
  

  



AN ABSTRACT OF THE DISSERTATION OF 

 

Omid Shahvari for the degree of Doctor of Philosophy in Industrial Engineering presented on July 

24, 2017. 

 

Title:  Bi-Criteria Batching and Scheduling in Hybrid Flow Shops 

 

 

 

Abstract approved: ______________________________________________________ 

Rasaratnam Logendran 

 

 

 

In this research, a bi-criteria batching and scheduling problem is investigated in hybrid flow shop 

environments, where unrelated-parallel machines are run simultaneously with different capacities and 

eligibilities in processing, in some stages. The objective is to simultaneously minimize a linear combination 

of the total weighted completion time and total weighted tardiness. The first favors the producer’s interest 

by minimizing work-in-process inventory, inventory holding cost, and energy consumption as well as 

maximizing machine utilization, while the second favors the customers’ interest by maximizing customers’ 

service level and delivery speed. In particular, it disregards the group technology assumptions (GTAs) by 

allowing for the possibility of splitting pre-determined groups of jobs into inconsistent batches in order to 

improve the operational efficiency. A comparison between the group scheduling and batch scheduling 

approaches reveals the outstanding performance of the batch scheduling approach. As a result, contrary to 

the GTAs, jobs belonging to a group might be processed on more than one machine as batches, but not all 

machines may be capable of processing all jobs. A sequence- and machine-dependent setup time is required 

between each of two consecutively scheduled batches belonging to different groups. Based on 

manufacturing company policy, the desired lower bounds on batch sizes are considered for the number of 

jobs assigned to batches. Although, the direction in which all jobs move through production line is the 

same, some jobs may skip some stages. Furthermore, to reflect real industry requirements, the job release 



times and the machine availability times are considered to be dynamic, which means not all machines and 

jobs are available at the beginning of the planning horizon. 

The problem is formulated with the help of four mixed-integer linear programming (MILP) models. Two 

out of four MILP models are formulated as two integrated phases, i.e., batching and scheduling phases, 

with respect to the precedence constraints between each pair of jobs/batches and/or the position concept 

within batches. The optimal combination between batch compositions of groups are determined in the 

batching phase, while the optimal assignment and sequence of batches on machines and sequence of jobs 

within batches are determined in the scheduling phase, with respect to a set of operational constraints. A 

batch composition of a group corresponding to a particular stage, determined in the batching phase of the 

MILP model, represents the number of batches assigned to the group as well as the number and type of jobs 

belonging to each batch of that group. Since the first and second MILP models lead to unmanageable 

solution space, the relaxed MILP model, which allocates one and only one job to each batch of each group 

in each stage, can be developed to focus on the non-dominated solution space. The optimal solutions of 

MILP models and relaxed MILP model are equal, if and only if the optimal solution of the relaxed MILP 

model does not violate the desired lower bounds on batch sizes. Since the relaxed MILP model cannot 

guarantee the optimal solution of the MILP models, a third MILP model is developed by integrating 

batching and scheduling phases. This MILP model eliminates an exhaustive combination enumeration 

between batch compositions of all groups in all stages. Although the third MILP model converges to the 

optimal solution slower than the relaxed MILP model, it guarantees finding the optimal solution of the first 

and second MILP models. A comparison between four MILP models shows the superior performance of 

the third MILP model.  

However, since the problem is strongly NP-hard, it is not possible to find its optimal solution within a 

reasonable time as the problem size increases from small to medium to large, even by the relaxed MILP 

model or the fourth MILP model. Therefore, several meta-heuristic algorithms based upon basic local 

search, basic population-based search, and hybridization of local search and population-based searches are 

developed, which move back and forth between batching and scheduling phases. Tabu Search (TS) is 

implemented as a basic local search algorithm, while Tabu Search/Path-Relinking (TS/PR) is implemented 

as a local search algorithm enhanced with a population-based structure. TS is incorporated into the 

framework of path-relinking to exploit the information on good solutions. The TS/PR algorithm comprises 

several distinguishing features including relinking procedures to effectively explore trajectories connecting 

elite solutions and the methods used to choose the reference solution. Particle Swarm Optimization (PSO) 

is implemented as a basic population-based algorithm, while Particle Swarm Optimization enhanced with 



a local search algorithm (PSO/LSA) is developed to realize the benefits of batching and, consequently, 

enhance the quality of solutions. 

Since there is interdependency between positions of a job in different stages of a hybrid flow shop in batch 

scheduling, a meta-heuristic algorithm is not capable of capturing these interdependencies and, 

subsequently, its efficacy can be diminished. In order to capture this interdependency, the non-, partial- 

complete-, and stage-based interdependency strategy are developed. In the stage-based-interdependency 

strategy, a complete sequence related to all of the stages is gradually determined, stage by stage. An initial 

solution finding mechanism is developed to trigger the search into the solution space and generate an initial 

population. The performances of these algorithms are compared to each other in order to identify which 

algorithm(s) outperforms the others. Nevertheless, the performances of the best algorithm(s) are evaluated 

with respect to a tight lower bound obtained from a branch-and-price (B&P) algorithm.  

The B&P algorithm uses Dantzig-Wolfe decomposition (DWD) to divide the original problem into a master 

problem and several sub-problems (SPs) corresponding to each stage. The original problem is decomposed 

into the SPs by three DWDs corresponding to the three MILP models. Although, by applying DWD 

technique in the first and second MILP models, an exhaustive combination enumeration between batch 

compositions of all groups in all stages is excluded and, as a result, the SPs are easier to solve than the 

original problem, they are still strongly NP-hard because of an enormous number of combinations between 

batch compositions of all groups in each stage. However, the DWD technique corresponding to the relaxed 

MILP model not only drastically reduces the number of variables and constraints in the SPs, but also 

eliminates the batching phase of the first and second MILP models. Decomposing the original problem 

based on the relaxed MILP model and implementing the B&P algorithm cannot guarantee optimal solutions 

or tight lower bounds of problems unless the number of violations in the desired lower bounds on batch 

sizes is not significant. Therefore, the third MILP model is decomposed by DWD so that the B&P algorithm 

is capable of finding tight lower bounds even for large-size instances of the problem.  

A comparison between the lower bounds obtained from the B&P algorithm and CPLEX reveals the 

impressive performance of the B&P algorithm, particularly for large-size problems. The evaluation of the 

best algorithms based upon these tight lower bounds developed by the B&P algorithm, uncovers the 

outstanding performance of hybrid algorithms compared to the results obtained from CPLEX. 
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Bi-Criteria Batching and Scheduling in Hybrid Flow Shops 

 

1. INTRODUCTION 

Scheduling problems were first considered in the mid-1950s in small industries as minimizing the total flow 

time of a group of jobs on a single machine or minimizing the makespan of jobs on a couple of machines. 

Then, based on realistic requirements of different manufacturing industries, these problems got more 

complex over time. The intense competition faced by manufacturing companies since the late 1970s has 

made them very receptive to ideas that improve both operational effectiveness and competitive advantage. 

Foremost among these ideas that has achieved widespread acceptance is cellular manufacturing (CM), a 

widely-recognized production system, which combines the efficiency of flow shop production with the 

flexibility of job shop manufacturing.  

With the advent of CM as a manufacturing philosophy, and as a result of scheduling of jobs that belong to 

the same family based upon their similarities in processing plans, tooling, shape and size, and setup, has 

become a topic of considerable interest among researchers and more suited for today’s lot production 

systems (Li et al. 2010). Much of the attention in CM has focused on reduction in 1) total time required to 

setup the machines by implementing part family tooling and sequencing since cells process similar parts, 

2) total flow times with the help of reducing setup times, move times, and waiting times, and 3) using small 

transfer batches. These provide the opportunity to reduce not only lot sizes, which leads to reduced work-

in-process (WIP) inventories, but also manufacturing lead times and, subsequently market response times, 

which leads to improved customer satisfaction. Therefore, CM has focused on both producer’s and 

customers’ satisfaction.  

CM is one of the applications of group technology, seeking to align process flows by families of component 

parts, where a portion of a firm’s manufacturing system has been converted to cells. Group technology is a 

philosophy that capitalizes on product similarities and was designed as a means of improving manufacturing 

and design productivity in an era of rapidly expanding product diversity. A manufacturing cell is a cluster 

of dissimilar machines or processes located in close proximity and dedicated to the manufacture of families 

of parts. The parts belonging to each family are similar in their processing requirements including required 

operations, machine tool capacities, processing plans, tolerances, and so forth. The shop structure of each 

cell determines all characteristics of the environment where jobs are processed, such as the number and 

type of machines as well as the layout of the workshop. In order to decrease the cycle time of production, 

all machines are placed in serial stages based upon jobs’ processing plans so that jobs should move through 

these stages in unidirectional passes. Also, in order to increase the flexibility of the production line, all
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machines related to bottleneck stages are placed in parallel, not necessarily all identical. This is a 

sophisticated flow shop known as hybrid flow shop. 

Hybrid flow shop (HFS) is one of the advanced flow shop structures that have been studied in the scheduling 

literature. HFS is a flow shop, where at least one of the stages includes identical- and/or unrelated-parallel 

machines and jobs are required to be processed only on one machine. In contrast, a flow shop with only 

identical-parallel machines in at least one of the stages is called flexible flow shop (FFS). HFS environments 

have been utilized by many traditional industries including paper, textile, tobacco, pharmaceutical, 

metallurgical, oil, chemical, and food industry (Hsu et al. 2009, Zandieh et al. 2006). Semiconductor wafer 

fabrication, printed circuit board (PCB), and semiconductor light source manufacturing systems are modern 

electronics industries, which utilize HFS as a shop structure (Chang 2000, Choi et al. 2011, Jin et al. 2002, 

Neammanee and Reodecha 2009, Uzsoy et al. 1992, Wein 1988).   

Effective scheduling approach is crucial to good performance of job shops and flow shops where a large 

variety of parts are produced. Therefore, a scheduling rule chosen for a manufacturing cell can have a strong 

impact on cell performance, especially when multiple incompatible job families are produced, virtual 

cellular manufacturing (VCM) is proposed, setup times are significant, and/or a manufacturing cell is 

operating at or near its capacity. Incompatible job families refer to multiple groups of dissimilar jobs, while 

the jobs assigned to a group are similar. Setup times need to be explicitly considered while scheduling 

decisions are made in order to increase productivity, eliminate waste, improve resource utilization, and 

meet deadlines (Allahverdi 2015). The research problem addressed in this paper focuses on determining 

the optimal schedule of incompatible job families (groups) in several consecutive cells of a manufacturing 

company, where there are negligible setup times (equal to zero) between two jobs belonging to the same 

group, while considerable setup times between two jobs of different groups. Therefore, the utilization of an 

appropriate scheduling approach along with an efficient optimization algorithm can have a significant effect 

in cell performance. There are three choices for scheduling of pre-determined groups of jobs based upon 

the industry requirements: 

• Group Scheduling (GS): jobs belonging to a group should be processed as a single batch, i.e., 

following the group technology assumptions (GTAs) 

• Batch Scheduling (BS): jobs belonging to a group might be processed as multiple batches, i.e., 

violating the GTAs but following the desired lower bounds on batch sizes, 𝐿𝐵𝑏, (the minimum 

number of jobs assigned to batches, which are related to batch assignment on machines) 

• Job Scheduling (JS): jobs are processed irrespective of their assignment to groups, i.e., violating 

both the GTAs and 𝐿𝐵𝑏. 
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Figure 1. Illustration of job scheduling vs. batch scheduling vs. group scheduling 

An illustration of GS, BS, and JS related to only one stage of HFS including five unrelated machines is 

depicted in Figure 1. By implementing BS instead of GS, each of 3 groups among the 8 groups are split 

into two batches. In addition, by implementing JS instead of GS, each of 2 groups among the 8 groups are 

split into three batches, while one group is split into two batches. In the following sub-section, an overview 

of semiconductor light sources manufacturing systems is presented in order to illustrate the application of 

the HFS environment. Apart from this, the contribution and motivation for considering other features of 

this research, such as violation in the GTAs, the desired lower bounds on batch sizes, and bi-criteria 

objective function are justified.  

1.1. Industrial application 

The semiconductor industry is the aggregate collection of companies engaged in the design and fabrication 

of semiconductor devices. Therefore, semiconductors are a primary input for nearly all electronic products. 

The semiconductor industry is widely recognized as a key driver for economic growth in its role as a 

multiple lever and technology enabler for the whole electronics value chain. Continuous growth but in a 

cyclical pattern with high volatility creates the need for high degrees of flexibility and innovation in 

semiconductors in order to constantly adjust to the rapid pace of change in the market. Panel production 

market is one of the fastest growing segments related to the semiconductor industry.  

Market demand for panel products is rapidly changing and has experienced unexpected fluctuations. These 

variations, together with the extensive amount of customization requested from customers underlie the need 

for high degrees of flexibility and efficiency in this industry. The LCD, TFT-LCD, LED, LED-backlit LCD, 

OLED, and similar semiconductor light source manufacturing systems show rapid changes in 

semiconductor light source, and in general the panel production market. The above-mentioned 

manufacturing systems are considered as a middle stage in the electronics value chain, which receive 

semiconductors as their main input in order to produce LCDs, TFT-LCDs, LEDs, LED-backlit LCD, 

OLEDs, and other semiconductor light sources, which are themselves the main input for many other 
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electronic industries. Revolutionary changes in types of equipment, materials, and production technologies 

have resulted in extraordinary advances in these industries. Most applications of semiconductor light 

sources are television sets, computer monitors, mobile phones, handheld video game systems, personal 

digital assistants, navigation systems, and projectors. 

Different semiconductor light sources present different quality. The LCD, stands for Liquid Crystal 

Display, works by adjusting the amount of light blocked and usually has a backlight. The TFT-LCD, stands 

for Thin Film Transistor LCD, is a type of the LCD with a TFT attached to each pixel in order to improve 

the quality of images. The LED, stands for Light Emitting Diode, emits light when activated rather than 

blocking it like the LCD. The LED-backlit LCD uses LED backlighting instead of the cold cathode 

fluorescent (CCFL) backlighting used by most other LCDs. The OLED, stands for Organic LED, is 

comparatively recent technology in which the emissive electroluminescent layer is a film of organic 

compound that emits light in response to an electric current. Almost all panels that we currently use are 

TFT-LCDs, LED, or LED-backlit LCD. Figures 2 and 3 present a general form of components related to 

TFT-LCD and LED-backlit LCD panels, respectively. The components of the product are assembled on 

top of each other after they have been separately manufactured, either by the same company or by different 

suppliers. 

 

Figure 2. A general form of components in TFT-LCD panel 

Each semiconductor light source has different types, which can be categorized based on manufacturing 

technology and other unique features. In addition to technological differences, each one is also categorized 

based on the size of the mother glass that is used in the early stages of the manufacturing process. Therefore, 
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different groups of semiconductor light sources of the same type (for example LED-backlit LCD) are 

created in terms of shape, size, technological manufacturing, production planning, etc. Apart from this, each 

semiconductor light source manufacturing system includes a lot of individual operations, which can be 

divided into several main sub-processes such as fabrication process, cell process, and module process. Each 

sub-process performed in a cell of CM includes most complicated machines, which are typically automated 

or controlled by computers and placed in a serial sequence, i.e., flow shop. Several parallel machines are 

simultaneously run in the stages of a flow shop with long runtime (bottleneck stages) not only to decrease 

the cycle time of production, but also increase the flexibility of production at the same time. Parallel 

machines, which are expensive and have a wide range of specifications, include all types of identical, 

uniform and unrelated machines (Choi et al. 2011, Jeong et al. 2001, Shin and Leon 2004). Finally, the 

transportation of materials and maintenance of work-in-process (WIP) inventories between different stages 

of HFS are usually performed with the help of automated material handling systems (AMHS) such as 

automated guided vehicles (AGV), overhead shuttles (OHS), rail guided vehicles (RGV), and conveyer 

systems (Ho and Su 2010, Jang and Choi 2006).  

 

Figure 3. A general form of components in LED-backlit LCD panel 

Last but not least, whenever the number of operations is increasing, effective scheduling approaches are 

necessary to keep not only high levels of productivity from producer’s point of view, but also high levels 

of satisfaction from customers’ point of view. Although scheduling techniques have been employed by the 

semiconductor and, subsequently, semiconductor light source manufacturing systems, these techniques 

need to evolve at the same step as other advances in these industries. 



6 

 

1.2. Motivation  

This research specifically addresses scheduling of jobs clustered into pre-determined groups as inconsistent 

batches in an HFS environment, which is motivated by real industry applications. The mentioned batching 

and scheduling problem, simply known as batch scheduling, covers most of the challenges in the 

semiconductor light source manufacturing systems. Since, all jobs/parts should be processed as inconsistent 

batches in the same direction in an HFS environment, it lacks the flexibility of job shop production systems. 

However, as it has been described for the semiconductor light source manufacturing systems, efficiency 

and flexibility are two of the most crucial features of this industry, which is obtainable with the help of 

running parallel machines from different types in bottleneck stages. As a result, since these parallel 

machines have different rates in processing, a part has different run times on bottleneck stages.  

The ever-changing design of products in the semiconductor light source manufacturing systems such as the 

LCD, TFT-LCD, LED, LED-backlit LCD, OLED, and others, together with huge seasonal demand for 

these products, and generally for related panels, make the introduction of flexibility within job shops in 

HFS production systems critical for practitioners. This novel production system is obtainable through CM, 

so that all parts are clustered into several families or groups in terms of their similarity and all required 

machines are also categorized into different cells in a way that each cell is almost capable of completely 

processing multiple groups of jobs. A few inter-cell movements are usually inevitable because complete 

disaggregation of cells is not always possible and it might be costly. Therefore, the combined flexibility 

and efficiency of this manufacturing structure makes it the best option for today’s small-to-medium lot 

production systems (Li et al. 2010).  

Instead of focusing only on optimizing the satisfaction of producers as in the literature on most scheduling 

problems, this research focuses also on customers’ satisfaction. Therefore, the focus is on a bi-criteria 

objective of minimizing a linear combination of total weighted completion time and total weighted 

tardiness. From the producer’s point of view, the objective is to not only minimize the total cost of work-

in-process inventory, inventory holding cost, and energy consumption cost, but also to maximize machine 

utilization, both by minimizing the total flow time of all jobs. To attain the maximum customer satisfaction, 

the objective is to maximize customers’ service level and delivery speed by minimizing the total tardiness 

for all jobs. These two criteria are combined with the help of a linear combination, which is referred to as 

the weighted sum technique in the literature. 

Since the temperature of machines, for example in Polarizer Attachment process (one of the stages in 

semiconductor light source manufacturing systems including unrelated-parallel machines), is dependent on 

the size of cells (jobs), a set of cells might be processed contiguously as batches with regard to 𝐿𝐵𝑏. 



7 

 

Although we assume the setup times between cells (jobs) belonging to the same batch is negligible (equal 

to zero), there is a slight difference in the machine temperature (tiny setup time) with regard to different 

cells (jobs) belonging to the same batch. Therefore, two cells (jobs) cannot be processed simultaneously by 

a machine because of different required temperatures. Since the jobs within different batches are not 

necessarily similar to each other, a sequence- and machine-dependent setup time is considered for switching 

processes from a batch of a group to a batch of different group on a particular machine. Furthermore, in 

order to depict the realistic requirements in industries, jobs are assumed to be released into the production 

systems at dynamic times, and machines are also assumed to be made available in the system at dynamic 

times. Also, some jobs/batches/groups can skip some stages because they do not need an operation to be 

performed in these stages.  

As mentioned before, three scheduling approaches, used for sequencing part families as well as parts within 

each family in each cell of CM, are job scheduling, group scheduling, and batch scheduling. If the jobs 

assigned to a group belong to either one customer or different customers with different due dates, it might 

be better to process these jobs as multiple batches. Since GS follows the GTAs, it should process the jobs 

in one batch, while BS may choose to process the jobs in multiple batches. The benefits of integrating the 

batching decision into the GS approach are to reduce the completion time of jobs with the help of different 

machine capabilities and eligibilities, specifically in a bottleneck stage(s), perform timely processing of 

jobs with higher priority (based upon weight, tight due date, and earlier release time of jobs), and utilize 

the available machine capacities. In a bottleneck stage, since some machines are not eligible to process 

some jobs, a machine(s) might use its capacity either more than or less than other machines and, 

consequently, the completion time of a group(s) might be either lower than or higher than other groups 

when GS is applied. Contrary to GS, BS can potentially lead to a reduction in completion times of some 

jobs and/or their tardiness by processing the jobs with higher priorities. While this favors the producer’s 

and/or customers’ interests, it might change the production costs due to changes in completion time of other 

jobs and/or their tardiness as well as setup times (as multiple batches of the same group may have to be 

processed on different machines). So, there is a trade-off between changes in jobs’ completion times and/or 

their tardiness on the one hand, and on the other, the changes in setup times. Although we do not expect to 

have small batch sizes with large setup times, the optimal schedule of JS may require the use of such 

batches. Therefore, there is no guarantee that better results would be obtained if the groups are allowed to 

divide into batches as much as possible, when the production costs are important. The manufacturing 

companies try to establish a balance between the setup time and the cumulative run time of each batch 

processed on a machine so that the production costs are not increased excessively. Thus, BS accompanied 

by 𝐿𝐵𝑏 is capable of identifying better solutions compared to GS and JS. Since group scheduling problems 
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are well motivated by industrial applications, we implement batch scheduling instead of group scheduling 

in this research to enhance the efficiency and effectiveness of production systems.  

A batch composition determines the number of batches assigned to a group as well as the number and the 

type of jobs assigned to each batch of that group, in a particular stage. The optimal batch composition of 

each group in each stage is determined in the batching phase of the problem. There is an enormous number 

of combinations between batch compositions of a group and, subsequently, an exhaustive combination 

enumeration between all batch compositions of all groups. Apart from this, the best assignment and 

sequence of batches on machines as well as job sequence within each batch should be determined for each 

enumeration in order to determine the optimal assignment and sequence of batches on machines and jobs 

within batches. Therefore, this feature as well as the previously noted features of the problem place it among 

the strongly NP-hard problems. As a result, it is not possible to find the optimal solutions for medium- and 

large-size problems, and even for small-size problems due to high complexity of the problem. The main 

approach in dealing with these problems is to develop a robust mathematical model and heuristic or meta-

heuristic algorithms to find optimal or near optimal solutions. In addition, tight lower bounds are required 

to evaluate the performance of developed algorithms. 

For illustration, the non-permutation group scheduling and batch scheduling in a three-stage hybrid flow 

shop are depicted in Figure 4. All groups have three jobs each, except one which has four jobs. The idle 

time and waiting time on a machine are due to the job release time and the machine availability time, 

respectively. By integrating the batching decision into GS, i.e., BS, the following results are obtained in the 

optimal schedule of BS:  

• The third and fourth groups are divided into two batches, in each stage. Also, the first group is 

divided into two batches in the second stage.  

o A small batch including only job 3 with a reasonable setup time is created on the first machine 

of the second stage due to tight due date of this job. 

o Job 8 is processed as a small batch including only one job on the third machine of the second 

stage due to its higher priority and early release time. 

• The completion time of all jobs and subsequently their tardiness are either reduced or not changed, 

except for two jobs (𝑗8 and 𝑗9), which generally led to the reduction in total processing times. 

• The job sequence within groups are changed in different stages due to either the job priority and/or 

the job release time, which blocks the job from starting early as a result of the split of some groups 

into batches. 

• The run time of some inserted jobs on different machines are changed due to different capabilities 

of machines to process jobs. 
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• The available capacity created on the first machine of the third stage in GS (idle time before job 

11) is utilized in BS, while there is idle time on the second machine of the second stage because 

the release time of job 4 had blocked this machine from processing this job earlier. 

• And finally, the number of setups increases and some setup times change.  

 

Figure 4. Illustration of batch scheduling vs. group scheduling 

Therefore, it is clear that it might be advantageous to split one or more groups into batches, thus resulting 

in the reduction of job completion time and/or tardiness and, consequently, the reduction in the production 

cost. But doing so might increase completion time and/or tardiness of other job(s) and change in setup costs, 

as multiple batches of the same group may opt to be processed on different machines, thus resulting in the 

increase in the production cost. Therefore, the trade-off between the reduction and increase in the 

production cost can be used in favor of implementing BS by considering desired lower bounds. 
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1.3. Contributions 

One of the main purposes of this research is to tackle the scheduling problem in such a manufacturing cell 

with the help of a mathematical model as well as providing a set of efficient meta-heuristic algorithms, 

specifically for industry-size problems. The orders for semiconductor light sources of the same group might 

be released to the manufacturing system by different customers with different due dates. Therefore, 

semiconductor light sources of the same group can be processed as multiple batches with respect to 

customers’ priorities and batch development restrictions. Thus, another main purpose of the research is to 

show the benefits of integrating the batching decision in the traditional group scheduling approach, i.e., the 

novel batch scheduling approach. Despite the existing research on different types of hybrid flow shop 

scheduling problems, the lack of developing an efficient mathematical model and, consequently, an 

optimization algorithm for solving the research problem optimally in a reasonable computational time are 

recognizable in the literature. To the best of our knowledge, applying column generation in the framework 

of branch-and-bound algorithm (branch-and-price optimization algorithm) to find optimal solutions for 

large-size problems has not been implemented for the problem addressed in this research. The branch-and-

price algorithm is efficient because of the use of flow conservation constraints.  

Four mixed-integer linear programming (MILP) models are developed in terms of different concepts to 

mathematically represent the problem, optimally solve small-size instances of the problem, and construct a 

lower bounding mechanism in order to evaluate the performance of non-exact algorithms, particularly for 

large-size problems. Several meta-heuristic algorithms in terms of a local search structure, a population-

based structure, and hybridization of local search and population-based structures are developed to find 

high quality solutions for the problem. These algorithms are developed based on the most effectively used 

meta-heuristics in the literature of HFS scheduling problems, i.e. tabu search (TS) as a local search 

algorithm, particle swarm optimization (PSO) as a population-based algorithm, and tabu search 

accompanied by path-relinking strategy (TS/PR) as well as particle swarm optimization accompanied by a 

local search algorithm (PSO/LSA) as hybrid meta-heuristic algorithms.  

In addition, a lower bounding mechanism is constructed with the help of the column generation (CG) 

algorithm, also known as “pricing” problem. CG follows the Dantzig-Wolfe decomposition technique and 

decomposes the MILP model into a master problem (MS) and a sub-problem(s) (SP). Although the optimal 

solution of CG is guaranteed to be a lower bound for the original problem, this lower bound may not 

necessarily be one of high quality. Since CG relaxes the integer constraints of the master problem, a 

branching procedure (similar to the branch-and-bound (B&B) technique) is performed on fractional 

variables obtained from CG to construct a high quality lower bound, commonly referred to as a tight lower 

bound in the mathematical programming literature. As a result, collectively the mentioned approach is 
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referred to as branch-and-price (B&P) technique. A graphical representation of the research contribution is 

provided in Figure 5. 

 

Figure 5. Research Contribution for the Problems Investigated 

1.4. Research outline 

Section 2 describes all features of the problem, in detail. These features include batching and scheduling 

phases incorporated into the batch scheduling problem, the objective function of the research problem, and 

the realistic situations and requirements in industries, i.e., sequence- and machine-dependent setup time, 

dynamic job release time, dynamic machine availability, machine capability and eligibility, stage skipping, 

and desired lower bounds on batch sizes. 

Research Cntribution

Bi-Criteria σ𝑤𝑗𝐶𝑗 + σ𝑤𝑗𝑇𝑗

Hybrid Flow Shop

Lower Bounding 
Mechanism

Column Generation

B&P Algorithms

Problem 
Decomposition

Solving 

Sub-Problems

Sub-Problems 
Simplification

Branching 
Strategy

Mahematical 
Model (MILP)

MILP1, MILP2, & 
MILP3

Relaxed MILP

Meta-Heuristic 
Algorithms

Move 
Interdependency

Tabu Search/Path-Relinking 
(TS/PR) Algorithm

Tabu Search (TS) Algorithm

Particle Swarm Optimization/ 
Local Search Algorithm

Particle Swarm Optimization 
(PSO) Algorithm

Comparison between developed 
algorithms



12 

 

Batch scheduling is motivated wherever group scheduling is applicable. Therefore, the literature review on 

both group scheduling and batch scheduling is provided on Section 3. Besides, the literature review on the 

main features of the research problem including hybrid flow shop environment, bi-criteria objective 

function, and meta-heuristic algorithms is provided in this section.  

Section 4 explains the methodologies proposed to deal with the research problem. These methodologies 

include mathematical programing models, which can be used to optimally solve the problem, as well as 

several meta-heuristic algorithms that can find optimal or near optimal solutions. The common 

implementation strategies related to the search algorithms including move interdependency, initial 

solution/population, and refinement/adjustment step are explained. Subsequently, the main characteristics 

for each of the search algorithms are individually explained, in detail. The appropriate flow chart and/or 

pseudo-code is provided for each algorithm in this section. 

The performance of developed meta-heuristics is evaluated with the help of a lower bounding mechanism, 

which is described in Section 5. A column generation technique is developed in this section. This section 

includes a brief background of this methodology, formulating master and sub problems and establishing 

valid lower bounds to the entire problem. Some properties on simplifying sub-problems to a problem with 

less complexity are also developed in this section.  

A comprehensive data generation mechanism is described in Section 6 to develop test problems, followed 

by the experimental setup to evaluate the performance of developed algorithms and lower bounding 

mechanism in Section 7. Finally, Section 8 concludes the presentation of research. 
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2. PROBLEM STATEMENT  

The problem addressed in this research is to schedule 𝑛 different jobs clustered into 𝑔 pre-determined 

groups as inconsistent batches, where each group contains 𝑛𝑖 jobs (i.e., σ 𝑛𝑖
𝑔
𝑖=1 = 𝑁). The scheduling 

problems can be defined based on three-field notation 𝛼/𝛽/𝛾 developed by Graham et al. (1979). The first 

field (𝛼) describes the shop (machine) setting. The second field (𝛽) describes the setup information. Finally, 

the third field (𝛾) defines the performance measure. Therefore, the research problem addressed here is 

defined as 𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗, 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗). This problem includes the following 

features:   

1. Batch scheduling: there are pre-determined groups (families) of jobs based on similarities in 

processing requirements. The GTAs restricts all jobs within a group to be processed successively 

and without interruption from other groups. Scheduling of groups of jobs in the presence of the 

GTAs is referred to as group scheduling. Splitting (batching) pre-determined groups of jobs into 

inconsistent batches together with scheduling developed batches on machines as well as jobs within 

batches (i.e., violating the GTAs by dividing groups into inconsistent batches), is called as batching 

and scheduling problem. In the literature, this is referred to simply as batch scheduling, wherein 

sub-groups belonging to each group of jobs are referred to as batches. It might be possible to split 

one or more groups into batches, so that all jobs of a batch are processed consecutively on the same 

machine. Realistically, a batch cannot be processed on a machine if there is at least one job in the 

batch, which cannot be processed on that machine. As a result, contrary to the GTAs, jobs belonging 

to a group might be processed on more than one machine as batches, but not all machines may be 

capable of processing all jobs. In each stage of batch scheduling, a decision needs to be made 

regarding both the batching phase and the scheduling phase.  

1.1. Batching phase: a batch composition determines the number of batches assigned to a group as 

well as the number and the type of jobs assigned to each batch of that group with regards to 

desired lower bounds, in a particular stage. Therefore, the batching phase determines batch 

compositions of all groups for the entire stages. Since all jobs of each group can be processed 

as different batch compositions corresponding to all stages in batch scheduling, it is referred to 

as inconsistent batches. 

1.2. Scheduling phase: the sequence of batches on machines as well as the sequence of jobs within 

batches are determined in the scheduling phase, for each combination of batch compositions of 

all groups for the entire stages, which was determined in the batching phase. 
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2. Hybrid flow shop: in order to decrease the cycle time and increase the flexibility of the production 

line, it follows the structure of a unidirectional hybrid flow shop, which includes unrelated-parallel 

machines (UPM) in at least one stage. Some parallel machines can also be identical. In HFS, the 

machines assigned to a stage with long runtimes (bottleneck stage) are run simultaneously with 

different capacities and eligibilities in processing.  

3. Bi-criteria objective: the objective function composed of two criteria is to simultaneously minimize 

a linear combination of total weighted completion time and total weighted tardiness of jobs. The 

first favors the producer’s interest by minimizing work-in-process (WIP) inventory, inventory 

holding cost, and energy consumption as well as maximizing machine utilization, while the second 

favors the customers’ interest by maximizing customers’ service level and delivery speed. These 

two criteria are combined with the help of normalized importance coefficients 𝛼 and 𝛽, which are 

the weight attributed to the producer and customers, respectively (0 < 𝛼, 𝛽 < 1 and 𝛼 + 𝛽 = 1). 

In order to capture the importance of different products from both the producer’s and customers’ 

view point, a weight is assigned to each job in the objective function.  

4. Sequence- and machine-dependent setup time: processing a job by a machine requires the 

machine to be set up first. This setup takes a variable amount of time according to the previous 

configuration of the machine. Therefore, a setup is required between each of two consecutively 

scheduled batches belonging to different groups, which is dependent on both machine assignment 

and sequence of batches. Thus, the problem belongs to the class of sequence-dependent batch 

scheduling. Since all jobs within a batch are related to the same group and, subsequently, they are 

similar to each other, the setup time required to prepare a machine for switching the process from 

one job to another one is assumed to be negligible. 

5. Dynamic job release time: the release times for jobs are considered to be dynamic, which means 

not all jobs are available at the beginning of the planning horizon (i.e., 𝑡 = 0). Therefore, some 

jobs will be released at 𝑡 > 0.  

6. Dynamic machine availability time: the availability times of machines are also considered to be 

dynamic, which means not all machines are available at the beginning of the planning horizon (i.e., 

𝑡 = 0). Therefore, some machines will be available at 𝑡 > 0. The dynamic machine availability 

time usually happens because of maintenance or operations being performed in the previous 

scheduling period.  
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Point: all job release times and machine availability times are deterministic and known before the 

scheduling process. Therefore, the problem is not among the stochastic scheduling problems.  

7. Machine eligibility and capability: in HFS, the machines assigned to a bottleneck stage might not 

be eligible to process some jobs. This is referred to as machine eligibility, which is mainly because 

of technical incapability of machines. Apart from this, these machines might have different 

capacities in processing. Therefore, each job might have different run time in terms of machine 

assignment in bottleneck stages. 

8. Desired lower bounds on batch sizes: there should be a balance between setup time and cumulative 

run time of each batch processed on a machine, which is determined by a manufacturing company’s 

policy in terms of the minimum number of jobs assigned to a batch, i.e., the desired lower bounds 

on batch sizes. 

Point: although there is at least one machine to process consecutively all jobs of each group as a 

single batch in each stage, a batch cannot be processed on a machine if there is at least one job in 

the batch which cannot be processed on that machine and/or the number of jobs assigned to the 

batch is less than the desired lower bound on that machine. 

9. Stage skipping: jobs should move through stages so that each job should be processed in at least 

one stage. Although, the direction in which all jobs move through is the same, meaning a flow-line 

arrangement as required by batch scheduling, some jobs and, subsequently some batches/groups 

may skip some stages because they do not need an operation to be performed in these stages. 
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3. LITERATURE REVIEW  

Scheduling problems were first considered in the mid-1950s. The comprehensive reviews of scheduling 

problems from mid-1998 to mid-2006, reported by Allahverdi et al. (2008), document the advancement 

made in scheduling research over the years. Recent comprehensive review by Allahverdi (2015) including 

static, dynamic, deterministic, and stochastic environments, classify scheduling problems based upon shop 

environments as single machine, parallel machine, flow shop, job shop, or open shop, since the mid-2006 

until the end of 2014. Generally, scheduling problems can be classified based upon a number of factors 

including setup time/cost, the number of stages jobs need to be processed, job processing requirements, the 

number of machines at each stage, and the performance measure to be optimized. The scope of this research 

is to improve the objective function value of group scheduling problems. Therefore, the literature reviews 

are presented on group scheduling problems with respect to different shop environment and implemented 

methodologies, along with some important characteristics of this research including the hybrid flow shop 

environment and bi-criteria objective function.  

Group scheduling problems are studied by single-machine with different assumptions to capture the real 

industries’ requirements. In today’s competitive environments, some manufacturing industries insert 

additional machines to the single-machine shop environment to ensure attaining a specific quality, 

producing new products, and increasing both the flexibility and capacity of the production system. Shop 

structure is changed by inserting new machines in different positions of the single-machine shop 

environment, as parallel machines and flow shop, with respect to job processing plans.  

When new machines are inserted in parallel, the parallel machine scheduling problems are created, which 

can be divided into three categories: Identical machines, 𝑃𝑚, where the run time of a job does not depend 

on the machine to which it is assigned; Uniform machines, 𝑄𝑚, where machines have an associated speed 

for processing jobs at a consistent rate; and Unrelated machines, 𝑅𝑚, where each type of machines processes 

each job in different rates. So the run time of each job on unrelated-parallel machines depends on the 

machine to which it is assigned. Since unrelated-parallel machines (UPM) consider different run time for 

each job on each machine, it is more prevalent in industry than identical and uniform parallel machines 

(Allahverdi et al. 2008).  

If the new machines are inserted in series in which the flow or movement of all jobs is the same, from the 

first machine in the series to the last one, flow shop (FS) structure is developed. The sophisticated shop 

structures are flexible flow shop (FFS) and hybrid flow shop (HFS), when at least one of the serial stages 

of a unidirectional flow shop includes identical- and unrelated-parallel machines, respectively. These 

extended layouts are sometimes addressed as flow shop with multiple machines, multiprocessor flow shop, 
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or flow shop with parallel machines. The other reason for adding some machines to a stage of a flow shop 

is to balance the capacity of the flow shop and increase in demand for customized products. 

3.1. Review of the literature related to hybrid flow shop environments 

The HFS scheduling problem might be considered as a generalization of two particular types of scheduling 

problems: the UPM scheduling problem and the FS scheduling problem. The allocation of jobs to machines 

and the sequence of jobs through the shop are the key decisions of the UPM and FS, respectively. Hence, 

once the configuration of HFS has been designed, the main decisions in the operation of HFS are to assign 

and to schedule the jobs to the machines in each stage according to one or several given criteria. Since, HFS 

in this research has batching constraints and bi-criteria objective function, the scheduling approach has a 

large impact on the performance of HFS. On the other hand, although HFS increases the productivity and 

flexibility of production, it directly has an impact on the complexity of the scheduling problem. Therefore, 

HFS is one of the most important characteristic of this research.  

A comprehensive set of papers dealing with HFS problems is studied by Ruiz and Vázquez-Rodríguez 

(2010). The earliest work on HFS problems started with considering identical-parallel machines in flow 

shop so that jobs are not allowed to skip any stage. The simplified versions considered two or three stages 

including one or two machines in each stage. The exact algorithms such as B&B and dynamic programming 

(DP) have been developed for these problems with unlimited number of stages and machines (Brah and 

Hunsucker 1991, Rajendran and Chaudhuri 1992) and more generalized versions of these problems have 

been implicitly solved by developing mathematical programming models (Liu and Karimi 2008, Tang and 

Xuan 2006). 

Ruiz and Maroto (2006) developed hybrid algorithms based on GA-based algorithms with different local 

search algorithms to address an HFS scheduling problem with consideration of sequence-dependent setup 

times and machine eligibilities. Chen and Chen (2009) developed bottleneck-based heuristic algorithms to 

find the minimum total tardiness in an HFS scheduling problem. The comparison between these algorithms 

against several commonly used dispatching rules as well as a TS-based algorithms revealed that bottleneck-

based algorithms are not capable of finding solutions better than TS. Jungwattanakit et al. (2009) studied 

an HFS problem with the purpose of minimizing a linear combination of the makespan and the mean 

tardiness of all jobs. They considered sequence-dependent setup times and dynamic job release times. In 

addition to developing a mixed-integer programming (MIP) model, they developed and compared the 

performance of different algorithms based on TS, SA and GA.  

Yaurima et al. (2009) proposed some algorithms based on GA to find the minimum makespan in an HFS 

scheduling problem. The underlying assumptions for this problem were sequence-dependent setup times, 
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machine eligibility, and limited buffers. In addition to the mentioned assumptions, Ruiz et al. (2008) 

considered a set of comprehensive assumptions such as stage skipping and job release time for the same 

problem. The researchers developed an MIP model as well as several heuristics to deal with the problem. 

Zandieh and Karimi (2011) developed an adaptive multi-population GA to solve the multi-objective group 

scheduling problem in an HFS environment with sequence-dependent setup times. The objective was to 

minimize the summation of makespan and total weighted tardiness in a group scheduling problem. The 

underlying assumption for their problem was that the jobs were allowed to skip some stages.  

Despite the comprehensive research that has been done on different varieties of HFS scheduling problems, 

two important gaps are recognizable in the literature for these problems. The first gap is the lack of violation 

in the GTAs in any of the HFS scheduling problems. To the best of our knowledge, the HFS scheduling 

problems have been studied so far by considering the GTAs (particularly the ones that follow the cellular 

manufacturing concepts). The second gap is the lack of consideration of learning effects in the HFS 

scheduling problems. Ignoring learning effects, while scheduling jobs, may result in sub-optimal solutions. 

3.2. Review of the literature related to group scheduling 

Group technology is a philosophy in which similar parts are clustered into different families in order to take 

advantage of the similarities in both design and production. CM is one of the applications of group 

technology, seeking to align process flows by families of component parts, where a portion of a firm’s 

manufacturing system has been converted to cells. Therefore, CM along with group technology represent a 

flexible manufacturing system in which the sequence of families/groups on machines as well as the 

sequence of parts/jobs within groups in each cell, can be determined with the help of group scheduling with 

respect to the GTAs.  

Single machine 

The study of group scheduling problems was initiated with the simplest shop structure, i.e. single-machine 

problems with different assumptions and constraints, such as single or multi-criteria objective function, 

independent or dependent setup times, and many other assumptions to reveal the real-world scheduling 

problems (Cheng et al. 1999, Sun et al. 1999, Wang et al. 1999, Webster and Baker 1995). A sequence-

independent group scheduling problem on a single-machine is studied by Li et al. (2011) with respect to 

several objective functions including earliness, tardiness, due date assignment, and flow time costs. Gupta 

and Chantaravarapan (2008) presented an MILP model for a single-machine group scheduling with family 

setups to minimize total tardiness. They also proposed two-phase heuristic algorithms, including SA. 

Empirical results indicated that the heuristics are effective. Recent researches in a single-machine group 

scheduling dealt more with deterioration and learning effect assumptions. Bai et al. (2012) studied a single-
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machine group scheduling problem with general deterioration and learning effect. They showed that the 

problem is polynomially solvable. Liu et al. (2014) considered the group scheduling on a single-machine 

with deteriorating setup and processing times where both setup and processing times are increasing 

functions of their starting times. Their primary objective is to minimize total weighted completion time, 

while the secondary objective is to minimize maximum cost. They presented a polynomial time algorithm. 

