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ELECTROMAGNETIC PROPERTIES OF ANISOTROPIC

PLASMONIC METAMATERIALS

1. INTRODUCTION

In recent years engineering advances have made it possible to fabricate materials with fea-

tures at the micro- or nano-scale1. The physics, and specifically the optical properties, of such

newly manufactured materials is the focus of this work. With the advent of such fine structure con-

trol, several new applications have been developed, including negative index of refraction materials

(NIMs) [1, 2, 3], subdiffraction sensors [2], subdiffraction imaging, subwavelength light guiding,

propagation of long range surface plasmons [4], planar, super, and hyper-lenses [3, 5, 6]. Other

applications include optical cloaks, photonic crystals, and optical computers [7, 8, 9]

The second chapter is a description of 2D Surface Optics. The goal of the surface optic

paradigm is to have a complete analogue to 3D ray optics through the use of lenses, prisms, etc...,

such that all light is confined to a 2 dimensional plane. This chapter will introduce the concept

of the Surface Plasmon Polariton (SPP), an electromagnetic wave that is confined to the interface

between materials with opposite in sign dielectric permittivity. Basic properties of these surface

waves will be derived, followed by a description and solution of one of the two main problems that

exist when trying to use these SPPs in devices. The first problem is that of parasitic scattering

that is encountered when an SPP undergoes a change in refraction, such as at the interface between

two SPP supporting structures. A method for overcoming this limitation will be discussed, as well

as numerical and analytical results showing how effective this method is at minimizing, or in the

ideal case, eliminating the scattering. The second problem, that of the SPP not propagating for

long distances, will be discussed briefly in §3. In the course of an analytical approach of describing

1In optics and this thesis, size is determined by the wavelength size. Micro-scale refers to objects that are between

10−3m and 10−6m, while nano-scale is smaller than micro-scale down to 10−9m. Also, 10−6m is commonly referred

to as a micron.
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the SPP system, mode matching and a matrix expansion technique will be discussed.

Chapter 3. discusses the approaches used to describe a nano-layered system. The Effective

Medium theory will be introduced in this section, followed by the exact Transfer Matrix Method,

and a non-local correction to the effective medium theory will be shown. It will be shown that

the conventional effective medium theory is incapable of describing systems where the change in

dielectric permittivity from layer to layer is large. The Transfer Matrix Method will be introduced

as an exact analytical method for the solution of the electromagnetics of such systems, but it will

be shown that calculation in this manner increases in complexity and computational time as the

number of layers is increased. I will show that a non-local correction to the method employed

in the effective medium technique will increase the accuracy of the computationally easy effective

medium theory.

The last chapter will be a discussion of the more complex system composed of nano-wires.

Again, the effective medium theory for this system will be derived. Here it will be shown that the

relation of the field inside the wire is not as simply related to the external field as in the layered

system. This relationship will be derived, and again confirmed using numerical simulations.

It should be noted that there are actually two types of Surface Plasmons, a quasi-static,

localized, non-propagating type simply called a surface plasmon, and the propagating type known

as the polariton described above. The standing wave surface plasmon will be described in the

chapter on nano-wires as that is an example of a system where it is this form that is relevant.

1.1 Metamaterials

A metamaterial is a synthetic material that has features on the order of optical wavelengths,

or smaller. The key feature of metamaterials is that the characteristic size is much smaller than

the operating wavelength, d ≪ λ. It is only at this range in which the metamaterial behaves as a

homogeneous material so that properties such as an effective index of refraction accurately describe

the material. Metamaterials often have periodic structure and hence have much in common with

photonic crystals, described in §3.3.2.1. However, photonic crystals generally have periodicity on

the same order as the same wavelength, and so usually can not be described by homogenization

methods such as effective medium theory.
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The most common application of metamaterials is to create materials that exhibit negative

index of refraction, which will be discussed in §1.2.1. Other applications include super- [2, 5] and

hyper-lenses [6], and recently, cloaking devices [10]. The superlens is a lens that can resolve an

image below the diffraction limit. The diffraction limit can be understood in the following way;

an infintesimal dipole radiates an electromagnetic field of frequency ω. The electric component of

the field can be assumed to be given by a 2D Fourier expansion

~E(~r, t) ∝
∑

A,kx,ky

~EA(kx, ky)eikxx+ikyy+ikzz−iωt (1.1)

where the z axis coincides with the axis of the lens. By applying Maxwell’s Equations (see Eq.

1.9) we see that the relation between the components of the wavevector is given by

kz = +

√

ω2

c2
− (k2

x + k2
y) (1.2)

Only for the components where kz is real does the lens apply its phase correction and reassemble

the components at the focus. When ω2

c2 < k2
x + k2

y, the components are decaying and described

as evanescent. These evanescent waves can not be recovered by the lens and the so the maximum

resolution is given by

∆ ≈ 2π

kmax
=

2πc

ω
= λ (1.3)

This defines the diffraction limit as the maximum resolution possible by a lens to be ∼ λ. The

superlens can beat this by using a metamaterial with ǫ = µ = −1, which results in a negative index

of refraction with n = −1 (see §1.2 for details). If the material has this property, the evanescent

fields are amplified and there is no phase decay, so the evanescent fields are recovered. However,

as was pointed out in Ref. [5], small deviations from n = −1 strongly affect the performance of

the superlens. Adding absorption, for example, causes this deficiency.

The hyperlens is a metamaterial similar to the superlens but does not have the issue with

absorption causing the evanescent fields to be difficult to detect with conventional optics. The

hyperlens utilizes anisotropic permittivities in a manner similar to those described in this work

but in a cylindrical structure. It can be shown that this geometry magnifies the subwavelength

features so that the features are propagating and above the diffraction limit at the output of the

lens, which can in turn be imaged via conventional optics.
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Cloaking devices are an exciting new application whereby utilizing plasmonics, it is possible

to bend light in such a way that it is completely reformed on the other side of the object so

that anything inside the object is invisible. This has been demonstrated in microwave frequencies

[11], and very recently for optical wavelengths [7]. However, these materials currently can only be

created for a single frequency of light. In other words, it may be invisible to red light, but not

to green or any other color. Creating a broadband cloak is currently being worked on. Another

limitation is that since the light is bent around the object, it is also impossible to “see” anything

from inside the cloak at the invisibility frequency. However, this does have incredible applications

in the use of stealth technology where the radar system is single frequency and the pilots do not

need to use the same frequency to be able to fly.

It is only recently that these materials have been possible to fabricate because of advances

in micro- and nano-engineering. The features of these metamaterials can take many forms such

as periodic holes in an array, split ring resonators, nanolayers, and nanowires. The periodic hole

system can be designed to create photonic crystals, while the split ring resonators can be used for

Negative Index of Refraction Materials, described in §1.2.

This work is mostly focused on the material properties of the nanolayered and nanowire

structures. The nanolayered structure can be fabricated using techniques such as physical vapor

deposition and molecular beam epitaxy. Physical vapor deposition is a process where a material,

usually a dielectric but possibly a metal, is superheated until it vaporizes, or more commonly, is

subjected to an electron beam which “kicks” the atoms from the material to a gaseous phase. At

this point the vapor is allowed to condense onto the surface of the substrate. It does so evenly such

that a thin layer has been deposited. Control of thickness of this layer is possible by manipulation

of how long the process is allowed. The rate of deposition can be as low as 1 nm/min to a few

microns/min. Molecular beam epitaxy is similar in that the material to be deposited is heated in

an effusion cell, where it is allowed to sublimate. This material is then allowed to condense onto

the substrate. The beam refers to that the molecules do not interact with each other until they

reach the substrate due to their long mean free path.

The nanowire structure can be grown with a metal-organic vapor phase-epitaxy technique

[12]. In this technique, islands of imperfection are loaded on the substrate. The vapor deposition

process will grow where these islands are located, so it is possible to grow the nanowires.
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Another technique for creating nanowires is by utilizing a chemical solution [13]. In this

method, the nanowires are electrochemically grown in a porous template. The template is made

porous by the use of a sulfuric acid electrolyte and then filled in with Au. The template is then

chemically etched away, leaving the gold nanowires.

1.1.1 Effective Medium Theory

An Effective Medium Theory (EMT) is an analytical technique that attempts to calculate

bulk properties of a medium, usually a metamaterial, by knowing some microscopic properties,

such as relative volume fraction and the permittivities of the constituent media. There are several

variations of EMT, but two common approaches are that of Maxwell-Garnett and Bruggeman [14]

[15] for 3D spheroids. The Maxwell-Garnett approach is used in Ch 4. and is applicable when

the volume filling fraction is low [16][17]. Under such conditions, it is further assumed that the

field in the medium is homogeneous. Typically, the effective permittivity is then calculated by

dividing the average ~D field by the average ~E field, ǫeff = 〈D〉
〈E〉 . More details of these calculations

will be explained in §3.3.1. The advantage of the approach of Maxwell-Garnett is that this theory

works well for low concentrations. The disadvantage is that it only works for relatively small

concentrations.

In contrast, the Bruggeman EMT uses the probability that a given point has one of two

permittivities. It then uses Mie theory [18] to calculate the effective conductivity of the medium

[14]. The main advantage of the Bruggeman approach is that it works for all concentrations, it

is not limited to the small concentrations required by the Maxwell-Garnett theory. However, for

metal inclusions in a dielectric host, Bruggeman does not produce as accurate results. Specifically,

it does not show the plasmonic resonance used as the basis for much of this presented work.

For layered materials the form of the effective medium is a bit more straightforward. The

effective permittivity can again be calculated using the average displacement and electric fields,

but is not limited to small concentrations. It does still have the limitation that the characteristic

size of the system must be much smaller than the wavelength. This will be explored in detail in

§3.3.1 and §3.3.3.
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1.1.2 Anisotropy

Anisotropy is a general term meaning that some property is directionally dependent. In this

work, it is to be understood that the dielectric permittivity is anisotropic. For linear dielectrics,

the permittivity is related to the electric susceptibility χe in the equation relating polarization and

electric field [19]

P = χ̂eE (1.4)

For this work it will be convenient to use the Gaussian units in which the permittivity of free

space is unitary, ǫ0 = 1. The Heaviside-Lorentz units are the same as the cgs (Gaussian) units,

except for a factor of
√

4π in the definitions of the fields and the electric charge. There is a similar

relation for the magnetic permeability and magnetization

M = χ̂mH (1.5)

The relationship between χe and ǫ is given by the dimensionless definition

ǫ ≡ (1 + 4πχe). (1.6)

To explicitly define the anisotropic nature of the dielectric permittivity, the permittivity

can be expressed as a tensor. In this work, ǫ̂ will be used when referring to the tensor:

ǫ̂ =













ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz













(1.7)

while ǫ will be understood to refer to a scalar permittivity. For most systems, the coordinate

system can be chosen such that Eq. 1.7 becomes diagonal

ǫ̂ =













ǫxx 0 0

0 ǫyy 0

0 0 ǫzz













(1.8)

This condition of diagonality will be assumed for this work.

Optically anisotropric materials exist in naturally occuring forms. This is what causes

certain materials, such as calcite, to be birefringent. The birefringence is due to the permittivity
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FIGURE 1.1: Drawing of a birefringent slab of material. The birefringence causes the ordinary
and extraordinary waves to refract at different angles.

felt by one polarization of light to be different than that of the other polarization. In the literature,

the polarizations are commonly referred to as ordinary and extraordinary polarizations. Fig. (1.1)

shows how the different polarizations are affected by the birefringence.

In materials such as calcite, the birefringence is due to the crystal structure. In a sense, the

lattice length (lattice constant) is compressed in a coordinate direction from the length in other

directions. Because this length is different, the interaction of the electromagnetic wave with the

atoms in the crystal will be altered differently in the different directions. In a material that has

two similar directions for the anistropy, it is referred to as uniaxial. The axis about which there is

rotational symmetry in a uniaxial material is called the optical axis. Materials in which all three

directions are anisotropic are called biaxial and have two axes of anistropy.

1.2 Negative Index of Refraction Materials

1.2.1 Overview

Materials that have simultaneously negative dielectric permittivity and magnetic perme-

ability were described by Veselago [1] in 1968 to exhibit a negative index of refraction. A negative
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FIGURE 1.2: (a) The refraction of light at an interface with positive index of refraction. (b)
Refraction at the interface between a positive to negative index.

index of refraction means that light that is incident is refracted on the same side of the normal as

the incident ray, as illustrated in Fig. (1.2). This can result in wide range of new physics topics

such as planar lenses, reversed Doppler effect and a reversed Cherenkov radiation.

To describe the theory, some background materials must be developed first. We begin with

Maxwell’s equations, which in Gaussian units are

~∇× ~E +
1

c

∂ ~B

∂t
= 0

~∇× ~H =
1

c

(

∂ ~D

∂t
+ 4π ~J

)

~∇ · ~D = 4πρ

~∇ · ~B = 0

(1.9)

For the purposes of this work, ~J = 0. The electric field ~E and the magnetic flux density ~B are

vectors, and ~D and ~H are given by

~D = ~E + 4π ~P = ǫ̂ ~E

~B = ~H + 4π ~M = µ̂ ~H

(1.10)

where ~P is given by Eq. (1.4), ~M by Eq. (1.5). Also, µ̂ is defined in a similar manner to ǫ̂ in §1.1.2,

but for the magnetic susceptibility χm. In the case of isotropic media, the tensors for dielectric

permittivity and magnetic permeability become diagonal with three identical entries. The tensors

can then be replaced with the scalars ǫ and µ. Together, Eqs. (1.9, 1.10) completely describe the

propagation of electromagnetic waves within a medium. By taking the curl of ~∇× ~E + 1
c

∂ ~B
∂t

= 0,
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and using the definition in Eq. (1.10), one obtains the wave equation

∇2 ~E(~r, t) =
ǫµ

c2

∂2 ~E(~r, t)

∂t2
(1.11)

where c = 2.9979 × 1010cm/s is the speed of light in vacuum. The wave equation has solutions

∝ f(±(~k · ~x − ωt)). For convenience, the plane wave solution of f = e±i(~k·~x−ωt) is used as

the derivatives and integrals involving the exponential function are simple. For the plane wave

solution, the phase velocity is given by νph = ω/k = c/n where n is the index of refraction for the

propagating wave. Plugging this information into Eq. (1.11)

k2 ~E =
ǫµω2

c2
~E (1.12)

Using the definition n = c/νph, we find that

n = ±√
ǫµ (1.13)

For a hand-waving argument to show how a negative index of refraction is possible from the

above equation, we separate the terms, where we see that n =
√

ǫ
√

µ, where if ǫ and µ are both

negative, we obtain a factor of i2 = −1, leading us to the conclusion that this determines the sign

for n. Other causal arguments can also be discussed directly from Maxwells’ Equations by adding

a small absorption term to the permittivity. If this is done, in order to ensure causality that the

energy dissipates as the wave travels through the medium, the negative root must be the correct

one. If all signs of permittivity and permeability are tabulated, we can create a quadrant map of

the signs for ǫ and µ to determine what type of material would be formed, as illustrated in Fig.

(1.3).

There are no known naturally occuring materials that have simultaneously negative permit-

tivity and and permeability. In 1999, it was suggested by Pendry [20] that metamaterials may be

able to meet this condition if fabricated properly. The specific design that was proposed was that

of split-ring resonators (SRR), as illustrated in Fig. (1.4 a).

