


AN ABSTRACT OF THE DISSERTATION OF

Yuanli Pei for the degree of Doctor of Philosophy in Computer Science presented on

June 16, 2017.

Title: Learning with Partial Supervision for Clustering and Classification

Abstract approved:

Xiaoli Z. Fern
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data is available for learning; classification is a supervised task, where fully-labeled data

are collected for training a classifier. In some scenarios, however, we may not have

the full label but only partial supervision about the data, such as instance similarities

or incomplete label assignments. In such cases, traditional clustering and classification

methods do not directly apply. To address such problems, this thesis focuses on the task

of learning from partial supervision for clustering and classification tasks. For cluster-

ing with partial supervision, we investigate three problems: a) constrained clustering

in multi-instance multi-label learning, where the goal is to group instances into clusters

that respect the background knowledge given by the bag-level labels; b) clustering with

constraints, where the partial supervision is expressed as “pairwise constraints” or “rel-

ative constraints”, regarding similarities about instance pairs and triplets respectively;

c) active learning of pairwise constraints for clustering, where the goal is to improve

the clustering with minimum human effort by iteratively querying the most informative

pairs to an oracle. For classification with partial supervision, we address the problem of

multi-label learning where data is associated with a latent label hierarchy and incomplete

label assignments, and the goal is to simultaneously discover the latent hierarchy as well
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Chapter 1: Introduction

1.1 Introduction

In the field of machine learning, clustering and classification are two fundamental tasks.

Clustering is the task of grouping a collection of objects in a way that similar objects

are grouped together. It is traditionally an unsupervised task, namely, no supervision

such as label information is available. In the task of classification, a set of data samples

and their labels are collected, and the goal is to learn a classifier that can be later used

to predict labels for unseen data. In this way, classification is a supervised problem as

the data instances are fully labeled.

In some learning scenarios, we do not have the full label about the data but we

may have some partial supervision. For example, for clustering tasks, we may have

some information about similarities between instances in addition to the data itself.

Such information could be helpful toward improving clustering. Unfortunately, they can

not be incorporated by traditional unsupervised clustering methods. For classification

tasks, one example is the multi-label learning where each instance can belong to multiple

classes. In such problems, we may not be able to collect all the labels for each instance

to train a classifier. Instead, we may only have a subset of labels for each instance.

Traditional classification methods usually assume that the instance labels are complete,

so they can not deal with such problem. Such challenges in both tasks motivate us to

study the problem of learning with partial supervision.

In this dissertation, we solve three problems for clustering with partial supervision,

sometimes called “semi-supervised clustering” in the literature. The first problem is

constrained clustering in multi-instance multi-label (MIML) learning (Chapter 2). In the

MIML framework, datasets are given in the form of bags, each of which contains multiple

instances and is associated with multiple labels. Given a set of labeled bags, our goal is

to group instances into cluster, which correspond to the class labels or subclasses within

each class. We propose to encode the bag-label knowledge into “bag constraints” and

demonstrate how such constraints can be incorporated into a popular spectral clustering
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algorithm.

The second problem is clustering with pairwise and relative constraints (Chapter 3).

In this problem, partial supervision is represented in two forms: pairwise and relative

constraints, regarding similarities about instance pairs and triplets respectively. We

develop a unified framework that can effectively learn from either type of constraints.

In addition, this unified model also allows us to compare the usefulness of the two

types of constraints. This is essential since in practice it is often complicated to acquire

constraints and usually only one type of constraints can be obtained. In such cases, it

is critical to understand which type of constraints is more useful. We perform extensive

comparisons between these two types of constraints in a user study.

The third problem is active learning of pairwise constraints for clustering (Chapter 4).

Clustering can be improved given similarity constraints on instance pairs. However,

constraints on some instances can be more informative than the others. Randomly

selecting instances to label their constraints could lead to wasted labeling effort or even

degrade the clustering performance. We introduce a Bayesian clustering model that

actively selects the most informative pair of instances to query an oracle, and iteratively

updates the model posterior based on the obtained pairwise constraints. Our results

demonstrate the effectiveness of the proposed method over passive learning and other

active learning methods.

Finally, we study the problem of learning with latent hierarchy from incomplete

multi-label data (Chapter 5). In our motivating real world problem, events are tagged

with multiple labels which form a potential unknown hierarchy. In addition, different

with traditional multi-label tasks where each sample is labeled with the complete set of

classes it belongs to, data in our problem may have incomplete class assignments due

to the inconsistency in the labeling process. Our goal is to simultaneously discover the

latent hierarchy and learn a multi-label classifier that is consistent with the hierarchy.

We propose a graphical model that captures the labeling process of the data. By spec-

ifying appropriate conditional probabilities, we can capture the hierarchy structure and

the label incompleteness. We propose a maximum likelihood estimation approach to effi-

ciently estimate the model parameters and learn the hierarchy structure. Our results on

real-world datasets demonstrate that our method can both learn an effective multi-label

classifier as well as discover interesting label hierarchy from the incomplete data.
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Chapter 2: Constrained Instance Clustering in Multi-Instance

Multi-Label Learning

Abstract

In multi-instance multi-label (MIML) learning, datasets are given in the form

of bags, each of which contains multiple instances and is associated with multiple

labels. This chapter considers a novel instance clustering problem in MIML learning,

where the bag labels are used as background knowledge to help group instances into

clusters. The goal is to recover the class labels or to find the subclasses within each

class. Prior work on constraint-based clustering focuses on pairwise constraints and

can not fully utilize the bag-level label information. We propose to encode the bag-

label knowledge into soft bag constraints that can be easily incorporated into any

optimization based clustering algorithm. As a specific example, we demonstrate how

the bag constraints can be incorporated into a popular spectral clustering algorithm.

Empirical results on both synthetic and real-world datasets show that the proposed

method achieves promising performance compared to state-of-the-art methods that

use pairwise constraints.

2.1 Introduction

The Multi-Instance Multi-Label (MIML) learning framework [129] has been successfully

applied in a variety of applications including computer vision [40, 114, 124] and audio

analysis [113]. In MIML, datasets are given in the form of bags and each bag contains

multiple instances. It is assumed that there exists a class structure such that each

instance in the bag belongs to one of the classes. However, the instance class labels are

not directly observed. Instead, the class labels are only provided at the bag level, which

is the union of all instance labels within the bags. The goal of MIML learning is then

to build a classifier to predict the labels for an unseen bag [127, 129] or to annotate the

label of each instance within the bag [16].

In this chapter, we consider a novel instance clustering problem within the MIML

framework, where the goal is to group instances from all bags into clusters. In particu-

lar, we seek to find a cluster structure that corresponds to or refines the existing class
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structure. That is, we assume that each class contains one or more subclasses and our

goal is to find such subclasses via clustering. In our motivating application, we want to

understand the structure of bird song within each species. Here a bag corresponds to

the spectrogram of a 10-second field recording of multiple birds, and each instance cor-

responds to a segment in the spectrogram capturing a single bird utterance (a syllable).

The labels of a bag are the set of species (one or more) present in the recording. Birds

from a single species may vocalize in different modes. For instance, the sound made by

a woodpecker has at least two distinct modes: pecking and calling. We are interested

in finding such distinct modes within each species by applying clustering techniques to

instances. Ideally we would perform clustering on instances of the same species to learn

such modes. However, this is impractical because the labels are only provided at the bag

level and we do not have accurate instance-level species labels. Therefore, we cast this

problem as an instance clustering problem with bag-level class labels as side information.

Existing literature on clustering with side information primarily focuses on pairwise

Must-Link (ML) and Cannot-Link (CL) constraints [51, 53, 57, 104, 106, 119, 121]. Note

that one could potentially generate ML and CL constraints based on the bag-level labels,

but they incorporate only limited information for MIML datasets (as will be discussed in

Sec.2.4.3) and are not effective for our problem. Another closely related topic is MIML

instance annotation [16, 116, 124], where an instance classifier is learned from MIML

data that predicts the class label of each instance. The key difference between MIML

instance annotation and our work is that we are interested in finding the refinement of

class structure for the instances, whereas instance annotation only focuses on recovering

the class labels of instances based-on the bag-level labels.

In this chapter, we propose to incorporate the bag-level side information in the form

of bag constraints. Our approach defines two similarity measures between bags based on

class labels and cluster labels respectively. By requiring the two similarities to order pairs

of bags consistently, we encode bag-level label knowledge into soft constraints, which

can be easily incorporated into traditional clustering objectives as a penalty term. In

particularly, we incorporate such constraints into a popular spectral clustering algorithm

and validate the effectiveness of the resulting method on both synthetic and real-world

datasets. Experiments show that our method produces good clustering results compared

to spectral clustering methods with pairwise constraints.
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2.2 Problem Statement

In our problem, the data consists of M bags {B1, · · · ,BM}, where each bag Bi contains ni

instances, i.e., Bi = {xi1, · · · , xini} with xiq ∈ Rd. As prior knowledge, each Bi is

associated with a set of class labels, denoted by Yi ⊆ {1, · · · , C}, where C is the total

number of distinct classes. Denote X =
⋃M
m=1 Bm and let N =

∑M
m=1 nm be the total

number of instances1 in X , our goal is to partition the N instances in X into K disjoint

clusters that respect the class boundaries. That is, if xp and xq belong to the same

cluster, they must belong to the same class, while the converse is true only if K = C, in

which case we wish to recover the classes perfectly by clustering. In the case of K > C,

some classes may contain multiple clusters that correspond to subclasses of the existing

classes.

2.3 Bag Constraints for MIML Instance Clustering

In our setup, the desired cluster labels are closely related to the class labels. To capture

this relationship, we introduce two different representations for each pair of bags using

their class-label set and cluster-label set respectively, and require these two representa-

tions to induce similarities that behave similarly in terms of their ranking orders. That

is, if a pair of bags Bi and Bj is more similar to each other than another pair Br and Bs
according to their class labels, the similarity should maintain the same order when mea-

sured using cluster labels. This will allow us to find a clustering solution that implicitly

respects the class labels.

More formally, we use (i, j) to represent a pair of bags Bi and Bj . Let ΩL(i, j)

be the class-label similarity between Bi and Bj , and let ΩA(i, j) be their cluster-label

similarity.2 Conceivably, a good clustering result is such that a large value of ΩL(i, j)

corresponds to a large value of ΩA(i, j). For example, for a pair of bags Bi and Bj
with a certain number of class labels, the more class labels they share, the larger the

value ΩL(i, j) is, and correspondingly we expect the value ΩA(i, j) to be larger.

1In this chapter, we assume that all instances are distinct.
2At this point, we do not specify the function forms of ΩL(·, ·) and ΩA(·, ·), since they can be problem-

specified. However, this does not prevent us from viewing them as geometrical similarities.
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Using the above defined notation, we introduce the bag constraints as follows:

[ΩL(i, j)− ΩL(r, s)][ΩA(i, j)− ΩA(r, s)] ≥ 0, ∀i, j, r, s ∈ {1, . . . ,M} (2.1)

The first term on the left hand side of the above inequality compares the difference of

class-label similarities between (i, j) and (r, s). The second term computes the corre-

sponding difference of the cluster-label similarities. By requiring the nonnegativity of

the product, the inequality requires the two similarities to consistently order any pairs of

bags. In this way, the bag constraints indirectly enforces the consistency between class

labels and cluster labels for all bags.

The above bag constraints can be easily incorporated into any optimization based

clustering algorithm. Let fA be the objective to be maximized by a clustering algorithm,

the bag constraints can be incorporated as

max
A

fA +
α

2M2

∑
(i,j)

∑
(r,s)

[ΩL(i, j)− ΩL(r, s)][ΩA(i, j)− ΩA(r, s)] (2.2)

where M is the total number of bags, 2M2 is introduced as a normalizer to make α

invariant to different number of bags, and the parameter α controls the trade-off between

the bag constraints and the original clustering objective.

2.4 Incorporate Bag Constraints to Spectral Clustering

In this section, we incorporate the bag constraints into spectral clustering by modifying

the Normalized LinkRatio objective. We show that this leads to a standard spectral

clustering problem with a modified similarity matrix.

2.4.1 Preliminaries on Spectral Clustering

We first briefly review the spectral clustering. Let A = [a1, · · · , aK ] be a partition matrix,

where each column ak is a binary assignment vector for cluster Xk, with aqk = 1 if

instance xq is assigned to cluster Xk and 0 otherwise. Let W be the symmetric similarity

matrix of instances. Define the degree matrix D = Diag(W1N ), where Diag(·) forms a

diagonal matrix with elements of the input vector as the diagonal elements, 1N denotes
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a N -dimensional vector of all 1’s, and N is the total number of vertices. The K-way

spectral clustering with Normalized LinkRatio objective is defined as [120]

max
A

1

K

K∑
k=1

aTkWak

aTkDak
(2.3)

s.t. A ∈ {0, 1}N×K , A1K = 1N . (2.4)

Rewrite the objective as

1

K

K∑
k=1

aTi Wai

aTi Dai
=

K∑
k=1

aTkD
1/2D−1/2WD−1/2D1/2ak

aTkDak
.

Define zk = D1/2ak
‖D1/2aTk ‖

, and Z = [z1, · · · , zK ]. Ignoring the discrete constraint for Z at

this stage, one can formulate a new clustering problem with respect to variable Z as

max
Z

tr(ZTD−1/2WD−1/2Z) (2.5)

s.t. ZTZ = I (2.6)

where the constraint (2.6) comes from the definition of Z. The solution of Z for this new

problem is the eigenvectors associated with the K largest eigenvalues ofD−1/2WD−1/2 [27].

Correspondingly, a discrete solution A of the original problem can be obtained by taking

a rounding procedure from Z (e.g., using Kmeans or the approach proposed in [120]).

2.4.2 Spectral Clustering with Bag Constraints

To incorporate the bag constraints, we need to define the two similarity functions in

(2.1), the class-label similarity function ΩL(·) and the cluster-label similarity ΩA(·).
Ideally, ΩL(·) should satisfy the following conditions: (1) In the case where class label

information between two bags Bi and Bj is unambiguous, (i.e., they do not share class

label or they both belong to the same single class), ΩL(i, j) should achieve minimum or

maximum values; (2) In the ambiguous case where bags Bi and Bj have multiple labels

and Yi ∩Yj 6= φ, the smaller the quantity
|Yi∩Yj |
|Yi∪Yj | (|Yi| is the number of distinct classes

in Yi) is, i.e., the smaller the relative “common-label” set is, the smaller ΩL(i, j) should
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be.

Based on the above considerations, we define the following class-label similarity

function. Let yi be the C × 1 binary class indicator vector for bag Bi, with elements

yic = 1/|Yi| if c ∈ Yi, and yic = 0 otherwise. Denote Y = [y1, · · · , yM ], where ym = 0

for any bag Bm that is not labeled. The class-label similarity between (i, j) is defined as

ΩL(i, j) = yTi yj (2.7)

To define ΩA(·), denote the bag indicator matrix B = [b1, · · · , bM ], with column

vector bi ∈ {0, 1}N×1 and the element bqi = 1 if instance xq ∈ Bi, and bqi = 0 otherwise.

The cluster structure of bag Bi can be captured by the K × 1 column vector ZTD−1/2bi.

The k-th element in the cluster structure vector is |Xk∩Bi|
‖D1/2aTk ‖

, where |Xk ∩ Bi| counts the

number of instances in bag Bi that belong to cluster Xk. Essentially, ZTD−1/2bi forms

a histogram of the cluster labels in bag Bi and normalizes each count by a quantity that

can be roughly interpreted as the volume of the cluster.3 This normalization allows the

similarity measure to balance the contributions of clusters of different sizes. We now

define the cluster-label similarity between (i, j) as

ΩA(i, j) = (ZTD−1/2bi)
T (ZTD−1/2bj) = bTi D

−1/2ZZTD−1/2bj (2.8)

Substituting ΩL(i, j) and ΩA(i, j) into the inequality of bag constraints (2.1) , we

have

(yTi yj − yTr ys)(bTi D−1/2ZZTD−1/2bj − bTr D−1/2ZZTD−1/2bs) ≥ 0

⇔ tr(ZTD−1/2(yTi yj − yTr ys)(bjbTi − bsbTr )D−1/2Z) ≥ 0

where yTi yj−yTr ys is a scalar. This inequality constraint is imposed for two pairs of bags.

To incorporate the bag constraints for all pairs of bags, we follow the method introduced

3The normalization factor for cluster Xk is ‖D1/2aTk ‖, where ak is the binary indicator vector for
cluster Xk and D is the degree matrix.
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in (2.2) and add the following penalty term to the Normalized LinkRatio objective

α

2M2

∑
(i,j)

∑
(r,s)

[ΩL(i, j)− ΩL(r, s)][ΩA(i, j)− ΩA(r, s)] (2.9)

=
α

2M2
tr(ZTD−1/2

∑
(i,j)

∑
(r,s)

(yTi yj − yTr ys)(bjbTi − bsbTr )D−1/2Z) (2.10)

=α · tr
(
ZTD−1/2B(Y TY − µI)BTD−1/2Z

)
(2.11)

=α · tr
(
ZTD−1/2QD−1/2Z

)
,

with µ =
1>(Y TY )1

M2
and Q = B(Y TY − µI)BT . (2.12)

The two summations in (2.9) sum over all possible configurations of (i, j) and (r, s),

and 1>(Y TY )1 in (2.12) sums over all the elements of Y TY . The detailed derivation

from (2.10) to (2.11) can be found in Appendix A.

Adding the above bag constraints as a penalty term to the Normalized LinkRatio

objective (2.5) and taking into account the original constraint (2.6), we can rewrite the

spectral clustering with bag constraints as

max
Z

tr(ZTD−1/2(W + αQ)D−1/2Z) (2.13)

s.t. ZTZ = I (2.14)

It is easy to see that this formulation is equivalent to the standard spectral clustering (2.5)

and (2.6) with a modified similarity matrix. We can then apply the general approach of

spectral clustering to solve this optimization problem.

The spectral clustering algorithm with bag constraints is summarized in Algorithm 1.

Note that in step 1, one can choose any method to compute the similarity matrix W

so that the data similarities are properly captured (Existing methods include the ones

in [77, 91, 122]). We applied the Kmeans rounding procedure in Step 6. One can, of

course, apply any other appropriate rounding procedure. Step 2 involves several matrix

multiplications. Since the dimension of Y is C ×M and B is N ×M , the complexity of

Step 2 is dominated byO(N2M). Step 4 computes the top K eigenvectors of W ′, which is

the most computationally expensive part. Using the Lanczos method, the complexity of

Step 4 is O(KTnnz(W ′)), where T is the number of Lanczos iteration steps and nnz(W ′)
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Algorithm 1 Spectral Clustering with MIML Bag Constraints

Input: A set of bags {Bi}Mi=1, Bi = {xi1, · · · , xini
}; a set of known label sets associated with

bags {(Yi,Bi)}; parameter α; the number of instance clusters K.
Output: Instance clustering result.

1: Create instance similarity matrix W ∈ RN×N ; form the diagonal degree matrix D =
Diag(W1N ).

2: Form the label indicator matrix Y and the bag indicator matrix B, as described in Sec. 2.4.
Construct the bag-constraint matrix Q = B(Y TY − µI)BT .

3: Compute the normalized similarity matrix with bag constraints W ′ = D−1/2(W+αQ)D−1/2.

4: Find the K largest eigenvectors of W ′, v1, · · · , vK ; form the matrix V = [v1, · · · , vK ] ∈
RN×K .

5: Re-normalize the rows of V to have unit length yielding V ′ ∈ RN×K , i.e., V ′ij =

Vij/(
∑

j V
2
ij)

1/2 .

6: Treat each row of V ′ as a point in RK and cluster V ′ via Kmeans. Assign the original
instance xq to cluster Xk if and only if the q-th row of V ′ is assigned to Xk.

is the number of nonzero elements in matrix W ′ [51]. Hence, the overall complexity is

not increased by introducing bag constraints.

