappa[’12’][i,j]
Kij[0,1] = kappa[’12’][i,j]
Kij[1,1] = kappa[’22’][i,j]
Kinv = inv(Kij)
K[’11’][i,j] = Kinv[0,0]
K[’12’][i,j] = Kinv[1,0]
K[’22’][i,j] = Kinv[1,1]

self.K = K

kappa = property(get_kappa ,set_kappa)

def getGravitySourceEdges(self):
Nx,Ny = self.Nx,self.Ny
Kgx,Kgy = self._Kgx,self._Kgy
if self.g is not None:

Dx,Dy,dx,dy = self.Dx,self.Dy,self.dx,self.dy
K11,K22,K12 = self.K[’11’],self.K[’22’],self.K[’12’]
gx,gy,gyx,gxy = self.g[’1x’],self.g[’2y’],self.g[’2x’],self.g[’1y’]
RHS = zeros((Nx,Ny))
# Set up RHS from gravity.
Kgx = (gx*(K11[:,:-1]+K11[:,1:])/2.

+ gyx*(K12[:,:-1]+K12[:,1:])/2.)
Kgy = (gy*(K22[:-1,:]+K22[1:,:])/2.

+ gxy*(K12[:-1,:]+K12[1:,:])/2.)
return Kgx,Kgy

def getGravitySource(self):
Nx,Ny = self.Nx,self.Ny
Kgx,Kgy = self.getGravitySourceEdges()
return self.Divergence(Kgx,Kgy)

def getWellSource(self):
return self.Fdxdy

def SetUpRHS(self):
Kgdiv = self.getGravitySource()
Fdxdy = self.getWellSource()
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return Kgdiv - Fdxdy

def GetVelocity(self,p):
N,D = self.Boundary[’Neumann’],self.Boundary[’Dirichlet’]
Bv = self.Boundary[’Values’]
if self.g is not None:

# Approximate velocity: u = K*g - K*grad(p)
Kgx,Kgy = self.getGravitySourceEdges()
kpx,kpy = self.KGrad(p)
ux,uy = Kgx-kpx,Kgy-kpy

else:
kpx,kpy = self.KGrad(p)
ux,uy = -kpx,-kpy

ux[0,N[’West’]] = Bv[’West’][N[’West’]]
ux[-1,N[’East’]] = Bv[’East’][N[’East’]]
uy[N[’South’],0] = Bv[’South’][N[’South’]]
uy[N[’North’],-1] = Bv[’North’][N[’North’]]
return ux,uy

def GetVelocityNonDarcy(self,p):
Nx,Ny = self.Nx,self.Ny
self._p = p
ux,uy = self.GetVelocity(p)
u = np.append(ux.flat,uy.flat)
u = newton_krylov(self.velocityResidual ,u,

f_tol=self.NDSolverOptions[’f_tol’]/2.)
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
return ux,uy

def velocityResidual(self,u):
Nx,Ny = self.Nx,self.Ny
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
self.updateKappa(ux,uy)
vx,vy = self.GetVelocity(self._p)
return np.append((vx-ux).flat,(vy-uy).flat)

def KGrad(self,p):
Nx,Ny = self.Nx,self.Ny
Dx,Dy,dx,dy = self.Dx,self.Dy,self.dx,self.dy
K11,K22,K12 = self.K[’11’],self.K[’22’],self.K[’12’]
N,D = self.Boundary[’Neumann’],self.Boundary[’Dirichlet’]
Bv = self.Boundary[’Values’]
# Approximate K*grad(p)
ux,uy = zeros((Nx+1,Ny)),zeros((Nx,Ny+1))
px,py = self.Gradient(p)
DX = 2.*(Dx[1:]+Dx[:-1])
uxc,pxc = ux[1:-1,:],px[1:-1,:]
k11b,k11t = K11[1:-1,:-1],K11[1:-1,1:]
Dxr,Dxl = Dx[1:],Dx[:-1]
Dxr,Dxl = Dx[1:]/DX,Dx[:-1]/DX
Dxr,Dxl = Dxr[:,np.newaxis],Dxl[:,np.newaxis]
k12b,k12t = K12[1:-1,:-1],K12[1:-1,1:]
pyb,pyt = py[1:,:-1],py[1:,1:]
pyb2,pyt2 = py[:-1,:-1],py[:-1,1:]
e="pxc*(k11b+k11t)/2.+Dxr*(k12b*pyb+k12t*pyt)+Dxl*(k12b*pyb2+k12t*pyt2)"
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ne.evaluate(e,out=uxc)
’’’
ux[1:-1,:] = (px[1:-1,:]*(K11[1:-1,:-1]+K11[1:-1,1:])/2.
+(Dx[1:]*(K12[1:-1,:-1]*py[1:,:-1]+K12[1:-1,1:]*py[1:,1:]).T/DX).T
+(Dx[:-1]*(K12[1:-1,:-1]*py[:-1,:-1]+K12[1:-1,1:]*py[:-1,1:]).T/DX).T)

’’’
ux[0,N[’West’]] = Bv[’West’][N[’West’]]
DW = D[’West’]
DWp1 = DW + 1
ux[0,DW] = ((K11[0,DW]+K11[0,DWp1])*px[0,DW]/2. +

(K12[0,DW]*py[0,DW]+K12[0,DWp1]*py[0,DWp1]))
ux[-1,N[’East’]] = Bv[’East’][N[’East’]]
DE = D[’East’]
DEp1 = DE + 1
ux[-1,DE] = ((K11[-1,DE]+K11[-1,DEp1])*px[-1,DE]/2. +

(K12[-1,DE]*py[-1,DE]+K12[-1,DEp1]*py[-1,DEp1]))
DY = 2.*(Dy[1:]+Dy[:-1])
uyc,pyc = uy[:,1:-1],py[:,1:-1]
k22l,k22r = K22[:-1,1:-1],K22[1:,1:-1]
Dyt,Dyb = Dy[1:],Dy[:-1]
Dyt,Dyb = Dy[1:]/DY,Dy[:-1]/DY
k12l,k12r = K12[:-1,1:-1],K12[1:,1:-1]
pxl,pxr = px[:-1,1:],px[1:,1:]
pxl2,pxr2 = px[:-1,:-1],px[1:,:-1]
e="pyc*(k22l+k22r)/2.+Dyt*(k12l*pxl+k12r*pxr)+Dyb*(k12l*pxl2+k12r*pxr2)"
ne.evaluate(e,out=uyc)
’’’
uy[:,1:-1] = (py[:,1:-1]*(K22[:-1,1:-1]+K22[1:,1:-1])/2.

+ Dy[1:]*(K12[:-1,1:-1]*px[:-1,1:]+K12[1:,1:-1]*px[1:,1:])/DY
+ Dy[:-1]*(K12[:-1,1:-1]*px[:-1,:-1]+K12[1:,1:-1]*px[1:,:-1])/DY)

’’’
uy[N[’South’],0] = Bv[’South’][N[’South’]]
DS = D[’South’]
DSp1 = DS + 1
uy[DS,0] = ((K22[DS,0]+K22[DSp1 ,0])*py[DS,0]/2. +

(K12[DS,0]*px[DS,0]+K12[DSp1 ,0]*px[DSp1 ,0]))
uy[N[’North’],-1] = Bv[’North’][N[’North’]]
DN = D[’North’]
DNp1 = DN + 1
uy[DN,-1] = ((K22[DN,-1]+K22[DNp1,-1])*py[DN,-1]/2. +

(K12[DN,-1]*px[DN,-1]+K12[DNp1,-1]*px[DNp1,-1]))
return ux,uy

def Gradient(self,p):
Dx,Dy,dx,dy = self.Dx,self.Dy,self.dx,self.dy
Nx,Ny = self.Nx,self.Ny
K11,K22,K12 = self.K[’11’],self.K[’22’],self.K[’12’]
N,D = self.Boundary[’Neumann’],self.Boundary[’Dirichlet’]
Bv = self.Boundary[’Values’]
# Approximate grad(p)
px,py = zeros((Nx+1,Ny)),zeros((Nx,Ny+1))
dx2 = dx[:,np.newaxis]
pxc = px[1:-1,:]
pr,pl = p[1:,:],p[:-1,:]
ne.evaluate("(pr-pl)/dx2",out=pxc)
# px[1:-1,:] = ((p[1:,:] - p[:-1,:]).T/dx).T
px[0,D[’West’]] = 2.*(p[0,D[’West’]]-Bv[’West’][D[’West’]])/Dx[0]
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px[-1,D[’East’]] = 2.*(Bv[’East’][D[’East’]]-p[-1,D[’East’]])/Dx[-1]
pyc = py[:,1:-1]
pt,pb = p[:,1:],p[:,:-1]
ne.evaluate("(pt-pb)/dy",out=pyc)
#py[:,1:-1] = (p[:,1:] - p[:,:-1])/dy
py[D[’South’],0] = 2.*(p[D[’South’],0]-Bv[’South’][D[’South’]])/Dy[0]
py[D[’North’],-1] =2.*(Bv[’North’][D[’North’]]-p[D[’North’],-1])/Dy[-1]
BvW = Bv[’West’]
for j in N[’West’]:

if j == 0:
if 0 in D[’South’]:

px[0,j]=(2.*(BvW[j]-K12[0,j]*py[0,j]-K12[0,j+1]*py[0,j+1])/
(K11[0,j+1]+K11[0,j]))

elif j == Ny-1:
if 0 in D[’North’]:

px[0,j]=(2.*(BvW[j]-K12[0,j]*py[0,j]-K12[0,j+1]*py[0,j+1])/
(K11[0,j+1]+K11[0,j]))

else:
px[0,j]=(2.*(BvW[j]-K12[0,j]*py[0,j]-K12[0,j+1]*py[0,j+1])/

(K11[0,j+1]+K11[0,j]))
BvE = Bv[’East’]
for j in N[’East’]:

if j == 0:
if Nx in D[’South’]:

px[-1,j]=(2.*(BvE[j]-K12[-1,j]*py[-1,j]-
K12[-1,j+1]*py[-1,j+1])/

(K11[-1,j+1]+K11[-1,j]))
elif j == Ny-1:

if Nx in D[’North’]:
px[-1,j]=(2.*(BvE[j]-K12[-1,j]*py[-1,j]-

K12[-1,j+1]*py[-1,j+1])/
(K11[-1,j+1]+K11[-1,j]))

else:
px[-1,j]=(2.*

(BvE[j]-K12[-1,j]*py[-1,j]-K12[-1,j+1]*py[-1,j+1])/
(K11[-1,j+1]+K11[-1,j]))

BvS = Bv[’South’]
for j in N[’South’]:

if j == 0:
if 0 in D[’West’]:

py[j,0]=(2.*(BvS[j]-K12[j,0]*px[j,0]-K12[j+1,0]*py[j+1,0])/
(K22[j+1,0]+K22[j,0]))

elif j == Nx-1:
if 0 in D[’East’]:

py[j,0]=(2.*(BvS[j]-K12[j,0]*px[j,0]-K12[j+1,0]*px[j+1,0])/
(K22[j+1,0]+K22[j,0]))

else:
py[j,0]=(2.*(BvS[j]-K12[j,0]*px[j,0]-K12[j+1,0]*px[j+1,0])/

(K22[j+1,0]+K22[j,0]))
BvN = Bv[’North’]
for j in N[’North’]:

v = BvN[j]
if j == 0:

if 0 in D[’West’]:
py[j,-1]=(2.*(v-K12[j,-1]*px[j,-1]-K12[j+1,-1]*px[j+1,-1])/

(K22[j+1,-1]+K22[j,-1]))
elif j == Nx-1:
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if 0 in D[’East’]:
py[j,-1]=(2.*(v-K12[j,-1]*px[j,-1]-K12[j+1,-1]*px[j+1,-1])/

(K22[j+1,-1]+K22[j,-1]))
else:

py[j,-1]=(2.*(v-K12[j,-1]*px[j,-1]-K12[j+1,-1]*px[j+1,-1])/
(K22[j+1,-1]+K22[j,-1]))

# SW corner
if (0 in N[’West’]) and (0 in N[’South’]):

M = [[(K11[0,0]+K11[0,1])/2.,K12[0,0]],
[K12[0,0],(K22[0,0]+K22[1,0])/2.]]

rhs = [[Bv[’West’][0]-K12[0,1]*py[0,1]],
[Bv[’South’][0]-K12[1,0]*px[1,0]]]

ps = solve(M,rhs)
px[0,0] = ps[0]
py[0,0] = ps[1]

# SE corner
if (0 in N[’East’]) and (Nx in N[’South’]):

M = [[(K11[-1,0]+K11[-1,1])/2.,K12[-1,0]],
[K12[-1,0],(K22[-1,0]+K22[-2,0])/2.]]

rhs = [[Bv[’East’][0]-K12[-1,1]*py[-1,1]],
[Bv[’South’][-1]-K12[-2,0]*px[-2,0]]]

ps = solve(M,rhs)
px[-1,0] = ps[0]
py[-1,0] = ps[1]

# NW corner
if (Ny in N[’West’]) and (0 in N[’North’]):

M = [[(K11[0,-1]+K11[0,-2])/2.,K12[0,-1]],
[K12[0,-1],(K22[0,-1]+K22[1,-1])/2.]]

rhs = [[Bv[’West’][-1]-K12[0,-2]*py[0,-2]],
[Bv[’North’][0]-K12[1,-1]*px[1,-1]]]

ps = solve(M,rhs)
px[0,-1] = ps[0]
py[0,-1] = ps[1]

# NE corner
if (Ny in N[’East’]) and (Nx in N[’North’]):

M = [[(K11[-1,-1]+K11[-1,-2])/2.,K12[-1,-1]],
[K12[-1,-1],(K22[-1,-1]+K22[-2,-1])/2.]]

rhs = [[Bv[’East’][-1]-K12[-1,-2]*py[-1,-2]],
[Bv[’North’][-1]-K12[-2,-1]*px[-2,-1]]]

ps = solve(M,rhs)
px[-1,-1] = ps[0]
py[-1,-1] = ps[1]

return px,py

def Divergence(self,ux,uy):
Dx,Dy,dx,dy = self.Dx,self.Dy,self.dx,self.dy
# Approximate div(u)
uxr,uxl = ux[1:,:],ux[:-1,:]
uyt,uyb = uy[:,1:],uy[:,:-1]
Dx2 = Dx[:,np.newaxis]
div = ne.evaluate("Dy*(uxr-uxl)+Dx2*(uyt-uyb)")
#div = Dy*(ux[1:,:]-ux[:-1,:]) + (Dx*(uy[:,1:]-uy[:,:-1]).T).T
return div

def residual(self,p):
Nx,Ny = self.Nx,self.Ny
ux,uy = self.GetVelocity(p.reshape((Nx,Ny)))
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return self.getWellSource() - self.Divergence(ux,uy)

def solve(self,p0=None):
Nx,Ny = self.Nx,self.Ny
if p0 is None:

p0 = zeros((Nx,Ny))
self.RHS = self.SetUpRHS()
r0 = self.residual(zeros((Nx,Ny))).flatten()
def A(p):

return self.residual(p).flatten() - r0
Aop = LinearOperator((Nx*Ny,Nx*Ny),A,dtype=np.float)
p = lgmres(Aop,-r0,p0.flat,**self.solverOptions)
if p[1]:

print "No convergence of GMRES."
p = p[0].reshape((Nx,Ny))
ux,uy = self.GetVelocity(p)
return p,ux,uy

def residualNonDarcy(self,p):
ux,uy = self.GetVelocityNonDarcy(p)
return self.getWellSource() - self.Divergence(ux,uy)

def velocityToCorners(self,ux,uy):
Nx,Ny = self.Nx,self.Ny
UX,UY = zeros((Nx+1,Ny+1)),zeros((Nx+1,Ny+1))
uxfun = interp1d(self.Y,ux)
uyfun = interp1d(self.X,uy,axis=0)
UX[:,1:-1] = uxfun(self.y[1:-1])
UX[:,0] = ux[:,0]
UX[:,-1] = ux[:,-1]
UY[1:-1,:] = uyfun(self.x[1:-1])
UY[0,:] = uy[0,:]
UY[-1,:] = uy[-1,:]
return UX,UY

def updateKappa(self,ux,uy=None):
if uy is not None:

UX,UY = self.velocityToCorners(ux,uy)
else:

Nx,Ny = self.Nx,self.Ny
uxl = ux[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uyl = ux[(Nx+1)*Ny:].reshape((Nx,Ny+1))
UX,UY = self.velocityToCorners(uxl,uyl)

self.kappa = self.kappa_function(np.abs(UX),np.abs(UY))
self.RHS = self.SetUpRHS()

def solveNonDarcy(self,kappa_function ,p0=None,
kappa0=None,DarcyInitial=True,
ux0=None,uy0=None):

Nx,Ny = self.Nx,self.Ny
if p0 is None:

p0 = zeros((Nx,Ny))
self.kappa_function = kappa_function
if kappa0 is not None:

self.kappa = kappa0
self.RHS = self.SetUpRHS()

elif (ux0 is not None) and (uy0 is None):
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self.updateKappa(ux0)
self.RHS = self.SetUpRHS()

elif (ux0 is not None) and (uy0 is not None):
self.updateKappa(ux0,uy0)
self.RHS = self.SetUpRHS()

else:
self.updateKappa(zeros((Nx+1,Ny)),zeros((Nx,Ny+1)))
self.RHS = self.SetUpRHS()

if DarcyInitial:
p0,ux,uy = self.solve(p0)
self.updateKappa(ux,uy)
if isinstance(DarcyInitial ,int) and DarcyInitial > 1:

for j in xrange(DarcyInitial -1):
self.updateKappa(ux,uy)
p0,ux,uy = self.solve(p0)

elif (ux0 is not None) and (uy0 is None):
ux = ux0[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = ux0[(Nx+1)*Ny:].reshape((Nx,Ny+1))

elif (ux0 is not None) and (uy0 is not None):
ux,uy = ux0,uy0

else:
ux,uy = self.GetVelocity(p0)
self.updateKappa(ux,uy)

self._u = np.append(ux.flat,uy.flat)
p = newton_krylov(self.residualNonDarcy ,p0,

**self.NDSolverOptions)
ux,uy = self.GetVelocityNonDarcy(p)
return p,ux,uy

if __name__ == ’__main__’:
from numpy import linspace,ones,zeros,arange
Nx,Ny = 10,7
x,y = linspace(0.,1.,Nx+1),linspace(0.,1.,Ny+1)
ea = np.array([],dtype=np.int)
Boundary = {’Neumann’:

{’West’:ea,’East’:ea,’North’:arange(Nx),’South’:arange(Nx)},
’Dirichlet’:
{’West’:arange(Ny),’East’:arange(Ny),’North’:ea,’South’:ea},
’Values’:
{’West’:ones(Ny),’East’:zeros(Ny),’North’:zeros(Nx),
’South’:zeros(Nx)}}

Boundary = {’Neumann’:
{’West’:arange(Ny),’East’:arange(Ny),’North’:ea,’South’:ea},
’Dirichlet’:
{’West’:ea,’East’:ea,’North’:arange(Nx),’South’:arange(Nx)},
’Values’:
{’West’:zeros(Ny),’East’:zeros(Ny),’North’:zeros(Nx),
’South’:ones(Nx)}}

F = zeros((Nx,Ny))
g = {’1x’:zeros((Nx+1,Ny)),’2y’:zeros((Nx,Ny+1)),’2x’:zeros((Nx+1,Ny)),