According to Ref. [20], the effective permeability for the SRR is

µeff = 1 − πr2

a2

(

1 + i
2σ

ωrµ0
− 3dc2

0

π2ω2r3

)−1

(1.14)

where r is the radius of the outer ring, a is the distance to the nearest neighboring split ring

(center to center), σ is the resistance of the cylinder surface per unit area (assumed to be small),
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FIGURE 1.3: Quadrant map showing how the sign of permittivity and permeability determine
the reflection and refraction properties of a material.

FIGURE 1.4: The Split Ring Resonator (SRR). (a) A magnetic field perpendicular to the plane
of the rings induces currents in the wire. (b) The resonant condition for the permeability creates
a region where the permeability is negative. The negative permittivity is from the wires being
metallic.
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and d is the distance separating the rings, illustrated in Fig. (1.4 a). As seen in Fig. (1.4 b), this

produces a resonance at a frequency ω0, where for slightly higher frequencies a negative effective

permeability is found. While this does allow for simultaneously negative effective permeability and

permittivity, it has the drawback that the negative permeability only occurs in a small range of

frequencies near the resonance. As is the case with most resonant conditions, the absorption is

extremely large in the region near the resonance, as evidenced by the large imaginary part shown

in the figure. Therefore, although it is possible to achieve the negative index materials with this

configuration, the performance suffers from large losses due to the absorption.

Another issue is the size of manufacturing such systems to obtain negative refraction in

freqencies near optical. To obtain high frequencies (small wavelength), the size of the split ring

must be small. The first structures to be designed with the split-ring design could only be made

such that the negative region was in the microwave (GHz) frequencies. With advances in fabrication

techniques, it has been possible to scale down the negative refraction to THz region, but this is

still short of the goal of negative refraction at optical or infrared frequencies. Overcoming this

shortcoming is the subject of the following section.

1.2.2 Non-Magnetic Anisotropic NIMs

The negative index in anisotropic metamaterials [21] is possible in a 2D planar waveguide by

implementing a new parameter ν to replace the magnetic permeability µ in the dispersion relation

k2
x + k2

y + k2
z = ǫµk2 (1.15)

In the case of a 2D anisotropic waveguide structure as illustrated in Fig. (1.5 a), the TM wave

would have electric and magnetic fields

E =

{

i
k2

z + k2
y

kzκ2

ǫyz

ǫx

E′
0;

ky

kz

E0; E0

}

(1.16)

H =

{

0; i
kǫx

κ2
E′

0; − i
kkyǫx

kzκ2
E′

0

}

where k = ω/c, and prime (’) means differentiation with respect to x. The field can be written as

E0(x, y, z, t) = E0(x)e−iωt+ikyy+ikzz from the equation

E′′
0 + κ2E0 = 0 (1.17)
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FIGURE 1.5: (a) Schematic drawing of the 2D anisotropic waveguide structure to create non-
magnetic negative index of refraction. (b) Drawing of the TE and TM field vectors. Notice that
for TE modes, the electric field is in the y − z plane and thus ǫ⊥ is not in the dispersion relation.

with the conventional boundary conditions for the tangential (y,z) components of the electric field

at the waveguide walls. For the rest of the following derivation, perfectly conducting walls will be

assumed.

The solutions to Eq. (1.17) are a series of modes given by E0(x) = Am cosκx with κ =

(2m + 1)π/d and E0(x) = Am sin κx with κ = 2mπ/d where m is an integer.

Each waveguide mode than has its own dispersion relation

k2
y + k2

z = ǫxνk2 (1.18)

where ν = 1− κ2

ǫyzk2 . The parameter κ defines the mode structure in the x direction. The anisotropy

in the waveguide is “felt” only by the TM modes because as seen in Fig. (1.5), the electric field has

no component in both the parallel and perpendicular direction for the TE mode. In this waveguide

structure ǫx and ǫyz can be independently controlled, thus it is possible to have a simultaneously

negative ǫx and ν.

From Eq. (1.18) it is seen that a propagating solution (when ky and kz are both real) can

only exist in systems where ǫx and ν are of the same sign. The case where ǫx > 0; ν > 0 would

give a similar result to that of an isotropic while the case of ǫx > 0; ν < 0 would give that of

a sub-critical waveguide where no propagating modes exist and all incident radiation would be

reflected. The case of ǫx < 0; ν > 0 also would not support propagation and would behave as a

waveguide with a metallic core. Finally, the case where ǫx < 0; ν < 0 would support propagating

waves, but to verify that the waves exhibit negative refraction the sign of the phase velocity must

be shown to be negative.

While Eq. (1.18) determines the magnitude of the phase velocity vp = ω/(k
√

ǫxν), it can

not give the sign of the phase velocity. The material can be defined to be left-handed (negatively
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refracting) if the phase velocity is negative. For simplicity, it is assumed that the propagating TM

polarized wave is normal to the waveguide, ie. along the z-direction as shown in Fig. (1.5). In

this case, Hz = Hx = 0 and ky = 0, where from Eq. (1.16) we find that Hy = (kǫx/kz)Ex. To

enforce the boundary condition of tangential H at the interface between an isotropic right-handed

material and the anisotropic metamaterial, kz and ǫx must be of the same sign. Thus, if ǫx is

negative so is kz, so the phase velocity is also negative.

For the more general case of oblique incidence, it can be shown via numerical 3D calculations

(see Ref. [21]), that by assuming that absorption occurs away from the interface (in other words,

the field decays away from the interface), that the phase velocity is also negative for the case of

ν < 0; ǫx < 0.

1.3 Conclusion

We have shown some of the background physics behind effective medium theories, dielec-

tric anisotropy, and negative index of refraction materials, including a method to achieve left-

handedness via anisotropic metamaterials.

The following chapter will expand on these ideas by introducing the concept of Surface

Plamson Polaritons, a unique case of electromagnetic surface wave propagation. The chapter will

also describe a fundamental problem with these surface waves of scattering at an interface and

introduce an approach to overcome this limitation utilizing anisotropic metamaterials.

The last two chapters separately show two different geometries that can be manufactured

to exhibit anisotropy. The first is a nanolayered structure made by alternating layers of different

materials. The second is a nanowire based system where the wires are arranged so that they are

parallel to each other in a host material.
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2. 2D SURFACE OPTICS

2.1 Intro

Surface Plasmon Polaritons (SPPs) [22] are electromagnetic surface waves that exist at the

boundary between materials with opposite sign in dielectric permittivity. This surface wave is

highly confined to the surface and so can be used as the enabling mechanism for subdiffraction

sensing, imaging, and subwavelength light guiding [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. One

disadvantage to surface waves is that they suffer from a parasitic scattering between surface optic

elements with a change in index of refraction. This scattering can be understood to be caused

by the mismatch in k-vector caused by the change in index of refraction. Because the mode is

not matched, all other possible k-vector modes are excited in an effort to make up the difference.

These new modes are bulk free-space modes that exist in the constituent materials. The loss is

dependent on the magnitude of the change in index, but as much as 30% of the incident wave

energy is radiated away in free space modes at a single boundary.

The focus of this chapter is to derive an approach to be used to calculate the reflection,

transmission, and scattering coefficients in such a system. This chapter also describes a method uti-

lizing anisotropic metamaterials to minimize and under certain conditions, eliminate this parasitic

scattering.

Note that another type of surface wave known as a D’yakonov wave can exist at the interface

between an isotropic and an anisotropic dielectric [33]. However, the geometry of such a system

must be more complicated than what will be described below as for such a wave to exist, the optic

axis must not be perpendicular to the interface.

Also, discussion in this work will be limited to SPPs that exist due to opposite in sign

permittivity, but SPPs also exist at interfaces with opposite in sign magnetic permeability [34].

There is a direct mapping between dielectric permittivity and magnetic permeability, as can be

seen from the symmetrical equations in the introduction. Replacing ǫ with µ and TM with TE in

this work will result in similar physics. This work will focus on permittivity as it is generally easier

to manipulate, but it should be noted that all results can be obtained in a similar manner for the

case of permeability. Moreover, for the rest of this work, the relative magnetic permeability will
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assumed to always be µr = 1 for nonmagnetic materials.

2.2 Surface Plasmon Polaritons

SPPs are transverse magnetic (TM) solutions of Maxwells equations propagating at the

interface between materials with opposite signs of dielectric permittivity. They are a result of the

coupling between the oscillations of the electrons at the surface of a conductor and an electromag-

netic wave.

As will be seen below, the properties of the SPP are completely described by the permittiv-

ities of the two materials involved. Thus, control of the SPP can be achieved via adjustion of the

permittivities by techniques such as corrugation of the surface, a change in substrate, or changing

the permittivity directly by deposition [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

2.2.1 Dispersion relation for Surface Plasmon Polaritons

Derivation of the dispersion relation for SPPs is done via the standard wave matching

technique. The geometry of the structure is illustrated in Fig. (2.1 a), and consists of a dielectric

(Region 1) and metallic (Region 2) medium separated at the x = 0 plane. The premise is that a

surface wave would exist at the interface x = 0. If the wave is confined to this surface, the field

must be damped at x → ±∞. Since we are assuming TM modes, the field is expressed in terms

of the magnetic field in each region as

H1y = H0e
ikzz−κ1x−iωt x > 0 (2.1)

H2y = H0e
ikzz+κ2x−iωt x < 0

where we have assumed ky = 0 as the coordinates can be rotated so that there is only propagation

in the z direction. Note that κ = ikx. With this information, we can solve for κ1,2 by the use of

Eq. (1.15)

κ1,2 =

√

k2
z − ω2ǫ1,2

c2
(2.2)

The boundary condition at x = 0 are that tangential ~E and ~H are continuous. The condition

for Hy only yields what we already knew, that kz must be the same on both sides. To find the
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FIGURE 2.1: (a) Schematic of the plasmon supporting structure. The interface is at x = 0 and
the SPP propagates in the y − z plane. The decay profile of the SPP is also shown, note that the
SPP decays much more rapidly in the metal region due to |ǫ2| ≫ ǫ1. (b) Dispersion relation plots
for various surface waves. The solid line is the dispersion relation for light in vacuum, long dashed-
dotted line is the derived dispersion for an SPP at a vacuum-metal interface, straight dashed line
is light in a medium with ǫ = 3, and the short dashed-dotted line is SPP dispersion with ǫ1 = 3
with the same metal. The dashed line shows the asymptotic maximum supported freqency at

ω/ωp =
√

2. ωp is the plasma frequency given by
√

4πne2

m
.

condition for Ez , we can use Ampere’s Law to find it in terms of Hy.

~∇× ~H =
1

c

∂ ~D

∂t
=

ǫ

c

∂ ~E

∂t
⇒ ∂Ez

∂t
=

c

ǫ

∂Hy

∂x
(2.3)

After evaluating the derivatives and evaluating at x = 0, Eq. (2.3) reduces to

−κ1

ǫ1
=

κ2

ǫ2
(2.4)

Upon substitution of Eq. (2.2) and some algebra, the final result is obtained

k2
z =

ω2

c2

ǫ1ǫ2
ǫ1 + ǫ2

(2.5)

Note that attempting the same approach using TE modes will not be successful as the boundary

condition for Hz can not be satisfied for κ1 6= κ2. Also, the materials must be opposite in sign in

terms of dielectric permittivity so that Eq. (2.4) can be satisfied.

From the definition of n defined earlier, we can describe an “effective” index of refraction

neff = kzc/ω =

√

ǫ1ǫ2
ǫ1 + ǫ2

(2.6)

This effective index of refraction completely describes the propagation of the surface plasmon.

The dispersion relation for various propagating surface waves is shown in Fig. (2.1 b). It

can be seen that it is impossible to directly excite the SPP solely at the vacuum-metal interface



17

FIGURE 2.2: Configurations to excite SPPs. (a) The Kretschmann configuration, the plasmon
is excited on the metallic surface away from the prism. The metal strip must be thin so that
the energy can evanescently decay through to the side where the wavevector can be matched as
described in the text. (b) The Otto configuration, similar to the Kretshcmann, but instead has a
small gap between the prism and the metal strip.

with a plane wave because the dispersion curves never cross, except at ω = 0, implying that there

is no way to match the momentum wavevector. To be able to match the momentum, light is

passed through a prism with a larger index of refraction. This prism will have a thin strip of

metal either attached to the underside of the prism (known as the Kretschmann configuration),

or separated by a small gap from the prism (known as the Otto configuration), illustrated in Fig.

(2.2). The Kretschmann configuration is more commonly used because it is easier to manufacture

and to observe the plasmon.

One important use for the surface plasmon is that of Surface Plasmon Resonance (SPR).

This is commonly used in biology and other sciences to accurately determine the index of refraction

of small particles, including molecules. The basic idea is that the Kretschmann configuration is

used where the particle to be detected is placed on the metallic strip. The light through the prism

is swept through a range of angles while measuring the amount of light that is observed in the

output of the prism. The intensity of the output will drop dramatically when the wavevectors are

matched and most of the energy is in the SPP instead of being reflected through the prism. This

process is called Attenuated Total Reflection. By measuring the angle where the minimum occurs,

it is possible to calculate the permittivity of the particle through the use of Eq. (2.5)

The above derivations were all done in the case of isotropic permittivity. The case of

anisotropic permittivity will be done in §(2.3).



18

2.3 Description of Scattering Problem

It is possible to control the propagation of SPPs by fabrication techniques so that the index

of refraction can be changed. For example, corrugating the surface or simply by having different

dielectrics deposited on a metallic substrate. However, this degree of control comes at a price in

that when a change in neff occurs, a simultaneous change in spatial decay profile κj also happens

due to their interdependence in Eq. (2.5). Since κ is related to kx, for the system to be conserved,

all possible modes (or kx) values are excited to make up for the difference. This can be understood

to be from the Fourier series needing an infinite number of terms in the series to approximate

the curve that it would have been if there was no mismatch. These excited modes are a series of

free-space modes that radiate away with wavevector for anisotropic TM waves

k2 =
ω2

c2
=

k2
x

ǫyz

+
k2

y + k2
z

ǫx

(2.7)

An SPP that experiences a change in index of refraction will in fact excite a set of scattered

plane waves in addition to reflected and transmitted SPPs. This is in contrast to plane waves,

where only the reflected and transmitted plane waves are excited. This is due to the fact that for

plane wave refraction, there exists a translational symmetry which requires that the (~k1 · ~x)z=0 =

(~k1r · ~x)z=0 = (~k2 · ~x)z=0, where ~k1r is the reflected wave vector. This is the basis for the Law

of Reflection (since k1x = k1xr) and for Snell’s Law. Since a change in index of refraction for the

SPP system requires a minumum of 3 materials, there is no symmetry and thus no condition that

the wavevector component must be the same everywhere at the boundary.

For any appreciable change in effective index in the SPP system, 10%-30% of the total

energy is scattered away as plane waves. The reduction in intensity is not however, the only

problem. Another effect this scattering has is that of coupling between the surface and plane

waves. When this coupling occurs it can have an undesirable interference with the surface mode.

Fig. (2.3) shows the parasitic scattering caused by the change in refractive index.