2.4.3 Relation to ML/CL Pairwise Constraints

As analyzed previously, in some cases pairwise constraints can be induced from the bag-

level labels. When K = C, partitioning instances into K clusters is similar to predicting

the class labels for instances. In this case, if a bag only has a single label then all

instances within the bag belong to the same cluster and thus ML constraints can be

imposed. Similarly, if two single-label bags have the same label, ML constraints should

also be imposed on all pairs of instances formed across the two bags. For two bags that

do not share any label, since they can not belong to the same cluster, CL constraints can

be imposed on any instance pairs formed across the two bags. When K > C, some classes

may correspond to more than one clusters. Thus, we can not impose ML constraints

even for instances pairs that come from a single class label. However, CL constraints are

still possible when two bags do not share any label.

The bag-constraint matrix Q introduced in Sec. 2.4 has some important properties

that are closely related to pairwise constraints. We summarized these properties in the

following proposition.
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Table 2.1: Relation of Bag Constraints and Pairwise Constraints for K = C.
Cases Qp,q ML/CL

|Yi| = 1, xp, xq ∈ Bi 1− µ ML
Yi = Yj , |Yi| = |Yj | = 1, xp ∈ Bi, xq ∈
Bj

1 ML

Yi ∩ Yj = φ, xp ∈ Bi, xq ∈ Bj 0 CL
|Yi| > 1, xp, xq ∈ Bi 1

|Yi|
− µ N/A

Yi ∩ Yj 6= φ, |Yi| > 1 or |Yj | > 1, xp ∈
Bi, xq ∈ Bj

(0, 1) N/A

Proposition 1 (Properties of Q). Let Yi and Yj be the sets of class labels for bag Bi and

bag Bj respectively. Let |Yi| and |Yj | be the sizes of the label set Yi and Yj, respectively.

Denote Qp,q as the value of the entry in Q that corresponds to the pair of instances xp

and xq. Then the value of Qp,q can be determined according to Table 2.1.

Proof. By the definition of Q in (2.12), we know that if xp, xq ∈ Bi, Qp,q = 1
|Yi| − µ, and

that if xp ∈ Bi, xq ∈ Bj , Qp,q =
|Yi∩Yj |
|Yi|·|Yj | . It is thus easy to verify the first four cases. For

the last case, since |Yi ∩Yj | 6= φ, it follows that |Yi ∩Yj | > 0. Because the denominator

|Yi| · |Yj | is also positive, we know Qp,q > 0. Also given that |Yi| > 1 or |Yj | > 1, we

know |Yi ∩ Yj | < |Yi| · |Yj |. Hence, Qp,q < 1.

It can be seen that, when ML constraints can be inferred for xp and xq, the value

of Qp,q is 1 or 1 − µ (approximately equal to 1 since µ is usually very small), which is

the maximum of the constraint matrix. The value of Qp,q reaches 0 when CL constraints

can be inferred. In other cases where some overlap exists between the class labels of two

bags and no ML or CL can be imposed, the value of Qp,q lies in range (0, 1) and the

magnitude depends on the extend of the overlap. The more overlap their label sets have,

the larger the value of Qp,q is. As such, we can view pairwise ML and CL constraints as

only able to accommodate the cases where Qp,q takes extreme values. In contrast, our

proposed method can capture different levels of ambiguity by allowing Qp,q to take a

continuous value between zero and one, which potentially leads to more effective usage

of the bag-level label information.
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Table 2.2: Summary of MIML Datasets Information. Single-Label bags:number of bags
that contain only a single class; Multi-Label bags: number of bags that have multiple
labels; Avg. Inst.: average number of instances in each bag; Avg. Bag Label: average
number of class labels in each bag.

Dataset Birdsong MSRC v2 Carroll Frost

Classes 13 23 24 24
Dimension 38 48 16 16
Single-Label Bags 199 130 1 12
Multi-Label Bags 349 461 165 132
Total Bags 548 591 166 144
Total Inst. 4998 1758 717 565
Avg. Inst. 9.12 2.97 4.32 3.92
Avg. Bag Label 2.02 2.51 3.93 3.60

2.5 Empirical Evaluation

We conduct experiments on synthetic and real-world MIML datasets to evaluate the

proposed bag-constrained spectral clustering method. The baseline methods include

both unconstrained spectral clustering and existing spectral clustering algorithms with

pairwise constraints.

2.5.1 Datasets Description

We use two real-world datasets and two synthetic datasets to evaluate our method. These

datasets are previously used by a recent study on instance annotation for MIML [16].

The summary of the datasets is provided in Table 2.2.

HJA Birdsong is a real-word MIML dataset with 548 bags, each representing the

spectrogram of a 10-second birdsong recording. Each instance corresponds to a bird

song syllable in the spectrogram described by a 38-dimensional feature vector. There

are 10232 instances, 4998 of which are provided with ground-truth class labels. For

evaluation purpose, we use the filtered dataset, which only contains the labeled instances

in each bag. Note that the ground-truth instance labels are only used in the evaluation.

MSRC v2 is the second version (v2) of Microsoft Research Cambridge (MSRC)

image dataset,4 containing 591 images and 23 classes. Each image is considered as a

bag and regions in the images are viewed as instances. Each instance is described by a

4http://research.microsoft.com/en-us/projects/objectclassrecognition/

http://research.microsoft.com/en-us/projects/objectclassrecognition/
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16-dimensional histogram of gradients and a 32-dimensional histogram of colors.

Letter-Carroll and Letter-Frost are two synthetic datasets generated using the

Letter Recognition dataset from the UCI Machine Learning repository5 and two poems.6

To generate these datasets, words in the poems are viewed as bags and letters in each

word are the instances and are randomly sampled (without replacement) from the Letter

Recognition dataset. Bag-level labels are formed as the union of all letter labels in the

word.

All datasets are standardized such that the mean of each feature is 0 and the standard

deviation is 1. Instance similarities are computed using the local scaling factor proposed

in [122]. Specifically, the similarity between instances xp and xq is computed by Wpq =

exp
(
−‖xp−xq‖

2

2σpσq

)
, where σp and σq are local scaling factors. The local scaling factor σq is

defined as σq = ‖xq−x(t)
q ‖, where x

(t)
q is the t-th nearest neighbor of xq. We adopt t = 7

as recommended in [122], which is also shown to be effective in [95].

2.5.2 Baseline Methods

Our baseline methods include unconstrained spectral clustering (SP)and two constrained

spectral clustering algorithms, Spectral Learning (SpLearn) algorithm proposed in [53]

and constrained spectral clustering by regularization (SpReg) method proposed in [51].

SpLearn incorporates ML and CL constraints by directly modifying the entries of sim-

ilarity matrix to 1 for ML constraints and to 0 for CL constraints. SpReg encodes ML

constraints by adding a penalty term into the Normalized Cut objective. Note that

SpReg only incorporates ML constraint but not CL constraints. To apply unconstrained

spectral clustering (SP) to MIML instance clustering, we ignore the bag structure as well

as the bag-level labels. For constrained spectral clustering, we create ML and CL con-

straints according to Table 2.1. The parameter β in SpReg that controls the enforcement

of constraints is set to 20, the same value as that used in [51].

5http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition
6The poem that generates the Letter-Carroll dataset is “Jabberwocky” written by Lewis Carroll in

his 1872 novel Through the Looking-Glass, and What Alice Found there. The other poem that is used
to create the Letter-Frost dataset is “The Road Not Taken” by Robert Frost, published in 1916 in the
collection Mountain Interval.

http://archive.ics.uci.edu/ml/machine-learning-databases/letter-recognition
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Figure 2.1: Class Purity results as a function of α. SP is unconstrained spectral
clustering. CSP is the proposed spectral clustering with bag constraints.

2.5.3 Parameter Selection

In our algorithm, the parameter α is introduced to balance the trade-off between instance-

feature similarity and the bag constraints. A large value of α imposes stronger restriction

on the clustering solution to conform to the bag constraints and a small value of α

produces clustering results without being heavily influenced by such constraints. We

tested the performance of our method over a range of α values (from 0 to 1, by a 0.005

increment) on all our datasets and the results have shown that a value in the range [0.5, 1]

typically leads to significantly improved clustering performance. Figure 2.1 shows the

performance of our method on the two real-world datasets as a function of α. In all the

following experiments, the parameter α is set to 0.7.

2.5.4 Experiments and Discussions

We conducted experiments in two different scenarios. In the first scenario K is set to C

and the goal is to group the instances based on their classes. In the second scenario, we

have K > C and some classes are represented by more than one cluster. In both sce-

narios, we test our algorithm with two implementations in order to thoroughly evaluate

its performance. The first implementation (CSP) is a direct implementation of Algo-
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rithm 1. The second implementation (CSP w.o.clml) is designed to test how well our

algorithm could perform if we ignore the information that can be captured by ML and

CL constraints. For this implementation, we set the entries that correspond to ML or

CL constraints in the bag-constraint matrix Q to 0 and leave the rest unchanged. The

two implementations are identical otherwise.

2.5.4.1 Scenario 1: K = C

In this scenario, we evaluate the performance of our method by changing the percentage

of labeled bags. In particular, we vary the percentage of labeled bags from 20% to

100% of the whole dataset, with a 20% increment. For a fixed percentage, we randomly

subsample bags (without replacement) to create the bag-constraint matrix and pairwise

ML/CL constraints. The experiment is repeated for 20 random runs and the results are

averaged.

We use two criteria to evaluate the clustering performance, Normalized Mutual In-

formation (NMI) and Class Purity. The NMI is defined as

NMI =
2I(X; C)

H(X) +H(C)
(2.15)

where X and C are the numerical cluster and class label vectors, I(·; ·) computes the

mutual information, and H(·) calculates the entropy. To compute Class Purity, each

cluster is assigned to the most frequent class in the cluster, and then the accuracy of this

assignment is measured by comparing the assigned labels with the ground-truth class

labels. Formally,

purity(X,C) =
1

N

∑
k

max
j
|Xk ∩ Cj | (2.16)

where X = {X1, . . . ,XK} is the set of clusters and C = {C1, . . . ,CC} is the set of classes.

The NMI and Class Purity results are reported in Fig. 2.2 and Fig. 2.3, respectively.

From these results, we have the following observations and conclusions:

• Both CSP and CSP w.o.clml outperforms SP significantly as more bags are labeled.

• Our method is comparable with SpLearn and outperforms SpReg when the average
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Figure 2.2: Scenario of K = C: NMI results as a function of constraints creating from
different percentage of labeled bags. Error bars are reported with mean and standard
deviation.

number of bag-level labels is small (HJA Birdsong). In this case, the ambiguity

of instance labels induced from the bag-level labels is low, and many ML and

CL constraints can be inferred. Such constraints can be properly incorporated by

SpLearn to improve clustering. However, the number of ML constraints is relatively

smaller compared to that of CL constraint, and thus the constraints do not help

SpReg as much. In the meantime, the proposed method enables the clustering

algorithm to incorporate information beyond what can be captured by the basic ML

and CL constraints, which allows it to achieve competitive performance compared
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Figure 2.3: Scenario of K = C: Class Purity results as a function of different number
of constraints. Error bars are reported with mean and standard deviation.

to SpLearn and SpReg.

• Our method outperforms SpLearn and SpReg when the number of average bag-

level labels is relatively larger (MSRC v2, Letter-Carroll and Letter-Frost). In this

case, very limited ML and CL constraints can be inferred, and our method with bag

constraints better captures the side information in the bag-level labels. The fact

that CSP and CSP w.o.clml performs almost the same in Letter-Carroll datasets

indirectly demonstrates that ML and CL constraints can hardly be inferred. This

gives more explanation why our method outperforms SpLearn and SpReg.



19

13 16 19 22 25 28 31

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Clusters

C
la

s
s
 P

u
ri
ty

HJA Birdsong

 

 

SP

SpLearn

CSP

CSP w.o.clml

20 25 30 35 40 45 50 55 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of Clusters

C
la

s
s
 P

u
ri
ty

MSRC v2

 

 

SP

SpLearn

CSP

CSP w.o.clml

24 30 36 42 48 54 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Clusters

C
la

s
s
 P

u
ri
ty

Letter−Carroll

 

 

SP

SpLearn

CSP

CSP w.o.clml

24 30 36 42 48 54 60
0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Clusters

C
la

s
s
 P

u
ri
ty

Letter−Frost

 

 

SP

SpLearn

CSP

CSP w.o.clml

Figure 2.4: Scenario of K > C: Class Purity results as a function of the number of
clusters. Error bars are reported with mean and standard deviation.

• On Letter-Carroll and Letter-Frost, while our method still outperforms SP, SpReg

shows no gain and SpLearn actually leads to degraded clustering performance.

Similar negative results have been reported in [30], which showed that constraint

sets generated based on the ground truth labels can sometimes lead to degraded

clustering performance. Further examination on these two datasets indicates that

their bag-labels mostly induce CL constraints, which cannot be used by SpReg

(thus explaining its flat performance). Moreover, the degraded performance by

SpLearn suggests that CL constraints alone might not provide good guidance for

MIML instance clustering. It is interesting to note that prior research [29] has

demonstrated that CL constraints can sometimes make the solution space overly
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constrained, leading to more difficult clustering problem. This provides a possible

explanation for the degraded performance of SpLearn.

2.5.4.2 Scenario 2: K > C

In the scenario of K > C, we evaluate the performance of our method by changing the

number of clusters K. For each dataset, we assume that all bags are labeled at the

bag-level and vary the number of clusters from K = C to roughly 2C with 7 steps. In

the case of K > C, ML constraints can not be extracted (see discussion in Sec. 2.4.3).

Hence, no constraints can be incorporated into SpReg and only CL constraints could

be incorporated into SpLearn. We therefore do not consider the SpReg baseline in this

scenario and remove ML constraints in SpLearn. The parameters setting is the same

with the previous experiment.

We report the averaged Class Purity results over 20 runs in Fig. 2.4. NMI results are

highly similar, and thus omitted to avoid redundancy. We can see that our method still

outperforms SP consistently and significantly.

In the datasets with large average number of class labels (MSRC v2, Letter-Carroll,

and Letter-Frost), we again observe that CSP and CSP w.o.clml performs similarly, which

shows that few CL or ML constraints could be extracted. This is one of the possible

reasons that SpLearn can not compete with our method for these datasets. Nonetheless,

When the average number of class labels is small (HJA Birdsong), SpLearn excels. One

possible explanation is that the bag label information in this dataset is relatively unam-

biguous and many pairwise constraints can be extracted. While our method can handle

ambiguous information much better, SpLearn deals with unambiguous information more

directly. Note that when we remove the single-label bags in HJA Birdsong and conduct

the same experiment, we observed that our method is comparable with SpLearn (the

result is not reported due to space limit). These results suggest that our method is more

suitable for MIML datasets containing large numbers of multi-label bags.

2.6 Conclusion

In this chapter, we introduce a novel instance clustering problem in the MIML frame-

work, where the bag-level labels are used as side information to inform the clustering of
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instances. The goal is to recover the classes or to discover subclasses within each class.

Traditional constraint-based clustering methods can not fully leverage the knowledge

provided by the bag-level class labels. In contrast, we present a simple yet effective prin-

ciple that incorporates the bag-level label information as bag constraints. The proposed

constraints can be readily integrated into any optimization-based clustering algorithm

by adding a penalty term to the objective. In this chapter, we demonstrate how the

bag constraints can be incorporated into spectral clustering and empirically validate its

effectiveness on both synthetic and real-world MIML datasets. The results show that

the proposed bag-constrained method for spectral clustering generally outperforms state-

of-the-art spectral clustering algorithms that use pairwise ML and CL constraints and

is most suitable for MIML datasets that contain relatively large number of multi-label

bags.
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Chapter 3: Comparing Clustering with Pairwise and Relative

Constraints: A Unified Framework

Abstract

Clustering can be improved with the help of side information about the similar-

ity relationships among instances. Such information has been commonly represented

by two types of constraints: pairwise constraints and relative constraints, regarding

similarities about instance pairs and triplets respectively. Prior work has mostly con-

sidered these two types of constraints separately and developed individual algorithms

to learn from each type. In practice, however, it is critical to understand/compare

the usefulness of the two types of constraints as well as the cost of acquiring them,

which has not been studied before. This chapter provides an extensive compari-

son of clustering with these two types of constraints. Specifically, we compare their

impacts both on human users that provide such constraints and on the learning sys-

tem that incorporates such constraints into clustering. In addition, to ensure that

the comparison of clustering is performed on equal ground (without the potential

bias introduced by different learning algorithms), we propose a probabilistic semi-

supervised clustering framework that can learn from either type of constraints. Our

experiments demonstrate that the proposed semi-supervised clustering framework

is highly effective at utilizing both types of constraints to aid clustering. Our user

study provides valuable insights regarding the impact of the constraints on human

users, and our experiments on clustering with the human-labeled constraints reveal

that relative constraint is often more efficient at improving clustering.

3.1 Introduction

Clustering is the task of organizing instances such that similar instances are grouped

together. It plays an increasingly important role in many applications, including image

analysis (e.g. [38, 128]), document retrieval (e.g. [34, 103]), and bioinformatics (e.g.

[64, 69]). Traditionally, clustering is an unsupervised method for data analysis, where

no labeled data is provided. However, in many applications, it is possible to acquire side

information that can help infer the underlying instance-to-cluster assignments. Such
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knowledge has been expressed as instance-level constraints for clustering, a common and

useful form that reveals similarity relationships among instances.

Instance-level constraints mainly fall into two categories: pairwise constraints and

relative constraints. A pairwise constraint specifies absolute similarity relationship be-

tween a pair of instances. That is, given a pair of instances xa and xb, a Must-link

(ML) constraint is introduced if they are similar to each other, and a Cannot-link (CL)

constraint is provided otherwise. Relative constraints, in comparison, reveal compara-

tive similarity relationships among instance triplets xa, xb, and xc, i.e., each constraint

specifies whether instance xa is more similar to xb than to xc. Both types of constraints

have been previously incorporated into clustering using metric learning approaches (e.g.,

[2, 22, 31, 66, 83, 89, 110]), or methods that directly search for clustering solutions that

respect the constraints (e.g., [7, 80, 90, 102]).

Despite the broad study on both types of constraints, most work has focused on only

one type. Moreover, most work assumes that the constraints are given beforehand and

they only focus on learning from the constraints without considering the cost of obtaining

them. However, to understand which type of constraints is more suitable for practical

applications, it is necessary to compare their effectiveness in improving clustering as

well as the ease of obtaining reliable constraints, which has not been studied before.

This chapter takes into account both aspects and provides an extensive comparison of

clustering with these two types of constraints. Specifically, we aim to provide answers

to the following questions.

Q1: Given the same amount of labeling effort, which type of constraint is

more effective at aiding clustering?

Earlier work on relative constraints [58, 80, 83] compared their approaches with

existing methods that use pairwise constraints and often showed superiority. However,

it is difficult to draw a strong conclusion from such comparisons because they used

different learning algorithms for different types of constraints and it is not clear whether

the performance gain they reported is due to the use of different learning algorithms or

the use of different types of constraints.

Q2: Which type of constraints is easier to obtain from human labelers?

On the surface, labeling pairwise constraints may seem easier as there are fewer

instances to be examined in each query. However, providing pairwise constraints requires
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absolute judgement (similar or dissimilar) that has long been believed to be more difficult

to make than the comparative judgement needed by relative constraints [79]. Therefore,

it is difficult to answer this question reliably without more thorough experimentation.

Q3: Which type of constraint is more reliable (i.e., the labels are more

accurate)?

This question concerns the quality of the constraints. Generally, we cannot guarantee

noise-free constraints from human labelers due to various uncertainties in the labeling

process. The question is then which type is less noisy if other factors are controlled.

Research in psychology reveals that humans are often inaccurate in making absolute

judgments, but they are more trustworthy when judging comparatively [79]. This may

imply that relative constraints provide more accurate information. But there are more

instances to consider when labeling relative constraints, leading to higher chance of

making an incorrect judgment on individual instances, which may, in turn, result in a

higher possibility of mistakes in labeling relative constraints.