’1y’:zeros((Nx,Ny+1))}
K = {’11’:ones((Nx+1,Ny+1)),’22’:ones((Nx+1,Ny+1)),’12’:zeros((Nx+1,Ny+1))}
ds = DarcySolver(x,y,Boundary,K,F,g)
p,ux,uy = ds.solve()
print p
print ux
print uy
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Listing 2: transportSolver.py
""" The transport solver. """

import scipy.sparse.linalg as la
from transportLinearOperators import advectionOperator ,diffusionOperator
from transportLinearOperators import Side,Boundary,getInflowOutflow
from scipy.sparse.linalg import LinearOperator as LO
import numpy as np
from numpy import arange,zeros

class advectionSolver(object):
def __init__(self,dx,dy,ux,uy,boundary ,source=None,sourcet=False):

self.Nx,self.Ny = len(dx),len(dy)
self.dx,self.dy = dx,dy
self.dxdy = np.outer(dx,dy)
self.ux,self.uy = ux,uy
self.boundary = boundary
if sourcet:

self.source = source
self.timestep = self.timestep_with_sourcet
self.timestep_T = self.timestep_with_sourcet_T

elif source is not None:
self.source = source
self.timestep = self.timestep_with_source
self.timestep_T = self.timestep_with_source_T

else:
self.timestep = self.timestep_without_source
self.timestep_T = self.timestep_without_source_T

self.advOp = advectionOperator(dx,dy,ux,uy,boundary)
self.adv = self.advOp.linOp()

def timestep_without_source(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
if savesteps:

times = dt*arange(Nt+1)
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0
for j in xrange(Nt):

step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape((Nx,Ny))

return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
return c.reshape((Nx,Ny))

def timestep_with_source(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
source = self.source
dxdy = self.dxdy
if savesteps:

times = dt*arange(Nt+1)
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0
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for j in xrange(Nt):
step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape((Nx,Ny))
steps[j+1,:,:] += dt*source/dxdy

return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
c += dt*(source/dxdy).flat

return c.reshape((Nx,Ny))

def timestep_with_sourcet(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
source = self.source
dxdy = self.dxdy
if savesteps:

times = dt*arange(Nt+1)
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0
for j in xrange(Nt):

step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape(Nx,Ny)
steps[j+1,:,:] += dt*(source[j]/dxdy)

return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
c += dt*(source[j]/dxdy).flat

return c.reshape((Nx,Ny))

def timestep_without_source_T(self,c0,dt,Tfinal,savesteps=False):
Nx,Ny = self.Nx,self.Ny
Nt = int(np.ceil(Tfinal/dt)) - 1
if dt*Nt < Tfinal:

times = dt*arange(Nt+2)
times[-1] = Tfinal
steps = zeros((Nt+2,Nx,Ny))
steps[0,:,:] = c0

elif dt*Nt >= Tfinal:
times = dt*arange(Nt+1)
times[-1] = Tfinal
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0

if savesteps:
for j in xrange(Nt):

step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape((Nx,Ny))

if dt*Nt < Tfinal:
dtF = Tfinal - dt*Nt
step = steps[-2,:,:].flat
steps[-1,:,:] = steps[-2,:,:]
steps[-1,:,:] -= dtF*(self.adv*step).reshape((Nx,Ny))
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return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
if dt*Nt < Tfinal:

dtF = Tfinal - dt*Nt
c -= dtF*(self.adv*c)

return c.reshape((Nx,Ny))

def timestep_with_source_T(self,c0,dt,Tfinal,savesteps=False):
Nx,Ny = self.Nx,self.Ny
source = self.source
dxdy = self.dxdy
Nt = int(np.ceil(Tfinal/dt)) - 1
if dt*Nt < Tfinal:

times = dt*arange(Nt+2)
times[-1] = Tfinal
steps = zeros((Nt+2,Nx,Ny))
steps[0,:,:] = c0

elif dt*Nt >= Tfinal:
times = dt*arange(Nt+1)
times[-1] = Tfinal
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0

if savesteps:
for j in xrange(Nt):

step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape((Nx,Ny))
steps[j+1,:,:] += dt*source/dxdy

if dt*Nt < Tfinal:
dtF = Tfinal - dt*Nt
step = steps[-2,:,:].flat
steps[-1,:,:] = steps[-2,:,:]
steps[-1,:,:] -= dtF*(self.adv*step).reshape((Nx,Ny))
steps[-1,:,:] += dtF*source/dxdy

return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
c += dt*(source/dxdy).flat

if dt*Nt < Tfinal:
dtF = Tfinal - dt*Nt
c -= dtF*(self.adv*c)
c += dtF*(source/dxdy).flat

return c.reshape((Nx,Ny))

def timestep_with_sourcet_T(self,c0,dt,Tfinal,savesteps=False):
Nx,Ny = self.Nx,self.Ny
source = self.source
dxdy = self.dxdy
Nt = int(np.ceil(Tfinal/dt)) - 1
if dt*Nt < Tfinal:

times = dt*arange(Nt+2)
times[-1] = Tfinal
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steps = zeros((Nt+2,Nx,Ny))
steps[0,:,:] = c0

elif dt*Nt >= Tfinal:
times = dt*arange(Nt+1)
times[-1] = Tfinal
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0

if savesteps:
times = dt*arange(Nt+1)
steps = zeros((Nt+1,Nx,Ny))
steps[0,:,:] = c0
for j in xrange(Nt):

step = steps[j,:,:].flat
steps[j+1,:,:] = steps[j,:,:]
steps[j+1,:,:] -= dt*(self.adv*step).reshape(Nx,Ny)
steps[j+1,:,:] += dt*(source[j]/dxdy)

if dt*Nt < Tfinal:
dtF = Tfinal - dt*Nt
step = steps[-2,:,:].flat
steps[-1,:,:] = steps[-2,:,:]
steps[-1,:,:] -= dtF*(self.adv*step).reshape((Nx,Ny))
steps[-1,:,:] += dtF*source[-1]/dxdy

return zip(times,steps)
else:

c = c0.copy().flat
for j in xrange(Nt):

c -= dt*(self.adv*c)
c += dt*(source[j]/dxdy).flat

if dt*Nt < Tfinal:
dtF = Tfinal - dt*Nt
c -= dtF*(self.adv*c)
c += dtF*(source/dxdy).flat

return c.reshape((Nx,Ny))

class advectionDiffusionSolver(object):
def __init__(self,dx,dy,ux,uy,Dx,Dy,boundary ,source=None,sourcet=False,

slvrname=’gmres’,slvrops=None):
self.Nx,self.Ny = len(dx),len(dy)
Nx,Ny = len(dx),len(dy)
self.dx,self.dy = dx,dy
self.dxdy = np.outer(dx,dy)
self.ux,self.uy = ux,uy
self.Dx,self.Dy = Dx,Dy
self.boundary = boundary
if sourcet:

self.source = source
self.timestep = self.timestep_with_sourcet

elif source:
self.source = source.flat
self.timestep = self.timestep_with_source

else:
self.timestep = self.timestep_without_source

self.advOp = advectionOperator(dx,dy,ux,uy,boundary)
self.adv = self.advOp.linOp()
self.diffOp = diffusionOperator(dx,dy,Dx,Dy,boundary)
self.diff = self.diffOp.linOp()
if slvrops is None:
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self.slvrops = {’tol’:1e-12}
self.slvr = {’gmres’:la.gmres,

’bicg’:la.bicg,
’biststab’:la.bicgstab,
’cg’:la.cg,
’cgs’:la.cgs,
’lgmres’:la.lgmres,
’minres’:la.minres,
’qmr’:la.qmr}.get(slvrname,la.gmres)

def timestep_without_source(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
c = c0.copy().flat
def lhs(x):

return x + dt*(self.diff*x)
self.op = LO((Nx*Ny,Nx*Ny),lhs,dtype=np.float64)
if savesteps:

steps = [(0.,c0.copy())]
for j in xrange(Nt):

rhs = c - dt*(self.adv*c)
c,success = self.slvr(self.op,rhs,rhs,**self.slvrops)
if savesteps:

steps.append((j*dt+dt,c.copy().reshape((Nx,Ny))))
if savesteps:

return steps
else:

return c.reshape((Nx,Ny))

def timestep_with_source(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
dxdy = self.dxdy
c = c0.copy().flat
source = self.source
def lhs(x):

return x - dt*(self.diff*x)
self.op = LO((Nx*Ny,Nx*Ny),lhs,dtype=np.float64)
if savesteps:

steps = [(0.,c0.copy())]
for j in xrange(Nt):

rhs = c - dt*(self.adv*c) + dt*source/dxdy
c,success = self.slvr(self.op,rhs,rhs,**self.slvrops)
if savesteps:

steps.append((j*dt+dt,c.copy().reshape((Nx,Ny))))
if savesteps:

return steps
else:

return c.reshape((Nx,Ny))

def timestep_with_sourcet(self,c0,dt,Nt,savesteps=False):
Nx,Ny = self.Nx,self.Ny
dxdy = self.dxdy
c = c0.copy().flat
source = self.source
def lhs(x):

return x - dt*(self.diff*x)
self.op = LO((Nx*Ny,Nx*Ny),lhs,dtype=np.float64)
if savesteps:
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steps = [(0.,c0.copy())]
for j in xrange(Nt):

rhs = c - dt*(self.adv*c) + dt*(source[j]/dxdy).flat
c,success = self.slvr(self.op,rhs,rhs,**self.slvrops)
if savesteps:

steps.append((j*dt+dt,c.copy().reshape((Nx,Ny))))
if savesteps:

return steps
else:

return c.reshape((Nx,Ny))

def zeroInitialOneInflow(x,y,ux,uy,dt,Nt,savesteps=True):
ones = np.ones
zeros = np.zeros
Nx = uy.shape[0]
Ny = ux.shape[1]
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
wi,wo,ei,eo,si,so,ni,no = getInflowOutflow(ux,uy)
west = Side(wi,wo,ones(len(wi)),ones(len(wo)))
east = Side(ei,eo,ones(len(ei)),ones(len(eo)))
north = Side(ni,no,ones(len(ni)),ones(len(no)))
south = Side(si,so,ones(len(si)),ones(len(so)))
bnd = Boundary(west,east,south,north)
slvr = advectionSolver(dx,dy,ux,uy,bnd)
cfinal = slvr.timestep(zeros((Nx,Ny)),dt,Nt,savesteps)
return cfinal,bnd

def zeroInitialOneInflow_T(x,y,ux,uy,dt,Tfinal,savesteps=True):
ones = np.ones
zeros = np.zeros
Nx = uy.shape[0]
Ny = ux.shape[1]
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
wi,wo,ei,eo,si,so,ni,no = getInflowOutflow(ux,uy)
west = Side(wi,wo,ones(len(wi)),ones(len(wo)))
east = Side(ei,eo,ones(len(ei)),ones(len(eo)))
north = Side(ni,no,ones(len(ni)),ones(len(no)))
south = Side(si,so,ones(len(si)),ones(len(so)))
bnd = Boundary(west,east,south,north)
slvr = advectionSolver(dx,dy,ux,uy,bnd)
cfinal = slvr.timestep_T(zeros((Nx,Ny)),dt,Tfinal,savesteps)
return cfinal,bnd

Listing 3: transportLinearOperators.py
""" Linear operators for the advection -diffusion equation. """

from collections import namedtuple
from numpy import zeros,diff,outer,append,float64,zeros_like ,flatnonzero
from scipy.sparse.linalg import LinearOperator as LO

class advectionOperator(object):
def __init__(self,dx,dy,ux,uy,boundary):
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self.Nx,self.Ny = len(dx),len(dy)
self.dx = dx
self.dy = dy
self.boundary = boundary
self.ux = ux
self.uy = uy
self.uxp = ux.copy()
self.uxp[ux <= 0.] = 0.
self.uxn = ux.copy()
self.uxn[ux > 0.] = 0.
self.uyp = uy.copy()
self.uyp[uy <= 0.] = 0.
self.uyn = uy.copy()
self.uyn[uy > 0.] = 0.
self._fx = zeros_like(ux)
self._fy = zeros_like(uy)

def Flux(self,c):
b = self.boundary
uxp,uxn = self.uxp,self.uxn
uyp,uyn = self.uyp,self.uyn
self._fx[1:-1,:] = uxp[1:-1,:]*c[:-1,:] + uxn[1:-1,:]*c[1:,:]
self._fx[0,b.W.I] = uxp[0,b.W.I]*b.W.Iv
self._fx[0,b.W.O] = uxn[0,b.W.O]*c[0,b.W.O]
self._fx[-1,b.E.I] = uxn[-1,b.E.I]*b.E.Iv
self._fx[-1,b.E.O] = uxp[-1,b.E.O]*c[-1,b.E.O]
self._fy[:,1:-1] = uyp[:,1:-1]*c[:,:-1] + uyn[:,1:-1]*c[:,1:]
self._fy[b.S.I,0] = uyp[b.S.I,0]*b.S.Iv
self._fy[b.S.O,0] = uyn[b.S.O,0]*c[b.S.O,0]
self._fy[b.N.I,-1] = uyn[b.N.I,-1]*b.N.Iv
self._fy[b.N.O,-1] = uyp[b.N.O,-1]*c[b.N.O,-1]
return self._fx,self._fy

def matvec(self,c):
Nx,Ny = self.Nx,self.Ny
dx,dy = self.dx,self.dy
self.Flux(c.reshape((Nx,Ny)))
F = (diff(self._fx,axis=0).T/dx).T + diff(self._fy,axis=1)/dy
return F.flat

def linOp(self):
Nx,Ny = self.Nx,self.Ny
self.lo = LO((Nx*Ny,Nx*Ny),self.matvec,dtype=float64)
return self.lo

class diffusionOperator(object):
def __init__(self,dx,dy,Dx,Dy,boundary):

self.Nx,self.Ny = len(dx),len(dy)
self.dx = dx
self.dy = dy
self.ddx = (dx[1:] + dx[:-1])/2.
self.ddy = (dy[1:] + dy[:-1])/2.
self.Dx = Dx
self.Dy = Dy
self.boundary = boundary
self._fx = zeros_like(Dx)
self._fy = zeros_like(Dy)
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def Flux(self,c):
Nx,Ny = self.Nx,self.Ny
b = self.boundary
C = c.reshape((Nx,Ny))
self._fx[1:-1,:] = (diff(C,axis=0).T/self.ddx).T
self._fx[0,b.W.I] = 2.*(C[0,b.W.I] - b.W.Iv)/self.dx[0]
self._fx[-1,b.E.I] = 2.*(b.E.Iv - C[-1,b.E.I])/self.dx[-1]
self._fx *= self.Dx
self._fx[0,b.W.O] = -b.W.Ov
self._fx[-1,b.E.O] = b.E.Ov
self._fy[:,1:-1] = diff(C,axis=1)/self.ddy
self._fy[b.S.I,0] = 2.*(C[b.S.I,0] - b.S.Iv)/self.dy[0]
self._fy[b.N.I,-1] = 2.*(b.N.Iv - C[b.N.I,-1])/self.dy[-1]
self._fy *= self.Dy
self._fy[b.S.O,0] = -b.S.Ov
self._fy[b.N.O,-1] = b.N.Ov
return self._fx,self._fy

def matvec(self,c):
fx,fy = self.Flux(c)
dx,dy = self.dx,self.dy
F = fx[:-1,:]/dx - fx[1:,:]/dx + fy[:,:-1]/dy - fy[:,1:]/dy
return F.flat

def linOp(self):
Nx,Ny = self.Nx,self.Ny
self.lo = LO((Nx*Ny,Nx*Ny),self.matvec,dtype=float64)
return self.lo

Side = namedtuple(’Side’,[’I’,’O’,’Iv’,’Ov’])

Boundary = namedtuple(’Boundary’,[’W’,’E’,’S’,’N’])

def getInflowOutflow(ux,uy):
wi = flatnonzero(ux[0,:]>0)
wo = flatnonzero(ux[0,:]<=0)
ei = flatnonzero(ux[-1,:]<0)
eo = flatnonzero(ux[-1,:]>=0)
si = flatnonzero(uy[:,0]>0)
so = flatnonzero(uy[:,0]<=0)
ni = flatnonzero(uy[:,-1]<0)
no = flatnonzero(uy[:,-1]>=0)
return wi,wo,ei,eo,si,so,ni,no

Listing 4: experimentDriver.py
""" A script to run the experiments. """

import matplotlib
matplotlib.use(’PDF’)
import matplotlib.pyplot as plt
from flowSolver import DarcySolver
from transportSolver import zeroInitialOneInflow ,advectionSolver
from transportSolver import zeroInitialOneInflow_T
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from transportLinearOperators import getInflowOutflow
from transportLinearOperators import Side,Boundary
import numpy as np
from numpy import append,zeros_like ,abs,ceil,ones,zeros,log,where
from utility import integrateVelocity
from matrix2latex import matrix2latex
from scipy.sparse.linalg import LinearOperator as LO
from numpy import float64,diff
from scipy.integrate import simps

def runFlowExperiment(x,y,Kappa,KappaS,boundary,boundaryS ,parameters ,
darcyInitial=True,tol=1e-10):

""" x,y are spatial discretizations
Kappa is the resistance operator
KappaS is the resistance for the sensitivity equation
boundary is the boundary conditions
boundaryS is the boundary conditions for the sensitivity equation
parameters is a container of dicts. Each parameter should have keys:

’name’, ’gravity’, ’dKdp10x’, ’dKdp10y’, ’dKdp01x’, ’dKdp01y’
darcyInitial controls whether a Darcy initial guess is used

"""
Nx,Ny = len(x)-1,len(y)-1
slvr = DarcySolver(x,y,boundary,NDSolverOptions={’f_tol’:tol,

’verbose’:True})
p,ux,uy = slvr.solveNonDarcy(Kappa,DarcyInitial=darcyInitial)
UX,UY = slvr.velocityToCorners(ux,uy)
KS = KappaS(UX,UY)
""" Set up and solve the AS systems. """
g10 = {’1x’:ones((Nx+1,Ny)),’2y’:zeros((Nx,Ny+1)),’2x’:zeros((Nx+1,Ny)),

’1y’:ones((Nx,Ny+1))}
ASsolver = DarcySolver(x,y,boundaryS ,KS,g=g10,

solverOptions={’tol’:tol})
ASsolver.kappa = KS
mu10,vx10,vy10 = ASsolver.solve()
g01 = {’1x’:zeros((Nx+1,Ny)),’2y’:ones((Nx,Ny+1)),’2x’:ones((Nx+1,Ny)),

’1y’:zeros((Nx,Ny+1))}
ASsolver = DarcySolver(x,y,boundaryS ,KS,g=g01,

solverOptions={’tol’:tol})
ASsolver.kappa = KS
mu01,vx01,vy01 = ASsolver.solve()
""" For each parameter , set up and solve the FS system. Also integrate. """
sensitivities = {}
for pi in parameters:

g = pi[’gravity’](ux,uy)
FSsolver = DarcySolver(x,y,boundaryS ,KS,g=g,

solverOptions={’tol’:tol})
FSsolver.kappa = KS
ps,uxs,uys = FSsolver.solve()
""" Compute FS integrals. """
H10FS = integrateVelocity(x,y,uxs,’x’)
H01FS = integrateVelocity(x,y,uys,’y’)
""" Compute AS integrals. """
H10AS = -(integrateVelocity(x,y,pi[’dKdp10x’](ux,uy)*vx10,’x’) +

integrateVelocity(x,y,pi[’dKdp10y’](ux,uy)*vy10,’y’))
H01AS = -(integrateVelocity(x,y,pi[’dKdp01x’](ux,uy)*vx01,’x’) +

integrateVelocity(x,y,pi[’dKdp01y’](ux,uy)*vy01,’y’))



196

sensitivities.update({pi[’name’]:{’H10FS’:H10FS,’H01FS’:H01FS,
’H10AS’:H10AS,’H01AS’:H01AS,
’ps’:ps,’uxs’:uxs,’uys’:uys}})

return p,ux,uy,KS,sensitivities

def runTransportExperiment(x,y,ux,uy,sensitivities ,parameters ,Tfinal,KS,
boundaryS ,tol=1e-10):

dx,dy = x[1:]-x[:-1],y[1:]-y[:-1]
dxdy = np.outer(dx,dy)
Nx,Ny = len(dx),len(dy)
’’’ Compute dt and Nt. ’’’
h = min(min(dx),min(dy))
UX = abs(ux).max()
UY = abs(uy).max()
dt = h/(UX+UY)
Nt = int(ceil(Tfinal/dt)) - 1
""" Solve the transport problem. """
#c,bnd = zeroInitialOneInflow(x,y,ux,uy,dt,Nt)
c,bnd = zeroInitialOneInflow_T(x,y,ux,uy,dt,Tfinal)
Nt = len(c)-1
""" For each parameter , set up and solve the FS transport problem. """
parameters2 = sensitivities.keys()
sensint = zeros_like(c[0][1])
for pii in parameters2:

pi = sensitivities[pii]
uxs,uys = pi[’uxs’],pi[’uys’]
""" Use the value of c on the boundary that was used in the computation

of c. This should aid in keeping the system consistent. """
upwindC = advectionUpwindC(dx,dy,ux,uy,bnd)
pisrc = []
#for j in xrange(Nt+1):
for j in xrange(Nt):

cx,cy = upwindC.Flux(c[j][1])
pisrc.append(-((np.diff(cx*uxs,axis=0)*dy)

+ (np.diff(cy*uys,axis=1).T*dx).T))
wi,wo,ei,eo,si,so,ni,no = getInflowOutflow(ux,uy)
west = Side(wi,wo,zeros(len(wi)),zeros(len(wo)))
east = Side(ei,eo,zeros(len(ei)),zeros(len(eo)))
north = Side(ni,no,zeros(len(ni)),zeros(len(no)))
south = Side(si,so,zeros(len(si)),zeros(len(so)))
sbnd = Boundary(west,east,south,north)
slvr = advectionSolver(dx,dy,ux,uy,sbnd,pisrc,True)
#cpi = slvr.timestep(zeros((Nx,Ny)),dt,Nt,True)
cpi = slvr.timestep_T(zeros((Nx,Ny)),dt,Tfinal,True)
""" Compute the sensitivity of the objective funtion. """
#cpi2 = zeros(Nt+1)
cpi2 = zeros(Nt)
ts = []
#for j in xrange(Nt+1):
for j in xrange(Nt):

ts.append(cpi[j][0])
cpi2[j] = sum((cpi[j][1]*dxdy).flatten())

sensint = simps(cpi2,ts)/Tfinal
pi.update({’Gsfs’:sensint})
pi.update({’csfs’:cpi,’pisrc’:pisrc})