We will now derive the above dispersion relation, Eq. (2.7), with Maxwell’s equations. We

use the two equations involving the curl of the fields from Eq. (1.9) with no free currents ( ~J = 0)
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FIGURE 2.3: (a) Fractional energy scattered away as free-space plane waves from an SPP un-
dergoing a change in index of refraction. Inset is a schematic of structure. (b) Plot of Hz field
showing the scattering of plane waves away from the point of intersection of materials.

and noting that for plane waves these reduce to

~k × ~E =
ω

c
~H (2.8)

~k × ~H = −ω

c
ǫ̂ ~E

By solving for ~H in the first equation and substituting into the second, we obtain

~k × ~k × ~E = −ω2

c2
ǫ̂ ~E ⇒ k2 ~E − ~k(~k · ~E) − ω2

c2
ǫ̂ ~E = 0 (2.9)

Putting this into a matrix form assuming the material is uniaxial













k2 − k2
x − ω2

c2 ǫx −kxky −kxkz

−kxky k2 − k2
y − ω2

c2 ǫyz −kykz

−kxkz −kxkz k2 − k2
z − ω2

c2 ǫyz

























Ex

Ey

Ez













= 0 (2.10)

For this to have a non-trivial solution, the determinant of the matrix must = 0. Evaluating the

determinant yields

(

k2 − ω2

c2
ǫx

)(

k2
x

ω2

c2
ǫyz + (k2

y + k2
z)

ω2

c2
ǫx − ω4

c4
ǫxǫyz

)

(2.11)

Leading to the dispersion relation for TE waves

k2 = k2
x + k2

y = k2
z =

ω2

c2
ǫx (2.12)

and for TM waves

ω2

c2
=

k2
x

ǫyz

+
k2

y + k2
z

ǫx

(2.13)
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2.4 Derivation of effective index for SPPs in an anisotropic medium

Now that we have derived the anisotropic dispersion relation, we can derive the analogue

to Eq. (2.5) for an SPP in an anisotropic medium [35]. This can be achieved by analyzing the

behavior of the surface waves by deriving the propagation properties and the spatial profile of

an SPP at the interface between two uniaxial media with tensorial permittivities ǫ̂1 and ǫ̂2. We

represent the field inside the materials as

~E =







a1
~E1, x > 0

a2
~E2, x < 0

(2.14)

~H =







a1
~H1, x > 0

a2
~H2, x < 0

with

~E1 =

{

c

ω

k2
y + k2

z

ǫx
1

,
c

ω

iκ1kx

ǫyz
1 kz

,− c

ω

iκ1kx

ǫyz
1 kz

}

e−iωt−κ1x+ikyy+ikzz (2.15)

~E2 =

{

c

ω

k2
y + k2

z

ǫx
2

,
c

ω

iκ2kx

ǫyz
2 kz

,− c

ω

iκ2kx

ǫyz
2 kz

}

e−iωt+κ2x+ikyy+ikzz

~H1 =

{

0, 1,−ky

kz

}

e−iωt−κ1x+ikyy+ikzz,

~H2 =

{

0, 1,−ky

kz

}

e−iωt+κ2x+ikyy+ikzz,

and a1 and a2 being (unknown) field amplitudes. As it can be explicitly verified, thus selected

fields ( ~E1, ~H1) and ( ~E2, ~H2) satisfy Maxwell equations in the regions 1 and 2 respectively [21], and

enforce harmonic in-plane propagation and exponential out-of-plane decay of SPP. The components

of the wavevector in ( ~Ej , ~Hj) are related through Eq. (2.13):

−
κ2

j

ǫyz
j

+
k2

y + k2
z

ǫx
j

=
ω2

c2
.

To find the propagation properties of the SPP it remains to satisfy the boundary conditions at the

interface x = 0. Taking into account identical field distribution in y − z plane, these are reduced
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to:

a1 = a2

−a1κ1
1

ǫyz
1

= a2κ2
1

ǫyz
2

. (2.16)

The non-trivial solutions of Eq.(2.16) exist only when

k2
y + k2

z = K2 =
ω2

c2

ǫx
1ǫx

2(ǫyz
1 − ǫyz

2 )

ǫx
1ǫyz

1 − ǫx
2ǫyz

2

, (2.17)

The isotropic version of this equation (ǫx
j = ǫyz

j ) yields Eq.(2.5).

Together Eqs.(2.16,2.16,2.17) provide complete information about structure and propagation

properties of the SPP mode.

2.5 Minimizing Scattering

To eliminate the out of plane scattering, it is sufficient to meet two conditions. These are that

the spatial profile κ is independent of the refractive index, and that there is no interpolarization

(TE ↔ TM) coupling. Both conditions are satisfied when

κ2
1− = κ2

1+, κ2
2− = κ2

2+ ⇒ ǫx
1+

ǫx
1−

=
ǫx
2+

ǫx
2−

, ǫyz
1− = ǫyz

1+, ǫyz
2− = ǫyz

2+ (2.18)

where “-” denotes the left side (z < 0) of the system, while “+”, the right side (z > 0).

Therefore, the ideal scattering free plasmonic optical system has constant in-plane (ǫyz)

components of the permittivity tensor, while the out of plane (ǫx) components are free to change

as long as the ratio constraint in Eq. (2.18) is met.

Because the in-plane permittivity does not change, the structure is completely transparent

to TE polarized radiation, from which it is evident that TE waves do not scatter at the interface

and hence do not couple back to any TM waves.

When there is no scattering, the calculation of parameters such as reflected and refracted

amplitudes (at, ar) of the Ex
1 component, and refraction angles becomes the same as that of the

more familiar 3D optics, namely that of the Fresnel equations:

ar

ai

=
kz− − kz+

kz− + kz+
,

at

ai

=
2kz−

kz− + kz+
(2.19)
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FIGURE 2.4: Schematic of anisotropic SPP supporting structure

and Snell’s law

n− sin(θi) = n− sin(θr) = n+ sin(θt) (2.20)

To show that the conditions in Eq. (2.18) are sufficient to have no scattering, we numerically solve

Maxwell’s Equations for a SPP supporting structure that undergoes a change in index of refraction.

The system is illustrated in Fig (2.4) and is composed of two connected SPP structures. The first

structure is that of a metamaterial with ǫx
1− = 2.7 and ǫyz

1− = 1 for the dielectric region, and

an isotropic metallic medium with ǫ2 = −10. These media would correspond to an silver-silica

composite and silver at a vacuum wavelength of 500 nm. The structure on the right side would be

composed of vacuum for the dielectric and a ǫx
2+ = −3.71; ǫyz

2+ = −10 which could be constructed

from an aluminium-gold layered structure as described in [36] [37].

To verify that this is indeed scattering free, Maxwell’s equations were solved numerically

via Mathematica (this program neglects scattering). The components of the electric and magnetic

fields are shown in Figs. (2.5 2.6). Since the components of the tangential electric and magnetic

and normal displacement fields are seen to be matched on both sides of the interface, the proposed

solution satisfies Maxwell’s equations. From the uniqueness theorem [19], since this solution works,

it must be the solution. In other words, if there was scattering in this system, the boundary

conditions would not have been satisfied.
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FIGURE 2.5: Continous components of the field with a y = 0 crossection

FIGURE 2.6: Continous components of the field with a x = 50nm crossection
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2.6 Volume modes in the four media SPP structure

The total field in the four media structure (illustrated in Fig. 2.4) will be the sum of the

field due to the SPP and all possible volume modes on each side of the interface at z = 0. Thus,

the electric field with field incident from −x would be

~Einc
− +

∫

r1( ~k1) ~E−( ~k1)d ~k1 +

∫

r2( ~k2) ~E−( ~k2)d ~k2 (2.21)

=

∫

t1( ~k1) ~E+( ~k1)d ~k1 +

∫

t2( ~k2) ~E+( ~k2)d ~k2

where the 1 and 2 subscripts denote modes in the dielectric and metallic regions, respectively, and

r and t are the reflection and transmission coefficients yet to be found.

Each volume mode is a propagating wave described by three components, the incident,

reflected and transmitted waves. A set of volume modes exists in each of the four different materials.

We will see that the volume modes in the dielectric media will dominate, but for completeness

(and to satisfy boundary conditions), volume modes in the metal regions should be included. For

the purposes of this work, the incident amplitude of the H inc
y component of the field is assumed

unitary, and ky = 0 is assumed for simplification. Thus, the total magnetic field for the TM wave

can be expressed as

~H =















{0, 1, 0}
(

e−ik1xx + ρeik1xx
)

x > 0

{0, 1, 0} τe−ik2xx x < 0

(2.22)

where the harmonic spatial and temporal dependence eikzz−iωt has been assumed the

same for all fields, and so has been factored out. Using Ampere’s Law, it is found that ~E =
{

kjzc

ǫxω
, 0,

−kjxc

ǫyzω

}

Hy. It should be noted that since k2x can be found using the relation k2x =
√

ǫyz
2

(

ω2

c2 − k2
z

ǫx
2

)

, which involves a square root, ensuring causality requires a complex plane cut

along the negative imaginary axis so that arg[k2x] ∈
(

−π
4 , 3π

4

]

. The amplitude coefficients ρ and τ

can be calculated via the standard wave matching techniques to obtain the well-known equations

ρ =
k1xǫyz

2 − k2xǫyz
1

k1xǫyz
2 + k2xǫyz

1

(2.23)

τ =
2k1xǫyz

2

k1xǫyz
2 + k2xǫyz

1
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As mentioned earlier, we allow for the case where the the incident radiation is from the

metallic side. In this case, the volume magnetic field is

~H =















{0, 1, 0} τeik1xx x > 0

{0, 1, 0}
(

eik2xx + ρe−ik2xx
)

x < 0

(2.24)

resulting in reflection and transmission coefficients

ρM =
k2xǫyz

1 − k1xǫyz
2

k2xǫyz
1 + k1xǫyz

2

(2.25)

τM =
2k2xǫyz

1

k2xǫyz
1 + k1xǫyz

2

For completeness, note that the TE modes can be analyzed similarly. A schematic of the

open-waveguide system showing just the volume modes incident from the dielectric is illustrated

in Fig. (2.7 a). Note that for a complete picture for Fig. (2.7 b), the modes incident from the

metal must be included on both sides of the vertical and horizontal interfaces.

2.7 Analytical Approximation to calculate coefficients

In this section, we will derive expressions for calculating reflection, transmission, and scatter-

ing coefficients. We start with a description of mode orthogonality followed by the mode matching

technique.

2.7.1 Orthogonality

The set of SPP and possible volume modes described in the previous sections that can exist

in an SPP supporting structure make up a complete and orthogonal set of eigenmodes [38] [39].

Because of their completeness, mapping of the eigenmode expansions on either side of a change

in refractive index or other discontinuity is possible. This will allow for the use of a numerical

method outlined by Clarricoats [40] and with which Oulton [39] applied to the case of surface

waves, although it was applied with the assumption the modes incident from the metal region

were negligable. We will show later that this assumption is incorrect under certain conditions.

Mathematically, the orthogonality condition is

∫ ∫ ∞

−∞

~E(~r;~k) × ~H†(~r; ~k′) · ẑdxdy = Nδ(~k − ~k′) (2.26)
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FIGURE 2.7: Schematic of the open waveguide structure. (a) The incident light has magnitude
1 and has reflection and transmission coefficients given by ρ and τ . The right side shows a
shorthand notation to describe the volume modes. (b) The full system has an incident, reflected
and transmitted SPP as well as the set of reflected (from the z = 0 interface) and transmitted
volume modes. Note that the mirror image of this picture is needed to account for the volume
modes incident from the metal side (bottom).
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where ~E, ~H are the electric and magnetic fields in a region (must be the same region), and N is

some normalization that is calculated from earlier definitions. In other words, if the fields are in

the same region, but have different modes determined by their wavevectors ~k and ~k′, the cross

product of the electric and magnetic fields yields 0. However, if they do have the same modal

profile, the result of Eq. (2.26) is non-zero.

An example calculation of the orthogonality condition can be done by assuming the fields

both have a plane wave type field given by

{

~E, ~H
}

∝ ei~k·~r (2.27)

Applying the cross and dot products would give (to within a normalization factor)

ei(~k−~k′)·r (2.28)

Integrating this expression from −∞ to ∞ is the definition of a Fourier transform integral, the

result of which is a delta function.

2.7.2 Mode Matching

The mode matching technique is a way to single out the contribution of a given mode. But

first, a more detailed description of the geometry of the system under consideration is needed. Fig.

(2.4) shows a detailed view. The SPP is assumed to propagate in z−direction with the horizontal

interface separating the dielectric and metal materials being at x = 0. The vertical interface where

the change in index of refraction occurs is at z = 0. We will use the notation that (−|+) will give

the negative and positive z materials respectively, while (1|2) will denote the dielectric and metal

materials.

For an example of the mode matching technique, the total field modes on both sides (−|+)

can be described with Eq. (2.21)

~Einc
− +

∫

r1( ~k1) ~E−( ~k1)d ~k1 +

∫

r2( ~k2) ~E−( ~k2)d ~k2

=

∫

t1( ~k1) ~E+( ~k1)d ~k1 +

∫

t2( ~k2) ~E+( ~k2)d ~k2

where r1,2 and t1,2 are intensity reflection and transmission coefficients for a given ~k for the

dielectric and metallic incident volume modes, respectively. Post vector crossing this with ~H−(~ki)·ẑ
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and integrating over all x would give the coupling coefficient of the ith mode of ~k. This coupling

coefficient would be from the result of an overlap integral. The overlap integral is a measure of

how much the wavefunctions of the different fields overlap, similar to what is seen in quantum

mechanics.

As an example calculation of this technique, let us derive the coupling coefficient for the

case of a dielectric volume mode on the (−) side coupled to another dielectric volume mode on the

(+) side of the interface. The coefficients r and t are to be derived. Note that ρ and τ are defined

along the x-axis, while r and t are along the z-axis, so the integrals must be split at x = 0.

Then, the mode matching technique can be expressed mathematically as

〈

~E+(~k+), ~H−(~k′
−)
〉

=

∫ ∞

−∞

~E+(~k+) × ~H−(~k′
−) · ẑdx (2.29)

=

∫ ∞

0

(

k1+zc

ǫ1+xω
e−ik1+xx + ρ+

k1+zc

ǫ1+xω
eik1+xx

)

(

e−ik′

1−xx + ρ−eik′

1−xx
)

dx

+

∫ 0

−∞

τ+τ−
k2+zc

ǫ2+xω
e−i(k2+x+k′

2−x)xdx

This integral is trivial to integrate once it is noticed that
∫∞

0
e±ikxdx =

∫∞

−∞
Θ(x)e±ikxdx is just

a Fourier transform of the Heaviside Theta function, Θ(x), the result of which is πδ(k) ± i
k
. The

end result of this calculation, after noting that several of the delta functions disappear because

the direction has already been taken into account, is

〈

~E+(~k+), ~H−(~k′
−)
〉

=
kz+c

ω

[

ρ+ + ρ−
ǫ1x+

πδ(k1x+ − k′
1x−) +

ρ+ρ− − 1

ǫ1x+

i

k1x+ + k′
1x−

+
ρ+ − ρ−

ǫ1x+

i

k1x+ − k′
1x−

+
τ+τ−
ǫ2x+

i

k2x+ + k′
2x−

]

(2.30)

Similar expressions can be found by looking at the coupling for the case of
〈

~H+(~k+), ~E−(~k′
−)
〉

and also for the cases involving the metal incident modes. Altogether, a total of sixteen integrals

can be found by applying this technique.