To answer Q1, we first need a clustering method that can incorporate both types

of constraints in the same fashion to avoid potential comparison bias introduced by the

learning algorithms. Toward this end, we first propose a unified semi-supervised clus-

tering framework (Section 3.2). The framework uses a probabilistic model to describe

the relationships between instances, their underlying cluster memberships, and the ob-

served constraints (Section 3.2.2). Based on the model, we present an objective that

can be used for clustering with either pairwise or relative constraints (Section 3.2.3). To

optimize the objective, we develop a variational Expectation-Maximization (EM) solu-

tion (Section 3.2.4). We then theoretically analyze the informativeness of the two types

of constraints (Section 3.4) and empirically compare the clustering performance with

them (Section 3.5). To answer Q2 and Q3, we need to investigate how human labelers

behave during the labeling process. In this work, we report a user study (Section 3.5)

that we have designed and conducted specifically to answer these questions.

Our experiments with synthetically generated constraints (Section 3.3) demonstrate

that the proposed semi-supervised clustering framework is highly effective at utilizing

both types of constraints to aid clustering. Our user study (Section 3.5) empirically

compares the two types of constraints from the perspectives of their impact on users (re-

garding Q2 and Q3) and their effect on learning systems (regarding Q1).
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3.2 A Unified Framework for Clustering with Constraints

In this section, we introduce our unified probabilistic model for clustering with instance-

level constraints.

3.2.1 Problem Statement

In the problem of clustering with constraints, we are given a dataset along with a set

of constraints on the instances. Let X = [x1, . . . ,xN ]T be the given data, where each

xi ∈ Rd, and d is the dimension of the feature space. Let Y = [y1, . . . , yN ]T be the

hidden cluster label vector, where yi is the unknown cluster label of xi. Below we will use

superscripts p and r to distinguish the notations between pairwise and relative constraints

and omit the superscripts when the discussion applies to both cases. We denote the index

set of constraints as C = {I1, . . . , IM}, where Ipj = (aj , bj) and Irj = (aj , bj , cj) contains

the instance indices in the j-th pairwise or relative constraint. Correspondingly, we

denote the cluster labels of the instances involved in the j-th constraint as Y p
Ij

= [yaj , ybj ]

and Y r
Ij

= [yaj , ybj , ycj ]. Below we use I to index all the distinct instances involved in

the constraints, i.e., I =
{

1 ≤ i ≤ N : i ∈ ∪Mj=1Ij

}
1, and denote U as the set of indices

for all the instances that are not in any constraint.

In this chapter, we consider a simple and practical setting where both types of con-

straints are obtained by querying the human labelers and the answers are provided based

on the perceived underlying classes/clusters. Specifically, for a pairwise constraint, we

query the labeler whether two instances xa and xb are similar or not, and the constraint

label lp ∈ {ML,CL} is provided based on

lp =

{
ML, ya = yb

CL, ya 6= yb .
(3.1)

For a relative constraint, we ask the labeler to indicate, among the triplet (xa,xb,xc),

which two instances are more similar than the other. The constraint label lr is returned

1Notice the subtle difference between the notation C and I. While both of them contain indices of
instances in the constraints, C retains the instance ordering in each constraint especially for relative
constraints, while I only records the distinct instances in all the constraints.
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based on

lr =


abc̄, ya = yb, ya 6= yc

ab̄c, ya = yc, ya 6= yb

ābc, ya 6= yb, yb = yc

ow, o.w.

(3.2)

where the ow (otherwise) label corresponds to the case where it is not possible for the

labeler to make a reasonable decision (for example, if the three instances are equally

similar or dissimilar to each other) 2. Note that in the notation of the constraint la-

bel lr ∈ {abc̄, ab̄c, ābc, ow}, we use ·̄ to indicate the less similar instance, e.g., lr = abc̄

means that xa is more similar to xb than to xc. We denote the vector of the observed

constraint labels as L = [l1, . . . , lM ]T for both types of constraints.

In this problem, given the data X, a set of constraints C, and the constraint labels L,

our goal is to partition the data X into K disjoint clusters such that similar instances are

grouped together guided by the given pairwise or relative constraints. In this chapter, we

assume that K is pre-specified. The choice of K needs extensive study and the discussion

is out of the scope of this chapter.

3.2.2 The Probabilistic Model

Figure 3.1(a) shows the unified graphical model defining the independence assumptions

between input instances x’s, their cluster labels y’s and the observed constraint labels l’s.

In the model, the xi’s are i.i.d; the distributions of yi’s are determined by xi and the

parameter W ; the l’s only depend on the y’s. In general, l can be the label of any

instance-level constraints. When instantiating with pairwise and relative constraints, l’s

are only related to the cluster labels of the instances involved in the pair or triplet. Thus,

the model can be further simplified as shown in Figure 3.1(b) and 3.1(c).

Given the model, for both pairwise and relative constraints, the joint distribution

2Although our setting of relative constraints is similar with [80], the constraint labels are defined
differently. [80] assumes that each constraint is obtained by querying: is xa more similar to xb than to
xc. Due to the nature of the query, they did not explicitly model constraints with label ābc. Rather, it is
included in the dnk case (corresponding to ow here). In contrast, here we explicitly model the ābc case.
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Figure 3.1: The unified graphical model for clustering with constraints. (a) the unified
model; (b) instantiation of pairwise constraints; (c) instantiation of relative constraints.
For simplicity, only the variables directly connected with a single constraint label lj are
shown. When multiple labels are considered the directed graph normally has loops and
exact inference is not tractable.

consistent with the graphical model can be factorized as

P (L, Y |X;W ) = P (L|Y )P (Y |X;W ) =
M∏
j=1

P (lj |YIj )
N∏
i=1

P (yi|xi;W ), (3.3)

Below we describe our design for the conditional distributions P (yi|xi;W ) and P (lj |YIj ).
Our following discussion applies to both types of constraints. Unless it is necessary, we

will not distinguish between the two.

We first use a multi-class logistic classifier [14] to model the conditional probabil-

ity P (yi|xi;W ). Let W = [w1, . . . , wK ; b1, . . . , bK ]T be a weight matrix in RK×(d+1),

where each wk ∈ Rd contains weights on the feature space and bk’s are the bias terms.

The conditional probability P (yi|xi;W ) is defined as

P (yi = k|xi;W ) =
exp (wTk xi + bk)∑
k′ exp (wTk′xi + bk′)

, ∀i, k.

We then define the distribution of the constraint labels given the clusters labels of the

involved instances P (lj |YIj ). In an ideal scenario where the given constraints are always

correct, the distribution of lj |YIj is deterministic, namely, the label lj is deterministic

given the assignments of YIj . In practice, however, labelers can make mistakes and be

inconsistent in labeling. To address this issue, we relax the deterministic relationship
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Table 3.1: Pairwise constraints: P (lpj |Y
p
Ij

) with Y p
Ij

= [yaj , ybj ].

Cases lpj = ML lpj = CL

yaj = ybj 1− ε ε

yaj = ycj ε 1− ε

Table 3.2: Relative constraints: P (lrj |Y r
Ij

) with Y r
Ij

= [yaj , ybj , ycj ].

Cases lrj = abc̄ lrj = ab̄c lrj = ābc lrj = ow

yaj = ybj , yaj 6= ycj 1− ε ε/3 ε/3 ε/3

yaj = ycj , yaj 6= ybj ε/3 1− ε ε/3 ε/3

ybj = ycj , yaj 6= ybj ε/3 ε/3 1− ε ε/3

o.w. ε/3 ε/3 ε/3 1− ε

for P (lpj |Y
p
Ij

) and P (lrj |Y r
Ij

) as described in Table 3.1 and 3.2 respectively. The relaxation

is parameterized by ε ∈ [0, 1), indicating the probability of an error when labeling the

constraints. Take relative constraints for example, if yaj = ybj , yaj 6= ycj , then the

constraint label is returned as lrj = abc̄ in the deterministic relations. In our relaxation

distribution instead, the ideal label lrj = abc̄ is given with probability 1 − ε, and any

other label among ab̄c, ābc and ow is given with equal probability ε/3. In this way,

the relaxation accommodates the erroneous labels. Additionally, this relaxation allows

the constraints to be soft as needed. Later in our objective, we will introduce a term

to enforce cluster balance and separation. By allowing for such soft constraints, the

relaxation balances the trade-off between satisfying all constraints and finding large

separation margins among balanced clusters.

3.2.3 Objective

Our objective includes learning from both the constraints and the unlabeled instances.

Firstly, to learn from the given constraints, we maximize the likelihood of the observed

constraint labels given the instances, i.e.,

Φ(L|XI ;W ) =
1

M
logP (L|XI ;W ) =

1

M
log
∑
YI

P (L, YI |XI ;W ), (3.4)
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where I indexes the constrained instances as defined in Section 3.2.1, and 1
M is a nor-

malization constant.

Secondly, we also learn from the unlabeled data using unsupervised clustering method.

Generally, a good clustering solution desires large separation margins to achieve high

confidences for cluster memberships of individual instances, and a balanced distribution

across clusters to avoid degenerated solutions. Following this principle, we incorporate

the unsupervised clustering objective in [44], which can be naturally combined with our

model. This objective is to maximize the mutual information between instance features

and the hidden cluster labels:

I(Y,X;W ) = H[ŷ|W ]−H[YU |XU ;W ]. (3.5)

The first term in (3.5) is the conditional entropy of the empirical cluster label distri-

bution H[ŷ|W ] = −
∑K

k=1 p̂k log p̂k, where p̂k = 1
N

∑N
i=1 p(yi = k|xi;W ). This entropy

is maximized when the cluster labels are uniformly distributed, namely, the clusters are

balanced. Since this entropy term regards the structure of the entire data, we use both

constrained and unconstrained instances for this term.

The second term is the conditional entropy of instance cluster labels for the unlabeled

instances H[YU |XU ;W ] = 1
|U |
∑

i∈U H[P (yi|xi;W )]. When it is minimized, the formed

clusters will have large separation margin and high confidence for the cluster member-

ships of unconstrained instances. Note that we only use unconstrained instances in this

term, since stronger cluster membership information about the constrained instances has

already been captured by (3.4).

Combining these two objectives above, and adding a regularization for the parame-

ter W , our unified objective becomes

max
W

Φ(L|XI ;W ) + τI(Y,X;W )− λR(W ). (3.6)

where R(W ) =
∑

k w
T
k wk is the L-2 regularization, and λ and τ are coefficients.
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3.2.4 Optimization

Now we present our approach that optimizes the objective (3.6) when either pairwise or

relative constraints are given. Computing the likelihood term requires marginalizing over

hidden variables YI . When many y’s are related to each other via constraints, marginal-

ization becomes too expensive to compute and exact inference may be intractable. For

this reason, we use variational EM for optimization.

In variational EM, a lower bound of the objective is found and maximized alter-

nately in the E-steps and M-steps [14]. The first term in the objective can be written

as logEQ(YI)

[
P (YI ,L|XI ;W )

Q(YI)

]
, where Q(YI) is a variational distribution. Applying Jensen’s

inequality to the log function, we obtain the lower bound

LB =
1

M
EQ(YI)

[
log

P (YI , L|XI ;W )

Q(YI)

]
+ τI(Y,X;W )− λR(W ). (3.7)

In each E-step, for a fixed parameter W , the LB is maximized when the distribu-

tionQ(YI) minimizes the Kullback-Leibler divergenceKL[Q(YI)||P (YI |L,XI ;W )]. Given

the Q(YI) found in the E-step, the M-step updates W to maximize LB. Note that in the

objective (and LB), only the likelihood term is relevant to E-steps. The other terms are

only related in solving for W in M-steps.

3.2.4.1 Variational E-Step

We use mean field inference [41, 86] to find the variational distribution Q(YI), due

to its ease of implementation and convergence properties [8]. Mean field method re-

stricts Q(YI) to the fully-factorized family Q(YI) =
∏
i∈I q(yi), and find the Q(YI) that

minimizes KL[Q(YI)||P (YI |L,XI ;W )]. The optimal Q(YI) is obtained by iteratively

updating each q(yi) until convergence. The update equation in each iteration is

q(yi) =
1

Z
exp{EQ(YI\i)[logP (YI , L|XI)]} , (3.8)

where Q(YI\i) =
∏
u∈I,u 6=i q(yu), and Z is a normalization factor to ensure

∑
yi
q(yi) = 1.

Below we derive a closed-form update of (3.8) for our model.
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Substituting the model factorization (3.3) to the expectation term in (3.8), we have

EQ(YI\i)[logP (YI , L|XI)] =
∑
j:i∈Ij

EQ(YIj\i)
[logP (lj |YIj )] + logP (yi|xi;W ) + c, (3.9)

where c absorbs all the constant terms with respect to yi, and Ij\i is the indices in Ij

removing i 3. The first term in (3.9) sums over the expected log-likelihood of observing

each lj given the fixed yi. To compute the expectation, we first let Q̃(lj |yi, Ij) be the

probability that the observed constraint label lj is consistent with the fixed yi and the

other assignments of YIj\i. That is, Q̃(lj |yi, Ij) is the probability of the event that YIj |yi
satisfies the conditions to allow P (lj |YIj ) = 1 − ε according to Table 3.1 or 3.2. For

both pairwise and relative constraints, the values Q̃(lpj |yi, I
p
j ) and Q̃(lrj |yi, Irj ) can be

computed straightforwardly as in Table 3.3 and 3.4. Then, each of the expectations

in (3.9) is computed as

EQ(YIj\i)
[logP (lj |yi, Ij)] = [1− Q̃(lj |yi, Ij)] log δ(ε) + Q̃(lj |yi, Ij) log(1− ε).

where δ(ε) = ε for pairwise constraints and δ(ε) = ε/3 for relative constraints, represent-

ing the probability for the erroneous label.

With the above derivation, we can simplify the update equation (3.8) as

q(yi) =
αF (yi)P (yi|xi;W )∑
yi
αF (yi)P (yi|xi;W )

, with F (yi) =
∑
j:i∈Ij

Q̃(lj |yi, Ij) (3.10)

where α = (1− ε)/ε for pairwise constraints and α = 3(1− ε)/ε for relative constraints.

We can interpret the term F (yi) as a measurement of the compatibility of each yi with

respect to the constraints and the other cluster labels involved in the same constraints.

The α in (3.10) is controlled by the parameter ε. When ε ∈ (0, 1
2) for pairwise constraints

or ε ∈ (0, 3
4) for relative constraints, we have α > 1 and the update (3.10) allows for more

compatible assignments of yi’s (the ones with higher F (yi) values) to have larger q(yi).

When ε = 1
2 for pairwise constraints or ε = 3

4 for relative constraints, the constraint

labels are regarded as uniformly distributed regardless of the instance cluster labels, as

can be seen from the distribution P (lj |YIj ) in Table 3.1 and 3.2. In this case, α = 1

3Note that Ij\i contains one instance for a pairwise constraint, and two instances for a relative
constraint.
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Table 3.3: Pairwise Constraints: the values of Q̃(lpj |yi = k, Ipj ), i ∈ Ipj . For simplicity,
we denote q·k = q(y·j = k).

Cases lpj = ML lpj = CL

i = aj qbk 1− qbk
i = bj qak 1− qak

Table 3.4: Relative Constraints: the values of Q̃(lrj |yi = k, Irj ), i ∈ Irj . For simplicity, we
denote q·k = q(y·j = k) and q·k̄ =

∑
u6=k q(y·j = u).

Cases lrj = abc̄ lrj = ab̄c lrj = ābc lrj = ow

i = aj qbkqck̄ qbk̄qck
∑
u6=k

qbuqcu 1− qbkqck̄ − qbk̄qck −
∑
u6=k

qbuqcu

i = bj qakqck̄
∑
u6=k

qauqcu qak̄qck 1− qakqck̄ − qak̄qck −
∑
u6=k

qauqcu

i = cj
∑
u6=k

qauqbu qakqbk̄ qak̄qbk 1− qakqbk̄ − qakqbk̄ −
∑
u6=k

qauqbu

and each q(yi) is directly set to the conditional probability P (yi|xi;W ). This naturally

reduces our method to learning without constraints. Clearly, when ε is smaller, the

constraints are harder and the updates will push q(yi) to more extreme distributions to

favor assignments that are consistent with the constraints. Note that when ε ∈ (1
2 , 1)

for pairwise constraints or ε ∈ (3
4 , 1) for relative constraints, the value α < 1, which will

lead to results that contradict the constraints, and such cases are generally not desired.

Special Case: Hard Constraints. In the special case where ε = 0 and α =∞, P (lj |YIj )
essentially reduces to the deterministic relations, allowing our model to incorporate hard

constraints. The update equation of this case can also be addressed similarly. In this

case, q(yi) is non-zero only when the assignment of yi is the most consistent with the

observed constraints (Note that there could be multiple maximum). Thus, the update

equation is reduced to a max model. More formally, we define Ỹi as the max-compatible

label set for xi with respect to the constraints, namely,

Ỹi = {1 ≤ k ≤ K : F (yi = k) = max
k′

F (yi = k′)}.
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Then the update equation in the mean field steps becomes

q(yi) =


P (yi|xi;W )∑

y′i∈Ỹi
P (y′i|xi;W )

, if yi ∈ Ỹi ,

0, o.w.

(3.11)

3.2.4.2 M-Step

With the distribution Q(YI) found in E-step, the M-step updates W to maximizes the

LB. By applying the factorization (3.3) and simplifying the LB, we obtain the following

objective

max
W

1

M

∑
YI

Q(YI) logP (YI |XI ;W ) + τI(Y,X;W )− λR(W ).

This optimization can be solved via gradient ascent methods. In our experiments, we

use the L-BFGS algorithm [87].

3.2.4.3 Complexity and Initialization

For each E-step, the complexity is O(γK|I|), where γ is the number of mean-field iter-

ations for Q(YI) to converge. In the M-step, the complexity of computing the gradient

of W in each L-BFGS iteration is O(NKd).

The mean-field approximation used in the E-step is guaranteed to converge. In prac-

tice, we can use a fixed number of update iterations as an extra termination condition.

Our empirical results show that mean field converges very fast, especially in later EM

iterations.

To better initialize our method, we first apply Kmeans and train a supervised logistic

classifier with the clustering results. The learned weights are then used as the starting

point of our method. Empirically we observe that such initialization typically allows the

algorithm to converge within 100 iterations.
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Table 3.5: Summary of Constrained Clustering Datasets Information.
Dataset #Inst. #Dim. #Cluster

Ionosphere 351 34 2
Pima 768 8 2

Balance-scale 625 4 3
Digits-389 3165 16 3

Letters-IJLT 3059 16 4
MSRCv2 1046 48 6
Flower 1066 128 7

HJA Birdsong 4998 38 13
Birdsong v2 2467 38 13

3.3 Performance of the Proposed Clustering Framework

In this set of experiments, we show that the proposed framework is very effective at

clustering with pairwise and relative constraints. This allows us to later compare the

two types of constraints using an effective learning algorithm.

3.3.1 Datasets

We use five UCI datasets and four additional real-world datasets. The UCI datasets

include: Ionosphere, Pima, Balance-Scale, Digits-389, and Letters-IJLT. The four ad-

ditional datasets are: 1) a subset of the MSRCv2 dataset [73], which contains image

segments of six common classes; 2) a subset of the Flower data [78], which contains

seven flower classes that are difficult to classify due to high within-class variances and

between-class similarities; 3) the HJA Birdsong data [17], which contains segments auto-

matically extracted from spectrograms of birdsong recordings and the goal is to identify

the bird species that make the utterance for the corresponding segment; and 4) the Bird-

song v2 data [80], another birdsong dataset that contains manually inspected segments

that are labeled with bird singing patterns. Here the task is to find distinct bird song

patterns instead of the bird species (Note that each species may contain multiple unique

song patterns). We summarize the dataset information in Table 3.5. In our experi-

ments, all features of all datasets are standardized to have zero mean and unit standard

deviation.
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3.3.2 Baseline Methods and Evaluation Metric

We evaluate our algorithm using both pairwise and relative constraints. For pairwise

constraints, we compare with three well-known methods: Xing’s method [110] (distance

metric learning for a diagonal matrix), ITML [31], and Constrained EM [90]. Xing’s

method is one of the earliest methods learning from pairwise constraints. ITML is,

based on our experience, a very effective and efficient method developed in recent years.

Constrained EM is another probabilistic method that learns from pairwise constraints.

It employs a generative model, which is different with the discriminative model used in

our method.