""" Set up and solve the AS transport problem. """
wi,wo,ei,eo,si,so,ni,no = getInflowOutflow(-ux,-uy)
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west = Side(wi,wo,zeros(len(wi)),zeros(len(wo)))
east = Side(ei,eo,zeros(len(ei)),zeros(len(eo)))
north = Side(ni,no,zeros(len(ni)),zeros(len(no)))
south = Side(si,so,zeros(len(si)),zeros(len(so)))
sbnd = Boundary(west,east,south,north)
ssrc = dxdy/Tfinal
asslvr = advectionSolver(dx,dy,-ux,-uy,sbnd,ssrc)
#asc = asslvr.timestep(zeros((len(dx),len(dy))),dt,Nt+1,True)
asc = asslvr.timestep_T(zeros((len(dx),len(dy))),dt,Tfinal,True)
upwindC = advectionUpwindC(dx,dy,ux,uy,bnd)
xitx = zeros((Nx+1,Ny,Nt))
xity = zeros((Nx,Ny+1,Nt))
xiw,xie = zeros((Ny,Nt)),zeros((Ny,Nt))
xis,xin = zeros((Nx,Nt)),zeros((Nx,Nt))
ts = []
Dx,Dy = (dx[1:]+dx[:-1])/2.,(dy[1:]+dy[:-1])/2.
for ct,qtau,ti in zip(c,asc[::-1],xrange(Nt)):

qt = qtau[1]
qx = ((qt[1:,:]-qt[:-1,:]).T/Dx).T
qy = (qt[:,1:]-qt[:,:-1])/Dy
cx,cy = upwindC.Flux(ct[1])
xitx[1:-1,:,ti] = -cx[1:-1,:]*qx
xity[:,1:-1,ti] = -cy[:,1:-1]*qy
ts.append(ct[0])
xiw[:,ti] = qt[0,:]*cx[0,:]
xie[:,ti] = qt[-1,:]*cx[-1,:]
xis[:,ti] = qt[:,0]*cy[:,0]
xin[:,ti] = qt[:,-1]*cy[:,-1]

xix = -simps(xitx,ts)
xiy = -simps(xity,ts)
xiw = -simps(xiw,ts)
xie = -simps(xie,ts)
xis = -simps(xis,ts)
xin = -simps(xin,ts)
xiw[boundaryS[’Neumann’][’West’]] = 0.
xie[boundaryS[’Neumann’][’East’]] = 0.
xis[boundaryS[’Neumann’][’South’]] = 0.
xin[boundaryS[’Neumann’][’North’]] = 0.
""" Use xi to solve the adjoint flow problem. """
xi = {’1x’:xix,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1)),’2y’:xiy}
bnd = {’Neumann’:boundaryS[’Neumann’],’Dirichlet’:boundaryS[’Dirichlet’],

’Values’:{’West’:-xiw,’East’:-xie,’South’:-xis,’North’:-xin}}
ASsolver = DarcySolver(x,y,bnd,KS,g=xi,

solverOptions={’tol’:tol})
ASsolver.kappa = KS
mu,vx,vy = ASsolver.solve()
for Pi in parameters:

GAS = -(integrateVelocity(x,y,Pi[’dKdp10x’](ux,uy)*vx,’x’) +
integrateVelocity(x,y,Pi[’dKdp10y’](ux,uy)*vy,’y’))

sensitivities[Pi[’name’]].update({’GAS’:GAS})
sensitivities.update({’asc’:asc,’xi’:xi,’mu’:mu,’vx’:vx,’vy’:vy,

’xitx’:xitx,’xity’:xity,’xix’:xix,’xiy’:xiy})
return c,sensitivities

def generateFlowSensitivityErrorTable(filename ,caption,experiments ,parameters):
hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
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hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))

hr += ha # Both FS and AS
hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’H10FS Error’],sp[’H01FS Error’]])
ras.extend([sp[’H10AS Error’],sp[’H01AS Error’]])

rfs += ras
m.append(rfs)

forcol = [’%.2e’]*4*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowFSErrorTable(filename,caption,experiments ,parameters):
hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
#hr.append(st.format(pi,’1’))
#hr.append(st.format(pi,’2’))

#hr += ha # Both FS and AS
#hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’H10FS Error’],sp[’H01FS Error’]])
ras.extend([sp[’H10AS Error’],sp[’H01AS Error’]])

#rfs += ras
m.append(rfs)

forcol = [’%.2e’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
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return t

def generateFlowASErrorTable(filename,caption,experiments ,parameters):
hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
#hr.append(st.format(pi,’1’))
#hr.append(st.format(pi,’2’))

#hr = ha # Both FS and AS
hr1 = hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’H10FS Error’],sp[’H01FS Error’]])
ras.extend([sp[’H10AS Error’],sp[’H01AS Error’]])

rfs = ras
m.append(rfs)

forcol = [’%.2e’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowSensitivityErrorTableWithRefinement(filename ,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
ha.append(st.format(pi,’1’))
ha.append(st.format(pi,’2’))

hr += ha # Both FS and AS
hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for r in experiments.keys():
if orders:
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s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)
else:

s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))
s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for experiment in experiments[r]:
hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = []
hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’H10FS Error’]),

’{:.2e}’.format(sp[’H01FS Error’])])
ras.extend([’{:.2e}’.format(sp[’H10AS Error’]),

’{:.2e}’.format(sp[’H01AS Error’])])
errs[pi][’H10FS Error’].append(sp[’H10FS Error’])
errs[pi][’H10AS Error’].append(sp[’H10AS Error’])
errs[pi][’H01FS Error’].append(sp[’H01FS Error’])
errs[pi][’H01AS Error’].append(sp[’H01AS Error’])

rfs += ras
m.append(rfs)

rfs = [’Order’]
for pi in parameters:

if ’H10FS’ in orders:
H10FSo = np.polyfit([log(h) for h in hs],

[log(e) for e in
errs[pi][’H10FS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H10FSo))
else:

rfs.append(’-’)
if ’H01FS’ in orders:

H01FSo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01FS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H01FSo))
else:

rfs.append(’-’)
if ’H10AS’ in orders:

H10ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H10AS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H10ASo))
else:

rfs.append(’-’)
if ’H01AS’ in orders:

H01ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01AS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H01ASo))
else:
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rfs.append(’-’)
m.append(rfs)

forcol = [’%s’] + [’%s’]*4*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowFSErrorTableWithRefinement(filename,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
ha.append(st.format(pi,’1’))
ha.append(st.format(pi,’2’))

#hr += ha # Both FS and AS
#hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for r in experiments.keys():
if orders:

s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)
else:

s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))
s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for experiment in experiments[r]:
hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = []
hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’H10FS Error’]),

’{:.2e}’.format(sp[’H01FS Error’])])
ras.extend([’{:.2e}’.format(sp[’H10AS Error’]),

’{:.2e}’.format(sp[’H01AS Error’])])
errs[pi][’H10FS Error’].append(sp[’H10FS Error’])
errs[pi][’H10AS Error’].append(sp[’H10AS Error’])
errs[pi][’H01FS Error’].append(sp[’H01FS Error’])
errs[pi][’H01AS Error’].append(sp[’H01AS Error’])
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#rfs += ras
m.append(rfs)

hc.pop()
if orders:

hc += [’’]
rfs = [’Order’]
for pi in parameters:

if ’H10FS’ in orders:
H10FSo = np.polyfit([log(h) for h in hs],

[log(e) for e in
errs[pi][’H10FS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H10FSo))
else:

rfs.append(’-’)
if ’H01FS’ in orders:

H01FSo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01FS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H01FSo))
else:

rfs.append(’-’)
’’’
if ’H10AS’ in orders:

H10ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H10AS Error ’]],1)[0]

rfs.append(’{:.2f}’.format(H10ASo))
else:

rfs.append(’-’)
if ’H01AS’ in orders:

H01ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01AS Error ’]],1)[0]

rfs.append(’{:.2f}’.format(H01ASo))
else:

rfs.append(’-’)
’’’

m.append(rfs)
forcol = [’%s’] + [’%s’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowASErrorTableWithRefinement(filename,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[’$N$’] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[’’]
st = ’$\\left\\{{ \\partial_{{{}}}H_{{{}}}\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]*2
hr1a += [’Adjoint Sensitivity Error’]*2
hr.append(st.format(pi,’1’))
hr.append(st.format(pi,’2’))
ha.append(st.format(pi,’1’))
ha.append(st.format(pi,’2’))
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hr = ha # Both FS and AS
hr1 = hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for r in experiments.keys():
if orders:

s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)
else:

s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))
s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’H10FS Error’:[],’H10AS Error’:[],
’H01FS Error’:[],’H01AS Error’:[]}})

for experiment in experiments[r]:
hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = [’{}’.format(experiment[’N’])]
#ras = []
hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’H10FS Error’]),

’{:.2e}’.format(sp[’H01FS Error’])])
ras.extend([’{:.2e}’.format(sp[’H10AS Error’]),

’{:.2e}’.format(sp[’H01AS Error’])])
errs[pi][’H10FS Error’].append(sp[’H10FS Error’])
errs[pi][’H10AS Error’].append(sp[’H10AS Error’])
errs[pi][’H01FS Error’].append(sp[’H01FS Error’])
errs[pi][’H01AS Error’].append(sp[’H01AS Error’])

rfs = ras
m.append(rfs)

hc.pop()
if orders:

hc += [’’]
rfs = [’Order’]
for pi in parameters:

’’’
if ’H10FS’ in orders:

H10FSo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H10FS Error ’]],1)[0]

rfs.append(’{:.2f}’.format(H10FSo))
else:

rfs.append(’-’)
if ’H01FS’ in orders:

H01FSo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01FS Error ’]],1)[0]

rfs.append(’{:.2f}’.format(H01FSo))
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else:
rfs.append(’-’)

’’’
if ’H10AS’ in orders:

H10ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H10AS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H10ASo))
else:

rfs.append(’-’)
if ’H01AS’ in orders:

H01ASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’H01AS Error’]],1)[0]

rfs.append(’{:.2f}’.format(H01ASo))
else:

rfs.append(’-’)
m.append(rfs)

’’’
else:

m.append(’ ’*2*len(parameters))
’’’

forcol = [’%s’] + [’%s’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateTranSensitivityErrorTable(filename ,caption,experiments ,parameters):
hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
ha.append(st.format(pi))

hr += ha # Both FS and AS
hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’Gsfs Error’]])
ras.extend([sp[’GAS Error’]])

rfs += ras
m.append(rfs)

forcol = [’%.2e’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateTranFSErrorTable(filename,caption,experiments ,parameters):
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hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
ha.append(st.format(pi))

#hr += ha # Both FS and AS
#hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’Gsfs Error’]])
ras.extend([sp[’GAS Error’]])

#rfs += ras
m.append(rfs)

forcol = [’%.2e’]*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateTranASErrorTable(filename,caption,experiments ,parameters):
hc = experiments.keys() # Names of the experiments.
hr,ha = [],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [],[]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
ha.append(st.format(pi))

hr = ha # Both FS and AS
hr1 = hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs,ras = [],[]
experiment = experiments[r]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([sp[’Gsfs Error’]])
ras.extend([sp[’GAS Error’]])

rfs = ras
m.append(rfs)

forcol = [’%.2e’]*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t
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def generateTranSensitivityErrorTableWithRefinement(filename ,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
hr.append(st.format(pi))

hr += ha # Both FS and AS
hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for r in experiments.keys():

if orders:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)

else:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))

s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for experiment in experiments[r]:

hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = []
hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’Gsfs Error’])])
ras.extend([’{:.2e}’.format(sp[’GAS Error’])])
errs[pi][’Gsfs Error’].append(sp[’Gsfs Error’])
errs[pi][’GAS Error’].append(sp[’GAS Error’])

rfs += ras
m.append(rfs)

rfs = [’Order’]
for pi in parameters:

if ’Gsfs’ in orders:
Gsfso = np.polyfit([log(h) for h in hs],

[log(e) for e in
errs[pi][’Gsfs Error’]],1)[0]

rfs.append(’{:.2f}’.format(Gsfso))
else:

rfs.append(’-’)
if ’GAS’ in orders:

GASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’GAS Error’]],1)[0]



207

rfs.append(’{:.2f}’.format(GASo))
else:

rfs.append(’-’)
m.append(rfs)

forcol = [’%s’] + [’%s’]*2*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateTranFSErrorTableWithRefinement(filename,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
ha.append(st.format(pi))

#hr += ha # Both FS and AS
#hr1 += hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for r in experiments.keys():

if orders:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)

else:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))

s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for experiment in experiments[r]:

hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = []
hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’Gsfs Error’])])
ras.extend([’{:.2e}’.format(sp[’GAS Error’])])
errs[pi][’Gsfs Error’].append(sp[’Gsfs Error’])
errs[pi][’GAS Error’].append(sp[’GAS Error’])

#rfs += ras
m.append(rfs)

hc.pop()
if orders:

hc += [’’]
rfs = [’Order’]
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for pi in parameters:
if ’Gsfs’ in orders:

Gsfso = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’Gsfs Error’]],1)[0]

rfs.append(’{:.2f}’.format(Gsfso))
else:

rfs.append(’-’)
’’’
if ’GAS’ in orders:

GASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’GAS Error ’]],1)[0]

rfs.append(’{:.2f}’.format(GASo))
else:

rfs.append(’-’)
’’’

m.append(rfs)
forcol = [’%s’] + [’%s’]*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateTranASErrorTableWithRefinement(filename,caption,
experiments ,parameters ,
orders):

hc = [] # Names of the experiments.
hr,ha = [’$N$’],[’$N$’] # hr will contain the names of the sensitivities.
hr1,hr1a = [’’],[’’]
st = ’$\\left\\{{ \\partial_{{{}}}G\\right\\}}$’
for pi in parameters:

hr1 += [’Forward Sensitivity Error’]
hr1a += [’Adjoint Sensitivity Error’]
hr.append(st.format(pi))
ha.append(st.format(pi))

hr = ha # Both FS and AS
hr1 = hr1a
hr = [hr1,hr]
m = [] # Contains the entries in the table.
errs = {}
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for r in experiments.keys():

if orders:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)

else:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))

s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs = []
for pi in parameters:

errs.update({pi:{’Gsfs Error’:[],’GAS Error’:[]}})
for experiment in experiments[r]:

hc += [’’]
rfs = [’{}’.format(experiment[’N’])]
ras = [’{}’.format(experiment[’N’])]
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hs += [experiment[’h’]]
ss = experiment[’sensitivities’]
for pi in parameters:

sp = ss[pi]
rfs.extend([’{:.2e}’.format(sp[’Gsfs Error’])])
ras.extend([’{:.2e}’.format(sp[’GAS Error’])])
errs[pi][’Gsfs Error’].append(sp[’Gsfs Error’])
errs[pi][’GAS Error’].append(sp[’GAS Error’])

rfs = ras
m.append(rfs)

hc.pop()
if orders:

hc += [’’]
rfs = [’Order’]
for pi in parameters:

’’’
if ’Gsfs’ in orders:

Gsfso = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’Gsfs Error ’]],1)[0]

rfs.append(’{:.2f}’.format(Gsfso))
else:

rfs.append(’-’)
’’’
if ’GAS’ in orders:

GASo = np.polyfit([log(h) for h in hs],
[log(e) for e in
errs[pi][’GAS Error’]],1)[0]

rfs.append(’{:.2f}’.format(GASo))
else:

rfs.append(’-’)
m.append(rfs)

forcol = [’%s’] + [’%s’]*len(parameters)
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowErrorTable(filename ,caption,experiments):
hc = experiments.keys() # Names of the experiments.
hr = [’$p$’, ’$u_1$’, ’$u_2$’]
hr1 = [’Error’]*3
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in hc:

rfs = []
ex = experiments[r]
rfs.extend([ex[’p’][1],ex[’ux’][1],ex[’uy’][1]])
m.append(rfs)

forcol = [’%.2e’]*3
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def generateFlowErrorTableWithRefinement(filename,caption,experiments ,orders):
#hc = experiments.keys() # Names of the experiments.
hc = [] # Names of the experiments.
hr = [’$N$’,’$p$’, ’$u_1$’, ’$u_2$’]
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hr1 = [’’] + [’Error’]*3
hr = [hr1,hr]
m = [] # Contains the entries in the table.
for r in experiments.keys():

if orders:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r])+1)

else:
s=r’\multirow{{{}}}{{*}}{{{{’.format(len(experiments[r]))

s = s + r + r’ }}’
hc.append(s)
#hc.append(r)
hs,perrs,uxerrs,uyerrs = [],[],[],[]
for ex in experiments[r]:

hc.append(’’)
hs += [ex[’h’]]
perrs += [ex[’p’][1]]
uxerrs += [ex[’ux’][1]]
uyerrs += [ex[’uy’][1]]
rfs = [’{:d}’.format(ex[’N’]),’{:.2e}’.format(ex[’p’][1]),

’{:.2e}’.format(ex[’ux’][1]),
’{:.2e}’.format(ex[’uy’][1],[’’])]

m.append(rfs)
rfs = [’Order’]
if ’p’ in orders:

pord = np.polyfit([log(h) for h in hs],[log(e) for e in
perrs],1)[0]

rfs += [’{:.2f}’.format(pord)]
else:

rfs += [’-’]
if ’ux’ in orders:

uxord = np.polyfit([log(h) for h in hs],[log(e) for e in
uxerrs],1)[0]

rfs += [’{:.2f}’.format(uxord)]
else:

rfs += [’-’]
if ’uy’ in orders:

uyord = np.polyfit([log(h) for h in hs],[log(e) for e in
uyerrs],1)[0]

rfs += [’{:.2f}’.format(uyord)]
else:

rfs += [’-’]
m.append(rfs)

forcol = [’%s’]*5
t = matrix2latex(m,filename ,’tabular’,headerRow=hr,

headerColumn=hc,caption=caption,formatColumn=forcol)
return t

def plotTransportIntegral(experiments ,titles,filenames):
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experiment = experiments[experimentname]
c = experiment[’c’]
x,y = experiment[’x’],experiment[’y’]
#k,b = experiment[’k’],experiment[’b’]
dx,dy = x[1:]-x[:-1],y[1:]-y[:-1]
ts = np.array([t[0] for t in c])
dxdy = np.outer(dx,dy)
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Gts = np.array([sum((dxdy*t[1]).flat) for t in c])
plt.clf()
plt.plot(ts,Gts,’s’,color=’black’)
plt.ylim(0.,1.1)
plt.xlim(0.,2.)
plt.ylabel(’Integral of $c$’)
plt.xlabel(’$t$’)
#plt.title(ptitle)
plt.suptitle(ptitle,y=0.99)
plt.savefig(filenames[experimentname])

def plotTransportIntegralWithRefinement(experiments ,titles,filenames):
markers = [’s’,’^’,’v’,’o’,’8’,’*’,’d’,’+’,’x’]
colors = [’black’,’grey’,’white’]
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experimentlist = experiments[experimentname]
plt.clf()
for experiment ,marker,colr in zip(experimentlist[::-1],markers,colors):

c = experiment[’c’]
x,y = experiment[’x’],experiment[’y’]
N = experiment[’N’]
dx,dy = x[1:]-x[:-1],y[1:]-y[:-1]
ts = np.array([t[0] for t in c])
dxdy = np.outer(dx,dy)
Gts = np.array([sum((dxdy*t[1]).flat) for t in c])
#plt.plot(ts,Gts,’s’,color=’black’)
#plt.plot(ts,Gts,marker,color=’black’,label=’N={}’.format(N))
plt.plot(ts,Gts,marker,color=colr,label=’N={}’.format(N))

plt.ylim(0.,1.1)
plt.xlim(0.,2.)
plt.ylabel(’Integral of $c$’)
plt.xlabel(’$t$’)
#plt.suptitle(ptitle)
plt.suptitle(ptitle,y=0.99)
#plt.title(ptitle)
plt.legend(loc=4)
plt.savefig(filenames[experimentname])

def plotTransportSelectedTimes(experiments ,titles,filenames):
times = [0.25,0.75,1.25,1.75]
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experiment = experiments[experimentname]
c = experiment[’c’]
x,y = experiment[’x’],experiment[’y’]
X,Y = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
ts = np.array([t[0] for t in c])
plt.clf()
f,axis = plt.subplots(2,2,sharex=’row’,sharey=’col’)
for i in xrange(2):

for j in xrange(2):
tj = np.where(ts <= times[i*2+j])[0][-1]
t = c[tj][0]
cj = c[tj][1].T
axis[i,j].pcolor(x,y,cj,cmap=plt.cm.get_cmap(’Greys’),

vmin=0.,vmax=1.)
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axis[i,j].set_title("$c(x,y,{:1.2f})$".format(t),
fontdict={’fontsize’:11})

axis[i,j].set_aspect(’equal’,’box-forced’)
axis[j,i].tick_params(axis=’both’,which=’major’,labelsize=8)
axis[j,i].tick_params(axis=’both’,which=’minor’,labelsize=8)

plt.setp([a.get_xticklabels() for a in axis[0,:]], visible=False)
plt.setp([a.get_yticklabels() for a in axis[:,1]], visible=False)
#plt.suptitle(ptitle)
plt.suptitle(ptitle,y=0.99)
plt.savefig(filenames[experimentname])

def plotTransportSelectedTimesWithRefinment(experiments ,titles,filenames):
times = [0.25,0.75,1.25,1.75]
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experiment = experiments[experimentname]
ne = len(experiment)
plt.clf()
f,axis = plt.subplots(ne,4,sharex=’row’,sharey=’col’)
for j in xrange(ne):