2.7.3 Matrix Expansion

The incident, reflection, and transmission amplitude coefficients can be related to all fields

in the system in a general matrix form of Eq. (2.21):

ÎE
~i + R̂E~r = T̂E

~t (2.31)

ÎH
~i + R̂H~r = T̂H

~t
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where E and H denote Electric and Magnetic fields, respectively. In this formalism, ÎE,H represents

a normalization matrix from the incident amplitudes. The R̂E,H and T̂E,H matrices are formed

from overlap integral calculations described above. In particular, define the (1, 1) elements of the

matrices to be that of the SPP-SPP coupling coefficients. For example, T̂E11
would correspond to

the overlap between the incident magnetic field of the SPP and the electric field of the SPP on the

transmitted side, or, in the notation of Eq. (2.29),

T̂E11
=
〈

~E+(kspp), H−(kspp)
〉

(2.32)

Continuing this definition, (1,m) and (m,1) represent the SPP-volume and volume-SPP overlaps,

and (m,m) the volume-volume overlaps

T̂E1m
(kx) =

〈

~E+(kx), ~H−( ~kspp)
〉

(2.33)

T̂Hm1
(kx) =

〈

~H+( ~kspp), ~E−(kx)
〉

T̂Emm
(kx) =

〈

~E+(kx), ~H−(kx)
〉

and all possible combinations as described in the previous section. Note that since these expressions

are part of the integral in Eq. (2.21) they must be multiplied by d~k as a weight factor.

Also, ~i,~r, and ~t are vectors given by 〈ispp, 0〉, 〈rspp, (ρ−, τ−)(kx)〉, and 〈tspp, (ρ+, τ+)(kx)〉,

where ρ and τ are reflection and transmission amplitude coefficients for a volume mode described

by kx as defined by Eq. (2.23).

By solving Eq. (2.31) for ~r and ~t, taking care to keep the proper order of the matrix

multiplications, we obtain:

~r = −
(

T̂−1
E R̂E − T̂−1

H R̂H

)−1 (

T̂−1
E ÎE − T̂−1

H ÎH

)

~i (2.34)

~t =
(

R̂−1
E T̂E − R̂−1

H T̂H

)−1 (

R̂−1
E ÎE − R̂−1

H ÎH

)

~i

Because the quantity we are looking for is the total amount of energy scattered away and

not that of a particular mode, we only need the reflection and transmission intensity values (R and

T) of the SPP. As such, we only require knowing the 1st elements of ~r and ~t. Knowing these, the

scattering can be calculated as S = 1 − R − T , where R = |r|2, T = |t|2 Sflux
+

Sflux
−

with Sflux being the

Poynting flux. Also, because individual modes are orthogonal on the same side of the interface,
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matrices Î and R̂ are diagonal. Moreover, by calculating these matrix elements, it can be shown

that ÎE = ÎH = R̂H = −R̂E . This simplifies Eq. (2.34) to

~r = R̂−1
H

(

T̂−1
E + T̂−1

H

)−1 (

T̂−1
E − T̂−1

H

)

ÎE
~i (2.35)

~t = 2
(

T̂E + T̂H

)−1

ÎE
~i

Because T̂E,H are not a diagonal matrices, there is some difficulty in calculating the inverse

of such an infinite matrix. However, in the limit that scattering is weak, these matrices are nearly

diagonal, ie. the non-diagonal elements are much smaller than those of the diagonal. In this case,

a general matrix

M̂ =













M11 M12 · · ·

M21 M22 · · ·
...

...
. . .













(2.36)

can be separated into a diagonal matrix M̃ and non-diagonal part M̄ such that M̂ = M̃
(

1̂ + M̄
)

.

Then

M̂−1 =
[

M̃
(

1̂ + M̄
)

]−1

(2.37)

=
(

1̂ + M̄
)−1

M̃−1

and by using a Taylor series expansion

(

1̂ + M̄
)−1 ≈

(

1̂ − M̄ + M̄2
)

(2.38)

Therefore, for an individual matrix element;

M̂−1
ij =

1

Mii



δij −
Mij(1 − δij)

Mii

+
∑

k 6=i

MikMkj

MiiMkk



 (2.39)

Written in the shorthand notation of Eq. (2.33), the above approximation gives for the

expressions for ~t1 and ~r1 with a continous wavevector space;

~t1 =
2IE11

TE11
+ TH11

(

1 +

∫

[TE1m
(kx) + TH1m

(kx)] [TEm1
(kx) + THm1

(kx)]

[TE11
+ TH11

] [TEmm
(kx) + THmm

(kx)]
dkx

)

(2.40)

~r1 =

(

TH11
− TE11

TH11
+ TE11

)

[

1 − β+
11 + β−

11 + α+
11

]

− α−
11

(

THmm
(kx) − TEmm

(kx)

TE11
+ TH11

)
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with the definitions

β±
11 =

∫





TE1m
(kx)TEm1

(kx)TH11

TE11
TEmm (kx) ± TH1m

(kx)THm1
(kx)TE11

TH11
THmm (kx)

TH11
± TE11



 dkx (2.41)

α±
11 =

∫





TE1m
(kx)TH11

TE11

+
TH1m

(kx)TE11

TH11

TH11
+ TE11









TEm1
(kx)THmm (kx)

TEmm (kx) ± THm1
(kx)TEmm (kx)

THmm (kx)

THmm
(kx) ± TEmm

(kx)



 dkx

The result of Eq. (2.40) is that we now have expressions to calculate R and T to a sec-

ond order correction. The much improved agreement this method has for calculating reflection,

transmission, and emittance coefficients is seen in Fig. (2.8). Note that for some cases, there is

no difference between the uncorrected and corrected results for R and T , but the correction is

noticeable in the much smaller magnitude range for S. Also of note is that although the correction

may have no noticeable disagreement with R or T , the agreement with S may seem to be less

than ideal. Because the magnitude of the value of S can be 3 ∼ 4 orders of magnitude smaller

than R or T , but the magnitude of the absolute error is roughly the same, the approximation of

using only the 2nd order terms in the expansion of the inverse matrices is much more noticeable.

Further evidence for the limitation of this approach is that the 3rd order term in the matrix inverse

expansion is proportional to the 2nd, so the difference between numerical and analytical results

is greater when the corrected calculations are greater, ie. when the correction is visibly different

than the uncorrected case.

It should be noted that the above derivation does not take in to account the volume modes

in the metallic media. As will be discussed in §2.9, under the condition that the SPP is near

resonance (ǫ1 ≈ −ǫ2), the coupling with these modes can become non-negligable. Therefore, the

above approximation assumes that the matrix is nearly diagonal, which is equivalent to |ǫ2| ≫ ǫ1.

The approximation also works for the case of materials with absorption. Fig. (2.9) shows

the excellent agreement of numerical and analytical results. However, care must be taken when

dealing with absorption so that the sign of Im(kx, kz) > 0 for passive media [41] [42]. To this end,

a careful choice of a branch cut will ensure this result, as discussed in §2.5.



32

2.8 Numerical Simulations

To analyze the tolerance of this technique to fabrication defects, we analyze the system by

using the finite element solver program COMSOL 3.4 [43]. In this program, we designed a system

as illustrated in Fig (2.4), and take advantage of the fact that the problem can be simulated in just

2-D. We look at several different cases and calculate the ratio of energy scattered away relative to

the incident energy given by S = 1 − R − T where R and T are the reflection and transmission

intensity coefficients calculated by COMSOL. These coefficients can be calculated as follows:

r =

∫

(

~Hc − ~Hinc

)

· ~E∗
−dx

∫

(

~H−· ~E∗
−

)

dx
(2.42)

t =

∫

(

~Hc· ~E∗
+

)

dx

∫

(

~H+· ~E∗
+

)

dx
(2.43)

where ~Hc is the computed magnetic field at the appropriate region being integrated over, ~Hinc is

the calculated incident magnetic field that must be subtracted away to get the contribution due to

only the reflection, and integration is done over the particular region of interest, (-) for reflection,

and (+) for transmission. These values must then be normalized to the incident power flow, and

squared to obtain intensity coefficients R and T .

The results from COMSOL are seen in Fig. (2.8) where a decrease in scattering by a factor

of 100 is seen. It is also evident that merely meeting the condition of the first part of Eq. (2.18) that

in-plane (ǫyz) is constant across the interface is enough to dramatically decrease the scattering,

even while the second condition that the ratio of out-of-plane permittivity is not strictly held.

2.9 Limitations of the Matrix Expansion and Numerical Simulations

As was mentioned previously, the picture is incomplete without calculating the coupling with

the metal incident modes. However, the analytical approximation for the matrix inversion did not

take these into account. This can account for some of the discrepency in certain cases between

the approximation and the numerical simulations using COMSOL. If the matrix elements are

calculated including these extra modes, it is noticed that under certain conditions, the assumption
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FIGURE 2.8: Results of numerical simulations compared to analytical approximations. Left plots
show the reflection, transmission, and scattering coefficients for an isotropic system with ǫ2+,− =
−10, ǫ1+ = 2 and ǫ1− is varied. Note the relatively large fraction of energy scattered away in
this system. Right plots are for an anisotropic system with ǫyz

1− = ǫx,yz
1+ = 1, ǫx,yz

2− = ǫyz
2+ = −10,

ǫx
2+ = −3.71, and ǫx

1− is varied. Dotted lines are numerical results from Comsol, dashed lines are
1st order approximations for coefficients, while the solid lines are analytical approximations to 2nd

order. Note the much higher degree of accuracy for the 2nd order approximation. In fact, the 1st

order value for transmission in the isotropic case is clearly wrong as it shows a value > 1, which
is only possible in active media. Also note the 100 fold decrease in scattering with the anisotropic
metamaterial.
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FIGURE 2.9: Results of numerical simulations compared to analytical approximations for the case
of absorption. The real part of the permittivity was mode matched according to Eq. (2.18) while
absorption was numerically added to the dielectric (Left figures) and the metal (Right figures).
The corrected approximation (red solid lines) is clearly superior to the uncorrected (green dashed
lines) in matching the numerical results from COMSOL (blue dots).
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that the matrix is nearly diagonal is no longer true. This is illustrated in Fig. (2.10). The

problematic cases occur when the metal and dielectric permittivities are similar in magnitude

ǫ1x,1yz ≈ −ǫ2x,2yz (2.44)

As can be seen in the density plots of Fig. (2.10), the coupling between the dielectric and

metal volume modes can sometimes be substantial, thus breaking the condition that the matrix is

nearly diagonal.

Furthermore, not including the metal modes will show another issue, namely that the bound-

ary condition that tangential ~E and ~H fields are not continuous. Again, for cases where the dif-

ference in magnitude of the permittivities is large, this is not as large of an issue because the off

-diagonal modes that get excited are much more weakly coupled. This is illustrated in Fig. (2.11).

2.10 Applications

This section will briefly discuss some applications that would benefit from the scattering-free

plasmonic systems described above.

2.10.1 Electro-optics

A possible application of the extremely weak scattering SPP system lies in that of elec-

troplasmonics. Electroplasmonics is based on the principles of electro-optics where an applied

external electric field can alter the optical effective index of refraction. The permittivity would

then be related to the field by the Kerr effect

ǫx = ǫx
0 + αE2 (2.45)

ǫyz = ǫyz
0

Such power can be utilized to implement tunable surface optical elements. For example, a system

can be designed such that when an electric field is applied the permittivity in the x-direction can

be altered such that the structure then meets the requirements of Eq. (2.18) so that the surface

wave is transmitted through, with negligable loss due to scattering. Such an optical element could

be fabricated in to lenses or prisms, as illstrated in Fig. (2.12) to create dynamic elements. The
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FIGURE 2.10: Density plots of the matrix elements in the T̂E matrix. Note that the matrix can
be separated into four quadrants. The top left quadrant is that of the dielectric volume-dielectric
volume mode coupling. The top right and bottom left are the dielectric-metal and metal-dielectric
while the bottom right is the metal-metal volume mode couplings. (a) ǫ1− = 2.25; ǫ1+ = 1; ǫ2 =
−28.3 + 0.5i. (b) ǫ1− = 2.25; ǫ1+ = 1; ǫ2 = −3 + 0.1i
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FIGURE 2.11: Comparison of the Hy field at the boundary z = 0. (a) and (b) show the real
part of Hy, (c) and (d) the imaginary component. (a) and (c) only assume volume modes from
the dielectric. (b) and (d) assume all possible combinations of volume modes. The two lines show
the field at z = −0 and z = +0, respectively. Note the convergence when all possible modes are
considered.

lens, prism, or band-gap structure could be destroyed simply by changing the external electric

field, there is no need for physical modifications.

2.10.2 2D Planar Optics

The approach of utilizing anisotropic metamaterials is not limited to eliminating scattering

of surface waves. Indeed, the approach can be generalized to achieve waveguide mode matching in

a planar waveguide. The mode matching condition equations (2.18) can be generalized to a form

of

ǫx(x, y, z) = f(y, z)ǫx(x, 0, 0) (2.46)

ǫyz(x, y, z) = ǫyz(x, 0, 0)

where the function f(x, y) describes the modulation of the effective modal index across the system.

As in the surface mode matching technique, when Eqs. (2.46) are satisfied, the spatial

mode profile of all TM waveguide modes again become independent of the the effective indices

of refraction and do not couple to other modes. Fig. (2.13) shows an example of the anisotropic

technique applied to the planar waveguide system.
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FIGURE 2.12: Rendering of an electroplasmonic system. The regions in blue can have the per-
mittivity changed by applying an external electric field to create surface optic elements such as
lenses and prisms. Arrows represent direction of surface waves.

FIGURE 2.13: Simulation showing the mode matching via anisotropic metamaterials. Note how
the index of refraction is changed and no extraneous modes are excited.
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2.11 Conclusions

In this chapter a theoretical model was presented to minimize scattering of SPP energy from

a change in index of refraction. The basis of this model lies in the use of anisotropic metamaterials

to match the modal profile of the SPP wave on both side of an interface while still undergoing a

change in the index of refraction. Because of the interdependence of the spatial profile κ on neff

for isotropic materials, Eqs. (2.2 2.6), any change in one requires a change in the other. However,

this work shows that with anisotropic materials, it is sufficient to keep the in-plane components of

permittivity constant while the x-component is free to be changed, as long as the condition in Eq.

(2.18) is satisfied. The anisotropic expression for neff was derived and it is shown that a change

in ǫx enables a change in the index of refraction while ǫyz is still constant.

An approximate analytical approach to calculate the reflection and transmission coefficients

for the anisotropic SPP supporting system is also derived in this chapter. It was shown that in the

limit of weak scattering, this analytical approach matches that of the much more computationally

intensive numerical results of COMSOL. A technique for approximating the inverse of a nearly

diagonal matrix using a Taylor Series expansion was outlined and used in the derivation.

An application that will benefit from the scattering free 2D optics is that of electro-optics.

It is possible to fabricate materials such that the permittivity can be altered by an applied electric

field. By adjusting where the field is applied, it will be possible to manufacture optical elements

such as lenses, prisms, and reflectors. The advantage to creating these elements by the use of

electro-optics is that the elements can be dynamically created, destroyed, or otherwise altered.

This will allow for an extremely fine-grained degree of control over surface waves.

The theory of utilizing anisotropic metamaterials to match the spatial profile of TM waves

can be applied to other waveguide structures besides the surface wave presented for the bulk of this

chapter. Anisotropic planar waveguides can also be designed to exhibit efficient light management.
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3. PLASMONIC NANOLAYERED SYSTEMS

This chapter will describe the nanolayered structure and discuss methods for derivation of

electromagnetic properties of such a structure.

3.1 Intro

Nanolayered composites are the basis for many new applications, including negative index

systems, super- and hyperlenses, optical cloaks, and photonic funnels [6, 10, 21, 37, 44, 45, 46].