Along with learning effect and deterioration assumptions, single-machine group scheduling with other 

assumptions including time dependent processing times, ready times, allotted resource, and past-sequence-

dependent setup times have been studied (Low and Lin 2012, Wang et al. 2014, Wang and Wang 2014). 

Yazdani Sabouni and Logendran (2013) considered the problem of minimizing the makespan on a single 

machine with carryover sequence-dependent setup times in PCB manufacturing.  

Parallel machines 

Bozorgirad and Logendran (2012) studied sequence-dependent group scheduling problem on unrelated-

parallel machine with respect to a bi-criteria objective function, which simultaneously minimizes total 

completion time and total tardiness. Behnamian et al. (2010) addressed sequence-dependent group 

scheduling on a set of identical-parallel machines with due windows for jobs, i.e., each job has an interval 

rather than a single value. They proposed a multi-phase covering Pareto-optimal front method by using a 

multi-phase algorithm iterating over a GA in the first phase and three hybrid metaheuristics in the second 

and third phases. They showed that the multi-phase method is a better tool to approximate the efficient set 

than the global archive sub-population GA presented previously. 

 

Flow shop 

Three lower bounds were developed by Liou and Liu (2010) for sequence-dependent two-machine flow 

shop group scheduling problems. They also presented a PSO algorithm and evaluated its performance with 

the developed lower bounds. Liou et al. (2013) addressed a new encoding scheme-based hybrid algorithm 

for minimizing two-machine flow shop group scheduling problem with transportation times and sequence-

dependent family removal times. They presented some lower bounds and proposed a hybrid heuristic 

consisting of PSO and GA. Logendran et al. (2006b) developed different TS-based algorithms to minimize 

the total completion time for a two-machine flow shop group scheduling problem. Salmasi et al. (2010) 

studied the total flow time minimization for a sequence-dependent group scheduling problem in a flow shop 

environment. They developed a mathematical programming model for small size problems, while a TS-

based algorithm as well as a hybrid ant colony optimization (HACO) algorithm are developed to deal with 

large size problems. The performances of these algorithms have also been evaluated against a tight lower 

bound obtained from a B&P approach. Then, Salmasi et al. (2011) proposed a mathematical programming 
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model as well as a hybrid ACO algorithm for a flow shop sequence-dependent group scheduling problem 

to minimize the makespan. Gelogullari and Logendran (2010) studied a carry-over sequence-dependent 

group scheduling problem in a flow shop environment for the assembly of PCBs in electronic 

manufacturing systems. They developed several TS-based algorithms to find the best sequence of groups 

as well as jobs. The performance of these algorithms was also evaluated with the help of a B&P algorithm. 

A fast hybrid PSO algorithm (Hajinejad et al. 2011) and efficient upper and lower bounding methods 

(Keshavarz and Salmasi 2014) were developed for a flow shop sequence-dependent group scheduling 

problem.  

Flexible flow shop 

Logendran et al. (2005) developed heuristic algorithms to minimize the makespan of a sequence-

independent group scheduling problem in FFS environments. A similar study has been conducted by 

Logendran et al. (2006a) to minimize the makespan of a sequence-dependent group scheduling problem in 

an FFS environment with the help of TS-based algorithms. This work has also been continued by Shahvari 

et al. (2012) to develop a mathematical programming model for the problem as well as efficient TS-based 

algorithms to find the optimal or near optimal solutions. Keshavarz and Salmasi (2013) developed an MILP 

model for sequence-dependent group scheduling problem in an FFS environment and presented a memetic 

algorithm (MA). They also proposed a lower bounding technique and showed that their MA outperforms 

the TS algorithm of Shahvari et al. (2012). Luo et al. (2012) considered the GTAs with inconsistent family 

formation to minimize the makespan of the sequence in an FFS environment.  

  

3.3. Review of the literature related to batch scheduling 

Reviews of batch scheduling problems include those by Potts and Van Wassenhove (1992), Webster and 

Baker (1995), and Potts and Kovalyov (2000). Most of the batch scheduling problems consider either 

processing batches by batching machines or processing parallel batches by multiple parallel machines. In 

both cases, a set of jobs processed simultaneously as batches are completed together as long as the machine 

capacity is not exceeded. These batch scheduling problems determine only the sequence of batches, 

irrespective of the job sequence within each batch since the jobs assigned to each batch are processed 

simultaneously. The problem addressed in this research focuses on a hybrid flow shop batch scheduling 

problem, wherein scheduling of jobs that belong to pre-determined groups is permissible by splitting them 

into multiple batches, but the jobs in a batch formed from a group must be processed consecutively on a 

machine. Therefore, batch scheduling investigated in this research clearly is contrastingly different from 

the previous batch scheduling problems, because it assumes processing of a batch is completed when 

consecutive processing of all jobs within the batch (instead of simultaneous processing) is finished.  
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The study of batch scheduling problems (i.e., group scheduling without the GTAs) was initiated by a non-

permutation flow shop batching and scheduling problem with sequence-dependent setup time by 

minimizing makespan Shen et al. (2014). They developed a tabu search heuristic, which contains several 

neighborhood functions, double tabu list, and a multilevel diversification structure. Shahvari and Logendran 

(2015) performed a preliminary investigation of a batching and scheduling problem on unrelated-parallel 

machines with respect to a bi-criteria objective function, which simultaneously minimizes a linear 

combination of total weighted completion time and total weighted tardiness. They developed a TS-based 

heuristic, which contains three levels with specialized tabu list for each level. The applicability of developed 

TS-based algorithm was demonstrated with the help of an example problem. This study was extended to 

cover a variety of research issues and insightful findings (Shahvari and Logendran 2017). These include, 

but not limited to, addressing the relative performance of batch scheduling by considering a benchmark of 

group scheduling problems on unrelated-parallel machines with the same bi-criteria objective function, 

developing a mathematical programming model to evaluate the performance of the TS-based algorithms 

with the help of a detailed statistical experimental design, and, more importantly, identifying ineffective 

neighborhoods in the implementation of the TS-based algorithms by developing and proving several 

theoretical properties with the help of lemmas. Later, Shahvari and Logendran (2016a) extended their work 

from a single stage problem to a multiple stages problem, i.e., hybrid flow shop. They addressed the hybrid 

flow shop batching and scheduling problem with the same bi-criteria objective function where sequence-

dependent family setup times are present. A benchmark of small size problems is considered to show the 

superior performance of batch scheduling compared to group scheduling (Shahvari and Logendran 2016b). 

They developed two algorithms, which incorporated tabu search into the framework of path-relinking to 

exploit the information on good solutions. These tabu search/path-relinking algorithms comprised several 

distinguishing features including two relinking procedures to effectively construct paths and the stage-based 

improvement procedure to consider the move interdependency. In all mentioned works related to Shahvari 

and Logendran (2015, 2016a, 2016b, 2017), the efficiency and effectiveness of the proposed search 

algorithms were verified by comparing the results of these algorithms with optimal solutions obtained from 

CPLEX for small size problems. Apart from this, a wide range of realistic characteristics such as sequence-

dependent family setup times, dynamic job releases, dynamic machine availability, machine eligibility and 

stage skipping (for HFS) was considered with the help of data generation mechanism. Also, the initial 

solution finding mechanism was implemented to trigger the search into the solution space. 

3.4. Review of the literature related to bi-criteria scheduling problems 

The objective function is one of the challenges in dealing with scheduling problems. In most of the literature 

for scheduling problems, the focus has only been on optimizing the satisfaction of producers. Minimizing 
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the completion time is desirable for the producer so they can minimize their work-in-process (WIP) 

inventory as well as production costs; however, Armentano and Ronconi (1999) recognized that lots of 

manufacturers are now more interested in meeting the customers’ due dates and maximizing the customers’ 

service level by minimizing the tardiness. The use of a bi-criteria objective is motivated by the fact that 

successful companies in today’s environment not only try to minimize their own cost but also try to fulfill 

their customers’ need. Successful companies are those that consider both producer’s and customers’ needs. 

Therefore, a bi-criteria objective function can truly achieve the real-world stipulation more than a single 

criterion. Trying to optimize two mentioned objectives enables incorporating the coordination that must be 

maintained between the producer and the customers in scheduling problems. The satisfaction of both 

completion time and tardiness objectives moves in the same direction and hence the objectives are not in 

conflict. In other words, tardiness of a job is either reduced or not changed when its completion time is 

reduced. Comprehensive reviews of the literature on multi-objective scheduling problems include 

Behnamian et al. (2011), Dugardin et al. (2010), Mehravaran and Logendran (2011), Rana and Singh 

(1994), Tavakkoli-Moghaddam et al. (2010).  

There are a couple of studies corresponding to simultaneously minimizing total completion time and total 

tardiness. Bi-criteria scheduling problem with sequence-dependent setup times on a single machine is 

considered by Eren and Güner (2006). The objective function of the problem was minimization of the 

weighted sum of total completion time and total tardiness. They proposed an effective mixed-integer 

programming model to find the optimum schedule for problems with up to 12 jobs, while for solving 

problems containing large number of jobs a special heuristic algorithm based upon tabu search was 

proposed.  

Mehravaran and Logendran (2011) considered an unrelated-parallel machine job scheduling problem with 

sequence-dependent setup times to jointly minimize the work-in-process inventory for the producer and to 

maximize the customers’ service level in a supply chain. Later, Mehravaran and Logendran (2012) studied 

a flow shop scheduling problem with sequence-dependent setup times and the same bi-criteria objective 

function. They considered permutation and non-permutation schedules in finding the optimal schedule for 

a flow shop as well as the operational constraints commonly encountered in the industry, including dynamic 

machine availabilities, dynamic job releases, and jobs skipping. In both mentioned works, they assessed the 

effectiveness and efficiency of the search algorithm by comparing the search algorithm solutions with that 

of the optimal solutions obtained from CPLEX in solvable small problem instances. 

Xu and Yin (2011) proposed a corrected integer programming model that was proposed by Eren and Güner 

(2006) for a flow shop scheduling problem that was incorrect. They both considered the same bi-criteria 

objective function including a linear combination of total completion time and total tardiness. Ribas-Vila 
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et al. (2009) presented and evaluated six simple heuristic algorithms for the problem of sequence-dependent 

identical-parallel machines with respect to simultaneously minimizing total completion time and total 

tardiness. 

A bi-criteria group scheduling problem in a flow shop with sequence-dependent setup time was investigated 

by Lu and Logendran (2013) with dynamic job releases and machine availabilities. The goal was to 

minimize the weighted sum of total weighted completion time and total weighted tardiness. A mathematical 

model was also developed and implemented to evaluate the optimality of the results from search algorithms 

based on tabu search for small size problems.  

Bozorgirad and Logendran (2012) addressed a sequence-dependent group scheduling problem on a set of 

unrelated-parallel machines. Later, Bozorgirad and Logendran (2013) extended their work to address a 

sequence-dependent group scheduling problem in hybrid flow shop where the parallel machines in one or 

more stages of the flow shop are unrelated and have different run times for the same job. Similar to previous 

work, the objective of the problem was to simultaneously decrease the producer’s cost by minimizing the 

WIP and increase the customers’ satisfaction by minimizing the total tardiness. In both mentioned works, 

the efficiency and effectiveness of the proposed search algorithms were verified by comparing the results 

of these algorithms with optimal solutions obtained from CPLEX for small size problems. They assumed 

that all of the jobs and machines may not be ready at time zero, meaning that they can be released at different 

times during the scheduling period. Apart from this, job skipping and group skipping were assumed for the 

second work. Bozorgirad and Logendran (2014) also proposed a lower bounding mechanism for the 

previous work without considering machine availability times. They proposed a lower bounding 

mechanism, based on the column generation algorithm that is able to find lower bounds, which are 

remarkably tighter than the bounds from CPLEX.  

Shahvari and Logendran (2015, 2016a, 2016b, 2017) addressed a bi-criteria batch scheduling problem on 

unrelated-parallel machines and hybrid flow shop environments where the GTAs were disregarded. The 

mentioned works are completely reviewed in the literature related to batch scheduling. 

3.5. Review of the literature related to the methodologies  

Ruiz and Vázquez-Rodríguez (2010) classified all techniques in dealing with a variety of scheduling 

problems in HFS environments into three broad categories, i.e., exact algorithms, deterministic heuristics, 

and meta-heuristics. The exact algorithms, B&B, and DP are the most preferred algorithms for optimally 

solving very simplified versions of HFS scheduling problems, i.e., problems with a limited number of stages 

(mostly two or three stages) and machines in each stage (usually one or two machines in each stage) 

(Dessouky et al. 1998, Gupta et al. 1997, Haouari et al. 2006).  
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The complexity of most of HFS scheduling problems on one hand along with considering a wide variety of 

processing constraints, production requirements, resource and precedency constraints, buffer limits, 

machine eligibility and different types of objective functions on the other hand, lead to developing 

mathematical programming models for optimally solving the complicated HFS scheduling problems (Liu 

and Karimi 2008, Sawik 2000, Tang and Xuan 2006). Although B&B algorithms have also been used to 

solve complicated versions of HFS scheduling problems, mathematical programming models are developed 

to present mathematically sophisticated scheduling constraints and solve small-size problems. In addition, 

the mathematical programming models have been used as a basis to implement the B&B algorithm.  

Since most of HFS scheduling problems are among the strongly NP-hard problems and their developed 

mathematical programming models should implement different optimization solvers based on exact 

algorithms, such as B&B or DP, these exact methodologies will not be able to optimally solve the problem 

within a polynomial/reasonable time. Therefore, deterministic heuristics and meta-heuristic algorithms are 

commonly used methodologies to deal with complicated HFS scheduling problems. The performance of 

deterministic heuristics, known as tailored heuristics or dispatching rules, is highly dependent on the 

structure of the problem and is usually lower than meta-heuristic algorithms. The higher performance in 

meta-heuristics is due to the avoidance of getting trapped into local optimal solutions. Based on a 

comprehensive survey on the literature related to methodologies implemented for HFS scheduling problems 

(Ruiz and Vázquez-Rodríguez 2010), TS, SA and GA are three of the most commonly used meta-heuristics 

in dealing with the complicated HFS scheduling problems. The permutation assumption cannot be followed 

by batch scheduling problems investigated in this research due to different batch compositions of all groups 

in all stages. Thus, it seems a local search algorithm enhanced with a population-based structure or a 

population-based algorithm enhanced with a local search structure will have a better performance compared 

to a basic local search algorithm and a population-based algorithm, respectively. Therefore, four types of 

the most commonly used meta-heuristics, i.e., TS as a basic local search algorithm and TS/PR as a local 

search algorithm enhanced with a population-based structure, PSO as a basic population-based algorithm 

and PSO enhanced with a local search structure, are proposed in order to capture the move interdependency 

between stages. A brief of the literature corresponding to these algorithms is presented next. 

3.5.1. Review of the literature related to Tabu Search 

TS, introduced by Glover (1986), is a remarkably successful algorithm for solving hard combinatorial 

problems. The application of TS on a large number of combinatorial optimization problems has shown its 

effectiveness in solving this type of problem (Logendran and Sonthinen 1997). The application of TS started 

with solving simplified versions of single-machine problems (Laguna et al. 1991). Then, TS was developed 

for single-machine problems with sophisticated scheduling constraint and assumptions.  
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Due to the characteristics of TS, such as its ability to avoid getting trapped in a local optima and identify 

multiple-local optima in exploring the solution space, it was a promising technique for solving scheduling 

problems with more realistic constraints and assumptions, in different shop environments. With respect to 

parallel machines environments, TS showed superior performance compared to other existing solutions 

(Kang et al. 2007, Kim et al. 2006, Lee et al. 2013). Logendran and Subur (2004) and Logendran et al. 

(2007) implemented TS to minimize the total weighed tardiness of unrelated-parallel machine scheduling 

problems with consideration of job splitting and sequence-dependent setup times, respectively.  

TS has also been shown to be very effective in dealing with flow shop scheduling problems, although most 

of these problems were restricted to permutation sequences (Armentano and Ronconi 1999, Ben-Daya and 

Al-Fawzan 1998, Nowicki and Smutnicki 1996). Hendizadeh et al. (2008) proposed meta-heuristic 

algorithms based on TS by applying the concept of elitism and the acceptance of worse move to improve 

the intensification and diversification of moves for sequence-dependent flow shop with respect to 

minimizing the makespan. Salmasi et al. (2011) developed a TS-based algorithm to minimize the makespan 

of a sequence-dependent group scheduling problem in a flow shop environment. Shahvari et al. (2012) 

developed six meta-heuristic algorithms based on TS to minimize the makespan of a sequence-dependent 

group scheduling problem in an FFS environment. Bozorgirad and Logendran (2013) addressed sequence-

dependent group scheduling in a hybrid flow shop problem with bi-criteria objective function and presented 

an MILP model and proposed four TS algorithms. They showed that one of the TS algorithms performs 

well. 

TS was successfully implemented for scheduling problems with bi-criteria and multi-criteria objective 

function and sequence-dependent setup times (Bozorgirad and Logendran 2012, 2013, 2014, Choobineh et 

al. 2006). Eren (2007) developed an integer programming model and presented heuristics based on TS and 

random search for two-stage flow shop with multi-criteria objective function including total completion 

time, makespan, maximum tardiness and maximum earliness. He showed that the heuristic based on TS 

performs better than those based on a random search. 

3.5.2. Review of the literature related to Tabu Search/Path-Relinking 

A hybridization of some algorithms with TS-based algorithm leads to improving the performance of basic 

TS. Pacheco et al. (2013) proposed a heuristic method, hybridization of multi-start strategies with TS, for 

sequence-dependent single-machine problem with makespan minimization and they showed that their 

hybridized heuristic outperforms a metaheuristic based on GRASP. Allahverdi and Al-Anzi (2009) 

proposed three heuristics for assembly flow shop with minimization of total completion time. The three 

heuristics were a hybrid TS and two versions of self-adaptive differential evolution algorithm. They showed 
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that one version of the self-adaptive differential evolution algorithm performs much better than the other 

version and the hybrid TS. Varmazyar and Salmasi (2012) presented an MILP model and proposed several 

metaheuristics based on TS and Imperialist Competitive Algorithm (ICA). They showed that the hybrid 

heuristic of TS and ICA performs the best. The sequence-dependent family setup time in a flow shop 

scheduling problem with minimization of total flow time was addressed by Salmasi et al. (2010) for the 

first time. They proposed a mathematical programming model and a branch-and-price algorithm. In 

addition, they presented a TS algorithm along with a hybrid ACO algorithm. The computational analysis 

indicated that the hybrid approach performs better than TS. 

Due to the lack of mechanisms that exploit the information on good solutions, the performance of a 

straightforward TS might be unsatisfactory, even when it is accompanied by delicate memory structures 

and effective neighborhood mechanisms (Jia and Hu 2014). Thus, an auxiliary heuristic, namely path-

relinking (PR), is incorporated into the basic TS-based algorithm. PR is an enhancement to TS-based 

procedure, leading to significant improvements in the solution quality. In principle, the tabu search/path-

relinking (TS/PR) algorithm repeatedly operates back and forth between a path relinking method that is 

used to generate promising solutions on the trajectory set up from an initiating solution to a guiding solution, 

and a TS procedure that improves the generated promising solution to a local optimum (Peng et al. 2015).  

PR is intimately related to the TS-based meta-heuristic and derive additional advantages with the help of 

adaptive memory and associated memory-exploiting mechanisms that are capable of being adapted to 

particular contexts, such as job shop and flexible job shop scheduling problems (Jia and Hu 2014, Peng et 

al. 2015). Due to the lack of exploiting the information on good solutions in the HFS scheduling problems, 

Shahvari and Logendran (2016b) developed a local search algorithm enhanced with a population-based 

structure, which is called TS/PR algorithm and comprises several distinguishing features such as two 

relinking procedures to effectively construct paths. The results showed that the performance of TS/PR is 

better than basic TS for batch scheduling in HFS. The reason is that the performance of basic TS is 

diminished due to different batch compositions of groups in different stages. Therefore, PR is incorporated 

into a basic TS in order to increase its performance by exploring on the information of good quality solutions 

in the solution space.  

3.5.3. Review of the literature related to Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a fast-evolutionary algorithm, which is applied on a population of 

candidate solutions (Eberhart and Kennedy 1995). PSO has gained much attention in a variety of fields, 

particularly for continuous optimization problems. Based on a few scheduling problems in flow shop and 

flexible flow shop environments, the encouraging performance of the PSO algorithm in scheduling 
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problems, and the increased application of the PSO algorithm in different scheduling areas, we are 

motivated to apply the PSO algorithm for the research problem.  

Research reported in the past shows a significant interest in implementing the PSO algorithm for solving 

scheduling problems. Tasgetiren et al. (2004b) develop a PSO algorithm for the single machine total 

weighted tardiness scheduling problem. They use the smallest position value (SPV) rule, and a non-

decreasing order mechanism, to convert a position vector of a particle to a job permutation. With the same 

approach, Tasgetiren et al. (2004a) solve the permutation flow shop problem with makespan and maximum 

lateness minimization criteria. They hybridize a local search algorithm based on variable neighborhood 

search (VNS) with a PSO algorithm and show that VNS improves the performance of the PSO algorithm 

for the proposed research problem. 

Pan et al. (2008) propose a discrete PSO algorithm to solve no-wait sequence-dependent flow shop 

problems with respect to makespan minimization and total completion time minimization. They hybridize 

discrete PSO with variable neighborhood descent algorithm to improve the solution quality. They also 

propose several speed-up methods for neighborhood structures. Pan and Wang (2008) present a novel multi-

objective PSO algorithm for a no-wait flow shop problem by considering the minimization of makespan 

and maximum tardiness as bi-objective. Hajinejad et al. (2011) generate a PSO algorithm for group 

scheduling in a permutation flow shop by considering the minimization of total completion time of jobs.  

Lian et al. (2006) proposed a PSO algorithm for permutation flow shop scheduling problems with makespan 

minimization where the crossover operators are used in PSO. Then, Lian et al. (2008) also proposed a novel 

PSO algorithm, which used crossover and mutation operators for the same problem. Tasgetiren et al. (2007) 

combined the PSO algorithm and the Variable Neighborhood Search (VNS) method to minimize the 

makespan and total flow time in a permutation flow shop sequencing problem. Liu et al. (2008) extended a 

hybrid PSO algorithm for flow shop scheduling with limited buffers.  

Tseng and Liao (2008) perform the research to solve a flexible flow shop scheduling problem by applying 

the PSO algorithm. They addressed a flexible flow shop scheduling problem with multiprocessor tasks, 

which means each job has to be processed on several machines in each stage. They develop a regular PSO 

algorithm to solve the problem with minimization of makespan as the criterion. Tadayon and Salmasi 

(2013) applied a PSO algorithm for a flexible flow shop problem and show that the algorithm is capable of 

providing good quality solutions. 
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Figure 6 demonstrates and compares the types of all scheduling problems, including the types of problems 

investigated in this research. As stated above, there are many works on group scheduling with respect to 

the GTAs, but only a few of them focus on group scheduling without the GTAs, i.e., batch scheduling.  

 

Figure 6. Display of Scheduling Problems 

In this research, we are emphasizing the optimization of a HFS with unrelated-parallel machines at least in 

one stage and sequence-dependent setup times as in most of the previous works. In addition, our research 

deals with bi-criteria objective function, and dynamic machine availability and job releases times. However, 

the main characteristic of this research that has never been studied before is splitting jobs belonging to pre-

determined groups as inconsistent batches and then scheduling developed batches on machines as well as 

jobs within each batch to improve the objective function value of group scheduling in HFS. This being the 

case, a linear mixed-integer programming model, four different types of meta-heuristics, and a method of 
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lower bounding are proposed. To the best of our knowledge, there is no prior work on bi-criteria batching 

and scheduling problem in HFS that deals with this problem as comprehensively as our research, reported 

here. 
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4. METHODOLOGY 

The complexity of a problem mostly determines the methodology to deal with the problem. As Gupta and 

Darrow (1986) mentioned, group scheduling problems in flow shop structures are NP-hard problems, and 

the problem addressed in this paper is not an exception. There are a number of techniques to prove that a 

problem is a member of a certain complexity class. Although three techniques including restriction, local 

replacement, and component design are given by Garey and Johnson (1979) to prove the complexity of a 

problem, proof by restriction is the most applicable and simplest compared to the other two. An NP-

hardness proof by restriction for a given problem PϵNP consists of simply showing that P contains a known 

NP-hard problem Q as a special case and therefore it is NP-hard too. It is worth noting that the main point 

in this method lies in the specification of the additional restrictions to be placed on the instances of P in 

such a way that the resulting restricted problem will be identical to Q. Accordingly, as long as there is a 

one-to-one correspondence between P and Q, it can be concluded that the restricted problem Q is NP-hard 

and thus the original problem P, which is a harder instance of Q remains NP-hard. The problem addressed 

in this research is represented by 𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗) in the literature 

of scheduling problems. 

Theorem 1. Hybrid flow shop batch scheduling problem with minimization of sum of completion time, 

dynamic job release time, dynamic machine availability time, sequence-dependent setup, machine 

eligibility, and desired lower bounds is NP-hard in the strong sense.  

Proof: Let P be the hybrid flow shop batch scheduling problem with minimization of sum of completion 

time, dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine 

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|σ𝐶𝑗). Construct problem Q as a two-machine flow shop 

scheduling problem with a single machine in each stage and the objective of minimizing the sum of 

completion time (𝐹2||σ 𝐶𝑗). Clearly, problem Q is a special case of problem P even when problem P 

involves more than two machines, since all the setup and run times on the machines other than the first two 

can be restricted to be 0 in problem P. Problem P can be considered as Q by adjusting the following 

parameters in the original MILP model:  

• the number of batches assigned to each group is restricted to one; 

• a desired lower bound is equal to one; 

• each batch includes only one job; 

• the number of machines is two, so that each stage includes one machine;  

• each machine in each stage is identical instead of being unrelated and is capable of processing all 

jobs; 
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• all jobs are processed by two machines (no skipping); 

• there is no setup time instead of being sequence-dependent setup times; 

• the weight of each job is equal to one; 

• all jobs and machines are available at the beginning of the planning horizon; 

Observe that problem Q is equivalent to the two-machine flow shop scheduling problem with the objective 

of minimizing the sum of completion time, which has been shown to be strongly NP-hard (Garey et al. 

1976). It follows that problem P is NP-hard in the strong sense.    

Theorem 2. Hybrid flow shop batch scheduling problem with minimization of sum of tardiness, dynamic 

job release time, dynamic machine availability time, sequence-dependent setup, machine eligibility, and 

desired lower bounds is NP-hard in the strong sense.   

Proof: Let P be the hybrid flow shop batch scheduling problem with minimization of sum of tardiness, 

dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine 

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|σ𝑇𝑗). Construct problem Q as a single machine scheduling 

problem with the objective of minimizing the sum of tardiness (1||σ𝑇𝑗). Clearly, problem Q is a special 

case of problem P even when problem P involves more than one machine, since all the setup and run times 

on the machines other than the first one can be restricted to be 0 in problem P. Problem P can be considered 

as Q by adjusting the following parameters in the original MILP model: 

• the number of batches assigned to each group is restricted to one; 

• a desired lower bound is equal to one; 

• each batch includes only one job; 

• the number of machines is restricted to only one single machine (one stage), which is capable of 

processing all jobs; 

• all jobs are processed by the machine (no skipping); 

• there is no setup time instead of being sequence-dependent setup times; 

• the weight of each job is equal to one; 

• all jobs and a machine are available at the beginning of the planning horizon; 

Observe that problem Q is equivalent to the single machine scheduling problem with the objective of 

minimizing the sum of tardiness, which has been shown to be strongly NP-hard (Du and Leung 1990). It 

follows that problem P is NP-hard in the strong sense. 

Theorem 3. Hybrid flow shop batch scheduling problem with bi-criteria objective function of 

minimization of a linear combination of total weighted completion time and total weighted tardiness, 
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dynamic job release time, dynamic machine availability time, sequence-dependent setup, machine 

eligibility, and desired lower bounds is NP-hard in the strong sense.  

Proof: Let P be the hybrid flow shop batch scheduling problem with bi-criteria objective function of 

minimization of a linear combination of total weighted completion time and total weighted tardiness, 

dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine 

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗)). Construct problem Q1 as a hybrid flow 

shop batch scheduling problem with minimization of sum of completion time (𝐻𝐹𝑚|… |σ𝐶𝑗) and construct 

problem Q2 as a hybrid flow shop batch scheduling problem with minimization of sum of tardiness 

(𝐻𝐹𝑚|… |σ𝑇𝑗). Both problem Q1 and Q2 follow the same assumptions of problem P. Clearly, problem Q1 

and Q2 are special cases of problem P.  

Problem P can be considered as Q1 by adjusting the following parameters: 

• the weight of individual job’s equal to one (𝑊𝑗 = 1);  

• the sum of weighted tardiness’s weight equal to zero (𝛽 = 0).  

• Problem P can be considered as Q2 by adjusting the following parameters: 

• the weight of individual job’s equal to one (𝑊𝑗 = 1); 

• the sum of weighted completion time’s weight equal to zero (𝛼 = 0).  

Problems Q1 and Q2 are proved to be strongly NP-hard based upon Theorems 1 and 2, respectively. It 

follows that problem P is NP-hard in the strong sense. 

Therefore, it can be concluded that the problem investigated in this research is also strongly NP-hard, and 

there is no guarantee of solving this problem optimally in polynomial time. This remains to be a challenge 

in solving most complex scheduling problems. In this research two different methodologies are used to deal 

with the HFS problem, i.e. a mathematical programming model and meta-heuristic algorithms. Since the 

batch scheduling problem addressed here is among the NP-hard problems, mathematical programming may 

not be helpful in finding the optimal solution for medium and large size problems. Nevertheless, the 

mathematical formulation is implemented to represent and communicate with the batch scheduling 

problem, and evaluate the performance of the heuristic or meta-heuristic algorithms by developing tight 

lower bounds.   

4.1. Mathematical programming model 

In this research, four mathematical programming models based on mixed-integer linear programming 

(MILP) are developed in terms of three approaches used to model scheduling problems.  
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• The first MILP model, i.e., MILP1, is developed in terms of the precedence constraints between 

each pair of jobs belonging to the same batch as well as each pair of batches assigned to the same 

machine (Manne 1960). In this type of formulation, the job sequence is obtained by comparing the 

sequence of all pairs of jobs within batches. Likewise, the batch sequence is obtained by comparing 

the sequence of all batches on the same machine. This type of modeling scheduling problems leads 

to a smaller number of binary variables, but more difficult constraints.  

• The second MILP model, i.e., MILP2, considers set of positions for each of the batches and assigns 

the jobs to those positions. Therefore, the job sequence within batches is determined by finding the 

job assignment to those positions. Like MILP1, the batch sequence on machines in the MILP2 is 

determined by the precedence constraints between each pair of batches on the same machines.  

• The third MILP model, i.e., MILP3, an adapted version of that proposed by Guinet (1993), is based 

on the flow conservation constraints to order the jobs on machines.  

• Finally, the relaxed MILP model, i.e., RMILP, referred to as the fourth model in this research, is 

developed as a relaxed version of any of the above MILP models to reduce the solution space of 

MILP models and find either the optimal solutions or good quality lower bounds within affordable 

computational time. This relaxed version is obtained by assuming each batch formed from a group 

is of size 1, and thereby remove the challenge of having to determine the various batch sizes that 

are applicable to the original MILP model. 

Each of these MILP models are described in detail next, based on proposed modeling techniques for 

scheduling problems. 

4.1.1. MILP1  

The first MILP model is developed based on the precedence constraints between each pair of jobs and 

developed batches to mathematically represent the batch scheduling problem and solve small-size problems 

optimally. This mathematical programming model is developed at two integrated phases including batching 

and scheduling phases. While the optimal combination of batch compositions is determined by the batching 

phase, the optimal batch assignment and sequence on machines as well as the optimal job sequence within 

batches are determined by the scheduling phase, with respect to the batching phase. In the following, first 

sets, subsets, indices, and parameters that have been used are introduced. Then, all decision variables, 

including continuous or binary variables, are listed, followed by the mathematical formulation. 

Sets and Indices  

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔} 
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𝐺𝑖  Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖} 

𝑆𝑖 Set of batches of group 𝑖, indexed by 𝑠, 𝑡 𝑆𝑖 = {1,2,… , 𝑛𝑖} 

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚} 

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘} 

   

Subsets  

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺 

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖 

𝑆𝑖
𝑘 Subset of batches of group 𝑖, which can be developed in stage 𝑘 𝑆𝑖

𝑘 ⊂ 𝑆𝑖 

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘 

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾 

   

Parameters  

𝑔 Number of groups  

𝑛𝑖 Number of jobs of group 𝑖  

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘  

𝑚 Number of stages  

𝑣𝑘 Number of machines in stage 𝑘  

𝑚𝑖𝑗  Number of stages, which must be visited by job 𝑗 of group 𝑖  

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗  

𝑡𝑖𝑗ℎ
𝑘  Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘  

𝑆𝑝𝑖ℎ
𝑘  Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if batch 𝑝 is the 

preceding batch (𝑝 = 0 refers to the reference batch) 

𝑑𝑖𝑗  Due date of job 𝑗 of group 𝑖  

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖  

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖  

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘  

𝛼 Weight attributed to the producer  

𝛽 Weight attributed to the customer  

𝐿𝐵𝑖ℎ
𝑘  Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine 

ℎ in stage 𝑘 
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It is worth noting that a desired lower bound, i.e., 𝐿𝐵𝑖ℎ
𝑘 , is determined in terms of a manufacturing 

company’s policies with regard to operating a particular machine to ensure processing a minimum number 

of jobs. Therefore, 𝐿𝐵𝑖ℎ
𝑘  is not a variable and it is determined before solving the problem. 

Decision variables 

𝑋𝑖𝑠𝑗
𝑘  The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘 

𝑇𝐷𝑖𝑗 The tardiness of job 𝑗 of group 𝑖 

𝐶𝑖𝑠
𝑘  The completion time of batch 𝑠 of group 𝑖 in stage 𝑘 

∅𝑖𝑠𝑗
𝑘  1 if job 𝑗 is assigned to batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise 

𝑍𝑖𝑠ℎ
𝑘  1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise 

𝐴𝑝𝑡𝑖𝑠
𝑘  1 if batch 𝑠 of group 𝑖 is processed after batch 𝑡 of group 𝑝 in stage 𝑘; 0 otherwise 

𝑌𝑖𝑠𝑗𝑞
𝑘  1 if job 𝑞 is processed after job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise  

 

Mathematical formulation 

Based on the precedence constraints to the job sequence within batches and the batch sequence on 

machines, the MILP1 is developed as follows: 

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑠𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝑔𝑖𝑖∈𝐺
 (4.1) 

The objective function (4.1) minimizes a linear combination of total weighted completion time and total 

weighted tardiness. 𝛼 and 𝛽 are the weights attributed to producer and customers, respectively, and are 

normalized with the help of the following equation: 𝛼 + 𝛽 = 1. Set of constraints (4.2) through (4.5), 

known as batching constraint sets, are incorporated into the model to determine the optimal batch 

composition of each group in each stage. 

∑ ∅𝑖𝑠𝑗
𝑘

𝑠∈𝑆𝑖
𝑘

= 1 

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑘 ∈ 𝐾; 

(4.2) 

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1 

𝑖 ∈ 𝐼𝑘;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑘 ∈ 𝐾; 

(4.3) 
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∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥ ∅𝑖𝑠𝑗

𝑘  

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑘 ∈ 𝐾; 

(4.4) 

∑ ∅𝑖𝑠𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ (𝐿𝐵𝑖ℎ
𝑘 )𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑉𝑘
 

𝑠 ∈ 𝑆𝑖
𝑘;  𝑖 ∈ 𝐼𝑘;  𝑘 ∈ 𝐾; 

(4.5) 

A batch composition of group 𝑖 with 𝐽𝑖
𝑘 jobs in 𝑘𝑡ℎ stage represents the number of batches assigned to group 

𝑖 as well as the number and type of jobs belonging to each batch of group 𝑖, with respect to the desired 

lower bounds on batch sizes (𝐿𝐵𝑖ℎ
𝑘 ). In other words, 𝑛𝑖

𝑘 jobs should be assigned to 𝑠 batches processed on 

one or more machines in 𝑘𝑡ℎ stage, where 𝑠 ∈ {1,max
ℎ∈𝑣𝑘

⌈𝑛𝑖
𝑘 𝐿𝐵𝑖ℎ

𝑘⁄ ⌉}. Apart from this, in each stage of a hybrid 

flow shop, not only each job of a group (which is not skipping the stage) must be assigned to one and only 

one batch of its group (constraint (4.2)), but also a batch including at least one job must be assigned to one 

and only one machine (constraints (4.3) and (4.4)). Constraint (4.5) ensures that the minimum number of 

jobs assigned to a batch should be equal or greater than its lower bound on a related machine.  

Set of constraints (4.6) through (4.13), known as scheduling constraint sets, are incorporated into the model 

to determine the optimal batch sequence on machines and job sequence within batches, with regard to the 

batching phase. 

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘 ) +𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) +𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗
𝑘 ) ≥ 𝐶𝑝𝑡

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘   

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑖
𝑘;  ℎ ∈ 𝑣𝑖𝑗

𝑘  ;  𝑘 ∈ 𝐾;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑡 ∈ 𝑔𝑝

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;    
(4.6) 

𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) + 𝑀(1 − ∅𝑝𝑡𝑗
𝑘 ) ≥ 𝐶𝑖𝑠

𝑘 + 𝑆𝑖𝑝ℎ
𝑘 + 𝑡𝑝𝑗ℎ

𝑘  

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑝
𝑘;  ℎ ∈ 𝑣𝑝𝑡

𝑘 ;  𝑘 ∈ 𝐾;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑡 ∈ 𝑔𝑝

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(4.7) 

The sequence of batches is determined in each stage by constraints (4.6) and (4.7), so that they 

simultaneously assign values to binary variables 𝐴𝑝𝑡𝑖𝑠
𝑘 . These constraints restrict the completion time of 

each job belonging to each batch of each group (which is not skipping the stage) to be greater than the 

completion time of the previous batch plus the sequence-dependent machine setup time, and the required 

run time for processing the job on a particular stage.  
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𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) ≥∑ (𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘 )𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑣𝑖𝑗
𝑘

 

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑘 ∈ 𝐾; 

(4.8) 

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1) +𝑀(1 − ∅
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1)) ≥ 𝑟𝑖𝑗 + ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(1))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(1)

 

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖;  𝑠 ∈ 𝑆
𝑖

𝑠𝑡𝑖𝑗(1) ; 

(4.9) 

Constraints (4.8) together with constraint (4.9) account for dynamic machine availability and dynamic job 

release time, respectively. In other words, constraint (4.8) ensures that a job cannot to be processed if the 

assigned machine is not available in each stage, while constraint (4.9) ensures that the processing of each 

job cannot be started if the job is not released.  

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(𝑌𝑖𝑠𝑗𝑞
𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘 ) ≥∑ 𝑡𝑖𝑗ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘 )

ℎ ∈𝑣𝑖𝑗
𝑘  ∩𝑣𝑖𝑞

𝑘
 

𝑖 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(4.10) 

𝑋𝑖𝑠𝑞
𝑘 − 𝑋𝑖𝑠𝑗

𝑘 +𝑀(1 − 𝑌𝑖𝑠𝑗𝑞
𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘 ) ≥∑ 𝑡𝑖𝑞ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘 )

ℎ ∈𝑣𝑖𝑗
𝑘∩𝑣𝑖𝑞

𝑘
 

𝑖 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(4.11) 

The sequence of jobs within batches are determined in each stage by constraints (4.10) and (4.11), so that 

they simultaneously assign values to binary variables 𝑌𝑖𝑠𝑗𝑞
𝑘 . These constraints ensure that, in each stage, the 

difference between the completion times of any two jobs within a batch (which are not skipping the stage) 

is equal or greater than the run time of the succeeding job.  

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘  

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾 

(4.12) 

The completion time of each batch of each group in each stage is determined by constraint (4.12), so that 

it should be greater than the completion times of all of its jobs, if it is not skipping that stage. 
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𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙)
− 𝑋

𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥ ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙))

ℎ∈𝑣
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

+ (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙) + 𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) − 2)𝑀 

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖;  𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(𝑟) ; 𝑠′ ∈ 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑟−1); 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗}; 

(4.13) 

Constraint (4.13) in scheduling constraint sets ensures that the operation of each job in each stage cannot 

be started until it has been completely processed on a prior stage. This prior stage is where the job had its 

latest operation. 

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑠𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗 

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖;  𝑠 ∈ 𝑆𝑖

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) ; 

(4.14) 

Constraint (4.14) is applied to find the tardiness of each job, which should be greater than or equal to both 

the completion time minus due date and zero. 

𝑋𝑖𝑠𝑗
𝑘 , 𝑇𝐷𝑖𝑗, 𝐶𝑖𝑠

𝑘 ≥ 0;  

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1}; 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ;  𝑀: large number. 

(4.15) 

Constraint (4.15) defines the variables used.  

4.1.2. MILP2 

The second MILP model is very similar to the MILP1, except that it follows the position concept within 

batches to determine the job sequence within batches in the scheduling phase. The main reason for 

developing this model is to eliminate the precedence constraints related to the job sequence within batches. 

If this were the case, the MILP1 is improved by reducing the number of constraints and variables and, 

consequently, the model complexity. The sets, subsets, indices, parameters, decision variables, and 

mathematical formulation for the MILP2 are presented next. 

Sets and Indices  

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔} 
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𝐺𝑖  Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖} 

𝑆𝑖 Set of batches of group 𝑖, indexed by 𝑠, 𝑡 𝑆𝑖 = {1,2,… , 𝑛𝑖} 

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚} 

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘} 

   

Subsets  

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺 

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖 

𝑆𝑖
𝑘 Subset of batches of group 𝑖, which can be developed in stage 𝑘 𝑆𝑖

𝑘 ⊂ 𝑆𝑖 

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘 

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾 

   

Parameters  

𝑔 Number of groups  

𝑛𝑖 Number of jobs of group 𝑖  

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘  

𝑚 Number of stages  

𝑣𝑘 Number of machines in stage 𝑘  

𝑚𝑖𝑗  Number of stages, which must be visited by job 𝑗 of group 𝑖  

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗  

𝑡𝑖𝑗ℎ
𝑘  Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘  

𝑆𝑝𝑖ℎ
𝑘  Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝 is 

the preceding batch (𝑝 = 0 refers to the reference batch) 

𝑑𝑖𝑗  Due date of job 𝑗 of group 𝑖  

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖  

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖  

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘  

𝛼 Weight attributed to the producer  

𝛽 Weight attributed to the customer  

𝐿𝐵𝑖ℎ
𝑘  Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine 

ℎ in stage 𝑘 
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Decision variables 

𝑋𝑖𝑠𝑗
𝑘  The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘 

𝑇𝐷𝑖𝑗 The tardiness of job 𝑗 of group 𝑖 

𝐶𝑖𝑠
𝑘  The completion time of batch 𝑠 of group 𝑖 in stage 𝑘 

∅𝑖𝑠𝑟𝑗
𝑘  1 if job 𝑗 assigned to 𝑟𝑡ℎ position of batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise 

𝑍𝑖𝑠ℎ
𝑘  1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise 

𝐴𝑝𝑡𝑖𝑠
𝑘  1 if batch 𝑠 of group 𝑖 is processed after batch 𝑡 of group 𝑝 in stage 𝑘; 0 otherwise 

 

Mathematical formulation 

Based on the precedence constraints for the batch sequence on machines, the MILP2 is developed as 

follows: 

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑠𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑠∈𝑆𝑖𝑗∈𝐺𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝐺𝑖𝑖∈𝐺
 (4.16) 

A linear combination of total weighted completion time and total weighted tardiness of jobs is considered 

as the objective function presented in (4.16). Set of constraints (4.17) through (4.22), known as batching 

constraint sets, are incorporated into the model to determine the optimal combination of batch compositions. 