N = experiment[j][’N’]
c = experiment[j][’c’]
ts = np.array([t[0] for t in c])
x,y = experiment[j][’x’],experiment[j][’y’]
for i in xrange(4):

tj = np.where(ts <= times[i])[0][-1]
cj = c[tj][1].T
t = c[tj][0]
axis[j,i].pcolor(x,y,cj,cmap=plt.cm.get_cmap(’Greys’),

vmin=0.,vmax=1.)
axis[j,i].set_title("$c(x,y,{:1.2f})$, $N={}$".format(t,N),

fontdict={’fontsize’:11})
axis[j,i].set_aspect(’equal’,’box-forced’)
if j != ne-1:

plt.setp(axis[j,i].get_xticklabels(),visible=False)
if i != 0:

plt.setp(axis[j,i].get_yticklabels(),visible=False)
axis[j,i].tick_params(axis=’both’,which=’major’,labelsize=8)
axis[j,i].tick_params(axis=’both’,which=’minor’,labelsize=8)

#plt.suptitle(ptitle)
plt.suptitle(ptitle,y=0.99)
plt.savefig(filenames[experimentname])

def plotPressureVelocity(experiments ,titles,filenames):
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experiment = experiments[experimentname]
p = experiment[’p’][0]
ux,uy = experiment[’ux’][0],experiment[’uy’][0]
UX,UY = (ux[1:,:]+ux[:-1,:])/2.,(uy[:,1:]+uy[:,:-1])/2.
speed = np.sqrt(UX*UX+UY*UY)
x,y = experiment[’x’],experiment[’y’]
X,Y = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
NX,NY = len(X),len(Y)
dens = [NX/30.,NY/30.]
plt.clf()
#CS = plt.contour(X,Y,p.T,colors=’k’)
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#plt.clabel(CS,fontsize=8,inline=1)
CS = plt.contourf(X,Y,p.T,cmap=’viridis’)
plt.colorbar(CS)
lw = 2.*speed/speed.max()
plt.streamplot(X,Y,UX.T,UY.T,density=dens,linewidth=lw,color=’k’)
plt.suptitle(ptitle,y=0.99)
plt.ylim(0.,1.)
plt.xlim(0.,1.)
plt.ylabel(’$y$’)
plt.xlabel(’$x$’)
plt.axis(’scaled’)
plt.savefig(filenames[experimentname])

def plotPressureVelocityWithRefinement(experiments ,titles,filenames):
for experimentname in experiments.keys():

ptitle = titles[experimentname]
experiment = experiments[experimentname][-1]
p = experiment[’p’][0]
ux,uy = experiment[’ux’][0],experiment[’uy’][0]
UX,UY = (ux[1:,:]+ux[:-1,:])/2.,(uy[:,1:]+uy[:,:-1])/2.
speed = np.sqrt(UX*UX+UY*UY)
x,y = experiment[’x’],experiment[’y’]
X,Y = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
NX,NY = len(X),len(Y)
dens = [NX/30.,NY/30.]
plt.clf()
#CS = plt.contour(X,Y,p.T,colors=’k’)
#plt.clabel(CS,fontsize=8,inline=1)
CS = plt.contourf(X,Y,p.T,cmap=’viridis’)
plt.colorbar(CS)
lw = 2.*speed/speed.max()
plt.streamplot(X,Y,UX.T,UY.T,density=dens,linewidth=lw,color=’k’)
plt.ylim(0.,1.)
plt.xlim(0.,1.)
plt.ylabel(’$y$’)
plt.xlabel(’$x$’)
plt.axis(’scaled’)
plt.suptitle(ptitle,y=0.99)
plt.savefig(filenames[experimentname])

class advectionUpwindC(object):
def __init__(self,dx,dy,ux,uy,boundary):

self.Nx,self.Ny = len(dx),len(dy)
self.dx = dx
self.dy = dy
self.boundary = boundary
self.ux = ux
self.uy = uy
self.uxp = ux.copy()
self.uxp[ux <= 0.] = 0.
self.uxp[ux > 0.] = 1.
self.uxn = ux.copy()
self.uxn[ux > 0.] = 0.
self.uxn[ux <= 0.] = 1.
self.uyp = uy.copy()
self.uyp[uy <= 0.] = 0.
self.uyp[uy > 0.] = 1.
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self.uyn = uy.copy()
self.uyn[uy > 0.] = 0.
self.uyn[uy <= 0.] = 1.
self._fx = zeros_like(ux)
self._fy = zeros_like(uy)

def Flux(self,c):
b = self.boundary
uxp,uxn = self.uxp,self.uxn
uyp,uyn = self.uyp,self.uyn
self._fx[1:-1,:] = uxp[1:-1,:]*c[:-1,:] + uxn[1:-1,:]*c[1:,:]
self._fx[0,b.W.I] = uxp[0,b.W.I]*b.W.Iv
self._fx[0,b.W.O] = uxn[0,b.W.O]*c[0,b.W.O]
self._fx[-1,b.E.I] = uxn[-1,b.E.I]*b.E.Iv
self._fx[-1,b.E.O] = uxp[-1,b.E.O]*c[-1,b.E.O]
self._fy[:,1:-1] = uyp[:,1:-1]*c[:,:-1] + uyn[:,1:-1]*c[:,1:]
self._fy[b.S.I,0] = uyp[b.S.I,0]*b.S.Iv
self._fy[b.S.O,0] = uyn[b.S.O,0]*c[b.S.O,0]
self._fy[b.N.I,-1] = uyn[b.N.I,-1]*b.N.Iv
self._fy[b.N.O,-1] = uyp[b.N.O,-1]*c[b.N.O,-1]
return self._fx,self._fy

Listing 5: standardBoundary.py
""" Implements some standard boundary types. """

from numpy import arange,zeros,ones,linspace ,array
import numpy as np

def WtoEPressure(Nx,Ny,difference):
ea = np.array([],dtype=np.int)
bnd = {’Neumann’:

{’West’:ea,’East’:ea,’North’:arange(Nx),’South’:arange(Nx)},
’Dirichlet’:
{’West’:arange(Ny),’East’:arange(Ny),’North’:ea,’South’:ea},
’Values’:
{’West’:difference*ones(Ny),’East’:zeros(Ny),’North’:zeros(Nx),
’South’:zeros(Nx)}}

return bnd

def SWtoNEpressure(Nx,Ny,nx,ny,difference):
Wv = difference/2.*ones(Ny)
Wv[ny:] = 0.
Ev = zeros(Ny)
Ev[Ny-ny:] = -difference/2.*ones(ny)
Sv = difference/2.*ones(Nx)
Sv[nx:] = 0.
Nv = zeros(Nx)
Nv[Nx-nx:] = -difference/2.*ones(nx)
bnd = {’Neumann’:

{’West’:arange(ny,Ny,dtype=np.int),
’East’:arange(Ny-ny,dtype=np.int),
’North’:arange(Nx-nx,dtype=np.int),
’South’:arange(nx,Nx,dtype=np.int)},
’Dirichlet’:
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{’West’:arange(ny,dtype=np.int),
’East’:arange(Ny-ny,Ny,dtype=np.int),
’North’:arange(Nx-nx,Nx,dtype=np.int),
’South’:arange(nx,dtype=np.int)},
’Values’:
{’West’:Wv,’East’:Ev,’North’:Nv,’South’:Sv}}

return bnd

def SWtoNEflux(Nx,Ny,nx,ny,velocity):
Wv = velocity*ones(Ny)
Wv[ny:] = 0.
Ev = velocity*ones(Ny)
Ev[:Ny-ny] = 0.
Sv = velocity*ones(Nx)
Sv[nx:] = 0.
Nv = velocity*ones(Nx)
Nv[:Nx-nx] = 0.
bnd = {’Neumann’:

{’West’:arange(Ny-ny,dtype=np.int),
’East’:arange(ny,Ny,dtype=np.int),
’North’:arange(nx,Nx,dtype=np.int),
’South’:arange(Nx-nx,dtype=np.int)},
’Dirichlet’:
{’West’:arange(Ny-ny,Ny,dtype=np.int),
’East’:arange(ny,dtype=np.int),
’North’:arange(nx,dtype=np.int),
’South’:arange(Nx-nx,Nx,dtype=np.int)},
’Values’:
{’West’:Wv,’East’:Ev,’North’:Nv,’South’:Sv}}

return bnd

def SWtoNEfluxsmooth(Nx,Ny,nx,ny,velocity):
linv = velocity*arange(ny+1)/ny
linv = (linv[1:]+linv[:-1])/2.
Wv = velocity*ones(Ny)
Wv[ny:2*ny] = linv
Wv[2*ny:] = 0.
Ev = velocity*ones(Ny)
Ev[Ny-2*ny:Ny-ny] = linv[::-1]
Ev[:Ny-2*ny] = 0.
Sv = velocity*ones(Nx)
Sv[nx:2*nx] = linv
Sv[2*nx:] = 0.
Nv = velocity*ones(Nx)
Nv[Nx-2*nx:Nx-nx] = linv[::-1]
Nv[:Nx-2*nx] = 0.
bnd = {’Neumann’:

{’West’:arange(Ny-ny,dtype=np.int),
’East’:arange(ny,Ny,dtype=np.int),
’North’:arange(nx,Nx,dtype=np.int),
’South’:arange(Nx-nx,dtype=np.int)},
’Dirichlet’:
{’West’:arange(Ny-ny,Ny,dtype=np.int),
’East’:arange(ny,dtype=np.int),
’North’:arange(nx,dtype=np.int),
’South’:arange(Nx-nx,Nx,dtype=np.int)},
’Values’:
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{’West’:Wv,’East’:Ev,’North’:Nv,’South’:Sv}}
return bnd

Listing 6: experimentWEConstant.py
""" W To E Constant Parameters Experiment for Ken Kennedy’s Ph.D. Thesis. """

from numpy import linspace,tile,ones,zeros,where,sqrt,zeros_like ,meshgrid
from numpy import array,append
from standardBoundary import *
from matrix2latex import matrix2latex
from numpy import log
from experimentDriver import runFlowExperiment ,runTransportExperiment
from experimentDriver import generateFlowSensitivityErrorTable
from experimentDriver import generateFlowFSErrorTable
from experimentDriver import generateFlowASErrorTable
from experimentDriver import generateFlowErrorTable
from experimentDriver import generateTranSensitivityErrorTable
from experimentDriver import generateTranFSErrorTable
from experimentDriver import generateTranASErrorTable
from experimentDriver import plotTransportIntegral
from experimentDriver import plotTransportSelectedTimes
from experimentDriver import plotPressureVelocity

def WestToEastConstantParameters(k=1.,b=0.,Nx=10,Ny=10,Tfinal=2.,tol=1e-11,
darcyInitial=True):

""" Runs an experiment showing west to east flow with constant
parameters. """
x = linspace(0,1,Nx+1)
y = linspace(0,1,Ny+1)
dx = x[1:]-x[:-1]
dy = y[1:]-y[:-1]
’’’ Set up the resistance for the non-Darcy system. ’’’
def Kappa(aux=None,auy=None):

if (aux is None) and (auy is None):
K11 = ones((Nx+1,Ny+1))/k
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k
K = {’11’:K11,’12’:K12,’22’:K22}

elif auy is None:
if aux.shape != (Nx+1,Ny+1):

raise TypeError("Magnitude of velocity has wrong shape.")
K11 = ones((Nx+1,Ny+1))/k+b*aux
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k+b*aux
K = {’11’:K11,’12’:K12,’22’:K22}

else:
if aux.shape != (Nx+1,Ny+1) or auy.shape != (Nx+1,Ny+1):

raise TypeError("Magnitude of velocity has wrong shape.")
K11 = ones((Nx+1,Ny+1))/k+b*aux
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k+b*auy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary conditions. ’’’
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bnd = WtoEPressure(Nx,Ny,1.)
’’’ Set up the resistance for the sensitivity equation. ’’’
def sKappa(ux=None,uy=None):

if (ux is None) and (uy is None):
K11 = ones((Nx+1,Ny+1))/k
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k
K = {’11’:K11,’12’:K12,’22’:K22}

elif uy is None:
if ux.shape != (Nx+1,Ny+1):

raise TypeError("Velocity has wrong shape.")
K11 = ones((Nx+1,Ny+1))/k+2.*b*ux
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k+2.*b*ux
K = {’11’:K11,’12’:K12,’22’:K22}

else:
if ux.shape != (Nx+1,Ny+1) or uy.shape != (Nx+1,Ny+1):

raise TypeError("Velocity has wrong shape.")
K11 = ones((Nx+1,Ny+1))/k+2.*b*ux
K12 = zeros((Nx+1,Ny+1))
K22 = ones((Nx+1,Ny+1))/k+2.*b*uy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary for the sensitivity equation. ’’’
sbnd = WtoEPressure(Nx,Ny,0.)
’’’ Set up the gravity-like term for the forward sensitivity to k. ’’’
def kgrav(ux,uy):

skgx,skgy = ux/(k**2),uy/(k**2)
skg = {’1x’:skgx,’2y’:skgy,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return skg

def dKdk10x(ux,uy):
return -ux/k/k

def dKdk10y(ux,uy):
return -uy/k/k

def dKdk01x(ux,uy):
return -ux/k/k

def dKdk01y(ux,uy):
return -uy/k/k

K = {’name’:’k’,’gravity’:kgrav,
’dKdp10x’:dKdk10x,’dKdp10y’:dKdk10y,
’dKdp01x’:dKdk01x,’dKdp01y’:dKdk01y}

’’’ Set up the gravity-like term for the forward sensitivity to b. ’’’
def bgrav(ux,uy):

sbgx,sbgy = -ux**2,-uy**2
sbg = {’1x’:sbgx,’2y’:sbgy,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sbg

def dKdb10x(ux,uy):
return ux*abs(ux)

def dKdb10y(ux,uy):
return uy*abs(uy)

def dKdb01x(ux,uy):
return ux*abs(ux)

def dKdb01y(ux,uy):
return uy*abs(uy)

beta = {’name’:’\\beta’,’gravity’:bgrav,
’dKdp10x’:dKdb10x,’dKdp10y’:dKdb10y,
’dKdp01x’:dKdb01x,’dKdp01y’:dKdb01y}
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p,ux,uy,KS,sensitivities = runFlowExperiment(x,y,Kappa,sKappa,bnd,
sbnd,[K,beta],
darcyInitial)

c,sensitivities = runTransportExperiment(x,y,ux,uy,sensitivities ,
[K,beta],Tfinal,
KS,
sbnd)

’’’ Compute analytic sensitivities. ’’’
if b == 0.:

aux = k
asbx = -k**3
askx = 1.

else:
aux = (sqrt(1.+4.*b*k**2) -1.)/(2.*b*k)
asbx = (sqrt(1.+4.*b*k**2) -2.*b*k**2-1)/(2.*b**2*k*sqrt(1.+4.*b*k**2))
askx = (sqrt(1.+4.*b*k**2) -1.)/(2.*b*k**2*sqrt(1.+4.*b*k**2))

auy = 0.
asby = 0.
asky = 0.
if Tfinal <= 1./aux:

asGk = askx*Tfinal/2.
asGb = asbx*Tfinal/2.

else:
asGk = askx/(2.*aux*aux*Tfinal)
asGb = asbx/(2.*aux*aux*Tfinal)

X = tile(x,(Ny,1)).T
X = (X[1:,:] + X[:-1,:])/2.
’’’ Compute errors. ’’’
perr = abs(p-(1.-X)).max()
uxerr = abs(ux-aux).max()
uyerr = abs(uy-auy).max()
sensitivities[’\\beta’].update(

{’H10FS Error’:abs(sensitivities[’\\beta’][’H10FS’]-asbx),
’H10AS Error’:abs(sensitivities[’\\beta’][’H10AS’]-asbx),
’H01FS Error’:abs(sensitivities[’\\beta’][’H01FS’]-asby),
’H01AS Error’:abs(sensitivities[’\\beta’][’H01AS’]-asby),
’GAS Error’:abs(sensitivities[’\\beta’][’GAS’]-asGb),
’Gsfs Error’:abs(sensitivities[’\\beta’][’Gsfs’]-asGb)})

sensitivities[’k’].update(
{’H10FS Error’:abs(sensitivities[’k’][’H10FS’]-askx),
’H10AS Error’:abs(sensitivities[’k’][’H10AS’]-askx),
’H01FS Error’:abs(sensitivities[’k’][’H01FS’]-asky),
’H01AS Error’:abs(sensitivities[’k’][’H01AS’]-asky),
’GAS Error’:abs(sensitivities[’k’][’GAS’]-asGk),
’Gsfs Error’:abs(sensitivities[’k’][’Gsfs’]-asGk)})

return (p,perr),(ux,uxerr),(uy,uyerr),c,sensitivities ,x,y

def WestToEastConstantParametersDriver(Nx=10,Ny=10,tol=1e-11,Tfinal=2.,
darcyInitial=True):

""" Runs an experiment showing west to east flow with constant parameters.
The results are then shown in a table. """
ks = [1.,1.,2.,1.]
bs = [0.,1.,1.,2.]
experiments = {}
parameters = [’k’,’\\beta’]
st=r’\begin{{tabular}}{{@{{}}c@{{}}}}$k={}$ \\ $\beta={}$\end{{tabular}}’
st = r’$\left\{{ \begin{{array}}{{c}} k={}\\’
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st = st + r’ \beta={} \end{{array}}\right\}}$ ’
for k,b in zip(ks,bs):

p,ux,uy,c,s,x,y = WestToEastConstantParameters(k,b,Nx,Ny,Tfinal,tol,
darcyInitial)

expname = st.format(k,b)
experiments.update({expname:{’p’:p,’ux’:ux,’uy’:uy,’c’:c,’x’:x,’y’:y,

’k’:k,’b’:b,’sensitivities’:s}})
’’’ Generate the table of errors in u and p. ’’’
cap=’West to East Flow With Contant Parameters: Error in $p$, $u_1$, $u_2$’
t1 = generateFlowErrorTable(’tables/WECpu’,cap,experiments)
’’’ Generate the table of errors in the sensitivities. ’’’
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in Flow Sensitivities’
t2 = generateFlowSensitivityErrorTable(’tables/WECsens’,cap,experiments ,

parameters)
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in FS Sensitivities’
t2 = generateFlowFSErrorTable(’tables/WECFS’,cap,experiments ,

parameters)
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in AS Sensitivities’
t2 = generateFlowASErrorTable(’tables/WECAS’,cap,experiments ,

parameters)
""" Generate the table of errors in the transport sensitivities. """
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in Transport Sensitivities’
t3 = generateTranSensitivityErrorTable(’tables/WECsenstran’,cap,

experiments ,parameters)
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in Transport FS Sensitivities’
t3 = generateTranFSErrorTable(’tables/WECFStran’,cap,

experiments ,parameters)
cap = ’West to East Flow With Contant Parameters: ’
cap = cap + ’Error in Transport AS Sensitivities’
t3 = generateTranASErrorTable(’tables/WECAStran’,cap,

experiments ,parameters)
ptitle = r’West to East Flow With Constant Parameters: $k={},b={}$’
titles = {}
filenames = {}
filenames2 = {}
filenames3 = {}
for e in experiments.keys():

experiment = experiments[e]
k,b = experiment[’k’],experiment[’b’]
titles.update({e:ptitle.format(k,b)})
filenames.update({e:’figures/WECk{}b{}.pdf’.format(k,b)})
filenames2.update({e:’figures/WECtk{}b{}.pdf’.format(k,b)})
filenames3.update({e:’figures/WECPVk{}b{}.pdf’.format(k,b)})

plotPressureVelocity(experiments ,titles,filenames3)
plotTransportIntegral(experiments ,titles,filenames)
plotTransportSelectedTimes(experiments ,titles,filenames2)
return t1,t2,t3

if __name__ == ’__main__’:
WestToEastConstantParametersDriver()
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Listing 7: experimentWESmooth.py
""" W To E Smooth Parameters Experiment for Ken Kennedy’s Ph.D. Thesis. """

from numpy import linspace,tile,ones,zeros,where,sqrt,zeros_like
from numpy import array,append,log
from standardBoundary import *
from matrix2latex import matrix2latex
from experimentDriver import runFlowExperiment ,runTransportExperiment
from experimentDriver import generateFlowSensitivityErrorTable
from experimentDriver import generateFlowSensitivityErrorTableWithRefinement
from experimentDriver import generateFlowFSErrorTableWithRefinement
from experimentDriver import generateFlowASErrorTableWithRefinement
from experimentDriver import generateFlowErrorTable
from experimentDriver import generateFlowErrorTableWithRefinement
from experimentDriver import generateTranSensitivityErrorTableWithRefinement
from experimentDriver import generateTranFSErrorTableWithRefinement
from experimentDriver import generateTranASErrorTableWithRefinement
from experimentDriver import plotTransportIntegralWithRefinement
from experimentDriver import plotTransportSelectedTimesWithRefinment
from experimentDriver import plotPressureVelocityWithRefinement

def WestToEastSmoothParameters(k=1.,b=0.,g=0.,Nx=10,Ny=10,Tfinal=10.,tol=1e-11,
darcyInitial=True):