For relative constraints, we compare with: 1) LSML [66], a distance metric approach

(here Euclidean distance is used as the prior); 2) SSSVaD [58], a method that finds

clustering solutions and learns a distance metric from the relative constraints; and 3)

sparseLP [83], an earlier method that has not been extensively compared with. We also

experimented with the SVM-style method in [89]. Its performance is generally worse

than the other competing methods, and the result is not reported. Note that due to the

design of these methods, they can only employ relative constraints with label abc̄, ab̄c or

ābc, and can not be easily extended to incorporate the ow constraints.

Several methods in the baselines incorporate constraints using metric learning tech-

niques: Xing’s method, ITML, LSML, and sparseLP. For such methods, we apply

Kmeans (with 50 random restarts) using the learned metric to form the clustering re-

sults. We evaluate the clustering results of all methods using pairwise F-measure [13],

Adjusted Rand Index and Normalized Mutual Information. The results are highly similar

across different measures, and here we only present the F-Measure results.

3.3.3 Overall Performance

3.3.3.1 Experimental Setup

In this set of experiments, we evaluate all methods using synthetically generated con-

straints. We first randomly generate instance pairs or triplets and then assign the con-

straint labels deterministically based on their cluster labels. Namely, we label a pairwise

constraint (xa,xb) as ML if the cluster label ya and yb are the same, and CL otherwise.

For relative constraints, we label the constraint (xa,xb,xc) as abc̄ if ya is the same with
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yb and different with yc, and similarly for the case of ab̄c and ābc. In other cases, the

relative constraint is labeled as ow.

For pairwise constraints, we vary the number of constraints from 0.1N to 0.6N

with a 0.1N increment, where N is the total number of instances. We compare our

method (shown as DC-P) with Xing, ITML, and Constrained EM using all the pairwise

constraints as input for all methods.

For relative constraints, we increase the number of constraints from 0.05N to 0.3N

with a 0.05N increment. Since the baseline methods for relative constraints can not

easily incorporate the ow constraints, we drop the ow constraints for these methods. We

evaluate our method in two settings, one with all relative constraints as input (shown

as DC-R), and the other with only abc̄, ab̄c, ābc constraints (shown as DC-R-C ). That

is, DC-R-C uses the same set of constraints with the baseline methods (after dropping

the ow constraints), while DC-R employs all the generated constraints. The DC-R-C

setting is included for two purposes. One is to achieve a fair comparison with the baseline

methods as they use the same amount of information from the constraints. The other

purpose is to evaluate how the seemingly uninformative ow relative constraints can help

improving clustering.

We use five-fold cross-validation to tune parameters for all methods using the avail-

able constraints, and choose the parameters that maximize the prediction accuracy of

on the validation constraints. Our method has three parameters: the coefficient pa-

rameters τ and λ, and the constraint relaxation parameter ε. We search for the opti-

mal τ ∈ {0.5, 1, 1.5} and λ ∈ {2−10, 2−8, 2−6, 2−4, 2−2}. For the choice of ε, we empiri-

cally observed that our method is very robust to different values when it is within the

range [0.05, 0.15]. Here we set ε = 0.05 for both experiments with pairwise and relative

constraints; this allows for soft constraints since the constraints are noise-free. We repeat

all experiments for 20 randomized runs each with independently sampled constraint sets,

and report the averaged results.

3.3.3.2 Results and Discussions

Figure 3.2 shows the clustering performances with different numbers of pairwise con-

straints for all competing methods. We can see that our method (DC-P) is comparable

or outperforms the baselines on all datasets. We would like to note that the proba-
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Figure 3.2: Pairwise Constraints: Clustering performance with different number of con-
straints. Error bars are reported with mean and the 95% confidence intervals.
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Figure 3.3: Relative Constraints: Clustering performance with different number of con-
straints. Error bars are reported with mean and the 95% confidence intervals.

bilistic method Constrained EM only performs reasonably well on datasets with a small

number of classes (e.g., Ionosphere and Pima), but tend to be less effective on datasets

with a large number of classes (e.g., Flower and Birdsong v2 ). One possible reason is

that Constrained EM uses a generative model, which is generally known to be inferior

to discriminative models (used in our method) [52, 92] for classification and regression
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tasks.

Figure 3.3 shows the performance of different methods with varied number (before

dropping ow constraints) of relative constraints. We see that our method, both DC-R and

DC-R-C, consistently outperform all the baselines. The fact that DC-R-C outperforms

the baselines suggests that our method is competitive with the state-of-the-art methods,

as they are using the same set of constraints. In addition, DC-R often further improves

the performance than DC-R-C, which implies that the ow constraints are also useful for

clustering.

All the above results demonstrate the effectiveness of our unified framework in clus-

tering with either pairwise or relative constraints. This enables us to later compare

pairwise and relative constraints using a reasonably good clustering method.

3.3.4 Soft Constraints vs. Hard Constraints
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Figure 3.4: Pairwise Constraints: Clustering performance of our method using hard
vs. soft constraints.

This set of experiments demonstrates the benefits of allowing for “soft constraints”

introduced by the design of conditional probability P (l|Y ) in our model. We set ε = 0.05

and ε = 0 for our method to enforce soft and hard constraints respectively. We compare
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Figure 3.5: Relative Constraints: Clustering performance of our method using hard
vs. soft constraints.

them by setting the other experiment factors the same with previous section 3.3.3. Figure

3.4 and Figure 3.5 show the results of enforcing soft/hard pairwise/relative constraints

on six challenging multi-cluster datasets. The performances of soft/hard constraints

on datasets with small number of clusters are similar and are not reported. From the

results, we can see that for both cases, using soft constraints generally leads to better

performance than using hard constraints. In particular, on the MSRCv2 and Flower

datasets, using hard constraints produces a large “dip” at the beginning of the curve

while this issue is not as severe for soft constraints (in both cases of pairwise and relative

constraints). This suggests that using soft constraints makes our model less susceptible

to overfitting to small sets of constraints.

3.3.5 Computational Time

The runtime of learning from pairwise and relative constraints are similar with the same

number of constraints. We record the runtime of learning with 1500 relative constraints

on our largest HJA Birdsong dataset on a standard desktop computer with 3.4 GHz CPU

and 11.6 GB of memory. On average it takes less than 2 minutes to train the model
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using an unoptimized Matlab implementation.

3.4 Comparing Informativeness of Constraints: A Mathematical

Analysis

The proposed unified framework provides a clustering method that allows for a fair com-

parison between pairwise and relative constraints. When comparing the two types of

constraints, one fundamental question is how to objectively measure their usefulness,

regardless of what clustering method is employed. A quite general, sound strategy is

to measure their information content. Specifically, we assess the information that each

type of constraints provides about the underlying class labels, when the provided con-

straints are consistent with these class labels. From an information-theoretic perspective,

we quantify the information of the constraints by the mutual information between the

constraint labels and the clusters labels of the involved instances.

Given i.i.d instances {xi}Ni=1 sampled from K clusters (with replacement), let pk =

P (y = k) be the distribution of the k-th cluster label. Consider a pair (xa,xb) and a

triplet (xa,xb,xc) with cluster labels Y p = [ya, yb]
T and Y r = [ya, yb, yc]

T , and constraint

labels lp ∈ {ML,CL} and lr ∈ {abc̄, ab̄c, ābc, ow} respectively. As described previously,

for noise-free constraints, the labels are determined by (3.1) and (3.2).

The following theorem provides the mutual information between the constraint labels

and the associated instance cluster labels.

Theorem 3.4.1. When constraints are consistent with the class labels as given by (3.1)

and (3.2), the mutual information I(Y, l) for each type of constraints is given by:

I(Y p, lp) = H[lp] = PM log
1

PM
+ (1− PM ) log

1

1− PM
. (3.12)

I(Y r, lr) = H[lr] = 3PR log
1

PR
+ (1− 3PR) log

1

1− 3PR
. (3.13)

where PM =
∑

k p
2
k is the marginal probability of obtaining an ML pairwise constraint

when choosing two instances uniformly at random, and PR =
∑

k p
2
k(1 − pk) is the

marginal probability of obtaining an abc̄, ab̄c, or ābc relative constraint when choosing

three instances uniformly at random.
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Proof. By the definition of mutual information, I(Y, l) = H[l] −H[l|Y ]. Since Y deter-

ministically decides l, we have H[l|Y ] = 0, and thus I(Y, l) = H[l]. This is true for both

pairwise and relative constraints.

Now we derive the specific forms of H[lp] and H[lr]. For a pairwise constraint, it is

easy to see that PM = P (lp = ML) =
∑

k p
2
k, and P (lp = CL) = 1− PM . Hence,

H[lp] = PM log
1

PM
+ (1− PM ) log

1

1− PM
.

Similarly, for a relative constraint, we have PR = P (lr = abc̄) = P (lr = ab̄c) = P (lr =

ābc) =
∑

k p
2
k(1− pk), and P (lr = ow) = 1− 3PR. Thus,

H[lr] = 3PR log
1

PR
+ (1− 3PR) log

1

1− 3PR
.

This completes our proof.

Derived from the above theorem, the following corollary compares the two mutual

information I(Y p, lp) and I(Y r, lr).

Corollary 3.4.1.1. If pk ≤ 2
3 ,∀k ∈ {1, ...,K} and 3PR ≤ 1 − 1

e , then I(Y r, lr) ≥
I(Y p, lp).

Proof. We show that under the above conditions, both terms of I(Y r, lr) in (3.13) are

greater than the corresponding terms of I(Y p, lp) in (3.12).

To prove that 3PR log 1
PR

> PM log 1
PM

(the first terms), we observe that PR =∑
k p

2
k(1− pk) ≤

∑
k p

2
k = PM , from the fact that 1− pk ∈ [0, 1],∀k. Then we have

log
1

PR
≥ log

1

PM
. (3.14)

If pk ≤ 2
3 ,∀k, then 3p2

k(1− pk) ≥ p2
k,∀k, and summing over k’s we have∑

k

3p2
k(1− pk) ≥

∑
k

p2
k ⇔ 3PR ≥ PM . (3.15)

From the two inequalities derived in (3.14) and (3.15), it is obvious that

3PR log
1

PR
≥ PM log

1

PM
.
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To prove that (1− 3PR) log 1
1−3PR

> (1− PM ) log 1
1−PM (the second terms), we first

note that the function f(x) = (1− x) log 1
(1−x) , 0 ≤ x < 1 is monotonically increasing in

the interval [0, 1− 1
e ]. Hence, if 0 ≤ PM ≤ 3PR ≤ 1− 1

e (which holds under the required

conditions), then

(1− 3PR) log
1

1− 3PR
≥ (1− PM ) log

1

1− PM
.

Thus, the second term of I(Y r, lr) is also greater than the second term of I(Y p, lp).

Hence, if the two conditions pk ≤ 2
3 ,∀k and 3PR ≤ 1 − 1

e hold, we have I(Y r, lr) ≥
I(Y p, lp).

The conditions in Corollary 3.4.1.1 can be interpreted as requirements on the distri-

butions of the cluster and the constraint labels. The first condition pk ≤ 2
3 ,∀k restricts

that none of the clusters contains more than 2
3 portion of the instances, implying that the

clusters are not extremely unbalanced. The second condition indicates that 3PR ≤ 1− 1
e

P (lr = ow) = 1− 3PR ≥ 1
e , namely the probability of the ow relative constraint should

not be too small. Combining the two conditions, we can also derive PM ≤ 3PR ≤ 1− 1
e

and P (lp = CL) = 1− PM ≥ 1
e . That is, both the probability of ow and CL constraints

are larger than 1
e . Generally, as the number of clusters becomes large, the probability

of ow and CL constraints tends to increase. In practice, if there are a large number of

clusters that are not extremely imbalanced, then the two conditions are easily satisfied

and we have I(Y r, lr) ≥ I(Y p, lp).

We note that the conditions in Corollary 3.4.1.1 are sufficient but not necessary.

In some cases where such conditions are not satisfied, we may still have I(Y r, lr) ≥
I(Y p, lp). For example, when the cluster labels are equally distributed, i.e., pk = 1

K ,∀k,

the condition 3PR ≤ 1 − 1
e is not always satisfied for different values of K. However,

below we show that I(Y r, lr) > I(Y p, lp) still holds.

In this case, we substitute the values of pk’s to (3.12) and (3.13) and obtain

I(Y p, lp) = logK −
(

1− 1

K

)
log(K − 1)

I(Y r, lr) = 2 logK − 3(K − 1)

K2
log(K − 1)−

(
1− 3(K − 1)

K2

)
log[K2 − 3(K − 1)].
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Figure 3.6: Comparison of the mutual information between the pairwise and relative
constraint labels and the instance cluster labels as a function of the number of clusters.

To compare I(Y p, lp) and I(Y r, lr), we plot their values as a function of the number

of clusters K in Figure 3.6. Comparing the values of one relative constraint and one

pairwise constraint in Figure 3.6(a), we see that I(Y r, lr) > I(Y p, lp) for different values

of K’s. One might argue that a triplet contains more instances than a pair, which

may make this comparison unfair. To address this potential bias, we compare them in

the case where the same number of instances are involved in both types of constraints,

i.e., two relative and three pairwise constraints. For simplicity we consider the case of

disjoint constraints, where the mutual information of two relative and three pairwise

constraints are simply the corresponding multiple of one constraint. Figure 3.6(b) plots

the information of two relative constraints and three pairwise constraints, both involving

six instances. We again see that relative constraints are more informative.

Overall, the above analyses strongly suggest that relative constraint is a more effective

representation of domain knowledge for clustering.

3.5 Empirical Comparison of Constraints via A User Study

In this section, we empirically compare the two types of constraints through a user study

and answer the three research questions proposed in Section 3.1.
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3.5.1 User Study Design

3.5.1.1 Participants and Tasks

We recruit 24 participants from a pool of responses to a campus-wide recruitment no-

tice. None of the participants has any experience with the specifics of clustering with

constraints or with the datasets used in the study.

Two treatments are established in the study: labeling 195 pairwise constraints and

labeling 130 relative constraints. We employ datasets from two domains: 1) the Birdsong

v2 dataset associated with a bioacoustics application, where the goal is to find distinct

birdsong patterns by detecting clusters of birdsong segments and 2) the Flower dataset

from a more general image domain, where the goal is to identify the species of each flower

in the image.

We adopt a within-subject design where each participant works with every treatment

and dataset (i.e., each participant labels both pairwise and relative constraints for both

datasets). Within each subject, the tasks are performed in random order. For each task,

we first sample each constraint set from a large pool of randomly generated constraints,

and then post queries to the users.

3.5.1.2 Procedures

In the pre-task introduction, we explain the concepts of clustering with pairwise and

relative constraints, the main tasks and the user interface. We also give the participants

a few practice examples. During the experiments, we ask the participants to label the

constraints by sequentially showing the images of the compared items. Due to their

different backgrounds, participants may have different familiarity levels with the datasets.

For example, engineering students might be more familiar with the spectrogram images

in the Birdsong v2 datasets than others. To reduce such potential bias, we provide

a reference book for each dataset listing one example from each of the classes. The

reference book is explained to the participants before the tasks and is also available

during the tasks. We record the time it takes for each participant to respond each query

(i.e., to provide a constraint).
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(a) Pairwise Constraint (b) Relative Constraint

Figure 3.7: Screenshots of obtaining pairwise and relative constraints for the Flower
dataset using the developed interface.

3.5.1.3 User Interface

We design a web-based interface to acquire both types of constraints by posing queries

to the participants. Specifically, for each participant, we first sample the constraint

sets from a large pool manually labeled with “easy” or “difficult” constraints and fix

the difficulty level for different participants by controlling the number of “easy” and

“difficult” constraints in each set. We then query the constraints to the participants

sequentially in random ordering. For pairwise constraints, we display image pairs to the

participant and ask, “Do these images belong to the same class?”. Similarly, for relative

constraints, we present the image triplets and ask the participants “Select two images that

you think belong to the same class, which is different from the class of the other image. Click

‘otherwise’ if you don’t think such pair exists.”. Figure 3.7 shows an example for each type

of constraints from the Flower dataset with our interface.

3.5.1.4 Post-Task Questionnaires

After finishing all the tasks, we ask the participants to take a survey regarding their

labeling experiences. The survey contains the following questions, some based on the

NASA-TLX questionnaire [47] and others designed specifically for the study:

• PERFORMANCE Regarding both datasets, select the task where you have more con-

fidence about your answers.

• EFFORT PER QUERY On average, select the task where you spent more effort to
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Table 3.6: The average time cost (mean ± std in seconds) for labeling each constraint.

(a) Pairwise Constraints

Dataset Per Const Per ML Per CL

Birdsong 3.08± 1.22 3.95± 1.68 2.84± 1.28
Flower 2.10± 0.71 2.41± 0.71 2.04± 0.75

(b) Relative Constraints

Dataset Per Const abc̄/ab̄c/ābc Per ow

Birdsong 6.19± 3.17 6.44± 3.21 5.98± 3.25
Flower 4.05± 1.41 4.02± 1.23 4.09± 1.63

complete each query on the two datasets.

• OVERALL EFFORT On average, select the task where you spent more effort to com-

plete all pairwise queries (195) and relative queries (130) on the two datasets.

• FRUSTRATION Regarding both datasets, select the task where you felt more stressed

or discouraged.

• PREFERENCE Based on your experience of labeling pairwise and relative constraints

on both datasets, which task do you prefer in general?

3.5.2 Results and Discussions

In this section, we evaluate the user study results to compare the constraints’ impacts

on the human users and the clustering systems.

3.5.2.1 Ease of Obtaining Constraints

We investigate two aspects to compare the ease of obtaining the two types of constraints

(Q2). First, we hypothesize that the cost of obtaining the constraints is related to the

time spent on labeling the constraints. Then we compare the labeling time for each type

of constraints. Second, we compare the participants’ own preferences based on their

labeling experiences.

Table 3.6 reports the average time for labeling each pairwise, ML, and CL constraint,
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Table 3.7: Survey results regarding preferences between labeling pairwise and relative
constraints.

Factors Pairwise Relative No preference

Better Performance 16/24 6/24 2/24

Less Effort per Query 17/24 5/24 2/24

Less Effort for all Queries 15/24 6/24 3/24

Less Frustration 13/24 3/24 8/24

Overall Preference 17/24 4/24 3/24

and the time for labeling each relative constraint, abc̄, ab̄c, ābc constraint, and ow con-

straint. First, we see that for both datasets labeling a pairwise constraint requires less

amount of time than labeling a relative constraint. One possible reason could be that

each relative constraint involves more instances to be examined and more pairwise com-

parisons between instances to be made, which may result in longer labeling time. This

result implies that pairwise constraints might be easier to obtain if the labeling effort is

based on the time spent. Second, we also observe that the time of labeling a CL con-

straint is shorter than that of ML constraints, implying that CL constraints are easier

to label than ML constraints.

Table 3.7 reports the statistics of participants’ answers to the survey questions. We

see that most participants feel more confident on their labels to pairwise constraints and

also spend less effort on the labeling. This suggests that from the users’ perspective,

providing pairwise constraints is in general easier.

Overall, 18 participants prefer to provide supervision in the form of pairwise con-

straints for similar reasons. For example, some comments from the participants are,

“It is easier to compare two different items than comparing three items at a

time.”

“It is easier for me to compare two things and quickly judge whether they

share a quantity of characteristics that place them in the same class. For

many pairwise comparisons, I could quickly see that they fit vastly in different

classes.”

These answers suggest that Cannot-link (CL) pairwise constraints are in general easier

for the user to provide than relative constraints. In the queried constraint sets, there is
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usually a large portion of CL constraints (due to the random sampling from the dataset of

a large number of classes), which may explain why the participants feel easier to provide

pairwise constraints. However, four users prefer to use relative constraints. Some of the

reasons are

“It seems to be something innate, I am reminded of Sesame Street, ‘one

of these things is different, of these things does not belong.’ Choosing the

odd one out of three is easier than are these the same.”

“I think that it is easier to distinguish patterns differing in a group. There

can be variations within the same class but with two different classes, the

patterns are easier to distinguish especially when there are three subjects to

compare.”

From these comments, we hypothesize that it is easier to pick out one different instance

for the relative constraint query than judging the similarities of a pair when the pairwise

constraint is ML. That is, an additional instance in the relative constraint provides more

context information about the patterns, which makes the abc̄, ab̄c, ābc relative constraints

easier to label than ML pairwise constraints.