The layers of these structures are of only about 10 − 100nm in size. Because this size is much

smaller than the wavelength typically used (optical frequencies - ∼ 1µ), conventionally it has

been assumed that a Effective Medium Theory (EMT) is sufficient to accurately describe the

electromagnetic properties. However, in this chapter it will be shown through an exact calculation

using the Transfer Matrix Method (TMM) that conventional EMT fails to account for non-local

effects present if there is a large difference between permittivities. A derivation of an analytical

approximation with a higher degree of accuracy is discussed.

There are many methods for fabrication of nanolayered materials, but the experiments

that are discussed in this chapter were done with the use of electron beam evaporation (EBE)

for the metallic layers, while the dielectric layers by plasma-enhanced chemical vapor deposition

(PECVD). These fabrication techniques were briefly discussed in §1.1, but will be reviewed here.

Electron beam evaporation consists of a target, in this case gold (Au), being subjected to an

electron beam from a charged element under vacuum. The high energy electrons cause atoms of

gold to be energized to a gaseous phase where they are allowed to precipitate to a thin solid layer

coating the substrate material. By controlling the rate of the electron beam and the time, various

layer thicknesses can be achieved.

The PECVD approach is similar to EBE, but instead of an electon beam, a chemical reaction

is used to create the dielectric material vapor. In the case of PECVD, a plasma is used to assist

the chemical process to allow for lower temperatures to be used. In the following experiments, a

high index silicon was used for the substrate, gold (Au) for the metallic layers interspersed with
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silica (SiO2) layers for the dielectric.

3.1.1 Evolution of Plasmon modes in a Multi-layered System

An individual metal dielectric interface supports an SPP as described in §2.2. When two

metal layers are brought brought to within a small distance of each other, the SPP modes on each

surface interact with each other. This interaction leads to two combinations, an anti-symmetric

and a symmetric SPP mode as illustrated in Fig. (3.1). As the gap distance between the metal

layers is decreased, the splitting between the modal indices grows, in a similar manner to energy

level splitting in quantum mechanics. Eventually as the gap distance is decreased further, the anti-

symmetric mode experiences a cutoff, leaving only the symmetric mode known as a gap plasmon

[47].

In a structure with three layers, a metal layer in between two dielectric layers, enclosed by

two metal cladding regions, will in principle support four SPP combinations. However, if the metal

film is within the cutoff range of the cladding layers. the total number of modes supported is two,

the symmetric and anti-symmetric combinations of gap plasmons, shown in Fig. (3.2). Note that

the modal indices continue to repulse from each other, yielding modes with effective indices much

higher than that of an individual gap plasmon.

As additional metal strips are added to the above sandwich structure, the formation of

additional supermodes is observed, one for each new metal-dielectric combination added. Thus,

the total number of modes supported in the metal-dielectric nanolayered system with metallic

claddings will be equal to the number of dielectric layers in the system.

An interesting case is when the standard condition for plasmon is reversed, ie. |ǫm| < ǫd. In

this case, a single interface would not support an SPP, but the gap plasmon can exist. However, an

antisymmetric gap plasmon exists with a negative refractive index [26] in the two-interface sytem

in this case. In a way, the behavior of the metal-dielectric-metal system with |ǫm| < ǫd is exactly

opposite to that of |ǫm| > ǫd. The effective index of refraction is negative, and the cutoff of modes

in one system is related to the appearance of modes in the other system (see Fig. (3.1)).

The traditional labeleing scheme used for modes in multilayer systems is based on the

number of nodes in the field distributions. Accordingly, the mode supported at a single interface

is labeled TM0. The symmetric and anti-symmetric modes in the two inteface system are the TM0
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FIGURE 3.1: The evolution of coupled SPP modal indices in a layered material propagating
in the z-direction. neff = kzc/ω at λ0 = ω/c = 1.55µm vs. the gap thickness is shown. As
the gap is decreased, the SPP modal indices split into the anti-symmetric and symmetric modes
with the anti-symmetric experiencing a cutoff and only the symmetric mode known as a gap
plasmon survives. The top part of the figure corresponds to a positive index structure with
ǫd = 1.4442; ǫm = −114.5 + 11.01i (Au − SiO2), while the bottom part is that of a negative index
system with ǫd = 1.4442; ǫm = −1 + 0.1i. The middle is a schematic showing the xz-crossection of
the system.
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FIGURE 3.2: The field distributions (real part) of the symmetric (left) and anti-symmetric (right)
gap plasmon modes. Hy is shown illustrating how the collective field decay profiles couple to create
the gap plasmon.

and TM1 modes, respectively. Unfortunately, the gap plasmon is also labeled as a TM0 mode.

Furthermore, if the cladding region is changed to a dielectric rather than a metal, the gap plasmon

mode becomes a TM2 mode.

To deal with this, we propose the use of a new classification scheme. The TM0 and TM1

modes are not confined to the bulk region and are known as long- and short-range plasmon polari-

tons [4, 48] and can extend into the dielectric cladding on a macroscopic scale. The other modes

are highly confined to the bulk material and exhibit different properties, so it makes sense to call

these modes bulk plasmon polaritons (BPPs). The first of these modes that exhibits a smooth

profile will be designated BPP0 and higher modes will be determined by their field profile, as

illustrated in Fig. (3.3). In the traditional classification this would be a TM2 mode because it has

two nodes close to the cladding interface. Extending this scheme, it is seen that the BPPn mode

corresponds to what would be called TMn+2 in the traditional classification.

3.2 Structure

The schematic of the structure for the nanolayered structure is shown in Fig. 3.4. The

average layer thicknesses a1 and a2 are in the range 10 − 100 nm. The individual layers will

have permittivities given by ǫ1, ǫ2. The propagation of the electromagnetic wave in this system



44

FIGURE 3.3: Six modes in a system with five metal layers, four dielectric layers, and dielectric
cladding. The first two modes are the symmetric and anti-symmetric modes known as the long-
and short-range plasmons. These modes penetrate the cladding on a macroscopic scale. The other
modes are highly confined to the bulk structure and are designated the bulk plasmon polariton
modes, BPPn. Figure shows the strength of magnetic field versus coordinate across the structure.
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FIGURE 3.4: Schematic of the nanolayered structure. a1 is the metal layer thickness and a2 the
dielectric thickness. Propagation of the bulk plasmon mode is in the z− direction. Cladding layers
are present on the top and bottom of the structure.

is described by Surface Plasmons, which were described in some detail in §2.2. As discussed

previously, only TM polarizations are relevant in the description of SPPs, so TE polarizations will

be only briefly mentioned in the following text.

The geometry is oriented so that the x−axis is oriented perpendicular to the plane defined by

the layers, and since there is no difference between the y and z directions, the structure is oriented

so that propagation will only take place in the z−direction. This allows for the simplification of

ky = 0.

3.3 Theory

In this section, several theories will be explored that describe the nano-layered structure.

The simplest theory is the Effective Medium Theory. This was described as an overview in §1.1.1,

but will be specifically implemented for the layered system in §3.3.1. Next, the exact but computa-

tionally expensive Transfer Matrix Method will be derived and discussed. Finally, an enhancement

to the EMT will be introduced where non-local effects are taken into account. It will be shown in

§3.4 that this enhancement to EMT will greatly increase the accuracy of results compared to the

conventional EMT.
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3.3.1 Effective Medium Theory: Applied to the Nano-layered system

Effective Medium theory assumes the characteristic size of the system is much smaller than

the wavelength so that the electromagnetic radiation can be assumed to be a plane wave over the

entire system.

Under the above condition, the elements of the permittivity tensor can be approximated as

ǫαβ =
〈Dα〉
〈Eβ〉

(3.1)

where α and β are coordinate directions. For the uniaxial nanolayer and other regular structures,

off-diagonal elements of the permittivity tensor are 0, so the tensor reduces to

ǫ̂ =













ǫx 0 0

0 ǫyz 0

0 0 ǫyz













(3.2)

Thus, the problem of finding the effective permittivities is reduced to that of finding the average

electric and displacement fields.

Using the geometry shown in Fig. (3.4), The average displacment and electric fields are

given by

〈D〉 =
a1

a1 + a2
D1 +

a2

a1 + a2
D2 (3.3)

〈E〉 =
a1

a1 + a2
E1 +

a2

a1 + a2
E2

where it is to be understood that the direction of the field is to be used to get the tensor elements.

For ǫx, Eq. (3.1) can be solved by using the boundary condition that normal ~D must be continuous.

This means that D1 = D2 = Dx, and the electric fields as E1 = Dx

ǫ1
and E2 = Dx

ǫ1
. Then, ǫx

simplifies to

ǫx =
ǫ1ǫ2 (a1 + a2)

ǫ1a2 + ǫ2a1
(3.4)

Similarly, by using the boundary condition of continuous Ez, it is found that

ǫz =
a1ǫ1 + a2ǫ2

a1 + a2
(3.5)
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These can also be rewritten in terms of the relative concentration N = a1

a1+a2
as

ǫx =
ǫ1ǫ2

Nǫ2 + (1 − N)ǫ1
(3.6)

ǫz = Nǫ1 + (1 − N)ǫ2

The important thing to note here is that only the relative concentration N and the per-

mittivities of the two constituent materials is relevant to finding the effective permittivity. The

advantage to this is that as long as the concentration is relatively constant in a metamaterial,

the material can be random. However, as will be shown later, when the difference between the

permittivities is large, a non-local effect due to the highly varying electric fields will cause this

formula to not give accurate results.

3.3.2 Transfer Matrix Method

Maxwells Equations can be solved directly in the nano-layered case to yield a transfer matrix

to find the dispersion relation.

To derive the following relations, it is convenient to be able to express the magnetic field

in terms of the electric field. First, it is assumed that the propagating radiation is transverse

magnetic (TM) so that the magnetic field has only a y component

~H = Hy = H0e
ikxx+ikzz−iωt (3.7)

Then, use Ampere’s Law

~∇× ~H =
1

c

∂ ~D

∂t
(3.8)

This yields

−ikzHy î + iKxHyk̂ =
1

c

∂ ~D

∂t
(3.9)

Splitting ~D into components and performing the time derivative yields the two relationships

Ex =
kzc

ǫxω
Hy (3.10)

Ez = − kxc

ǫzω
Hy

From these relations and the boundary conditions that tangential ~E and normal ~D are continuous,

the following equations relating the amplitudes (a) of the fields in the jth and (j + 1)th layers can
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be found

Ej
z = Ej+1

z ⇒ a+
j eikjxj + a−

j e−ikjxj − a+
j+1e

ikj+1xj − a−
j+1e

−ikj+1xj = 0 (3.11)

Hj
y = Hj+1

y ⇒
ǫx
j a+

j

kj

eikjxj −
ǫx
j a−

j

kj

e−ikjxj −
ǫx
j+1a

+
j+1

kj+1
eikj+1xj +

ǫx
j+1a

−
j+1

kj+1
e−ikj+1xj = 0

where the +,− indicates which direction the wave is propagating and all k’s are assumed to be kx

values. Combining these equations to solve for a+
j+1 and a−

j+1,

a+
j+1 =

1

2
e−ikj+1xj

kj+1

ǫx
j+1

[(

ǫx
j+1

kj+1
+

ǫx
j

kj

)

a+
j eikjxj +

(

ǫx
j+1

kj+1
−

ǫx
j

kj

)

a−
j e−ikjxj

]

(3.12)

a−
j+1 =

1

2
eikj+1xj

kj+1

ǫx
j+1

[(

ǫx
j+1

kj+1
−

ǫx
j

kj

)

a+
j eikjxj +

(

ǫx
j+1

kj+1
+

ǫx
j

kj

)

a−
j e−ikjxj

]

Putting these into a matrix form we get





a−
j+1

a+
j+1



 = T̂j,j+1





a−
j

a+
j



 (3.13)

where

T̂j,j+1 =
1

2





(1 + K) ei(kj+1−kj)xj (1 − K) ei(kj+1+kj)xj

(1 − K) e−i(kj+1+kj)xj (1 + K) e−i(kj+1−kj)xj



 (3.14)

with K =
kj+1ǫj

ǫj+1kj
. A similar approach can be used for the case of TE waves yielding Eq. (3.14),

but with K =
kj+1

kj
. This transfer matrix will allow us to calculate the amplitude coefficients for

the j + 1 layer knowing them for the jth layer.

The real power of this formalism is that the transfer matrices can be multiplied together to

obtain coefficients for the top layer relative to the bottom layer [49] as





a−
N

a+
N



 = T̂N,N+1 × T̂N−1,N × . . . T̂2,3 × T̂1,2





a−
0

a+
0



 (3.15)

where it is possible to calculate the amplitudes of the output from those at the incident side.

3.3.2.1 Photonic Crystals

An important application of these transfer matrices is that of the derivation of the photonic

band equation also sometimes referred to as the photonic crystal equation. The layered photonic

crystal is a structure as described in §3.2 but with the condition that it is exactly periodic in
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FIGURE 3.5: Schematic of the layered photonic crystal. The structure is periodic in ǫ with a
periodic length a1 + a2.

a1 + a2 with respect to the permittivities, as illustrated in Fig. (3.5). From the Bloch theorem of

periodicity, the periodic electric field can be described by

~E(a1 + a2) = eiq(a1+a2) ~E(0) (3.16)

where q is the Bloch vector. In general the electric field in a given layer l is related to the backward

and forward propagating waves

~El(x) = b+
l eikx

l x + b−l e−ikx
l x (3.17)

where the harmonic dependence has been left out. Using the transfer matrix method described

earlier, the relationship between the amplitude coefficients is given by





b−3

b+
3



 = T̂23T̂12





b−1

b+
1



 (3.18)

Using Eq. (3.17)

E3(a1 + a2) = b−3 e−ik3(a1+a2) + b+
3 eik3(a1+a2) =

[

1 1

]





e−ik1(a1+a2) 0

0 eik1(a1+a2)









b−3

b+
3





(3.19)

and

E1(0) = b−1 e−ik10 + b+
1 eik10 =

[

1 1

]





b−1

b+
1



 (3.20)
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FIGURE 3.6: Band Structure plot of Eq. (3.24). Note the band gaps at some frequencies.

Putting these together with the Bloch equation (3.16),

[

1 1

]









e−ik1(a1+a2) 0

0 eik1(a1+a2)



 T̂23T̂12 − eiq(a1+a2)Î









b−1

b+
1



 = 0 (3.21)

For this equation to have a non-trivial solution,

det
[

Φ̂T̂23T̂12 − eiq(a1+a2)Î
]

= 0 (3.22)

where

Φ̂ =





e−ik1(a1+a2) 0

0 eik1(a1+a2)



 (3.23)

Eq. (3.22) can be algebraically reduced to

cos q(a1 + a2) = cos k1a1 cos k2a2 − γ sin k1a1 sin k2a2 (3.24)

with γTM = 1
2

(

ǫ2k1

ǫ1k2
+ ǫ1k2

ǫ2k1

)

for TM polarization, and γTE = 1
2

(

k1

k2
+ k2

k1

)

for TE. The band

structure of the photonic crystal structure can be seen in Fig. (3.6).

Photonic crystals can be used as low and high reflection coatings for lenses and mirrors.