""" Runs an experiment showing west to east flow with smooth
parameters. """
x = linspace(0,1,Nx+1)
y = linspace(0,1,Ny+1)
dx = x[1:]-x[:-1]
dy = y[1:]-y[:-1]
X = tile(x,(Ny,1)).T
X2 = tile(x,(Ny+1,1)).T
XY = tile((x[1:]+x[:-1])/2.,(Ny+1,1)).T
’’’ Set up the resistance for the non-Darcy system. ’’’
B = g*X2 + b
Ks = ones((Nx+1,Ny+1))/k
z = zeros((Nx+1,Ny+1))
def Kappa(aux=None,auy=None):

if (aux is None) and (auy is None):
K11 = Ks
K12 = z
K22 = Ks
K = {’11’:K11,’12’:K12,’22’:K22}

elif auy is None:
K11 = Ks+B*aux
K12 = z
K22 = Ks+B*aux
K = {’11’:K11,’12’:K12,’22’:K22}

else:
K11 = Ks+B*aux
K12 = z
K22 = Ks+B*auy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary conditions. ’’’
bnd = WtoEPressure(Nx,Ny,1.)
’’’ Set up the resistance for the sensitivity equation. ’’’
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def sKappa(ux=None,uy=None):
if (ux is None) and (uy is None):

K11 = Ks
K12 = z
K22 = Ks
K = {’11’:K11,’12’:K12,’22’:K22}

elif uy is None:
K11 = Ks+2.*B*ux
K12 = z
K22 = Ks+2.*B*ux
K = {’11’:K11,’12’:K12,’22’:K22}

else:
K11 = Ks+2.*B*ux
K12 = z
K22 = Ks+2.*B*uy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary for the sensitivity equation. ’’’
sbnd = WtoEPressure(Nx,Ny,0.)
’’’ Set up the gravity-like term for the forward sensitivity to k. ’’’
def kgrav(ux,uy):

skgx,skgy = ux/(k**2),uy/(k**2)
skg = {’1x’:skgx,’2y’:skgy,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return skg

def dKdk10x(ux,uy):
return -ux/k/k

def dKdk10y(ux,uy):
return -uy/k/k

def dKdk01x(ux,uy):
return -ux/k/k

def dKdk01y(ux,uy):
return -uy/k/k

K = {’name’:’k’,’gravity’:kgrav,
’dKdp10x’:dKdk10x,’dKdp10y’:dKdk10y,
’dKdp01x’:dKdk01x,’dKdp01y’:dKdk01y}

’’’ Set up the gravity-like term for the forward sensitivity to b. ’’’
def bgrav(ux,uy):

sbgx,sbgy = -ux**2,-uy**2
sbg = {’1x’:sbgx,’2y’:sbgy,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sbg

def dKdb10x(ux,uy):
return ux*abs(ux)

def dKdb10y(ux,uy):
return uy*abs(uy)

def dKdb01x(ux,uy):
return ux*abs(ux)

def dKdb01y(ux,uy):
return uy*abs(uy)

beta = {’name’:’\\beta’,’gravity’:bgrav,
’dKdp10x’:dKdb10x,’dKdp10y’:dKdb10y,
’dKdp01x’:dKdb01x,’dKdp01y’:dKdb01y}

’’’ Set up the gravity-like term for the forward sensitivity to g. ’’’
def ggrav(ux,uy):

sggx,sggy = -ux**2*X,-uy**2*XY
sgg = {’1x’:sggx,’2y’:sggy,’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sgg

def dKdg10x(ux,uy):
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return X*ux*abs(ux)
def dKdg10y(ux,uy):

return uy*abs(uy)
def dKdg01x(ux,uy):

return X*ux*abs(ux)
def dKdg01y(ux,uy):

return uy*abs(uy)
gamma = {’name’:’\\gamma’,’gravity’:ggrav,

’dKdp10x’:dKdg10x,’dKdp10y’:dKdg10y,
’dKdp01x’:dKdg01x,’dKdp01y’:dKdg01y}

p,ux,uy,KS,sensitivities = runFlowExperiment(x,y,Kappa,sKappa,bnd,
sbnd,[K,beta,gamma],
darcyInitial)

c,sensitivities = runTransportExperiment(x,y,ux,uy,sensitivities ,
[K,beta,gamma],Tfinal,
KS,sbnd)

’’’ Compute analytic sensitivities. ’’’
aux = (sqrt(1.+2.*k**2*(2*b+g))-1.)/(k*(2.*b+g))
sqt = sqrt(4.*b*k*k+2.*g*k*k+1.)
asbx = (2.*sqt-2.*k*k*(2.*b+g)-2.)/(k*(2.*b+g)**2*sqt)
askx = (sqt - 1.)/(k*k*(2.*b+g)*sqt)
asgx = (sqt-k*k*(2.*b+g)-1.)/(k*(2.*b+g)**2*sqt)
auy = 0.
asby = 0.
asky = 0.
asgy = 0.
if Tfinal <= 1./aux:

asGk = askx*Tfinal/2.
asGb = asbx*Tfinal/2.
asGg = asgx*Tfinal/2.

else:
asGk = askx/(2.*aux*aux*Tfinal)
asGb = asbx/(2.*aux*aux*Tfinal)
asGg = asgx/(2.*aux*aux*Tfinal)

X = tile(x,(Ny,1)).T
X = (X[1:,:] + X[:-1,:])/2.
’’’ Compute errors. ’’’
ap = -(g/2.)*aux*aux*X**2-(b*aux**2 + aux/k)*X+1.
perr = abs(p-ap).max()
uxerr = abs(ux-aux).max()
uyerr = abs(uy-auy).max()
sensitivities[’\\beta’].update(

{’H10FS Error’:abs(sensitivities[’\\beta’][’H10FS’]-asbx),
’H10AS Error’:abs(sensitivities[’\\beta’][’H10AS’]-asbx),
’H01FS Error’:abs(sensitivities[’\\beta’][’H01FS’]-asby),
’H01AS Error’:abs(sensitivities[’\\beta’][’H01AS’]-asby),
’GAS Error’:abs(sensitivities[’\\beta’][’GAS’]-asGb),
’Gsfs Error’:abs(sensitivities[’\\beta’][’Gsfs’]-asGb)})

sensitivities[’\\gamma’].update(
{’H10FS Error’:abs(sensitivities[’\\gamma’][’H10FS’]-asgx),
’H10AS Error’:abs(sensitivities[’\\gamma’][’H10AS’]-asgx),
’H01FS Error’:abs(sensitivities[’\\gamma’][’H01FS’]-asgy),
’H01AS Error’:abs(sensitivities[’\\gamma’][’H01AS’]-asgy),
’GAS Error’:abs(sensitivities[’\\gamma’][’GAS’]-asGg),
’Gsfs Error’:abs(sensitivities[’\\gamma’][’Gsfs’]-asGg)})

sensitivities[’k’].update(
{’H10FS Error’:abs(sensitivities[’k’][’H10FS’]-askx),
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’H10AS Error’:abs(sensitivities[’k’][’H10AS’]-askx),
’H01FS Error’:abs(sensitivities[’k’][’H01FS’]-asky),
’H01AS Error’:abs(sensitivities[’k’][’H01AS’]-asky),
’GAS Error’:abs(sensitivities[’k’][’GAS’]-asGk),
’Gsfs Error’:abs(sensitivities[’k’][’Gsfs’]-asGk)})

return (p,perr),(ux,uxerr),(uy,uyerr),c,sensitivities ,x,y

def WestToEastSmoothParametersDriver(Nx=10,Ny=10,tol=1e-11,Tfinal=10.,
darcyInitial=True):

""" Runs an experiment showing west to east flow with constant parameters.
The results are then shown in a table. """
ks = [1.,1.,2.,1.]
bs = [1.,2.,2.,2.]
gs = [1.,-1.,-1.,5.]
Ns = [8,16,32]
experiments = {}
parameters = [’k’,’\\beta’,’\\gamma’]
’’’
st = r’\multirow{{{{{}}}}}{{{{*}}}}{{{{’.format(len(Ns))
st= st + r’\begin{{tabular}}{{@{{}}r@{{}}}}$k={}$ \\ $\beta={}$ ’
st = st + r’\\ $\gamma={}$ \end{{tabular}}}}’
st = r’\multirow{{{{{}}}}}{{{{*}}}}{{{{’.format(len(Ns))
st = st + r’$\left\{{ \begin{{array}}{{c}} k={}\\ \beta={}\\’
st = st + r’ \gamma={} \end{{array}}\right\}}$ }}’
’’’
st = r’$\left\{{ \begin{{array}}{{c}} k={}\\ \beta={}\\’
st = st + r’ \gamma={} \end{{array}}\right\}}$ ’
sbnd = WtoEPressure(Nx,Ny,0.)
for k,b,g in zip(ks,bs,gs):

expname = st.format(k,b,g)
exs = []
for N in Ns:

p,ux,uy,c,s,x,y = WestToEastSmoothParameters(k,b,g,N,N,Tfinal,tol,
darcyInitial)

exs.append({’p’:p,’ux’:ux,’uy’:uy,’c’:c,’h’:x[1]-x[0],
’sensitivities’:s,’N’:N,’k’:k,’b’:b,’g’:g,
’x’:x,’y’:y})

experiments.update({expname:exs})
’’’ Generate the table of errors in u and p. ’’’
cap=’West to East Flow With Smooth Parameters: Error in $p$, $u_1$, $u_2$’
t1 = generateFlowErrorTableWithRefinement(’tables/WESpu’,cap,experiments ,

[’p’])
’’’ Generate the table of errors in the sensitivities. ’’’
cap = ’West to East Flow With Smooth Parameters: Error in Sensitivities’
t2 = generateFlowSensitivityErrorTableWithRefinement(’tables/WESsens’,cap,

experiments ,
parameters ,
[])

cap = ’West to East Flow With Smooth Parameters: Error in FS Sensitivities’
t2 = generateFlowFSErrorTableWithRefinement(’tables/WESFSsens’,cap,

experiments ,
parameters ,
[])

cap = ’West to East Flow With Smooth Parameters: Error in AS Sensitivities’
t2 = generateFlowASErrorTableWithRefinement(’tables/WESASsens’,cap,

experiments ,
parameters ,
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[])
""" Generate the table of errors in the transport sensitivities. """
cap = ’West to East Flow With Smooth Parameters: ’
cap = cap + ’Error in Transport Sensitivities’
t3 = generateTranSensitivityErrorTableWithRefinement(’tables/WESsenstran’,

cap,
experiments ,
parameters ,
[])

cap = ’West to East Flow With Smooth Parameters: ’
cap = cap + ’Error in Transport FS Sensitivities’
t3 = generateTranFSErrorTableWithRefinement(’tables/WESFStran’,

cap,
experiments ,
parameters ,
[’Gsfs’,’GAS’])

cap = ’West to East Flow With Smooth Parameters: ’
cap = cap + ’Error in Transport AS Sensitivities’
t3 = generateTranASErrorTableWithRefinement(’tables/WESAStran’,

cap,
experiments ,
parameters ,
[’Gsfs’,’GAS’])

ptitle = r’West to East Flow With Smooth Parameters: ’
ptitle = ptitle + ’$k={},\\beta={},\\gamma={}$’
"}}"
titles = {}
filenames = {}
filenames2 = {}
filenames3 = {}
for e in experiments.keys():

experiment = experiments[e]
k,b,g = experiment[0][’k’],experiment[0][’b’],experiment[0][’g’]
titles.update({e:ptitle.format(k,b,g)})
filenames.update({e:’figures/WESk{}b{}g{}.pdf’.format(k,b,g)})
filenames2.update({e:’figures/WEStk{}b{}g{}.pdf’.format(k,b,g)})
filenames3.update({e:’figures/WESPVk{}b{}g{}.pdf’.format(k,b,g)})

plotTransportIntegralWithRefinement(experiments ,titles,filenames)
plotTransportSelectedTimesWithRefinment(experiments ,titles,filenames2)
plotPressureVelocityWithRefinement(experiments ,titles,filenames3)
return t1,t2,t3

if __name__ == ’__main__’:
WestToEastSmoothParametersDriver()

Listing 8: experimentWEDiscontinuous.py
""" W To E Discont. Parameters Experiment for Ken Kennedy’s Ph.D. Thesis. """

from numpy import linspace,tile,ones,zeros,where,sqrt,zeros_like ,meshgrid
from numpy import array,append,log
from scipy.interpolate import interp1d
from standardBoundary import *
from myDirac import dirac2D
from matrix2latex import matrix2latex
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from experimentDriver import runFlowExperiment ,runTransportExperiment
from experimentDriver import generateFlowSensitivityErrorTable
from experimentDriver import generateFlowSensitivityErrorTableWithRefinement
from experimentDriver import generateFlowFSErrorTableWithRefinement
from experimentDriver import generateFlowASErrorTableWithRefinement
from experimentDriver import generateFlowErrorTable
from experimentDriver import generateFlowErrorTableWithRefinement
from experimentDriver import generateTranSensitivityErrorTableWithRefinement
from experimentDriver import generateTranFSErrorTableWithRefinement
from experimentDriver import generateTranASErrorTableWithRefinement
from experimentDriver import plotTransportIntegralWithRefinement
from experimentDriver import plotTransportSelectedTimesWithRefinment
from experimentDriver import plotPressureVelocityWithRefinement

def WestToEastDiscontinuousParameters(k1=1.,k2=2.,b1=3.,b2=4.,x0=0.5,
Nx=11,Ny=11,Tfinal=10.,
tol=1e-11,darcyInitial=True):

""" Runs an experiment showing west to east flow with discontinuous
parameters. """
x = linspace(0,1,Nx+1)
y = linspace(0,1,Ny+1)
dx = x[1:]-x[:-1]
dy = y[1:]-y[:-1]
X = tile(x,(Ny,1)).T
X2 = tile(x,(Ny+1,1)).T
XY = tile((x[1:]+x[:-1])/2.,(Ny+1,1)).T
left = where(X2<x0)
right = where(X2>=x0)
leftX = where(X<x0)
rightX = where(X>=x0)
leftXY = where(XY<x0)
rightXY = where(XY>=x0)
’’’ Set up the resistance for the non-Darcy system. ’’’
Bs = b1*ones((Nx+1,Ny+1))
Bs[right] = b2
Ks = ones((Nx+1,Ny+1))/k1
Ks[right] = 1./k2
z = zeros((Nx+1,Ny+1))
oneleft = ones((Nx+1,Ny))
oneleft[rightX] = 0.
oneleftY = ones((Nx,Ny+1))
oneleftY[rightXY] = 0.
oneright = ones((Nx+1,Ny))
oneright[leftX] = 0.
onerightY = ones((Nx,Ny+1))
onerightY[leftXY] = 0.
def Kappa(aux=None,auy=None):

if (aux is None) and (auy is None):
K11 = Ks
K12 = z
K22 = Ks
K = {’11’:K11,’12’:K12,’22’:K22}

elif auy is None:
K11 = Ks+Bs*aux
K12 = z
K22 = Ks+Bs*aux
K = {’11’:K11,’12’:K12,’22’:K22}
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else:
K11 = Ks+Bs*aux
K12 = z
K22 = Ks+Bs*auy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary conditions. ’’’
bnd = WtoEPressure(Nx,Ny,1.)
’’’ Set up the resistance for the sensitivity equation. ’’’
def sKappa(ux=None,uy=None):

if (ux is None) and (uy is None):
K11 = Ks
K12 = z
K22 = Ks
K = {’11’:K11,’12’:K12,’22’:K22}

elif uy is None:
K11 = Ks+2.*Bs*ux
K12 = z
K22 = Ks+2.*Bs*ux
K = {’11’:K11,’12’:K12,’22’:K22}

else:
K11 = Ks+2.*Bs*ux
K12 = z
K22 = Ks+2.*Bs*uy
K = {’11’:K11,’12’:K12,’22’:K22}

return K
’’’ Set up the boundary for the sensitivity equation. ’’’
sbnd = WtoEPressure(Nx,Ny,0.)
’’’ Set up the gravity-like term for the forward sensitivity to k1. ’’’
def k1grav(ux,uy):

sk1gx,sk1gy = ux/(k1**2),uy/(k1**2)
sk1gx[rightX] = 0.
sk1gy[rightXY] = 0.
sk1g = {’1x’:sk1gx,’2y’:sk1gy,

’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sk1g

def dKdk110x(ux,uy):
return -oneleft*ux/k1/k1

def dKdk110y(ux,uy):
return -oneleftY*uy/k1/k1

def dKdk101x(ux,uy):
return -oneleft*ux/k1/k1

def dKdk101y(ux,uy):
return -oneleftY*uy/k1/k1

K1 = {’name’:’k_1’,’gravity’:k1grav,
’dKdp10x’:dKdk110x,’dKdp10y’:dKdk110y,
’dKdp01x’:dKdk101x,’dKdp01y’:dKdk101y}

’’’ Set up the gravity-like term for the forward sensitivity to k2. ’’’
def k2grav(ux,uy):

sk2gx,sk2gy = ux/(k2**2),uy/(k2**2)
sk2gx[leftX] = 0.
sk2gy[leftXY] = 0.
sk2g = {’1x’:sk2gx,’2y’:sk2gy,

’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sk2g

def dKdk210x(ux,uy):
return -oneright*ux/k2/k2
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def dKdk210y(ux,uy):
return -onerightY*uy/k2/k2

def dKdk201x(ux,uy):
return -oneright*ux/k2/k2

def dKdk201y(ux,uy):
return -onerightY*uy/k2/k2

K2 = {’name’:’k_2’,’gravity’:k2grav,
’dKdp10x’:dKdk210x,’dKdp10y’:dKdk210y,
’dKdp01x’:dKdk201x,’dKdp01y’:dKdk201y}

’’’ Set up the gravity-like term for the forward sensitivity to b1. ’’’
def b1grav(ux,uy):

sb1gx,sb1gy = -ux**2,-uy**2
sb1gx[rightX] = 0.
sb1gy[rightXY] = 0.
sb1g = {’1x’:sb1gx,’2y’:sb1gy,

’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sb1g

def dKdb110x(ux,uy):
return oneleft*ux*abs(ux)

def dKdb110y(ux,uy):
return oneleftY*uy*abs(uy)

def dKdb101x(ux,uy):
return oneleft*ux*abs(ux)

def dKdb101y(ux,uy):
return oneleftY*uy*abs(uy)

beta1 = {’name’:’\\beta_1’,’gravity’:b1grav,
’dKdp10x’:dKdb110x,’dKdp10y’:dKdb110y,
’dKdp01x’:dKdb101x,’dKdp01y’:dKdb101y}

’’’ Set up the gravity-like term for the forward sensitivity to b2. ’’’
def b2grav(ux,uy):

sb2gx,sb2gy = -ux**2,-uy**2
sb2gx[leftX] = 0.
sb2gy[leftXY] = 0.
sb2g = {’1x’:sb2gx,’2y’:sb2gy,

’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}
return sb2g

def dKdb210x(ux,uy):
return oneright*ux*abs(ux)

def dKdb210y(ux,uy):
return onerightY*uy*abs(uy)

def dKdb201x(ux,uy):
return oneright*ux*abs(ux)

def dKdb201y(ux,uy):
return onerightY*uy*abs(uy)

beta2 = {’name’:’\\beta_2’,’gravity’:b2grav,
’dKdp10x’:dKdb210x,’dKdp10y’:dKdb210y,
’dKdp01x’:dKdb201x,’dKdp01y’:dKdb201y}

’’’ Set up the gravity-like term for the forward sensitivity to x0. ’’’
xc,yc = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
hx = x[1]-x[0]
hy = y[1] - y[0]
Xx,Yx = meshgrid(x,yc)
Xy,Yy = meshgrid(xc,y)
Xdy = x0*ones(Ny+1)
Ydy = linspace(0.,1.,Ny+1)
Xd = x0*ones(Ny)
Yd = yc
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x0i = where(x<=x0)[0][-1]
def x0grav(ux,uy):

uxfun = interp1d(x,ux,axis=0)
uxx0 = uxfun(x0)
if x[x0i] == x0 and x0i > 0:

uyx0 = (uy[x0i,:] + uy[x0i-1,:])/2.
else:

uyx0 = uy[x0i,:]
sx0gx = dirac2D(Xx.T,Yx.T,y[1]-y[0],Xd,Yd,

-((uxx0/k1-uxx0/k2) +
(b1-b2)*uxx0*abs(uxx0)),hx,hy)

sx0gy = dirac2D(Xy.T,Yy.T,x[1]-x[0],Xdy,Ydy,
-((uyx0/k1-uyx0/k2) +
(b1-b2)*uyx0*abs(uyx0)),hx,hy)

sx0g = {’1x’:sx0gx,’2y’:sx0gy,
’2x’:zeros((Nx+1,Ny)),’1y’:zeros((Nx,Ny+1))}

return sx0g
def dKdx010x(ux,uy):

xfunvals = ux/k1 - ux/k2 + (b1-b2)*abs(ux)*ux
xfun = interp1d(x,xfunvals,axis=0)
xvals = dirac2D(Xx,Yx,y[1]-y[0],Xd,Yd,xfun(x0),hx,hy)
return xvals.T

def dKdx010y(ux,uy):
yfunvals = uy/k1 - uy/k2 + (b1-b2)*abs(uy)*uy
yfun = interp1d(xc,yfunvals,axis=0)
yvals = dirac2D(Xy,Yy,x[1]-x[0],Xdy,Ydy,yfun(x0),hx,hy)
return yvals.T

def dKdx001x(ux,uy):
xfunvals = ux/k1 - ux/k2 + (b1-b2)*abs(ux)*ux
xfun = interp1d(x,xfunvals,axis=0)
xvals = dirac2D(Xx,Yx,y[1]-y[0],Xd,Yd,xfun(x0),hx,hy)
return xvals.T

def dKdx001y(ux,uy):
yfunvals = uy/k1 - uy/k2 + (b1-b2)*abs(uy)*uy
yfun = interp1d(xc,yfunvals,axis=0)
yvals = dirac2D(Xy,Yy,x[1]-x[0],Xdy,Ydy,yfun(x0),hx,hy)
return yvals.T