Regarding 𝐿𝐵𝑖ℎ
𝑘 , the range of possible developed batches of group 𝑖 in stage 𝑘 is {1,𝑚𝑎𝑥

ℎ∈𝑉𝑘
⌊𝑛𝑖

𝑘 𝐿𝐵𝑖ℎ
𝑘⁄ ⌋}.  

∑ ∑ ∅𝑖𝑠𝑟𝑗
𝑘 = 1

𝑟∈𝐽𝑖
𝑘𝑠∈𝑆𝑖

𝑘
 

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾; 

(4.17) 

∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ ∅𝑖𝑠(𝑟+1)𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

 

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘 − {1}; 𝑘 ∈ 𝐾; 

(4.18) 

It is assumed that 𝑛𝑖
𝑘 positions exist for each batch of group 𝑖 in stage 𝑘. Therefore, in each stage of HFS, 

not only each job of a group (which is not skipping the stage) must be assigned to one and only one position 
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available for only one batch of its group (constraint (4.17)), but also the jobs that belong to a batch must be 

assigned to the consecutive positions available for that batch from the first position (constraint (4.18)).  

∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≤ 1 

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘; 𝑘 ∈ 𝐾; 

(4.19) 

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1 

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾;  

(4.20) 

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥∑ ∅𝑖𝑠𝑟𝑗

𝑘

𝑟∈𝐽𝑖
𝑘

 

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾; 

(4.21) 

∑ ∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘𝑗∈𝐽𝑖

𝑘
≥∑ (𝐿𝐵𝑖ℎ

𝑘 )𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
 

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾; 

(4.22) 

The other constraints of batching constraint sets (constraints (4.19) through (4.22)) are incorporated into 

the model to assign a batch including at least one job to a machine, with respect to 𝐿𝐵𝑖ℎ
𝑘 . Set of constraints 

(4.23) through (4.29), known as scheduling constraint sets, are incorporated into the model to determine 

the optimal batch assignment and sequence on machines as well as job sequence within batches, with regard 

to the batching phase.  

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) + 𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

)

≥ 𝐶𝑝𝑡
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘  

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑖𝑓 𝑝 = 𝑖 → 𝑡 ≠ 𝑠); 𝑗 ∈ 𝐽𝑖
𝑘; ℎ ∈ 𝑉𝑖𝑗

𝑘; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑆𝑝

𝑘; 

(4.23) 

𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) +𝑀(1 −∑ ∅𝑝𝑡𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥ 𝐶𝑖𝑠
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗ℎ
𝑘  (4.24) 



42 

 

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑖𝑓 𝑝 = 𝑖 → 𝑡 ≠ 𝑠); 𝑗 ∈ 𝐽𝑝
𝑘; ℎ ∈ 𝑉𝑝𝑗

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑆𝑝

𝑘; 

Constraint (4.23) together with constraint (4.24) are incorporated to find the sequence of batches on 

machines (𝐴𝑝𝑡𝑖𝑠
𝑘 ).  

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) +𝑀(1 −∑ ∅𝑖𝑠(𝑟−1)𝑞
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥∑ (𝑡𝑖𝑗ℎ
𝑘 ×𝑍𝑖𝑠ℎ

𝑘 )
ℎ ∈𝑉𝑖𝑗

𝑘 ∩𝑉𝑖𝑞
𝑘

 

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑠 ∈ 𝑆𝑖

𝑘; 𝑟 ∈ 𝐽𝑖
𝑘 − {1}; 𝑘 ∈ 𝐾; 

(4.25) 

Constraint (4.25) is incorporated to find the sequence of jobs within each batch (∅𝑖𝑠𝑟𝑗
𝑘 ).  

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝑍𝑖𝑠ℎ

𝑘 ) + 𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥ 𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 +∑ (∅𝑖𝑠𝑟𝑗
𝑘 ×𝑡𝑖𝑗ℎ

𝑘 )
𝑟∈𝐽𝑖

𝑘
  

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; ℎ ∈ 𝑉𝑖𝑗
𝑘; 𝑘 ∈ 𝐾; 

(4.26) 

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1) +𝑀(1 − 𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(1)) +𝑀(1 −∑ ∅
𝑖𝑠𝑟𝑗

𝑠𝑡𝑖𝑗(1)

𝑟∈𝐽
𝑖

𝑠𝑡𝑖𝑗(1)
) ≥ 𝑟𝑖𝑗 + 𝑡

𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1)
 

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(1) ; ℎ ∈ 𝑉

𝑖𝑗

𝑠𝑡𝑖𝑗(1) ; 

(4.27) 

Constraint (4.26) together with constraint (4.27) account for dynamic machine availability and dynamic job 

release time, respectively.  

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘  

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾; 

(4.28) 

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙) − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) +𝑀(1 − 𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙)) ≥ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) + (∑ ∅
𝑖𝑠𝑟𝑗

𝑠𝑡𝑖𝑗(𝑙)
𝐽
𝑖

𝑠𝑡𝑖𝑗(𝑙)

𝑟=1
+∑ ∅

𝑖�́�𝑟𝑗

𝑠𝑡𝑖𝑗(𝑙−1)
𝐽
𝑖

𝑠𝑡𝑖𝑗(𝑙−1)

𝑟=1
− 2)𝑀 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(𝑙) ; 𝑠′ ∈ 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑙−1) ; ℎ ∈ 𝑉
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙); 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗}; 

(4.29) 
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Constraint (4.28) determines the completion time of each batch in each stage, while constraint (4.29), 

known as the linking constraint, ensures that there is a connection between completion times of a job related 

to each of two sequential stages, where the job had operations.  

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑠𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗  

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆
𝑖

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗); 

(4.30) 

Constraint (4.30) is applied for finding the tardiness of each job.  

𝑋𝑖𝑠𝑗
𝑘 , 𝑇𝐷𝑖𝑗, 𝐶𝑖𝑠

𝑘 ≥ 0; 

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1}(𝑝 ≤ 𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑝 = 𝑖 𝑡ℎ𝑒𝑛 𝑡 < 𝑠); ∅𝑖𝑠𝑟𝑗
𝑘 ∈ {0,1} 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑡 ∈ 𝑆𝑝
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑉𝑖𝑗
𝑘; 𝑘 ∈ 𝐾;𝑀: large number. 

(4.31) 

Finally, constraint (4.31) defines the variables used.  

4.1.3. MILP3 

The third MILP model, an adapted version of that proposed by Guinet (1993), is developed in terms of the 

flow conservation constraints to order the jobs within the machines, while respecting the desired lower 

bounds on batch sizes. Therefore, the MILP1 and MILP2 models are improved by integrating variables, 

which indicate job assignment to batches, batch assignment on machines, job sequence within batches, and 

batch sequence on machines. Thus, batching and scheduling phases are integrated in the MILP3 model. The 

following sets and indices for the MILP3 are defined.  

Sets and Indices  

𝐺 Set of groups, indexed by 𝑖 𝐺 = {1,2,… , 𝑔} 

𝑁 Set of jobs (of all groups), indexed by 𝑙, 𝑗 𝑁 = {1,2,… , 𝑛} 

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚} 

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘} 

The group and batch indices of the MILP1 and MILP2 models are eliminated from the MILP3 model to 

reduce the complexity of the model. And, instead, the set of indices of job numbers is determined in terms 

of the ascending order of group numbers. Then, the results obtained by the MILP3 model can be interpreted 
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as batch scheduling by considering the consecutive jobs of the same group in the schedule as batches. The 

set of indices of job numbers related to 𝑖𝑡ℎ group is determined as follows:  

Sets and Indices (Cont.) 

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑙, 𝑗 𝐺𝑖 = [1 + σ 𝑛𝑔
𝑖−1
𝑔=1 , 2 + σ 𝑛𝑔

𝑖−1
𝑔=1 , … , σ 𝑛𝑔

𝑖
𝑔=1 ]  

where 𝑛𝑖 (𝑖 ∈ 𝐺) indicate the number of jobs of group 𝑖. Thus, the group index is removed from the 

following subsets and parameters.  

Subsets  

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺 

𝑁𝑘 Subset of jobs, which must be processed in stage 𝑘 𝑁𝑘 ⊂ 𝑁 

𝑉𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗  𝑉𝑗

𝑘 ⊂ 𝑉𝑘 

𝐾𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗  𝐾𝑗 ⊂ 𝐾 

   

Parameters  

𝑔 Number of groups  

𝑛𝑖 Number of jobs of group 𝑖  

𝑛 Number of jobs of all groups, σ 𝑛𝑖 = 𝑛𝑖∈𝐺   

𝑚 Number of stages   

𝑣𝑘 Number of machines in stage 𝑘  

𝑚𝑗 Number of stages, which must be visited by job 𝑗   

𝑠𝑡𝑗(𝑟) 𝑟
𝑡ℎ stage among subset 𝐾𝑗  

𝑡𝑗ℎ
𝑘  Run time of job 𝑗 on machine ℎ in stage 𝑘  

𝑆𝑙𝑗ℎ
𝑘  Required setup time to process job 𝑗 on machine ℎ in stage 𝑘 if job 𝑙 is the preceding job (𝑙 = 0 

refers to the reference job) 

𝑑𝑗 Due date of job 𝑗   

 𝑟𝑗 Release time of job 𝑗   

𝑤𝑗 Weight of job 𝑗   

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘  

𝛼 Weight attributed to the producer  

𝛽 Weight attributed to the customer  
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𝐿𝐵𝑖ℎ
𝑘  Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine 

ℎ in stage 𝑘 

A machine- and sequence-dependent setup time 𝑆𝑙𝑗ℎ
𝑘  (𝑙, 𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ℎ ∈ 𝑉𝑙

𝑘 ∩ 𝑉𝑗
𝑘, and 𝑘 ∈ 𝑀) is incurred 

whenever 𝑙, 𝑗 ∉ 𝐺𝑖 (𝑖 ∈ 𝐺); 𝑆𝑙𝑗ℎ
𝑘 = 0, otherwise. 

Decision variables 

𝑥𝑙𝑗ℎ
𝑘  1 if job 𝑗 is scheduled immediately after job 𝑙 on machine ℎ in stage 𝑘; 0 otherwise 

𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘  1 if for a 𝐿𝐵𝑖ℎ

𝑘  jobs of group 𝑖 on machine ℎ in stage 𝑘, there is at least one sequence including 

at least two jobs; 0 otherwise 

𝑋𝑗
𝑘 The completion time of job 𝑗 in stage 𝑘 

𝑇𝑗 The tardiness of job 𝑗 

The variable 𝑥0𝑗ℎ
𝑘 /𝑥𝑗(𝑛+1)ℎ

𝑘 = 1 if the first/last job processed by machine ℎ is job 𝑗 in stage 𝑘; 

𝑥0𝑗ℎ
𝑘 /𝑥𝑗(𝑛+1)ℎ

𝑘 = 0, otherwise. 

Mathematical formulation 

Based on the flow conservation constraints to the job sequence within machines, the MILP3 model is 

developed as follows: 

𝑀𝑖𝑛 𝑍 =𝛼∑𝑤𝑗𝑋𝑗
𝑠𝑡𝑗(𝑚𝑗)

𝑗∈𝑁

+ 𝛽∑𝑤𝑗𝑇𝑗
𝑗∈𝑁

 (4.32) 

The objective function (4.32) is to simultaneously minimize the total weighted completion time and total 

weighted tardiness.  

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

    ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑙≠𝑗

= 1 

∀𝑗 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀, 

(4.33) 
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Constraint (4.33) ensures that, in each stage of a hybrid flow shop, each job (which is not skipping the 

stage) is assigned to exactly one machine with exactly one predecessor. The dummy jobs 0 are applied for 

the first job processed on a machine, i.e., 𝑥0𝑗ℎ
𝑘 . 

∑ 𝑥0𝑗ℎ
𝑘

𝑗∈𝑁𝑘

≤ 1 

∀ℎ ∈ 𝑉𝑘, ∀𝑘 ∈ 𝑀, 

(4.34) 

Constraint (4.34) guarantees that each machine is used at most once.  

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

   ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑗∈𝑁𝑘

𝑙≠𝑗

≤ 1 

∀𝑙 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀, 

(4.35) 

Constraint (4.35) limits the maximum number of successors of every job (which is not skipping the stage) 

to one, on each machine in each stage. The jobs must be properly linked in each machine so that if a given 

job 𝑙 is processed on a given machine ℎ, a predecessor 𝑢 must exist on the same machine.  

∑ 𝑥𝑙𝑗ℎ
𝑘

𝑙∈𝑁∪{0}
𝑙≠𝑗

= ∑ 𝑥𝑗𝑙ℎ
𝑘

𝑙∈𝑁∪{𝑛+1}
𝑙≠𝑗

 

∀𝑗 ∈ 𝑁𝑘 , ∀ℎ ∈ 𝑉𝑗
𝑘, ∀𝑘 ∈ 𝑀 

(4.36) 

Constraint (4.36), known as flow conservation constraint set, is incorporated into the model to ensure that 

the jobs are properly linked within a machine schedule.  

Assume 𝑄𝑖ℎ
𝑘  (∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘, ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ

𝑘 > 1) is a set of all possible combinations of ℓ different jobs 

𝑗1, 𝑗2, …, and 𝑗𝑙 belonging to group 𝑖, which can be processed by machine ℎ in stage 𝑘, where ℓ = 𝐿𝐵𝑖ℎ
𝑘 . 

The number of members of 𝑄𝑖ℎ
𝑘  is 𝐶ℓ𝑛𝑖ℎ

𝑘
. = (𝑛𝑖ℎ

𝑘

ℓ
), where 𝑛𝑖ℎ

𝑘  represents the number of jobs in group 𝑖, which 

can be processed by machine ℎ in stage 𝑘. Then, define the binary variables 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘  for each member of 

𝑄𝑖ℎ
𝑘  (∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘), which is composed of ℓ different jobs 𝑗1, 𝑗2, …, and 𝑗𝑙. For each member 



47 

 

of 𝑄𝑖ℎ
𝑘 , i.e., {𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 |𝑗1 ≠ 𝑗2 ≠ ⋯ ≠ 𝑗ℓ, the value of the binary variable 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘  is automatically 

set in the model as follows: 

𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 {

1;  if  ∃𝑗, 𝑗′ ∈ {𝑗1, 𝑗2, … , 𝑗𝑙}|𝑥𝑗𝑗′ℎ
𝑘 = 1 or 𝑥𝑗′𝑗ℎ

𝑘 = 1

0;  otherwise                                                                
 

For each member of 𝑄𝑖ℎ
𝑘 , the number of subscript indices of 𝑌𝑗1𝑗2…𝑗𝑙

𝑖ℎ𝑘  is equal to ℓ. For example, for the first 

group with 4 jobs and 𝐿𝐵1ℎ
𝑘 = 2, the set of binary variables {𝑌12

1ℎ𝑘, 𝑌13
1ℎ𝑘, 𝑌14

1ℎ𝑘 , 𝑌23
1ℎ𝑘, 𝑌24

1ℎ𝑘, 𝑌34
1ℎ𝑘} 

corresponds to the members of 𝑄1ℎ
𝑘 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, on machine ℎ. 

(∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘 )

   𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,…,𝑙≠𝑗ℓ

𝑗ℓ

𝑗=𝑗1

)+ 2(∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

)

≥ 2(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 )(𝐿𝐵𝑖ℎ

𝑘 − 1) 

(4.37) 

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 ) ≥ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

 (4.38) 

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 − 1) ≤ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

− 𝜀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 ) (4.39) 

 ∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ
𝑘 = ℓ (ℓ > 1), ∀{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 , 0 < 𝜀 < 1 

Constraints (4.37) through (4.39), known as desired lower bounds constraint sets, are incorporated into the 

model to establish a balance between processing and setup times of each batch formed on a machine in each 

stage. These constraints work jointly for each combination of parameters. Basically, if the desired lower 

bounds on batch sizes for group 𝑖 (𝑖 ∈ 𝐼𝑘) on machine ℎ (ℎ ∈ 𝑉𝑘) in stage 𝑘 (𝑘 ∈ 𝑀) is equal to ℓ (i.e., 

𝐿𝐵𝑖ℎ
𝑘 = ℓ), these constraints limit the minimum number of jobs assigned to each batch of group 𝑖, which is 

formed on machine ℎ in stage 𝑘 to ℓ. This being the case, this set of constraints indicate that the number of 

sequential jobs of a group assigned to a machine must be equal or greater than 𝐿𝐵𝑏 of the group on that 

machine. The functionality of constraints (4.37) through (4.39) is further explained in the next sub-section 

using an example problem.  
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𝑋𝑗
𝑘 +𝑀(1 − 𝑥𝑙𝑗ℎ

𝑘 ) ≥ 𝑋𝑙
𝑘 + 𝑆𝑙𝑗ℎ

𝑘 + 𝑡𝑗ℎ
𝑘  

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘, ∀𝑘 ∈ 𝑀, 
(4.40) 

Constraint (4.40) is incorporated to control the completion times of the jobs at the machines in each stage. 

This constraint restricts the completion time of job 𝑗 (𝐶𝑗
𝑘) to be greater than the completion time of job 𝑙 

(𝐶𝑙
𝑘), plus the setup time between jobs 𝑙 and 𝑗 (𝑆𝑙𝑗ℎ

𝑘 ), and the run time of job 𝑙 (𝑡𝑙ℎ
𝑘 ), if job 𝑗 is processed 

immediately after job 𝑙 on machine ℎ in 𝑘𝑡ℎ stage (i.e., 𝑥𝑙𝑗ℎ
𝑘 = 1). If 𝑥𝑙𝑗ℎ

𝑘 = 0, then the big constant 𝑀 

renders the constraint redundant. 

𝑋0
𝑘 = 𝑎ℎ

𝑘 

∀ℎ ∈ 𝑉𝑘, ∀𝑘 ∈ 𝑀, 
(4.41) 

𝑋
𝑗

𝑠𝑡𝑗(1) ≥ 𝑟𝑗 + ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(1) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(1))

   ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑗≠𝑙

 

∀ 𝑗 ∈ 𝑁𝑘 , 

(4.42) 

Constraints (4.41) and (4.42) account for dynamic machine availability time and dynamic job release time, 

respectively. They ensure that a job can be processed by a machine only when the job is released to the 

machine and the assigned machine is available.  

𝑋
𝑗

𝑠𝑡𝑗(𝑟) − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1) ≥ ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟))

   ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑗≠𝑙

 

∀𝑗 ∈ 𝑁𝑘 , 𝑟 ∈ {2,3,… ,𝑚𝑗} 

(4.43) 

Constraint (4.43) ensures that the operation of each job in each stage cannot be started until it has been 

completely processed on a prior stage, where the job had its latest operation. 

𝑇𝑗 ≥ 𝑋
𝑗

𝑠𝑡
𝑗(𝑚𝑗) − 𝑑𝑗 (4.44) 
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∀𝑗 ∈ 𝑁, 

Constraint (4.44) determines the tardiness of a job, which is equal or greater than both the completion time 

on the last stage minus due date, and zero.  

𝑋𝑗
𝑘 ≥ 0 

∀𝑗 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀,  

(4.45) 

𝑇𝑗 ≥ 0 

∀𝑗 ∈ 𝑁, 

𝑥𝑙𝑗ℎ
𝑘 ∈ {0, 1} 

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘 ∪ {𝑛 + 1}|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘, ∀𝑘 ∈ 𝑀. 

Finally, constraint (4.45) defines the real and integer requirements imposed on the variables.   

4.1.3.1. Functionality of desired lower bounds constraints  

The desired lower bounds on batch sizes must be satisfied by the jobs assigned and arranged on machines. 

This being the case, each member of 𝑄𝑖ℎ
𝑘  (∀𝑘 ∈ 𝑀, ∀ℎ ∈ 𝑉𝑘 , 𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ

𝑘 > 1) including at least one 

internal connection (IC) in the sequence must satisfy constraint (4.37); otherwise there is a violation on 

𝐿𝐵𝑖ℎ
𝑘 . If at least a pair of jobs 𝑗 and 𝑗′ belonging to {𝑗1, 𝑗2, … , 𝑗𝑙} satisfies 𝑥𝑗𝑗′

ℎ = 1 or 𝑥𝑗′𝑗
ℎ = 1, there is at 

least one IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙}. The maximum number of ICs between jobs belonging 

to a selected member of 𝑄𝑖ℎ
𝑘  is (𝐿𝐵𝑖ℎ

𝑘 − 1). If there is not any IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙}, 

there are at least three and at most six external connections (ECs) related to those jobs in the sequence. An 

EC is a connection between job 𝑗 ∈ {𝑗1, 𝑗2, … , 𝑗𝑙} and job 𝑙 ∈ 𝐺𝑖|𝑙 ∉ {𝑗1, 𝑗2, … , 𝑗𝑙}, i.e., 𝑥𝑗𝑙
ℎ = 1 or 𝑥𝑙𝑗

ℎ = 1.  

In order to show functionality of constraints (4.37) through (4.39), consider the following job sequence of 

group 𝑖 with 7 jobs and 𝐿𝐵𝑖ℎ
𝑘 = 3 on a particular machine ℎ in stage 𝑘 and the Gantt chart below as a guide.  

 
J1 J3 J5 J1 J2 J3 J4 J7J6Machine J2 J1 J2 J4
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The batch including jobs 4 and 5 as well as the batch including jobs 6 and 7 violate 𝐿𝐵𝑖ℎ
𝑘 , while the batch 

including jobs 1, 2, and 3 satisfies 𝐿𝐵𝑖ℎ
𝑘 . The first and second parts of the left-hand side in equation (4.37) 

enumerate the number of ECs and ICs related to a selected member of 𝑄𝑖ℎ
𝑘 , respectively. Equations (4.38) 

and (4.39) are accompanied by equation (4.37) so that if there is any IC between a selected member of 𝑄𝑖ℎ
𝑘 , 

equation (4.37) must be satisfied by that member; otherwise equation (4.37) is considered as a redundant 

constraint. This being the case, equations (4.38) and (4.39) determine the binary variable corresponding to 

{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ
𝑘  as 𝑌𝑗1𝑗2…𝑗𝑙

𝑖ℎ𝑘 = 1 if there is at least one IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙}; 

otherwise 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 = 0. In the following, with the help of three scenarios, we explain the relationship 

between these constraints. 

Scenario 1: consider the following selected jobs, i.e., {1, 2, 3} ∈ 𝑄𝑖ℎ
𝑘 : 

 

∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘 )

   𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,𝑙≠𝑗3

𝑗3

𝑗=𝑗1

= (𝑥41ℎ
𝑘 + 𝑥14ℎ

𝑘 ) + (𝑥51ℎ
𝑘 + 𝑥15ℎ

𝑘 ) + ⋯+ (𝑥73ℎ
𝑘 + 𝑥37ℎ

𝑘 ) = 0 

∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘 )

𝑗3

   𝑗′=𝑗+1

𝑗3

𝑗=𝑗1

= (𝑥21ℎ
𝑘 + 𝑥12ℎ

𝑘 ) + (𝑥31ℎ
𝑘 + 𝑥13ℎ

𝑘 ) + (𝑥32ℎ
𝑘 + 𝑥23ℎ

𝑘 ) = 2 

The number of ECs and ICs related to selected jobs, i.e., {1, 2, 3} ∈ 𝑄𝑖ℎ
𝑘 , are 0 and 2, respectively. 

Consequently, 

{
𝑀(𝑌123

𝑖ℎ𝑘) ≥ 2                          

𝑀(𝑌123
𝑖ℎ𝑘 − 1) ≤ 2 − 𝜀(𝑌123

𝑖ℎ𝑘)
     ⟹ 𝑌123

𝑖ℎ𝑘 = 1 and equation (4.37) is satisfied as follows: 

(0) + 2(2) ≥ 2(1)(3 − 1) ⇒ 4 ≥ 4 

Scenario 2: consider the following selected jobs, i.e., {2, 4, 6} ∈ 𝑄𝑖ℎ
𝑘 : 

 

Group i Invalid batch Selected job External connection

Group j Rest of schedule

Group k Valid batch Setup Internal connectionJob

Job

Job

Job

J1 J3 J5 J1 J2 J3 J4 J7J4 J6Machine J2 J1 J2

J1 J3 J5 J1 J2 J3 J4 J7J6J2 J1 J2 J4Machine
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∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘 )

   𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,𝑙≠𝑗3

𝑗3

𝑗=𝑗1

= (𝑥12ℎ
𝑘 + 𝑥21ℎ

𝑘 ) + (𝑥32ℎ
𝑘 + 𝑥23ℎ

𝑘 ) + ⋯+ (𝑥76ℎ
𝑘 + 𝑥67ℎ

𝑘 ) = 4 

∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘 )

𝑗3

   𝑗′=𝑗+1

𝑗3

𝑗=𝑗1

= (𝑥42ℎ
𝑘 + 𝑥24ℎ

𝑘 ) + (𝑥62ℎ
𝑘 + 𝑥26ℎ

𝑘 ) + (𝑥64ℎ
𝑘 + 𝑥46ℎ

𝑘 ) = 0 

The ECs and ICs for selected jobs, i.e., {2, 4, 6} ∈ 𝑄𝑖ℎ
𝑘 , are 4 and 0, respectively. Consequently, 

{
𝑀(𝑌246

𝑖ℎ𝑘) ≥ 0                          

𝑀(𝑌246
𝑖ℎ𝑘 − 1) ≤ 0 − 𝜀(𝑌246

𝑖ℎ )
     ⟹ 𝑌246

𝑖ℎ𝑘 = 0 and equation (4.37) is satisfied as follows: 

(4) + 2(0) ≥ 2(0)(3 − 1) ⇒ 4 ≥ 0 

Scenario 3: consider the following selected jobs, i.e., {3, 4, 5} ∈ 𝑄𝑖ℎ
𝑘 : 

 

Likewise, the ECs and ICs for selected jobs, i.e., {3, 4, 5} ∈ 𝑄𝑖ℎ
𝑘 , are equal to 1 each. Consequently, 𝑌345

𝑖ℎ𝑘 =

1 and equation (4.37) is not satisfied since (1) + 2(1) ≱ 2(1)(3 − 1). Therefore, the jobs must be re-

arranged to satisfy 𝐿𝐵𝑖ℎ
𝑘  as in the following sequence: 

 

In conclusion, constraints (4.37) through (4.39) guarantee that any developed batch of group 𝑖 on machine 

ℎ satisfies 𝐿𝐵𝑖ℎ
𝑘 ; otherwise this batch will not be developed on machine ℎ in stage 𝑘. 

4.1.4. RMILP  

It is essential to develop a robust measure, i.e., a lower bound, to evaluate the performance of meta-heuristic 

algorithms developed for the research problem. Therefore, the relaxed MILP model is developed to obtain 

an optimal solution or a good quality lower bound in affordable computational time, particularly for large-

size problems. The RMILP model reduces the large solution space considerably by eliminating the batching 

phase from the previous MILP models (Appendix A). In other words, unlike the previous MILP models 

focusing on all combinations between batch compositions of groups, the RMILP model focuses on only 

one combination. The RMILP model can be developed based on any of the proposed MILP models. In this 

research, the RMILP model is a relaxed version of the MILP1 model, which is developed based on the 

precedence constraints between each pair of jobs on machines. Appendix B shows a relaxed version of the 

J1 J3 J5 J1 J2 J3 J4 J7Machine J2 J1 J2 J4 J6

J1 J3 J1 J2 J3 J4 J5 J7Machine J2 J1 J2 J4 J6
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MILP2 model, as another example, which is developed based on the position concept within machines to 

determine the job sequence. The sets, subsets, indices, parameters, decision variables, and mathematical 

formulation for the RMILP are presented next. 

Sets and Indices  

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔} 

𝐺𝑖  Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖} 

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚} 

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘} 

   

Subsets  

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺 

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖 

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘 

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾 

   

Parameters  

𝑔 Number of groups  

𝑛𝑖 Number of jobs of group 𝑖  

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘  

𝑚 Number of stages  

𝑣𝑘 Number of machines in stage 𝑘  

𝑚𝑖𝑗  Number of stages, which must be visited by job 𝑗 of group 𝑖  

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗  

𝑡𝑖𝑗ℎ
𝑘  Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘  

𝑆𝑝𝑖ℎ
𝑘  Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝 is 

the preceding batch (𝑝 = 0 refers to the reference batch) 

𝑑𝑖𝑗  Due date of job 𝑗 of group 𝑖  

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖  

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖  

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘  

𝛼 Weight attributed to the producer  

𝛽 Weight attributed to the customer  
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𝐿𝐵𝑖ℎ
𝑘  Desired lower bound for the minimum number of jobs assigned to any batch of group 𝑖 on machine 

ℎ in stage 𝑘 

Decision variables 

𝑋𝑖𝑗
𝑘  The completion time of job 𝑗 of group 𝑖 in stage 𝑘 

𝑇𝑖𝑗 The tardiness of job 𝑗 of group 𝑖 

𝑍𝑖𝑗ℎ
𝑘  1 if job 𝑗 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise 

𝐴𝑝𝑗′𝑖𝑗
𝑘  1 if job 𝑗 of group 𝑖 is processed after job 𝑗′ of group 𝑝 in stage 𝑘; 0 otherwise 

 

Mathematical formulation 

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑗∈𝑔𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝑖𝑗

𝑗∈𝑔𝑖𝑖∈𝐺
 (4.46) 

The objective function (4.46) is to simultaneously minimize the total weighted completion time and total 

weighted tardiness.  

∑ 𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘

= 1 

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑘 ∈ 𝐾; 

(4.47) 

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑗′𝑖𝑗

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘 ) ≥ 𝑋𝑝𝑗′
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘   

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑖
𝑘;  𝑗′ ∈ 𝐽𝑝

𝑘;  ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘  ;  𝑘 ∈ 𝐾;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;    
(4.48) 

𝑋𝑝𝑗′
𝑘 +𝑀(𝐴𝑝𝑗′𝑖𝑗

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘 ) ≥ 𝑋𝑖𝑗
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗′ℎ
𝑘  

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑝
𝑘;  𝑗′ ∈ 𝐽𝑝

𝑘;  ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ;  𝑘 ∈ 𝐾;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 
(4.49) 

Constraint (4.47), known as assignment constraint, is incorporated into the model to determine the optimal 

job assignment on machines in each stage, while set of constraints (4.48) and (4.49), known as scheduling 

constraint set, determine the optimal job sequence on machines with regard to the assignment constraint.  

𝑋𝑖𝑗
𝑘 ≥∑ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘 )𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘

 (4.50) 
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𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾; 

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(1) ≥ 𝑟𝑖𝑗 + ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(1)

 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;  

(4.51) 

Constraint (4.50) together with constraint (4.51) account for dynamic machine availability and dynamic job 

release time, respectively.  

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙)
− 𝑋

𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥ ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;  𝑙 ∈ {2,3,… ,𝑚𝑖𝑗}; 

(4.52) 

The linking constraint (4.52) ensures the connection between completion times of a job related to each of 

two sequential stages, where the job had operations.  

𝑇𝑖𝑗 ≥ 𝑋
𝑖𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗  

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 

(4.53) 

Constraint (4.53) is applied to find the tardiness of each job.  

𝑋𝑖𝑗
𝑘 , 𝑇𝑖𝑗 ≥ 0;  

𝑍𝑖𝑗ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑗′ ∈ 𝐽𝑝

𝑘;  ℎ ∈ 𝑣𝑖𝑗
𝑘 ;  𝑀: large number. 

(4.54) 

Finally, constraint (4.54) defines the variables used. It is worth noting that the number of decision variables 

and constraints of the RMILP model are considerably less than those related to the previous MILP models. 
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4.1.4.1. Functionality of the RMILP model 

Although the RMILP model is still strongly NP-hard (Du and Leung 1990), it drastically reduces the gap 

between the upper and lower bounds of solutions compared to this gap for the MILP models, especially for 

large-size problems. It is worth noting that a lower bounding mechanism or a branch-and-price algorithm 

can also present a good quality lower bound compared to the RMILP model, but the computational time is 

high. As a result, during the same computational time limit, the optimal solution of the RMILP model is 

equal to the optimal solution of the MILP models, provided the RMILP model does not violate any 𝐿𝐵𝑖ℎ
𝑘 ; 

otherwise, the optimal solution and lower bound identified for the RMILP and any of the MILP models, 

respectively, determine the best lower bound for the MILP model. Likewise, the lower bounds identified 

for both RMILP and any of the MILP models determine the best lower bound for the MILP model, when 

the optimal solution for the RMILP model is not attainable during the computational time limit. In this case, 

the optimal solution/lower bound identified for both RMILP and any of the MILP models determine the 

best lower bound for the problem to evaluate the performance of meta-heuristic algorithms. Thus, given the 

computational time limit (𝐶𝑇𝑙𝑖𝑚𝑖𝑡), there is a possibility of obtaining an optimal solution/a good quality 

lower bound of any of the MILP models by the RMILP model, particularly for medium- and large-size 

problems. The pseudo-code of this mechanism is shown in Table 1. 

Table 1. Pseudo-code for 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 

 Result of the MILP models 

1: Input: 𝑀𝐼𝐿𝑃𝑅𝐷 & 𝑀𝐼𝐿𝑃𝑂𝐿 

2: Output: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  & 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  

3: Solve 𝑀𝐼𝐿𝑃𝑅𝐷 during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 

4:  if 𝑂𝑝𝑡𝑅𝐷 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then 

5:   if 𝑂𝑝𝑡𝑅𝐷 does not violate any 𝐿𝐵𝑖ℎ
𝑘  then 

6:    𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑅𝐷 

7:   else  

8:    Solve 𝑀𝐼𝐿𝑃𝑂𝐿 during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 

9:     if 𝑂𝑝𝑡𝑂𝐿 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then 

10:      𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑂𝐿 

11:     else  
12:      𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝑂𝑝𝑡𝑅𝐷, 𝐿𝐵𝑂𝐿} 

𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑂𝐿 

13:     end if 

15:   end if 
15:  else  

16:   if 𝑂𝑝𝑡𝑂𝐿 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then 

17:    𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑂𝐿 

18:   else  
19:    𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝐿𝐵𝑅𝐷, 𝐿𝐵𝑂𝐿} 

𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑂𝐿 

20:   end if 
21:  end if 
22: return 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  & 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒  



56 

 

𝑀𝐼𝐿𝑃𝑂𝐿 and 𝑀𝐼𝐿𝑃𝑅𝐷 in Table 1 represent the original and relaxed MILP models, respectively, while 

𝑂𝑝𝑡𝑂𝐿/𝑂𝑝𝑡𝑅𝐷 and 𝐿𝐵𝑂𝐿/𝐿𝐵𝑅𝐷 represent the optimal solution and lower bound of 𝑀𝐼𝐿𝑃𝑂𝐿/𝑀𝐼𝐿𝑃𝑅𝐷, 

respectively. The original MILP model refers to the MILP1, MILP2, and MILP3 models. The result of 

𝑂𝑝𝑡𝑂𝐿/𝐿𝐵𝑂𝐿 and/or 𝑂𝑝𝑡𝑅𝐷/𝐿𝐵𝑅𝐷 determine the best lower bound of 𝑀𝐼𝐿𝑃𝑂𝐿, i.e., 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, while the 

result of 𝑂𝑝𝑡𝑅𝐷 and/or 𝑂𝑝𝑡𝑂𝐿/𝑈𝐵𝑂𝐿 determine the best upper bound of 𝑀𝐼𝐿𝑃𝑂𝐿, i.e., 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒. 𝑈𝐵𝑂𝐿 is 

the upper bound of 𝑀𝐼𝐿𝑃𝑂𝐿.  

In summary, the optimal solution of the RMILP model is certainly equal to the optimal solution for any of 

the MILP models, when 𝐿𝐵𝑖ℎ
𝑘 = 1,∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀; otherwise, the optimal solution of the RMILP 

model might be either the optimal solution or the lower bound for the MILP models, when 𝐿𝐵𝑖ℎ
𝑘 > 1, ∃𝑖 ∈

𝐼𝑘 , ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀. It is worth noting that despite being a desired lower bound(s) on batch sizes, the optimal 

solutions of both MILP and any of the RMILP models are equal, when the optimal solution of the RMILP 

model does not violate any desired lower bounds on batch sizes. Therefore, the deviation between the 

optimal solutions of both MILP and any of the RMILP models indicates at least one of the desired lower 

bounds on batch sizes is violated by the RMILP model.  

This superiority in the quality of lower bounds is intensified when most of the groups have the desired 

lower bounds on batch sizes close to 1 (i.e., 𝐿𝐵𝑖ℎ
𝑘 → 1). This being the case, the evaluation of meta-heuristic 

algorithms will be performed by the outcome of optimal solutions/lower bounds of the RMILP model and 

lower bounds of any of the MILP models (pseudo-code presented in Table 1). With respect to no/any 

violation on desired lower bounds, all possible combinations between the optimal solutions and lower 

bounds of both RMILP and any of the MILP models are depicted in Figures 7 and 8. With the help of lines 

shown for the optimal solutions, lower bounds, and upper bounds of both MILP and RMILP models in 

Figures 7 and 8, the reader can interpret the relationships between the optimal solution/lower bound of the 

RMILP model and the lower bound of the MILP model, in all possible cases depicted in Figures 7 and 8.  

 
The same optimal solution for 

all models with no violation on 

𝐿𝐵𝑏 by the RMILP model 

 
The optimal solution of the 

MILP model is guaranteed by 

the RMILP model 

 
Fast convergence between the 

LB & UB of the RMILP model 

compared to the LB & UB of 

the MILP model 

 
Chart Guide 

Figure 7. No violation on desired lower bounds for the RMILP model 
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Since 𝐿𝐵𝑖ℎ
𝑘  is not violated by the RMILP model in all possible cases in Figure 7, the optimal solutions/lower 

bounds of the RMILP model are the optimal solutions/good quality lower bounds for the MILP model. 

Unlike cases shown in Figure 7, 𝐿𝐵𝑖ℎ
𝑘  is violated by the RMILP model in all cases shown in Figure 8. In 

this case, the outcome of optimal solutions/lower bounds of the RMILP model and lower bounds of the 

MILP models determine the best lower bounds for the MILP models.  

The optimal solutions for all 

models with violations on 𝐿𝐵𝑏 

by the RMILP model 

The optimal solution of the 

RMILP model is a good 

quality lower bound for the 

MILP model 

 
The optimal solution of the 

RMILP model is not able to 

provide even a good quality 

lower bound for the MILP 

model 

 
The LB of the RMILP model is 

not able to provide a good 

quality lower bound for the 

MILP model 

 
1 < 𝐿𝐵𝑏 < 𝑛𝑖 

 
𝐿𝐵𝑏 → 1 

 
𝐿𝐵𝑏 → 𝑛𝑖 Chart Guide 

Figure 8. Violation on desired lower bounds for the RMILP model 

Generally, the lower and upper bounds of the RMILP model converge faster than the ones of the original 

MILP model, when there is no violation on 𝐿𝐵𝑖ℎ
𝑘  by the RMILP model (case 3 in Figure 7). This fast 

convergence might be true for the RMILP model even if it violates 𝐿𝐵𝑖ℎ
𝑘 , when the number of violations in 

𝐿𝐵𝑖ℎ
𝑘  is not significant (case 6 in Figure 8). This being the case, the RMILP model still gives a good estimate 

of lower bounds for any of the MILP model. Apart from this, the optimal solutions/lower bounds of the 

RMILP model might not provide good quality lower bounds for any of the MILP models (case 7 in Figure 

8), when the number of violations in 𝐿𝐵𝑖ℎ
𝑘  is significant and/or most of the groups have the desired lower 

bounds on batch sizes close to 𝑛𝑖 (i.e., 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖). The reason lies in the fact that the combinations between 

batch compositions are decreased significantly, when 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖 for most of the groups, and consequently, 

the lower and upper bounds of the MILP model converge faster. Therefore, the quality of the lower bound 

identified by any of the MILP model is better than the one identified by the RMILP model.   
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4.1.5. Comparison of MILP1, MILP2, MILP3, and RMILP 

With the help of several test problems, the following results are obtained from a comparison between the 

MILP models and the RMILP model with 8 hours’ time limit presented in Table 2:  

• The MILP3 model develops good quality solutions for all test problems, compared to the solutions 

developed by the MILP1 and MILP2 models.  

• The MILP3 model is capable of obtaining the optimal solution for 9 out of 19 problems, while for 

the rest of the problems it presents good quality lower bounds compared to the MILP1 and MILP2 

models. 

• Compared to the MILP1 and MILP2 models, the performance of the MILP3 model increase as the 

size of problems is increased. 

• The performance of the MILP2 model is slightly better than the MILP1 model, particularly for 

large-size problems. 

• Although the RMILP model is capable of obtaining the optimal solutions for 13 out of 19 problems, 

it presents the optimal solution of MILP models only for 6 out of 13 problems due to violation on 

the desired lower bounds on batch sizes.  

• For all test problems, the MILP1 and RMILP models have the maximum and minimum 

computational times to identify optimal solutions, while the MILP2 and MILP3 models have the 

second and third maximum computational times, respectively.   

The MILP1 and MILP2 models are developed in two integrated phases, i.e., the batching and scheduling 

phases. Therefore, for any combination between batch compositions determined in the batching phase, the 

batch sequence on machines and job sequence within batches should be determined by the precedence 

constraints and/or the position concept in the scheduling phase. Although both the MILP3 and RMILP 

models focus on transferring a batch scheduling problem formulated by the MILP1 and MILP2 to a job 

scheduling problem by eliminating the batching phase, they are different with respect to considering 𝐿𝐵𝑏. 

In other words, unlike the RMILP model, the MILP3 model considers 𝐿𝐵𝑏 and, consequently guarantees 

identifying the optimal solution for the batch scheduling problem.  