As seen in Fig. (3.6), band gaps exist at certain frequencies. The placement of these is affected

by the size of the layers, the angle of incidence, and the permittivities of the layers. It is then
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FIGURE 3.7: Field profile in nano-layered structure of alternating metal (white) and dielectric
(yellow) layers with a metal cladding. Solid lines are transfer matrix method calculations while
dashed are the effective medium theory for the TM1 mode (a), (b), and the TM2 mode (c), (d).
(a) and (c) are for a system with total number of layers = 10. (b) and (d) for 20 layers.

possible to design a photonic crystal such that a desired ferquency is within the bandgap so that

it is completely reflected, while other frequencies or other angles are allowed to pass through.

3.3.3 Non-local Effects

We define our system under investigation to be confined to be 200 nm thick with perfectly

conducting metallic cladding layers where the layer thickness is then dependent upon how many

layers are inside. For example, if there are 4 total layers inside the cladding region, each layer

would be 50 nm thick.

Although the transfer matrix method does exactly solve the electrodynamics of the layered

system, it is very computationally expensive to actually do the calculations. This is due to the

large variation of the field on the scale of the structure, as seen in Fig. (3.7). Of note is how the

field is highly oscillatory, especially in metal layers. This is due to the (usually) much larger in

magnitude metallic permittivity relative to the dielectric permittivity, |ǫm| ≫ ǫd.

Because of this oscillatory field profile, calculating via the transfer matrix method involves

subtracting very large exponential terms to obtain relatively small field components. Due to the

subtractive cancellation error introduced, terms must be calculated to much higher than machine

precision. A standard double number usually has a precision of 15− 16 decimal places. However,

the program Mathematica [50] has the ability to store numbers with arbritrary precision. As the



52

FIGURE 3.8: The effect of setting the precision on the result’s precision. (a) Shows the very low
precision in the result when the precision used is the machine precision ∼ 16. (b) Much better
results when the precision is set to 60.

number of layers is increased, so does the precision required to accurately store the information.

In the case of 20 layers, a precision of 60 places is required. Illustration of the effect the

precision has on the results are shown in Figs.(3.8, 3.9). The nature of computers requires that

increasing the precision past machine precision greatly increases the amount of memory and time

required to do the computations. For example, to compute effective index of refraction values for

a system with 20 layers, a current (2007) computer requires about 1 hour per value. To get the

full picture, upwards of 50 values may be needed. Also, as the number of layers is increased, the

time required to computation scales exponentially. To overcome this, an effective medium theory

that gives accurate but much quicker results is desired.
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FIGURE 3.9: The effect of setting the precision on the field calculations. Note that in the shaded
region how the lower precision calculates the field incorrectly.

The EMT is much faster in that it uses the same approach of the transfer matrix, but the

EMT will produce effective permittivites such that the entire layered structure can be approximated

to be a single effective medium. In other words, the effect of individual layers is averaged out so

that the effective permittivies describe the properties of the system.

However, conventional EMT is unable to correctly produce results for systems with large

variation of permittivity. To illustrate this, Fig. (3.10) shows the comparison of EMT and TMM for

calculating the effective index of refration neff = kzc/ω for each mode in the nanolayered structure.

For these simulations, 100 ensembles were simulated with the relative concentration and total

thickness fixed but random thicknesses for individual layers to simulate fabrication defects. The

metallic permittivity used was ǫ1 = −100, roughly corresponding to Au, and dielectric permittivity

ǫ2 = 2 for SiO2. Variation was ∼ 10% of average thickness. Clearly, the conventional EMT does

not accurately calculate expected indices of refraction. The purpose of this section is to derive an

extended EMT that does.

The dispersion relation for a TM wave propagating in an anisotropic material was derived

in §2.3, Eq. (2.13)

ω2

c2
=

k2
x

ǫeff
z

+
k2

z

ǫeff
x

(3.25)
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FIGURE 3.10: Comparison of conventional EMT and exact TMM calculations of effective modal
index of refraction n vs. number of metal layers. EMT calculations are solid lines with dots for
TMM. The first 6 modes (TM) are shown. Notice that EMT does not have any dependence on
number of layers, only relative concentration of materials. EMT does give accurate results for
lower order modes, but fails for higher order modes.

From §3.3.1 it was shown that the effective permittivities from conventional EMT are

ǫeffx = ǫ(0)x =
ǫ1ǫ2 (a1 + a2)

ǫ1a2 + ǫ2a1
(3.26)

ǫeffz = ǫ(0)z =
a1ǫ1 + a2ǫ2

a1 + a2

In the following derivation, corrections to these will be found so that

ǫeffx =
ǫ
(0)
x

1 − δx(k, ω)
(3.27)

ǫeffz =
ǫ
(0)
z

1 − δz(k, ω)

To find these corrections, recognize that the system under discussion is very similar to a photonic

crystal, assuming the individual layer thicknesses do not vary too much. So, use the photonic

crystal equation dervied earlier in §3.3.2.1

cos kx(a1 + a2) = cos k1a1 cos k2a2 − γ sin k1a1 sink2a2 (3.28)

as a starting point. Assuming that |k1a1|, |k2a2|, |kx(a1 + a2)| ≪ 1, this equation can be expanded



55

by use of a Taylor series to 4th order as

1 − k2
x(a1 + a2)

2

2
+

k4
x(a1 + a2)

4

24
=

(

1 − k2
1a

2
1

2
+

k4
1a

4
1

24

)(

1 − k2
2a

2
2

2
+

k4
2a

4
2

24

)

− 1

2

(

ǫ2k1

ǫ1k2
+

ǫ1k2

ǫ2k1

)(

a1k1 −
a3
1k

3
1

6

)

(3.29)

By putting this in the form of Eq. (3.27) we can find the corrections δx and δz. Note that if the 3rd

and higher order terms are disregarded in Eq. (3.29), the effective permittivities from conventional

EMT will be recovered. Therefore it is surmised that the higher order terms are solely responsible

for the corrections. After doing the algebra between Eqs. (3.25,3.27,3.29) together with the relation

k2
1,2 = ǫ1,2

ω2

c2
− k2

z (3.30)

the corrections are found to be

δx =
a2
1a

2
2 (ǫ1 − ǫ2)

2
ǫ
(0)2
x

12 (a1 + a2)
2
ǫ21ǫ

2
2

(

ǫ(0)z

ω2

c2
− k2

x (ǫ1 + ǫ2)
2

ǫ
(0)
z

)

(3.31)

δz =
a2
1a

2
2 (ǫ1 − ǫ2)

2

12 (a1 + a2)
2
ǫ
(0)
z

ω2

c2

3.4 Results

To compare the non-local EMT to that of conventional EMT and also the exact TMM,

simulations were done similar to those done to show how ineffective conventional EMT was in

§3.3.3. Fig. (3.11) shows the improvement the non-local EMT has over the conventional theory. It

is clearly seen that for lower order modes the theory much better matches the exact TMM values.

The decrease in accuracy in the higher order modes can be explained by the fact that as the index

of refraction is increased, so is the value of ka used in the Taylor series expansion for the derivation.

This can be seen in that neff is proportional to kz, which is related to kx through the dispersion

relation. It would seem intuitive that as kz is increased, kx should decrease, but the permittivity

is negative, so an increase in kz results in an increase in kx. As ka increases, higher order terms

are required in the expansion. Therefore, the non-local EMT can be extended further to account

for the large neff modes by adding more terms to the expansion.



56

FIGURE 3.11: Comparison between effective modal indices of refraction of TM modes for a 200
nm thick planar waveguide. (a) and (c) are for a waveguide with perfectly conducting cladding
walls. (b) and (d) with vacuum for the cladding. (a) and (b) are for a metamaterial with ǫ1 =
−114.5 + 11.01i;ǫ2 = 1.4442 (Au-SiO2 composite). (c) and (d) are a negative refractive index
material with ǫ1 = −1+0.1i;ǫ2 = 1.4442. The wavelength used in all simulations was λ0 = 1.55µm.
Dots are the TMM calculations, dotted lines are the conventional EMT, while solid lines correspond
to the non-local EMT derived in the text. Nl is the total number of layers.
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Note that the standard condition for SPPs that |ǫ1| > ǫ2 where ǫ1 is the permittivity of

the metallic region is not the only possible solution. If one carefully observes the behavior under

the condition that the reverse is true, a propagating mode is discovered with a negative index of

refraction. This is shown in the lower figures of Fig. (3.11). However, for this condition to occur

with relatively low dielectric permittivity, the modal indices |neff | are very large and cause a much

faster decrease in applicability of the non-local EMT.

When the total number of layers is large, the agreement with conventional EMT is seen.

This is due to the fact that since the total thickness of the system is kept constant, increasing the

number of layers results in a decrease in average layer thicknesses a1,a2. As this is decreased the

lower order approximation becomes more valid since |ka| ≪ 1.

To compare the non-local theory to real-world applications, an experimental group fabri-

cated such a material for comparison. The material was made by alternating layers of silica (SiO2)

and gold (Au) on a silicon (Si) substrate. The Si substrate was half-cylinder in shape and was to be

used as a high index prism to match the wavevector of the incoming laser light to that of the SPP.

The SPP can be excited through a process known as either frustrated total internal reflectance

or attenuated internal reflection. The idea of this process is as follows, the laser light is incident

on the Si substrate and rotated through a series of angles, while always measuring the reflection

intensity. The angle at which the reflectance drops to a minimum is the condition for most of

the energy being transferred to the SPP. This is angle dependent because of trying to properly

match the wavevector. Using the angle at which the reflection drops, it is possible to calculate the

associated wavevector, and hence, the modal index. By making the prism to be a half-cylinder, a

much larger range of angles could be used than allowed by the traditional triangular geometry of

the Kretschmann and Otto configurations seen in Fig. (2.2).

Using the PECVD method described in the intro to this chapter, a layer of low index SiO2

layer was deposited on the Si substrate. The layer thickness was measured to be roughly 25 nm.

However, due to the very small size, the layer thickness could only be determined to 25 ± 5 nm.

Similar issues arose when depositing the other layers of gold and the silica. The final structure

was a total of six layers, three of dielectric alternating with three metallic.

Results from the experiment are shown in Fig. (3.12) where the first two bulk plasmon

modes are clearly seen. The best theoretical fit corresponds to Si/(33nm silica)/(24 nm gold)/(24
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FIGURE 3.12: Results of the attenuated total reflection experiment on a layered structure with
six layers of Au and SiO2 on a Si substrate. Experimental data (dots) and theoretical fit (solid
line) are shown indicating the BPP0 and BPP1 modes.

nm silica)/(26 nm gold)/(31 nm silica)/(24 nm gold) with average thicknesses being 29 for the

silica layers and 25 for the gold, which is within the deposition target numbers.

3.5 Conclusions

In this chapter, three methods for calculating permittivities and electromagnetic fields for

a nano-layered structure were shown. The Effective Medium Theory was derived for this example,

and shown to be deficient for accounting for large variations in field due to large differences in

constituent permittivities. For comparison purposes, the Transfer Matrix Method was also derived.

In principle the Transfer Matrix Method is exact, but computationally expensive to use for a large

number of layers. To overcome this problem, a Non-local effective medium theory was derived by

assuming the layered structure is similar to a photonic crystal. It was shown that although still

not as accurate as the transfer matrix, the extended effective medium theory greatly outperforms

that of the conventional effective medium theory, while having comparable computation times. It

was shown that the non-local EMT can accurately describe a real-world experimental version of

the nano-layered system made of a gold-silica composite.

It was also shown that the layered system can support high-index modes that are confined
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to spatial areas as small as λ/8 This confinement can be used in applications such as nano-guiding

of light like photonic funnels [45]. Being able to confine light to such a scale is important for

waveguide-optical fiber coupling.
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4. PLASMONIC NANOWIRE SYSTEMS

4.1 Introduction

As discussed in previous chapters, anisotropic dielectric permittivity has uses in several

areas of optics, including sensors, spectroscopy, and microscopy [51, 52, 53, 54, 55]. It can also

be utilized to realize non-magnetic, non-resonant negative index of refraction materials [21, 37] as

discussed in §1.2.2. This chapter will derive a Generalized Maxwell Garnett (GMG) theory that

takes into account the shape and distribution of the wires. This is in contrast to the conventional

Effective Medium Theory where the only parameter used in calculating the effective permittivity

is the relative concentration.

In naturally occuring materials the maximum relative difference of dielectric permittivity

(figure of merit), FOM =
ǫxy−ǫz

Max(ǫ) is only about 30%. We will show in this chapter how a nanowire

based system can be designed to have a FOM > 100%, similar to what was possible with the

nanolayered structures in the previous chapter. We further show how as little as 10% stretch-

ing/compression of the nanowire structure can achieve this.

We will also use 3D numerical simulations to verify the accuracy of the GMG as an approx-

imation technique.

4.2 Structure

As discussed in §1.1, metamaterials are man made structures defined by subwavelength

features. The nanowire metamaterial structure is made up of a system of metallic nanowires on

the order of less than 100 nanometers in diameter, embedded in a dielectric host. Figure 4.1 is a

representation of such a system.

The nanowires with permittivity ǫin are embedded into a host material with ǫout. The

nanowires are assumed to be parallel and define the optic axis of the material. This direction

will be defined to be the z-direction. To develop a general theory the nanowires are assumed to

have elliptical crossections with semiaxes rx and ry. We also assume the entire structure can be
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FIGURE 4.1: Schematic of Nanowire structure

stretched/compressed so that the wires can be anisotropically distributed. The distance between

nearest neighbor nanowires is defined to be lx and ly.

4.3 Theory

4.3.1 Analytical Approximation

To develop an effective medium theory , the metamaterial is assumed to be homogeneous

where rα, lα ≪ λ0, and the relative concentration of wire to host is small N ≪ 1. In addition, if

the wire material is metallic (ǫin < 0), the requirement that rα ≤ σ, with σ being the skin depth,

must also be fulfilled. Under these conditions, Maxwell’s equations, Eq. (1.9), have solutions

represented as a series of plane electromagnetic waves inside a material with an effective dielectric

permittivity given by

ǫeffαβ =
〈Dα〉
〈Eβ〉

(4.1)

where α, β correspond to cartesian coordinates x, y, z, and the brackets correspond to average

displacement and electric fields, respectively. If the permittivity inside the wire, ǫin, and outside

the wire, ǫout are isotropic, this effective permittivity tensor becomes diagonal ǫeffαβ = δαβǫeffββ where

δαβ is the Kronecker delta. By using the boundary condition that Ez must be continuous along
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the surface of the wire (z-direction), ǫeffz can be found by

〈Dz〉 = NDin + (1 − N)Dout = NǫinE0 + (1 − N) ǫoutE0 (4.2)

〈Ez〉 = NE0 + (1 − N)E0

⇒ ǫeffz = Nǫin + (1 − N) ǫout

Finding ǫeffx and ǫeffy can not be done directly as the relationship between the electric fields

is yet to be derived.

〈Dα〉 = NDin
α + (1 − N)Dout

α (4.3)

〈Eα〉 = NEin
α + (1 − N)Eout

α

ǫeff
α =

NǫinEin
α +(1−N)ǫoutEout

α

NEin
α +(1−N)Eout

α

The problem is now reduced to finding the relationship between Eout and Ein to the external

field E0 such that 4.3 can be simplified to parameters that are known, such as permittivities of the

wires and the dielectric host, and geometrical factors such as separation of wires, etc... It should

be noted that for isotropic geometries, Eout = E0 because the excitation fields cancel, and the

problem reduces to that developed in conventional EMT. However, for a more Generalized Maxwell

Garnett (GMG) theory, we must consider anisotropic geometries as well. In these anisotropic

cases, a feedback field scattered from all the other nanowires is excited given by χE0. This

excitation field in turn excites another field given by χ̂2E0, which excites another field and so on

ad infinitum. This can be expressed as E0+
∑

j

χ̂jE0, which can be rewritten as (δαβ − χαβ)
−1

E0
β .