Some participants have no preference between providing pairwise or relative con-

straints. For example, one user said that

“Pairwise constraints seem easier to do. Relative constraints take more time.

However, I will say that in the more difficult Birdsong task, the relative con-

straints were helpful because it gave me something other than the reference

book to compare to.”

In summary, CL pairwise constraints seem easier to obtain than relative constraints.

Likewise, the abc̄, ab̄c, ābc relative constraints tend to be easier to acquire than ML pair-

wise constraints. Looking back at the sampled constraint sets used in this experiment,

we noted that the CL pairwise constraints made up the larger proportion of pairwise

constraints for each user due to that random sampling would produce more CL con-

straints than ML constraints as the number of classes increases. This is likely to have

influenced the perception that pairwise constraints are in general easier to label than

relative constraints.



51

Table 3.8: Birdsong v2 Data: The average confusion matrix of the human labeled con-
straints vs. the ground truth constraint labels. The overall accuracy for each type of
constraint is shown in the corresponding caption.

(a) Pairwise Const. (83.52%)

True
Human Labels

CL ML

CL 142.42 6.50

ML 8.92 37.15

(b) Relative Const. (82.68%)

True
Human Labels

ow abc̄ ab̄c ābc

ow 59.88 3.46 3.38 3.62
abc̄ 2.62 14.73 0.12 0.62
ab̄c 3.65 0.31 17.00 0.38
ābc 3.62 0.31 0.42 15.88

Table 3.9: Flower Data: The average confusion matrix of the human labeled constraints
vs. the ground truth constraint labels. The overall accuracy for each type of constraint
is shown in the corresponding caption.

(a) Pairwise Const. (96.65%)

True
Human Labels

CL ML

CL 158.54 4.54

ML 2.00 29.92

(b) Relative Const. (92.88%)

True
Human Labels

ow abc̄ ab̄c ābc

ow 75.88 1.46 1.73 2.15
abc̄ 0.88 14.12 0.08 0.15
ab̄c 1.19 0.12 13.42 0.15
ābc 1.23 0.08 0.04 17.31

3.5.2.2 Labeling Accuracy

Next, we evaluate the labeling accuracy of the two types of constraints and address the

research question Q3 in section 3.1. We measure the accuracy of the constraint labels

against the labels derived from the ground truth instance classes. Table 3.8 and Table

3.9 list the average confusion matrix of the human-labeled constraints against the ground

truth.

From the results, we see that the overall accuracy for labeling pairwise constraints

on both datasets is slightly higher than that of relative constraints. Several possible

reasons may explain the results. One is that the CL pairwise constraints are very easy

to distinguish and the large portion of CL constraint may lead to overall higher accuracy

for pairwise constraints. Another possible reason could be that the multiple options for

labeling relative constraints make the chance of mistakes naturally higher than that of
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pairwise constraints (where there are only two choices), resulting in overall higher error

rate.

However, one interesting result is that the confusion of abc̄, ab̄c, ābc for relative con-

straints is much smaller than that of ML and CL constraints. This implies that users are

very accurate at providing relative constraints whenever two of the compared instances

belong to the same class (while the third instance does not).

This user study result also points to possible ways to further improve our model.

As revealed by Table 3.8 and 3.9, the noise on the labels for relative constraints is not

uniform as assumed by our model. An interesting future direction is to introduce a

non-uniform noise process to more realistically model the users’ labeling behaviors.

3.5.2.3 Effectiveness in Improving Clustering

Now we compare the effectiveness of the two types of constraints and answer Q1 in

Section 3.1. We consider the following two factors:

• Given a limited budget for examining instances, which type of constraint

will be more efficient for clustering?

We control the number of pairwise constraints to be 1.5 times the number of rel-

ative constraints and evaluated clustering performance using both synthetic and

human-labeled constraints. For synthetic constraints, we randomly generate rela-

tive constraints with size 0.05N to 0.3N with a 0.05N increment, and the compet-

ing pairwise constraints with size 0.075N to 0.45N with a 0.075N increment. For

human-labeled constraints, We divide the constraints set obtained for each user

into five sets of equal size and incrementally add each set. We run clustering with

such constraints on all datasets used in Section 3.3.

• Given limited time for labeling the constraints, which type of constraint

can improve clustering performance more significantly?

We form the comparison sets using the pairwise and relative constraints obtained

within the same amount of time in the user study. In particular, let T pi and T ri
be the total time that the i-th participant spent on labeling all pairwise and rela-

tive constraints respectively. We form the incrementally add constraints obtained

within time 0.2Ti, 0.4Ti up to Ti.
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As stated previously, to ensure a fair comparison, we use our unified framework

to clustering with the two types of constraints. The parameter ε is set to 0.05 for the

synthetic noise-free constraints again. For the human-labeled constraints, we set ε = 0.15

to account for labeling noise4.

Figure 3.8 shows the results of clustering using synthetic constraints containing the

same number of instances (Here DC-R uses relative constraints containing the same

number of instances with pairwise constraints employed by DC-P, while DC-R-C drops

the ow constraints used by DC-R). We can observe that on most datasets, the clustering

performance with relative constraints (both DC-R and DC-R-C) is higher than that

with pairwise constraints (DC-P). One exception is the HJA Birdsong dataset, where

DC-P performs much better than DC-R and DC-R-C. One possible reason is that the

extremely unbalanced cluster distribution in the data causes the pairwise constraints to

be more informative than relative constraints, as analyzed in Corollary 3.4.1.1. This in

turn results in a better clustering performance.

Figure 3.9 reports the clustering performance using the human-labeled constraints

regarding both factors mentioned above. We can see that using relative constraints

leads to higher performance improvements than using pairwise constraints in both cases.

Figure 3.9(c) shows that when the labeling time is very limited, pairwise constraints

provide more improvement on the clustering results on the less difficult Birdsong v2

dataset. But it is not the case for the more difficult Flower dataset. We suspect that

more constraints are needed to significantly improve the clustering on the Flower datasets

due to its difficulty. Another observation is that using only abc̄, ab̄c, ābc constraints

on the Flower dataset gives better performance compared to using the additional ow

constraints. This implies that on difficult tasks, it is more useful to use constraints that

provide explicit instance cluster membership information.

To further analyze the results in Figure 3.9, we examine the number of constraints

used in the human-labeled constraints. Figure 3.10 reports the number of all constraints

and the number of correctly labeled constraints. It is interesting to see that for both

settings, we used far more pairwise constraints than relative constraints on both datasets.

In addition, from prior results, the noise in pairwise constraints is smaller than that in

relative constraints. The fact that relative constraints still provide more improvement

4For these noisy constraints, our method is robust to the choice of ε. Using different values of
ε ∈ [0.05, 0.2] only results in minor fluctuations to the F-measure.
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Figure 3.8: Clustering performance with synthetic pairwise and relative constraints with
the same number of instances. Results are averaged over 20 runs. Error bars show the
95% confidence intervals.
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Figure 3.9: Clustering performance with human-labeled pairwise and relative constraints.
“Same Inst”: two types of constraints involve the same number of instances. “Same
Time”: two types of constraints are obtained within the same amount of time. Results
are averaged over 24 users. Error bars show the 95% confidence intervals.
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R−all   R−C−all  P−all   R−Correct R−C−Correct P−Correct

Figure 3.10: The number of all labeled constraints and correctly labeled constraints used
in the comparison of Figure 3.9. “R”: relative constraints; “R-C”: abc̄, ab̄c, ābc relative
constraints; “P”: pairwise constraints; “-all”: total number of constraints;“-Correct”:
correctly labeled constraints.
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further demonstrates that relative constraint is more effective.

Overall, our results reveal that labeling relative constraints might require higher cost

than labeling pairwise constraints. However, they may still be more useful since, from

our results, they are more effective at improving clustering than pairwise constraints

obtained with the same amount of or even more labeling effort. We believe that our

results can be generalized to other clustering methods that can learn from both types of

constraints labeled in the considered setting.

3.6 Related Work

Pairwise Constraints: Many studies exist on the topic of clustering with pairwise con-

straints. These approaches mainly fall into two categories. The first category incorporate

the constraints to clustering by relating them to instance clusters. Namely, pairs of in-

stances in ML constraints should be grouped to the same cluster while those in CL

constraints should be divided into different clusters. Such information is then used to

learn a clustering model that respect the constraints [7, 36, 53, 59, 60, 68, 70, 71, 76,

90, 102, 106, 107, 121, 123]. Differently, the second category uses the constraints in a

more moderate way by deriving distance relations between instances. Methods in this

category usually enforce that instances linked with ML constraints should have short

distances between them, while those connected with CL constraint should be separated

by large distances [4, 22, 31, 74, 109, 110, 117]. By imposing such constraints, a distance

metric is learned and later used for clustering. There are also methods that combine

these two types of techniques [13], and find the clustering solution along with a distance

metric during the learning.

Relative Constraints: The study of relative constraints is relatively less extensive than

that of pairwise constraints. There are also several ways to learn from such constraints.

One common approach is to impose distance relations [2, 23, 49, 58, 66, 83, 89]. Such

methods enforce d(xa,xb) < d(xa,xc) for the constraint that xa is more similar to xb than

to xc, where d(·) is the distance function. Another type of approach directly links the

similarity comparison to instance cluster memberships. The work [80] relates the cluster

membership to three possible constraint labels, “yes”, “no”, and “dnk”, representing

three possible comparison outcomes. The “yes” (“no”) label means that xa is more

similar to xb (xc) than to xc (xb). The “dnk” label includes other cases that are not
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covered by the “yes” and “no”. The authors use a probabilistic model to learn from

such constraints. In addition, another type of methods represents the instance relative

similarities in the form of hierarchical ordering [3, 67] and finds hierarchical clustering

structure in the data.

Comparison Between Pairwise and Relative Constraints: Although many work exist

regarding both types of constraints, very few study has focused on comparing the two.

Earlier work on relative constraints [58, 80, 83] compared their proposed methods with

existing methods for pairwise constraints. However, the experiments were not designed

to make fair comparisons. Such comparisons usually use different types of algorithms

for different types of constraints. As a result, it is not clear whether the performance

difference comes from the use of different types of constraints or the clustering algorithms.

In contrast, this chapter proposed a unified framework for clustering, which made a fair

comparison possible. Moreover, this chapter not only investigated the efficiency of the

two types of constraint in improving clustering, but also studied the cost of acquiring

both types of constraints as well as their labeling accuracy.

3.7 Conclusions

In this chapter, we presented an extensive comparison between pairwise constraints and

relative constraints, two common types of constraints employed to aid clustering. Specif-

ically, we studied three research questions: from the point of view of obtaining con-

straints, we studied which type of constraint is easier to obtain from the human labelers

and which type of constraint allows for higher labeling accuracy. From another point of

view of applying constraints to aid clustering, we compared the effectiveness of the two

types of constraints in improving clustering. In addition, to ensure the comparison of

clustering is performed on equal ground, we also proposed an effective unified framework

that can incorporate either type of constraints to clustering. Our results reveal that

pairwise constraints are generally easier to obtain, especially when a large portion of CL

constraints exist. However, using the unified clustering model, the relative constraints

are more effective, even if the number of used relative constraints is far less than that of

pairwise constraints.
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Chapter 4: Bayesian Active Clustering with Pairwise Constraints

Abstract

Clustering can be improved with pairwise constraints that specify similarities

between pairs of instances. However, randomly selecting constraints could lead to the

waste of labeling effort, or even degrade the clustering performance. Consequently,

how to actively select effective pairwise constraints to improve clustering becomes

an important problem, which is the focus of this chapter. In this work, we introduce

a Bayesian clustering model that learns from pairwise constraints. With this model,

we present an active learning framework that iteratively selects the most informative

pair of instances to query an oracle, and updates the model posterior based on the

obtained pairwise constraints. We introduce two information-theoretic criteria for

selecting informative pairs. One selects the pair with the most uncertainty, and

the other chooses the pair that maximizes the marginal information gain about the

clustering. Experiments on benchmark datasets demonstrate the effectiveness of the

proposed method over state-of-the-art.

4.1 Introduction

Constraint-based clustering aims to improve clustering using user-provided pairwise con-

straints regarding similarities between pairs of instances. In particular, a must-link

constraint states that a pair of instances belong to the same cluster, and a cannot-

link constraint implies that two instances are in different clusters. Existing work has

shown that such constraints can be effective at improving clustering in many cases

[4, 7, 32, 70, 76, 90, 102, 110, 121]. However, most prior work focus on “passive”

learning from constraints, i.e., instance pairs are randomly selected to be labeled by

a user. Constraints acquired in this random manner may be redundant and lead to the

waste of labeling effort, which is typically limited in real applications. Moreover, when

the constraints are not properly selected, they may even be harmful to the clustering

performance as has been revealed by Davidson et al. [30]. In this chapter, we study the

important problem of actively selecting effective pairwise constraints for clustering.
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Existing work on active learning of pairwise constraints for clustering has mostly

focused on neighbourhood-based methods [6, 46, 50, 72, 111]. Such methods maintain a

neighbourhood structure of the data based on the existing constraints, which represents

a partial clustering solution, and they query pairwise constraints to expand such neigh-

borhoods. Other methods that do not rely on such structure consider various criteria

for measuring the utility of instance pairs. For example, Xu et al. [112] propose to select

constraints by examining the spectral eigenvectors of the similarity matrix, and identify

data points that are at or close to cluster boundaries. Vu et al. [101] introduce a method

that chooses instance pairs involving points on the sparse regions of a k-nearest neigh-

bours graph. As mentioned by Xiong et al. [111], many existing methods often select a

batch of pairwise constraints before performing clustering, and they are not designed for

iteratively improving clustering by querying new pairs.

In this work, we study Bayesian active clustering with pairwise constraints in an

iterative fashion. In particular, we introduce a Bayesian clustering model to find the

clustering posterior given a set of pairwise constraints. At every iteration, our task is:

a) to select the most informative pair toward improving current clustering, and b) to

update the clustering posterior after the query is answered by an oracle/a user. Our goal

is to achieve the best possible clustering performance with minimum number of queries.

In our Bayesian clustering model, we use a discriminative logistic model to capture

the conditional probability of the cluster assignments given the instances. The likeli-

hood of observed pairwise constraints is computed by marginalizing over all possible

cluster assignments using message passing. We adopt a special data-dependent prior

that encourages large cluster separations. At every iteration, the clustering posterior

is represented by a set of samples (“particles”). After obtaining a new constraint, the

posterior is effectively updated with a sequential Markov Chain Monte Carlo (MCMC)

method (“particle filter”).

We present two information-theoretic criteria for selecting instance pairs to query at

each iteration: a) Uncertain, which chooses the most uncertain pair based on current

posterior, and b) Info, which selects the pair that maximizes the information gain re-

garding current clustering. With the clustering posterior maintained at every iteration,

both objectives can be efficiently calculated.

We evaluate our method on benchmark datasets, and the results demonstrate that our

Bayesian clustering model is very effective at learning from a small number of pairwise
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constraints, and our active clustering model outperforms state-of-the-art active clustering

methods.

4.2 Problem Statement

The goal of clustering is to find the underlying cluster structure in a dataset X =

[x1, · · · , xN ] with xi ∈ Rd where d is the feature dimension. The unknown cluster label

vector Y = [y1, · · · , yN ], with yi ∈ {1, · · · ,K} being the cluster label for xi, denotes

the ideal clustering of the dataset, where K is the number of clusters. In the studied

active clustering, we could acquire some weak supervision, i.e., pairwise constraints, by

requesting an oracle to specify whether two instances (xa, xb) ∈ X × X belong to the

same cluster. We represent the response of the oracle as a pair label za,b ∈ {+1,−1},
with za,b = +1 representing that instance xa and xb are in the same cluster (a must-link

constraint), and za,b = −1 meaning that they are in different clusters (a cannot-link

constraint). We assume the cost is uniform for different queries, and the goal of active

clustering is to achieve the best possible clustering with the least number of queries.

In this work, we consider sequential active clustering. In each iteration, we select one

instance pair to query the oracle. After getting the answer of the query, we update the

clustering model to integrate the supervision. With the updated model, we then choose

the best possible pair for the next query. So the task of active clustering is an iterative

process of posing queries and incorporating new information to clustering.

An active clustering model generally has two key components: the clustering com-

ponent and the pair selection component. In every iteration, the task of the clustering

component is to identify the cluster structure of the data given the existing constraints.

The task of the pair selection component is to score each candidate pair and choose the

most informative pair to improve the clustering.

4.3 Bayesian Active Clustering

4.3.1 The Bayesian Clustering Model

In our model, we assume that the instance cluster labels yi’s are independent given

instance xi and the model parameter W . Each pair label za,b only depends on the cluster
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labels ya and yb of the involved instances (xa, xb). The proposed Bayesian clustering

model consists of three elements: 1) the instance cluster assignment model defined by

P (Y |W,X), with parameter W ; 2) the conditional distribution of the pair labels given

the cluster labels P (Z|Y ), where Z contains all pair labels in the constraints; and 3)

the data-dependent prior P (W |X, θ) with parameter θ. The joint distribution of the

clustering model is factorized as

P (Z, Y,W |X, θ) = P (Z|Y )P (Y |W,X)P (W |X, θ) . (4.1)

We use the following discriminative logistic model as the clustering assignment model

P (Y |W,X):

P (yi = k|W,xi) =
exp(W>·,kxi)∑K

k′=1 exp(W>·,k′xi)
, ∀1 ≤ k ≤ K, 1 ≤ i ≤ N , (4.2)

where W is a d×K matrix, d is the feature dimension, and K is the number of clusters.

Here we use a special prior for W , which combines the Gaussian prior with a data-

dependent term that encourages large cluster separations of the data. The logarithmic

form of the prior distribution is

log P (W |X, θ) = −λ
2
‖W‖2F −

τ

N

N∑
i=1

H(yi|W,xi) + constant , (4.3)

where the prior parameter θ = [λ, τ ]. The first term is the weighted Frobenius norm of

W . This term corresponds to the Gaussian prior with zero mean and diagonal covariance

matrix with λ as the diagonal elements, and it controls the model complexity. The second

term is the average negative entropy of the cluster assignment variable Y . We use this

term to encourage large separations among clusters, as similarly utilized by [45] for

semi-supervised classification problems. The constant term normalizes the probability.

Although it is unknown, inference can be carried out by sampling from the unnormalized

distribution (e.g., using slice sampling [75]). We will discuss more details in Sec. 4.3.3.

With our model assumption, the conditional probability P (Z|Y ) is fully factorized

based on the pairwise constraints. For a single pair (xa, xb), we define the probability of
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za,b given cluster labels ya and yb as

P (za,b = +1|ya, yb) =

{
ε if ya 6= yb

1− ε if ya = yb
,

P (za,b = −1|ya, yb) = 1− P (za,b = +1|ya, yb) ,

(4.4)

where ε is a small number to accommodate the (possible) labeling error. In the case

where no labeling error exists, ε allows for “soft constraints”, meaning that the model

can make small errors on some pair labels and achieve large cluster separations.

4.3.1.1 Marginalization of Cluster Labels.

In the learning procedure described later, we will need to marginalize some or all cluster

labels, for example, in the case of computing the likelihood of the observed pair labels:

P (Z|W,X) =
∑
Y

P (Z, Y |W,X) =
∑
Yα(Z)

P (Z|Yα(Z))P (Yα(Z)|W,Xα(Z)) , (4.5)

where α(Z) denotes the set of indices for all instances involved in Z.

The marginalization can be solved by performing sum-product message passing [56]

on a factor graph defined by all the constraints. Specifically, the set of all instances

indexed by α(Z) defines the nodes of the graph, and P (Yα(Z)|W,Xα(Z)) defines the

node potentials. Each queried pair (xa, xb) creates an edge, and the edge potential is

defined by P (za,b|ya, yb). In this work, we require that the graph formed by the con-

straints does not contain cycles, and message passing is performed on a tree (or a forest,

which is a collection of trees). Since inference on trees are exact, the marginalization is

computed exactly. Moreover, due to the simple form of the edge potential (which is a

simple modification to the identity matrix as can be seen from (4.4)), the message pass-

ing can be performed very efficiently. In fact, each message propagation only requires

O(K) complexity instead of O(K2) as in the general case. Overall the message passing

only takes O(K|Z|), even faster than calculating the node potentials P (Yα(Z)|W,Xα(Z)),

which takes O(dK|Z|).
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4.3.2 Active Query Selection

Now we describe our approach for actively selecting informative pairs at every iteration.