Our preliminary experiments revealed that the MILP3 model is capable of finding optimal solutions or good 

quality lower bounds in less computational time, particularly for large-size problems, compared to the 

MILP1 and MILP2 models. Thus, the MILP3 model along with the RMILP model have been used to 

determine optimal solutions/lower bounds of problems.  
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Table 2. Comparison between MILP models and the RMILP model 

              

     MILP1  MILP2  MILP3  RMILP  

Best measure to 

evaluate the 

performance of a 

meta-heuristic 

algorithm 

P
ro

b
lem

 

𝑔 ∑𝑛𝑖 𝑚  OFV LB  OFV LB  OFV LB  OFV LB 
V

io
latio

n
 o

n
 𝐿
𝐵
𝑖ℎ 𝑘

 
 

1 5 15 2  1782.02 1260.80  1752.02 1738.02  1738.80   1682.32  Yes  1738.80 

2 3 9 3  3697.54   3697.54   3697.54   3697.54  No  3697.54 

3 3 9 2  956.20   956.20   956.20   914.15  Yes  956.20 

4 3 9 2  1330.06 1302.98  1303.06   1303.06   1278.80  Yes  1303.06 

5 3 10 3  2287.60   2287.60   2287.60   2287.60  No  2287.60 

6 5 15 4  5748.70 4071.99  5696.80 4376.80  5502.69   5502.69  No  5502.69 

7 3 15 5  4300.60 3688.21  4396.78 3770.12  4209.71 4180.87  4180.87  No  4180.87 

8 3 9 4  4318.08 3895.44  4329.65 3945.70  4298.00   4247.63  Yes  4298.00 

9 3 9 4  1579.95 1516.75  1568.39 1523.50  1551.67 1548.80  1479.95  Yes  1548.80 

10 3 9 6  4808.82 3997.15  4692.70 4061.90  4495.08   4495.08  No  4495.08 

11 4 15 6  4651.47 3517.29  4607.26 4167.98  4523.56   4451.47  Yes  4523.56 

12 3 9 6  5787.07 4802.98  5700.26 5151.08  5502.18 5468.80  5459.97  No  5459.97 

13 4 15 6  7489.88 6095.70  7729.56 7129.40  7398.70 7359.34  7264.90  Yes  7359.34 

14 4 20 4  8488.69 8009.89  8463.22 8193.76  8359.83 8295.37  8129.67 7972.88 NK  8295.37 

15 5 20 5  13871.80 9571.54  12595.59 11765.80  12128.43 11988.07  11983.80 11689.86 NK  11988.07 

16 6 28 3  16872.90 12579.76  15822.28 11598.32  13981.20 13039.20  12873.88 12688.41 NK  13039.20 

17 5 29 5  18823.80 14677.92  19030.86 13787.60  15781.49 14756.88  14987.20 14698.34 NK  14756.88 

18 6 24 2  3487.56 3038.90  3308.09 3069.90  3298.90 3087.20  2989.40 2871.89 NK  3087.20 

19 7 47 4  19182.90 13729.98  18760.88 14138.50  16993.43 15382.88  15879.70 15028.21 NK  15382.88 
                   

NK, OFV, and LB stand for “Not Known”, “Objective Function Value”, and “Lower Bound”, respectively. 
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4.2. Meta-heuristic algorithm 

The problem addressed here is strongly NP-hard and, consequently, its complexity motivates investigating 

into the development of an algorithm, which can efficiently explore the solution space and find the best 

solution from among local optima. Heuristic and meta-heuristic algorithms are the main approaches used 

in dealing with medium- and large-size problems, which are strongly NP-hard. Apart from this, not only 

meta-heuristic algorithms usually show higher performance compared to heuristic algorithms due to using 

a mechanism to avoid getting trapped in local optima, but also their performance differs in dealing with 

different types and sizes of problems.  

A basic local search meta-heuristic, a population-based meta-heuristic, and a combination of both have 

been developed for scheduling problems. A local search algorithm is an iterative algorithm so that, in each 

iteration, it searches for a solution in a local area in the solution space. This local area including neighbor 

solutions is usually the neighborhood of a particular solution called seed. Therefore, the search starts with 

an initial seed and searches the neighborhood of this solution to find a possible seed for the next iteration. 

The next seed is usually selected based on its quality compared to other solutions in the neighborhood. A 

population-based structure is an evolutionary algorithm so that, in each iteration, a population of solution 

is converted to another population with superior characteristics of the older population. Therefore, an 

iteration of a population-based structure can be considered as several consecutive iterations of a local search 

structure.  

For the research problem, eight algorithms are considered so that two out of eight algorithms are developed 

in terms of a basic local search and a basic population-based meta-heuristic, while the rest of them are 

developed based on either a local search meta-heuristic enhanced with a population-based structure or a 

population-based meta-heuristic enhanced with a local search structure. The notation of the MILP1 model 

is used to show the equations in developed meta-heuristics. Before going into the details of the developed 

meta-heuristic algorithms, common implementation strategies are explained first. 

4.2.1. Move interdependency  

The optimal solution of HFS problems are not generally in the form of permutation sequences, but very 

close to these sequences. Since there is a different combination between batch compositions of all groups 

in each stage of HFS in batch scheduling, the permutation schedule does not hold true in the problem 

addressed in this research. Therefore, a solution might be represented by different batch compositions in 

each stage.  
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Since there is interdependency between positions of a job in different stages of HFS in batch scheduling, a 

meta-heuristic algorithm is not capable of capturing these interdependencies and, subsequently, its efficacy 

can be diminished. Therefore, the move interdependency (MI) is referred to the impact of either a move 

created on 𝑘𝑡ℎ stage or several concurrent moves created on several stages up to 𝑘𝑡ℎ stage on the job and/or 

batch sequence and assignment related to the following stages, i.e., 𝑘 + 1,… ,𝑚. In a local search structure, 

a move in 𝑘𝑡ℎ stage of HFS for creating an adjacent solution should be accompanied by the MI for the 

following stages. Since several concurrent moves related to a stage(s) of HFS might create an adjacent 

solution in a population-based structure, it is more critical and complicated to accompany the moves’ 

interdependencies on the following stages, compared to a local search structure.  

Therefore, after applying a move or several concurrent moves for creating an adjacent solution, this move 

can be accompanied with and without considering the MI for the following stages. Thus, the batch 

compositions corresponding to 𝑘 + 1, 𝑘 + 2,… ,𝑚 might be changed with respect to the MI in the 

scheduling and/or the batching phase, while they are assumed to be fixed (i.e., the same as its seed/parent) 

without considering the MI. Unlike group scheduling problems, due to different combinations of batch 

compositions for each stage of HFS in batch scheduling problems, the MI can be dealt with one of the 

following strategies: 

Non-interdependency strategy: A single perturbation performed on 𝑘𝑡ℎ stage or several perturbations 

performed up to 𝑘𝑡ℎ stage is not accompanied by any changes on 𝑘 + 1,… ,𝑚 stages. This strategy evaluates 

a move or concurrent moves without considering the MI. Since a single perturbation or several perturbations 

is performed on a stage or up to a stage, respectively, while all the other following stages remain unchanged, 

the outcomes of this perturbation(s) is non-interdependency sequence, which clarifies the name of this 

strategy.  

Performing any perturbation(s) on HFS environments may result in the emergence of idle times (delays) in 

the entire schedule. These predictable delays, which represent a potential deficiency of meta-heuristic 

algorithms in dealing with the HFS scheduling problems, lead the efficiency of a meta-heuristic algorithm 

to be drastically diminished. Apart from this, a single perturbation in a local search algorithm can change 

the position of multiple jobs at each perturbation. Therefore, the multiple combinations of perturbations in 

a population-based algorithm to generate each solution may result in a non-polynomial search algorithm, 

which is not desirable in dealing with strongly NP-hard problems. In order to avoid these deficiencies in 

dealing with the HFS batch scheduling problem, one remedy is to account for simultaneous 

interdependencies (partial- or complete- interdependencies). In other words, while changing the position of 



62 

 

a job(s) and/or batch(s) in any stage(s), batch composition of groups as well as positions of jobs in the 

following stages should be checked and accordingly changed to avoid the possible delays.  

Partial-interdependency strategy: This strategy retains the same batch compositions and job order within 

batches from 𝑘𝑡ℎ stage, i.e, 𝑘 = 1,2, … ,𝑚 − 𝑖 − 1, up to the last stage, for each of two consecutive stages, 

i.e, (𝑘 + 𝑖)𝑡ℎ & (𝑘 + 𝑖 + 1)𝑡ℎ stages, where 𝑖 = 0,1,2,… ,𝑚 − 𝑘 − 1, after accounting for the adjustment 

step (in the following section 4.2.3) for the first stage of each two consecutive stages. The sequence and 

assignment of batches on machines corresponding to each stage of 𝑘 + 1,… ,𝑚 stages are determined based 

upon both the earliest available machine times and earliest batch availability times. The batch availability 

time in (𝑘 + 𝑖 + 1)𝑡ℎ stage of each of two consecutive stages is determined in terms of the completion time 

of its first job in (𝑘 + 𝑖)𝑡ℎ stage.  

Complete-interdependency strategy: Unlike the partial-interdependency strategy, this strategy does not 

keep the same batch composition for each of two consecutive stages. This strategy determines only job 

orders on machines (not within batches) for 𝑘 + 1,… ,𝑚 stages, based upon both the earliest available 

machine times and earliest job availability times, regardless of which batch a job is assigned to before. This 

strategy applied for each two consecutive stages of 𝑘, 𝑘 + 1,… ,𝑚, determines simultaneously the batch 

compositions, batch sequence and assignment on machines, and job sequence within batches. In other 

words, for each of two consecutive stages, the first available job of a group in the prior stage is assigned to 

the first available machine on the following stage as a batch. The other available jobs of the same group in 

the prior stage must be assigned to the same batch on the following stage based on their availability times, 

until the desired lower bound for this batch is satisfied. Then, for the rest of jobs belonging to this group, 

the same process follows until all jobs are assigned to a machine(s) as batches.  

As much as possible, the machine eligibilities for a job/batch assignment to a machine(s) and 𝐿𝐵𝑖ℎ
𝑘  for job 

assignment must be considered in both partial- and complete-interdependency strategies. Ties will be 

broken in favor of the smallest machine and/or batch and/or job index in both procedures.  

It is obvious that an effective move(s) cannot be created without considering the MI, due to emergence of 

idle times in the entire schedule. Apart from this, with respect to the MI, partial-interdependency strategy 

takes the flexibility of batch scheduling for stages 𝑘 + 1, 𝑘 + 2,… ,𝑚 − 1 and 𝑚, because it behaves as in 

group scheduling and follows the GTAs (the same batch composition for these stages. Furthermore, 

complete-interdependency strategy increases the number of setups, because the job assignments are based 

on only job availability times. Therefore, complete-interdependency strategy results in not only its objective 

function value being worse, but also its schedule cost to be increased. These arguments led us to probe into 
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the properties of the stage-based interdependency strategy in the HFS batch scheduling problem, described 

next.  

Stage-based interdependency strategy: Creating idle times, taking the flexibility of batch scheduling, and 

increasing the number of setups, are the potential deficiencies of non-, partial-, and complete-

interdependency strategy, respectively. These deficiencies lead to the reduction in the efficiency of the local 

search and population-based algorithms. Stage-based interdependency strategy gradually determines the 

best job and batch sequences as well as batch compositions in each stage. Considering the MI, this strategy 

is defined with the help of the following statement: 

Regardless of setting batch compositions, machine assignments, batch sequences on machines, and job 

sequences within batches which are determined up to (𝒌 −  )𝒕𝒉 stage, the best of their setting corresponding 

to 𝒌𝒕𝒉 stage is determined with the help of stage-based release time and stage-based due date. 

As a result of this strategy, the HFS problem is decomposed into 𝑚 sub-problems (𝑆𝑃𝑘 , 𝑘 ∈ 𝑚), where each 

sub-problem is a batch scheduling problem on either a single machine or a set of unrelated-parallel 

machines. The sub-problems link together with the help of stage-based release time (similar to constraints 

(4.9) and (4.13) in section 4.1.1), while the approximate impact, known as load ratio (𝐿𝑅𝑖𝑗
𝑘 ), of tardiness of 

jobs is considered with the help of stage-based due date in each stage.  

The stage-based release time of a job is equivalent to the completion time of the job in the immediately 

preceding stage. The most important point in developing the stage-based interdependency strategy is to 

follow the bi-criteria objective function in each stage. Thus, the stage-based due date needs to be considered 

in each stage due to the tardiness criterion in the bi-criteria objective function. The stage-based due date, 

which is based upon modified due dates, is obtained with the help of the load ratio of real due dates, so that 

the stage-based due date will be equivalent to the real due date in the last stage. Therefore, the stage-based 

due date considers customers’ interests in all stages of batch scheduling. The stage-based release time (�̂�𝑖𝑗
𝑘) 

and stage-based due date (�̂�𝑖𝑗
𝑘 ) of job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage are determined by the following equations:  

�̂�𝑖𝑗
𝑘 = 𝐶𝑖𝑗

𝑘−1 (4.55) 

�̂�𝑖𝑗
𝑘 = 𝐿𝑅𝑖𝑗

𝑘 ∗ 𝑑𝑖𝑗 (4.56) 

where 𝐶𝑖𝑗
𝑘  is the completion time of job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage. Load ratios are obtained as follows: 
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𝐿𝑅𝑖𝑗
𝑘 = (

(σ 𝑆�̅�𝑗
𝑙 + 𝑡�̅�𝑗

𝑙𝑘
𝑙=1 )

(σ 𝑆�̅�𝑗
𝑙 + 𝑡�̅�𝑗

𝑙
𝑙∈𝐾 )

⁄ ) (4.57) 

𝑆�̅�𝑗
𝑘 = (

(σ 𝑆�̅�ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘 )

𝜉𝑖𝑗
𝑘

⁄ ) (4.58) 

𝑡�̅�𝑗
𝑘 = (

(σ 𝑡𝑖𝑗ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘 )

(σ 𝜕𝑖ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘 )

⁄ ) (4.59) 

𝑆�̅�ℎ
𝑘 = (

(σ 𝑆𝑝𝑖ℎ
𝑘

𝑝∈𝐼𝑘+{0} )
𝑔
⁄ ) (4.60) 

𝜉𝑖𝑗
𝑘  indicates the total number of machines, which can process job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage. 𝜕𝑖ℎ

𝑘  indicates 

the total number of jobs in group 𝑖, which can be processed by machine ℎ in 𝑘𝑡ℎ stage. The stage-based 

interdependency strategy is shown in Figure 9.  

 

Figure 9. The stage-based improvement procedure along with the three-level TS algorithm 
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In the first and last sub-problem, i.e., (𝑆𝑃1) and (𝑆𝑃𝑚), �̂�𝑖𝑗
1 = 𝑟𝑖𝑗 and �̂�𝑖𝑗

𝑚 = 𝑑𝑖𝑗, respectively. The sign ⇔↔ 

in Figure 9 indicates that the best schedule in 𝑘𝑡ℎ stage is determined only with the help of the SBRT, 

SBDD, and developed IS (in the following section 4.2.2) in 𝑘𝑡ℎ stage, independent of the best fixed 

schedules up to (𝑘 − 1)𝑡ℎ stage (𝑘 = 2,… ,𝑚). In the stage-based interdependency strategy, a partial 

solution represents the sequence from the first stage up to 𝑘𝑡ℎ stage (𝑘 = 1,… ,𝑚 − 1). A complete solution 

is obtained for all stages of the stage-based interdependency strategy, only when the search algorithm 

reaches the last stage.  

The preliminary results show the superior performance of the stage-based interdependency strategy on local 

search and population-based structures for batch scheduling in HFS. Although the other interdependency 

strategies might be capable of obtaining better results compared to the stage-based interdependency 

strategy, a paired t-test performed to compare different strategies at a significance level of 5% for each 

comparison shows there is a significant difference between the stage-based interdependency strategy and 

the other strategies. Therefore, only this strategy is accompanied by all meta-heuristic algorithms in this 

research. 

4.2.2. Initial solution finding mechanism  

An initial solution finding mechanism is applied to generate the initial solution (IS) and, consequently, the 

initial population (IP) of meta-heuristic algorithms. From a combinational optimization perspective, a 

randomly generated solution frequently is of poor quality and thus is too costly or impossible to improve 

that to an optima. Therefore, in order to be efficient in finding good quality IS, an IS finding mechanism is 

generated since the quality of the final solution is sensitive to the IS (Logendran and Subur 2004). Also, the 

computational time is remarkably reduced when a feasible, high quality IS is used, instead of using a 

random solution, which might be infeasible. 

Considering that the processing time is a combination of setup and run times, in a single machine job 

scheduling problem, the weighted shortest processing time (WSPT) and weighted earliest due date (WEDD) 

rules can determine the optimal/near optimal solutions for the objective functions of total weighted 

completion time and total weighted tardiness of jobs, respectively. Since the objective function of the 

proposed problem is a linear combination of two mentioned objective functions, we conjecture that 

developing the IS finding mechanisms, inspired by WSPT and WEDD heuristics, leads to an effective IS 

for the HFS scheduling problem. Since the bi-criteria objective function is considered in this research, a 

producer’s sequence (PS) and customers’ sequence (CS) can be generated (Bozorgirad and Logendran 

2013) by applying modified WSPT and WEDD rules, respectively. Then, the PS and CS are combined to 

determine the final sequence by considering the normalization of their positional values (𝛼. 𝑃𝑆 + 𝛽. 𝐶𝑆).  
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The IS is gradually determined, stage by stage, according to the progress of the stage-based interdependency 

strategy. The stepwise IS finding mechanism as well as finding the PS and CS are described as follows: 

• Step 0: Consider 𝑘 = 1. 

• Step 1: Calculate �̂�𝑖𝑗
𝑘 and �̂�𝑖𝑗

𝑘 . 

• Step 2: Determine the group sequence (𝐺𝑆𝑄) on each machine by non-decreasing sorting of 

(𝛼. [𝑃𝑆𝑖ℎ
𝑘 ] + 𝛽. [𝐶𝑆𝑖ℎ

𝑘 ]), ∀𝑖 ∈ 𝐼𝑘. [𝑃𝑆𝑖ℎ
𝑘 ] and [𝐶𝑆𝑖ℎ

𝑘 ] are the positional values of group 𝑖 in the 𝐺𝑆𝑄 of 

machine ℎ in 𝑘𝑡ℎ stage, which are obtained by non-decreasing sorting of the following equations on 

machine ℎ:  

[𝑃𝑆𝑖ℎ
𝑘 ] ⟶ (𝑡�̅�ℎ

𝑘 + 𝑆𝑖ℎ
𝑘 + �̅�𝑖ℎ

𝑘 ) (4.61) 

[𝐶𝑆𝑖ℎ
𝑘 ] ⟶ (�̅�𝑖ℎ

𝑘 + �̅�𝑖ℎ
𝑘 ) (4.62) 

where,  

𝑆𝑖ℎ
𝑘 = 𝑚𝑖𝑛

𝑝∈𝐼𝑘+{0}−{𝑖}
𝑆𝑝𝑖ℎ
𝑘  (4.63) 

𝑡�̅�ℎ
𝑘 = (

(σ (𝑡𝑖𝑗ℎ
𝑘 𝛾𝑖𝑗ℎ

𝑘 )𝑗∈𝐽𝑖
𝑘 )

𝜕𝑖ℎ
𝑘

⁄ ) (4.64) 

�̅�𝑖ℎ
𝑘 = (

(σ (�̂�𝑖𝑗
𝑘𝛾𝑖𝑗ℎ

𝑘 )𝑗∈𝐽𝑖
𝑘 )

𝜕𝑖ℎ
𝑘

⁄ ) (4.65) 

�̅�𝑖ℎ
𝑘 = (

(σ (�̂�𝑖𝑗
𝑘 𝛾𝑖𝑗ℎ

𝑘 )𝑗∈𝐽𝑖
𝑘 )

𝜕𝑖ℎ
𝑘

⁄ ) (4.66) 

• Step 3: Determine the batch sequence (𝐵𝑆𝑄) on each machine according to the 𝐺𝑆𝑄 on each machine, 

so that a permissible job(s) belonging to each group will be assigned to the earliest available machine 

as a batch. The permissible job is a job which does not violate the machine eligibility for processing. 

𝐿𝐵𝑖ℎ
𝑘  and the machine eligibilities should be considered, as much as possible.   

• Step 4: Apply first the refinement step and then the adjustment step for created IS.   
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• Step 5: Determine the job sequence (𝐽𝑆𝑄) within each batch belonging to the 𝐵𝑆𝑄 by non-decreasing 

sorting of (𝛼. [𝑃𝑆𝑖𝑗
𝑘 ] + 𝛽. [𝐶𝑆𝑖𝑗

𝑘 ]), ∀𝑖 ∈ 𝐼𝑘  &  𝑗 ∈ 𝐽𝑖
𝑘|𝑡𝑖𝑗ℎ

𝑘 ≠ ∞. [𝑃𝑆𝑖𝑗
𝑘 ] and [𝐶𝑆𝑖𝑗

𝑘 ] are the positional 

values of job 𝑗 of group 𝑖 assigned to a batch in the 𝐵𝑆𝑄 of machine ℎ in 𝑘𝑡ℎ stage, which are obtained 

by non-decreasing sorting of the following equations on machine ℎ: 

[𝑃𝑆𝑖𝑗
𝑘 ] ⟶ (

(𝑡𝑖𝑗ℎ
𝑘 + �̂�𝑖𝑗

𝑘)
𝑤𝑖𝑗
⁄ ) (4.67) 

[𝐶𝑆𝑖𝑗
𝑘 ] ⟶ (

(�̂�𝑖𝑗
𝑘 + �̂�𝑖𝑗

𝑘)
𝑤𝑖𝑗
⁄ ) (4.68) 

• Step 6: Determine the best sequence of jobs on each machine as batches in 𝑘𝑡ℎ stage with the help 

of a meta-heuristic algorithm. 

• Step 7: Set 𝑘 = 𝑘 + 1 and go to step 1 until 𝑘 = 𝑚 + 1.  

𝛾𝑖𝑗ℎ
𝑘  is equal to one when job 𝑗 of group 𝑖 can be processed by machine ℎ in 𝑘𝑡ℎ stage. 

4.2.3. Refinement step and adjustment step 

After developing an initial solution/population and generating neighbor solutions relating to both local 

search and population-based structures, two steps might be needed: The refinement step, which is 

implemented for modifying the batch compositions of groups, batch assignment and sequencing on a 

machine(s), and job sequencing within some batches, after any perturbation(s) on a seed. For example, after 

a perturbation on a seed, a batch of group 𝑖 is divided into two batches and, consequently, the batch 

composition of group 𝑖 must be changed. Second, the adjustment step, which is implemented for the 

solutions which violate the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . If a solution does not meet the machine 

eligibility(s) and/or 𝐿𝐵𝑖ℎ
𝑘 , some job assignment must be changed based on the following procedure: 

• Step 1: identify sets of jobs (𝐿𝑖𝑠𝑡𝐽) and batches (𝐿𝑖𝑠𝑡𝑆) separately, which violate the machine 

eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 , respectively. 

• Step 2: ∀𝑗 ∈ 𝐿𝑖𝑠𝑡𝐽, assign job 𝑗 to the best permissible batch 𝑠, 𝑠 ∈ 𝐿𝑖𝑠𝑡𝑆, and revise 𝐿𝑖𝑠𝑡𝑆; 

otherwise assign job 𝑗 to the best permissible batch 𝑠, 𝑠 ∉ 𝐿𝑖𝑠𝑡𝑆. The permissible batches are 

batches of group 𝑖 which can include job 𝑗, while the best permissible batch is the one with the 

minimum processing time.        
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• Step 3: ∀𝑠 ∈ 𝐿𝑖𝑠𝑡𝑆, and for each job 𝑗 of batch 𝑠, assign each job to the best permissible batch 

𝑠′, 𝑠′ ∈ (𝐿𝑖𝑠𝑡𝑆 − 𝑠), and revise 𝐿𝑖𝑠𝑡𝑆; otherwise assign this job to the best permissible batch 𝑠′, 𝑠′ ∉

𝐿𝑖𝑠𝑡𝑆. 

• Step 4: apply the refinement step. 

The position of assigned job 𝑗 within current jobs of the new batch is the same as its current position in the 

current batch. It is worth noting that merging a batch which violates 𝐿𝐵𝑖ℎ
𝑘  with other possible batches of the 

same group, instead of using the adjustment step, might reduce the performance of the search algorithm. In 

the following four sections, meta-heuristic algorithms are explained in details. 

4.2.4. Tabu Search 

Tabu Search, a local search algorithm introduced by Glover (1986), has the ability to move through different 

local optima in the solution space with the help of its memory function. TS is an effective iterative meta-

heuristic algorithm, which is guided by tailored neighborhood structures. TS applies tabu list as the Short-

Term Memory (STM) function in order not to be trapped in a local optimum. The STM prohibits the search 

from choosing some of the previously identified neighborhoods to avoid being trapped in local optima. 

Apart from the STM, the Long-Term Memory (LTM) can be typically applied at each level of the search 

algorithm to explore more by intensifying and diversifying the search based upon maximum frequency 

(LTM-MAX) and minimum frequency (LTM-MIN), respectively. This can result in improving the quality 

of the objective function value. The LTM-MAX intensifies the search into a region that has been explored 

before more frequently, while the LTM-MIN diversifies the search into a region that has not been explored 

before. In the following, notations of TS-based algorithm as well as its algorithmic structure are briefly 

presented, and then the algorithm is completely presented with respect to solution representation, 

neighborhood finding mechanisms, tabu list structures, algorithmic steps, and finally the level moving in 

TS.  

4.2.4.1. Components of Tabu Search 

Initial solution (IS): TS needs an IS to trigger the search into the solution space.  

Neighborhood: a local search-based algorithm searches between the neighbor solutions of each solution for 

possible improvements. The neighbor solution of each solution is obtained by perturbing different elements 

of the solution. The types and number of these perturbations are dependent on the structure and the size of 

the problem, respectively. A local search-based algorithm might require an excessively large computation 

time for solving large-size instances of the problem, if the number of perturbations is polynomial with 

respect to the size of the problem. 
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Candidate: the seed in each iteration of TS is called a candidate, referred to the potentiality of the solution 

for being a local or global optimum. A next candidate in each iteration is usually the best solution between 

neighbor solutions of the current candidate with respect to tabu list and candidate list. In other words, TS 

follows a mechanism that prohibits the algorithm from always selecting the best neighbor solution as a 

candidate to avoid getting trapped in local optima. 

Candidate list (CL): the CL records each selected candidate found during the search of each iteration of the 

algorithm. The new entry into the CL is not necessarily better than its current members due to the existence 

of tabu solutions. After each insertion into the CL, the inserted candidate will be compared to the previous 

candidate. If the objective function value has improved then the current candidate will be assigned a star 

(*), which indicates it is capable of becoming the next local optima. If the objective function value has not 

improved and the previous entry into the CL already has a star, it will be assigned another star (**) and 

entered into the index list.  

Index list (IL): the IL, a subset of the CL, records all local optima found during the search. A local optima 

in the IL is a member of the CL, which is better than both its preceding and succeeding entries into CL. A 

certain pre-defined number of local optima in the IL, commonly referred to as index list size (ILS), is one 

of the criteria used to stop the search.  

Tabu list (TL): the TL is used to avoid the cyclical problem by forbidding certain perturbations (moves), 

which are called tabu. Therefore, in each iteration, the perturbation, which led to an entry into the CL, enters 

into the TL and remains there for a certain pre-defined number of iterations, which is known as tabu list 

size (TLS). The TL together with the TLS performs the role of what is referred to as the STM. Since the 

TL is a “first in first out” list, whenever the TL is filled to its capacity, the move which was forbidden for 

the longest duration (the oldest move in the TL) is replaced with the most recent move in the TL. A neighbor 

solution, obtained from tabu moves, cannot be considered as the next candidate unless it leads to the best 

solution found so far, i.e., better than the aspiration level defined so far. In this case, the move will re-enter 

into the TL.  

Aspiration level (AL): the AL is the best solution found so far by the search. As mentioned, whenever a 

tabu move results in finding a solution better than the AL, the tabu status of that move is overridden, and 

the solution can be selected as the next candidate. 

Stopping criteria: several criteria may be chosen for stopping the search, including the maximum number 

of iterations without improvement (MIWOI), maximum number of the IL/local optima (MIL), or maximum 

amount of CPU/computation time (MCPU). When a feasible solution is added to the CL, and its value is 

not less than the value of the previous member of the CL, the value of iterations without improvement 
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(IWOI) is increased by one; otherwise this counter is reset to zero. If either of the mentioned criteria or a 

combination of both attains its predefined values, the search will be stopped. 

4.2.4.2. Algorithmic structure 

Based upon decomposition concept, a hierarchical TS implementation is appropriate for batch scheduling 

problems. In order to reduce the computational burden of traditional two-level TS algorithm (job and group 

levels) applied for group scheduling problems as well as increase its efficiency, Shahvari and Logendran 

(2015, 2017) proposed a three-level TS algorithm for batch scheduling problems. A three-level TS-based 

algorithm first divides groups into batches and then for a created combination between batch compositions 

of groups, the sequence of batches on machines as well as the sequence of jobs within batches are 

determined, i.e., integrating the batching phase into the scheduling phase. The TS-based algorithm used in 

this research includes three levels, which move back and forth between batching and scheduling phases. 

These three levels are the central level, the outside level, and the inside level. It is worth noting that the job 

sequence within the same batch and the job assignment within different batches performed by the job level 

of a two-level TS algorithm are divided into the inside and central levels of the three-level TS algorithm, 

respectively. The outside level of the three-level TS algorithm, which determines the batch sequence on 

machines, is similar to the group level of a two-level TS algorithm. The three-level TS-based algorithm is 

shown in Figure 10. As it is shown, the batching phase includes splitting and merging batches, while the 

scheduling phase includes batch sequencing and job sequencing. 

 

Figure 10. The two-phase solution procedure at three levels 
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The central tabu search (CTS) performed by job assignment within different batches, determines the batch 

combinations. The outside tabu search (OTS) performed by batch sequencing on machines, determines the 

batch sequence and assignment on each machine based upon the batch combinations, which is identified in 

the CTS. It is worth noting that in the batching phase, batches can be either split or merged together in the 

CTS, while they can only be merged in the OTS. Finally, the inside tabu search (ITS) performed by job 

sequencing within the same batch, determines the job sequence within each batch based upon the batch 

assignment and sequence, which is identified in the OTS. The CTS, OTS, and ITS are implemented in the 

central, outside, and inside levels, respectively. Each level of the three-level TS-based algorithm follows 

the same algorithmic steps of tabu search (Glover 1986).  

Due to changes in at least one characteristic of a solution, i.e., a batch composition(s), machine assignment 

for batches, batch order on a machine(s), and job order within a batch(es), the refinement step might be 

implemented when the search moves from the CTS to the OTS and also from the OTS to the ITS. This step 

modifies the batch composition and/or machine assignment and/or batch order and/or job order in a level 

moving. Level moving includes any movement of a solution between levels of the three-level TS-based 

algorithm (in the following section 4.2.4.7). Laguna et al. (1993) used four restarts associated with the LTM 

for their single machine scheduling problem. Since there is three search levels in the algorithm and because 

the CTS plays an important role in obtaining a better solution than both OTS and ITS in this research, based 

upon preliminary investigations on test problems, only three restarts are performed in the CTS with the 

LTM-MAX or LTM-MIN, whenever it is needed.  

Apart from STM in each level of TS, LTM-MAX and LTM-MIN in the highest level of TS, i.e., CTS, 

specific types of diversifications are activated at the middle (OTS) and lowest level (ITS) of TS. Since the 

first best neighbor solution identified amongst all neighbor solutions with the same objective function value 

is always to be selected as a seed for the next iteration of the ITS, the location of the neighbor chosen is 

randomly changed in order to avoid concentrating on a particular part of the solution space. Also, the 

sequence of batches in the current schedule is arbitrarily changed, after several iterations without 

improvement in the OTS.      

4.2.4.3. Solution representation  

With respect to the stage-based interdependency strategy and the algorithmic structure, each solution 

including an IS is represented with the help of a combination of the central seed (𝐶𝑆𝐷𝑘), outside seed 

(𝑂𝑆𝐷𝑘), and inside seed (𝐼𝑆𝐷𝑘), in each stage of HFS (∀ 𝑘 ∈ 𝑚). The 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘 show the 

job assignment and sequence on machine(s) in the CTS, the batch assignment and sequence on machine(s) 

in the OTS, and the job sequence within batches in the ITS, respectively, corresponding to 𝑘𝑡ℎ stage. By 



72 

 

recognizing that 𝑗𝑠𝑖𝑗 represents job 𝑗 assigned to 𝑠𝑡ℎ batch of group 𝑖, 𝑆𝑠𝑖 represents 𝑠𝑡ℎ batch of group 𝑖, 

and 𝑗𝑗 represents job 𝑗, a solution related to 𝑘𝑡ℎ stage of HFS including 𝑣𝑘 unrelated-parallel machines is 

represented by the following set of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘: 

{
 
 

 
 𝐶𝑆𝐷𝑘 = [{𝑗𝑠𝑖𝑗}𝑣1

 | {𝑗𝑠𝑖𝑗}𝑣2
 |  … | {𝑗𝑠𝑖𝑗}𝑣𝑘]

𝑂𝑆𝐷𝑘 = [{𝑆𝑠𝑖}𝑣1  | {𝑆𝑠𝑖}𝑣2  |  … | {𝑆𝑠𝑖}𝑣𝑘]  

𝐼𝑆𝐷𝑘 = [{𝑗𝑗}𝑣1  | {𝑗𝑗}𝑣2  |  … | {𝑗𝑗}𝑣𝑘]        

 

{𝑗𝑠𝑖𝑗}𝑣𝑘
 represents the job assignment and sequence on machine ℎ of 𝑘𝑡ℎ stage. Hyphens in each set of jobs, 

i.e., {𝑗𝑠𝑖𝑗}𝑣𝑘
, separate between 𝑗𝑠𝑖𝑗 belonging to the same machine and vertical lines in 𝐶𝑆𝐷𝑘 separate 

{𝑗𝑠𝑖𝑗}𝑣𝑘
 between different machines. {𝑆𝑠𝑖}𝑣𝑘 represents the batch sequence on machine ℎ of 𝑘𝑡ℎ stage. 

Hyphens in each set of batches, i.e., {𝑆𝑠𝑖}𝑣𝑘, separate between 𝑆𝑠𝑖 belonging to the same machine and 

vertical lines in 𝑂𝑆𝐷𝑘 separate {𝑆𝑠𝑖}𝑣𝑘 between different machines. {𝑗𝑗}𝑣𝑘 represents the job sequence 

within batches assigned to machine ℎ of 𝑘𝑡ℎ stage. Commas and hyphens in each set of jobs, i.e., {𝑗𝑗}𝑣𝑘, 

separate sequentially jobs belonging to the same batch and jobs belonging to different batches, respectively, 

according to the batch sequence on the same machine in the 𝑂𝑆𝐷𝑘. Also, vertical lines in 𝐼𝑆𝐷𝑘 separate 

{𝑗𝑗}𝑣𝑘 between different machines.  

A complete solution related to the entire stages is represented by 𝑘 sets of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘, each 

set related to a particular stage. An example sequence related to a stage (𝑘 ∈ 𝑚) of HFS including three 

unrelated-parallel machines can be represented as follows:  

𝐶𝑆𝐷𝑘 [𝑗113-𝑗111-𝑗121 | 𝑗144-𝑗142-𝑗141-𝑗143-𝑗223-𝑗222 | 𝑗151-𝑗153-𝑗154-𝑗212-𝑗133-𝑗131-𝑗134-𝑗135] 

𝑂𝑆𝐷𝑘 [𝑆11-𝑆12 | 𝑆14-𝑆22 | 𝑆15-𝑆21-𝑆13] 

𝐼𝑆𝐷𝑘 [𝑗3, 𝑗1-𝑗1 | 𝑗4, 𝑗2, 𝑗1, 𝑗3-𝑗3, 𝑗2 | 𝑗1, 𝑗3, 𝑗4-𝑗2-𝑗3, 𝑗1, 𝑗4, 𝑗5] 

𝑗2 of both group 3 and 5 are skipped in 𝑘𝑡ℎ stage. The 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘 are all related to each other 

so that the 𝐶𝑆𝐷𝑘 simultaneously includes both the 𝑂𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘. Therefore, the 𝑂𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘 are 

changed, when the 𝐶𝑆𝐷𝑘 changes. Likewise, the 𝐶𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘 are changed, when the 𝑂𝑆𝐷𝑘 changes. 

Also, the 𝐶𝑆𝐷𝑘 and/or 𝑂𝑆𝐷𝑘 are changed, when the 𝐼𝑆𝐷𝑘 changes. 
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4.2.4.4. Neighborhood Finding Mechanisms  

A combination of the insertion- and swap-related operators, considered as the neighborhood structure, is 

performed at each level of the TS-based algorithm. Generally, the insertion-related operator is obtained by 

inserting a job/batch across other jobs/batches, either on the same machine or different machines, yet one 

move at a time. Apart from this, the swap-related operator is obtained by exchanging the positions of two 

jobs/batches, either on the same machine or different machines, while maintaining the same positions for 

the remaining jobs/batches.  

With respect to both insertion- and swap-related operators, two types of moves are implemented to 

determine neighbor solutions: dividing move and sequencing move. The outcome of a dividing or 

sequencing move might lead to merging batches, when two batches of the same group are processed one 

after another on the same machine.  

Move type 1: dividing move 

The dividing move, performed by the job assignment within different families/batches, splits 

families/batches and changes a batch composition(s). Subsequently, the machine assignment for batches, 

batch order on a machine(s), and job order within a batch(s) change. Therefore, the dividing moves 

implemented by the CTS, determine the best batch compositions.  

Since insertion-related move in the CTS provides a more reasonable change in the current schedule 

compared to swap-related move, moves proposed in the CTS are mostly based upon insertion techniques 

due to reduction in the computational burden of the search algorithm. Therefore, the neighbor solutions are 

obtained by inserting the jobs, yet one move at a time, between jobs across other batches, both on the same 

machine and different machines. Performing an insert move in the CTS can also effectively split and/or 

merge batches. Such divisions and merging in the CTS may directly affect the objective function value 

more than any move in the OTS and ITS. The central moves which violate desired lower bounds for newly 

formed and moved batches must be forbidden. 

Move type 2: sequencing move 

The sequencing move, performed by the job sequencing on the same families/batches as well as the batch 

sequencing on a machine(s), changes the job order, batch order, and machine assignment and, consequently, 

the batch composition might change. Therefore, the sequencing moves implemented by the ITS and OTS, 

determine, respectively, the best job sequence within batches as well as the best batch sequences on 

machines.  
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The neighborhoods for the OTS are generated by moving the batches, yet one move at a time. The benefits 

of these moves consist of re-sequencing newly formed batches after performing an insert/swap move at the 

upper level (the CTS). Another benefit lies in the fact that these moves are capable of changing the batch 

composition(s) by merging batches. Based upon swap-related move, the swap move changes the positions 

of two batches by maintaining the same positions for the remaining batches either on the same machine or 

different machines, regardless of which batches of the same group or different groups will be swapped. 

Based upon insertion-related move, the insert move removes a batch scheduled to be processed on a 

machine from its current position and inserts it in any available position, either on the same machine or 

different machines.  

Basically, the neighborhood for the ITS are similarly defined as those for the OTS. However, the 

neighborhood mechanisms are restricted only to the jobs within each batch. Note that performing these 

types of moves only alter the job sequence in each batch and refine the schedule after applying the OTS. It 

is worth noting that for any combination between batch compositions, the GTAs are not violated by 

performing inside moves. 

It is worth noting that during the generation of neighbor solutions in the central and outside search levels, 

the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘  must be considered for processing a moved job(s)/batch(es) as well as 

a newly formed batch(es). Apart from this, the neighborhood search mechanisms are the same for all search 

levels and performed at each level in order to determine simultaneously the best neighbor solutions at the 

same level as well as the upper level of the search. In other words, the ITS is performed on each OTS 

neighbor solution in order to obtain the best job sequence within each batch of each OTS neighbor solution 

so that the best OTS neighbor solution is identified. Likewise, the OTS is performed on each CTS neighbor 

solution in order to obtain the best batch sequence on each machine of each CTS neighbor solution so that 

the best CTS neighbor solution is identified. 

4.2.4.5. Tabu List Structures 

TS applies tabu list as the Short-Term Memory (STM) function in order not to be trapped in a local optima. 

The STM prohibits the search from choosing some of the previously identified neighborhoods to avoid 

being trapped in a local optima. Due to involving different types of operations related to neighborhood 

mechanisms at each level of the search algorithms, different types of tabu structures are implemented.  

The tabu structure in the ITS is based upon positions of a job(s) related to a batch belonging to a group. In 

other words, if a job belonging to 𝑆𝑠𝑖 is inserted from its current position 𝑝 to another position 𝑝′ (𝑝 ≠ 𝑝′), 

the sequencing move 𝑣𝐼(𝑆𝑠𝑖|𝑝′, 𝑝) is stored in the ITL. 𝑣𝐼(𝑆𝑠𝑖|𝑝′, 𝑝) indicates that a job belonging to 𝑆𝑠𝑖 
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cannot be inserted from its current position 𝑝 to a new position 𝑝′ for several predetermined iterations. 

Apart from this, if a job belonging to 𝑆𝑠𝑖 in position 𝑝 is exchanged with another job belonging to the same 

batch of the same group in position 𝑝′ (𝑝 ≠ 𝑝′), the sequencing move 𝑣𝐸(𝑆𝑠𝑖|𝑝′, 𝑝) is stored in the ITL. 

Likewise, 𝑣𝐸(𝑆𝑠𝑖|𝑝′, 𝑝) indicates that a job belonging to 𝑆𝑠𝑖 in position 𝑝 cannot be swapped with another 

job belonging to the same batch in position 𝑝′ for several predetermined iterations.  

The tabu structure in the OTS is based upon positions of a batch(es) on a machine(s). In other words, if a 

batch assigned to machine 𝑚 is inserted from its current position 𝑝 to another position 𝑝′ (𝑝 ≠ 𝑝′) on 

machine 𝑚′, the sequencing move 𝑣𝐼(𝑚𝑝′
′ ,𝑚𝑝) is stored in the OTL. 𝑣𝐼(𝑚𝑝′

′ , 𝑚𝑝) indicates that a batch 

assigned to position 𝑝 on machine 𝑚 cannot be inserted to position 𝑝′ on machine 𝑚′ for several 

predetermined iterations. Apart from this, if a batch assigned to machine 𝑚 in position 𝑝 is exchanged with 

another batch assigned to machine 𝑚′ in position 𝑝′ (if 𝑚 = 𝑚′ then 𝑝 ≠ 𝑝′), the sequencing move 

𝑣𝐸(𝑚𝑝′
′ ,𝑚𝑝) is stored in the OTL. Likewise, 𝑣𝐸(𝑚𝑝′

′ ,𝑚𝑝) indicates that a batch assigned to position 𝑝 on 

machine 𝑚 cannot be swapped with another batch assigned to position 𝑝′ on machine 𝑚′ for several 

predetermined iterations.  