X0 = {’name’:’x_0’,’gravity’:x0grav,
’dKdp10x’:dKdx010x,’dKdp10y’:dKdx010y,
’dKdp01x’:dKdx001x,’dKdp01y’:dKdx001y}

p,ux,uy,KS,sensitivities = runFlowExperiment(x,y,Kappa,sKappa,bnd,
sbnd,[K1,K2,beta1,beta2,X0],
darcyInitial ,tol)

c,sensitivities = runTransportExperiment(x,y,ux,uy,sensitivities ,
[K1,K2,beta1,beta2,X0],
Tfinal,KS,sbnd)

’’’ Compute analytic sensitivities. ’’’
Xerr = (X[1:,:] + X[:-1,:])/2.
sqt = sqrt(((1.-x0)*k1+x0*k2)**2+4.*k1*k1*k2*k2*(b2*(1.-x0)+b1*x0))
aux = (sqt-((1.-x0)*k1+x0*k2))/(2.*k1*k2*(b2*(1.-x0)+b1*x0))
u1 = aux
ap = 1.-(aux/k1+b1*aux*aux)*Xerr
rcoef = u1/k2 + b2*u1*u1
ap[where(Xerr>x0)] = rcoef-rcoef*Xerr[where(Xerr>x0)]
sqt = sqrt(4*k1**2*k2**2*(b1*x0 + b2*(-x0 + 1))+(k1*(-x0 + 1)+k2*x0)**2)
ask1x = ((x0 + (4*k1*k2**2*(b1*x0 + b2*(-x0 + 1)) + (-2*x0 + 2)*(k1*(-x0+1)

+ k2*x0)/2)/sqt - 1)/(2*k1*k2*(b1*x0 + b2*(-x0 + 1)))
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- (-k1*(-x0 + 1) - k2*x0 + sqt)/(2*k1**2*k2*(b1*x0
+ b2*(-x0 + 1))))

ask2x = ((-x0 + (4*k1**2*k2*(b1*x0 + b2*(-x0 + 1)) + x0*(k1*(-x0 + 1) +
k2*x0))/sqt)/(2*k1*k2*(b1*x0+b2*(-x0 + 1)))
- (-k1*(-x0 + 1) - k2*x0 + sqt)/(2*k1*k2**2*(b1*x0+b2*(-x0+1))))

asb1x = (k1*k2*x0/((b1*x0 + b2*(-x0 + 1))*sqt) - x0*(-k1*(-x0 + 1) - k2*x0
+ sqt)/(2*k1*k2*(b1*x0 + b2*(-x0 + 1))**2))

asb2x = (k1*k2*(-x0 + 1)/((b1*x0 + b2*(-x0 + 1))*sqt) + (x0 - 1)*(
-k1*(-x0 + 1) - k2*x0 + sqt)/(2*k1*k2*(b1*x0 + b2*(-x0+1))**2))

asx0x = ((b2-b1)*(-k1*(1.-x0)-k2*x0 + sqt)/(2*k1*k2*(b1*x0+b2*(1.-x0))**2)+
(k1 - k2 + (2*k1**2*k2**2*(b1 - b2) + (2.*k2-2.*k1)*(k1*(1.-x0) +
k2*x0)/2)/sqt)/(2*k1*k2*(b1*x0 + b2*(1.-x0))))

auy = 0.
asb1y = 0.
asb2y = 0.
ask1y = 0.
ask2y = 0.
asx0y = 0.
if Tfinal <= 1./aux:

asGk1 = ask1x*Tfinal/2.
asGk2 = ask2x*Tfinal/2.
asGb1 = asb1x*Tfinal/2.
asGb2 = asb2x*Tfinal/2.
asGx0 = asx0x*Tfinal/2.

else:
asGk1 = ask1x/(2.*aux*aux*Tfinal)
asGk2 = ask2x/(2.*aux*aux*Tfinal)
asGb1 = asb1x/(2.*aux*aux*Tfinal)
asGb2 = asb2x/(2.*aux*aux*Tfinal)
asGx0 = asx0x/(2.*aux*aux*Tfinal)

X = tile(x,(Ny,1)).T
X = (X[1:,:] + X[:-1,:])/2.
’’’ Compute errors. ’’’
perr = abs(p-ap).max()
uxerr = abs(ux-aux).max()
uyerr = abs(uy-auy).max()
sensitivities[’\\beta_1’].update(

{’H10FS Error’:abs(sensitivities[’\\beta_1’][’H10FS’]-asb1x),
’H10AS Error’:abs(sensitivities[’\\beta_1’][’H10AS’]-asb1x),
’H01FS Error’:abs(sensitivities[’\\beta_1’][’H01FS’]-asb1y),
’H01AS Error’:abs(sensitivities[’\\beta_1’][’H01AS’]-asb1y),
’GAS Error’:abs(sensitivities[’\\beta_1’][’GAS’]-asGb1),
’Gsfs Error’:abs(sensitivities[’\\beta_1’][’Gsfs’]-asGb1)})

sensitivities[’\\beta_2’].update(
{’H10FS Error’:abs(sensitivities[’\\beta_2’][’H10FS’]-asb2x),
’H10AS Error’:abs(sensitivities[’\\beta_2’][’H10AS’]-asb2x),
’H01FS Error’:abs(sensitivities[’\\beta_2’][’H01FS’]-asb2y),
’H01AS Error’:abs(sensitivities[’\\beta_2’][’H01AS’]-asb2y),
’GAS Error’:abs(sensitivities[’\\beta_2’][’GAS’]-asGb2),
’Gsfs Error’:abs(sensitivities[’\\beta_2’][’Gsfs’]-asGb2)})

sensitivities[’k_1’].update(
{’H10FS Error’:abs(sensitivities[’k_1’][’H10FS’]-ask1x),
’H10AS Error’:abs(sensitivities[’k_1’][’H10AS’]-ask1x),
’H01FS Error’:abs(sensitivities[’k_1’][’H01FS’]-ask1y),
’H01AS Error’:abs(sensitivities[’k_1’][’H01AS’]-ask1y),
’GAS Error’:abs(sensitivities[’k_1’][’GAS’]-asGk1),
’Gsfs Error’:abs(sensitivities[’k_1’][’Gsfs’]-asGk1)})
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sensitivities[’k_2’].update(
{’H10FS Error’:abs(sensitivities[’k_2’][’H10FS’]-ask2x),
’H10AS Error’:abs(sensitivities[’k_2’][’H10AS’]-ask2x),
’H01FS Error’:abs(sensitivities[’k_2’][’H01FS’]-ask2y),
’H01AS Error’:abs(sensitivities[’k_2’][’H01AS’]-ask2y),
’GAS Error’:abs(sensitivities[’k_2’][’GAS’]-asGk2),
’Gsfs Error’:abs(sensitivities[’k_2’][’Gsfs’]-asGk2)})

sensitivities[’x_0’].update(
{’H10FS Error’:abs(sensitivities[’x_0’][’H10FS’]-asx0x),
’H10AS Error’:abs(sensitivities[’x_0’][’H10AS’]-asx0x),
’H01FS Error’:abs(sensitivities[’x_0’][’H01FS’]-asx0y),
’H01AS Error’:abs(sensitivities[’x_0’][’H01AS’]-asx0y),
’GAS Error’:abs(sensitivities[’x_0’][’GAS’]-asGx0),
’Gsfs Error’:abs(sensitivities[’x_0’][’Gsfs’]-asGx0)})

return (p,perr),(ux,uxerr),(uy,uyerr),c,sensitivities ,x,y

def WestToEastDiscontinuousParametersDriver(Nx=10,Ny=10,tol=1e-11,Tfinal=10.,
darcyInitial=True):

""" Runs an experiment showing west to east flow with constant parameters.
The results are then shown in a table. """
p10,ux10,uy10,c10,s10,x10,y10 = WestToEastDiscontinuousParameters(

1.,2.,3.,4.,
0.5,10,10,
Tfinal,tol,
darcyInitial)

p11,ux11,uy11,c11,s11,x11,y11 = WestToEastDiscontinuousParameters(
1.,2.,3.,4.,
0.5,11,11,
Tfinal,tol,
darcyInitial)

experiments = {’N=10’:{’p’:p10,’ux’:ux10,’uy’:uy10,’c’:c10,
’h’:x10[1]-x10[0],’sensitivities’:s10,’N’:10},

’N=11’:{’p’:p11,’ux’:ux11,’uy’:uy11,’c’:c11,
’h’:x11[1]-x11[0],’sensitivities’:s11,’N’:11}}

# Make a table of errors.
cap = "Error with grid aligned and not aligned to the discontinuity."
generateFlowErrorTable(’tables/WEDpu1011’,cap,experiments)
# Run the experiments with grid refinements.
k1s = [1.,2.]
k2s = [2.,1.]
b1s = [1.,.5]
b2s = [.5,1.]
x0 = 0.5
Ns = [5,15,45]
#Ns = [3,9,27]
experiments = {}
parameters = [’k_1’,’k_2’,’\\beta_1’,’\\beta_2’]
st = r’\multirow{{{{{}}}}}{{{{*}}}}{{{{’.format(len(Ns)+1)
st= st + r’\begin{{tabular}}{{@{{}}c@{{}}}}$k_1={}$ \\ $k_2={}$ ’
st = st + r’\\ $\beta_1={}$ \\ $\beta_2={}$\end{{tabular}}}}’
st = r’$\left\{{ \begin{{array}}{{c}} k_1={}, k_2={}\\’
st = st + r’ \beta_1={}, \beta_2={} \end{{array}}\right\}}$ ’
for k1,k2,b1,b2 in zip(k1s,k2s,b1s,b2s):

expname = st.format(k1,k2,b1,b2)
exs = []
for N in Ns:

sbnd = WtoEPressure(N,N,0.)
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p,ux,uy,c,s,x,y = WestToEastDiscontinuousParameters(k1,k2,b1,b2,x0,
N,N,Tfinal,tol,
darcyInitial)

exs.append({’p’:p,’ux’:ux,’uy’:uy,’c’:c,’h’:x[1]-x[0],
’k1’:k1,’k2’:k2,’b1’:b1,’b2’:b2,’x0’:x0,’x’:x,’y’:y,
’sensitivities’:s,’N’:N})

experiments.update({expname:exs})
’’’ Generate the table of errors in u and p. ’’’
cap=’West to East Flow With Smooth Parameters: Error in $p$, $u_1$, $u_2$’
t1 = generateFlowErrorTableWithRefinement(’tables/WEDpu’,cap,experiments ,

[])
’’’ Generate the table of errors in the sensitivities. ’’’
cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in Sensitivities’
parameters = [’k_1’,’k_2’,’\\beta_1’,’\\beta_2’,’x_0’]
parameters1 = [’k_1’,’k_2’]
parameters2 = [’\\beta_1’,’\\beta_2’,’x_0’]
t2 = generateFlowSensitivityErrorTableWithRefinement(’tables/WEDsens’,cap,

experiments ,
[’k_1’,’k_2’],
[])

t3 = generateFlowSensitivityErrorTableWithRefinement(’tables/WEDsens2’,cap,
experiments ,

[’\\beta_1’,’\\beta_2’],
[])

t4 = generateFlowSensitivityErrorTableWithRefinement(’tables/WEDsens3’,cap,
experiments ,
[’x_0’],
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in FS Sensitivities’
t2 = generateFlowFSErrorTableWithRefinement(’tables/WEDFSsens’,cap,

experiments ,
parameters ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in FS Sensitivities’
t2 = generateFlowFSErrorTableWithRefinement(’tables/WEDFSsens1’,cap,

experiments ,
parameters1 ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in FS Sensitivities’
t2 = generateFlowFSErrorTableWithRefinement(’tables/WEDFSsens2’,cap,

experiments ,
parameters2 ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in AS Sensitivities’
t2 = generateFlowASErrorTableWithRefinement(’tables/WEDASsens’,cap,

experiments ,
parameters ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in AS Sensitivities’
t2 = generateFlowASErrorTableWithRefinement(’tables/WEDASsens1’,cap,

experiments ,
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parameters1 ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in AS Sensitivities’
t2 = generateFlowASErrorTableWithRefinement(’tables/WEDASsens2’,cap,

experiments ,
parameters2 ,
[])

""" Generate the table of errors in the transport sensitivities. """
cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in Transport Sensitivities’
t5 = generateTranSensitivityErrorTableWithRefinement(’tables/WEDtran’,

cap,
experiments ,
parameters ,
[])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in Transport FS Sensitivities’
t5 = generateTranFSErrorTableWithRefinement(’tables/WEDFStran’,

cap,
experiments ,
parameters ,
[’Gsfs’,’GAS’])

cap = ’West to East Flow With Discontinuous Parameters: ’
cap = cap + ’Error in Transport AS Sensitivities’
t5 = generateTranASErrorTableWithRefinement(’tables/WEDAStran’,

cap,
experiments ,
parameters ,
[’Gsfs’,’GAS’])

ptitle = r’West to East Flow With Discontinuous Parameters: ’
ptitle = ptitle + ’$k_1={},k_2={},\\beta_1={},\\beta_2={},x_0={}$’
"}}"
titles = {}
filenames = {}
filenames2 = {}
filenames3 = {}
for e in experiments.keys():

experiment = experiments[e]
k1,b1,x0 = experiment[0][’k1’],experiment[0][’b1’],experiment[0][’x0’]
k2,b2 = experiment[0][’k2’],experiment[0][’b2’]
titles.update({e:ptitle.format(k1,k2,b1,b2,x0)})
filenames.update({e:’figures/WEDk1{}k2{}b1{}b2{}x0{}.pdf’.format(k1,k2,

b1,b2,
x0)})

filenames2.update({e:’figures/WEDtk1{}k2{}b1{}b2{}x0{}.pdf’.format(
k1,k2,
b1,b2,
x0)})

filenames3.update({e:’figures/WEDPVk1{}k2{}b1{}b2{}x0{}.pdf’.format(
k1,k2,
b1,b2,
x0)})

plotTransportIntegralWithRefinement(experiments ,titles,filenames)
plotTransportSelectedTimesWithRefinment(experiments ,titles,filenames2)
plotPressureVelocityWithRefinement(experiments ,titles,filenames3)
return t1,t2,t3,t4,t5
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if __name__ == ’__main__’:
WestToEastDiscontinuousParametersDriver()

Listing 9: utility.py
""" Some utility functions. """

from numpy import maximum,minimum,outer,sum
import numpy as np
from scipy.interpolate import interp1d

def harmonicMean(a,b):
M = maximum(a,b)
m = minimum(a,b)
return 2.*M*(m/(1.+m/M))

def integrateVelocity(x,y,u,axis):
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
if axis == ’x’:

U = (u[1:,:] + u[:-1,:])/2.
elif axis == ’y’:

U = (u[:,1:] + u[:,:-1])/2.
U *= outer(dx,dy)
return sum(U)

def projectPressure(xf,yf,xc,yc,p):
nx,ny = len(xc)-1,len(yc)-1
Nx,Ny = len(xf)-1,len(yf)-1
pf = np.zeros((Nx,Ny))
for i in xrange(Nx):

for j in xrange(Ny):
x,y = (xf[i] + xf[i+1])/2.,(yf[j]+yf[j+1])/2.
xi = np.where(x>=xc)[0][-1]
yi = np.where(y>=yc)[0][-1]
pf[i,j] = p[xi,yi]

return pf

def projectVelocity(xf,yf,xc,yc,ux,uy):
nx,ny = len(xc),len(yc)
Nx,Ny = len(xf),len(yf)
uxfun = interp1d(xc,ux,axis=0)
uxf = uxfun(xf)
uyfun = interp1d(yc,uy)
uyf = uyfun(yf)
UX,UY = np.zeros((Nx,Ny-1)),np.zeros((Nx-1,Ny))
for j in xrange(Ny-1):

yj = (yf[j]+yf[j+1])/2.
yi = np.where(yj>=yc)[0][-1]
UX[:,j] = uxf[:,yi]

for j in xrange(Nx-1):
xj = (xf[j]+xf[j+1])/2.
xi = np.where(xj>=xc)[0][-1]
UY[j,:] = uyf[xi,:]
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return UX,UY

def L2DifferenceVelocity(x,y,ux,uy,UX,UY):
dux = (ux-UX)*(ux-UX)
eux = np.sqrt(integrateVelocity(x,y,dux,’x’))
duy = (uy-UY)*(uy-UY)
euy = np.sqrt(integrateVelocity(x,y,duy,’y’))
return eux,euy

def L2DifferencePressure(x,y,p,P):
dp = (p-P)*(p-P)
dx = x[1:] - x[:-1]
dy = y[1:] - y[:-1]
dp *= outer(dx,dy)
return sum(dp)

Listing 10: uzawa.py
"""
This module provides two variants of the Uzawa algorithm.

First is the Uzawa algorithm expressed as a gradient based method, and second
is an Uzawa algorithm with conjugate directions (as in conjugate gradient).

The Uzawa algorithm is a method for solving saddle point problems of the form

Au + B’p = f
Bu = g

where B’ is the transpose of B. Such problems arise naturally in finding the
minimum of

J(u) = u’Au/2 - f’u

subject to

Bu = g

The algorithm is known to converge for step size a < 2/||BA‘Bt|| where A‘ is
the inverse of A.

"""

from numpy import dot,zeros,abs
import numpy as np
import scipy.sparse.linalg as la

def gradientUzawa(A,B,Bt,f,g,p0=None,tol=1e-8,
slvrname=’gmres’,slvrops=None,verbose=False):

"""
Implementation of the gradient based Uzawa algorithm.

Required inputs: A,B,Bt,f,g where we are solving
Au + Btp = f
Bu = g
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Optional inputs: p0, slvrname , slvrops
Where p0 is an initial guess for p and the default is 0.0.
Where tol is the tolerance for the Uzawa algorithm and the default is
1e-8.
Where slvrname is the name of the solver from scipy.sparse.linalg. The
default if gmres.
Where slvrops is a dictionary of options to pass to the solver. The
default is to have tol=1e-8.

Outputs: u,p which solve the equation to the desired tolerance.

"""
""" Select the solver. """
slvr = {’gmres’:la.gmres,

’bicg’:la.bicg,
’biststab’:la.bicgstab,
’cg’:la.cg,
’cgs’:la.cgs,
’lgmres’:la.lgmres,
’minres’:la.minres,
’qmr’:la.qmr}.get(slvrname,la.gmres)

""" Default solver options. """
if slvrops is None:

slvrops = {’tol’:1e-8}
m,n = B.shape
if p0 is None:

""" No initial guess given. """
p = zeros((m,1))

else:
p = p0.copy()

""" Initial u from p. """
u,success = slvr(A,f-Bt.dot(p),**slvrops)
err = tol + 1.0
""" Iterate until convergence. """
q = g - B.dot(u.reshape((-1,1)))
if verbose:

itcnt = 0
while (err >= tol):

l = Bt.dot(q)
h,success = slvr(A,l,**slvrops)
if dot(l.reshape(-1),h) != 0.:

a = dot(q.reshape(-1),q.reshape(-1))/dot(l.reshape(-1),h)
else:

print "FAILURE!"
break

p = p - a*q
u = u + a*h
q = g - B.dot(u.reshape((-1,1)))
err = abs(q).max()
if verbose:

print err
itcnt += 1

if verbose:
print "Required {} iterations.".format(itcnt)
return u,p,itcnt

return u,p

def conjugateUzawa(A,B,Bt,f,g,p0=None,tol=1e-8,
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slvrname=’gmres’,slvrops=None,verbose=False):
"""
Implementation of the Uzawa algorithm with conjugate directions.

Required inputs: A,B,Bt,f,g where we are solving
Au + Btp = f
Bu = g

Optional inputs: p0, tol
Where p0 is an initial guess for p and the default is 0.0.
Where tol is the tolerance for the Uzawa algorithm and the default
is 1.0e-8.
Where slvrname is the name of the solver from scipy.sparse.linalg. The
default if gmres.
Where slvrops is a dictionary of options to pass to the solver. The
default is to have tol=1e-8.