Suppose our query budget is T . In each iteration t, 1 ≤ t ≤ T , we need to select a

pair (xta, x
t
b) from a pool of unlabeled pairs U t, and acquire the label zta,b from the oracle.

We let U1 ⊆ X ×X be the initial pool of unlabeled pairs. Then U t = U t−1\(xt−1
a , xt−1

b )

for 1 ≤ t ≤ T . Below we use Zt = [z1
a,b, · · · , zta,b] to denote all the pair labels obtained

up to the t-th iteration.

4.3.2.1 Selection Criteria.

We use two entropy-based criteria to select the best pair at each iteration. The first

criterion, which we call Uncertain, is to select the pair whose label is the most uncertain.

That is, at the t iteration, we choose the pair (xta, x
t
b) that has the largest marginal

entropy of zta,b (over the posterior distribution of W ):

(xta, x
t
b) = arg max

(xa,xb)∈Ut
H(za,b|Zt−1, X, θ) . (4.6)

Similar objective has been considered in prior work on distance metric learning [115]

or document clustering [50], where the authors propose different approaches to com-

pute/approximate the entropy objective.

The second criterion is a greedy objective adopted from active learning for classi-

fication [28, 43, 48], which we call Info. The idea is to select the query (xta, x
t
b) that

maximizes the marginal information gain about the model W :

(xta, x
t
b) = arg max

(xa,xb)∈Ut
I(za,b,W |Zt−1, X, θ)

= arg max
(xa,xb)∈Ut

H(za,b|Zt−1, X, θ)−H(za,b|W,Zt−1, X, θ) . (4.7)

Note that here W is a random variable. The Info objective is equivalent to maximizing

the entropy reduction about W , as can be proved by the chain rule of conditional entropy.

Interestingly, the first entropy term in the Info objective (4.7) is the same with the

Uncertain objective (4.6). The additional term to Info is the conditional entropy of the

pair label za,b given W , i.e., the second term in (4.7). Comparing the two objectives,
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we see that W is marginalized in the Uncertain objective and the selected query aims

to reduce the maximum uncertainty of the pair label. In contrast, the goal of Info is to

decrease the model uncertainty. There is subtle difference between these two types of

uncertainties. The additional conditional entropy term in Info suggests that it prefers

instance pairs whose labels are certain once W is known, yet whose overall uncertainty

is high when marginalizing over W . In such sense, Info pays more attention to the

uncertainty of the model W .

Each of the above selection objectives ranks the candidate pairs from the highest to

the lowest. To select a pair to query, we go through the ranking and choose the one that

does not create a cycle to the existing graph as described in Sec. 4.3.1. Since inference

on trees are not only exact but also fast, enforcing such acyclic graph structure allows

us to compute the selection objectives more effectively and accurately, and select more

informative pairs to query.

4.3.2.2 Computing the Selection Objectives.

Now we describe how to compute the two objective values for a candidate instance pair.

The two objectives require computing the marginal entropy H(za,b|Zt, X, θ), and the

conditional entropy H(za,b|W,Zt, X, θ), for 1 ≤ t ≤ T . By definition, the marginal

entropy is

H(za,b|Zt, X, θ) = −
∑
za,b

P (za,b|Zt, X, θ) logP (za,b|Zt, X, θ) , (4.8)

where the probability

P (za,b|Zt, X, θ) =

∫
P (Ŵ |Zt, X, θ)P (za,b|Zt, Ŵ ,X)dŴ . (4.9)

The conditional probability is computed as

P (za,b|Zt, Ŵ ,X) =
P (za,b ∪ Zt|Ŵ ,X)

P (Zt|Ŵ ,X)
, (4.10)

where calculating both the numerator and the denominator are the same inference prob-

lem as (4.5) and can be solved similarly using message passing. In fact, message propa-
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gations for the two calculations are shared except for that a new edge regarding za,b is

introduced to the graph for P (za,b ∪ Zt|Ŵ ,X). So we can calculate the two values by

performing message passing algorithm only once on the graph of P (za,b ∪Zt|Ŵ ,X), and

record P (Zt|Ŵ ,X) in the intermediate step.

By definition, the conditional entropy is

H(za,b|W,Zt, X, θ) =

∫
P (Ŵ |Zt, X, θ)H(za,b|Zt, Ŵ ,X)dŴ , (4.11)

where H(za,b|Ŵ , Zt, X) is also easy to compute once we know P (za,b|Zt, Ŵ ,X), which

has been done in (4.10).

Now the only obstacle in calculating the two entropies is to take the expectations

over the posterior distribution P (W |Zt, X, θ) in (4.9) and (4.11). Here we use sampling

to approximate such expectations. We first sample W ’s from P (W |Zt, X, θ) and then

approximate the expectations with the sample means. Directly sampling from the pos-

terior at every iteration is doable but very inefficient. Below we describe a sequential

MCMC sampling method (“particle filter”) that effectively updates the samples of the

posterior.

4.3.3 The Sequential MCMC Sampling of W

The main idea of the sequential MCMC method is to avoid sampling with random

starts at every iteration by utilizing the particles obtained from the previous iteration.1

Specifically, to obtain particles from distribution P (W |Zt, X, θ), the sequential MCMC

method first resamples from the particles previously sampled from P (W |Zt−1, X, θ), and

then performs just a few MCMC steps with these particles to prevent degeneration [42].

Here we maintain S particles in each iteration. We denote W t
s , 1 ≤ s ≤ S, as the s-th

particle in the t-th iteration. For initialization, we sample particles {W 0
1 , · · · ,W 0

S} from

the prior distribution P (W |X, θ) defined in (4.3) using slice sampling [75] 2, an MCMC

method that can uniformly draw samples from an unnormalized density function. Since

slice sampling does not require the target distribution to be normalized, the unknown

constant in the prior (4.3) can be neglected here.

1Here we follow the convention of the particle filter field and call samples of W as “particles”.
2Here we use the implementation slicesample provided in the MATLAB toolbox.
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At iteration t, 1 ≤ t ≤ T , after a new pair label zta,b is observed, we perform the

following two steps to update the particles and get samples from P (W |Zt, X, θ).

(1) Resample. The first step is to resample from the particles {W t−1
1 , · · · ,W t−1

S }
obtained from the previous iteration for P (W |Zt−1, X, θ). We observe that

P (W |Zt, X, θ) = P (W |zta,b, Zt−1, X, θ)

∝ P (zta,b|Zt−1,W,X)P (W |Zt−1, X, θ) .

So each particle W t−1
s is weighted by P (zta,b|Zt−1,W

t−1
s , X), which can be calculated the

same as (4.10).

(2) Move. In the second step, we start with each resampled particles, and perform

several slice sampling steps for the posterior

P (W |Zt, X, θ) ∝ P (Zt|W,X)P (W |X, θ) . (4.12)

Again P (Zt|W,X) is calculated by message passing as (4.5), and the unknown normal-

izing constant in P (W |X, θ) can be ignored, since slice sampling does not require the

normalization constant.

The resample-move method avoids degeneration in the sequence of slice sampling

steps. After these two steps, we have updated the particles for P (W |Zt, X, θ). Such

particles are used to approximate the selection objectives as described in Sec. 4.3.2,

allowing us to select the next informative pair to query.

Note that the distribution P (W |Zt, X, θ) is invariant to label switching, that is,

permuting column vectors of W = [W·,1, · · · ,W·,K ] will not change the probability

P (W |Zt, X, θ). This is because we can not provide any prior of W with label order,

nor does the obtained constraints provide any information about the label order. One

concern is whether the label switching problem would reduce sampling efficiency and

affect the pair selection, since P (W |Zt, X, θ) has multiple modes corresponding to dif-

ferent label permutations. Actually it does not cause an issue to the approximation of

integrations in (4.9) and (4.11), since the term P (za,b|Zt,W,X, θ) is also invariant to

label permutations. However, the label switching problem does cause difficulty in get-
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ting the Bayesian prediction of clusters labels from distribution P (Y |Zt, X, θ), so we will

employ the MAP solution Wmap and predict cluster labels with P (Y |Zt,Wmap, X, θ). We

describe this in the following section.

4.3.4 Find the MAP Solution

Given a set of constraints with pair labels Z, we first find the MAP estimation Wmap by

maximizing the posterior P (W |Z,X, θ), or equivalently maximizing the joint distribution

P (W,Z|X, θ) (in the logarithmic form):

max
W

L = logP (W,Z|X, θ) = logP (Z|W,X) + logP (W |X, θ) . (4.13)

The maximization can be solved by off-the-shelf gradient-based optimization approaches.

Here we use the quasi-newton method provided in the MATLAB toolbox. The gradient

of the objective L with respect to W is

∂L

∂W
=
∑

i∈α(Z)

xi(qi − pi)> − λW −
τ

N

N∑
i=1

xi

K∑
k=1

pik log pik(1k − pi)> ,

where pi = [pi1, · · · , piK ]> with pik = P (yi = k|W,xi), qi = [qi1, · · · , qiK ]> with

qik = P (yi = k|Z,W, xi), and 1k is a K dimensional vector that contains 1 on the

k-th dimension and 0 elsewhere. Here α(Z) again indexes all the instances involved in

the constraints.

With the Wmap solution to (4.13), we then find the MAP solution of the cluster

labels Y from P (Y |Z,Wmap, X). This is done in two cases. For the instances that are

not involved in the constraints, the MAP of Y is simply the most possible assignment of

P (Y |Wmap, X). For the instances involved in the constraints, we need to find

max
Yα(Z)

P (Yα(Z)|Z,Wmap, Xα(Z)) ∝ P (Z|Yα(Z))P (Yα(Z)|Wmap, Xα(Z)) .

The inference can be done by performing max-product algorithm on the same graph

as defined for (4.5), only replacing the “summation” with the “max” operator at every

message propagation.

In real applications, we only need to find the MAP solution of Y after the last
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Algorithm 2 Bayesian Active Clustering with Pairwise Constraints

Input: data X, number of clusters K, access to the oracle, initial pool U1, query
budget T , prior parameter θ, number of samples S
Output: a clustering solution of the data

Initialize particles by sampling {W 0
1 , · · · ,W 0

S} from prior P (W |X, θ)
for t = 1 to T do

1. Select a pair to query:
Use particles {W t−1

1 , · · · ,W t−1
S } to compute the selection objective (4.6) or

(4.7)
Choose the best pair (xta, x

t
b) from U t and acquire zta,b from the oracle

2. Update posterior:
Resample S particles with weight P (zta,b|Zt−1,W

t−1
s , X) for W t−1

s

Perform a few MCMC steps on all particles with distribution P (W |Zt, X, θ)
3. Update the pool: U t+1 ← U t\(xta, xtb)

end for
Find the MAP solution Wmap = arg max

W
logP (W |ZT , X, θ)

Find the clustering solution Ymap = arg max
Y

logP (Y |ZT ,Wmap, X)

iteration. In our experiments, we search for the solution at every iteration to show the

performance of our method if we stop learning at any iteration. Our overall algorithm

is summarized in Algorithm 2.

Note that an alternative of finding the clustering solution is to find the MAP of

W and Y at the same time. However, we think our MAP estimation of W which

marginalizes Y is more stable, and our calculation method is much simpler compared

with the alternative.

4.4 Experiments

In this section, we empirically examine the effectiveness of the proposed method. In

particular, we aim to answer the following questions:

• Is the proposed Bayesian clustering model effective at finding good clustering so-

lutions with a small number of pairwise constraints?

• Is the proposed active clustering method more effective than state-of-the-art active

clustering approaches?
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Table 4.1: Summary of Active Clustering Datasets Information

Dataset #Inst #Dim #Class #Query

Fertility 100 9 2 60
Parkinsons 195 22 2 60
Crabs 200 5 2 60
Sonar 208 60 2 100
Balance 625 4 3 100
Transfusion 748 4 2 100
Letters-IJ 1502 16 2 100
Digits-389 3165 16 3 100

4.4.1 Dataset and Setup

We use 8 benchmark UCI datasets to evaluate our method. Table 4.1 provides a summary

of the dataset information. For each dataset, we normalize all features to have zero mean

and unit standard deviation.

We form the pool of unlabeled pairs using all instances in the dataset, and set the

query budget to 60 for smaller datasets and to 100 for datasets with large feature dimen-

sion (e.g, Sonar) or larger dataset size. When a pair of instances is queried, the label is

returned based on the ground-truth instance class/cluster labels. We evaluate the clus-

tering results of all methods using pairwise F-Measure [13], which evaluates the harmonic

mean of the precision and recall regarding prediction of instance pairwise relations. We

repeat all experiments 30 times and average the results.

For the proposed Bayesian clustering model, we found that its performance is not

sensitive to the values of the prior parameter τ or the ε used in the pair label distribu-

tion (4.4). Here we set τ = 1 and ε = 0.05, where the nonzero value of ε allows for “soft

constraints”. For the parameter λ, which controls the covariance of the Gaussian prior,

we experimented with λ ∈ {1, 10, 100} and found that λ = 10 is uniformly good with

all datasets, which we fix as the default value. For each dataset, we maintain S = 2dK

samples of the posterior at every iteration.
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Figure 4.1: Pairwise F-Measure clustering results with increasing number of randomly
selected queries. Results are averaged over 30 runs. Error bars are shown as mean and
95% confidence interval.
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4.4.2 Effectiveness of the Proposed Clustering Model

To demonstrate the effectiveness of the proposed Bayesian clustering (BC) model, we

compare with two well-known methods that learn from pairwise constraints: MPCK-

means [13], and ITML [32]3. In this set of experiment, we use randomly selected pairwise

constraints to evaluate all methods. For our method, we incrementally select random

pairs that do not introduce a cycle to the graph formed by existing pairs. To ensure a fair

comparison, we evaluate ITML and MPCKmeans with randomly selected pairs with and

without the acyclic graph restriction. Thus, all methods in competition are: BC+tree,

ITML, ITML+tree, MPCKmeans, MPCKmeans+tree, where BC+tree, ITML+tree, and

MPCKmeans+tree use randomly selected constraints that form a tree graph (or a forest),

and ITML and MPCKmeans allow for cycles in the graph.

Figure 4.1 shows the performance of all methods with increasing number of con-

straints. We see that our method BC+tree outperforms the baselines on most datasets

regardless of whether they use constraints with or without the acyclic graph restriction.

This demonstrates the effectiveness of our Bayesian clustering model. We also notice

that on most datasets we can hardly tell the difference between ITML and ITML+tree,

or MPCKmeans and MPCKmeans+tree, suggesting that enforcing the acyclic structure

in the constraints do not hurt the performance of ITML or MPCKmeans. Interest-

ingly, such enforcement can in some cases produce better performance (e.g, on the Sonar

dataset). We suspect this is because constraints forming cycles may have larger inco-

herence than those does not.4 Davidson et al. [30] have shown that constraint sets with

large incoherence can potentially degrade the clustering performance.

4.4.3 Effectiveness of the Overall Active Clustering Model

In this section, we compare our overall active clustering model with existing methods.

Our baselines include two recent work on active learning with pairwise constraints: Min-

Max [72], and NPU [111]. Both methods provide an active pair selection approach and

require a clustering method to learn form the constraints. Here we supply them with

3ITML is a distance metric learning method, and we find the clustering solution by applying Kmeans
clustering with the learned metric.

4The concept of incoherence is formally defined at [30]. Generally, a set of overlapping constraints
tends to have higher incoherence than a set of disjoint constraints.
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Figure 4.2: Pairwise F-Measure clustering results of different active clustering methods
with increasing number of queries. Results are averaged over 30 runs. Error bars are
shown as mean and 95% confidence interval.
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MPCKmeans and ITML.5 So all methods in competition are

• Info+BC: The proposed active clustering model with the Info criterion (4.7).

• Uncertain+BC: The proposed active clustering model with the Uncertain criterion

(4.6).

• NPU+ITML: The NPU active selection strategy combined with ITML.

• NPU+MPCKmeans: The NPU method with MPCKmeans.

• MinMax+ITML: The MinMax active learning method combined with ITML.

• MinMax+MPCKmeans: The MinMax approach combined with MPCKmeans.

Figure 4.2 reports the performance of all active clustering methods with increasing

number of queries. We see that both Info+BC and Uncertain+BC improve the clustering

very quickly as more constraints are obtained, and they outperform all baselines on most

datasets. Moreover, Info+BC seems to be more effective than Uncertain+BC in most

cases. We hypothesize this is because Info reduces the uncertainty of the model, which

might be more appropriate for improving the MAP solution of clustering than decreasing

the maximum uncertainty of the pair labels as Uncertain does.

To avoid crowding Fig. 4.2, we did not present the passive learning results of our

method BC+tree as a baseline in the same figure. The comparison between active learn-

ing and passive learning for our method can be done by comparing Uncertain+BC and

Info+BC in Fig. 4.2 with BC+tree in Fig. 4.1. We see that both our active learning

approaches produce better performance than passive learning on most datasets, demon-

strating the effectiveness of our pair selection strategies.

We also notice that the performance of NPU or MinMax highly depends on the

clustering method in use. With different clustering methods, their behaviors are very

different. In practice, it can be difficult to decide which clustering algorithm should

be used in combination with the active selection strategies to ensure good clustering

performance. In contrast, our method unifies the clustering and active pair selection

model, and the constraints are selected to explicitly reduce the clustering uncertainty

and improve the clustering performance.

5Note that due to our Bayesian clustering model requires the set of constraints to form an acyclic
graph, it can not be combined with MinMax or NPU, as they generally select constraints that form cycles
due to their neighbourhood-based approach.
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4.4.4 Analysis of the Acyclic Graph Restriction

Our method requires the graph formed by the constraints to be a tree (or a forest).

Here we show that this restriction will not prevent us from selecting informative pairs.

We examine the number of pairs that has been dropped at every iteration in order to

find the best pair that does not create a cycle. Table 4.2 reports the results for the two

selection criteria with varied number of queries. We see that for both criteria the number

of dropped pairs is very small. For Uncertain, there is barely any pair that has been

dropped on most datasets, and we see slightly more pairs dropped for the Info criteria.

Overall, for only less than (often significantly less than) 10% of the number of queries, we

encounter the need of dropping a pair. The only exception is the Fertility dataset, which

is very small in size, making it difficult to avoid cycles with a large number of queries.

But from the results in Sec. 4.4.3, we can see that the active clustering performance was

still much better than the competing methods.

In addition, during our experiments, we found that for both criteria the difference

between the maximum objective value and objective of the finally selected pair is often

negligible. So in the case where some high-ranking pairs are dropped due to the acyclic

graph structure restriction, the selected pair is still very informative. Overall, this en-

forcement does not present any significant negative impact on the final clustering results.

It is interesting to note that, the results in Sec. 4.4.2 suggest that such graph structure

restriction can in some cases improve the clustering performance.

4.5 Related Work

Prior work on active clustering for pairwise constraints has mostly focused on the

neighbourhood-based method, where a neighbourhood skeleton is constructed to par-

tially represent the underlying clusters, and constraints are queried to expand such

neighbourhoods. Basu et al. [6] first proposed a two-phase method, Explore and Con-

solidate. The Explore phase incrementally builds K disjoint neighborhoods by querying

instance pairwise relations, and the Consolidate phase iteratively queries random points

outside the neighborhoods against the existing neighborhoods, until a must-link con-

straint is found. Mallapragada et al. [72] proposed an improved version, which modifies

the Consolidate stage to query the most uncertain points using an MinMax objective. As
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Table 4.2: Number of dropped pairs (shown as Info/Uncertain) required to find the best
pair that does not a create cycle at different iterations. Results are averaged over 30
runs.