Finally, the tabu structure in the CTS is based upon triple groups involved in a move and is stored in the 

CTL as a triple group sequential on a machine. Triple group sequential is referred to three groups that are 

not necessarily different from each other, and are related to three jobs which are processed one after another 

on the same machine. In other words, if 𝑗𝑠𝑖𝑗 is inserted between two jobs belonging to groups 𝑖′ and 𝑖′′ on 

machine 𝑚 (i.e. 𝑗𝑠′𝑖′𝑗′ and 𝑗𝑠"𝑖"𝑗" are processed immediately before and after 𝑗𝑠𝑖𝑗, respectively), then the 

dividing/sequencing move 𝑣𝐼(𝑚|𝑔𝑖′ , 𝑔𝑖, 𝑔𝑖′′) is stored in the CTL. 𝑣𝐼(𝑚|𝑔𝑖′ , 𝑔𝑖, 𝑔𝑖′′) indicates that a job 

belonging to group 𝑖 cannot be inserted between two jobs, which belong to groups 𝑖′ and 𝑖′′ on machine 𝑚 

for several predetermined iterations. Apart from this, if 𝑗𝑠𝑖𝑗, which is processed immediately before and 

after jobs of groups 𝑖′ and 𝑖′′ on machine 𝑚, respectively, is exchanged with another job of group 𝑝, which 

is processed immediately before and after jobs of groups 𝑝′ and 𝑝′′ on machine 𝑚′, respectively, then the 

dividing/sequencing move 𝑣𝐸(𝑚𝑔
𝑖′
,𝑔𝑝,𝑔𝑖′′

|𝑚′
𝑔
𝑝′
,𝑔𝑖,𝑔𝑝′′

) is stored in the CTL. Likewise, 

𝑣𝐸(𝑚𝑔
𝑖′
,𝑔𝑝,𝑔𝑖′′

|𝑚′
𝑔
𝑝′
,𝑔𝑖,𝑔𝑝′′

) indicates that a job of group 𝑖 cannot be swapped with another job of group 𝑝, 

for several predetermined iterations, so that a job of group 𝑖 is peocessed between two jobs of group 𝑝′ and 

𝑝′′ on machine 𝑚′ and a job of group 𝑝 is processed between two jobs of groups 𝑖′ and 𝑖′′ on the same 

machine. If there is no group before the inserted job, the reference group is used as the first group in a triple 

group sequential. Likewise, if there is no group after the inserted job, the group assigned to the inserted job 

is used as the last group in a triple group sequential. In all tabu formulation above, 𝑣𝐼 and 𝑣𝐸 stand for 

insertion-related and swap-related operator, respectively. Figure 11 illustrates an example of tabu list as 
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well as neighborhood structures by applying insertion-related move on the CTS followed by swap-related 

move on the OTS, which itself is followed by swap-related move on the ITS. 

 

Figure 11. Illustration of neighborhood and tabu structures in different levels of TS-based algorithm 

By inserting 𝐽111 to 𝑚2 in the CTS and applying the refinement step, the completion times of 𝐽233, 𝐽234, 

and 𝐽235 are decreased, while the completion times of 𝐽211, 𝐽141, and 𝐽142 are increased. The move 

𝑣𝐼(2|1,1,4) is stored in the CTL. Also, by swapping 𝑆12 and 𝑆21 on 𝑚2 in the OTS, the completion times 

of  𝐽211 and 𝐽212 are decreased, while the completion times of 𝐽121 and 𝐽122 are increased. It is worth noting 

that by applying this move, an idle time is created on 𝑚2 due to the release time of 𝐽212. In addition, setup 

times of the first batch of the second group and the second batch of the first group are changed. The move 

𝑣𝐸((𝑚2)2+𝑘 , |(𝑚2)1+𝑘) is stored in the OTL. 𝑘 represents the number of batches processed before 𝐽122 in 

the parent. Finally, the completion times of 𝐽211, 𝐽121, 𝐽122, 𝐽141, and 𝐽142 are decreased by exchanging 

positions of 𝐽211 and 𝐽212 on 𝑚2 in the ITS. Then, the move 𝑣𝐸(𝑆21|2,1) is stored in the ITL. In all levels, 

the completion times of jobs which are not mentioned are held fixed. Also, the tardiness of a job, due to its 

completion time being decreased, is either decreased or not changed. Likewise, the tardiness of a job, due 

to its completion time being increased, is either increased or not changed. As a result, the objective function 
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value of the solution created by a combination of those moves is decreased, even though the completion 

time and/or tardiness of  𝐽121 and 𝐽122 are increased. 

4.2.4.6. Algorithmic steps of three-level TS 

Step 1 (IS): Determine a random feasible IS or an IS with the help of an IS finding mechanism as a 

combination of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘, ∀ 𝑘 ∈ 𝑚.  

Step 2 (CTS): Enter all neighbor solutions of the 𝐶𝑆𝐷𝑘 generated with the help of insertion and/or swap 

operators into a list named central temporary candidate list (CTCL).  

Step 3 (Refinement): Modifying the batch combination, the refinement step is needed for each neighbor 

solution after applying insertion and/or swap operators in the CTS. This step (that leads to the refined seed 

in the CSD, OSD and ISD parts) includes: modifying the number of batches belonging to each group 

together with the number and the type of jobs belonging to each batch (the batch combination), and 

modifying batch sequencing on machine(s) as well as job sequencing within each batch. In other words, the 

OSD and ISD sequences related to a machine(s), which is a candidate for a move in the CTS, are changed 

when the sequence in the CSD changes on the machine(s). Therefore, the refined seed for the CSD, OSD 

and ISD parts (known as the refined CSD, OSD, and ISD) is achieved after applying the insertion and/or 

swap operators and then the refinement step on the CSD in the CTS.  

Step 4 (OTS): The OTS is implemented for the best / all / part of neighbor solution(s) in the CTCL in order 

to find the best sequence of batches associated with this solution(s). In each iteration of the OTS, the batch 

sequence and job sequence within batches of each refined CSD will be considered as the OSD and ISD, 

respectively. The following steps illustrate the OTS applied for each refined CSD. 

Step 4.1: Enter all neighbor solution of the OSD generated with the help of insertion and swap operators 

into a list named outside temporary candidate list (OTCL).  

Step 4.2 (Refinement): Similar to that explained for the refinement step in the CTS, the refinement step 

might be needed after applying insertion and swap operators in the OTS. This step includes: modifying 

batch sequence on each machine, job sequence on each batch, and the batch combination.  

Step 4.3 (ITS): The ITS is implemented for the best / all / part of neighbor solution(s) in the OTCL in order 

to find the best sequence of jobs within batches associated with this solution(s). In each iteration of the ITS, 

the job sequence within batches of each refined OSD will be considered as the ISD. The following steps 

illustrate the ITS applied for each refined OSD. 
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Step 4.3.1: Enter all neighbor solutions of the ISD generated with the help of insertion and swap operators 

into a list named inside temporary candidate list (ITCL).  

Step 4.3.2: Update the following parameters for the ITS. The job sequence of the refined OSD in the OTS 

(i.e., the refined ISD) is considered as the first member of the inside candidate list (ICL) and inside index 

list (IIL). The objective function value of this solution is set as the inside aspiration level (IAL). As it is 

mentioned, the IAL is the best value found among all the neighbor solutions of the current inside 

neighborhood search.  Then, the first best solution in the ITCL is inserted into the ICL, only if the ICL has 

not included this solution and the inside tabu list (ITL) has not included the move, which led to this solution; 

otherwise the next best solution is inserted into the ICL. This remains true unless the forbidden move leads 

to a solution better than the IAL. Each solution in the ICL is called a candidate and all of these solutions 

should be distinct from each other. Also, the neighborhoods included in the candidate list must be excluded 

from further consideration. If more than one neighborhood has the same value, then the neighborhood with 

the first best solution is chosen. Tabu list (TL) is used to avoid the cyclical problem by forbidding certain 

moves which are called tabu. All moves in the TL will be considered as forbidden moves for a certain 

number of iterations, which is known as inside tabu list size (ITLS). The ITL is updated and the move which 

led to an entry into the ICL is stored in the ITL. So if the ITL is filled to its capacity, the move which was 

forbidden for the longest duration (the oldest move in the ITL) is replaced with the most recent move in the 

ITL. After each insertion into the ICL, the inserted candidate will be compared to the previous candidate. 

If the objective function value has improved then the current candidate will be assigned a star (*), which 

indicates it is capable of becoming the next local optimum. If the objective function value has not improved 

and the previous entry into the ICL already has a star, it will be assigned another star (**) and entered into 

the inside index list (IIL). The IIL is a subset of the ICL, which includes the local optima. 

Step 4.3.3: When a feasible solution is added to the ICL, and its value is not less than the value of the 

previous member of the ICL, the value of inside iterations without improvement (IIWOI) is increased by 

one; otherwise, this counter is reset to zero. The ITS will stop, whenever the IIWOI attains the maximum 

inside iterations without improvement (MIIWOI), or a certain number of local optima, referred to as inside 

index list size (IILS), reaches to the maximum inside index list (MIIL). If either of these criteria attains its 

predefined values, the search will be stopped, and the best sequence of jobs within each batch is considered 

as the best solution for the current batch sequence and the search is switched to the OTS; otherwise, the last 

entry in the ICL will be considered as the next seed for the ITS and the search will be directed to step 4.3.1.  

Step 4.4 (back to the OTS): The batch sequence as well as the job sequence belonging to each batch of the 

refined CSD in the CTS (i.e., the refined OSD and ISD) is considered as the first member of the outside 

candidate list (OCL) and outside index list (OIL). It is necessary to hold both the OSD and ISD as one 
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member of the OCL and OIL, because the ISD might be changed when the OSD changes. Similar to the 

ITS in step 4.3.2, the OTS is performed and the outside aspiration level (OAL), the OCL, the outside tabu 

list (OTL), and the OIL are updated.  

Step 4.5: The OTS will stop, whenever the outside iteration without improvement (OIWOI) attains the 

maximum outside iteration without improvement (MOIWOI), or a certain number of local optima, referred 

to as outside index list size (OILS), reaches to the maximum outside index list (MOIL). If either of these 

criteria attains its predefined values, the search will be stopped, and the best sequence of batches as well as 

the best sequence of jobs within batches (determined in the ITS) are considered as the best solution for the 

current batch combination and the search is switched to the CTS; otherwise, the last entry into the OCL 

will be considered as the next seed for the OTS and the search will be directed to step 4.3.  

Step 5 (back to the CTS): The IS composed of the CSD, OSD, and ISD is considered as the first member 

of the central candidate list (CCL) and the central index list (CIL). It is necessary to hold the CSD, OSD, 

and ISD as one member of the CCL and CIL, because the OSD and ISD are changed when the CSD changes. 

Similar to the ITS in step 4.3.2, the CTS is performed and the central aspiration level (CAL), the CCL, the 

central tabu list (CTL), and the CIL are updated.  

Step 6: The CTS will stop, whenever the central iteration without improvement (CIWOI) attains the 

maximum central iteration without improvement (MCIWOI), or a certain number of local optima, referred 

to as central index list size (CILS), reaches to the maximum central index list (MCIL). If either of these 

criteria attains its predefined values, the search will be stopped, and the search algorithm is switched to the 

next stage of the LTM-MAX until it attains the maximum frequency of central search level; otherwise, the 

last entry into the CCL will be considered as the next seed for the CTS and the search will be directed to 

step 2.  

It is worth mentioning that the algorithmic steps of TS, from step 1 to 6, should be consecutively applied 

for each stage of HFS, when the stage-based interdependency strategy is implemented. The pseudo-code 

for the proposed TS-based algorithm with three search levels as well as the flowchart for each level of the 

search algorithm (the CTS, OTS, and ITS) are depicted in Table 3 and Figure 12, respectively. 
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Table 3. Pseudo-code for three-level TS-based algorithm 

     TS Algorithm: Outline of TS-based algorithm  
 

1: Input: 𝑆𝑆𝑒𝑒𝑑 

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 &  
              𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆∗ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑎 𝑠𝑒𝑒𝑑 

3: 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑆𝑆𝑒𝑒𝑑  𝑎𝑠 𝐶𝑆𝐷, 𝑂𝑆𝐷, 𝑎𝑛𝑑 𝐼𝑆𝐷 

4: while (𝐶𝐼𝐿𝑆 ≤ 𝑀𝐶𝐼𝐿 ||𝑁𝐼𝑊𝑂𝐼 ≤ 𝑀𝐼𝑊𝑂𝐼) do 
5: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ() 
6:  𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑇𝑆 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝐶𝑇𝐿, 𝐶𝐼𝐿, 𝑁𝐼𝑊𝑂𝐼, 𝑎𝑛𝑑 𝐶𝐴𝐿 

7:  𝑇𝐶𝐶𝐿 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑆𝑒𝑒𝑑) 
8:  for 𝑆𝑘 ∈ 𝑇𝐶𝐶𝐿, 𝑘 = {1,… , 𝑛𝑇𝐶𝐶𝐿} do 
9:      𝑇𝐶𝐶𝐿 ← 𝑅𝑒𝑓𝑖𝑛𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() 
10:  end for 

11:  𝐺𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑆𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑒𝑛𝑡𝑟𝑎𝑙  
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

   // The same algorithmic steps followed by CTS 

12:   𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑂𝑢𝑡𝑠𝑖𝑑𝑒_𝑆𝑒𝑎𝑟𝑐ℎ() 
13:   𝐺𝑜 𝑡𝑜 𝑡ℎ𝑒 𝐼𝑛𝑠𝑖𝑑𝑒 𝑆𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒  

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

    // The same algorithmic steps followed by CTS 

14:    𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐼𝑛𝑠𝑖𝑑𝑒_𝑆𝑒𝑎𝑟𝑐ℎ() 
15:  𝑆𝑏𝑒𝑠𝑡 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑇𝐶𝐶𝐿 
  // Check 𝑆𝑏𝑒𝑠𝑡  vs CTL & CCL with respect CAL 

16:  if ((𝑚𝑜𝑣𝑒𝑆𝑏𝑒𝑠𝑡 ∉ 𝑚𝑜𝑣𝑒𝑇𝑎𝑏𝑢 && 𝑆
𝑏𝑒𝑠𝑡 ∉ 𝐶𝐶𝐿) || 

      (𝑆𝑏𝑒𝑠𝑡 ∉ 𝐶𝐶𝐿 && 𝑓(𝑆𝑏𝑒𝑠𝑡) < 𝐶𝐴𝐿)) then 
17:   𝐶𝐶𝐿 ← 𝑆𝑏𝑒𝑠𝑡 
18:   𝐶𝑇𝐿 ← 𝑚𝑜𝑣𝑒𝑆𝑏𝑒𝑠𝑡 
19:   𝑇𝐶𝐶𝐿 = ∅ 

20:  else 

21:   𝑆𝑏𝑒𝑠𝑡 ← 𝐹𝑖𝑛𝑑 𝑛𝑒𝑥𝑡 𝑏𝑒𝑠𝑡 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛𝑡𝑜 𝑇𝐶𝐶𝐿 
22:   𝐺𝑜 𝑡𝑜 𝐢𝐟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 
23:  end if 
  // 𝑆𝑃𝐸𝐶𝐶𝐿: The entry into CCL immediately before 𝑆𝑏𝑒𝑠𝑡     
24:  if (𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑃𝐸𝐶𝐶𝐿) then 

25:   𝑆𝑏𝑒𝑠𝑡
∗
← 𝑆𝑏𝑒𝑠𝑡  

26:   𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡  
27:  else if (𝑆𝑃𝐸𝐶𝐶𝐿 ℎ𝑎𝑠 𝑎 𝑠𝑡𝑎𝑟 (𝑆𝑃𝐸𝐶𝐶𝐿

∗
) &&  

            𝑓(𝑆𝑏𝑒𝑠𝑡) > 𝑓(𝑆𝑃𝐸𝐶𝐶𝐿)) then 

28:   𝑆𝑃𝐸𝐶𝐶𝐿
∗∗
← 𝑆𝑃𝐸𝐶𝐶𝐿

∗
  

29:   𝐶𝐼𝐿 ← 𝑆𝑃𝐸𝐶𝐶𝐿
∗
 

30:   𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡  
31:  Else 
32:   𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡  
33:  end if 
34: end while 

35: return 𝑆∗ 
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Figure 12. Flow chart for basic TS at each level 
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4.2.4.7. The level moving in three-level TS 

In dealing with the batch scheduling problem presented in this research, the TS-based algorithms have been 

employed in three levels: the CTS, OTS, and ITS. There are three different ways to move between these 

levels. The first method (M1) focuses on all possible neighbor solutions by performing the ITS and OTS 

for any individual neighbor solution generated in the OTS and CTS, respectively, until no more 

improvement is achievable in the CTS, whereas the second method (M2) performs the ITS and OTS for 

Q% and K% of all possible neighbor solutions generated in the OTS and CTS, respectively. The Q% and 

K% represent the solutions with the best (smallest) objective function value amongst all solutions 

(promising solutions), before performing the OTS for any individual neighbor solution generated in the 

CTS and performing the ITS for any individual neighbor solution generated in the OTS, respectively. The 

Q% and K% guarantees to obtain the same best solution as the first method at a 5% significance level, but 

in drastically shorter computational time. The third method (M3) passes the best neighbor solution obtained 

by the ITS to the OTS and also the OTS to the CTS and vice versa, until no more improvement is achievable 

at any level of TS. The iterative levels includes: finding the best job order for a given batch composition 

and batch order in the ITS; finding the best batch order for a given batch composition and job order in the 

OTS; and finally finding the best batch composition for a given batch order and job order in the CTS.  

Based upon randomly generated test problems in each problem size and with respect to the minimum 

deviation between the first and second methods in the level moving, the average Q% and K% determined 

are presented in Table 4. At a 5% significance level, a one-way hypothesis test is used for each problem 

size to investigate whether or not the average percentage is smaller than the determined value. Based upon 

a large 𝑃𝑣𝑎𝑙𝑢𝑒 corresponding to each hypothesis in Table 4, the results indicate the second algorithm 

performs the best at the mentioned Q% and K%. Also, 95% Confidence intervals (CI) are determined for 

each problem size in Table 4.  

Table 4. Percentage values and confidence intervals for Q and K 

Problem size   Value % 95% CI 𝑃𝑣𝑎𝑙𝑢𝑒 

Small-size 
Q% : 25% [22.45 ,27.54] 1.464E-08 

K% : 20% [17.06, 22.94] 1.727E-08 

Medium-size 
Q% : 32% [28.48, 35.52] 1.318E-08 

K% : 26% [21.88, 30.12] 1.345E-08 

Large-size 
Q% : 38% [35.06, 40.94] 1.973E-08 

K% : 30% [24.12, 35.88] 1.273E-08 

4.2.5. Tabu search/Path-Relinking 

The lack of mechanism for exploring the information on good quality solutions becomes more pronounced 

when batch scheduling problems in HFS are accompanied by the stage-based interdependency strategy. 
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These arguments led us to probe into the properties of a population-based structure and, consequently, 

develop a TS-based algorithm enhanced with a population-based structure. Tabu search/path-relinking 

(TS/PR) repeatedly operates back and forth between path-relinking (PR) and TS for a pre-determined 

number of iterations without any improvement.  

PR was originally proposed by Glover (1997) as an approach to integrate diversification and intensification 

strategies in the search (LTM-MAX & LTM-MIN). The PR procedure is implemented to explore 

trajectories connecting elite solutions in both directions, which are obtained by tabu search or scatter search 

(Glover et al. 2000). The solution that begins the path is called an initial solution (𝑆𝐼), while the solution 

that the path leads to is called a guiding solution (𝑆𝐺). PR consists of gradual introduction of attributes of 

𝑆𝐺 in 𝑆𝐼. The InitialPathSet is a list of all intermediate solutions generated during PR, while the 

PromisingPathSet is a list of candidate solutions, which are a subset of the InitialPathSet. After the 

relinking procedure, a so-called reference solution is chosen from the PromisingPathSet that serves to 

update the population. TS/PR stops after a predetermined number of iterations without any improvement. 

PR mainly integrates two complementary key components to ensure search efficiency:  

• the construction approach used for establishing the path between 𝑆𝐺 and 𝑆𝐼; and 

• the method used to choose the reference solution (Peng et al. 2015).  

Therefore, PR is incorporated into the basic TS to increase its performance. In other words, the PR 

procedure explores trajectories connecting elite solutions between 𝑆𝐺 in 𝑆𝐼 in a relinking path, in both 

directions (𝑆𝐼 ⇄ 𝑆𝐺), while TS improves the generated promising solution to a local optimum (Peng et al. 

2015). The following sections present the algorithmic steps as well as the characteristics of the PR in detail, 

with respect to the stage-based interdependency strategy. 

4.2.5.1. Solution representation for PR 

In PR, a partial solution is represented by 𝑣𝑘 permutation arrays in 𝑘𝑡ℎ stage, so that each permutation array 

represents an ordering of operations on ℎ𝑡ℎ machine in 𝑘𝑡ℎ stage (∀ ℎ ∈ 𝑣𝑘). A partial solution of HFS in 

𝑘𝑡ℎ stage of PR is represented as follows: 

𝑆𝑘 = {(𝑗1,1
𝑠𝑘 , 𝑗2,1

𝑠𝑘 , … , 𝑗𝓙1,1
𝑠𝑘 ) , (𝑗1,2

𝑠𝑘 , 𝑗2,2
𝑠𝑘 , … , 𝑗𝓙2,2

𝑠𝑘 ) ,… , (𝑗
1,𝒗𝒌
𝑠𝑘 , 𝑗

2,𝒗𝒌
𝑠𝑘 , … , 𝑗

𝓙ℎ,𝒗
𝒌

𝑠𝑘 )} 

𝓙ℎ represents the number of operations processed by machine ℎ, i.e., 𝑝 ∈ {1,2,… , 𝓙ℎ}, ∀ ℎ ∈ 𝑣𝑘, i.e., 

σ 𝓙ℎ
𝑣𝑘
ℎ=1 = 𝑁𝑘. 𝑗𝑝,ℎ

𝑠𝑘  represents the 𝑝𝑡ℎ operation processed by machine ℎ related to a partial solution in 

𝑘𝑡ℎ stage (𝑆𝑘), where an operation (𝑗𝑝,ℎ
𝑠𝑘 ) indicates a job of a group (𝑗𝑝,ℎ

𝑠𝑘 = 𝑖𝑗, 𝑖 ∈ 𝐺 & 𝑗 ∈ 𝐺𝑖). The 𝑆𝑘 is 

similar to the 𝐶𝑆𝐷𝑘, regardless of which batch of a group a job is assigned to. Figure 13 shows an example 
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sequence presented in section 4.2.4.3. The first operation processed by machine 1 is related to the third job 

of group 1 (𝑗1,1
𝑠𝑘 = 13), the first operation processed by machine 3 is related to the first job of group 5 (𝑗1,3

𝑠𝑘 =

51), and so on. We will use this solution representation to develop path construction. 

 
13 11 21 44 42 41 43 23 22 51 53 54 12 33 31 34 35 

   

M1 M2 M3 

Figure 13. Solution representation for PR 

4.2.5.2. Initial population  

In each stage, the initial population (IP) is constructed in order to trigger TS/PR into the solution space as 

follows:  

I. Construct the IS based on the IS finding mechanism developed in section 4.2.2. 

II. Optimize the IS to become a local optima with the help of strong TS. 

III. Select 𝑃𝑠𝑖𝑧𝑒 − 1 solutions randomly from the IL and CL of the CTS (CIL & CCL) and add them 

along with the improved IS (best sequence) to the IP.  

𝑃𝑠𝑖𝑧𝑒 represents the size of the IP, which is equal to 10 in this research. If the CIL size (𝐶𝐼𝐿𝑆𝐼𝑍𝐸) is less than 

𝑃𝑠𝑖𝑧𝑒 − 1, the other members of the IP (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐼𝐿𝑆𝐼𝑍𝐸 − 1) are selected from the central candidate list 

(CCL). At each iteration of TS/PR, the two improved solutions obtained by implementing TS/PR on a pair 

of 𝑆𝐼 and 𝑆𝐺 in both directions (𝑆𝐼 ⇄ 𝑆𝐺), are replaced by the two worst solutions in the IP, if it does not 

duplicate any solution currently in the IP. The pseudo-code for the IP is presented in Table 5. 

Table 5. Pseudo-code for the IP generation 

𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() //Section 4.2.2   

𝑆𝐼𝑀𝑃 ← 𝐶𝑒𝑛𝑡𝑟𝑎𝑙. 𝑇𝑎𝑏𝑢. 𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼𝑆) //Section 4.2.4.2 

𝐼𝑃 ← 𝑆𝐼𝑀𝑃 

𝐼𝑃 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃𝑠𝑖𝑧𝑒 − 1) 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐼𝐿 

if 𝑃𝑠𝑖𝑧𝑒 > (𝐶𝐼𝐿𝑆𝐼𝑍𝐸 + 1) then 

    𝐼𝑃 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐼𝐿𝑆𝐼𝑍𝐸 − 1) 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐶𝐿 

     if 𝑃𝑠𝑖𝑧𝑒 > (𝐶𝐶𝐿𝑆𝐼𝑍𝐸 + 1) then 

          for each 𝑖 ∈ {1,2, … , (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐶𝐿𝑆𝐼𝑍𝐸 − 1)} do 

               𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑆𝑖 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

               𝐼𝑃 ← 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡. 𝑆𝑡𝑒𝑝(𝑆𝑖) //Section 4.2.3 

          end for 

     end if 

end if 

// CIL: central index list; CCL: central candidate list 
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4.2.5.3. Path construction 

After randomly choosing 𝑆𝐼 and 𝑆𝐺 from the PairSet, which includes pairs of elite solutions of the IP and 

then checking a pair solutions against TabuSet, we can generate a path to link aforementioned solutions. 

TabuSet records all pairs of solutions selected during the search procedure and prevents PR to select them 

again. According to the neighborhood operators including swap and insert moves, distance or dissimilarity 

measure, the position of the candidate jobs and their corresponding insertion points, a path is constructed. 

Among many types of moves considered in the literature for the flow shop problems, the swap and the 

insertion operators appear prominently (Nowicki and Smutnicki 1996). Taillard (1993) showed that the 

insertion operator is more effective than the swap operator when used in a neighborhood search. Therefore, 

three path constructions are developed in terms of insertion- and swap-related operators: longest common 

subsequence-based and block-based constructions based on insertion-related operator along with swap-

based construction based on swap-related operator. In the following, the aforementioned path constructions 

are explained.  

LCS-based construction: In this method, a longest common subsequence (LCS) is chosen as a distance 

measure to construct a path between 𝑆𝐼 and 𝑆𝐺, for a stage with multiple machines. The distance in the LCS 

indicates the minimal number of moves required to link 𝑆𝐼 and 𝑆𝐺 (Basseur et al. 2005, Zeng et al. 2013). 

Correspondingly, the distance (𝑑) depends on the length of the LCS (𝑙) shared by 𝑆𝐼 and 𝑆𝐺 in 𝑘𝑡ℎ satge, 

in which both 𝑙 and 𝑑 vary in the interval [1, 𝑁𝑘] and (𝑑 + 𝑙) ≥ σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 . The LCS can be calculated in 

𝑂(𝑁2) by a dynamic programming algorithm, which is similar to the well-known Needleman-Wunsch 

algorithm (Cormen et al. 1990, Schiavinotto and Stützle 2007). The LCS corresponding to 𝑆𝐼 and 𝑆𝐺 is 

computed by the following iterative procedure: 

• Itr 1: Obtain the smallest value of 𝑝 + 𝑞 when 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

= 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

, regardless of job assignments on 

machines (ℎ and 𝑙). A tie is broken in favor of 𝑆𝐼; 

• Itr 2: Determine the forward minimum distance between 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

 & 𝑗
𝑝+1,ℎ′
(𝑠𝐼)𝑘

 in 𝑆𝐺 and 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

 & 𝑗
𝑞+1,𝑙′
(𝑠𝐺)𝑘

 

in 𝑆𝐼, regardless of job assignments on machines (ℎ, ℎ′, 𝑙 and 𝑙′); 

• Itr 3: Select the jobs corresponding to the initial and final positions on the forward minimum 

distance, determined in the second iteration, in both 𝑆𝐼 and 𝑆𝐺, as the jobs belonging to the LCS;  

• Itr 4: Replace 𝑝 & 𝑞 by the last selected positions of the LCS in 𝑆𝐼 and 𝑆𝐺 and go to the first 

iteration, until 𝑝 = σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘  and/or 𝑞 = σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 . 
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Since the LCS is not unique in most cases, only one of them is randomly chosen to generate the path. 

Besides, the jobs, which do not belong to the LCS, are called the candidate jobs. If [𝑗]𝑥,𝑦
𝑠𝑘  represents 

candidate job 𝑗 assigned to position 𝑥 of machine 𝑦 in 𝑆𝑘, the LCS-based construction develops solutions 

belonging to a relinking path of 𝑆𝐼 to 𝑆𝐺 by the following steps: 

• Step 0: Compute the LCS between 𝑆𝐼 and 𝑆𝐺; 

• Step 1: Determine all possible insertion points for all the candidate jobs as follows: 

o If 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

, when 𝑥 ∈ [𝑞, 𝑞′], 𝑦 ∈ [𝑙, 𝑙′], and 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

 & 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

 are two 

neighboring jobs in the LCS, insert the candidate job so that 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

, when 

𝑥 ∈ [𝑝, 𝑝′], 𝑦 ∈ [ℎ, ℎ′], 𝑗𝑞,𝑙
(𝑠𝐺)

𝑘

= 𝑗𝑝,ℎ
(𝑠𝐼)

𝑘

, 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

= 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

, and 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

 & 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

 are two neighboring 

jobs in the LCS. 

o If 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗(𝑝+1),(ℎ+1)
(𝑠𝐼)𝑘

 ∀ℎ ∈ (𝑉𝑘 − {1}), two insertion points are determined 

depending on different job assignments to machines. 

o Consider the position located before the first job/after the last job as the insertion point for the 

job in the beginning/at the end of the permutation. 

• Step 2: Analyze all feasible candidate moves incorporating attributes of 𝑆𝐺 with respect to all 

possible insertion points determined in the first step; 

• Step 3: Choose one feasible candidate move as a current solution (𝑆𝐶) by random selection from 

global and/or local optima related to feasible candidate moves determined in the second step; 

• Step 4: Enter 𝑆𝐶 into the InitialPathSet, 𝑆𝐼 ← 𝑆𝐶, and 𝑑 ← (𝑑 − 1); and 

• Step 5: Go to step 0, until 𝑑 = 0. 

Although there are usually several possible insertion points for all candidate jobs (at least one insertion 

point for each), only one of them is selected for path generation in each step. Therefore, in each step of the 

LCS-based construction, the LCS is computed, then all feasible candidate moves incorporating attributes 

of 𝑆𝐺 are analyzed with respect to all possible insertion points, and finally one feasible candidate move is 

chosen by random selection from global and/or local optima related to feasible candidate moves. The first 

insertion, last insertion, and random insertion are other methods to choose a move. The distance between 

𝑆𝐶 and 𝑆𝐺 is decreased by 1, after inserting the selected move in each step. Since the comparison is done 

before generating a new intermediate solution 𝑆𝐶, the time complexity of the method is 𝑂(𝑁3) (Zeng et al. 

2013).  
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There is at least 𝑑 new solutions in a relinking path corresponding to a minimal path between 𝑆𝐼 and 𝑆𝐺. 

Since a selected insertion point(s) must not violate the machine eligibilities and 𝐿𝐵𝑖ℎ
𝑘 , it increases the 

possibility to create a good path. As a result, 𝑆𝐶 and 𝑆𝐼 (𝑆𝐶 ← 𝑆𝐼) are different from each other in terms of 

the batch composition and/or machine assignment and/or batch order and/or job order.  

An example of LCS-based construction related to the first two iterations is shown in Figure 14. First the 

distance between 𝑆𝐼 and 𝑆𝐺 is obtained by computing the LCS. In this example, the forward distance 

between 𝑗1,1
(𝑠𝐼)𝑘

= 13 & 𝑗2,1
(𝑠𝐼)𝑘

= 11 in 𝑆𝐺 is 2 (jobs 21 and 12). The forward distance between 𝑗1,1
(𝑠𝐺)𝑘

= 13 

& 𝑗2,1
(𝑠𝐺)𝑘

= 21 in 𝑆𝐼 is 1 (only job 11). Therefore, the forward minimum distance is equal to 1 and, 

subsequently jobs 13 and 21 are considered as jobs belonging to the LCS, both in 𝑆𝐼 and 𝑆𝐺. In the next 

iteration, by considering 𝑝 = 3 and 𝑞 = 2, the forward minimum distance is 0, related to 𝑗3,1
(𝑠𝐼)𝑘

= 21 & 

𝑗1,2
(𝑠𝐼)𝑘

= 44, and job 44 is added to the LCS. After several iterations, the length of LCS, colored in yellow, 

calculates as 𝑙 = 9, which includes job 13, 21, 44, 42, 51, 53, 33, 31, and 35. The remaining jobs are 

candidate jobs, including job 11, 12, 22, 23, 34, 41, 43, and 54. These jobs will be moved from their initial 

position in 𝑆𝐼 in order to reach 𝑆𝐺, one move at a time.  

 

𝑆𝐼 
13 11 21 44 42 41 43 23 22 51 53 54 12 33 31 34 35 

   

M1 M2 M3 
    

𝑆𝐺  
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35 

   

M1 M2 M3 

      Iteration 1 

𝑆𝐼 
13 11 21 22 44 42 41 43 23 51 53 54 12 33 31 34 35 

   

M1 M2 M3 
                  

𝑆𝐺  
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35 

   

M1 M2 M3 

      Iteration 2 

𝑆𝐼 
13 11 21 22 44 42 41 23 51 53 54 12 33 43 31 34 35 

   

M1 M2 M3 
                  

𝑆𝐺  
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35 

   

M1 M2 M3 

      Iteration 3  

Figure 14. The LCS of initial and guiding solutions for the first three iterations 

The possible insertion points of candidate jobs as well as the objective function related to each move in the 

first iteration are summarized in Table 6. There is two insertion points for job 11 due to different job 

assignments to machines. The new solution is obtained by removing job 22 from its current position 
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(𝑗6,2
(𝑠𝐼)𝑘

= 22), and then inserting it amongst jobs 21 and 44 in the first position processed by machine 2 

(𝑗1,2
(𝑠𝐶)𝑘

= 22). This solution, considered as the first entry into the InitialPathSet, was selected randomly 

between three global and local optima with the objective function values of 6814, 6982 and 7370, in the 

first iteration.  

Table 6. Possible moves related to the first iteration 

 The candidate job in 𝑆𝐼 

 12 11 41 22 23 54 43 34 

Insertion point (21,44) (21,44) (21,44) (21,44) (21,44) (21,44) (51,53) (33,31) (33,31) 

𝑓(𝑚𝑜𝑣𝑒) 6814 6953 7093 7318 6982 7670 7960 7370 7891 

The length of LCS is increased by 1 (𝑙 = 10). In the next iteration, 𝑆𝐶 will be replaced by 𝑆𝐼 and the process 

will continue until the distance between 𝑆𝐼 and 𝑆𝐺 becomes zero. In the second iteration, by removing job 

43 from machine 2 (𝑗5,2
(𝑠𝐼)𝑘

= 43) and inserting it in machine 3 (𝑗6,3
(𝑠𝐶)𝑘

= 43), the batch composition, 

machine assignment, batch order, and job order change. This solution is the second entry into the 

InitialPathSet. 

Block-based construction: A block insertion-related operator is implemented for stages with single 

machine to construct a relinking path of 𝑆𝐼 to 𝑆𝐺 (Luo and Hu 2013) by the following steps: 

• Step 0: Identify the minimum position 𝑝 (in 𝑆𝐼) where 𝑗𝑝,1
(𝑆𝐼)𝑘

≠ 𝑗𝑝,1
(𝑆𝐺)𝑘

, by checking two jobs in the 

same position of 𝑆𝐼 and 𝑆𝐺; 

• Step 1: Identify a job block from position 𝑝 (in 𝑆𝐼), which consists of the same consecutive jobs 

after job 𝑗𝑝,1
(𝑆𝐼)𝑘

 in 𝑆𝐺; 

• Step 2: Insert the identified job block (in 𝑆𝐼) after the job that 𝑗𝑝,1
(𝑆𝐼)𝑘

 follows in 𝑆𝐺 to identify 𝑆𝐶; 

• Step 3: Enter 𝑆𝐶 into the InitialPathSet, 𝑆𝐼 ← 𝑆𝐶, and apply the adjustment step for 𝑆𝐶 if it should 

be applied; and 

• Step 4: Go to step 0, until 𝑗𝑝,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

, ∀ 𝑝 ∈ {1,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 }.  

Figure 15 shows an example for this method. There is only one machine in 𝑘𝑡ℎ stage. First, 𝑝 = 2, 𝑗2,1
(𝑆𝐼)𝑘

=

21, and the job block [21,12,11,41] is inserted after job 33 in 𝑆𝐼, which is followed by job 21 in 𝑆𝐺; second, 

𝑝 = 2, 𝑗2,1
(𝑆𝐼)𝑘

= 22, and the job block [22,23,44,42,51,54,53] is inserted after job 35 in 𝑆𝐼, which is followed 

by job 22 in 𝑆𝐺; and finally, 𝑝 = 7, 𝑗7,1
(𝑆𝐼)𝑘

= 43, and the job block [43,34,31] is inserted after job 53 in 𝑆𝐼, 
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which is followed by job 43 in 𝑆𝐺. Therefore, after three iterations, a path including two intermediate 

solutions is developed between 𝑆𝐼 and 𝑆𝐺. 

𝑆𝐼 13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35 
    

𝑆𝐺  13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31 

      Iteration 1 

𝑆𝐼 13 22 23 44 42 51 54 53 33 21 12 11 41 43 34 31 35 
    

𝑆𝐺  13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31 

      Iteration 2 

𝑆𝐼 13 33 21 12 11 41 43 34 31 35 22 23 44 42 51 54 53 
    

𝑆𝐺  13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31 

      Iteration 3 

𝑆𝐼 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31 
    

𝑆𝐺  13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31 
    

Figure 15. Block-path construction method 

This technique presents a good performance, particularly when 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖. The drawback of this 

construction technique is to generate more infeasible 𝑆𝐶 because of the block insertion-related operator 

during the path construction procedure, which may violate the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . This being 

the case, the infeasible solutions should be either abandoned or adjusted with the help of the adjustment 

step. None of these techniques are not a good approach to deal with infeasible solutions developed by this 

technique. Therefore, the following swap-based construction technique is developed to reduce the number 

of infeasible solutions generated in a relinking path.  

Swap-based construction: A swap-related operator is implemented for stages with single machine to 

construct a relinking path of 𝑆𝐼 to 𝑆𝐺 (Peng et al. 2015). In each iteration, 𝑆𝐼 is iteratively changed by 

exchanging two random operations that are in a different order in 𝑆𝐼 and 𝑆𝐺, with the aim of reducing the 

number of different orders of operations in aforementioned solutions. Swap-based construction is 

implemented by the following steps: 

• Step 0: Define the set of symmetric differences between 𝑆𝐼 and 𝑆𝐺 (𝛿
𝑆𝐼,𝑆𝐺
𝑘 ) based on job positions 

on the machine, i.e., 𝛿
𝑆𝐼,𝑆𝐺
𝑘 = {𝑝 ∈ {1,… , σ 𝑛𝑖

𝑘
𝑖∈𝐼𝑘  } | 𝑗𝑝,1

(𝑆𝐼)𝑘
≠ 𝑗𝑝,1

(𝑆𝐺)𝑘
}; 

• Step 1: Select randomly position 𝑝 from set 𝛿
𝑆𝐼,𝑆𝐺
𝑘 , and swap 𝑗𝑝,1

(𝑆𝐼)𝑘
 with 𝑗𝑝′,1

(𝑆𝐼)𝑘
 on 𝑆𝐼 to generate 

𝑆𝐶, where 𝑗𝑝′,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

, ∀𝑝′ ∈ {{1,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘  } − 𝑝}; 
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• Step 2: Update set 𝛿
𝑆𝐼,𝑆𝐺
𝑘  by removing position 𝑝, enter 𝑆𝐶 into the InitialPathSet, and 𝑆𝐼 ← 𝑆𝐶, 

and apply the adjustment step for 𝑆𝐶, if it should be applied; and, 

• Step 3: Go to step 0, until 𝛿
𝑆𝐼,𝑆𝐺
𝑘 = ∅. 

The possibility of constructing a diversified path is increased because a random position in the set 𝛿
𝑆𝐼,𝑆𝐺
𝑘  is 

chosen in each iteration of swap-related operator. Since there might be more violations on the machine 

eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 , the block- and swap-based constructions might not be able to construct a good 

relinking path of 𝑆𝐼 and 𝑆𝐺 for stages with multiple machines, even when the adjustment step is 

implemented. Instead, the LCS-based construction is a good approach to construct a path in stages with 

multiple machines. Therefore, TS/PR algorithms implement the block- or swap-based constructions for 

stages with single machine, which are accompanied by the LCS-based construction for stages with multiple 

machines. 

4.2.5.4. Path solution selection 

Each solution in a relinking path must be checked against the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . If a solution 

does not meet a machine eligibility(s) and/or a desired lower bound(s), the job assignment of this solution 

must be re-ordered based on the refinement step and/or adjustment step (Section 4.2.3). Each two 

consecutive solutions located at a relinking path differ only by inserting a job on a machine (Figure 16). 

Therefore, it is not productive to apply a time-consuming improvement procedure for all solutions in the 

InitialPathSet, since many of those solutions would lead to the same local optima.  

 

Figure 16. Global and local optima in intermediate solutions 
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Therefore, after the generation of all the intermediate solutions in the path, we select a set of global and/or 

local optima from the InitialPathSet, known as the PromisingPathSet, which is used to initialize a reference 

solution (𝑆𝑅). As shown in Figure 16, the solutions A, B, C, D, E, F, and G are selected, since A is the global 

optimum and the others are local optimum. 

4.2.5.5. Reference solution determination 

The pseudo-codes for the PR procedure is depicted in Table 7. In order to avoid the problem of proximity 

of the local optima to 𝑆𝐼 and 𝑆𝐺, a set of K-middle solutions of the PromisingPathSet is selected (Zeng et 

al. 2013).  

Table 7. Pseudo-code for PR procedure 

 PR Algorithm: Outline of the path-relinking procedure 
 

 

1: Input: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝐼 , 𝐺𝑢𝑖𝑑𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝐺 , 𝑎𝑛𝑑 𝑣𝑘 

2: Output: 𝐴 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑅  
// Changes 𝑆𝐼  to 𝑆𝐺  by insertion operators: Section 4.2.4.4 

3: if  𝑣𝑘 = 1  then //𝑣𝑘 stands for # of machines in 𝑘𝑡ℎ stage 

    // Lines 4-11: Apply block-based construction 

4:    𝑆𝐶 = 𝑆𝐼 , 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 = ∅ 

5:    for 𝑝 = {1,… ,𝒫} do 

6:          if  𝑗𝑝,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

  then 

7:              𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑜𝑟 

8:          else  

9:              𝑆𝐶 ← 𝐴𝑝𝑝𝑙𝑦 𝑏𝑙𝑜𝑐𝑘 − 𝑏𝑎𝑠𝑒𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑆𝐼)  
10:              𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ∪ 𝑆𝐶  

11:    end for 

12: else  

    // Lines 13-22: Apply LCS-based construction  

13:    𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝐿𝐶𝑆 𝑎𝑛𝑑 𝑑  

14:    𝑆𝐶 = 𝑆𝐼 , 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 = ∅ 

15:    for 𝑙 = {𝑑, … ,1} do 
16:         𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡(𝑠) 𝑜𝑓 𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑗𝑜𝑏(𝑠) 𝑖𝑛 𝐿𝐶𝑆 

17:         𝐷𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

18:         𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑗𝑜𝑏(𝑠)) 
19:         𝑆𝐶 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑡 𝑜𝑓 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

20:         𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ∪ 𝑆𝐶  

21:         𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐿𝐶𝑆 

22:    end for 

23: end if 

 // Lines 24-30: Choose the reference solution 𝑆𝑅 from PromisingPathSet 

24: 𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡) 
25: 𝑆𝑒𝑙𝑒𝑐𝑡 𝐾 −𝑚𝑖𝑑𝑑𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑆𝑒𝑡 //Section 4.2.5.5 

26: for 𝑆𝑘 ∈ 𝐾 −𝑚𝑖𝑑𝑑𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑘 = {1,… , 𝑁(𝐾𝑀)} 

 do  
27:       𝑆𝑘 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑘)  //Slight TS  

28: end for 

30: 𝑆𝑅 = argmin {𝑓(𝑆𝑘), 𝑘 = 1,…𝑁(𝐾𝑀)} 

31: return 𝑆𝑅 

The number of these middle solutions is defined according to the length of the PromisingPathSet as 

𝑁(𝐾𝑀) = |√𝑙𝑃𝑃𝑆|, where 𝑙𝑃𝑃𝑆 is the number of solutions in the PromisingPathSet and 𝑁(𝐾𝑀) is the smallest 
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integer that is equal or greater than |√𝑙𝑃𝑃𝑆|. Then, a slight TS is applied for optimizing K-middle solutions 

of the PromisingPathSet and then, the best optimized solution is selected and further optimized using a 

strong TS. This optimized solution is chosen as 𝑆𝑅. The slight TS in TS/PR determines the best neighbor 

solution in the CTS, without considering the OTS and ITS, while the strong TS performs the OTS and ITS 

for each neighbor solution generated in the CTS and OTS, respectively. The pseudo-codes for TS/PR is 

depicted in Table 8.  