Outputs: u,p which solve the equation to the desired tolerance.

"""
""" Select the solver. """
slvr = {’gmres’:la.gmres,

’bicg’:la.bicg,
’biststab’:la.bicgstab,
’cg’:la.cg,
’cgs’:la.cgs,
’lgmres’:la.lgmres,
’minres’:la.minres,
’qmr’:la.qmr}.get(slvrname,la.gmres)

""" Default solver options. """
if slvrops is None:

slvrops = {’tol’:1e-8}
m,n = B.shape
if p0 is None:

""" No initial guess given. """
p = zeros(m)

else:
p = p0.copy()

""" Initial u from p. """
u,success = slvr(A,f.reshape(-1)-Bt.dot(p),**slvrops)
q = g.reshape(-1) - B.dot(u)
d = -q.copy()
err = tol + 1.0
""" Iterate until convergence. """
if verbose:

itcnt = 0
while (err >= tol):

#l = Bt*d
l = Bt.dot(d)
h,success = slvr(A,l,**slvrops)
a = dot(q,q)/dot(l,h)
p = p + a*d
u = u - a*h
den = dot(q,q)
#q = g - B*u
q = g.reshape(-1) - B.dot(u)
b = dot(q,q)/den
d = -q + b*d
err = abs(q).max()
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if verbose:
print err
itcnt += 1

if verbose:
print "Required {} iterations.".format(itcnt)
return u,p,itcnt

return u,p

def makeABfg(N,k1=1.,k2=1.,h=None):
if h is None:

h = 1./(N+1)
A = np.diag(np.append(k1*np.ones(N*(N+1)),k2*np.ones(N*(N+1))))
B = np.zeros((N*N,2*(N+1)*N))
for i in xrange(N):

for j in xrange(N):
B[i+j*N,i+j*(N+1)] = -1.
B[i+j*N,N*(N+1)+i+j*N] = -1.
B[i+j*N,i+1+j*(N+1)] = 1.
B[i+j*N,N*(N+1)+i+(j+1)*N] = 1.

B /= h
f = -np.ones((N*N,1))
g = 0.*np.ones((2*N*(N+1),1))
return A,B,f,g

def run_test():
N = 10
A,B,f,g = makeABfg(N)
print "Running Gradient Uzawa"
u,p,itcnt = gradientUzawa(A,B,B.T,g,f,verbose=True)
print "Running Conjugate Uzawa"
u,p,itcnt = conjugateUzawa(A,B,B.T,g,f,verbose=True)

if __name__ == ’__main__’:
run_test()

Listing 11: myDirac.py
"""
Some things to deal with singular source terms.
Derived following [Engquist].

"""

from numpy import minimum,sum,abs,zeros_like ,where,ndarray

def phi1L(xi):
return minimum(xi+1.,1.-xi)

def dirac1D(x,h):
if isinstance(x,ndarray):

ret = zeros_like(x)
ret[where(abs(x)<=h)] = phi1L(x[where(abs(x)<=h)]/h)/h
return ret

else:
if abs(x) <= h:
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return phi1L(x/h)/h
else:

return 0.

def dirac2D(x,y,dS,X,Y,g,hx,hy):
""" A 2D Dirac function defined on the curve Gamma.

x,y is the point to evaluate the Dirac at
dS is the step size for the points on Gamma
X,Y are the points on Gamma used in the computation of L
gS are the strengh of the Dirac at the points in X,Y
hx,hy are the grid spacings in the x and y directions

"""
assert len(X) == len(Y)
assert x.shape == y.shape
assert len(X) == len(g)
ret = zeros_like(x)
for j in xrange(len(X)):

ret += dirac1D(x-X[j],hx)*dirac1D(y-Y[j],hy)*g[j]
return dS*ret

Listing 12: homotopyExperimentAlgebraic.py
"""
Demonstrates continuation on the algebraic example problem.

"""

import numpy as np

def solveForwardEuler(beta,kp,N,saveSteps=False):
u = -kp
derivative = getDerivativeFunction(beta)
ls = np.linspace(0.,1.,N+1)
if saveSteps:

steps = []
for j in xrange(N):

l = ls[j+1]
dl = ls[j+1] - ls[j]
du = derivative(l,u)
u += dl*du
if saveSteps:

steps.append([l,u])
if saveSteps:

return steps
else:

return u

def solveODE(beta,kp,saveSteps=False,integrator=’dopri5’):
u0 = -kp
derivative = getDerivativeFunction(beta)
from scipy.integrate import ode
r = ode(derivative).set_integrator(integrator)
if saveSteps:
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steps = []
def SaveSteps(t,U):

steps.append([t,U.copy()])
r.set_solout(SaveSteps)

r.set_initial_value(u0,0.)
u = r.integrate(1.)
if saveSteps:

return steps
else:

return u

def solveQuasiNewton(beta,kp,N,saveSteps=False):
u = -kp
derivative = getDerivativeFunction(beta)
ls = np.linspace(0.,1.,N+1)
if saveSteps:

steps = []
for j in xrange(N):

l = ls[j+1]
dl = ls[j+1] - ls[j]
du = derivative(l,u)
u += dl*du
u = -kp - l*beta*u*np.abs(u)
if saveSteps:

steps.append([l,u])
if saveSteps:

return steps
else:

return u

def getDerivativeFunction(beta):
def derivativeFunction(l,u):

return -beta*u*np.abs(u)/(2.*l*beta*np.abs(u)+1.)
return derivativeFunction

def testSolvers():
exactu = 0.5
# Use 10 iterations since that is what the Scipy ODE solver uses.
stepsFEN = []
stepsQNN = []
for j in xrange(10):

stepsFE = solveForwardEuler(2.,-1.,j+1,True)
stepsQN = solveQuasiNewton(2.,-1.,j+1,True)
stepsFEN.append(stepsFE)
stepsQNN.append(stepsQN)

stepsODE = solveODE(2.,-1.,True)
# Plot the Error as a function of N for FE
errors = [0.5] + [step[-1][1]-0.5 for step in stepsFEN]
filename = ’figures/homotopy/AlgebraicErrorFE.pdf’
plt.clf()
plt.plot(np.arange(0,11),errors,color=’black’,marker=’x’)
plt.suptitle(r’Forward Euler Error in $u$ for $\Delta\lambda =\frac{1}{N}$’,

y=0.99)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.savefig(filename)
# Plot the Error as a function of N for FE and QN
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errors = [0.5] + [np.abs(step[-1][1]-0.5) for step in stepsFEN]
errorsQN = [0.5] + [np.abs(step[-1][1]-0.5) for step in stepsQNN]
filename = ’figures/homotopy/AlgebraicErrorFEQN.pdf’
plt.clf()
plt.plot(np.arange(0,11),errors,color=’black’,marker=’x’,label=’FE’)
plt.plot(np.arange(0,11),errorsQN ,color=’black’,marker=’*’,label=’QN’)
ti = r’Forward Euler and Quasi Newton Error in $u$ for ’
ti = ti + r’$\Delta\lambda = \frac{1}{N}$’
plt.suptitle(ti,y=0.99)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.legend(loc=’upper right’)
plt.savefig(filename)
# Plot the solution path
filename = ’figures/homotopy/AlgebraicSolutions.pdf’
plt.clf()
step = stepsFEN[-1]
lsFE = [0] + [s[0] for s in step]
usFE = [1.] + [s[1] for s in step]
plt.plot(lsFE,usFE,color=’black’,marker=’x’,label=’FE’)
stepQN = stepsQNN[-1]
lsQN = [0] + [s[0] for s in stepQN]
usQN = [1.] + [s[1] for s in stepQN]
plt.plot(lsQN,usQN,color=’black’,marker=’*’,label=’QN’)
lsODE = [s[0] for s in stepsODE]
usODE = [s[1][0] for s in stepsODE]
plt.plot(lsODE,usODE,color=’black’,marker=’^’,label=’ODE’)
plt.axhline(y=0.5,color=’k’,linestyle=’-’,label="Exact")
ti = r’Solution Path for Forward Euler, Quasi Newton, and Scipy ODE Suite’
plt.suptitle(ti,y=0.99)
plt.ylabel(r’$u$’)
plt.xlabel(r’$\lambda$’)
plt.legend(loc=’upper right’)
plt.savefig(filename)

if __name__ == ’__main__’:
import matplotlib
matplotlib.use(’PDF’)
import matplotlib.pyplot as plt
testSolvers()

Listing 13: homotopyExperimentFlow.py
"""
Demonstrates using continuation on the flow model.

"""

import matplotlib
matplotlib.use(’PDF’)
import matplotlib.pyplot as plt
import numpy as np
from flowSolver import DarcySolver
from utility import L2DifferenceVelocity ,L2DifferencePressure
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def solveSensitivityForwardEuler(Nx,Ny,N):
x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
slvr = DarcySolver(x,y,bnd,Klinv(),F,g)
p0,ux0,uy0 = slvr.solve()
p,ux,uy = p0.copy(),ux0.copy(),uy0.copy()
pu = np.append(p,np.append(ux,uy))
derivative = getDerivativeFunction(x,y,bnd)
ls = np.linspace(0.,1.,N+1)
for j in xrange(N):

l = ls[j+1]
dl = ls[j+1] - ls[j]
dpu = derivative(l,pu)
pu += dl*dpu

p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
return p,ux,uy,x,y,xc,yc

def solveSensitivityODE(Nx,Ny,integrator=’dopri5’,
savesteps=False,verbose=False):

x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
slvr = DarcySolver(x,y,bnd,Klinv(),F,g)
p0,ux0,uy0 = slvr.solve()
p,ux,uy = p0.copy(),ux0.copy(),uy0.copy()
pu = np.append(p,np.append(ux,uy))
derivative = getDerivativeFunction(x,y,bnd)
from scipy.integrate import ode
r = ode(derivative).set_integrator(integrator)
if verbose and savesteps:

tpu = []
def saveSteps(t,pu):

print t
p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
tpu.append([t,p,ux,uy])

r.set_solout(saveSteps)
elif verbose:

def saveSteps(t,pu):
print t

r.set_solout(saveSteps)
elif savesteps:

tpu = []
def saveSteps(t,pu):

p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
tpu.append([t,p,ux,uy])

r.set_solout(saveSteps)
r.set_initial_value(pu,0.)
pu = r.integrate(1.)
p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
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uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
if savesteps:

return p,ux,uy,tpu,x,y,xc,yc
return p,ux,uy,x,y,xc,yc

count = 0
def solveSensitivityNewton(Nx,Ny,N,countIterations=False):

x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
ftol = min([1./(Nx*Nx),1./(Ny*Ny),1./N])/2.
if countIterations:

global count
count = 0
def my_callback(x,f):

global count
count += 1

slvr = DarcySolver(x,y,bnd,Klinv(),F,g,NDSolverOptions={’verbose’:True,
’f_tol’:ftol,

’callback’:my_callback})
else:

slvr = DarcySolver(x,y,bnd,Klinv(),F,g,NDSolverOptions={’verbose’:True,
’f_tol’:ftol})

p0,ux0,uy0 = slvr.solve()
p,ux,uy = p0.copy(),ux0.copy(),uy0.copy()
pu = np.append(p,np.append(ux,uy))
derivative = getDerivativeFunction(x,y,bnd)
ls = np.linspace(0.,1.,N+1)
for j in xrange(N):

l = ls[j+1]
dl = ls[j+1] - ls[j]
dpu = derivative(l,pu)
pu += dl*dpu
p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
kappal = getkappal(l,x,y)
p,ux,uy = slvr.solveNonDarcy(kappal,p,ux0=u,DarcyInitial=False)
pu = np.append(p,np.append(ux,uy))

if countIterations:
return p,ux,uy,x,y,xc,yc,count

else:
return p,ux,uy,x,y,xc,yc

def solveSensitivityQuasiNewton(Nx,Ny,N,lambdas=None,saveSteps=False):
x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
slvr = DarcySolver(x,y,bnd,Klinv(),F,g)
p0,ux0,uy0 = slvr.solve()
if saveSteps:

ps = [p0.copy()]
uxs = [ux0.copy()]
uys = [uy0.copy()]

p,ux,uy = p0.copy(),ux0.copy(),uy0.copy()
pu = np.append(p,np.append(ux,uy))
derivative = getDerivativeFunction(x,y,bnd)
if lambdas is not None:

ls = lambdas
else:

ls = np.linspace(0.,1.,N+1)
for j in xrange(N):
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l = ls[j+1]
dl = ls[j+1] - ls[j]
dpu = derivative(l,pu)
pu += dl*dpu
p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
UX,UY = slvr.velocityToCorners(ux,uy)
kappal = getkappal(l,x,y)
slvr.kappa = kappal(UX,UY)
p,ux,uy = slvr.solve(p)
pu = np.append(p,np.append(ux,uy))
if saveSteps:

ps.append(p.copy())
uxs.append(ux.copy())
uys.append(uy.copy())

if saveSteps:
return ps,uxs,uys,x,y,xc,yc

else:
return p,ux,uy,x,y,xc,yc

def setupProblem(Nx,Ny):
linspace,meshgrid,arange = np.linspace,np.meshgrid,np.arange
cos,sin,pi = np.cos,np.sin,np.pi
zeros = np.zeros
x,y = linspace(0.,1.,Nx+1),linspace(0.,1.,Ny+1)
xc,yc = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
xx,yy = np.meshgrid(xc,yc)
xx,yy = xx.T,yy.T
ea = np.array([],dtype=np.int)
’’’
bnd = {’Neumann’:

{’West’:arange(Ny),’East’:ea,’South’:arange(Nx),’North’:ea},
’Dirichlet’:
{’West’:ea,’East’:arange(Ny),’South’:ea,’North’:arange(Nx)},
’Values’:
{’West’:zeros(Ny),’East’:zeros(Ny),

’South’:zeros(Nx),’North’:zeros(Nx)}}
’’’
bnd = {’Neumann’:

{’West’:ea,’East’:ea,’South’:ea,’North’:ea},
’Dirichlet’:
{’West’:arange(Ny),’East’:arange(Ny),

’South’:arange(Nx),’North’:arange(Nx)},
’Values’:
{’West’:zeros(Ny),’East’:zeros(Ny),

’South’:zeros(Nx),’North’:zeros(Nx)}}
F = 4.*pi*yy*cos(4.*pi*xx*yy) + 3.*pi*xx*cos(3.*pi*xx*yy)
xx,yx = meshgrid(xc,y)
xx,yx = xx.T,yx.T
xy,yy = meshgrid(x,yc)
xy,yy = xy.T,yy.T
g1y = ((2.+cos(xx*yx)+10.*np.abs(sin(4.*pi*xx*yx)))*sin(4.*pi*xx*yx)

+ 2.*pi*cos(2.*pi*xx)*sin(2.*pi*yx))
g1x = ((2.+cos(xy*yy)+10.*np.abs(sin(4.*pi*xy*yy)))*sin(4.*pi*xy*yy)

+ 2.*pi*cos(2.*pi*xy)*sin(2.*pi*yy))
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g2y = ((2.+sin(xx*yx)+15.*np.abs(sin(3.*pi*xx*yx)))*sin(3.*pi*xx*yx)
+ 2.*pi*sin(2.*pi*xx)*cos(2.*pi*yx))

g2x = ((2.+sin(xy*yy)+15.*np.abs(sin(3.*pi*xy*yy)))*sin(3.*pi*xy*yy)
+ 2.*pi*sin(2.*pi*xy)*cos(2.*pi*yy))

g = {’1x’:g1x,’2y’:g2y,’2x’:g2x,’1y’:g1y}
kappa,Kl,Klinv,Knl,dKnl = getKappa(x,y)
return x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl

def getDerivativeFunction(x,y,bnd):
Nx,Ny = len(x)-1,len(y)-1
kappa,Kl,Klinv,Knl,dKnl = getKappa(x,y)
bnd2 = {’Neumann’:

{’West’:bnd[’Neumann’][’West’],
’East’:bnd[’Neumann’][’East’],
’South’:bnd[’Neumann’][’South’],
’North’:bnd[’Neumann’][’North’]},
’Dirichlet’:
{’West’:bnd[’Dirichlet’][’West’],
’East’:bnd[’Dirichlet’][’East’],
’South’:bnd[’Dirichlet’][’South’],
’North’:bnd[’Dirichlet’][’North’]},
’Values’:
{’West’:0.*bnd[’Values’][’West’],
’East’:0.*bnd[’Values’][’East’],
’South’:0.*bnd[’Values’][’South’],
’North’:0.*bnd[’Values’][’North’]}}

slvr = DarcySolver(x,y,bnd2)
def derivativeFunction(l,pu):

# pu contains p and ux and uy flattened and appended
p = pu[:Nx*Ny].reshape((Nx,Ny))
u = pu[Nx*Ny:]
ux = u[:(Nx+1)*Ny].reshape((Nx+1,Ny))
uy = u[(Nx+1)*Ny:].reshape((Nx,Ny+1))
UX,UY = slvr.velocityToCorners(ux,uy)
r = getResistance(Kl,Knl,dKnl,l,UX,UY)
g = getHomotopySource(Knl,UX,UY)
slvr.kappa = r
slvr.g = g
dp,dux,duy = slvr.solve()
return np.append(dp,np.append(dux,duy))

return derivativeFunction

def getTrueSolution(x,y,xc,yc):
xx,yy = np.meshgrid(xc,yc)
xx,yy = xx.T,yy.T
p = np.sin(2.*np.pi*xx)*np.sin(2.*np.pi*yy)
xx,yy = np.meshgrid(x,yc)
xx,yy = xx.T,yy.T
ux = np.sin(4.*np.pi*xx*yy)
xx,yy = np.meshgrid(xc,y)
xx,yy = xx.T,yy.T
uy = np.sin(3.*np.pi*xx*yy)
return p,ux,uy

def getKappa(x,y):
xx,yy = np.meshgrid(x,y)
xx,yy = xx.T,yy.T
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z = 0.*xx
def Kl(aux=None,auy=None):

Kl11 = 2. + np.cos(xx*yy)
Kl12 = z
Kl22 = 2. + np.sin(xx*yy)
K = {’11’:Kl11,’12’:Kl12,’22’:Kl22}
return K

def Klinv(aux=None,auy=None):
Kl11 = 1./(2. + np.cos(xx*yy))
Kl12 = z
Kl22 = 1./(2. + np.sin(xx*yy))
K = {’11’:Kl11,’12’:Kl12,’22’:Kl22}
return K

def Knl(aux=None,auy=None):
if (aux is None) and (auy is None):

Knl11 = z
Knl12 = z
Knl22 = z
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(aux)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

else:
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
def dKnl(aux=None,auy=None):

if (aux is None) and (auy is None):
Knl11 = z
Knl12 = z
Knl22 = z
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(aux)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

else:
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
def kappa(aux=None,auy=None):

if (aux is None) and (auy is None):
Knl11 = 2. + np.cos(xx*yy)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 2. + np.cos(xx*yy) + 10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + 15.*np.abs(aux)
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K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}
else:

Knl11 = 2. + np.cos(xx*yy) + 10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + 15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
return kappa,Kl,Klinv,Knl,dKnl

def getkappal(l,x,y):
xx,yy = np.meshgrid(x,y)
xx,yy = xx.T,yy.T
z = 0.*xx
def kappal(aux=None,auy=None):

if (aux is None) and (auy is None):
Knl11 = 2. + np.cos(xx*yy)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 2. + np.cos(xx*yy) + l*10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + l*15.*np.abs(aux)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

else:
Knl11 = 2. + np.cos(xx*yy) + l*10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + l*15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
return kappal

def getResistance(Kl,Knl,dKnl,l,ux,uy):
kl,knl,dknl = Kl(),Knl(np.abs(ux),np.abs(uy)),dKnl(np.abs(ux),np.abs(uy))
K = {’11’:kl[’11’]+l*knl[’11’]+l*dknl[’11’],

’12’:kl[’12’]+l*knl[’12’]+l*dknl[’12’],
’22’:kl[’22’]+l*knl[’22’]+l*dknl[’22’]}

return K

def getHomotopySource(knl,ux,uy):
k = knl(np.abs(ux),np.abs(uy))
g1 = -(k[’11’]*ux + k[’12’]*uy)
g2 = -(k[’12’]*ux + k[’22’]*uy)
g = {’1x’:(g1[:,1:]+g1[:,:-1])/2.,’2x’:(g2[:,1:]+g2[:,:-1])/2.,