According to Ref. [19], this feedback tensor becomes diagonal for rectangular, triangular, and other

highly symmetric lattices, and even some random nanowire nanowire arrangements, leading to the

expression (1 − χαα)E0
α.

We will show a derivation for χ for the simplified case of rx = ry , so the wires have a circular

cross section, but the distance between wires is anisotropic.

Since we have assumed the field to be homogeneous inside the wire, it can be expressed as

[56]

Ein
x,y =

ǫout

(1 − nx,y)ǫout + nx,yǫin
Eout (4.4)
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where nx, ny = ry/(rx + ry), rx/rx + ry) are depolarization factors [57, 56]. Note that in the case

of rx = ry , nx,y = 1/2 so Eq. (4.4) reduces to

Ein =
2ǫout

ǫout + ǫin
Eout (4.5)

The dipole moment of this system is then

P =
πrxry

4π

ǫin − ǫout

(1 − N) ǫout + Nǫin
(4.6)

with πrxry begin the crossectional area of the wire. The electric field at the origin excited by all

dipoles (see Jackson [19], Sec. 4.5) is then

Ex = P
A2

∑

i,j

l2xi2−l2yj2

(l2xi2+l2yj2)2 (4.7)

= P
A2

[

1
l2x

∑

i,j
i2

“

i2+
ly
lx

2
j2

”2 − 1
l2y

∑

i,j
j2

“

j2+ lx
ly

2
i2

”2

]

where A = lxly, and i, j determines the coordinates of each wire. Eq. (4.7) can be expressed as

Ex =
P

A2lxly

[

αS(α) − 1

α
S(

1

α
)

]

(4.8)

where α = ly/lx and S(α) =
∑

i,j
i2

(i2+α2j2)2
. Note that while S(α) = ∞; αS(α) − 1

α
S( 1

α
) is finite.

To simplify the function S(α), note that since i and j are being summed from −∞ to ∞

but are always squared, this can be reduced to

S(α) = 4

∞
∑

i=1

∞
∑

j=1

i2

(i2 + α2j2)
2 + 2

∞
∑

i=1

1

i2
(4.9)

as illustrated in Fig. (4.2).

By use of Mathematica [50], the first sum in Eq. (4.9)

∞
∑

i=1

i2

(i2 + α2j2)2
=

π coth(αjπ) − αjπcsch2(αjπ)

αj
(4.10)

and the second sum is π2

3 , from Gradshteyn and Ryzhik [58] Eq. (0.223 3). Eq. (4.10) can be

further reduced such that

S(α) =
π

α

∑

j=1

d

dj
[j coth(αjπ)] +

π2

3
(4.11)
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FIGURE 4.2: Shows how the sums in the function S(α) can be reduced. Instead of summing over
all four quadrants, only sum over all values in the first quadrant for j ≥ 1 (darker shaded region)
and multiply by 4, plus the terms where j = 0 is equivalent to summing over the twice the x-axis
(lighter shaded region).

Assume that α ≈ 1 + δ where δ ≪ 1 and numerically calculating the sum results in

χα =
1

4Alxly

ǫin − ǫout

(1 − N) ǫout + Nǫin
7.22∆α (4.12)

where ∆x, ∆y = lx/ly − 1, ly/lx − 1 is the lattice distortion vector.

The more general case of elliptical crossection of wires can be derived in a similar method,

and results in

χα = −0.16N∆αPα

(

ǫin − ǫout
)

(4.13)

with Pα = a/
[

ǫout + nα

(

ǫin − ǫout
)]

. Note that in both Eqs. (4.12,4.13), if lx = ly, χα = 0,

corresponding to the well known conventional Maxwell-Garnett result.

This interaction between wires changes the “microscopic” field that is acting on each wire,

therefore both the field inside the wire

Ein
α =

ǫoutPα

1 − χα

E0
α (4.14)
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and the average field in between the wires from the dipoles

Eout
α =

[

1 +
NPα(ǫin − ǫout) (Q(N) (Ωα + ∆α) − πΩα)

2π (1 − N) (1 − χα)

]

E0
α (4.15)

with Q(N) = π − 1 − N(π − 2) and shape vector Ωx, Ωy = rx/ry − 1, ry/rx − 1. Now, Eqs. (4.13,

4.14, 4.15) can be used to calculate the effective permittivity given by Eq. (4.3)

ǫeffα =
NǫinEin

α + (1 − N) ǫoutEout
α

NEin
α + (1 − N)Eout

α

4.4 Numercial Results

The system can be numercially solved by using the Discrete Dipole Approximation (DDA)

[59], also known as the Coupled Dipole Approximation. DDA assumes that the system under study

is a continuum of polarizable points that have a dipole moment in response to a local electric field.

There is an available program that can calculate this called DDSCAT [60] written in Fortran. The

program can calculate scattering and absorption of light from irregular particles.

We decided to create our own code that did a similar calculation (source code in Appendix

A). This code was also written in Fortran and would approximate a given geometry as a system

of particles that are polarizable and so have a dipole moment when exposed to an external electric

field. The program uses the coupled dipole equations for 2-D

~di = α



 ~Eext +
∑

i6=j

Ĝij
~dj



 (4.16)

where α ≈ 0.572

2
ǫ−1
ǫ+1 and Ĝαβ = − 2δαβ

R2 +
4rαrβ

R4 is the dyadic Green’s function for point dipoles in

2-D. This is valid in the limit where the wavelength is much larger than the characteristic size of

the system so that the light can be approximated as a plane wave.

We found that approximating the nanowires as simple, single dipoles did not yield accurate

results, so instead a system was devised where each nanowire comprised of several smaller slightly

overlapping dipole sources. This is illustrated in Figure 4.3.

Eq 4.16 can be solved for the dipole moment ~d, which in turn is related to P, the dipole

moment per unit volume. This in turn can be substituted in Eq 1.4 to find χe, which, using 1.6

gives ǫ.
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FIGURE 4.3: Schematic of approximation of dipoles used in Coupled Dipole Equation program.
Inset is a close-up where the circle represents the ”real” nanowire being simulated by smaller wires

FIGURE 4.4: Numerical simulations vs. Effective Medium theory for the case of isotropically
distributed wires. Dots are numerical values from DDA simulations as described in the text. Lines
are EMT calculations for ǫxy (Red) and ǫz (Green). (a) is where the permittivity of the metal
wire inclusions is varied. (b) shows the effect of relative concentration when ǫin = −10. Note that
as the concentration is increased, the approximation for EMT is no longer valid.
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FIGURE 4.5: Real (a), (b) and imaginary (c),(d) components of the permittivity tensor for a wire
composite of Ag-SiO2 (a),(c) and SiC-Si (b),(d). Red lines are ǫxy and Green show ǫz as a function
of wavelength. The Ag-SiO2 has a concentration N = 0.05, N = 0.1 for the SiC-Si structure. Note
the relatively small absorption in the negative refractive index region for Ag-SiO2.

Fig. (4.4) shows the excellent agreement with EMT and numerical simulations for the case

of isotropically distributed wires. Of note in this case is that when ǫin < −5, the FOM described

in §4.1 is greater than 100%. In other words, the effective permittivities in the permittivity tensor

ǫ̂ have different sign, which is a condition required for some applications such as non-magnetic

negative refractive index materials [21], also described in some detail in §1.2.2. Other applications

that would benefit from this extreme anisotropy would be high-performance polarizers [55] and

subwavelength light guiding [53, 45, 46].

We applied our EMT also to an isotropically distributed wire system composed of realistic

materials. The results of these are shown in Fig. (4.5). We show that for telecom wavelength

(1.55µm), the silver-silica wired structure, even at a low concentration of N = 0.05, shows promise

as a low-loss NIM with the fabricationally easier isotropic arrangement.

To numerically simulate the anisotropically distributed wire arrangement, the finite element

program COMSOL [43] was used. The advantage of this program is that it is commercially available

and can simplify the simulation by using periodic boundary conditions. The idea is as follows,

a single nanowire is drawn inside of a rectangular region defined by the lengths lx, ly and the

boundary conditions for the fields are entered. The nanowire can be made to have an arbritrary

shape, but as our theory is limited to ellipsoidal shapes, this limitation was also implemented in
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FIGURE 4.6: Effect of anisotropically distributing nanowires and wire shape. Material parameters
used were ǫin = −2.5, ǫout = 2 corresponding to Ag nanowires in a ploymer with a vacumn
wavelength of λ0 = 360 nm. Red triangles (COMSOL) and solid lines (EMT) show ǫx while
orange squares and dashed lines show ǫy. (a) Isotropic system with ∆x = Ωx = 0. Note there is no
difference between x- and y-direction in this case. (b) ∆x = 0.2, Ωx = −0.2 (c) ∆x = 0.2, Ωx = 0
(d) ∆x = 0, Ωx = −0.2. Note that in the anisotropic systems that ǫx and ǫy have opposite in sign
permittivity for some range of the concentration N . Insets show a crossection of the wires in each
case.

the simulations. One advantage that the program COMSOL has is that once the initial problem

is designed, the program can output a script file that can be easily modified to loop through

various changes to be studied. For example, to study the effect stretching would have on the

system, design the system in the graphical mode of COMSOL, output the file to a “script” file,

and implement a loop that will change the value of the length scale in one direction, say ly. The

program can then calculate the dependent properties such as the relative concentration and the

effective permittivities in each direction (source code in Appendix B).

The excellent agreement between the numerical simulations done with COMSOL and the

generalized Maxwell-Garnett theory are shown in Fig. (4.6). Of particular note is that it is possible

to control the effective permittivity in all three directions via concentration, distance between wires,

and wire shape. By suitable choice of constituent materials it is possible to achieve nearly any

desired combination of ǫx, ǫy, ǫz. The effect of absorption in the system is shown in Fig. (4.7).
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FIGURE 4.7: The effect of adding absorption to the system in Fig. (4.6) by making ǫin =
−2.5 + 0.04i.

It was pointed out in Refs. [61, 62, 63, 64] that the individual components of ǫ̂ may be

strongly affected by spatial dispersion. To explore these effects we used COMSOL to identify

the eigenwaves propagating in the x-direction through a planar waveguide with the nanowire core

consisting of Ag wires in a Si host with a relative concentration of 10%. The waveguide has a

thickness of d in the z-direction and the waveguide walls are assumed to be perfectly conducting.

In this case, ky = 0, kz = π/d and the dispersion relation is given by Eqs. (2.12, 2.13)

π2

ǫeffy d2
+

k
(TE)2

x

ǫeffy

=
ω2

c2
(4.17)

π2

ǫeffx d2
+

k
(TM)2

x

ǫeffz

=
ω2

c2

where ω = 2π/λ0, kx is the modal wavevector, c the speed of light, and d the waveguide thickness.

Again, excellent agreement between the analytical expressions and numerical results in Fig. (4.8).

4.5 Conclusions

In this chapter we have described an anisotropic metamaterial based on a plasmonic nanowire

strucutre. We derived a generalized approach to conventional Maxwell-Garnett theory that adds

inclusion shape and arrangement as additional parameters to the relative concentration in finding
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FIGURE 4.8: (a) Dispersion of the TM0 (red triangles, solid lines) and TE0 (orange squares, dashed
lines) modes in a nanowire based waveguide with thickness d = 400 nm. Material parameters were
ǫin = 13, ǫout = −120, ∆x = 0.2, Σx = −0.2, lx = 40nm, rx = 10nm. Note the negative refractive
index TM mode. (b) Modal propagation constant kxlx for λ = 1.5µm as a function of d. The
generalized effective medium theory breaks down as |kαlα| → 1.

an effective permittivity for the nanowire metamaterial. We also described a numerical approach

to solving for ǫ̂ via a Coupled Dipole Approach. Eventually we settled on using the commercial

program COMSOL to numerically simulate for the case of anisotropic distribution of wires and

non-circular wire shape.

We showed the excellent agreement between the numerical simulations and GMG and the

degree of control of effective permittivities achievable with stretching/compression of the structure.

Several applications exist to take advantage of the degree of control afforded via the anisotropic

nanowire based metamaterials, including negative index of refraction and high-performance polar-

izers.
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5. CONCLUSIONS AND OUTLOOK

In the first chapter we introduced the theme of this thesis, that of anisotropic plasmonic

structures. Background material of the physics behind effective medium theories, dielectric anisotropy,

and negative index of refraction materials, including a method to achieve left-handedness via

anisotropic metamaterials was shown.

The second chapter introduces a theoretical model to minimize scattering of SPP energy

from a change in index of refraction. The basis of this model lies in the use of anisotropic meta-

materials to match the modal profile of the SPP wave on both sides of an interface while still

undergoing a change in the index of refraction. Because of the interdependence of the spatial

profile κ on neff for isotropic materials, Eqs. (2.2, 2.6), any change in one requires a change in

the other. However, this work shows that with anisotropic materials, it is sufficient to keep the

in-plane components of permittivity constant while the x-component is free to be changed, as long

as the condition in Eq. (2.18) is satisfied. The anisotropic expression for neff was derived and it

was shown that a change in ǫx enables a change in the index of refraction while ǫyz is still constant.

An approximate analytical approach to calculate the reflection and transmission coefficients

for the anisotropic SPP supporting system was also derived in this chapter. It was shown that in the

limit of weak scattering, this analytical approach matches that of the much more computationally

intensive numerical results of COMSOL. A technique for approximating the inverse of a nearly

diagonal matrix using a Taylor Series expansion was outlined and used in the derivation.

An application that will benefit from the scattering free 2D optics is that of electro-optics.

It is possible to fabricate materials such that the permittivity can be altered by an applied electric

field. By adjusting where the field is applied, it will be possible to manufacture optical elements

such as lenses, prisms, and reflectors. The advantage to creating these elements by the use of

electro-optics is that the elements can be dynamically created, destroyed, or otherwise altered.

This will allow for an extremely fine-grained degree of control over surface waves.

The theory of utilizing anisotropic metamaterials to match the spatial profile of TM waves

can be applied to other waveguide structures besides the surface wave presented for the bulk of this

chapter. Anisotropic planar waveguides can also be designed to exhibit efficient light management.
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In the third chapter, an approach to creating the anisotropic metamaterial that could be used

in the second chapter was discussed. To fully explore the properties of the nanolayered strucutre,

three methods for calculating permittivities and electromagnetic fields were shown. The Effective

Medium Theory was derived for this example, and shown to be deficient for accounting for large

variations in field due to large differences in constituent permittivities. For comparison purposes,

the Transfer Matrix Method was also derived. In principle the Transfer Matrix Method is exact,

but computationally expensive to use for a large number of layers. To overcome this problem,

a Non-local effective medium theory was derived by assuming the layered structure is similar to

a photonic crystal. It was shown that although still not as accurate as the transfer matrix, the

extended effective medium theory greatly outperforms that of the conventional effective medium

theory, while having comparable computation times. It was shown that the non-local EMT can

accurately describe a real-world experimental version of the nano-layered system made of a gold-

silica composite.

It was also shown that the layered system can support high-index modes that are confined

to spatial areas as small as λ/8 This confinement can be used in applications such as nano-guiding

of light like photonic funnels [45]. Being able to confine light to such a scale is important for

waveguide-optical fiber coupling.