Table 8. Pseudo-code for TS/PR algorithm 

 TS/PR Algorithm: Outline of algorithm TS/PR for HFS 
 

 

1: Input: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 //Section 4.1.1 

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 &  
              𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆𝑏𝑒𝑠𝑡  𝑓𝑜𝑢𝑛𝑑 𝑠𝑜 𝑓𝑎𝑟 

3: 𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()  //Section 4.2.2    

4: 𝑆𝐼𝑀𝑃 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼𝑆) //Section 4.2.4.6  

5: 𝑃 = {𝑆1, … , 𝑆𝑝−1, 𝑆𝐼𝑀𝑃} ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑆𝐼𝑀𝑃) //Section 4.2.5.2 

6: 𝑆𝑏𝑒𝑠𝑡 = argmin {𝑓(𝑆𝑙)|𝑙 = 1,… , 𝑝} 
7: 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← {(𝑆𝑖 , 𝑆𝑗)|𝑆𝑖 ∈ 𝑃, 𝑆𝑗 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑖 ≠ 𝑆𝑗} 
8: repeat  

9:    𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑜𝑛𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟 {𝑆𝑖 , 𝑆𝑗} 

   𝑓𝑟𝑜𝑚 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 𝑖𝑓 {𝑆𝑖 , 𝑆𝑗} ∉ 𝑇𝑎𝑏𝑢𝑆𝑒𝑡 
10:    𝑆𝑝+1 ← 𝑃𝑎𝑡ℎ_𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆𝑖 , 𝑆𝑗),  

   𝑆𝑝+2 ← 𝑃𝑎𝑡ℎ_𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆𝑗 , 𝑆𝑖)  //Sections 4.2.5.3 

11:    𝑆𝑝+1 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑝+1),  
   𝑆𝑝+2 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑝+2)  //Strong TS 

12:    if 𝑆𝑝+1 (𝑜𝑟 𝑆𝑝+2)𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑏𝑒𝑠𝑡  then 

13:        𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑝+1 (𝑜𝑟 𝑆𝑝+2) 
14:    end if 

15:    𝐴𝑑𝑑 𝑆𝑝+1 𝑎𝑛𝑑 𝑆𝑝+2 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃: 𝑃′ = 𝑃 ∪ {𝑆𝑝+1, 𝑆𝑝+2} 
16:    𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ∪ {(𝑆𝑝+1, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑝+1 ≠ 𝑆𝑙} 
17:    𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ∪ {(𝑆𝑝+2, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑝+2 ≠ 𝑆𝑙} 
18:    𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑤𝑜𝑟𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑆𝑚 𝑎𝑛𝑑 𝑆𝑛  

   𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃′ 
19:    𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑆𝑛 𝑎𝑛𝑑 𝑆𝑚: 

   𝑃 = {𝑆1 , … , 𝑆𝑝 , 𝑆𝑝+1, 𝑆𝑝+2}\{𝑆𝑚, 𝑆𝑛} 
20:    𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 

   𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡\{(𝑆𝑚, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑚 ≠ 𝑆𝑙} 
   𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡\{(𝑆𝑛 , 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑛 ≠ 𝑆𝑙} 

21:    𝑇𝑎𝑏𝑢𝑆𝑒𝑡 ← (𝑆𝑖 , 𝑆𝑗)  
22: until 𝑎 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 

23: return 𝑆𝑏𝑒𝑠𝑡 
 

4.2.6. Particle swarm optimization 

Particle Swarm Optimization (PSO) is a fast-evolutionary algorithm, which is applied on a population of 

candidate solutions (Eberhart and Kennedy 1995). To the best of our knowledge, this is the first time a 

research is being performed in the application of the PSO algorithm for a batch scheduling problem in HFS. 

The population of the PSO and each potential solution in the population are called swarm and particle, 
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respectively. Each particle flies around in the multi-dimensional search space according to its current 

position and velocity to obtain a new position based on the two following vectors: 

• The best position experienced by the particle during the previous iterations, which is called the best 

position (𝑃𝑏𝑒𝑠𝑡). 

• The best position experienced by all particles in the population during the previous iterations, which 

is called the global best position (𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙).  

4.2.6.1. Solution representation for PSO 

A solution is represented by an e-dimensional vector as the sequence of jobs within batches as well as the 

sequence of batches on machines, for a particular stage. Due to applying the stage-based interdependency 

strategy, an interaction between batch and job sequence, and unequal number of jobs assigned to batches, 

a solution is represented as a pseudo matrix in 𝑘𝑡ℎ stage. The dimensions of pseudo matrix of a particle 

(solution) is as follows: 

𝑒 = (∑ ∑ ∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘

) + 𝑣𝑘 

𝑓 = max( max
∀ 𝑖∈𝐼𝑘 & 𝑠∈𝑆𝑖

𝑘
∑ ∅𝑖𝑠𝑗

𝑘

𝑗∈𝐽𝑖
𝑘

, max
∀ ℎ∈𝑉𝑘

∑ ∑ 𝑍𝑖𝑠ℎ
𝑘

𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘

) 

Therefore, a solution in 𝑘𝑡ℎ stage is presented by 𝑒 vectors as a pseudo matrix, where the maximum 

component of vectors is 𝑓. The number of components at each row of the pseudo matrix might be unequal. 

The first (σ σ σ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘 ) vector of this matrix presents the sequence of jobs within batches, 

according to first the sequence of batches on machines and then increasing machine indices, while the last 

𝑣𝑘 vector of this matrix presents the sequence of batches on machines, according to increasing machine 

indices. A sequence pseudo matrix for a sequence is represented as follows: 

𝑆𝑘 =

[
 
 
 
 
 
 
 
 
 
 
𝑗142 𝑗144 𝑗141 𝑗141
𝑗124 𝑗123 𝑗122 𝑗141
𝑗112 𝑗113 𝑗114 𝑗111
𝑗233 𝑗231 𝑗141 𝑗141
𝑗132 𝑗134 𝑗141 𝑗141
𝑗243 𝑗245 𝑗141 𝑗141
𝑗221 𝑗141 𝑗141 𝑗141
𝑆14 𝑆12 𝑗141 𝑗141
𝑆11 𝑆23 𝑗141 𝑗141
𝑆13 𝑆24 𝑆22 𝑗141 ]
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4.2.6.2. Algorithmic structure 

In a d-dimensional search space including 𝑃′𝑠𝑖𝑧𝑒 initial solutions (swarm size) with different e-dimensional 

particles, 𝑖𝑡ℎ particle in 𝑘𝑡ℎ stage is represented by pseudo matrices 𝑋𝑖
𝑘 and 𝑉𝑒𝑙𝑖

𝑘 as its position and velocity 

matrices, both with the dimension 𝑒×𝑓, i.e., 𝑋𝑖
𝑘 = 𝑉𝑒𝑙𝑖

𝑘 = 𝑝𝑠𝑒𝑢𝑑𝑜 𝑚𝑎𝑡𝑟𝑖𝑥(e×f). d represents the maximum 

vectors in all particles. Each particle 𝑖 flies in the search space based on its position and velocity as follows: 

𝑋𝑖
𝑘 =

[
 
 
 
 
 
 

𝑋𝑖11
𝑘 ……… 𝑋𝑖1𝑓

𝑘

⋮ ⋱ ⋮
𝑋
𝑖(𝑒−𝑣𝑘)1
𝑘 … 𝑋

𝑖(𝑒−𝑣𝑘)𝑓
𝑘

𝑋
𝑖(𝑒−𝑣𝑘+1)1
𝑘 … 𝑋

𝑖(𝑒−𝑣𝑘+1)𝑓
𝑘

⋮ ⋱ ⋮
𝑋𝑖𝑒1
𝑘 … 𝑋𝑖𝑒𝑓

𝑘
]
 
 
 
 
 
 

 

→ the job sequence within the first batch assigned to the first machine in 𝑘𝑡ℎ stage 

⋮ 

→ the job sequence within the last batch assigned to the last machine in 𝑘𝑡ℎ stage 

→ the batch sequence assigned to the first machine in 𝑘𝑡ℎ stage 

⋮ 

→ the batch sequence assigned to the last machine in 𝑘𝑡ℎ stage 

𝑉𝑒𝑙𝑖
𝑘 =

[
 
 
 
 
 
 

𝑉𝑒𝑙𝑖11
𝑘 ……… 𝑉𝑒𝑙𝑖1𝑓

𝑘

⋮ ⋱ ⋮
𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘)1
𝑘 … 𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘)𝑓
𝑘

𝑉𝑒𝑙
𝑖(𝑒−𝑣𝑘+1)1
𝑘 … 𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘+1)𝑓
𝑘

⋮ ⋱ ⋮
𝑉𝑒𝑙𝑖𝑒1

𝑘 … 𝑉𝑒𝑙𝑖𝑒𝑓
𝑘

]
 
 
 
 
 
 

 

The velocity and position update equations associated with each component of each vector in each particle 

are calculated as follows:  

𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

= 𝜔𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

+ 𝑐1𝑟1 (𝑌𝑖𝑗𝑙
𝑘 − 𝑋𝑖𝑗𝑙

(𝑡)𝑘
) + 𝑐2𝑟2 (�̂�𝑗𝑙

𝑘 − 𝑋𝑖𝑗𝑙
(𝑡)𝑘

) 
(4.69) 

𝜒×𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

→ 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

 
(4.70) 

𝑋𝑖𝑗𝑙
(𝑡+1)𝑘

= 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

+ 𝑋𝑖𝑗𝑙
(𝑡)𝑘

 
(4.71) 

where 𝑖 = 1,2, … , 𝑃′𝑠𝑖𝑧𝑒; 𝑗 = 1,2,… , 𝑒; 𝑙 = 1,2,… , 𝑓; 𝑡 = 1,2,… , 𝐼𝑡𝑟𝑀𝑎𝑥; 𝑘 ∈ 𝐾. 𝑋𝑖𝑗𝑙
(𝑡)𝑘

 and 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

 are the 

position and velocity, respectively, of the component corresponding to the 𝑗𝑡ℎ row and 𝑙𝑡ℎ column of 𝑖𝑡ℎ 

particle at iteration 𝑡 of PSO in 𝑘𝑡ℎ stage. 𝐼𝑡𝑟𝑀𝑎𝑥 stands for maximum iteration number of PSO. 𝑌𝑖𝑗𝑙
𝑘  and 

�̂�𝑗𝑙
𝑘 are 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡

𝐺𝑙𝑜𝑏𝑎𝑙, respectively. 𝜔 is the inertia weight to determine the impact of the previous 

velocity of the particle in the next iteration. The constant values of 𝑐1 and 𝑐2, known as acceleration 

coefficients, determine the impact of 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 to define velocity, respectively, while 𝑟1 and 𝑟2 

are incorporated in velocity to consider uncertainty in the meta-heuristic algorithm. In order to control the 
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extreme roaming of particles outside of the search space, the new velocity and position value are restricted 

to the interval [𝑣𝑒𝑙𝑚𝑖𝑛, 𝑣𝑒𝑙𝑚𝑎𝑥] and [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], respectively. Generally, the new velocities of particles 

are determined by Eq. (4.69) according to their previous velocities as well as the distance of their current 

position from both 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙. In order to improve the performance of the PSO algorithms, a 

multiplier 𝜒 in Eq. (4.70) is implemented to accelerate the process of the convergence (Poli et al. 2007). 

Then, the new position of each particle is determined by Eq. (4.71) according to its new velocity and 

previous position. In 𝐼𝑡𝑟𝑀𝑎𝑥
𝑡ℎ iteration of PSO, 𝑃𝑏𝑒𝑠𝑡

𝐺𝑙𝑜𝑏𝑎𝑙 is reported.  

4.2.6.3. Encoding and decoding of particles  

A conversion on the components of the sequence pseudo matrix to the continuous position values, i.e., 

𝑆𝑖
(𝑡+1)𝑘

→ 𝑋𝑖
(𝑡+1)𝑘

, must be performed to apply the PSO algorithm. 𝑆𝑖
(𝑡)𝑘

 represents the sequence pseudo 

matrix of 𝑖𝑡ℎ particle at iteration 𝑡 of PSO in 𝑘𝑡ℎ stage. The following encoding scheme converts job and 

batch sequences to the continuous position values.  

𝑗𝑠𝑖𝑗 ⟶((∑∑ ∑ ∅𝑥𝑦𝑗
𝑘

𝑗∈𝐽𝑖
𝑘𝑦∈𝑆𝑖

𝑘

𝑖−1

𝑥=0

)+ (∑∑ ∅𝑖𝑦𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

𝑠−1

𝑦=0

) + (∑∅𝑖𝑠𝑧
𝑘

𝑗−1

𝑧=1

)) ;  𝑖 ∈ 𝐼𝑘;  𝑠 ∈ 𝑆𝑖
𝑘; 𝑗 ∈ 𝐽𝑖

𝑘 

𝑆𝑠𝑖 ⟶((∑∑ ∑ 𝑍𝑥𝑦ℎ
𝑘

ℎ∈𝑉𝑘𝑦∈𝑆𝑖
𝑘

𝑖−1

𝑥=0

)+ 𝑠) ;  𝑖 ∈ 𝐼𝑘;  𝑠 ∈ 𝑆𝑖
𝑘 

where ∅𝑥𝑦𝑗
𝑘  is equal to zero for each 𝑥 = 0 and/or 𝑦 = 0. Also, 𝑍𝑥𝑦ℎ

𝑘  is equal to zero when 𝑥 = 0. These 

transformations convert the initial sequence pseudo matrix determined in section 4.2.6.1 to the following 

pseudo matrix: 

𝑋𝑘 =

[
 
 
 
 
 
 
 
 
 
14 15 13 1
7 6 5 1
2 3 4 1
12 11 1 1
  9 10 1 1
16 17 1 1
8 1 1 1
6 2 1 1
1 5 1 1
4 7 3 1 ]

 
 
 
 
 
 
 
 
 

  

A decoding scheme based on Ranked Order Value (ROV) shown in Table 9 is developed to convert the 

continuous position value of a particle to job and batch sequences, i.e., 𝑋𝑖
(𝑡+1)𝑘

→ 𝑆𝑖
(𝑡+1)𝑘

, for each iteration 

of the PSO algorithm. In the ROV rule, the Smallest Position Value (SPV) technique along with one-to-
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one correspondence between 𝑋𝑖
(𝑡+1)𝑘

 and 𝑆𝑖
(𝑡)𝑘

(meaning 𝑋𝑖11
(𝑡+1)𝑘

 with 𝑆𝑖11
(𝑡)𝑘

, and so on to finally consider 

𝑋𝑖𝑒𝑓
(𝑡+1)𝑘

 with 𝑆𝑖𝑒𝑓
(𝑡)𝑘

) are used for this transformation, i.e, 𝑋𝑖
(𝑡+1)𝑘

→ 𝑆𝑖
(𝑡+1)𝑘

. 

Table 9. Pseudo-code for decoding a position pseudo matrix to a sequence pseudo matrix 

for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒} do 

 for each 𝑗 ∈ {1,2, … , 𝑒} do 

  𝑆𝑖𝑗
(𝑡+1)𝑘

← 𝑋𝑖𝑗
(𝑡+1)𝑘

 //According to the SPV rule in 𝑋𝑖
(𝑡+1)𝑘

 as well as 𝑆𝑖
(𝑡)𝑘

 

 end for 

end for 

For example, 𝑆𝑖1
(𝑡+1)𝑘

= (𝑗213, 𝑗211, 𝑗215, 𝑗216), when 𝑆𝑖1
(𝑡)𝑘

= (𝑗211, 𝑗215, 𝑗213, 𝑗216) and 𝑋𝑖1
(𝑡+1)𝑘

=

(2.98, 3.04, 1.28, 3.92). The smallest value in 𝑋𝑖1
(𝑡+1)𝑘

 is 1.28, which is located at the third position in 

vector 𝑋𝑖1
(𝑡+1)𝑘

. Therefore, the job in the third position of 𝑆𝑖1
(𝑡)𝑘

 should be the first job in 𝑆𝑖1
(𝑡+1)𝑘

 (i.e., 

𝑆𝑖11
(𝑡+1)𝑘

= 𝑗213). Other components in 𝑆𝑖1
(𝑡+1)𝑘

 are determined using a similar procedure. 

4.2.7. Particle swarm optimization/local search 

The lack of mechanism for batching becomes more pronounced when a basic PSO algorithm is applied for 

batch scheduling. The neighborhood searches for the best batch sequence on machines as well as the best 

job sequence within batches are naturally performed by updating particles, in each iteration of PSO, i.e., 

the scheduling phase. Therefore, a PSO algorithm is accompanied by a local search algorithm (LSA) 

between each of two sequential iterations of PSO (PSO/LSA) to take the benefits of batching and, 

consequently, enhance the quality of solutions, i.e., the batching phase. The LSA is performed at two search 

levels as follows:  

• After converting 𝑆𝑖
𝑘 to its own 𝐶𝑆𝐷𝑘 and 𝑂𝑆𝐷𝑘 (Section 4.2.4.3), a feasible neighbor solution in 

the 𝐶𝑆𝐷𝑘 is generated by only insertion-related operator in the first search level.  

• Then in the second search level, for each generated neighbor solution better than the current seed, 

the best feasible neighbor solution(s) of the 𝑂𝑆𝐷𝑘 are determined by both insertion- and swap-

related operator.  

• The best neighbor solution obtained by both search levels of the LSA is considered as the next seed 

and the process repeats until a stopping criterion is reached.  

The pseudo-code for developed PSO/LSA is presented in Table 10. It is worth noting that the difference 

between the local search structure in PSO/LSA and TS/PR is that the LSA is applied to enhance the 

performance of PSO at two levels, while TS is naturally a local search algorithm, which is performed at 
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three levels and accompanied by a PR procedure to integrate diversification and intensification strategies 

of TS. If there is not any feasible neighbor solution in a level of the LSA, the best infeasible neighbor 

solution should be converted to a feasible one with the help of the adjustment step. Since there is a need to 

keep track of the best position of batches during all previous iterations of PSO/LSA, the refinement step 

should not be applied for selected neighbor solutions during the LSA.  

Table 10. Pseudo-code for PSO/LSA algorithm 

 PSO/LSA Algorithm: Outline of algorithm PSO/LSA for HFS 

1: Input: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 //Section 4.1.1                                            

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 & 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆𝑏𝑒𝑠𝑡  𝑓𝑜𝑢𝑛𝑑 𝑠𝑜 𝑓𝑎𝑟           

3: 𝐼𝑃 ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛() //Pseudo-code in section 4.2.7 

4: 𝑡 = 0 

5: while 𝑡 ≤ 𝐼𝑡𝑟𝑚𝑎𝑥 do 

  // Lines 6-10: Apply PSO 

6:  for each 𝑖 ∈ {1,2,… , 𝑃′𝑠𝑖𝑧𝑒} do 

7:   𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝜔𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

+ 𝑐1𝑟1 (𝑌𝑖𝑗𝑙
𝑘 − 𝑋𝑖𝑗𝑙

(𝑡)𝑘
) + 𝑐2𝑟2 (�̂�𝑗𝑙

𝑘 − 𝑋𝑖𝑗𝑙
(𝑡)𝑘

) 

8:   𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝜒×𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

 

9:   𝑋𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

+ 𝑋𝑖𝑗𝑙
(𝑡)𝑘

 

10:  end for 

  // Lines 11-23: Enhance solutions with a local search algorithm (LSA) 

11:  for each 𝑖 ∈ {1,2,… , 𝑃′𝑠𝑖𝑧𝑒} do 

12:   𝑆𝑖
(𝑡+1)𝑘

← 𝑋𝑖
(𝑡+1)𝑘

 //According to the SPV rule in 𝑋𝑖
(𝑡+1)𝑘

 as well as 𝑆𝑖
(𝑡)𝑘

 

13:   𝐶𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

← 𝑆𝑖
(𝑡+1)𝑘

 & 𝑂𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

← 𝑆𝑖
(𝑡+1)𝑘

 

14:   𝑡′ = 0 

15;   while 𝑡′ ≤ 𝐼𝑡𝑟𝐿𝑆𝐴 do 

16:    𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐹𝑖𝑟𝑠𝑡. 𝑆𝑒𝑎𝑟𝑐ℎ. 𝐿𝑒𝑣𝑒𝑙. 𝐿𝑆𝐴(𝐶𝑆𝐷𝑆𝑖
𝑘
) 

17:    𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑒𝑐𝑜𝑛𝑑. 𝑆𝑒𝑎𝑟𝑐ℎ. 𝐿𝑒𝑣𝑒𝑙. 𝐿𝑆𝐴(𝑂𝑆𝐷𝑆𝑖
𝑘
) 

18:   end while 

19:   𝑆𝑖
(𝑡+1)𝑘

← 𝐶𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

 

20:   𝑆𝑖
(𝑡+1)𝑘

← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑆𝑖
(𝑡+1)𝑘

() //Section 4.2.7.1 

21:   𝑋𝑖
(𝑡+1)𝑘

← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑋𝑖
(𝑡+1)𝑘

() //Section 4.2.7.1 

22:   𝑌𝑖
𝑘 ← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑌𝑖

𝑘() //𝑃𝑏𝑒𝑠𝑡 of 𝑖𝑡ℎ particle 

23:  end for 

24:  �̂�𝑘 ← 𝑈𝑝𝑑𝑎𝑡𝑒. �̂�𝑘() //𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙  related to all particles 

25: end while 

26: return 𝑆𝑏𝑒𝑠𝑡  ← 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙  

 

A graphical example of one iteration of the two-level LSA is illustrated in Figure 17. In this example, for 

four neighbor solutions chosen in the first search level, the second search level is applied and then the 

solution with the objective function value 3431.03 is replaced by the current seed (3982.80).  
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In order to maintain consistency between TS/PR and PSO/LSA, both algorithms select the required IP based 

on similar procedure. The pseudo-code shown in Table 11 determines the IP with 𝑃′𝑠𝑖𝑧𝑒 members. 

Table 11. Pseudo-code for initializing PSO population 

𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() //Section 4.2.2   

𝑆𝐼𝑀𝑃 ← 𝐿𝑆𝐴(𝑆𝐼𝑆) //Section 4.2.7 

𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝐼𝑀𝑃) 
for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 1} do 

     𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑖
𝑘 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐿𝑆𝐴2 

     𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝑖
𝑘) 

     if 𝑖 = 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸  then 

         exit for 

end for 

if 𝑃′𝑠𝑖𝑧𝑒 > 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 + 1 then 

    for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 − 1} do 

         𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑖
𝑘 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐿𝑆𝐴1 

         𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝑖
𝑘) 

         if 𝑖 = 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 then 

             exit for 

    end for 

    if 𝑃′𝑠𝑖𝑧𝑒 > 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 + 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 + 1 then 

          for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 − 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 − 1} do 

               𝑣𝑒𝑙𝑖𝑗
(0)

= 𝑣𝑒𝑙𝑚𝑖𝑛 + 𝑅(𝑣𝑒𝑙𝑚𝑎𝑥 − 𝑣𝑒𝑙𝑚𝑖𝑛) 

               𝑥𝑖𝑗
(0)

= 𝑥𝑚𝑖𝑛 + 𝑅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) // 𝑅 ∈ 𝑢𝑛𝑖𝑓[0, 1] 

               if 𝑥𝑖𝑗
(0)

 violates the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘  then 

                   𝑖 = 𝑖 − 1 

                   𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑜𝑟 

               else 

                   𝐼𝑃 ← 𝑥𝑖𝑗
(0)

 

               end if 

          end for 

     end if 

end if 

// 𝐿𝑆𝐴1 & 𝐿𝑆𝐴2: the first and second search level of the LSA 
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Figure 17. Illustration for two-level local search algorithm (LSA) 

4.2.7.1. Updating process 

The following three-phase updating process is implemented for modifying batch compositions of 𝑂𝑆𝐷𝑆𝑖
𝑘
 

after completing the LSA, updating 𝑆𝑖
𝑘 and, subsequently, 𝑋𝑖

𝑘 before passing them to the next iteration of 

PSO/LSA, and updating the values of 𝑌𝑖𝑗𝑙
𝑘  and �̂�𝑗𝑙

𝑘 for each iteration of PSO/LSA.  

Updating 𝑺𝒊
𝒌: after completing the LSA, two sequential batches of 𝑖𝑡ℎ group (∀𝑖 ∈ 𝐼𝑘) in the 𝑂𝑆𝐷𝑆𝑖

𝑘
 (∀𝑖 ∈

{1,2,… , 𝑃′𝑠𝑖𝑧𝑒}) should be merged as a single batch with the batch number equal to the batch number of 𝑆𝑠𝑖 

including more jobs between two sequential batches. Ties are broken in favor of the smaller batch number. 

A batch number is referred to sub-index 𝑠 of 𝑆𝑠𝑖. Apart from this, after splitting a batch of 𝑖𝑡ℎ group into 

two batches in the 𝑂𝑆𝐷𝑆𝑖
𝑘
, the batch including more jobs will have the same batch number of its parent, 

while the batch number of another batch is determined as the available smallest batch number in the series 

of batch numbers, i.e., from 1 up to 𝑛𝑖
𝑘, so that this batch number is not equal to the existing batch numbers 

of 𝑖𝑡ℎ group. A result of this step is updated 𝑆𝑖
𝑘 in terms of new batch compositions and batch assignment 

by updating 𝐶𝑆𝐷𝑆𝑖
𝑘
 with regard to 𝑂𝑆𝐷𝑆𝑖

𝑘
 and then transforming 𝐶𝑆𝐷𝑆𝑖

𝑘
 to 𝑆𝑖

𝑘. 

Updating 𝑿𝒊
𝒌: after completing the LSA and, consequently, updating 𝑆𝑖

𝑘, the continuous position 𝑋𝑖
𝑘 related 

to updated 𝑆𝑖
𝑘 should be updated (i.e., updated 𝑋𝑖

𝑘) to guarantee that the sequence resulting from the ROV 
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rule for the new continuous position is the same as the sequence resulting from the two-level LSA. This 

being the case, the position value of each member of updated 𝑆𝑖
𝑘, i.e., updated 𝑋𝑖𝑗𝑙

𝑘 , is obtained by one-to-

one correspondence between 𝑋𝑖
𝑘 and 𝑆𝑖

𝑘 (i.e., 𝑆𝑖
𝑘 before updating process) in terms of updated 𝑆𝑖𝑗𝑙

𝑘 . As a 

result, the position values of jobs and batches related to updated 𝑆𝑖
𝑘, i.e., updated 𝑋𝑖𝑗𝑙

𝑘 , and subsequently, 

updated 𝑋𝑖
𝑘 are obtained. The position value of a batch with the new batch number is determined by previous 

encoding rule developed in section 4.2.6.3.  

Updating 𝑷𝒃𝒆𝒔𝒕 & 𝑷𝒃𝒆𝒔𝒕
 𝒍𝒐𝒃𝒂𝒍: due to creating different batch compositions during each iteration of 

PSO/LSA, 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 of a job cannot depend on its position in a particular batch. Therefore, the 

assignment and position of a job on a machine are considered as 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 for the job. In other 

words, the values of 𝑌𝑖𝑗𝑙
𝑘  and �̂�𝑗𝑙

𝑘 are updated based on the position of jobs on machines, instead of batches. 

Likewise, the assignment and position of a batch on a machine are considered as 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 for 

the batch.  

4.2.8. Ineffective neighbor moves 

In addition to developing specific neighborhood structures, we present a method to reduce the 

computational burden of a local search algorithm by identifying neighborhoods, which have either no effect 

or an inferior effect on the objective function value. These ineffective neighborhoods determined by the 

lemmas, presented below, are usually not a candidate for a move. Applying these lemmas guarantee 

obtaining the same optimal/near optimal solution by the search algorithm in less computational time. Either 

all or part of these lemmas are applicable for any local search structure of developed algorithms. Prior to 

identifying ineffective neighbor moves based upon specific lemmas in terms of both insertion- and swap-

related moves, we first introduce the notations relating to a forbidden candidate move.  

The following notations are applicable only for lemmas. Consider a particular stage of HFS. Suppose 𝑗𝑘
𝑚 

and 𝑗𝑘′
𝑚′ represent job 𝑗 processed on the 𝑘𝑡ℎ position of 𝑚𝑡ℎ machine in the initial schedule and the 𝑘′𝑡ℎ 

position of 𝑚′𝑡ℎ machine in the new schedule, respectively, irrespective of which batch the job belongs to. 

𝑚, 𝑚′ ∈ [1,… ,𝑚𝑎 ,𝑚𝑏 , … ,𝑀], where 𝑀 is the number of unrelated-parallel machines for the selected 

stage, i.e., 𝑀 = 𝑣𝑘, ∀ 𝑘 ∈ 𝑚. The " ′ " sign applies to the new schedule. There are 𝑛 and 𝑛′ jobs on 𝑚𝑡ℎ and 

𝑚′𝑡ℎ machines, respectively, meaning 𝑘 ∈ [1,2, … , 𝑛] and 𝑘′ ∈ [1,2,… , 𝑛′]. As a result, for two different 

machines 𝑚𝑎 and 𝑚𝑏, the number of jobs assigned to these machines are different in the new schedule 

compared to the initial schedule by inserting one job from 𝑚𝑎 to 𝑚𝑏 (i.e., 𝑛′𝑎 = 𝑛𝑎 − 1 and 𝑛′𝑏 = 𝑛𝑏 + 1) 

or vice versa. The 𝑘𝑡ℎ and 𝑘′𝑡ℎ positions of any job 𝑗 are not necessarily equal on the same machine (𝑚 =

𝑚′), meaning 𝑘′ = 𝑘 for job 𝑗 when its position is not changed, 𝑘′ > 𝑘 (𝑘′ ∈ [𝑘 + 1, 𝑛]) for job 𝑗 
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inserted/swapped forwardly, 𝑘′ = 𝑘 + 1 for job 𝑗 pushed forwardly, 𝑘′ < 𝑘 (𝑘′ ∈ [1, 𝑘 − 1]) for job 𝑗 

inserted/swapped backwardly, and 𝑘′ = 𝑘 − 1 for job 𝑗 pushed backwardly. Likewise, the 𝑘𝑡ℎ and 𝑘′𝑡ℎ 

positions of any job 𝑗 inserted/swapped are not necessarily equal on different machines (𝑚 ≠ 𝑚′), meaning 

𝑘′ ∈ [1,… , 𝑘, … , 𝑛′].   

• Definition 1 (Forward Move): By applying a forward move (insert or swap), job 𝑗𝑘
𝑚 can be inserted 

into the 𝑘′𝑡ℎ position between jobs across batches on the same machine 𝑚, so that 𝑘′ > 𝑘 (𝑘′ ∈

[𝑘 + 1, 𝑛]). 

• Definition 2 (Backward Move): By applying a backward move (insert or swap), job 𝑗𝑘
𝑚 can be 

inserted into the 𝑘′𝑡ℎ position between jobs across batches on the same machine 𝑚, so that 𝑘′ <

𝑘 (𝑘′ ∈ [1, 𝑘 − 1]).  

In the initial schedule, the completion time of job 𝑗𝑘
𝑚 (𝐶𝑇𝑗𝑘

𝑚) is equal to the start time of this job (𝑆𝑇𝑗𝑘
𝑚) 

plus its run time (𝑅𝑇𝑗𝑘
𝑚). The start time of job 𝑗𝑘

𝑚 is the maximum time between its release time (𝑟𝑗𝑘
𝑚), and 

the completion time of job 𝑗𝑘−1
𝑚  (𝐶𝑇𝑗𝑘−1

𝑚 ) plus the required setup time (𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚) between jobs assigned to 

𝑘𝑡ℎ and (𝑘 − 1)𝑡ℎ positions on the same machine 𝑚 (i.e., 𝑆𝑇𝑗𝑘
𝑚 = max {𝑟𝑗𝑘

𝑚 , 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚}), regardless 

of which machine 𝑗𝑘
𝑚 will be assigned/inserted to. Likewise, in the new schedule, the start time of 𝑗𝑘′

𝑚′ is 

𝑆𝑇𝑗𝑘′
𝑚′ = max {𝑟𝑗𝑘

𝑚 , 𝐶𝑇𝑗𝑘′−1
𝑚′ + 𝑆𝑗𝑘′−1

𝑚′ 𝑗𝑘′
𝑚′}. Note that the release time of a job, 𝑗𝑘

𝑚, does not relate to both the 

machine which it is assigned/inserted to and its position on the machine in both new and initial schedules, 

but for clarity, the release time of a job is represented as 𝑟𝑗𝑘
𝑚.  

𝐶𝑇𝑗
𝑘′
𝑚′  is not changed, regardless of which machine 𝑗𝑘′

𝑚′ will be inserted/swapped (i.e., 𝑚 = 𝑚′ or 𝑚 ≠ 𝑚′), 

when 𝑆𝑇𝑗𝑘′
𝑚′ = 𝑆𝑇𝑗𝑘

𝑚, meaning either 𝑟𝑗𝑘
𝑚 = 𝑆𝑇𝑗𝑘

𝑚  or 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 = 𝐶𝑇𝑗

𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ . Apart from 

this, 𝐶𝑇𝑗
𝑘′
𝑚′  is increased, regardless of which machine 𝑗𝑘′

𝑚′ will be inserted/swapped, when 𝑆𝑇𝑗𝑘′
𝑚′ > 𝑆𝑇𝑗𝑘

𝑚 , 

meaning 𝐶𝑇𝑗
𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ > 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 . The above inequality may be satisfied, except when 

𝐶𝑇𝑗
𝑘′−1
𝑚′ < 𝐶𝑇𝑗𝑘−1

𝑚  and 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ < 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 . As a result, the 𝐶𝑇𝑗
𝑘′
𝑚′  can be equal to or greater than the 𝐶𝑇𝑗𝑘

𝑚 , 

when 𝐶𝑇𝑗
𝑘′−1
𝑚′ < 𝐶𝑇𝑗𝑘−1

𝑚 , 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ > 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 , and the increase in 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′  is big enough to compensate for 

the reduction in 𝐶𝑇𝑗
𝑘′−1
𝑚′ , so that 𝐶𝑇𝑗

𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′  is equal to or greater than 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 . Likewise, 

𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚 , when 𝐶𝑇𝑗
𝑘′−1
𝑚′ > 𝐶𝑇𝑗𝑘−1

𝑚 , 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ < 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 , and the increase in 𝐶𝑇𝑗
𝑘′−1
𝑚′  is big enough to 

compensate for the reduction in 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ , so that 𝐶𝑇𝑗
𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′  is equal to or greater than 𝐶𝑇𝑗𝑘−1
𝑚 +

𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 . 
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In conclusion, the completion time of a job is either increased or not changed in the new schedule, if and 

only if the start time of this job in the new schedule is either increased or not changed compared to the one 

in the initial schedule (𝑆𝑇𝑗𝑘′
𝑚′ ≥ 𝑆𝑇𝑗𝑘

𝑚). A move is ineffective when the completion time of jobs, both 

inserted/swapped and assigned to the machine(s), are either increased or not changed by applying this move. 

Sometimes, the completion time of a job is not changed in spite of shifting forwardly the job(s) processed 

before this job on a machine due to the existence of idle times on the same machine. The idle time can be 

created on a machine when the machine availability time is less than the release time of remaining jobs, 

which have not been processed so far by this machine.  

Only the jobs assigned to a machine/machines that are considered for performing a predetermined insert or 

swap move may have an effect on changing the objective function value (∆𝑍). Among these jobs, the job 

𝑗𝑘′
𝑚′ always has no contribution to ∆𝑍, when 𝐶𝑇𝑗

𝑘′−1
𝑚′ = 𝐶𝑇𝑗𝑘−1

𝑚  and 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ = 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚. In other words, only 

the jobs that are assigned to this machine(s) and have a contribution in the objective function value should 

be considered in evaluating ∆𝑍. The variation in the completion time of a job has a forward relationship 

with its tardiness. In other words, by increasing the completion time of a job, the related tardiness is either 

increased or not changed. Likewise, by decreasing the completion time of a job, the related tardiness is 

either decreased or not changed. It is clear that the tardiness of a job does not change while its completion 

time is not changed.  

Note that the reference group should be considered as the initial batch when there is no job/batch before the 

new position of the job/batch moved backwardly in the new schedule, or the job/batch processed 

immediately before the job/batch moved forwardly in the initial schedule. In all of the following lemmas, 

the completion time of jobs is either increased or not changed by applying predetermined insert and swap 

moves.  

Lemma 1-1: Regardless of which batch of the same group or a different group job 𝑗𝑘−1
𝑚  will be inserted to, 

due date and release time of other jobs, applying a forward inserting move for job 𝑗𝑘−1
𝑚  on the same machine 

provides no improvement in the objective function value, if  

I. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚  , where 𝑘′ = 𝑘 − 1 and 𝑚 = 𝑚′; and 

II. 𝐶𝑇𝑗
(𝑘′+1)′
𝑚′ ≥ 𝐶𝑇𝑗(𝑘′)

𝑚  , where 𝑘′ ∈ [𝑘, 𝑛] and 𝑚 = 𝑚′.  

Proof: Note that by inserting forwardly job 𝑗𝑘−1
𝑚  at any available position on the same machine, the 𝑘′𝑡ℎ 

position of job 𝑗 in the new schedule is greater than its (𝑘 − 1)𝑡ℎ position in the initial schedule (𝑘′ > 𝑘 −
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1 (𝑘′ ∈ [𝑘, 𝑛])). By doing this, the completion time of all jobs assigned to the same machine in the new 

schedule are either increased or not changed as follows:  

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘 − 2] 

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘 − 1, 𝑘′ − 1] 

• The 𝐶𝑇𝑗𝑘′
𝑚 increases, and 

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘′ + 1, 𝑛]. 

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of job 𝑗 inserted forwardly 

and its tardiness can be evaluated as ∆𝑍 ≥ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑘′
𝑚 − 𝐶𝑇𝑗𝑘−1

𝑚  ) +  𝛽 (𝑇𝑗𝑘′
𝑚 − 𝑇𝑗𝑘−1

𝑚  )), where 𝑤𝑗 is the 

weight of job 𝑗, 𝛼 and 𝛽 are the weights attributed to the producer and customers, respectively, and 𝑇𝑗𝑘′
𝑚  and 

𝑇𝑗𝑘−1
𝑚  are the tardiness of job 𝑗 assigned to the 𝑘′𝑡ℎ and (𝑘 − 1)𝑡ℎ positions in the new and initial schedules, 

respectively. The tardiness of 𝑗𝑘
𝑚 is equal to max {0, 𝐶𝑇𝑗𝑘

𝑚 − 𝑑𝑗}. If the due date of job 𝑗 (𝑑𝑗) is equal to or 

greater than its completion time in the new schedule (𝑑𝑗 ≥ 𝐶𝑇𝑗𝑘
𝑚), the difference in the objective function 

value can be written as ∆𝑍 ≥  𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑘′
𝑚 − 𝐶𝑇𝑗𝑘−1

𝑚  )). 

Lemma 1-2: Regardless of which batch of the same group or a different group job 𝑗𝑘
𝑚 will be inserted to, 

due date and release time of other jobs, applying a backward inserting move for job 𝑗𝑘
𝑚 on the same machine 

provides no improvement in the objective function value, if  

I. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚  , where 𝑘′ ∈ [1, 𝑘 − 1] and 𝑚 = 𝑚′;  and 

II. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘+1

𝑚  , where 𝑘′ = 𝑘 + 1 and 𝑚 = 𝑚′. 

Proof: Note that by inserting backwardly job 𝑗𝑘
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ 

position of the job 𝑗 in the new schedule is less than its 𝑘𝑡ℎ position in the initial schedule (𝑘′ < 𝑘 (𝑘′ ∈

[1, 𝑘 − 1])). By doing this, the completion time of all jobs assigned to the same machine in the new 

schedule are either increased or not changed as follows:  

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘′ − 1] 

• The 𝐶𝑇𝑗𝑘′
𝑚 is either increased or not changed 
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• The 𝐶𝑇𝑗
𝑙′
𝑚 is increased, where 𝑙′ ∈ [𝑘′ + 1, 𝑘] (referred to as common job(s)), and 

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘 + 1, 𝑛]. 

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of common job(s) and its 

tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚  ) +  𝛽 (𝑇𝑗𝑙′
𝑚 − 𝑇𝑗𝑙

𝑚  ))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘]  by 

considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘′ with 𝑘′ + 1, and so on to finally 

consider 𝑘 − 1 with 𝑘), which includes the common job(s), which are processed after 𝑗𝑘′
𝑚 in the new 

schedule and before 𝑗𝑘+1
𝑚  in the initial schedule. If the due date of the common job(s) assigned to [𝑗𝑘′+1

𝑚  ′ 𝑗𝑘
𝑚] 

is equal to or greater than its completion time on the new schedule, the difference in the objective function 

value can be written as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚  ))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘] .      

Lemma 1.1 and 1.2 are illustrated in Figure 18. The first forward insertion-related-move illustrates inserting 

job 𝑖 after job 𝑗 on the same machine. The completion times of jobs processed after job 𝑗 in developed 

neighborhood are either increased or not changed (for the rest of schedule), because the release time of job 

𝑗 in the developed neighborhood freezes the schedule for backward movement. By assuming job 𝑖 and 𝑗 

belong to the 𝑠𝑡ℎ batch of group 𝑔, move 𝑣𝐼(𝑆𝑠𝑔|1, 2) is stored in the ITL.  