Dataset
Query Iteration

10 20 30 40 50 60

Fertility 0.4/0.0 0.6/0.1 0.9/0.1 2.7/1.9 4.2/14.3 10.8/32.0
Parkinsons 0.1/0.0 0.0/0.0 0.5/0.0 0.8/0.3 0.9/0.6 1.7/1.7
Crabs 0.6/0.0 0.2/0.0 0.0/0.0 0.1/0.3 0.2/0.6 0.4/1.5
Sonar 0.7/0.0 0.2/0.0 0.4/0.1 0.5/0.2 0.5/0.2 0.6/0.2
Balance 0.0/0.0 0.3/0.0 1.7/0.0 2.6/0.0 3.3/0.1 2.9/0.0
Transfusion 0.3/0.0 1.3/0.0 2.4/0.0 2.3/0.0 4.6/0.0 4.9/0.1
Letters-IJ 0.0/0.0 0.2/0.0 0.3/0.0 0.2/0.0 0.5/0.0 0.7/0.0
Digits-389 0.0/0.0 0.0/0.0 0.1/0.0 0.1/0.0 0.0/0.0 0.3/0.0

mentioned by Xiong et al. [111], these methods often select a batch of constraints before

performing clustering, and they are not designed for iteratively improving clustering by

querying new constraints, as considered in this work.

Wang and Davidson [105], Huang et al. [50] and Xiong et. al. [111] studied active

clustering in an iterative manner. Wang and Davidson introduced an active spectral

clustering method that iteratively select the pair that maximized the expected error re-

duction of current model. This method is however restricted to the two-cluster problems.

Huang et al. proposed an active document clustering method that iteratively finds prob-

abilistic clustering solution using a language model and they selected the most uncertain

pair to query. But this method is limited to the task of document clustering. Xiong et.

al. considered a similar iterative framework to Huang et al., and they queried the most

uncertain data point against existing neighbourhoods, as apposed to the most uncertain

pair in [50]. Xiong et al. only provide a query selection strategy and require a clustering

method to learn from the constraints. In contrast, our method is a unified clustering

and active pair selection model.

Finally, there are other methods that use various criteria to select pairwise con-

straints. Xu et al. [112] proposed to select constraints by examining the spectral eigen-

vectors of the similarity matrix in the two-cluster scenario. Vu et al. [101] proposed

to select constraints involving points on the sparse regions of a k-nearest neighbours

graph. The work [1, 46] used ensemble approaches to select constraints. The scenarios
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considered in these methods are less similar to what has been studied in this chapter.

4.6 Conclusion

In this chapter, we studied the problem of active clustering, where the goal is to it-

eratively improve clustering by querying informative pairwise constraints. We intro-

duced a Bayesian clustering method that adopted a logistic clustering model and a

data-dependent prior which controls model complexity and encourages large separations

among clusters. Instead of directly computing the posterior of the clustering model

at every iteration, our approach maintains a set of samples from the posterior. We

presented a sequential MCMC method to efficiently update the posterior samples after

obtaining a new pairwise constraint. We introduced two information-theoretic criteria

to select the most informative pairs to query at every iteration. Experimental results

demonstrated the effectiveness of the proposed Bayesian active clustering method over

existing approaches.
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Chapter 5: Learning with Latent Label Hierarchy from Incomplete

Multi-Label Data

Abstract

Exploiting label structure for multi-label classification can significantly improve

classification performance and also benefit the labeling process. One useful type

of structure is the label hierarchy. Existing work either can not make use of such

structure or assume the hierarchy is given as a prior. In practice, such hierarchy is

not always available beforehand and it is desirable to learn it from data. Moreover,

the label assignments in the training data may be incomplete due to inconsistencies

in the labeling process, which raises another challenge for learning. In this chapter,

we study multi-label learning with latent label hierarchy and incomplete label as-

signments. Our goal is to simultaneously learn the hierarchy as well as a multi-label

classifier given the input features and incomplete label assignments. We propose a

probabilistic model that captures the hierarchical structure and the incompleteness

of the labels. Based on this model, we employ a maximum likelihood estimation

approach and use Expectation-Maximization (EM) to optimize the objective. In

the E-step, we propose an efficient dynamic programming approach to compute the

posterior. In the M-step, we estimate the classifier parameter and formulate the

problem of learning the hierarchy as a maximum spanning tree problem.

5.1 Introduction

In multi-label learning, each data instance is associated with a set of features and a

collection of labels. Multi-label data exists in various applications, including image

classification, music categorization, and bioinformatics, to name a few. For example, an

image can belong to multiple semantic scenes [130], a song may belong to more than

one genres [63], and a gene may be associated with a number of functions [5]. In many

applications, the label occurrences are not independent of each other. Thus, one of the

goals in multi-label learning is to model the underlying structure of the labels.

Among various structures, the label hierarchy is a practical and useful type. For

example, in one of our motivating applications, the data involves reviews of events and
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venues and tagging of them from multiple resources. For a dinning venue, the possible

tags may include “Asian Restaurant”, “Chinese Restaurant”, “Sichuan Restaurant”,

and “Japanese Restaurant”, etc. Leveraging the hierarchical structure of the labels,

one can constrain the classifier to follow the rule that a “Sichuan Restaurant” is also a

“Chinese Restaurant”, and it should not be a “Japanese Restaurant”, thus improving

the classification. Several studies have shown that when provided as a prior, such a

label hierarchy can help to learn a classifier with significantly improved classification

performance [10, 84, 85, 93, 100].

Moreover, such label hierarchies are not only useful for classification, but also ben-

eficial to the labeling process. Consider the previous example, suppose a hierarchy is

available regarding the restaurant labels. When an annotator labels a restaurant as

“Sichuan Restaurant”, the labels “Chinese Restaurant” and “Asian Restaurant” could

be recommended as potential classes or automatically completed according to the hier-

archy. This will significantly increase the labeling efficiency as well as consistency.

While the label hierarchy is usually assumed as a prior by existing work, it is not

always available beforehand, and it is more desirable to learn it from data. One chal-

lenge in learning the hierarchy is that the label assignments in the training data may be

incomplete due to inconsistent labeling processes from one or multiple sources. Consider

our previous example again, one annotator may tag a restaurant as a “Chinese Restau-

rant” as well as an “Asian Restaurant”, while another annotator might only tag it as an

“Asian Restaurant”, i.e., the label “Chinese Restaurant” is missing. Such inconsistency

in the labeling process naturally occurs when multiple annotators are involved, resulting

in incomplete assignments for the training data and creating challenges for learning.

In this work, we consider the problem of learning with latent label hierarchy from

incomplete multi-label data. Our goal is to simultaneously discover the latent label hier-

archy and learn a multi-label classifier that is consistent with the hierarchy. Intuitively,

knowing the label hierarchy can help improve classification accuracy. Inversely, a good

classifier can also help better infer the hierarchy. There are two challenges in this prob-

lem. First, the learning space for the underlying label hierarchy is exponentially large in

the number of classes, which makes it difficult to learn the hierarchy. Second, as stated

previously, the label incompleteness issue exists which makes the problem even more

difficult.

Here we propose a graphical model that captures the labeling process. By specifying
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appropriate conditional probabilities, we capture the label hierarchy structure and the

property of incomplete label assignments. Based on this model, we use the maximum

likelihood approach to estimate the parameters and learn the structure. Due to the

latent variables (the underlying complete label assignments), we derive an Expectation

Maximization (EM) solution for optimization. In particular, we propose a dynamic

programming approach to infer the posterior distributions in the E-step. In the M-step,

we estimate the parameters for the classifier and formulate the problem of learning the

label hierarchy as a maximum spanning tree problem, which can be solved efficiently.

We empirically evaluate our method on real-world datasets from various applications.

The results demonstrate that our method can generally learn a better label hierarchy

than the baseline methods, and a competitive multi-label classifier. In addition, we

perform a case study on a real-world dataset without ground-truth structure and discover

a meaningful hierarchy for the labels.

5.2 Problem Statement

In this problem, we are given a dataset X = [x1, . . . ,xN ]>,xi ∈ Rd , and the observed

incomplete label set Z = [z1, . . . , zN ]>, where zi = [zi1, . . . , ziK ] is the K dimensional

binary label vector of xi, and d is the feature dimension and K is the total number

of classes. The observed labels Z are noisy observations of the underlying labels Y =

[y1, . . . ,yN ]> with yi = [yi1, . . . , yiK ], in a way that if the underlying label is positive,

it could be missing and observed as negative. In this problem, the K classes form an

unknown label hierarchy, and the underlying Y is consistent with this hierarchy. That

is, if a child class is positive, then all the ancestor classes are also positive. However, the

incomplete assignments Z may not be consistent with the hierarchy since they are noisy

observation of the underlying labels.

To define the hierarchy, we let t ∈ T be an indicator vector of 2
(
K
2

)
dimensional,

where tpc ∈ {0, 1} indicates whether the class p is a parent of class c, for (p, c) ∈
[K] × [K] 1, and the notation [K] = {1, . . . ,K} is the set of integers ranging from 1 to

K. Note that the multiplier 2 before
(
K
2

)
for the dimension is due to the two possible

edge directions for each pair of nodes/classes. The feasible space T contains all the

possible trees connecting the K class nodes.

1For notation simplicity, we define tc,c = 0 and do not learn them.
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Figure 5.1: A graphical model for learning with latent label hierarchy from incomplete
multi-label data.

Given the setup, our goal is to simultaneously learn the label hierarchy defined by t,

as well as a multi-label classifier parameterized by W that is consistent with t.

5.3 The Probabilistic Graphical Model

We propose the graphical model illustrated in Figure 5.1 to capture the dependencies

between the input features X, the underlying labels Y that are consistent with the

hierarchy t, and the observed incomplete labels Z.

Figure 5.1(a) shows the overall structure of the graphical model. The hierarchy

vector t determines the edge connections among the elements in yi. The underlying

label yi depends on the features xi, the parameter W , and the ancestor labels in yi

indicated by t. The observed labels zi only depend on the underlying label vector yi.

Here we make two assumptions. First, the underlying label yic is conditionally inde-

pendent from the other yik’s for k 6= p, given its parent node yip the features xi, and the

parameter wc for class c. Secondly, the observation zic depends only on the underlying

label yic.

To illustrate how the hierarchy structure t determines the dependencies among y’s,

Figure 5.1(b) shows the model regarding zic with tpc = 1, indicating that class p is a

parent of class c. Other variables that are not related to zic are omitted.
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Table 5.1: Specification of conditional probabilities for learning with latent label hierar-
chy from incomplete multi-label data.

(a) Conditional probability P (yic|xi,wc, yip).

yip = 0 yip = 1

P (yic = 0|xi,wc, yip) 1− ε 1− σ(w>c xi)

P (yic = 1|xi,wc, yip) ε σ(w>c xi)

(b) Conditional probability P (zic|yic, α)

yic = 0 yic = 1

P (zic = 0|yic, α) 1 α

P (zic = 1|yic, α) 0 1− α

5.3.1 Model Specification

To capture the property that the underlying labels are consistent with the latent hier-

archy, we design the conditional distribution P (yic|xi,wc, yip) as shown in Table 5.1(a).

Specifically, if an instance does not belong to the underlying parent class, then there is a

very small probability (controlled by ε) that it belongs to the child class. Such relaxation

is introduced to accommodate the labeling inconsistency in the data as well as allowing

the learning process to be “soft” when necessary. Otherwise if the the parent class is

positive, we use a logistic model σ(·) [14] to determine whether the instance belongs to

the child class based on the features xi and the corresponding parameter wc. With this

definition, the conditional probability of the complete label set yi is factorized as

P (yi|xi,W, t) = P (yi,root)
∏
(p,c)

P (yic|xi,wc, yip)
tpc (5.1)

where we set P (yi,root = 1) = 1 for the root variable 2.

To deal with the problem that the observed labels z’s are incomplete, we employ

2Note that when the underlying structure is a forest, we can always add a dummy root variable to
form a tree structure. Here we simply add a dummy root for all cases.
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the conditional probability P (zic|yic) as shown in 5.1(b). Here if the underlying label is

negative, then the observed labels are always negative. Otherwise if the underlying label

is positive, there is a chance (reflected by α) that the observed label is negative, namely,

the label could be missing. Here we estimate the missing factor α from the data.

5.3.2 Maximum-Likelihood Objective

Our objective is to maximize the likelihood of the observed labels Z given the parameters

W and α, and the unknown structure t. That is,

max
W,t,α

logP (Z|X,W, t, α)− λ
2d‖W‖

2
2

=
∑
i

log
∑
yi

P (yi, zi|xi,W, t, α)− λ
2d‖W‖

2
2 .

(5.2)

where we add an additional regularization term for the parameter W , and d is the feature

dimension. The objective involves marginalizing over the underlying labels Y , which is

difficult to compute. Below we use the Expectation-Maximization (EM) approach to

optimize the objective.

5.4 Optimization with Expectation-Maximization

The Expectation-Maximization (EM) approach [14] alternates between finding a lower

bound of the objective in the E-steps, and maximizing the lower bound in the M-steps.

To find the lower bound, we apply Jensen’s inequality and obtain

max
W,t,α

∑
i

log
∑
yi

P (yi, zi|xi,W, t, α)− λ
2d‖W‖

2
2

≥
∑
i
EQ(yi)[logP (yi|xi,W, t) + logP (zi|yi, α)] +

∑
i
H[Q(yi)]− λ

2d‖W‖
2
2 .

(5.3)

Here Q(yi) is a distribution over yi, and H[Q(yi)] = −EQ(yi)[logQ(yi)] is the entropy

of Q(yi). The lower bound is tight when Q(yi) equals the posterior P (yi|zi,xi,W, t, α)

for i ∈ [N ].
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In E-steps, we find the posterior distribution of the hidden variables Y for computing

the lower bound. In M-steps, we maximize over the W , α and t with respect to the lower

bound. Below, we describe our E-steps and M-steps.

5.4.1 E-Step

In the E-step, we need to compute the posterior Q(yi) = P (yi|zi,xi,W, t, α) for i ∈ [N ].

However, the dimension of Q(yi) is 2K , which is too expensive to compute. Interest-

ingly, we observe that the posterior is marginalized in the M-step to obtain the pairwise

posterior. Thus, here in the E-step we only compute the pairwise posterior Q(yip, yic)

for each pair (p, c) ∈ [K]× [K]. In this way, the dimension of the posterior distribution

Q(yi) is reduced to 2× 2×
(
K
2

)
.

To compute each Q(yip, yic), we need to marginalize over all the other labels over

P (yi|zi,xi,W, t, α). That is,

Q(yip, yic) = P (yip, yic|zi,xi,W, t, α)

=

∑
yi\p,c P (yi, zi|xi,W, t, α)∑
yi
P (yi, zi|xi,W, t, α)

.

Brute force marginalization of P (yi, zi|xi,W, t) for every pair is too expensive. Below

we propose an efficient method to compute the marginalization.

We first divide the pairs into two categories: the pairs that are connected by an edge

on the tree, and the pairs that are not connected by an edge on the tree. We describe

efficient ways of performing marginalization for each category.

For the pairs that are connected by an edge on the tree, we can simply run the

message passing algorithm [14] on the factor graph formed by the class nodes on the

tree. Specifically, the node potentials and edge potentials can be identified by noticing

that

P (yi, zi|xi,W, t, α) = P (zi|yi, α)P (yi|xi,W, t)

=
K∏
k=1

P (zik|yik, α)︸ ︷︷ ︸
node potential

∏
(p,c)

P (yic|xi,wc, yip)
tpc︸ ︷︷ ︸

edge potential

.

(5.4)

As message passing is exact on trees, the pairwise posteriors are computed exactly.
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For the pairs that are not connected by an edge, we propose a dynamic programming

approach to efficiently compute the posteriors. The key idea is to use the conditional

independence given the parent node on the tree. Specifically, we first find an ordering

of the nodes such that the parent nodes always appear earlier than their children. For

example, this can easily be computed via a Breadth-First Search (BFS) or a Depth-First

Search (DFS) ordering. Then, for each node k in the ordering, we compute the posterior

distributions for all the related pairs (k, c) that have not been computed, following the

same ordering. For each pair (k, c), suppose p is the parent of c. We can efficiently

compute the pairwise posterior (k, c) for instance i as below

Q(yik, yic) =
∑
yip

Q(yic|yik, yip)Q(yik, yip)

=
∑
yip

Q(yic|yip)Q(yik, yip)

=
∑
yip

Q(yip, yic)

Q(yip)
Q(yik, yip) ,

(5.5)

where the second step follows because of the conditional independence between yic and

yik given the parent yip. Here since p ≺ c in the ordering, Q(yik, yip) is computed

before Q(yik, yic). The distributions Q(yip, yic) and Q(yip) are also computed if the first

categories of the pairs are processed first. Thus, we only need to marginalize over one

node yip instead of K−2 nodes, which significantly reduces the computation complexity.

In short, we first run message passing on the tree to obtain the marginal distri-

butions Q(yip) and pairwise distributions Q(yip, yic). This process calculates all the

posterior for the first category of pairs. We then compute the posteriors of the second

category of pairs using (5.5) in an ordering described above. We summarize the E-step

in Algorithm 3.
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Algorithm 3 E-step: Compute Q(yi) = P (yi|zi,xi,W, t, α)

Input: Data xi, observed label vector zi, parameter W , α, and tree structure t.
Output: Posterior Q(yik) for k = [K], and Q(yip, yic) for all possible pairs (p, c).

Form the factor graph from t using the node and edge potentials defined by (5.4).
Run message passing to find the marginal distributions Q(yic) for each node c and
Q(yip, yic) for each edge (p, c).
Find a BFS or DFS ordering. Suppose the nodes are ordered from 1 to K.
for k = 1, . . . ,K do

for c = k + 1, . . . ,K do
if tkc == 1 then

Pass. // An edge exists and Q(yik, yic) is already computed.
else

Compute Q(yik, yic) using (5.5).
end if

end for
end for

Algorithm 4 EM Algorithm for Learning with Latent Label Hierarchy from Incomplete
Multi-Label Data

Input: Dataset X = [x1, . . . ,xN ]>, observed label set Z = [z1, . . . , zN ].
Output: Classifier Parameter W , label missing factor α, and label structure t.

Initialize W , t, and α .
repeat

E-step:
Compute Q(yi) = P (yi|zi,xi,W, t, α) for all i ∈ [N ] using Algorithm 3.

M-step:
Update α using (5.7)
repeat

Optimize W using gradient base approach with the gradient defined by (5.8)
Optimize t by finding a maximum spanning tree on a weighted directed com-
plete graph with the edge weights defined by (5.9)

until stopping criteria
until convergence
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5.4.2 M-Step

In the M-step, given the posterior distribution Q(yi), we need to optimize the lower

bound (5.3) with respect to W , t, and α. The related objective is

max
W,t,α

∑
i
EQ(yi)[logP (yi, zi|xi,W, t, α)]− λ

2d‖W‖
2
2

=
∑
i

∑
yi

Q(yi) logP (yi|xi,W, t) +
∑
i

∑
yi

Q(yi) logP (zi|yi, α)− λ
2d‖W‖

2
2 .

(5.6)

We show that there is a closed-form solution for α, and we can iteratively optimize

over W and t with efficient method for learning the structure t.

Optimize α: To optimize over α, only the second term in (5.6) is related. Sub-

stituting the conditional probabilities in Table 5.1(b), we have the following solution

α∗ = 1−
∑
i

∑
k

Q(yik = 1)zik∑
i

∑
k

Q(yik = 1)
. (5.7)

Intuitively, the estimation can be viewed as the inconsistency between the posterior and

the observed values. The more consistent the zik is with the marginal posterior Q(yik),

the smaller the α value is.

Optimize W and t: To optimize W and t, only the second term and third in (5.6)

is related. Here we alternatively optimize them.

• Given Q(yi), α and fixed structure t, we can optimize W using gradient based

approach such as L-BFGS. The gradient for each wc is given by

∇wc =
∑
i

∑
(p,c)

tpcQ(yip = 1, yic = 1)
{

1−[1+
Q(yip = 1, yic = 0)

Q(yip = 1, yic = 1)
]σ(w>c xi)

}
xi−

λ

d
wc .