The fourth chapter describes another anisotropic metamaterial based on plasmonic wires in

a dielectric host. It was shown that conventional Maxwell-Garnett theory could only be applied

in the case of isotropically distributed wires and wire shapes. We derived that alteration of

these properties, even with the same relative concentration, can have a profound effect on the

calculated effective permittivities. We showed the analytical expressions to calculate these effective

parameters, and showed via numerical simulations their accuracy.

5.1 Outlook

Future avenues of research in the above areas include taking a much deeper look at the role

the metal incident modes play in the analytical approximation developed in Ch 2. Previous work

in this area assumed that these were negligable and played no role in the ensuing physics. We

showed that they are indeed required, but the full understanding of their interaction with the SPP
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is incomplete.

A possible application that is being explored is that of a lens based on the anisotropic

metamaterial used as a substrate for a diffraction grating that allows for the imaging of a plane

wave focussed as a point. The approach of calculating the scattering outlined in Ch. 2. is the basis

for this future study.

We have shown multiple methods for constructing the anisotropic material. Experiments

utilizing the anisotropic metamaterials for the non-magnetic left-handed system described in the

introduction have been demonstrated with both the wire and layered systems. However, an exper-

imental realization of the scattering-free plasmonic structure is yet to be completed.

The anisotropic metamaterials have also proven to be effective tools for subwavelength

imaging and as a platform for extremely sensitive sensing. Further development of properties of

the metamaterials will produce novel approaches to these areas of study.

An area of physics yet to be examined of the anisotropic metamaterials is their non-linear

properties.

Many other future applications will benefit from the research in anisotropic metamaterials

that was presented in this work as the approach is disseminated by other groups looking for

solutions to unique problems.
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A APPENDIX Fortran Source Code for Nanowires

Fortran source code to calculate effective permittivity in the nanowired system (requires

Intel compiler).

! CDE_2D.f90

!

! FUNCTIONS:

! CDE_2D - Entry point of console application.

!

!****************************************************************************

!

! PROGRAM: CDE_2D

!

! PURPOSE: Entry point for the console application.

!

!****************************************************************************

program CDE_2D

include ’link_f90_static_smp.h’

use ifcore

implicit none

! Variables

integer xMax

integer nMax

integer p !number of points that are inside the cylinder

logical report
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real*8 pi

real*8 r0, l0 ! radius of cylinder and distance between points, respectively

real*8 a0 ! parameter used in alp0 defintion

parameter (report=.false.)

parameter (xMax=10d0)

parameter (nMax=xMax**2d0, pi=3.141592653589793d0)

!parameter (a0=0.42d0)

!parameter (r0=0d0, p=1) ! Use a circle of radius 0

!parameter (r0=1d0, p=5) ! Use a circle of radius 1

!parameter (r0=2d0, p=13) ! Use a circle of radius 2

parameter (r0=3d0, p=29) ! Use a circle of radius 3

!parameter (r0=4d0, p=49) ! Use a circle of radius 4

real*8 xi(1:p*nMax) !x-coordinates of the particles

real*8 yi(1:p*nMax) !y-coordinates of the particles

real*8 xij(1:p*nMax, 1:p*nMax) !radii between the particles

real*8 yij(1:p*nMax, 1:p*nMax) !radii between the particles

real*8 rij(1:p*nMax, 1:p*nMax) !radii between the particles

! the following block may be marked as "complex*16"

real*8 alp0, chiX, chiY, chiXi, chiYi, eps

real*8 Gij(1:2*p*nMax, 1:2*p*nMax) ! Green function (the equation is d=E+G d)

real*8 Ei(1:2*p*nMax)

real*8 di(1:2*p*nMax)

real*8 c1, c2

integer iPiv(1:2*p*nMax)
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integer i,j,k, iter, nIter

real*8 nIterTot

real*8 r1, r2, dchi

real*8 xx, yy, rr

real*8 pSur,pMin,pMax,dP

character*128 str

! Body of CDE_2D

nIter=1 !number of iterations between the convergence check

print*, ’Enter output file name’

read(*,*) str

! print*, ’Enter pMin,pMax,dP’

! read(*,*) pMin,pMax,dP

! print*, ’Enter epsInc’

! read(*,*) eps

pMin=0.3

pMax=0.3

dP=0.1

eps=-10.0d0

! str=’a.out’

open(unit=20, file=str, status=’unknown’)

!open(unit=50, file=’coord.txt’, status=’unknown’)

!write(20,*) ’Epsilon=’,eps

!write(20,*) ’xMax=’,xMax

!write(20,*) ’Number of points in cylinder=’,p
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!write(20,*),’Format: p, epsX, epsY’

! r0=1d0/sqrt(pi)

! print*, ’enter r0’

! read *, r0

! r0=1d0/r0 !4.31165d0

! r0=1d0/0.68

! r0=1d0/0.65

do pSur=pMin,pMax,dP

!do eps=-10.0d0,10.0d0,0.02d0

!do a0=0.1,1.0,0.025

a0=0.575842d0

!pSur=0.2d0

l0=r0*sqrt(pi/pSur)

alp0=a0**2d0*(eps-1)/(eps+1)/2d0

!call rnset(7371702)

chiX=0d0

chiY=0d0

dchi=0d0

nIterTot=0d0

! do while (dchi.gt.1d-3.or.nIterTot.eq.0d0)

chiXi=0d0

chiYi=0d0

do iter=1,nIter

if(report) print*,’ iter=’,iter

Ei(:)=1d0
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call coordinates(xi,yi,r0,xmax,nmax,p,l0)

!print*, nmax

if(report) print*,’ Coordinates calculated...’

!do i=1, nmax !test to see if coordinates are correct

!print*,xi(i),yi(i)

!end do

do i=1, p*nMax

Ei(2*i-1)=1d0

Ei(2*i)=0d0

end do

! calculate the "separation" arrays

do i=1,(p*nMax)

do j=1,(p*nMax)

xij(i,j)=xi(j)-xi(i)

yij(i,j)=yi(j)-yi(i)

rij(i,j)=sqrt(xij(i,j)**2d0+yij(i,j)**2d0)

! write(50,*)i,j,xij(i,j),yij(i,j)

if (rij(i,j).eq.0d0.and.i.ne.j) then

print*,’Error: two particles have identical coordinates’

stop

end if

end do

end do

! xij(:,:)=xij(:,:)*a0

! yij(:,:)=yij(:,:)*a0

! rij(:,:)=rij(:,:)*a0
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! compute G-matrix

Gij(:,:)=0d0

do i=1,(p*nMax)

do j=1,(p*nMax)

xx=xij(i,j)

yy=yij(i,j)

rr=rij(i,j)

if (i.ne.j) then

! Gxx

Gij(2*i-1,2*j-1)=2d0*(2d0*xx**2d0/rr**2d0-1d0)/rr**2d0

! Gyy

Gij(2*i,2*j)=2d0*(2d0*yy**2d0/rr**2d0-1d0)/rr**2d0

! Gxy, Gyx

Gij(2*i-1,2*j)=4d0*yy*xx/rr**4d0

Gij(2*i,2*j-1)=4d0*yy*xx/rr**4d0

end if

end do

end do

!Gij=Iij-alp0 Gij

Gij(:,:)=-alp0*Gij(:,:)

do i=1,2*p*nMax

Gij(i,i)=1d0+Gij(i,i)

end do

if(report) print*,’ Gij calculated...’

!solve the Gij di=Ei

call dgetrf(2*p*nMax,2*p*nMax,Gij,2*p*nMax,iPiv,i)
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if (i.ne.0) then

print*, ’zgetrf failed’

stop

end if

if(report) print*,’ LU decomposition done...’

call dgetrs(’N’,2*p*nMax,1,Gij,2*p*nMax,iPiv,Ei,2*p*nMax,i)

if (i.ne.0) then

print*, ’zgetrs failed’

stop

end if

if(report) print*,’ Equations solved done...’

di(:)=alp0*Ei(:)

! find epsilons

do i=1,p*nMax

chiXi=chiXi+di(2*i-1)

chiYi=chiYi+di(2*i)

end do

end do !iter

c1=chiX*nIterTot+chiXi/(real(xMax,8)*l0)**2d0 !/real(nMax,8)/a0**2d0

c2=chiY*nIterTot+chiYi/(real(xMax,8)*l0)**2d0 !/real(nMax,8)/a0**2d0

nIterTot=nIterTot+real(nIter,8)

c1=c1/nIterTot

c2=c2/nIterTot

dchi=max(abs((c1-chiX)/c1),abs((c2-chiY)/c2))

print*,’nIterTot=’,nIterTot,’; dChi=’,dchi

chiX=c1

chiY=c2

! end do !while
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r1=1d0+4d0*pi*chiX

r2=1d0+4d0*pi*chiY

print*,’Converged’

print*,r1

print*,r2

write(20,*)pSur,r1,r2

! write(20,*)a0,r1,r2

! write(20,*)eps,r1,r2

! write(20,*)eps,a0,r1

end do !pSur or a0

! end do !eps

close(20)

end program CDE_2D

subroutine coordinates(xi,yi,r0,xmax,nmax,p,l0)!,nmaxG)

implicit none

integer i, j, k, l, p, xmax, nmax! k is the number of points inside the circle

real*8 r0,l0

!parameter (d=1d0)

real*8 ai (1:nmax) !x-coordinate of the initial grid

real*8 bi (1:nmax) !y-coordinate

real*8 ri (1:nmax) !distance from center

real*8 xo (1:p) !x-coordinate that is inside the cylinder

real*8 yo (1:p) !y-coordinate that is inside the cylinder

real*8 xi (1:p*nmax) !x-coordinate that is to be passed back to main
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real*8 yi (1:p*nmax) !y-coordinate that is to be passed back to main

integer xc,yc ! sample center point of system used to determine how many

! points to use

xc=xmax/2

yc=xmax/2

open(unit=30, file=’coordtest.txt’, status=’unknown’)

do i=1, nmax

ai(i)=Mod(i-1,xmax)

bi(i)=AInt(real((i-1)/xmax))

end do

k=0

do i=1, nmax

ri(i)=sqrt((ai(i)-xc)**2+(bi(i)-yc)**2)

if (ri(i).le.r0) then

k=k+1

xo(k)=ai(i)-xc

yo(k)=bi(i)-yc

endif

end do

! These are all the points in the mesh

l=0

do i=1, nmax

do j=1, k

l=l+1

xi(l)=ai(i)*l0+xo(j)
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yi(l)=bi(i)*l0+yo(j)

write(30,*)xi(l),yi(l)

end do

end do

close(unit=30)

end subroutine
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B APPENDIX Comsol Source Code for Nanowires

Source code for COMSOL script

clear fem appl

fem.sdim={’x’ ’y’};

dr=5;

dr2=0.5;

% rad=.01;

xMax=10;

nMax=xMax^2;

xi=zeros(1,nMax);

yi=zeros(1,nMax);

elemLst=cell(1,nMax+3);

indArr=zeros(1,nMax+3);

indArr2=zeros(1,nMax+1);

a0=0.9;

b0=1./a0;

ax=1.;

bx=1./ax;

dRad=0.05;

radIni=0.05;

%radIni=0.45;

radFin=0.4;

concIni=0.01;

concFin=0.4;
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dConc=0.02;

sqrt(ax*bx*concFin/pi/a0/b0)/ax

sqrt(ax*bx*concFin/pi/a0/b0)/bx

%nPts=floor((radFin-radIni)/dRad)+1;

nPts=floor((concFin-concIni)/dConc)+1;

dxFld=zeros(1,nPts);

exFld=zeros(1,nPts);

dyFld=zeros(1,nPts);

eyFld=zeros(1,nPts);

concArr=zeros(1,nPts);

epsX=zeros(1,nPts);

epsY=zeros(1,nPts);

epsOut=2.0;

epsIn=-2.5;

rad=radIni-dRad;

conc=concIni-dConc;

for k=1:nPts

% rad=rad+dRad;

conc=conc+dConc;

rad=sqrt(ax*bx*conc/pi/a0/b0);

concArr(k)=pi*a0*b0*rad^2/(ax*bx);

for m=1:nMax

r1=0.;

xi(m)=mod(m-1,xMax) + r1;

% call drnun(1,r1)
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yi(m)=floor((m - 1)/xMax) + r1;

end

xi(:)=xi(:)*ax;

yi(:)=yi(:)*bx;

r1=rect2(-dr, ax*(xMax-1)+dr, -dr, bx*(xMax-1)+dr);

r2=rect2(-dr+dr2, ax*(xMax-1)+dr-dr2, -dr+dr2,bx*(xMax-1)+dr-dr2);

r3=rect2(-0.5, ax*(xMax-1)+0.5, -0.5, bx*(xMax-1)+0.5);

% r1=rect2(-dr*ax, ax*(xMax-1+dr), -dr*bx, bx*(xMax-1+dr));

% r2=rect2(-ax*dr+dr2, ax*(xMax-1+dr)-dr2,-dr*bx+dr2,bx*(xMax-1+dr)-dr2);

% r3=rect2(-0.5*ax, ax*(xMax-0.5), -0.5*bx, bx*(xMax-0.5));

elemLst{1}=r1;

elemLst{2}=r2;

elemLst{3}=r3;

for m=1:nMax

% elemLst(i+3)=circ2(xi(i),yi(i), rad);

elemLst{m+3}=ellip2(a0*rad, b0*rad,’pos’,[xi(m),yi(m)]);

end

fem.geom=geomcomp(elemLst);

% figure(1);clf

% geomplot(fem, ’sublabels’, ’on’);

% drawnow;

appl.mode.class=’EmElectrostatics’;

appl.mode.type=’cartesian’;
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indArr(:)=3;

indArr(1)=1;

indArr(2)=2;

indArr(3)=2;

appl.equ.elconstrel={’P’ ’epsr’ ’epsr’};

%appl.equ.epstype={[] ’iso’ ’aniso’};

appl.equ.epsilonr={[] epsOut epsIn};

%appl.equ.epsrtensor={[] [] {epsIn/2,epsIn}};

appl.equ.P={{’1’ ’1’} [] []};

appl.equ.ind=indArr;

appl.var.epsilon0=1;

fem.appl=appl;

fem=multiphysics(fem);

fem.mesh=meshinit(fem);

fem.xmesh=meshextend(fem);

fem.mesh=meshrefine(fem);

fem.xmesh=meshextend(fem);

fem.mesh=meshrefine(fem);

fem.xmesh=meshextend(fem);

fem.sol=femlin(fem);

% figure(2);clf

% postplot(fem,’tridata’,’Ex’,’tribar’,’on’);

% drawnow;
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% figure(3);clf

% postplot(fem,’tridata’,’Dx’,’tribar’,’on’);

% drawnow;

for m=1:nMax+1

indArr2(m)=m+2;

end

dxFld(k)=postint(fem,’Dx’,’dl’,indArr2);

exFld(k)=postint(fem,’Ex’,’dl’,indArr2);

epsX(k)=dxFld(k)/exFld(k);

dyFld(k)=postint(fem,’Dy’,’dl’,indArr2);

eyFld(k)=postint(fem,’Ey’,’dl’,indArr2);

epsY(k)=dyFld(k)/eyFld(k);

end

save epsX.dat concArr epsX -ASCII

save epsY.dat concArr epsY -ASCII

save fldx.dat concArr dxFld exFld -ASCII

save fldy.dat concArr dyFld eyFld -ASCII
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