 

Figure 18. Illustration for lemma 1-1 & 1-2 
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The second forward insertion-related-move is the same as the first forward move, while instead of release 

time, the new setup time related to job 𝑗 in the developed neighborhood freezes job 𝑗 for backward 

movement. If job 𝑖 is assigned to position 𝑝 on machine 𝑀, move 𝑣𝐼(𝑀𝑝,𝑀𝑝+1) is stored in the OTL. The 

third forward insertion-related-move is again the same as the first forward move and the release time of job 

𝑖 freezes the schedule. In addition, this move changes the batch composition and represents a dividing move. 

In this case, move 𝑣𝐼(𝑀|𝑔𝑔, 𝑔𝑔′, 𝑔𝑔) is stored in the CTL, in which job ℎ belongs to group 𝑔′ and job 𝑗 and 

𝑘 belong to group 𝑔. Finally, the forth backward insertion-related-move illustrates inserting job 𝑘 before 

job 𝑖 on the same machine. Likewise, job 𝑘 in the developed neighborhood freezes the schedule due to its 

release time. The first, second, and forth moves are considered as sequencing move because they only 

change the sequence of jobs on batches/machines.   

Lemma 2: Regardless of which batch of the same group or a different group job 𝑗𝑘−1
𝑚𝑎  will be inserted to, 

due date and release time of other jobs, inserting job 𝑗𝑘−1
𝑚𝑎  in any available position between jobs across 

batches on a different machine (𝑚𝑏) provides no improvement in the objective function value, if  

I. 𝐶𝑇
𝑗
𝑘′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘

𝑚𝑎  , where 𝑘′ = 𝑘 − 1 and 𝑚′𝑎 = 𝑚𝑎 ; and 

II. 𝐶𝑇
𝑗
(𝑘′+1)′

𝑚𝑎
′ ≥ 𝐶𝑇𝑗(𝑘′)

𝑚𝑎  , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑎 ; and 

III. 𝐶𝑇
𝑗
𝑘′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘−1

𝑚𝑎  , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑏 . 

Proof: Note that by inserting job 𝑗𝑘−1
𝑚𝑎   on a different machine 𝑚𝑏, the 𝑘′𝑡ℎ position of the job 𝑗 in the new 

schedule can be any available position as 𝑘′ ∈ [1, 𝑛𝑏]. By doing this, the completion time of all jobs which 

are assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule are either increased or not changed as follows:  

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎  does not change, where 𝑙′ ∈ [1, 𝑘 − 2] and 𝑚′𝑎 = 𝑚𝑎  

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎  is either increased or not changed, where 𝑙′ ∈ [𝑘 − 1, 𝑛𝑎 − 1] and 𝑚′𝑎 = 𝑚𝑎   

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏  does not change, where 𝑙′ ∈ [1, 𝑘′ − 1] and 𝑚′𝑏 = 𝑚𝑏 

• The 𝐶𝑇
𝑗𝑘′
𝑚′𝑎  increases or does not change, where 𝑚′𝑎 = 𝑚𝑏 and 𝑘′ ∈ [1, 𝑛𝑏], and  

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏  is either increased or not changed, where 𝑙′ ∈ [𝑘′ + 1, 𝑛𝑏 + 1] and 𝑚′𝑏 = 𝑚𝑏.  
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The minimum increase in ∆𝑍 is positive when at least the completion time of one job belonging to either 

[𝑘 − 1, 𝑛𝑎 − 1] of machine 𝑚𝑎 or [𝑘′, 𝑛𝑏 + 1] of machine 𝑚𝑏 in the new schedule is increased; otherwise, 

the minimum increase in ∆𝑍 is equal to zero.  

Lemma 2 is illustrated in Figure 19. The insertion-related-move illustrates inserting job 𝑖, which is assigned 

to machine 𝑀1 before job 𝑘, which is assigned to machine 𝑀2. The completion times of jobs processed 

after job 𝑖 and 𝑗 in developed neighborhood are either increased or not changed (for the rest of schedule), 

because the release time of job 𝑖 and 𝑗 in the developed neighborhood freezes the schedule for backward 

movement on machines 𝑀1 and 𝑀2, respectively. In this case, move 𝑣𝐼(𝑀2|𝑔𝑔′, 𝑔𝑔, 𝑔𝑔) is stored in the 

CTL, in which job 𝑖, 𝑗, 𝑘 and ℎ belong to group 𝑔. Group 𝑔′ belongs to the job, which is processed 

immediately before job 𝑖 on machine 𝑀2.  

 

Figure 19. Illustration for lemma 2 

Lemma 3.1: Regardless of which batches of the same group or different groups jobs 𝑗𝑘𝑎
𝑚  and  𝑗𝑘𝑏

𝑚  will be 

swapped, due date and release time of other jobs, swapping two jobs  𝑗𝑘𝑎
𝑚  and  𝑗𝑘𝑏

𝑚  on the same machine, 

where 𝑘𝑏 > 𝑘𝑎 provides no improvement in the objective function value, if  

I. 𝐶𝑇𝑗
𝑘𝑏
′
𝑚′ ≥ 𝐶𝑇𝑗𝑘𝑏

𝑚  , where 𝑘𝑏
′ = 𝑘𝑎 and 𝑚′ = 𝑚 ; and 

II. 𝐶𝑇𝑗
𝑘𝑏
′
𝑚′ ≥ 𝐶𝑇𝑗𝑘𝑏+1

𝑚  , where 𝑘𝑏
′ = 𝑘𝑏 + 1 and 𝑚′ = 𝑚.   

Proof: Note that by swapping job 𝑗𝑘𝑏
𝑚  with job 𝑗𝑘𝑎

𝑚  processed before 𝑗𝑘𝑏
𝑚  on the same machine, the 𝑘′𝑡ℎ 

positions of jobs 𝑗𝑘′𝑏
𝑚′  and 𝑗𝑘′𝑎

𝑚′  in the new schedule is 𝑘𝑎 and 𝑘𝑏, respectively. By doing this, the completion 

time of all jobs assigned to machine 𝑚 in the new schedule, are either increased or not changed as follows:   

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘𝑎 − 1]  

• The 𝐶𝑇𝑗
𝑘𝑏
′
𝑚  increases or does not change  

M1 … j … Idle time

M2 … k h … Setup time

M1 … j …

M2 … k h … Family/batch

Insert move on different machine - Sequencing move Moved job

i

Release time

i



107 

 

• The 𝐶𝑇𝑗
𝑙′
𝑚 is increased, where 𝑙′ ∈ [𝑘𝑎 + 1, 𝑘𝑏 − 1]  

• The 𝐶𝑇𝑗
𝑘𝑎
′
𝑚  increases, and  

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘𝑏 , 𝑛].  

The minimum increase in ∆𝑍 due to the change in the completion time of job(s) assigned to [𝑘𝑎 + 1, 𝑘𝑏] 

in the new schedule and their tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 −𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙

′∈[𝑘𝑎+1,𝑘𝑏]

𝐶𝑇𝑗𝑙
𝑚  ) +  𝛽 (𝑇𝑗𝑙′

𝑚 − 𝑇𝑗𝑙
𝑚  )) by considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘𝑎 with 

𝑘𝑎 + 1, and so on to finally consider 𝑘𝑏 − 1 with 𝑘𝑏). If the due date of the jobs assigned to [𝑗
(𝑘𝑏

′+1)
𝑚  ′ 𝑗𝑘𝑎′

𝑚 ] 

is equal to or greater than their completion times in the new schedule, then ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚  ))𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] .         

Lemma 3-2: Regardless of which batches of the same group or different group jobs  𝑗𝑘𝑎
𝑚𝑎 and  𝑗𝑘𝑏

𝑚𝑏 will be 

swapped, due date and release time of other jobs, swapping two jobs  𝑗𝑘𝑎
𝑚𝑎 and  𝑗𝑘𝑏

𝑚𝑏 on different machines 

(𝑚𝑎 ≠ 𝑚𝑏) provides no improvement in the objective function value, if   

I. 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘𝑎

𝑚𝑎       , where 𝑚′𝑎 = 𝑚𝑏 and 𝑘𝑎
′ = 𝑘𝑏; and 

II. 𝐶𝑇
𝑗
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝐶𝑇

𝑗𝑘𝑏

𝑚𝑏       , where 𝑚′𝑏 = 𝑚𝑎 and 𝑘𝑏
′ = 𝑘𝑎; and 

III. 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗(𝑘𝑎+1)

𝑚𝑎  , where 𝑚′𝑎 = 𝑚𝑎 and 𝑘𝑎
′ = 𝑘𝑎 + 1; and 

IV. 𝐶𝑇
𝑗
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝐶𝑇

𝑗(𝑘𝑏+1)
𝑚𝑏  , where 𝑚′𝑏 = 𝑚𝑏 and 𝑘𝑏

′ = 𝑘𝑏 + 1.   

Proof: Note that by swapping job 𝑗𝑘𝑎
𝑚𝑎 with job 𝑗𝑘𝑏

𝑚𝑏 on different machines, the 𝑘′𝑡ℎ positions of jobs 𝑗𝑘𝑎
𝑚𝑎 

and 𝑗𝑘𝑏
𝑚𝑏 in the new schedule is 𝑘𝑏 of machine 𝑚𝑏 and 𝑘𝑎 of machine 𝑚𝑎, respectively. By doing this, the 

completion time of all jobs which are assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule are either 

increased or not changed as follows:   

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎  does not change, where 𝑙′ ∈ [1, 𝑘𝑎 − 1] and 𝑚′𝑎 = 𝑚𝑎  

• The 𝐶𝑇
𝑗
𝑘𝑏
′
𝑚′𝑏  increases or does not change, where 𝑚′𝑏 = 𝑚𝑎 and 𝑘′𝑏 = 𝑘𝑎   

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎  is either increased or not changed, where 𝑙′ ∈ [𝑘𝑎 + 1, 𝑛𝑎] and 𝑚′𝑎 = 𝑚𝑎 

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏  does not change, where 𝑙′ ∈ [1, 𝑘𝑏 − 1] and 𝑚′𝑏 = 𝑚𝑏  
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• The 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚′𝑎  increases or does not change, where 𝑚′𝑎 = 𝑚𝑏 and 𝑘′𝑎 = 𝑘𝑏, and  

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏  is either increased or not changed, where 𝑙′ ∈ [𝑘𝑏 + 1, 𝑛𝑏] and 𝑚′𝑏 = 𝑚𝑏  

The minimum increase in ∆𝑍 satisfies when at least one job belonging to both [𝑘𝑎 , 𝑛𝑎] of machine 𝑚𝑎 and 

[𝑘𝑏 , 𝑛𝑏] of machine 𝑚𝑏 in the new schedule is increased; otherwise, the minimum increase in ∆𝑍 is equal 

to zero.  

Lemma 3.1 and 3.2 are illustrated in Figure 20. It represents exchanging job 𝑖 and 𝑘 on the same machine 

and also exchanging job 𝑗 and 𝑓 on different machines. The schedules are blocked after the backward 

inserted move of job 𝑘 and 𝑗 in the developed neighborhoods due to their release time. By assuming job 𝑖, 

𝑗, and 𝑘 belong to the 𝑠𝑡ℎ batch of group 𝑔, move 𝑣𝐼(𝑆𝑠𝑔|1, 3) related to machine 𝑀 is stored in the ITL. 

If job 𝑓 belongs to the 𝑠′𝑡ℎ batch of group 𝑝, move 𝑣𝐸(𝑀1𝑔
𝑔′
,𝑔𝑝,𝑔𝑔′′

|𝑀2𝑔
𝑝′
,𝑔𝑔,𝑔𝑝′′

) is stored in the CTL, in 

which job 𝑖 is processed immediately before and after jobs of group 𝑝′ and 𝑝′′, respectively, and also job 𝑓 

is processed immediately before and after jobs of group 𝑔′ and 𝑔′′, respectively. In this case, 𝑝′ = 𝑝′′ and 

𝑔′ = 𝑔′′. The first and second swapping moves are considered as sequencing and dividing move, 

respectively.  

 

 

Figure 20. Illustration for lemmas 3-1 & 3-2 
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jobs belonging to the same batch 𝑠 (𝐽𝑗𝑠𝑘
𝑚) is the same as the position of this batch on 𝑚𝑡ℎ machine (𝑠𝑘

𝑚), 

where 𝑗 can at most be equal to the number of jobs belonging to batch 𝑠 (i.e., 𝐽𝑗𝑠𝑘
𝑚 = 𝑠𝑘

𝑚, where 𝑗 ∈ 𝑠). The 

release time and the start time of the first job belonging to batch 𝑠 are considered as the release time (𝑟𝑠𝑘
𝑚) 

and the start time (𝑆𝑇𝑠𝑘
𝑚) of this batch. Likewise, the completion time of the last job belonging to batch 𝑠 

is considered as the completion time of this batch (𝐶𝑇𝑠𝑘
𝑚).  

By considering the above mentioned assumptions, the following lemmas 4-1, 4-2, 5, 6-1 and 6-2 applicable 

for batches can be proven, similar to lemmas 1-1, 1-2, 2, 3-1, and 3-2 applicable for jobs, simply by 

substituting 𝑠𝑘
𝑚 and 𝑠𝑘′

𝑚′ in place of 𝑗𝑘
𝑚 and 𝑗𝑘′

𝑚′, respectively. In other words, by considering just one job in 

each batch, lemmas 4-1, 4-2, 5, 6-1 and 6-2 are reduced to lemmas 1-1, 1-2, 2, 3-1, and 3-2, respectively. 

Therefore, considering more than one job for at least one batch guarantees to get the same conclusion. As 

a result, the completion time of a job belonging to a batch is not changed as long as the start time of this 

batch is not changed. On the other hand, the completion time of a job belonging to a batch, with its start 

time increased in the new schedule, is either increased or not changed. 

• Definition 3 (Forward Move): By applying a forward move (insert or swap), batch 𝑠𝑘
𝑚 can be 

inserted into the 𝑘′𝑡ℎ position between batches on the same machine 𝑚, so that 𝑘′ > 𝑘 (𝑘′ ∈ [𝑘 +

1, 𝑛]). 

• Definition 4 (Backward Move): By applying a backward move (insert or swap), batch 𝑠𝑘
𝑚 can be 

inserted into the 𝑘′𝑡ℎ position between batches on the same machine 𝑚, so that 𝑘′ < 𝑘 (𝑘′ ∈ [1, 𝑘 −

1]).  

Lemma 4-1: Regardless of which batch of the same group or a different group batch 𝑠𝑘−1
𝑚  will be processed 

after, how many jobs each batch includes, due date and release time of other jobs, applying a forward 

inserting move for batch 𝑠𝑘−1
𝑚  on the same machine provides no improvement in the objective function 

value, if  

I. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘

𝑚 , where 𝑘′ = 𝑘 − 1 and 𝑚 = 𝑚′; and 

II. 𝑆𝑇𝑠
(𝑘′+1)′
𝑚′ ≥ 𝑆𝑇𝑠(𝑘′)

𝑚  , where 𝑘′ ∈ [𝑘, 𝑛] and 𝑚 = 𝑚′. 

Proof: Note that by inserting forwardly batch 𝑠𝑘−1
𝑚   at any available position on the same machine, the 𝑘′𝑡ℎ 

position of the batch 𝑠 in the new schedule is greater than its (𝑘 − 1)𝑡ℎ position in the initial schedule (𝑘′ >
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𝑘 − 1 (𝑘′ ∈ [𝑘, 𝑛])). By doing this, the completion time of all jobs belonging to all batches assigned to the 

same machine on the new schedule are either increased or not changed as follows:  

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘 − 2] 

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘 − 1, 𝑘′ − 1]  

• The 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚  increases, where 𝑗 ∈ 𝑠𝑘′

𝑚 , and  

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘′ + 1, 𝑛].   

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of job(s) 𝑗 belonging to 

batch 𝑠 inserted forwardly and its tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚 −𝑗∈[𝑠

𝑘′
𝑚]

𝐶𝑇𝐽𝑗𝑠𝑘−1
𝑚  ) +  𝛽 (𝑇𝐽𝑗𝑠𝑘′

𝑚 − 𝑇𝐽𝑗𝑠𝑘−1
𝑚  )), where 𝑇𝐽𝑗𝑠𝑘′

𝑚  and 𝑇𝐽𝑗𝑠𝑘−1
𝑚  are the tardiness of job 𝑗 belonging to batch 𝑠 

assigned to the 𝑘′𝑡ℎ and (𝑘 − 1)𝑡ℎ in the new and initial schedules, respectively. The tardiness of 𝑗𝑘
𝑚 is 

equal to max {0, 𝐶𝑇𝑗𝑘
𝑚 − 𝑑𝑗}. If the due date of job 𝑗 belonging to batch 𝑠 (𝑑𝑗𝑠) is equal to or greater than its 

completion time in the new schedule (𝑑𝑗𝑠 ≥ 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚 ), then ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑘′

𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑘−1
𝑚  ))𝑗∈[𝑠

𝑘′
𝑚] . 

Lemma 4-2: Regardless of which batch of the same group or a different group batch 𝑠𝑘
𝑚 will be processed 

after, how many jobs each batch includes, due date and release time of other jobs, applying a backward 

inserting move for 𝑠𝑘
𝑚 on the same machine provides no improvement in the objective function value, if  

I. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘

𝑚 , where 𝑘′ ∈ [1, 𝑘 − 1] and 𝑚 = 𝑚′; and 

II. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘+1

𝑚  , where 𝑘′ = 𝑘 + 1 and 𝑚 = 𝑚′.  

Proof: Note that by inserting backwardly batch 𝑠𝑘
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ 

position of batch 𝑠 in the new schedule is less than its 𝑘𝑡ℎ position in the initial schedule (𝑘′ < 𝑘 (𝑘′ ∈

[1, 𝑘 − 1])). By doing this, the completion time of all jobs belonging to all batches assigned to the same 

machine in the new schedule are either increased or not changed as follows:   

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘′ − 1]   

• The 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚  is either increased or not changed, where 𝑗 ∈ 𝑠𝑘′

𝑚   
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• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is increased, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘′ + 1, 𝑘] (common job(s)), and  

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘 + 1, 𝑛].   

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of all common job(s) 

belonging to the batch(s) and its tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 −𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘]

𝐶𝑇𝐽𝑗𝑠𝑙
𝑚  ) +  𝛽 (𝑇𝐽𝑗𝑠𝑙′

𝑚 − 𝑇𝐽𝑗𝑠𝑙
𝑚  )) by considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘′ 

with 𝑘′ + 1, and so on to finally consider 𝑘 − 1 with 𝑘), which includes the common jobs(s) belonging to 

the batch(s), which is processed after 𝐽𝑗𝑠𝑘′
𝑚  (the last job 𝑗 of batch 𝑠 on 𝑘′𝑡ℎ position) in the new schedule 

and before 𝐽𝑗𝑠𝑘+1
𝑚  (the first job 𝑗 of batch 𝑠 on 𝑘 + 1𝑡ℎ position) in the initial schedule. If the due date of 

the common job(s) assigned to [𝑠𝑘′+1
𝑚 , 𝑠𝑘

𝑚] is equal to or greater than its completion time on the new 

schedule, the difference in the objective function value can be written as ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚  ))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘] .      

Lemma 5: Regardless of which batch of the same group or a different group batch 𝑠𝑘−1
𝑚𝑎  will be processed 

after, how many jobs each batch includes, due date and release time of other jobs, inserting batch 𝑠𝑘−1
𝑚𝑎  in 

any available position between batches on a different machine (𝑚𝑏) provides no improvement in the 

objective function value, if  

I. 𝑆𝑇
𝑠
𝑘′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘

𝑚𝑎  , where 𝑘′ = 𝑘 − 1 and 𝑚′𝑎 = 𝑚𝑎 ; and 

II. 𝑆𝑇
𝑠
(𝑘′+1)′

𝑚𝑎
′ ≥ 𝑆𝑇𝑠(𝑘′)

𝑚𝑎  , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑎 ; and 

III. 𝑆𝑇
𝑠
𝑘′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘−1

𝑚𝑎  , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑏 . 

Proof: Note that by inserting batch 𝑠𝑘−1
𝑚𝑎   on a different machine 𝑚𝑏 , the 𝑘′𝑡ℎ position of the batch 𝑠 in the 

new schedule can be any available position as 𝑘′ ∈ [1, 𝑛𝑏]. By doing this, the completion time of all jobs 

belonging to all batches assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule, are either increased or not 

changed as follows:   

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎  does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [1, 𝑘 − 2], and 𝑚′𝑎 = 𝑚𝑎 



112 

 

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎  is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [𝑘 − 1, 𝑛𝑎 − 1], and 𝑚′𝑎 =

𝑚𝑎 

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏  does not change, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [1, 𝑘′ − 1], and 𝑚′𝑏 = 𝑚𝑏  

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘′
𝑚′𝑎  increases or does not change, where 𝑗 ∈ 𝑠𝑘′

𝑚𝑏
′

, 𝑘′ ∈ [1, 𝑛𝑏], and 𝑚′𝑎 = 𝑚𝑏, and  

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏  is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [𝑘′ + 1, 𝑛𝑏 + 1], and 𝑚′𝑏 =

𝑚𝑏.  

The minimum increase in ∆𝑍 is satisfied when at least one job belonging to batches at both [𝑘 − 1, 𝑛𝑎 − 1] 

interval of machine 𝑚𝑎 and [𝑘′, 𝑛𝑏 + 1] interval of machine 𝑚𝑏 in the new schedule is increased; otherwise, 

the minimum increase in ∆𝑍 is equal to zero.  

Lemma 6-1: Regardless of which batches of the same group or different groups batches 𝑠𝑘𝑎
𝑚  and  𝑠𝑘𝑏

𝑚  will 

be swapped, how many jobs each batch includes, due date and release time of other jobs, swapping two 

batches  𝑠𝑘𝑎
𝑚  and  𝑠𝑘𝑏

𝑚  on the same machine, where 𝑘𝑏 > 𝑘𝑎 provides no improvement in the objective 

function value, if  

I. 𝑆𝑇𝑠
𝑘𝑏
′
𝑚′ ≥ 𝑆𝑇𝑠𝑘𝑏

𝑚  , where 𝑘𝑏
′ = 𝑘𝑎 and 𝑚′ = 𝑚; and 

II. 𝑆𝑇𝑠
𝑘𝑏
′
𝑚′ ≥ 𝑆𝑇𝑠𝑘𝑏+1

𝑚  , where 𝑘𝑏
′ = 𝑘𝑏 + 1 and 𝑚′ = 𝑚. 

Proof: Note that by swapping batch 𝑠𝑘𝑏
𝑚  with batch 𝑠𝑘𝑎

𝑚  processed before 𝑠𝑘𝑏
𝑚  on the same machine, the 𝑘′𝑡ℎ 

positions of the batches 𝑠𝑘′𝑏
𝑚′  and 𝑠𝑘′𝑎

𝑚′  in the new schedule is 𝑘𝑎 and 𝑘𝑏, respectively. By doing this, the 

completion time of all jobs belonging to all batches assigned to the machine 𝑚 in the new schedule are 

either increased or not changed as follows:   

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘𝑎 − 1]   

• The 𝐶𝑇𝐽𝑗𝑠𝑘𝑏′
𝑚  increases or does not change, where 𝑗 ∈ 𝑠

𝑘𝑏
′
𝑚   

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is increased, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘𝑎 + 1, 𝑘𝑏 − 1] 

• The 𝐶𝑇𝐽𝑗𝑠𝑘𝑎′
𝑚  increases, where 𝑗 ∈ 𝑠𝑘𝑎′

𝑚 , and  
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• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘𝑏 , 𝑛].  

The minimum increase in ∆𝑍 due to the change in the completion time of all jobs 𝑗 belonging to batch 𝑠 

assigned to [𝑘𝑎 + 1, 𝑘𝑏] in the new schedule and their tardiness can be evaluated as ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚  ) +  𝛽 (𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝑇𝐽𝑗𝑠𝑙

𝑚  )) 𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] , by considering one-to-one 

correspondence between 𝑙 and 𝑙′ (meaning 𝑘𝑎 with 𝑘𝑎 + 1, and so on to finally consider 𝑘𝑏 − 1 with 𝑘𝑏). 

If the due date of the jobs belonging to batches assigned to [𝑠
(𝑘𝑏

′+1)
𝑚  , 𝑠𝑘𝑎′

𝑚 ] is equal to or greater than their 

completion times on the new schedule, then ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚  ))𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] .         

Lemma 6-2: Regardless of which batches of the same group or different groups batches 𝑠𝑘𝑎
𝑚𝑎 and  𝑠𝑘𝑏

𝑚𝑏  will 

be swapped, how many jobs each batch includes, due date and release time of other jobs, swapping two 

batches  𝑠𝑘𝑎
𝑚𝑎 and  𝑠𝑘𝑏

𝑚𝑏 on different machines (𝑚𝑎 ≠ 𝑚𝑏) provides no improvement in the objective function 

value, if   

I. 𝑆𝑇
𝑠
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘𝑎

𝑚𝑎        , where 𝑚′𝑎 = 𝑚𝑏 and 𝑘𝑎
′ = 𝑘𝑏 

II. 𝑆𝑇
𝑠
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝑆𝑇

𝑠𝑘𝑏

𝑚𝑏       , where 𝑚′𝑏 = 𝑚𝑎 and 𝑘𝑏
′ = 𝑘𝑎 

III. 𝑆𝑇
𝑠
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠(𝑘𝑎+1)

𝑚𝑎  , where 𝑚′𝑎 = 𝑚𝑎 and 𝑘𝑎
′ = 𝑘𝑎 + 1 , and 

IV. 𝑆𝑇
𝑠
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝑆𝑇

𝑠(𝑘𝑏+1)
𝑚𝑏  , where 𝑚′𝑏 = 𝑚𝑏 and 𝑘𝑏

′ = 𝑘𝑏 + 1.  

Proof: Note that by swapping batch 𝑠𝑘𝑎
𝑚𝑎 with batch 𝑠𝑘𝑏

𝑚𝑏 on different machines, the 𝑘′𝑡ℎ positions of the 

batches 𝑠𝑘𝑎
𝑚𝑎 and 𝑠𝑘𝑏

𝑚𝑏 in the new schedule is 𝑘𝑏 of machine 𝑚𝑏 and 𝑘𝑎 of machine 𝑚𝑎, respectively. By 

doing this, the completion time of all jobs belonging to all batches, which are assigned to the machines 𝑚𝑎 

and 𝑚𝑏 in the new schedule, are either increased or not changed as follows:   

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎  does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [1, 𝑘𝑎 − 1], and 𝑚′𝑎 = 𝑚𝑎 

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘𝑏
′

𝑚′𝑏  increases or does not change, where 𝑗 ∈ 𝑠
𝑘𝑏
′

𝑚𝑏
′

, 𝑘′𝑏 = 𝑘𝑎, and 𝑚′𝑏 = 𝑚𝑎  
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• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎  is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [𝑘𝑎 + 1, 𝑛𝑎], and 𝑚′𝑎 = 𝑚𝑎 

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏  does not change, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [1, 𝑘𝑏 − 1], and 𝑚′𝑏 = 𝑚𝑏 

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘𝑎
′

𝑚′𝑎  increases or does not change, where 𝑗 ∈ 𝑠
𝑘𝑎
′
𝑚𝑎
′

, 𝑘′𝑎 = 𝑘𝑏, 𝑚′𝑎 = 𝑚𝑏, and  

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏  is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [𝑘𝑏 + 1, 𝑛𝑏] and 𝑚′𝑏 = 𝑚𝑏 

The minimum increase in ∆𝑍 is satisfied when at least one job belonging to both [𝑘𝑎, 𝑛𝑎] of machine 𝑚𝑎 

and [𝑘𝑏 , 𝑛𝑏] of machine 𝑚𝑏 in the new schedule is increased; otherwise, the minimum increase in ∆𝑍 is 

equal to zero.  

There are several important points related to developed lemmas.  

• First, in all of the above cases related to lemmas, the schedule(s) is blocked due to either release 

time of a job(s)/batch(es) or the new setup time for a moved job(s)/batch(es), which can both freeze 

some jobs/batches for backward movement on a machine(s), resulting in no improvement.  

• Second, an ineffective neighbor move is determined for a particular stage, irrespective of the other 

stages.  

• Third, the completion time of a job(s) related to immediately prior stage is considered as its release 

time(s) for current stage in order to identify an ineffective move with the help of lemmas. This prior 

stage is where the job had its latest operation (considering stage skipping).  

• Fourth, when the outcome of a move makes no contribution to improve the objective function value 

(∆𝑍) in a particular stage, the completion time of jobs for this stage and, subsequently, the release 

time of these jobs for the immediately following stage are either increased or not changed. This 

scenario repeats for each of two consecutive stages, up to the last stage.  

The findings from computational tests in a particular stage of HFS are summarized in Table 12. Applying 

lemmas can significantly reduce computational times by about 24.5%, on average (up to 40%). It is worth 

noting that this reduction will be more significant when lemmas are implemented in all stages. Also, the 

reduction in computational times is far more significant if the lemmas are implemented in solving medium 

and large size problems than small ones. 
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Table 12. Performance of the TS-based algorithm with and without the lemmas 
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(Sec) 

Obj 

Func 

Val. 

Comp 

Time 

(Sec) 

1 7 5 22 1228.4 2305.0 1228.4 2212.8 4.0% 

2 7 4 19 1806.6 1061.1 1806.6 1050.5 1.0% 

3 7 5 24 4544.4 2566.5 4544.4 2284.2 11.0% 

4 4 4 17 2322.6 853.2 2322.6 767.9 10.0% 

5 5 5 17 2468.8 118.8 2468.8 115.2 3.0% 

6 5 3 23 3230.5 364.2 3230.5 327.8 10.0% 

7 8 4 25 2501.0 8767.0 2501.0 7539.6 14.0% 

8 8 3 24 3551.5 3549.6 3551.5 2484.7 30.0% 

9 7 3 26 6245.5 9878.7 6245.5 7606.6 23.0% 

10 8 4 28 4695.2 5905.5 4695.2 4488.2 24.0% 

11 7 3 26 3255.4 2921.1 3255.4 1898.7 35.0% 

12 6 3 24 3667.0 1618.2 3667.0 1375.5 15.0% 

13 9 3 29 3989.6 24034.1 3989.6 16583.5 31.0% 

14 9 3 30 4041.6 17044.7 4041.6 13635.8 20.0% 

15 13 4 39 3489.6 29510.1 3489.6 17706.1 40.0% 

16 9 3 27 3621.0 5369.4 3621.0 4188.1 22.0% 

17 11 3 33 5939.8 11319.7 5939.8 8376.5 26.0% 

18 12 3 36 5591.0 37176.0 5591.0 24536.2 34.0% 

4.2.9. Calibration of the meta-heuristic algorithms 

Based on preliminary runs, all algorithms are allowed to run over a 2-h time limit considered to be the point 

at which the algorithms become mature. With respect to the stage-based interdependency strategy, the 

corresponding parameters are tuned/calculated separately in each stage, based on the performance of the 

algorithms in the above-mentioned time interval.  

The TS parameters are tuned by performing multiple regressions on some parameters of the problem, i.e., 

number of machines (𝑀), number of batches (𝐵), and average number of jobs in each batch (𝐽)̅. The tuned 

parameters for the TS/PR algorithm, shown in Table 13, include the tabu list size (TLS), the index list size 

(ILS), and the maximum iterations without improvement (MIWOI), for all search levels of TS-based 

algorithms, as well as 𝑃𝑠𝑖𝑧𝑒  for all PR procedures. All parameters are tuned for each problem structure 

determined in Section 5. Since 𝐵 and/or 𝐽 ̅might have different values in each level/stage of TS, these 

parameters should be tuned whenever the TS-based algorithm moves across levels or stages. The empirical 

formulae are obtained for TS parameters with the help of DATAFIT (1995). During TS/PR, two types of 

TS are implemented for candidate solutions: slight TS including only the CTS and strong TS including the 

CTS, OTS, and ITS. The TS parameters of slight TS follow the central TLS (CTLS), central ILS (CILS), 
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and central MIWOI (MCIWOI) of strong TS. 𝑃𝑠𝑖𝑧𝑒 is dependent on the applied path construction technique 

and level of the problem.  

Table 13. Empirical formulae for TS parameters 

 (Small, Small) (Small, Large) (Large, Small) (Large, Large) 

CTLS 2 2 ⌈0.242 + 0.52𝐵 − 0.48𝑀 + 0.1𝐽⌉̅ ⌈2.5 + 0.05𝐵 + 0.06𝑀 − 0.38𝐽⌉̅ 

CILS ⌈0.82 + 0.74𝐵 − 0.7𝑀 + 0.5𝐽⌉̅ ⌈2.455 + 0.42𝐵 − 0.15𝑀 − 0.05𝐽⌉̅ ⌈−5.5 + 3.545𝐵 − 1.05𝑀 − 1.5𝐽⌉̅ ⌈12.25 + 1.62𝐵 + 0.54𝑀 − 2.48𝐽⌉̅ 

MCIWOI ⌈0.35 + 0.48𝐵 − 0.3𝑀 + 0.4𝐽⌉̅ ⌈1.05 + 0.28𝐵 − 0.2𝑀 + 0.1𝐽⌉̅ ⌈−8.283 + 1.09𝐵 − 1.11𝑀 + 2.6𝐽⌉̅ ⌈−28.48 + 3.2𝐵 + 1.55𝑀 − 0.05𝐽⌉̅ 

OTLS ⌈−0.7𝐵 + 1.35𝑀 + 2.75𝐽⌉̅ ⌈0.44𝐵 − 0.68𝑀 + 1.55𝐽⌉̅ ⌈−0.6𝐵 + 1.8𝑀 + 1.25𝐽⌉̅ ⌈0.38𝐵 + 0.1𝑀 − 0.09𝐽⌉̅ 

OILS ⌈1.21𝐵 − 0.64𝑀 + 0.59𝐽⌉̅ ⌈0.384𝐵 + 0.08𝑀 + 0.13𝐽⌉̅ ⌈1.5𝐵 − 1.1𝑀 − 1.123𝐽⌉̅ ⌈0.28𝐵 + 3.39𝑀 − 1.38𝐽⌉̅ 

MOIWOI ⌈1.82𝐵 − 0.35𝑀 + 1.66𝐽⌉̅ ⌈0.456𝐵 − 0.05𝑀⌉ ⌈0.473𝐵 − 0.6𝑀 − 0.09𝐽⌉̅ ⌈0.05𝐵 + 1.01𝑀 − 0.23𝐽⌉̅ 

ITLS ⌈0.88𝐵 − 0.99𝑀 + 1.342𝐽⌉̅ ⌈0.29𝐵 − 0.31𝑀 + 0.98𝐽⌉̅ ⌈0.05𝐵 + 0.2𝑀 + 0.65𝐽⌉̅ ⌈−0.06𝐵 + 1.1𝑀 + 0.152𝐽⌉̅ 

IILS 2 2 2 ⌈0.03𝐵 + 0.345𝑀 + 0.212𝐽⌉̅ 

MIIWOI 1 1 1 ⌈0.339𝑀 − 0.03𝐽⌉̅ 

𝑷𝒔𝒊𝒛𝒆 10 15 15 20 

LCS 10 8 7 5 
LCS&Block 8 7 5 4 
LCS&Swap 8 6 4 3 
LCS, LCS&Block, and LCS&Swap stand for LCS-based, LCS- and block-based, LCS- and swap-based construction techniques, 

respectively. Ceiling brackets ⌈. ⌉ rounds a number to its larger integer. 

The PSO parameters are calculated by experimental design techniques. Based on extensive experiments 

using test problems different from those implemented for TS/PR, the PSO parameters are tuned according 

to the values of Table 14.  

Table 14. The PSO algorithm parameters 

Swarm Size Lower & upper bounds 

𝜔𝑚𝑖𝑛  & 𝜔𝑚𝑎𝑥 0.4 & 2.0 

𝑐1
𝑚𝑖𝑛  & 𝑐1

𝑚𝑎𝑥  0.4 & 2.4 

𝑐2
𝑚𝑖𝑛  & 𝑐2

𝑚𝑎𝑥  0.4 & 2.4 

𝑣𝑒𝑙𝑚𝑖𝑛  & 𝑣𝑒𝑙𝑚𝑎𝑥 -4.0 & 4.0 

𝑥𝑚𝑖𝑛  & 𝑥𝑚𝑎𝑥 0.0 & 4.0 

𝑎 10 

𝐼𝑡𝑟𝑚𝑎𝑥 10000 

During the evolution process of PSO, the non-linear dynamic coefficients are considered at each stage as 

follows: 

𝜔 = 𝜔𝑚𝑖𝑛 +

(

 
 (𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛)

(1 + exp (
(−𝑎(𝐼𝑡𝑟𝑚𝑎𝑥 − 𝑡))

𝐼𝑡𝑟𝑚𝑎𝑥
⁄ ))

⁄

)

 
 

 (4.72) 
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𝑐1 = 𝑐1
𝑚𝑖𝑛 +

(

 
 (𝑐1

𝑚𝑎𝑥 − 𝑐1
𝑚𝑖𝑛)

(1 + exp(
(−𝑎(𝐼𝑡𝑟𝑚𝑎𝑥 − 𝑡))

𝐼𝑡𝑟𝑚𝑎𝑥
⁄ ))

⁄

)

 
 

 (4.73) 

𝑐2 = 𝑐2
𝑚𝑖𝑛 + (

(𝑐2
𝑚𝑎𝑥 − 𝑐2

𝑚𝑖𝑛)

(1 + exp (−𝑎𝑡 𝐼𝑡𝑟𝑚𝑎𝑥
⁄ ))

⁄ ) (4.74) 

𝜔𝑚𝑎𝑥/𝑐1
𝑚𝑎𝑥/𝑐2

𝑚𝑎𝑥 represents the highest value of 𝜔/𝑐1/𝑐2 and 𝜔𝑚𝑖𝑛/𝑐1
𝑚𝑖𝑛/𝑐2

𝑚𝑖𝑛 represents the lowest 

value of 𝜔/𝑐1/𝑐2. Parameter 𝑎 has a constant value. 𝑟1 and 𝑟2 are independently generated by 𝑢𝑛𝑖𝑓 = [0, 1]. 

The appropriate value of 𝜒 in the case of meeting condition 𝑐1 + 𝑐2 > 4 is determined by 𝜒 =

2 (𝐶 − 2 + √𝐶2 − 4𝐶)⁄ , where 𝐶 = 𝑐1 + 𝑐2; otherwise 𝜒 = 1. The tuned parameters for the number of 

iterations for LSA (𝐼𝑡𝑟𝐿𝑆𝐴) and 𝑃′𝑠𝑖𝑧𝑒 are shown in Table 15. 

Table 15. Empirical formulae for PSO/LSA parameters 

 (Small, Small) (Small, Large) (Large, Small) (Large, Large) 

𝑰𝒕𝒓𝑳𝑺𝑨 ⌈0.2×∑ 𝐽𝑖
𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.16×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.14×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.1×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉ 

𝑷′𝒔𝒊𝒛𝒆 2∑ 𝐽𝑖
𝑘

𝑖∈𝐼𝑘
 2.45∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
 2.55∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
 3∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
 

5. LOWER BOUNDS 

Due to the inherent complexity of combinatorial optimization problems such as the one considered in this 

research, the enormous number of constraints and variables introduced into the model typically results in a 

very large solution space. Since the research problem is strongly NP-hard (Section 4), it is not possible to 

optimally solve it within a reasonable computational time. Thus, the need for solving the problem in the 

hope of finding at least a solution for large industry-size problems has encouraged researchers to develop 

advanced heuristic and meta-heuristic algorithms. Since these non-exact algorithms do not guarantee 

solving a problem optimally, a mechanism should be established to evaluate the performance of theses 

algorithms.  

In dealing with NP-hard problems, benchmarking, which is one of the most common approaches for this 

evaluation, is not a successful tool for comparison, because the best practices are also non-exact algorithms, 

perhaps producing highly inferior solutions. Apart from this, there is no benchmark in the literature that is 

related to the research problem addressed in this research. Therefore, developing a lower bound for the 
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optimal solution as the baseline for the minimization problems can determine the relative performance of 

the non-exact algorithms. Since the optimal solution must be between the lower bound and the best solution 

obtained by a non-exact algorithm, the gap between this bound and the proposed algorithm can be 

considered as an indicator of the performance of that algorithm (Bozorgirad and Logendran 2014). The 

mentioned gap is composed of two intervals, i.e. the deviation of the proposed algorithm from the optimal 

solution, and the deviation of the lower bound from the optimal solution. Therefore, the smaller the gap, 

the higher the performance of the proposed algorithm. Also, the closer the lower bound is to the optimal 

solution, the more precise is the assessment of the proposed algorithm. Thus, in order to develop a tight 

lower bound, the second interval of this gap must be minimized. 

5.1. Lower bounding mechanisms  

There are several different techniques to develop a lower bound including LP relaxation, Benders 

decomposition, column generation, etc. The simplest lower bound for any IP problem is the linear 

programming (LP) relaxation of that problem, which is obtained by relaxing integrality constraints of the 

problem. Although the LP relaxation technique is very fast in finding a lower bound, the developed lower 

bound can have a large deviation from the optimal solution and thus very inferior compared to other 

techniques. Selective LP relaxation and iterative selective LP relaxation are extended version of LP 

relaxation in order to improve the quality of the developed lower bound (Mehravaran 2013).    

Classical Benders decomposition enumerates values of certain variables for solving the problem, which is 

decomposed into a master problem (MP) and a set of sub-problems (SPs). For each set of enumerations, 

the values of certain variables are fixed and fed into the SPs. Solution of the SPs generates a Benders cut 

and must be satisfied in all subsequent solutions enumerated. Logic-Based Benders Decomposition (LBBD) 

was introduced by Hooker and Yan (1995) in the context of logic circuit verification. The LBBD is a manual 

decomposition technique that generalizes classical Benders decomposition technique (Hooker and Ottosson 

2003). 

The lower bounds obtained by LP relaxation techniques usually have a large deviation from the optimal 

solution. Benders decomposition, known as row generation, is more useful, when it is applied for a problem 

with a large number of constraints. In order to find tight lower bounds for large-size linear programming 

problems with a large number of variables, an efficient technique called Column Generation (CG) was 

developed. Initially starting from a model to cover a manageable part of the solution space, column 

generation discovers a feasible solution satisfying the problem and adds it to the latest partial model updated 

so far. Gradually, the model gets larger in size until it achieves a satisfactory solution to the entire problem. 

The columns are the solutions that are iteratively identified and added to the partial model. Typically, there 
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are a large number of columns for large-size LP problems. Initially, working with all of these columns is 

practically impossible and it is equivalent to solving the associated mathematical programing model 

formulated for the problem in its entirety. Accordingly, many of the columns are initially left out, yet many 

of them may not make a contribution in identifying the optimal solution. The main idea behind this 

technique is to deal only implicitly with the columns of an optimization problem. This capability makes 

column generation one of the most prominent techniques in solving LPs with a huge number of variables. 

5.2. Review of the literature related to column generation technique 

Column generation is implemented to solve the IP models obtained by a Dantzig-Wolfe decomposition 

(Dantzig and Wolfe 1960), and was first implemented by Gilmore and Gomory (1961, 1963), as part of a 

heuristic algorithm to deal with the cutting stock problem. The embedding of column generation in a 

branch-and-bound (B&B) framework for solving a vehicle routing problem under time window constraints 

(Desrosiers et al. 1984) was a key step in solving large-size IPs to optimality. Wilhelm (2001) provided a 

technical review of column generation in integer programming and proposed three different types of column 

generation identified in the literature. Each of these types includes a master problem (MP) with restricted 

columns (RMP) that has to be optimized. 