(5.8)

• Learning the tree structure t is generally a difficult problem. Interestingly, here

we show that we can formulate this problem as a maximum spanning tree prob-

lem, which can be solved efficiently. In particular, the related objective regarding
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Table 5.2: Summary of Multi-Label Datasets Information.
dataset #Data #Feats #Labels

Pascal 2007 9963 4097 24
20 Newsgroup 2000 100 27
Church-FUN 302 20 16

optimizing t is

max
t∈T

∑
(p,c)

tpc

[∑
i

∑
(yip,yic)

Q(yip, yic) logP (yic|xi,wc, yip)
]

︸ ︷︷ ︸
weight on edge (p,c)

.
(5.9)

We can see that this problem essentially finds a maximum spanning tree on a

complete directed weighted graph, with the edge weights defined by (5.9). Thus,

we can find the structure efficiently using Chu-Liu/Edmond’s algorithm [26, 39].

We summarize the overall EM optimization in Algorithm 4.

5.5 Experiments

In this section, we extensively evaluate the effectiveness of the proposed method. In

particular, we would like to answer the following questions:

• Can our model learn a reasonable label hierarchy from incomplete multi-label data?

• Does the learned multi-label classifier outperform other methods for multi-label

classification with incomplete label assignments?

We investigate these two questions in the following two subsections, and then apply our

method to a case study.

5.5.1 Learning Latent Label Hierarchy

In this set of experiment, we evaluate the effectiveness of our model in learning the label

hierarchy from incomplete multi-label data.
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Figure 5.2: Ground-truth Label Hierarchy of the Pascal 2007 and 20 Newsgroup
datasets.
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Figure 5.3: RF measure of the learned tree structure with different label noise ratios.
Error bars are 95% confidence interval.
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Datasets. We evaluate our method on three benchmark multi-label datasets with

ground-truth label hierarchy: the Pascal 2007 dataset3, the 20 Newsgroup dataset4, and

the Church-FUN dataset 5.

The Pascal 2007 dataset is an image classification dataset, which originally has 20

labels belonging to four semantic groups: “person”, “animal”, “vehicle”, and “indoor”.

We explicitly add such semantic labels and assign positive labels to an instance if any of

the children labels is positive. To represent the images, we extract CNN features using

the tool OverFeat6.

The 20 Newsgroup dataset is a document dataset that contains subject topics from

different domains. We form the label hierarchy by creating labels for higher abstraction

levels of the topics. For example, from “rec.sport.baseball”, we derive the higher level

labels “rec” and “rec.sport”. We assign the such labels positive if any of the subtopics

is positive for an instance. We reduce the dimension of the bag-of-words features into

100 using principle component analysis.

The Church-FUN dataset is a subset of the gene dataset introduced in [100]. We

extracted a subtree from the original dataset that contains relative large number of

training instances.

The summary of all the dataset information is listed in Table 5.2. We show the

ground-truth label hierarchies of the Pascal 2007 and 20 Newsgroup datasets in Figure

5.2.

Baseline Methods. We are not aware of any work that can jointly learn a tree

structure as well as the classifier from incomplete multi-label data. The most reasonable

method that is applicable to this problem is the ChowLiu method [26]. It first forms a

complete graph of the labels, with the edge weights defined by the mutual information

between each pair of nodes/classes, and then finds a maximum spanning tree on the

complete graph. In this way, ChowLiu method can not make use of the input features.

Thus, we only supply ChowLiu method with the labels of the data.

Experiment Setup. To evaluate how well our method can learn the hierarchy from

incomplete multi-label data, we create synthetic label noise to the training data. In

3http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
4http://qwone.com/~jason/20Newsgroups/
5https://dtai.cs.kuleuven.be/clus/hmcdatasets/
6http://cilvr.nyu.edu/doku.php?id=code:start#overfeat

http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://qwone.com/~jason/20Newsgroups/
https://dtai.cs.kuleuven.be/clus/hmcdatasets/
http://cilvr.nyu.edu/doku.php?id=code:start#overfeat
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particular, if a label for an instance is positive, then there is a chance that the label

is missing and observed as negative. We vary the noise factor from 0.1 to 0.5 with a

0.1 increment. We input both the instance features and the incomplete labels to our

method, and only supply Chowliu method with the label set. We perform 5 randomized

runs and report the averaged results.

Performance Measure. We measure the learned the tree structure against the

ground-truth structured using Robinson Foulds metric (RF) [82]. This popular metric

computes the number of graph transformations (edge contraction or expansion) needed

to change the estimated graph into the correct structure. In particular, let Σ(T ) be

the set of edges in tree T . The RF distance between the ground truth tree T ∗ and the

learned tree T̂ is defined as

RF (T ∗, T̂ ) = |Σ(T ∗)− Σ(T̂ )|+ |Σ(T̂ )− Σ(T ∗)| .

That is, the RF distance between T̂ and T ∗ is the sum of the number edges in T ∗ but

not in T̂ , and the number of edges in T̂ but not in T ∗. The lower the metric is, the

better that the underlying tree T ∗ is recovered by the learned structure T̂ .

Implementation Details. For the regularization parameter, we set λ = {0.01, 1, 100}/d
for each dataset, and pick the parameter with the best performance. For the parameter

ε that controls the relaxation of the hierarchy consistency in Table 5.1(a), we start with

the value ε = 0.05, and then gradually decrease it by a factor of 0.98 at each iteration.

The intuition is that the hierarchy learned during the early iterations may not be very

accurate, and we should allow for more relaxation. As the optimization proceeds, the

relaxation should decrease so that the classifier is more consistent with the hierarchy.

Results. Figure 5.3 shows the RF results of the learned tree structure with different

label noise ratios. We can see that, in general, our method (denoted as learn) can learn

a better tree structure compared to ChowLiu. In particular, on the Pascal 2007 dataset,

our method can almost perfectly recover the structure when there is little noise in the

data, while the Chowliu method was not able to achieve such result by only using the

labels. This suggests that the instance features provide additional information that helps

to recover a better tree structure from the incomplete labels.
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(c) Church-FUN
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Figure 5.4: F1-Micro and F1-Macro multi-label classification performance with different
label noise ratios.
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5.5.2 Classification with Incomplete Multi-Label Data

In this set of experiments, we investigate the effectiveness of our model in learning a

classifier from incomplete multi-label data. We use the same datasets and experimental

setup with the previous section, and compare with baseline methods for multi-label

classification.

Methods Evaluated. Below we list all the methods evaluated in this set of exper-

iment.

• GT: The proposed approach with ground-truth label hierarchy to learn the multi-

label classifier.

• learn: The proposed method that simultaneously learns the tree structure and

multi-label classifier.

• BR: This method is the binary relevance classifier without taking into account the

label structure. That is, a logistic classifier is trained individually for each class.

• tanCVPR [96]: This is a relevant approach which learns a graph structure for the

labels for multi-label classification. The difference with our approach is that it

assumes complete labels and the learned structure is not necessarily a tree.

• fasttag [24]: This method aims to learn a multi-label classifier from incomplete

labels. However, it does not take into account the structure of the labels.

Note that our method (GT and learn) and BR are based on logistic regression classifier,

and tanCVPR is based on structure SVM classifier.

Performance Measures. We use two popular metrics to evaluate the performance

of the learned multi-label classifiers, F1-Micro and F1-Macro. These two measures are

based on the binary F1-measure that is calculated from the number of true positives

(tp), true negatives (tn), false positives (fp) and false negatives (fn). In particular, for

a class k, let tpk, fpk, tnk and fnk be the number of true positives, false positives, true

negatives and false negatives, respectively. The F1-Micro and F1-macro are calculated
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Figure 5.5: Estimated α value of the proposed method with different label noise ratios.

as follows:

F1-Micro = F1
( K∑
k=1

tpk,

K∑
k=1

fpk,

K∑
k=1

tnk,

K∑
k=1

fnk

)
,

F1-Macro =
1

K

K∑
k=1

F1(tpk, fpk, tnk, fnk) ,

where the base measure F1(tp, fp, tn, fn) = 2tp
2tp+fp+fn . Note that when the classes are

unbalanced, by definition, F1-macro would be more affected by the performance of the

minority classes. In contrast, F1-micro would be more affected by the performance of

the majority classes [97].

Results. We evaluate all the methods on the previous datasets using the same

setting of noisy labels. Figure 5.4 shows the performance of the learned multi-label

classifier for different methods.

First, we see that both GT and learn significantly outperform the BR method which

does not make use of the label structure. This result demonstrates the benefits of em-

ploying the label structure for classification.

Secondly, we see that GT always performs better than learn, and outperforms other

baselines in most cases. This result shows that, given the ground-truth label structure,

our method is able to learn an effective multi-label classifier.

Thirdly, we see that without the ground-truth hierarchy, learn is able to learn a classi-

fier that’s competitive with tanCVPR and fasttag, which are state-of-the-art multi-label
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classifiers. This demonstrates that in addition to learning a reasonable label hierarchy,

our method can also simultaneously learn a reasonably good classifier. From the results,

we observe that fasttag tends to perform better on classes with more examples while

worse on those with fewer examples. This can be seen from the Church-FUN dataset,

where its F1-Micro measure is generally lower than other methods and F1-Macro mea-

sure is generally higher. In contrast, our method is robust both in terms of the F1-Micro

and the F1-Macro measures.

It is interesting to note that tanCVPR is also robust to the noise although it does

not explicitly deal with missing labels. One possible reason is that tanCVPR uses an

undirected graph to approximate the structure, which may provide more flexibility for

learning the classifier. However, the graph structure learned by tanCVPR usually con-

tains a lot of isolated nodes and the inferred graph structures are often drastically dif-

ferent from the ground truth hierarchy. In contrast, our method is capable of closely

recovering the underlying hierarchy as shown in the previous section.

5.5.2.1 Further Investigation: Noise Estimation

Here we investigate how well our method can estimate the label noise in the incomplete

data. We plot the values of the estimated noise factor α in Figure 5.5. We see that our

method tends to underestimate the noise in the labels, especially when the noise rate is

large. One possible reason is that due to the unknown structure of the labels, when the

noise is large, the learning algorithm could simply change the structure to achieve higher

objective, instead of increasing the estimation of α. In addition, the estimation of α is

closely related to the variance of the learned classifier. We observe that when the noise

rate is 0.4 or 0.5, the α is heavily underestimated, and the classification performance

in Figure 5.4 also dropped accordingly. This suggests a future direction to improve the

estimation of α so that the classification can also be further improved.
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Figure 5.6: Subtrees of the learned label hierarchy on the Sosh data using the proposed
method.

5.5.3 Case Study: Application to the Sosh Dataset

5.5.3.1 The Sosh Dataset

This dataset comes from Sosh, a previous technology company that focuses on tagging

activities [99]. In this context, an activity is a single topic tagged by multiple resources.

The labels in this dataset are all human-created and span everything from “Italian

Cuisine” to “Vegan Friendly” to “National Burger Month”. Due to the fact that the

labels are created by multiple annotators without any careful coordination, it is natural

that the label assignments are incomplete (assuming that the complete label set is the

union of all the labels from all the resources). The original dataset contains 5126 activities

with 491 different labels in total. Here we manually extracted 95 labels that are related

to the broader “Food” category, and added a dummy “root” class. We remove the

activities that is not positive for any of the 95 classes, resulting in 5053 data instances.

We use the public Doc2Vec tool [61] to extract a 800-dimensional feature vector for each

activity (400 for PV-DBOW features and 400 for PV-DM features as recommended in

[61]). We then apply our method to learn the hierarchy from the data.
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5.5.3.2 Results

Figure 5.6 shows subtrees of the learned label hierarchy on the Sosh dataset. We see

that the structure contains some interesting hierarchical concepts. For example, “Food

& Dining” is at the higher level of the hierarchy and contains some subcategories of

cuisine such as “Restaurants”, “Mexican Cuisine”, “Italian Cuisine”, etc. On a lower

level, “Restaurants” has children “Asian Cuisine” and “Mediterranean Cuisine”. In a

more refined level, “Asian Cuisine” is the parent of “Chinese Cuisine”, “Vietnamese Cui-

sine”, “Korean Cuisine”, and “Japanese Cuisine”. Finally, “Japanese Cuisine” contains

“Sushui”, “Ramen”, “Sake”, and “Karaoke”.

Such learned structure is meaningful, but may not be perfect. For example, the

class “Wine” becomes the parent of “Tastings”, which seems to be a reversed direction.

This effect is possibly because that “Wine” could be the child of “Italian Cuisine” and

“Tasting”, while the former is more likely. Due to the restriction of a tree structure,

“Italian Cuisine” is determined as the parent of “Wine”, while “Tastings” becomes the

child of “Wine”. This implies that a more complex structure could be helpful, for

example, a directed acyclic graph, which points out a future direction.

5.6 Related Work

There are three main lines of research that are related to our work. We list them below

and describe some of the related work.

Hierarchical Multi-label Classification. This line of research focuses on Hierar-

chical Multi-label Classification (HMC), where the label hierarchy is assumed as a prior,

and the goal is to learn the multi-label classifier that respects the hierarchy. HMC has

been applied in several domains including protein function prediction [5, 9, 100, 118], text

categorization [21, 54, 84, 126], music genre classification [19, 33, 98], image classification

[11, 62], video annotation [35], and automatic classification of worldwide web documents

[20, 81]. While these studies have shown that using label hierarchy is generally helpful

for improving multi-label classifications, it usually requires significant domain knowledge

to obtain the hierarchy and can be costly. In contrast, our work aims to simultaneously

learn the classifier and discover the latent hierarchy, which is more desirable.

Graph Structure Learning for Multi-Label Data. There are two main cat-
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egories of approaches that learn a graph structure from multi-label data. The first

category separately learns the graph structure from labels, which can then be used to

learn multi-label classifiers. Bradley and Guestrin [15] use the ChowLiu Tree algorithm

[25] to construct a tree structure based on the mutual information of labels. In [65], the

authors construct a maximum spanning tree using label co-occurrence. In [125], a di-

rected acyclic graph is constructed to capture the joint probability of labels. In [94], the

authors use an ensemble approach to constructs a graph from several random graphs.

However, these graph constructions are often separated from the parameter learning

process.

The second category simultaneously learns graph structure and the classifier [37,

88, 96, 108]. Ding et al. [37] study the joint learning of the graph structure and the

parameters with a penalty term to encourage graph sparsity. Schmidt et al. [88] propose

a framework to jointly learn pairwise CRFs and parameters with block-L1 regularization.

Tan et al. [96] propose a clique generating method to learn graph structures for multi-

label image classification. Wu et al. [108] propose a SVM-based approach to build the

hierarchy of the multi-label of the data instances, instead of the labels. While these are

interesting results, none of them can specifically deal with incomplete multi-label data.

Multi-label Learning with Incomplete Labels Assignments. This area of

research studies multi-labeling learning with missing labels (e.g., [18, 24, 55]), and ef-

fective methods are proposed to deal with the label incompleteness. However, existing

work generally considers a flat label structure. One related work is by Bi and Kwok [12],

which takes into account the label correlation for learning. In contrast, we focus on the

scenario where the labels form a hierarchy. Yu et al. [118] study hierarchical multi-label

classification with missing labels on the leaf nodes, and propose an algorithm that con-

siders both the hierarchical and the flat taxonomy similarity between labels to predict

protein functions. Different from this work, in our problem, the hierarchy is unknown

and the labels could be missing at the internal nodes of the hierarchy.

5.7 Conclusion

In this chapter, we studied the problem of learning with latent label hierarchy from in-

complete multi-label data. Our goal was to simultaneously discover the label hierarchy

and learn a multi-label classifier for the data with missing labels. We proposed a graph-
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ical model to capture the label hierarchy and the generation process of the incomplete

label assignments. Our objective was based on Maximum Likelihood Estimation. We

developed an efficient EM optimization approach to estimate the classifier parameters

and the hierarchy structure. Our results on real-world datasets demonstrated that our

method can better discover the underlying hierarchy by utilizing both the labels and the

input features, and learn a competitive multi-label classifier. Our application on a case

study revealed interesting label hierarchy in the data with unknown structure.
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Chapter 6: Conclusions and Future Work

6.1 Contributions

In this thesis, we studied four problems of learning with partial supervision for clustering

and classification tasks.

First, we studied a novel instance clustering problem in the MIML framework, where

the bag-level labels were used as side information to inform the clustering of instances.

The goal was to find clusters that correspond to the classes or the subclasses within

each class. We presented a simple yet effective principle that incorporates the bag-level

label information as similarity constraints. The proposed constraints can be readily

integrated into any optimization-based clustering algorithm by adding a penalty term to

the objective. We demonstrated how the constraints can be incorporated into spectral

clustering and empirically validated its effectiveness on both synthetic and real-world

MIML datasets.

The second problem we addressed is clustering with instance-level similarity con-

straints. We proposed a unified framework for clustering with pairwise constraints and

relative constraints, two common types of side information for clustering. We presented

an extensive comparison between the two types of constraints by answering three research

questions from two perspectives. From the user/annotator’s perspective, we studied

which type of constraint is easier to obtain from the human labelers, and which type

of constraint allows for higher labeling accuracy. From the perspective of applying con-

straints to aid clustering, we compared the effectiveness of the two types of constraints in

improving clustering. Our results revealed that pairwise constraints are generally easier

to obtain, especially when a large portion of CL constraints exist. However, using the

unified clustering model, the relative constraints were often more effective, even when

the number of used relative constraints was far less than that of pairwise constraints,

suggesting that relative constraints are more effective at improving clustering.

For the third problem, we studied active clustering, where the goal was to itera-

tively improve clustering by querying informative pairwise constraints. We introduced
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a Bayesian clustering method that adopted a logistic clustering model and a data-

dependent prior to control model complexity and encourage large cluster separations.

Instead of directly computing the posterior of the clustering model at every iteration,

our approach maintained a set of samples from the posterior. We presented a sequen-

tial MCMC method to efficiently update the posterior samples after obtaining a new

pairwise constraint. We introduced two information-theoretic criteria to select the most

informative pairs to query at every iteration. Experimental results demonstrated the ef-

fectiveness of the proposed Bayesian active clustering method over existing approaches.

Lastly, we studied the problem of learning with latent label hierarchy from incomplete

multi-label data. Our goal was to simultaneously discover the label hierarchy and learn

a multi-label classifier for the data with missing labels. We proposed a graphical model

to capture the label hierarchy and the incomplete label assignments. Our objective

was based on Maximum Likelihood Estimation, for which we developed an efficient EM

optimization approach to estimate the classifier parameters and the hierarchy structure.

Our results on real-world datasets demonstrated that our method can better discover

the underlying hierarchy by utilizing both the labels and the input features, and learn

a competitive multi-label classifier. Our application on a case study revealed interesting

label hierarchy in the data with unknown label structure.

6.2 Future Work

In this work, we studied several problems for clustering and classification with partial

supervision. Here we list some important future directions for this line of research.

• Clustering with Hybrid Types of Constraints. Our work showed that pairwise con-

straints are easier to obtain while they are not as effective as relative constraints for

improving clustering. One future direction is to design methods to employ hybrid

types of constraints in an efficient way.

• Clustering with Richer Forms of Side Information. Our work studied cluster-

ing with two types of side information, pairwise and relative constraints. In real

applications, there could be other richer forms of user constraints, for example,

comparative constraints involving a list of objects. One future direction is to intro-

duce richer types of user inputs for clustering and design corresponding methods
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for incorporating them into clustering.

• Active Clustering with Hybrid or Richer Forms of Side Information. Our work

studied active learning for clustering with pairwise constraints. Different forms of

partial information require different methods for active learning. It is important to

design appropriate active learning methods for richer types of partial supervision.

• Complex Label Structure for Multi-label Learning. For our last problem of multi-

label learning, we studied a problem where the labels from a hierarchy. There are

many cases that the labels can form a more complex structure such as a directed

acyclic graph or an undirected graph. Future work should consider learning such

more complex structures to better capture the relationships between labels and

improve classification.
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Appendix

In this appendix, we show the derivation from Eq. (2.10) to Eq. (2.11). First we focus

on the summation term inside the trace operation. Since the two summation sum over

all possible configurations of (i, j) and (r, s), we have the following rearrangement∑
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where µ = 1>(Y TY )1
M2 , and I is the identity matrix. In the derivation, we have used the

fact that yTi yj is a scalar and yTi yj = yTj yi. Correspondingly, Eq. (2.10) is derived to Eq.

(2.11) as
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