’1y’:(g1[1:,:]+g1[:-1,:])/2.,’2y’:(g2[1:,:]+g2[:-1,:])/2.}
return g

def testSolvers(Nx,Ny):
# Generate the true solution and make a plot.
filename = ’figures/homotopy/solution.pdf’
x,y = np.linspace(0.,1.,Nx+1),np.linspace(0.,1.,Ny+1)
xc,yc = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
p,ux,uy = getTrueSolution(x,y,xc,yc)
UX,UY = (ux[1:,:]+ux[:-1,:])/2.,(uy[:,1:]+uy[:,:-1])/2.
speed = np.sqrt(UX*UX+UY*UY)
dens = [Nx/30.,Ny/30.]
plt.clf()
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#CS = plt.contour(xc,yc,p.T,colors=’k’)
#plt.clabel(CS,fontsize=8,inline=1)
# CS = plt.contourf(xc,yc,p.T,cmap=’viridis’)
plt.pcolormesh(xc,yc,p.T,cmap=’viridis’)
plt.colorbar()
lw = 2.*speed/speed.max()
plt.streamplot(xc,yc,UX.T,UY.T,density=dens,linewidth=lw,color=’k’)
plt.suptitle(’Solution to the Continuation Flow Example’,y=0.99)
plt.ylim(0.,1.)
plt.xlim(0.,1.)
plt.ylabel(’$y$’)
plt.xlabel(’$x$’)
plt.axis(’scaled’)
plt.savefig(filename)
# Test each solver for number of iterations to solution.
solvers = [’solveSensitivityForwardEuler’,’solveSensitivityNewton’,

’solveSensitivityQuasiNewton’,’solveSensitivityODE’]
markers = [’x’,’o’,’s’,’^’]
labels = [’Forward Euler’,’Newton’,’Quasi-Newton’,’Scipy ODE’]
errors = {}
for solver,marker,label in zip(solvers,markers,labels):

e = testSolver(Nx,Ny,solver)
errors.update({solver:{’Error’:e,’label’:label,’marker’:marker}})

# Plot error as a function of number of divisions in lambda. Exclude ODE.
filename = ’figures/homotopy/linear.pdf’
plt.clf()
plt.suptitle(r’Error in $p$ for $\Delta\lambda = \frac{1}{N}$’,y=0.99)
for solver in solvers[:-1]:

err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
plt.plot([e[0] for e in err],[e[1] for e in err],

color=’black’,marker=mark,label=lab)
plt.legend(loc=’upper center’)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.savefig(filename)
filename = ’figures/homotopy/linearu.pdf’
plt.clf()
plt.suptitle(r’Error in $u$ for $\Delta\lambda = \frac{1}{N}$’,y=0.99)
for solver in solvers[:-1]:

err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
plt.plot([e[0] for e in err],[e[2] for e in err],

color=’black’,marker=mark,label=lab)
plt.legend(loc=’upper center’)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.savefig(filename)
# Plot semi-log error. Exclude ODE.
filename = ’figures/homotopy/loglog.pdf’
plt.clf()
plt.suptitle(r’Error in $p$ for $\Delta\lambda = \frac{1}{N}$’,y=0.99)
for solver in solvers[:-1]:

err = errors[solver][’Error’]
lab = errors[solver][’label’]
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mark = errors[solver][’marker’]
’’’
plt.loglog([e[0] for e in err],[e[1] for e in err],

color=’black’,marker=mark,label=lab)
’’’
plt.semilogy([e[0] for e in err],[e[1] for e in err],

color=’black’,marker=mark,label=lab)
plt.legend(loc=’upper right’)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.savefig(filename)
filename = ’figures/homotopy/loglogu.pdf’
plt.clf()
plt.suptitle(r’Error in $u$ for $\Delta\lambda = \frac{1}{N}$’,y=0.99)
for solver in solvers[:-1]:

err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
plt.semilogy([e[0] for e in err],[e[2] for e in err],

color=’black’,marker=mark,label=lab)
’’’
plt.loglog([e[0] for e in err],[e[2] for e in err],

color=’black’,marker=mark,label=lab)
’’’

plt.legend(loc=’upper right’)
plt.ylabel(’Error’)
plt.xlabel(r’$N$’)
plt.savefig(filename)
# Plot number of solves.
filename = ’figures/homotopy/nonlin.pdf’
plt.clf()
plt.suptitle(r’System Solutions for $\Delta\lambda = \frac{1}{N}$’,y=0.99)
solver = ’solveSensitivityNewton’
err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
# Newton takes one solve for the Darcy + one for the predictor +
# the number of iterations for the Newton.
plt.plot([e[0] for e in err],[1+e[-1]+e[0] for e in err],

color=’black’,marker=mark,label=lab)
solver = ’solveSensitivityQuasiNewton’
err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
# Quasi-Newton takes one for the Darcy + one for the predictor +
# one for the corrector.
plt.plot([e[0] for e in err],[1+2*e[0] for e in err],

color=’black’,marker=mark,label=lab)
solver = ’solveSensitivityForwardEuler’
err = errors[solver][’Error’]
lab = errors[solver][’label’]
mark = errors[solver][’marker’]
# Forward Euler takes one for the Darcy + one for the predictor
plt.plot([e[0] for e in err],[1+e[0] for e in err],

color=’black’,marker=mark,label=lab)
plt.ylabel(’System Solutions’)
plt.xlabel(r’$N$’)
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plt.ylim(0.,plt.ylim()[1])
plt.legend(loc=’upper left’)
plt.savefig(filename)
# Generate table to compare RK method.
solver = ’solveSensitivityODE’
err = errors[solver][’Error’]
nrk = err[0]
print solver
print err
for solver in solvers[:-1]:

err = errors[solver][’Error’]
found = False
for e in reversed(err):

if e[0] <= nrk:
print solver
print e
found = True
break

if not found:
print solver
print err[-1]

def testSolver(Nx,Ny,solverName):
EulerSolvers={’solveSensitivityForwardEuler’:solveSensitivityForwardEuler ,

’solveSensitivityQuasiNewton’:solveSensitivityQuasiNewton}
if solverName in EulerSolvers.keys():

solver = EulerSolvers[solverName]
maxN = max([Nx*Nx,Ny*Ny])
nstep = max([Nx,Ny])
p,ux,uy,x,y,xc,yc = solver(Nx,Ny,1)
P,UX,UY = getTrueSolution(x,y,xc,yc)
errors = []
for j in xrange(1,nstep):

print "Solving {}: {}/{}".format(solverName ,j,maxN)
# Solve the system with j continuation steps.
p,ux,uy,x,y,xc,yc = solver(Nx,Ny,j)
# Compute and store the error in p,ux,uy
eux,euy = L2DifferenceVelocity(x,y,ux,uy,UX,UY)
eu = np.sqrt(eux*eux+euy*euy)
ep = L2DifferencePressure(x,y,p,P)
errors.append([j,ep,eu])

’’’
for j in xrange(1,maxN+1,nstep):

print "Solving {}: {}/{}".format(solverName ,j,maxN)
# Solve the system with j continuation steps.
p,ux,uy,x,y,xc,yc = solver(Nx,Ny,j)
# Compute and store the error in p,ux,uy
eux,euy = L2DifferenceVelocity(x,y,ux,uy,UX,UY)
eu = np.sqrt(eux*eux+euy*euy)
ep = L2DifferencePressure(x,y,p,P)
errors.append([j,ep,eu])

’’’
elif solverName == ’solveSensitivityNewton’:

solver = solveSensitivityNewton
maxN = max([Nx*Nx,Ny*Ny])
nstep = max([Nx,Ny])
p,ux,uy,x,y,xc,yc = solver(Nx,Ny,1)
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P,UX,UY = getTrueSolution(x,y,xc,yc)
errors = []
for j in xrange(1,nstep ,10):

# Solve the system with j continuation steps.
print "Solving {}: {}/{}".format(solverName ,j,maxN)
p,ux,uy,x,y,xc,yc,count = solver(Nx,Ny,j,True)
# Compute and store the error in p,ux,uy
eux,euy = L2DifferenceVelocity(x,y,ux,uy,UX,UY)
eu = np.sqrt(eux*eux+euy*euy)
ep = L2DifferencePressure(x,y,p,P)
errors.append([j,ep,eu,count])

’’’
for j in xrange(1,maxN+1,nstep):

# Solve the system with j continuation steps.
p,ux,uy,x,y,xc,yc,count = solver(Nx,Ny,j,True)
# Compute and store the error in p,ux,uy
eux,euy = L2DifferenceVelocity(x,y,ux,uy,UX,UY)
eu = np.sqrt(eux*eux+euy*euy)
ep = L2DifferencePressure(x,y,p,P)
errors.append([j,ep,eu,count])

’’’
elif solverName == ’solveSensitivityODE’:

solver = solveSensitivityODE
p,ux,uy,tpu,x,y,xc,yc = solver(Nx,Ny,savesteps=True)
P,UX,UY = getTrueSolution(x,y,xc,yc)
eux,euy = L2DifferenceVelocity(x,y,ux,uy,UX,UY)
eu = np.sqrt(eux*eux+euy*euy)
ep = L2DifferencePressure(x,y,p,P)
errors = [len(tpu),ep,eu]

else:
raise NotImplementedError

return errors

if __name__ == ’__main__’:
testSolvers(50,50)

Listing 14: adaptivityExperimentFlow.py
""" Compute the error in the quantity of interest. """

import numpy as np
import scipy
from homotopyExperimentFlow import solveSensitivityQuasiNewton ,setupProblem
from homotopyExperimentFlow import getTrueSolution ,getHomotopySource
from homotopyExperimentFlow import getDerivativeFunction ,getResistance
from flowSolver import DarcySolver
from utility import integrateVelocity

def uniformLambda(Nx,Ny,N):
# Solve the flow system for uniformly spaced lambda.
sens,ps,uxs,uys,x,y,xc,yc = solveSensitivityQuasiNewton(Nx,Ny,N,

saveSteps=True,saveSensitivity=True)
# Solve the adjoint flow system for each labmda.
# The boundary is the same for each lambda.
x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
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sbnd,g10,g01 = getSensitivityBoundarySource(Nx,Ny,bnd)
ux,uy = uxs[0],uys[0]
# Get adjoint sensitivity.
H10AS,H01AS = getAdjointSensitivity(0.,x,y,sbnd,g10,g01,ux,uy)
H10s,H01s = [H10AS],[H01AS]
# Get forward sensitivity.
sp = sens[0][:Nx*Ny].reshape((Nx,Ny))
su = sens[0][Nx*Ny:]
sux = su[:(Nx+1)*Ny].reshape((Nx+1,Ny))
suy = su[(Nx+1)*Ny:].reshape((Nx,Ny+1))
H10FS = integrateVelocity(x,y,sux,’x’)
H01FS = integrateVelocity(x,y,suy,’y’)
H10FSs,H01FSs = [H10FS],[H01FS]
ls = np.linspace(0.,1.,N+1)
for j in xrange(N):

l = ls[j+1]
ux,uy = uxs[j+1],uys[j+1]
# Get adjoint sensitivity.
H10AS,H01AS = getAdjointSensitivity(l,x,y,sbnd,g10,g01,ux,uy)
H10s.append(H10AS)
H01s.append(H01AS)
# Get forward sensitivity.
sp = sens[j][:Nx*Ny].reshape((Nx,Ny))
su = sens[j][Nx*Ny:]
sux = su[:(Nx+1)*Ny].reshape((Nx+1,Ny))
suy = su[(Nx+1)*Ny:].reshape((Nx,Ny+1))
H10FS = integrateVelocity(x,y,sux,’x’)
H01FS = integrateVelocity(x,y,suy,’y’)
H10FSs.append(H10FS)
H01FSs.append(H01FS)

# Compute the integral in lambda.
e10 = scipy.integrate.trapz(H10s,ls)
e01 = scipy.integrate.trapz(H01s,ls)
e10FS = scipy.integrate.trapz(H10FSs,ls)
e01FS = scipy.integrate.trapz(H01FSs,ls)
return e10,e01,e10FS,e01FS

def gaussianLambda(Nx,Ny,N):
# Solve the flow system for uniformly spaced lambda.
ls,ws = np.polynomial.legendre.leggauss(N)
ls = (ls + 1.)/2.
ls2 = np.append([0.],ls)
sens,ps,uxs,uys,x,y,xc,yc = solveSensitivityQuasiNewton(Nx,Ny,N,lambdas=ls2,

saveSteps=True,saveSensitivity=True)
# Solve the adjoint flow system for each labmda.
x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
sbnd,g10,g01 = getSensitivityBoundarySource(Nx,Ny,bnd)
ux,uy = uxs[0],uys[0]
H10AS,H01AS = getAdjointSensitivity(0.,x,y,sbnd,g10,g01,ux,uy)
H10s,H01s = [],[]
# Get forward sensitivity.
sp = sens[0][:Nx*Ny].reshape((Nx,Ny))
su = sens[0][Nx*Ny:]
sux = su[:(Nx+1)*Ny].reshape((Nx+1,Ny))
suy = su[(Nx+1)*Ny:].reshape((Nx,Ny+1))
H10FS = integrateVelocity(x,y,sux,’x’)
H01FS = integrateVelocity(x,y,suy,’y’)
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H10FSs,H01FSs = [],[]
for j in xrange(N):

l = ls2[j+1]
ux,uy = uxs[j+1],uys[j+1]
# Get adjoint sensitivity.
H10AS,H01AS = getAdjointSensitivity(l,x,y,sbnd,g10,g01,ux,uy)
H10s.append(H10AS)
H01s.append(H01AS)
H10s.append(H10AS)
H01s.append(H01AS)
# Get forward sensitivity.
sp = sens[j][:Nx*Ny].reshape((Nx,Ny))
su = sens[j][Nx*Ny:]
sux = su[:(Nx+1)*Ny].reshape((Nx+1,Ny))
suy = su[(Nx+1)*Ny:].reshape((Nx,Ny+1))
H10FS = integrateVelocity(x,y,sux,’x’)
H01FS = integrateVelocity(x,y,suy,’y’)
H10FSs.append(H10FS)
H01FSs.append(H01FS)

# Compute the integral in lambda.
e10 = sum([w*h for w,h in zip(ws,H10s)])/2.
e01 = sum([w*h for w,h in zip(ws,H01s)])/2.
e10FS = sum([w*h for w,h in zip(ws,H10FSs)])/2.
e01FS = sum([w*h for w,h in zip(ws,H01FSs)])/2.
return e10,e01,e10FS,e01FS

def getSensitivityBoundarySource(Nx,Ny,bnd):
ones,zeros = np.ones,np.zeros
# The boundary is the same for each lambda.
sbnd = {’Neumann’:bnd[’Neumann’],’Dirichlet’:bnd[’Dirichlet’],

’Values’:
{’West’:0.*bnd[’Values’][’West’],
’East’:0.*bnd[’Values’][’East’],
’South’:0.*bnd[’Values’][’South’],
’North’:0.*bnd[’Values’][’North’]}
}

sbnd[’Values’][’West’][sbnd[’Dirichlet’][’West’]] = 1.
sbnd[’Values’][’East’][sbnd[’Dirichlet’][’East’]] = 1.
sbnd[’Values’][’South’][sbnd[’Dirichlet’][’South’]] = 1.
sbnd[’Values’][’North’][sbnd[’Dirichlet’][’North’]] = 1.
# The gravity-like term is the same for each lambda.
g10 = {’1x’:ones((Nx+1,Ny)),’2y’:zeros((Nx,Ny+1)),’2x’:zeros((Nx+1,Ny)),

’1y’:ones((Nx,Ny+1))}
g01 = {’1x’:zeros((Nx+1,Ny)),’2y’:ones((Nx,Ny+1)),’2x’:ones((Nx+1,Ny)),

’1y’:zeros((Nx,Ny+1))}
return sbnd,g10,g01

def getAdjointSensitivity(l,x,y,sbnd,g10,g01,ux,uy):
# Get the resistance term.
kappaS = getKappaSensitivity(l,x,y)
# Solve the adjoint systems.
ASsolver = DarcySolver(x,y,sbnd,kappaS(),g=g10)
UX,UY = ASsolver.velocityToCorners(ux,uy)
ASsolver.kappa = kappaS(UX,UY)
mu10,vx10,vy10 = ASsolver.solve()
ASsolver = DarcySolver(x,y,sbnd,kappaS(),g=g01)
ASsolver.kappa = kappaS(UX,UY)
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mu01,vx01,vy01 = ASsolver.solve()
# Compute the sensitivity of H at each lambda.
dKdl = getKappaSensitivity2(l,x,y)
H10AS = -(integrateVelocity(x,y,dKdl(ux,uy)[’11’]*ux*vx10,’x’) +

integrateVelocity(x,y,dKdl(ux,uy)[’22’]*uy*vy10,’y’))
H01AS = -(integrateVelocity(x,y,dKdl(ux,uy)[’11’]*ux*vx01,’x’) +

integrateVelocity(x,y,dKdl(ux,uy)[’22’]*uy*vy01,’y’))
return H10AS,H01AS

def getKappaSensitivity(l,x,y):
xx,yy = np.meshgrid(x,y)
xx,yy = xx.T,yy.T
z = 0.*xx
def kappal(aux=None,auy=None):

if (aux is None) and (auy is None):
Knl11 = 2. + np.cos(xx*yy)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 2. + np.cos(xx*yy) + 2.*l*10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + 2.*l*15.*np.abs(aux)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

else:
Knl11 = 2. + np.cos(xx*yy) + 2.*l*10.*np.abs(aux)
Knl12 = z
Knl22 = 2. + np.sin(xx*yy) + 2.*l*15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
return kappal

def getKappaSensitivity2(l,x,y):
xx,yy = np.meshgrid(x,y)
xx,yy = xx.T,yy.T
z = 0.*xx
def kappal(aux=None,auy=None):

if (aux is None) and (auy is None):
Knl11 = z
Knl12 = z
Knl22 = z
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

elif (auy is None):
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(aux)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

else:
Knl11 = 10.*np.abs(aux)
Knl12 = z
Knl22 = 15.*np.abs(auy)
K = {’11’:Knl11,’12’:Knl12,’22’:Knl22}

return K
return kappal

def plotErrors(Nx,Ny,N):
# Get true solution.
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x,y = np.linspace(0.,1.,Nx+1),np.linspace(0.,1.,Ny+1)
xc,yc = (x[1:]+x[:-1])/2.,(y[1:]+y[:-1])/2.
p,ux,uy = getTrueSolution(x,y,xc,yc)
# Get Darcy solution.
x,y,xc,yc,bnd,F,g,kappa,Kl,Klinv,Knl,dKnl = setupProblem(Nx,Ny)
slvr = DarcySolver(x,y,bnd,Klinv(),F,g)
p0,ux0,uy0 = slvr.solve()
# Get the difference.
uxd,uyd = ux-ux0,uy-uy0
# Compute the "exact" value of the difference in the QOI.
H10 = integrateVelocity(x,y,uxd,’x’)
H01 = integrateVelocity(x,y,uyd,’y’)
# Up to N, get the approximate value of the QOI using both methods.
Ns,H10us,H01us,H10gs,H01gs = [],[],[],[],[]
H10usfs,H01usfs,H10gsfs,H01gsfs = [],[],[],[]
for j in xrange(1,N):

exu,eyu,exufs,eyufs = uniformLambda(Nx,Ny,j)
exg,eyg,exgfs,eygfs = gaussianLambda(Nx,Ny,j)
Ns.append(j)
H10us.append(exu)
H01us.append(eyu)
H10usfs.append(exufs)
H01usfs.append(eyufs)
H10gs.append(exg)
H01gs.append(eyg)
H10gsfs.append(exgfs)
H01gsfs.append(eygfs)

# Make the plot.
plt.clf()
titl = r’Error in Average $x$ Velocity’
plt.suptitle(titl,y=0.99)
plt.plot(Ns,H10us,color=’k’,linestyle=’--’,label=’Uniform (AS)’)
plt.plot(Ns,H10gs,color=’k’,linestyle=’-.’,label=’Gauss-Legendre (AS)’)
plt.plot(Ns,H10usfs,color=’k’,linestyle=’:’,label=’Uniform (FS)’)
plt.plot(Ns,H10gsfs,color=’k’,linestyle=’-’,label=’Gauss-Legendre (FS)’)
plt.axhline(y=H10,color=’k’,linestyle=’-’,label="Exact",linewidth=2.0)
plt.legend(loc=’lower right’)
plt.xlabel(’Number of Integration Points’)
plt.ylabel(r’Estimated Error’)
plt.savefig(’figures/adaptivity/xVelocity.pdf’)
plt.clf()
titl = r’Error in Average $y$ Velocity’
plt.suptitle(titl,y=0.99)
plt.plot(Ns,H01us,color=’k’,linestyle=’--’,label=’Uniform (AS)’)
plt.plot(Ns,H01gs,color=’k’,linestyle=’-.’,label=’Gauss-Legendre (AS)’)
plt.plot(Ns,H01usfs,color=’k’,linestyle=’:’,label=’Uniform (FS)’)
plt.plot(Ns,H01gsfs,color=’k’,linestyle=’-’,label=’Gauss-Legendre (FS)’)
plt.axhline(y=H01,color=’k’,linestyle=’-’,label="Exact",linewidth=2.0)
plt.legend(loc=’lower right’)
plt.xlabel(’Number of Integration Points’)
plt.ylabel(r’Estimated Error’)
plt.savefig(’figures/adaptivity/yVelocity.pdf’)

if __name__ == ’__main__’:
Nx,Ny = 50,50
N = 10
e10,e01,e10FS,e01FS = uniformLambda(Nx,Ny,N)
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import matplotlib
matplotlib.use(’PDF’)
import matplotlib.pyplot as plt
plotErrors(Nx,Ny,N)