• Type I column generation uses an auxiliary model (AM) to generate an attractive set of 

columns, and then the RMP is optimized over those explicitly identified columns. In this type 

of column generation, there is no interaction between the RMP and AM.  

• Type II column generation uses a price-out problem (POP) that interacts with the RMP to 

identify a non-basic column with the most negative reduced cost.  

• Type III column generation applies Dantzig-Wolfe Decomposition (DWD) to the linear 

relaxation of an IP. The dual variables of the RMP comprise the objective function coefficients 

of one or more SPs, and each SP is solved to introduce improving columns into the RMP. 

Using column generation to find lower bounds is not new in the literature of scheduling problems. Column 

generation has been used for many scheduling problems including parallel machines and flow shop. Van 

Den Akker et al. (1999) applied column generation technique for minimizing the total weighted completion 

time of 𝑛 jobs on 𝑚 identical-parallel machines. The problem was formulated as a set-covering problem 

with huge number of variables, 𝑛 covering constraints, and a single side constraint. The numerical 

experiments revealed that the lower bound was very tight, and the linear program often resulted in integer 

solution. Thereafter, Van Den Akker et al. (2000) applied column generation technique to optimize a time-
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indexed formulation of a single-machine scheduling problem. The main disadvantage of their models was 

related to size. This difficulty is alleviated with the help of Dantzig-Wolfe decomposition.  

Chen and Powell (1999a) used column generation for the problem of scheduling 𝑛 jobs on 𝑚 identical, 

uniform or unrelated-parallel machines with respect to minimizing a linear combination of total weighted 

completion time and weighted number of tardy jobs. Also, Chen and Powell (1999b) minimized the total 

weighted tardiness and earliness of 𝑛 jobs with a non-restrictively large common due date on 𝑚 identical-

parallel machines with the help of this technique. Each column in their formulation represented a partial 

schedule, which was generated by single machine scheduling sub-problem. In both research, they 

formulated the problem as an integer program, and then reformulated the problem as a set partitioning 

problem. A B&B algorithm is implemented in order to find an optimal integer solution for the second 

problem. Later, Chen and Powell (2003) applied column generation to minimize the total weighted 

completion time of multiple job families including 𝑛 jobs on 𝑚 identical-parallel machines, with sequence-

dependent or sequence-independent setup times. Chen and Lee (2002) proposed a similar approach 

developed by Chen and Powell (1999b) to solve problems with 40 jobs and 6 parallel machines within a 

reasonable computational time. They addressed the problem of scheduling 𝑛 independent jobs on 𝑚 

identical-parallel machines to minimize the total earliness-tardiness penalty of the jobs. Lopes and de 

Carvalho (2007) used the column generation in each branch of a B&B algorithm, known as branch-and 

price (B&P) optimization algorithm, for the problem of scheduling a set of independent jobs, with release 

dates and due dates, on a set of unrelated-parallel machines with availability dates and sequence-dependent 

setup times, to minimize the total weighted tardiness. They used pseudo-polynomial algorithms based on 

dynamic programming to solve the SPs, together with an accelerating mechanism for column generation 

called primal box and a specific branching variable selection rule that significantly reduced the 

computational time.  

Column generation has also been successfully implemented for flow shop scheduling problems. Bozorgirad 

and Logendran (2014) developed tight lower bounds for group scheduling in hybrid flow shop environment 

with respect to minimizing a linear combination of total weighted completion time and total weighted 

tardiness of all jobs assigned to pre-determined groups. Bülbül et al. (2004) proposed heuristic algorithms 

based upon column generation in order to minimize tardiness, earliness and work-in-process costs for a 

flow shop scheduling problem. Gelogullari and Logendran (2010) and Salmasi et al. (2010) implemented 

column generation for group scheduling problems in flow shop environment in the framework of a B&B 

algorithm in order to derive tight lower bounds. Then, they evaluated the performance of their meta-

heuristics with the help of developed lower bounds.  
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5.3. Branch-and-Price algorithm 

A B&P algorithm is developed to obtain a tight lower bound with the help of applying the column 

generation in each node, for the HFS scheduling problem addressed in this research. A decomposition of 

an MILP model is then presented, which is followed by branching rules for the B&P algorithm. Three types 

of decomposition of problems are developed in terms of three different MILP models, i.e., the MILP1, 

RMILP, and MILP3 models. Since there is not too much difference between the MILP1 and MILP2, the 

decomposition of problems is developed for only one of them. i.e., MILP1. Before going into the details of 

different types of decomposition of problems, a common decomposition technique is explained. Then, an 

acceleration technique and early termination of column generation are explained.  

5.3.1. Dantzig-Wolfe Decomposition 

Decomposing the problem into smaller problems which are computationally easier to solve is one of the 

successful techniques in dealing with large-size complex problems. Column generation is one of the 

decomposing techniques and divides the constraints of the MILP model into two parts, forming two 

individual yet independent problems: an MP composed of the objective function and the most difficult 

constraints that are dependent on each other; one or more SPs composed of the independent constraints 

forming block diagonal structure. In other words, the MP is a set of columns that defines the solution space, 

while columns are developed by the SPs. Any solution to the MILP model should satisfy both the MP and 

SPs. Each column is a vector that contains a cost coefficient as well as all constraint coefficients for one of 

the decision variables. Even though a problem has a restricted number of variables, it can have unlimited 

number of columns. Therefore, a restricted master problem (RMP) with limited number of columns (a 

subset of whole columns) is implemented in practice (Bozorgirad and Logendran 2014).  

The column generation, in this research, applies Dantzig-Wolfe decomposition for the MILP model to 

decompose the problem (Bazaraa et al. 2011, Dantzig and Wolfe 1960, Wilhelm 2001). The dual variables 

of the RMP comprise the objective function coefficients of one or more SPs, and each SP is solved to 

introduce improving columns into the RMP. The optimal solution in the SP or the solution with the most 

negative reduced cost is transferred to the RMP and again the same process is repeated until no more 

solution with negative reduced cost can be identified in any of the SPs. At this time, the problem is solved 

to optimality (Barnhart et al. 1998, Lübbecke and Desrosiers 2005, Vanderbeck 2000, Vanderbeck and 

Wolsey 1996, Wilhelm 2001). Identifying a set of constraints that links all the other constraints together 

(linking constraints) is the basis of Dantzig-Wolfe decomposition. By relaxing linking constraints, the 

problem can be decomposed into a number of independent SPs.  
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5.3.1.1. DWD1 

The MILP1 model moves back and forth between batching and scheduling phases. For all of the stages, the 

batch assignments to machines, batch sequences on machines, and job sequence within batches are 

determined in the scheduling phase, while the batch compositions of groups are determined in the batching 

phase. Since the optimal batch assignment to machines, batch sequence on machines, and job sequences 

within batches should be determined in the scheduling phase for each combination between batch 

compositions of groups related to all stages, which is developed in the batching phase, the solution space 

exponentially increases and, subsequently, this leads to unaffordable and unreasonable computational 

times.   

In the MILP1 model, constraint (4.13) is the only linking constraint. With respect to this constraint, 

completion time of a job in each stage is coupled with the completion time of that job in the preceding 

stage. This preceding stage is where the job had its latest operation. By relaxing constraint (4.13), all the 

other constraints only include the decision variables corresponding to a particular stage at a time and, 

consequently, there is one SP for each stage, determining the partial batch sequences on machine(s) as well 

as job sequences within batches on that stage. These partial sequences are linked together with the help of 

constraint (4.13) in the RMP. In addition to the notations used in section 4.1.1, the following notations are 

defined to formulate the RMP and SPs.  

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇} 

𝑇 Total number of columns, where each column represents the partial schedules for all the stages,  

𝑋𝑖𝑠𝑗
𝑘𝑡  The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘 in column 𝑡 

𝑇𝑖𝑗
𝑡  The tardiness of job 𝑗 of group 𝑖 in column 𝑡 

 ∅𝑖𝑠𝑗
𝑘𝑡  1 if job 𝑗 is assigned to batch 𝑠 of group 𝑖 in stage 𝑘 in column 𝑡; 0 otherwise  

𝑍𝑖𝑠ℎ
𝑘𝑡  1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise  

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise 

Restricted linear master problem (RLMP) 

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗 (∑ 𝛼.𝑋
𝑖𝑠𝑗

(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)
)𝑡

𝑠∈𝑔𝑖

+ 𝛽. 𝑇𝑖𝑗
𝑡 )

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡 (5.1) 

Subject to:  
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∑

(

 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
𝑡∈𝒯

− (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 +𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − 2)𝑀

)

 𝜆𝑡 ≥ 0; 

𝑖 = 1,2,… , 𝑔;  𝑗 = 1,2,… , 𝑛𝑖;  𝑠 = 1,2, … , 𝑆
𝑖

𝑠𝑡𝑖𝑗(𝑟)
; 𝑠′ = 1,2, … , 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑟−1); 

𝑟 = 1,2, … ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

(5.2) 

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.3) 

𝜆𝑡 ∈ {0,1}; 

𝑡 ∈ 𝒯 

(5.4) 

This model is initiated with a given feasible solution as the first column. With the help of developed initial 

solution finding mechanism (section 4.2.2), the column generation algorithm is initialized. As the column 

generation progresses, the model iteratively includes more columns. Since all variables 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
, 

𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡
, 𝜙

𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
, and 𝑇𝑖𝑗

𝑡  related to the original MILP model are assumed to be known, the only decision 

variable in the model is binary variables 𝜆𝑡. The objective function of the RMP (5.1) minimizes the 

objective function value of the original MILP model over all columns that are introduced into the RMP. 

The linking constraint (5.2) relates the completion time of a job belonging to a batch of a group in each 

stage to completion time of that job in the prior stage, in which this job had an operation. Convexity 

constraint (5.3) ensures that a convex combination of columns is selected in each iteration of the algorithm. 

And finally, the integrality of the problem is guaranteed by the binary constraint (5.4).   

The RMP does not include all the possible columns and is restricted in the number of columns. Instead, all 

feasible columns are generated with the help of the SPs, and the best one will be introduced into the RMP. 

The column contributed to the most improvement to the objective function of the RMP is known as the best 

column, which is the column with the minimum reduced cost. Therefore, the objective function of the SPs 

determine the column with the minimum reduced cost. If this column has a negative reduced cost, it will 

be introduced into the RMP. This process will be repeated between the RMP and SPs until no further 

improvement to the RMP is obtained. This is considered as the stopping criteria for the column generation 

algorithm. In final stage, the optimal solution of this RMP will be equivalent to the optimal solution for the 
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unrestricted master problem. From a linear programming point of view, the reduced cost of the RMP can 

be identified based upon the dual of this problem. Therefore, the integrality constraints (5.4) are relaxed 

(𝜆𝑡 ≥ 0) and then the dual of this problem is developed as follows: 

Φ𝑖𝑗𝑠�́�𝑟 Dual variable associated with constraint (5.2) 

𝜓 Dual variable associated with constraint (5.3) 

Dual of the linear master problem (DLMP) 

𝑀𝑎𝑥 𝑍 = 𝜓 (5.5) 

Subject to:  

∑ ∑ ∑ ∑ ∑

(

 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

𝑚𝑖𝑗+1

𝑟=1𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

− (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 +𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − 2)𝑀

)

 ×Φ𝑖𝑗𝑠�́�𝑟 + 𝜓

≤∑ ∑ 𝑤𝑖𝑗 (∑ 𝛼.𝑋
𝑖𝑠𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

𝑠∈𝑔𝑖

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
; 

𝑡 ∈ 𝒯; 

(5.6) 

Φ𝑖𝑗𝑠�́�𝑟 ≥ 0; 

∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑠 = 1,2, … , 𝑔
𝑖

𝑠𝑡𝑖𝑗(𝑟)
; 𝑠′ = 1,2, … , 𝑔

𝑖

𝑠𝑡𝑖𝑗(𝑟−1); 𝑟 = 1,2,… ,𝑚𝑖𝑗; 

(5.7) 

𝜓    𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; (5.8) 

As mentioned earlier, each column in the RMP includes all stages in the hybrid flow shop. Apart from this, 

there is only one constraint (5.6) for this column in the DLMP. Therefore, there should be only one unified 

SP, which includes all stages simultaneously. Since all decision variables corresponding to each stage in 

this unified SP are totally independent of each other, the SP is decomposed into multiple SPs related to each 

stage. In other words, each SP assigned to each stage includes all variables corresponding to a particular 

stage. As a result, an exhaustive combination enumeration between batch compositions of all groups in all 

stages is excluded, but an enormous number of combinations between batch compositions of all groups in 

each stage still remains. In developing the SPs, two extra virtual stages are introduced as follows: 
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• Stage (0) is an initial virtual stage, where all jobs begin their process from. Run time of all jobs in 

this stage is equal to zero, and the only constraint in this stage is constraint (4.9), which defines the 

non-zero job release times. Therefore, the completion time of each job is equal to its release time 

in initial virtual stage. 

• Stage (𝑚 + 1) is a final virtual stage, where all jobs will be completed. Run time of all jobs in this 

stage is zero, and the only constraint sets in this stage are constraints (4.14) and (4.15), which are 

the tardiness and sign constraints, respectively. 

With the help of these two virtual stages, the assumptions of non-zero job release time as well as bi-criteria 

objective function are excluded from middle stages (𝑘 ∈ 𝐾). Therefore, the objective function associated 

with middle stages of SPs is related to only one criterion, i.e., total completion time. These SPs are presented 

in the following based upon different stages: 

Sub-problems (SPs) 

𝑺𝑷(𝟎), 𝒔𝒕𝒊𝒋(𝟎) = 𝟎,∀ 𝒊 ∈ 𝑰𝟎 & 𝒋 ∈ 𝑱𝒊
𝟎 

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�1
𝑠∈𝑔𝑖

)𝑋𝑖𝑠’𝑗
0𝑡 )

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�1
𝑠∈𝑔𝑖

)𝜙𝑖𝑠’𝑗
0𝑡 )

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺
 

(5.9) 

                  Subject to: 

𝑋𝑖𝑠𝑗
0 ≥ 𝑟𝑖𝑗;  𝑖 ∈ 𝐼0, 𝑗 ∈ 𝐽𝑖

0. (5.10) 

𝑺𝑷(𝒌),  ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒊𝒋(𝒓) = 𝒌, ∀𝒊 =  ,  ,… , 𝒈 & 𝒋 =  ,  ,… , 𝒏𝒊 & 𝒓 =  ,  ,… ,𝒎𝒊𝒋 (5.11) 
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𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑟+1)
𝑠∈𝑔𝑖

)𝑋𝑖𝑠’𝑗
𝑘𝑡 )

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖

)𝑋𝑖𝑠𝑗
𝑘𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠∈𝑔𝑖

)𝑀×𝜙𝑖𝑠𝑗
𝑘𝑡 )

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑟+1)
𝑠′∈𝑔𝑖

)𝑀×𝜙𝑖�́�𝑗
𝑘𝑡 )

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ (∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖

)
ℎ∈𝑉𝑖𝑗

𝑘
𝑡𝑖𝑗ℎ
𝑘 )𝑍𝑖𝑠ℎ

𝑘𝑡 )
𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+ 2(∑ ∑ ∑ ∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

)×𝑀 

               Subject to:  

∑ ∅𝑖𝑠𝑗
𝑘

𝑠∈𝑆𝑖
𝑘

= 1 

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑘 ∈ 𝐾; 

(5.12) 

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1 

𝑖 ∈ 𝐼𝑘;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑘 ∈ 𝐾; 

(5.13) 

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥ ∅𝑖𝑠𝑗

𝑘  

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑘 ∈ 𝐾; 

(5.14) 

∑ ∅𝑖𝑠𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ (𝐿𝐵𝑖ℎ
𝑘 )𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑉𝑘
 

𝑠 ∈ 𝑆𝑖
𝑘;  𝑖 ∈ 𝐼𝑘;  𝑘 ∈ 𝐾; 

(5.15) 

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗
𝑘 ) ≥ 𝐶𝑝𝑡

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘   

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑖
𝑘;  ℎ ∈ 𝑣𝑖𝑗

𝑘  ;  𝑘 ∈ 𝐾;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑡 ∈ 𝑔𝑝

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;    
(5.16) 
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𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘 ) +𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘 ) +𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘 ) + 𝑀(1 − ∅𝑝𝑡𝑗
𝑘 ) ≥ 𝐶𝑖𝑠

𝑘 + 𝑆𝑖𝑝ℎ
𝑘 + 𝑡𝑝𝑗ℎ

𝑘  

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);  𝑗 ∈ 𝐽𝑝
𝑘;  ℎ ∈ 𝑣𝑝𝑡

𝑘 ;  𝑘 ∈ 𝐾;  𝑠 ∈ 𝑆𝑖
𝑘;  𝑡 ∈ 𝑔𝑝

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(5.17) 

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) ≥∑ (𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘 )𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑣𝑖𝑗
𝑘

 

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑘 ∈ 𝐾; 

(5.18) 

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(𝑌𝑖𝑠𝑗𝑞
𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘 ) ≥∑ 𝑡𝑖𝑗ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘 )

ℎ ∈𝑣𝑖𝑗
𝑘  ∩𝑣𝑖𝑞

𝑘
 

𝑖 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(5.19) 

𝑋𝑖𝑠𝑞
𝑘 − 𝑋𝑖𝑠𝑗

𝑘 +𝑀(1 − 𝑌𝑖𝑠𝑗𝑞
𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘 ) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘 ) ≥∑ 𝑡𝑖𝑞ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘 )

ℎ ∈𝑣𝑖𝑗
𝑘∩𝑣𝑖𝑞

𝑘
 

𝑖 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘;  𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟; 

(5.20) 

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘  

𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾 

(5.21) 

𝑋𝑖𝑠𝑗
𝑘 , 𝐶𝑖𝑠

𝑘 ≥ 0;  

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1}; 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝑔𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ;  𝑀: large number. 

(5.22) 

𝑺𝑷(𝒎+  ), 𝒔𝒕𝒊𝒋(𝒎𝒊𝒋+ )
= 𝒎+  , ∀ 𝒊 ∈ 𝑰𝒎+  & 𝒋 ∈ 𝑱𝒊

𝒎+   (5.23) 
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𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ ∑ ∑ (𝛼×𝑤𝑖𝑗 − (∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)𝑋𝑖𝑠𝑗
𝑚𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (𝛽×𝑤𝑖𝑗)
𝑗∈𝑔𝑖𝑖∈𝐺

𝑇𝑖𝑗
𝑡

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)𝑀×𝜙𝑖𝑠𝑗
𝑚𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ (∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)
ℎ∈𝑉𝑖𝑗

𝑘
𝑡𝑖𝑗ℎ
𝑚 )𝑍𝑖𝑠ℎ

𝑚𝑡)
𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+ 2(∑ ∑ ∑ ∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

)×𝑀 − 𝜓 

             Subject to: 

𝑇𝑖𝑗 ≥ 𝑋𝑖𝑠𝑗
𝑚 − 𝑑𝑖𝑗  

𝑖 ∈ 𝐼𝑚+1, 𝑗 ∈ 𝐽𝑖
𝑚+1;  𝑠 ∈ 𝑆𝑖

𝑚; 
(5.24) 

𝑋𝑖𝑠𝑗
𝑚 , 𝑇𝑖𝑗 ≥ 0;  

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1}; 

𝑖 ∈ 𝐺; 𝑗 ∈ 𝑔𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘;  𝑗, 𝑞 ∈ 𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ;  𝑀: large number. 

(5.25) 

A summation of objective function values (5.9), (5.11), and (5.23) is the reduced cost obtained from the 

DLMP for finding the next promising column to enter the RLMP. Constraint (5.10) ensures that processing 

of each job cannot be started on the first stage if the job is not released in the initial virtual stage. Set of 

constraints (5.12) through (5.22) determine independently the partial sequence and assignment of batches 

on machines as well as the partial sequence of jobs within batches on each machine in each stage. Set of 

constraints (5.12) through (5.15) determine the optimal batch compositions of groups in a stage.  Constraints 

(5.16) together with constraint (5.17) are incorporated to assign values to binary variables 𝐴𝑝𝑡𝑖𝑠
𝑘  and, 

consequently, find the optimal sequence of batches on machines. Constraint (5.18) ensures that the 

processing of any job within a batch in each of the stages only starts when the corresponding machine is 

available to be setup for that batch. Set of constraints (5.19) and (5.20) are incorporated to assign values to 

binary variables 𝑌𝑖𝑠𝑗𝑞
𝑘  and, consequently, find the optimal sequence of jobs within batches. Constraint (5.21) 

determines the completion time of each batch. Constraint (5.24) is applied to find the tardiness of each job 

in the final virtual stage. Finally, constraints (5.22) and (5.25) contains all the signs and binary constraints. 
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In spite of excluding the combination between batch compositions of all groups for the entire stages as well 

as bi-criteria objective function and non-zero job release time from the middle stages, each 𝑆𝑃(𝑘), 𝑘 ∈ 𝐾 

is still a sequence-dependent batching and scheduling problem on either a set of unrelated-parallel machines 

or one single-machine. Although each SP developed in each node of the B&P algorithm is strongly NP-

hard (Du and Leung 1990, Ho and Chang 1995, Karp 1972, Lenstra et al. 1990), the column generation 

technique together with simplified SPs is developed in each node so that it can be applied even on large-

size instances of the batch scheduling problem in HFS. Therefore, DWD2 is introduced in the next section. 

5.3.1.2. DWD2 

As mentioned before, in the RMILP model, desired lower bound on batch sizes are relaxed from the MILP1 

model so that there is a possibility to obtain either an optimal solution or a good quality lower bound for 

the MILP1 model. Therefore, the batching phase of the MILP1 model is removed and the job assignment 

and sequence on machines are determined for the entire stages. Since the RMILP model is developed based 

on the MILP1 model, DWD2 can be considered as a restricted version of DWD1.  

Several lifelike assumptions to reflect real industry requirements along with the exhaustive combination 

enumeration between batch compositions for the entire stages make the problem very complex. As 

mentioned in DWD1, with the help of two virtual stages, initial and final virtual stages, the assumptions of 

non-zero job release time as well as bi-criteria objective function are excluded from middle-stage SPs of 

DWD1. Therefore, the objective function associated with middle-stage SPs is related to only one criterion, 

i.e., total completion time. All jobs begin their process from the initial virtual stage, while all jobs will be 

completed at the final virtual stage. Run times of all jobs in these two stages are equal to zero. In addition, 

an exhaustive combination enumeration between batch compositions for the entire stages is excluded by 

relaxing the linking constraint. Hence, each 𝑆𝑃(𝑘) ∀𝑘 ∈ 𝐾 is still a batching and scheduling problem on 

either a single-machine or a set of unrelated-parallel machines.  

The identification of structural non-dominance properties corresponding to the batch composition 

restrictions is a key step to reduce the solution space of middle-stage SPs to a non-dominated set and, 

consequently, to make possible the solution in affordable time. Therefore, the batching phase of middle-

stage SPs of DWD1 is restricted to allocate one and only one job to each batch of each group in DWD2. 

Thus, the optimal solution is guaranteed when there is no violation on 𝐿𝐵𝑖ℎ
𝑘 ; otherwise the SP gives a lower 

bound for the original SP. This being the case, DWD2 is developed by implementing the following changes 

on DWD1:  
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• If there is a desired lower bound(s), relax such requirement(s) as 𝐿𝐵𝑖ℎ
𝑘 = 1, where 𝑖 ∈ 𝐼𝑘; ℎ ∈

𝑣𝑘; 𝑘 ∈ 𝐾; 

• Constraints (5.12), (5.14), (5.15), (5.19) and (5.20) are excluded; 

• Change variable ∅𝑖𝑠𝑗
𝑘  to a parameter as: 𝑗𝑡ℎ job of group 𝑖 is assigned to 𝑠𝑡ℎ batch of that group in 

each stage, so that 𝑗 = 𝑠 (i.e., ∅𝑖𝑗𝑗
𝑘 = 1, where 𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘;  𝑘 ∈ 𝐾; ∅𝑖𝑗𝑗
𝑘 = 0, otherwise);  

• Change the inequality constraint (5.13) to equality constraint as σ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑣𝑘 = 1; where 𝑖 ∈ 𝐼𝑘; 𝑗 ∈

𝐽𝑖
𝑘;  𝑠 ∈ 𝑆𝑖

𝑘;  𝑘 ∈ 𝐾; 

• Remove variable 𝑌𝑖𝑠𝑗𝑞
𝑘 , because there is only one job assigned to each batch. 

Consequently, the index “𝑠” is removed from decision variables and each middle-stage SP is converted to 

a job scheduling problem, instead of batch scheduling. Although DWD2 can be developed directly from 

the RMILP model, it is developed based on DWD1 to show the difference between SPs, particularly middle-

stage SPs, of the two developed DWDs.  

In the RMILP model, constraint (4.25) is the only linking constraint. With respect to this constraint, 

completion time of a job in each stage is coupled with the completion time of that job in the preceding stage 

where the job had its latest operation. By relaxing constraint (4.25), the partial job assignment and 

sequences on machines related to each stage are determined. In addition to the notations used in Section 

4.1.4, the following notations are defined to formulate the RMP and SPs. Subsequently, objective functions 

and constraint sets of the SPs as well as the RMP and dual of the linear master problem (DLMP) are defined.  

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇} 

𝑇 Total number of columns, where each column represents the partial schedules for all the stages,  

𝑋𝑖𝑗
𝑘𝑡 The completion time of job 𝑗 of group 𝑖 in stage 𝑘 in column 𝑡 

𝑇𝑖𝑗
𝑡  The tardiness of job 𝑗 of group 𝑖 in column 𝑡 

𝑍𝑖𝑗ℎ
𝑘𝑡  1 if job 𝑗 of group 𝑖 is assigned to machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise  

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise 

  

Restricted linear master problem (RLMP)  

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗(𝛼. 𝑋𝑖𝑗
(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡 (5.26) 

Subject to:  
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∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 
𝑡∈𝒯

𝜆𝑡 ≥ 0;  

𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1; 

(5.27) 

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.28) 

𝜆𝑡 ≥ 0;  𝑡 ∈ 𝒯. (5.29) 

Since all variables 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
, 𝑍

𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡
, and 𝑇𝐷𝑖𝑗

𝑡  related to the RMILP model are assumed to be known, the 

only decision variable in the model is binary variables 𝜆𝑡. Assume Φ𝑖𝑗𝑟 , ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 =

1,2,… ,𝑚𝑖𝑗 and 𝜓 as dual variables associated with constraints (5.27) and (5.28), respectively.   

Subsequently, new objective functions and constraint sets of the SPs as well as the new RMP and DLMP 

are defined as follows: 

Dual of the linear master problem (DLMP) 

𝑀𝑎𝑥 𝑍 = 𝜓 (5.30) 

Subject to:  

∑ ∑ ∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 ×
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺
Φ𝑖𝑗𝑟 + 𝜓 

(5.31) 

≤∑ ∑ 𝑤𝑖𝑗 (𝛼. 𝑋𝑖𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
;  𝑡 ∈ 𝒯; 

Φ𝑖𝑗𝑟 ≥ 0; ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗; (5.32) 

𝜓    𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑;  (5.33) 
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Sub-problems (SPs) 

𝑺𝑷(𝟎), 𝒔𝒕𝒊𝒋(𝟎) = 𝟎,∀ 𝒊 ∈ 𝑰𝟎 & 𝒋 ∈ 𝑱𝒊
𝟎  

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ ∑ (Φ𝑖𝑗1)𝑋𝑖𝑗
0𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
 

(5.34) 

Subject to:  

𝑋𝑖𝑗
0 ≥ 𝑟𝑖𝑗;  𝑖 ∈ 𝐼

0, 𝑗 ∈ 𝐽𝑖
0. (5.35) 

𝑺𝑷(𝒌),  ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒊𝒋(𝒓) = 𝒌, ∀𝒊 =  ,  ,… , 𝒈 & 𝒋 =  ,  ,… , 𝒏𝒊 & 𝒓 =  ,  ,… ,𝒎𝒊𝒋 

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ ∑ (Φ𝑖𝑗(𝑟+1))𝑋𝑖𝑗
𝑘𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
−∑ ∑ (Φ𝑖𝑗𝑟)𝑋𝑖𝑗

𝑘𝑡

𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (∑ 𝑡𝑖𝑗ℎ
𝑘 (Φ𝑖𝑗𝑟)

𝑗∈𝑔𝑖

)𝑍𝑖𝑗ℎ
𝑘𝑡

ℎ∈𝑣𝑖𝑗
𝑘

𝑖∈𝐺
 

(5.36) 

Subject to:  

σ 𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘 = 1; 𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖

𝑘;  (5.37) 

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑗′𝑖𝑗

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘 ) ≥ 𝑋𝑝𝑗′
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘     

(5.38) 

𝑖, 𝑝 ∈ 𝐼𝑘  (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′);  𝑗′ ∈ 𝐽𝑝
𝑘;  𝑗 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ; 

𝑋𝑝𝑗′
𝑘 +𝑀(𝐴𝑝𝑗′𝑖𝑗

𝑘 ) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘 ) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘 ) ≥ 𝑋𝑖𝑗
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗′ℎ
𝑘  

𝑖, 𝑝 ∈ 𝐼𝑘  (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′);  𝑗′ ∈ 𝐽𝑝
𝑘;  𝑗 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ; 
(5.39) 

𝑋𝑖𝑗
𝑘 ≥ σ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘 )𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘 ;  𝑖 ∈ 𝐼𝑘;  𝑗 ∈ 𝐽𝑖

𝑘;  (5.40) 

𝑋𝑖𝑗
𝑘 , 𝑇𝐷𝑖𝑗 ≥ 0; 𝑍𝑖𝑗ℎ

𝑘 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗
𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′); 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; 𝑗′ ∈

𝐽𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 . 
(5.41) 
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𝑺𝑷(𝒎+  ), 𝒔𝒕𝒊𝒋(𝒎𝒊𝒋+ )
= 𝒎+  , ∀ 𝒊 ∈ 𝑰𝒎+  & 𝒋 ∈ 𝑱𝒊

𝒎+  

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ ∑ (𝛼 ∗ 𝑤𝑖𝑗 −Φ𝑖𝑗𝑚)𝑋𝑖𝑗
𝑚𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
+∑ ∑ (𝛽 ∗ 𝑤𝑖𝑗)𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (∑ 𝑡𝑖𝑗ℎ
𝑚 (Φ𝑖𝑗𝑟)

𝑗∈𝑔𝑖

)𝑍𝑖𝑗ℎ
𝑚𝑡

ℎ∈𝑣𝑖𝑗
𝑚𝑖∈𝐺

− 𝜓 
(5.42) 

Subject to: 

𝑇𝑖𝑗 ≥ 𝑋𝑖𝑗
𝑚 − 𝑑𝑖𝑗; 𝑖 ∈ 𝐼

𝑚+1, 𝑗 ∈ 𝐽𝑖
𝑚+1; (5.43) 

𝑋𝑖𝑗
𝑚, 𝑇𝑖𝑗 ≥ 0; 𝑍𝑖𝑗ℎ

𝑚 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗
𝑚 ∈ {0,1} (𝑝 ≤ 𝑖); 𝑖, 𝑝 ∈ 𝐼𝑚+1; 𝑗 ∈ 𝐽𝑖

𝑚+1; ℎ ∈ 𝑣𝑖𝑗
𝑚+1. (5.44) 

Set of constraints (5.26) through (5.29) and set of constraints (5.30) through (5.33) determine the RLMP 

and DLMP, respectively, with respect to simplifications to the SPs. A summation of objective function 

values (5.34), (5.36), and (5.42) is the reduced cost obtained from the DLMP for finding the next promising 

column to enter the RLMP. Constraint (5.35) ensures that processing of each job cannot be started on the 

first stage if the job is not released in the initial virtual stage. Set of constraints (5.37) through (5.41) 

determine independently the partial sequence of jobs belonging to different groups on each machine in each 

stage. Constraint (5.37) ensures that each job of a group is assigned to only one machine. Constraints (5.38) 

together with constraint (5.39) are incorporated to find the sequence of jobs. With respect to these 

constraints, if two jobs are processed on the same machine, the completion time of the succeeding job 

(which is not skipping the stage) must be greater than the completion time of the preceding job, plus the 

sequence-dependent setup time and the run time required for processing the job on a particular stage. 

Simultaneously, these constraints assign values to binary variables 𝐴𝑝𝑗′𝑖𝑗
𝑘 , which determine the sequence of 

jobs on the same machine in each stage. Constraint (5.40) ensures that the processing of any job in each of 

the stages only starts when the corresponding machine is available to be setup for that job. Constraint (5.43) 

is applied to find the tardiness of each job in the final virtual stage. Finally, constraints (5.41) and (5.44) 

contains all the signs and binary constraints. 

Since DWD2 is based on the RMILP model, which itself is the restricted version of the MILP1 model, the 

lower bound obtained by DWD2 might be a tight lower bound for the RMILP model unless the number of 

violations in 𝐿𝐵𝑖ℎ
𝑘  is not significant (case 6 in Figure 8). In this case, given the computational time limit, 
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there is a possibility of obtaining a tight lower bound for any of the MILP models by DWD2, particularly 

for medium- and large-size problems.  

5.3.1.3. DWD3 

Since middle-stage SPs of DWD1 are NP-hard, this algorithm might not be able to present tight lower 

bounds, particularly for large-size problems. In addition, DWD2 can obtain tight lower bounds for any of 

the MILP models only when the middle-stage SPs of this algorithm do not violate 𝐿𝐵𝑖ℎ
𝑘  significantly. 

Therefore, similar to the structure of DWD1, DWD3 is developed based on the MILP3 model so that it 

guarantees tight lower bounds of problems, as 𝐿𝐵𝑖ℎ
𝑘  will never be violated. 

In the MILP3 model, constraint (4.43) is the only linking constraint. By relaxing this constraint, all the 

other constraints include only the decision variables corresponding to a particular stage at a time and, 

consequently, there is one SP for each stage, determining the partial job assignment and sequence on that 

stage. These partial sequences are linked together with the help of constraint (4.43) in the RMP. Apart from 

this, two virtual stages are implemented to simplify middle-stage SPs. In addition to the notations used in 

Section 4.1.3 and following the same procedure presented in Section 5.3.1.1, the following notations are 

defined to formulate the RMP and SPs. Subsequently, objective functions and constraint sets of the SPs as 

well as the RMP and dual of the linear master problem (DLMP) are defined.  

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇} 

𝑇 Total number of columns, where each column represents the partial schedules for all the stages  

𝑋𝑗
𝑘𝑡 The completion time of job 𝑗 in stage 𝑘 in column 𝑡 

𝑇𝑗
𝑡 The tardiness of job 𝑗 in column 𝑡 

𝑥𝑙𝑗ℎ
𝑘𝑡  1 job 𝑗 is scheduled immediately after job 𝑙 on machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise  

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise 

  

Restricted linear master problem (RLMP)  

𝑀𝑖𝑛 𝑍 =∑ (∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
)

𝑡∈𝒯
𝜆𝑡 (5.45) 

Subject to:  
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∑

(

 
 
𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

   ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙 )

 
 

𝑡∈𝒯
𝜆𝑡 ≥ 0;  

∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1; 

(5.46) 

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.47) 

𝜆𝑡 ≥ 0;  𝑡 ∈ 𝒯. (5.48) 

Assume Φ𝑗𝑟, ∀𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗 and 𝜓 as dual variables associated with constraint (5.46) and (5.47), 

respectively. Subsequently, new objective functions and constraint sets of the SPs as well as the new RMP 

and DLMP are defined as follows: 

Dual of the linear master problem (DLMP) 

𝑀𝑎𝑥 𝑍 = 𝜓 (5.49) 

Subject to:  

∑ ∑

(

 
 
𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

   ℎ∈𝑉
𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉

𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙 )

 
 
×

𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑁
Φ𝑗𝑟 + 𝜓 

(5.50) 

≤∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
;  𝑡 ∈ 𝒯; 

Φ𝑗𝑟 ≥ 0;∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗; (5.51) 

𝜓    𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑;  (5.52) 

Sub-problems (SPs) 
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𝑺𝑷(𝟎), 𝒔𝒕𝒋(𝟎) = 𝟎,  & 𝒋 ∈ 𝑵  

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ (Φ𝑗1)𝑋𝑗
0𝑡

𝑗∈𝑁
 

(5.53) 

Subject to:  

𝑋𝑗
0 ≥ 𝑟𝑗;  𝑗 ∈ 𝑁. (5.54) 

  

𝑺𝑷(𝒌),  ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒋(𝒓) = 𝒌, ∀𝒋 ∈ 𝑵 & 𝒓 =  ,  ,… ,𝒎𝒊𝒋 

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ (Φ𝑗(𝑟+1))𝑋𝑗
𝑘𝑡

𝑗∈𝑁
−∑ (Φ𝑗𝑟)𝑋𝑗

𝑘𝑡

𝑗∈𝑁

+∑ ∑ (∑ 𝑡𝑗ℎ
𝑘 (Φ𝑗𝑟)

𝑗∈𝑁
)𝑥𝑙𝑗ℎ

𝑘𝑡

   ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘
𝑙∈𝑁𝑘∪{0}

𝑗≠𝑙

 

(5.55) 

Subject to:  

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

    ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑙≠𝑗

= 1 

∀𝑗 ∈ 𝑁𝑘; 

(5.56) 

∑ 𝑥0𝑗ℎ
𝑘

𝑗∈𝑁𝑘

≤ 1 

∀ℎ ∈ 𝑉𝑘; 

(5.57) 

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

   ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑗∈𝑁𝑘

𝑙≠𝑗

≤ 1 

∀𝑙 ∈ 𝑁𝑘; 

(5.58) 
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∑ 𝑥𝑙𝑗ℎ
𝑘

𝑙∈𝑁∪{0}
𝑙≠𝑗

= ∑ 𝑥𝑗𝑙ℎ
𝑘

𝑙∈𝑁∪{𝑛+1}
𝑙≠𝑗

 

∀𝑗 ∈ 𝑁𝑘 , ∀ℎ ∈ 𝑉𝑗
𝑘; 

(5.59) 

(∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘 )

   𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,…,𝑙≠𝑗ℓ

𝑗ℓ

𝑗=𝑗1

)+ 2(∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

)

≥ 2(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 )(𝐿𝐵𝑖ℎ

𝑘 − 1) 

(5.60) 

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 ) ≥ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

 (5.61) 

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 − 1) ≤ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘 )

𝑗ℓ

   𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

− 𝜀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 ) (5.62) 

∀ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ
𝑘 = ℓ (ℓ > 1), ∀{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 , 0 < 𝜀 < 1;  

𝑋𝑗
𝑘 +𝑀(1 − 𝑥𝑙𝑗ℎ

𝑘 ) ≥ 𝑋𝑙
𝑘 + 𝑆𝑙𝑗ℎ

𝑘 + 𝑡𝑗ℎ
𝑘  

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘; 
(5.63) 

𝑋0
𝑘 = 𝑎ℎ

𝑘 

∀ℎ ∈ 𝑉𝑘; 

(5.64) 

𝑋𝑗
𝑘 ≥ 0 

∀𝑗 ∈ 𝑁𝑘;  

𝑥𝑙𝑗ℎ
𝑘 ∈ {0, 1} 

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘 ∪ {𝑛 + 1}|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘. 
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𝑺𝑷(𝒎+  ), 𝒔𝒕𝒋(𝒎𝒋+ )
= 𝒎+  , ∀ 𝒋 ∈ 𝑵  

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ (𝛼 ∗ 𝑤𝑗 −Φ𝑗𝑚)𝑋𝑗
𝑚𝑡

𝑗∈𝑁
+∑ (𝛽 ∗ 𝑤𝑗)𝑇𝑗

𝑡

𝑗∈𝑁

+∑ ∑ (∑ 𝑡𝑗ℎ
𝑚(Φ𝑗𝑟)

𝑗∈𝑁
)𝑥𝑙𝑗ℎ

𝑚𝑡

   ℎ∈𝑉𝑙
𝑚∩𝑉𝑗

𝑚
𝑙∈𝑁𝑚∪{0}

𝑗≠𝑙

− 𝜓 (5.65) 

Subject to: 

𝑇𝑗 ≥ 𝑋𝑗
𝑚 − 𝑑𝑗; ∀𝑗 ∈ 𝑁; (5.66) 

𝑋𝑗
𝑚, 𝑇𝑗 ≥ 0; 𝑥𝑙𝑗ℎ

𝑚 ∈ {0,1}; 𝑙, 𝑗 ∈ 𝑁𝑚+1;    ℎ ∈ 𝑉𝑙
𝑚+1 ∩ 𝑉𝑗

𝑚+1. (5.67) 

Set of constraints (5.45) through (5.48) and set of constraints (5.49) through (5.52) determine the RLMP 

and DLMP, respectively, with respect to simplifications for the SPs. A summation of objective function 

values (5.49), (5.53), and (5.65) is the reduced cost obtained from the DLMP for finding the next promising 

column to enter the RLMP. Constraint (5.54) ensures that processing of each job cannot be started on the 

first stage if the job is not released in the initial virtual stage. Set of constraints (5.56) through (5.64) 

determine independently the partial sequence of jobs belonging to different groups on each machine in each 

stage, regarding the desired lower bounds on batch sizes. Set of constraints (5.56) through (5.59) determine 

the sequence of jobs on machines. Set of constraints (5.60) through (5.62) consider the desired lower bounds 

on batch sizes. As a result, set of constraints (5.56) through (5.62) determine the optimal job sequence on 

machines regarding the desired lower bounds on batch sizes. Constraints (5.63) is incorporated to find the 

completion time of jobs. Constraint (5.66) is applied to find the tardiness of each job in the final virtual 

stage. Finally, constraints (5.64) and (5.67) contains all the signs and binary constraints. 

5.3.1.4. Sub-problem acceleration time  

The SPs developed by DWDs should be optimized at each iteration of column generation in order to identify 

columns with the most negative reduced costs and introduce the best one to the master problem. However, 

not only the column with the most negative reduced cost, but also any column with a negative reduced cost 

is a candidate to improve the RMP during the course of column generation. Some researchers (Barnhart et 

al. 1998, Vanderbeck 1994) have suggested that a heuristic algorithm can be used in early stages of column 

generation algorithm to approximately solve a SP for identifying new columns with negative reduced costs, 

especially if they are computationally too expensive to solve. Then, whenever the heuristic fails to find a 
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promising column, the search should be switched to an exact algorithm to optimally solve the SP. Therefore, 

a heuristic algorithm can be used to approximately solve the SPs to identify new columns with negative 

reduced costs, especially if they are computationally too expensive to solve. With respect to solving the 

SPs heuristically, two approaches corresponding to introducing columns to the master problem exist as 

follows: 

1. Stop a heuristic algorithm as soon as a negative reduced cost column is identified. 

2. Select all negative reduced cost columns that the heuristic identifies and append them all into the 

RMP. 

The first approach will reduce the computation time per iteration but the overall effect may not be attractive 

since the number of iterations will probably increase, while the second approach will require more time per 

iteration and may decrease the total number of iterations. Since more columns are added to the RMP in 

each iteration, the RMP grows rapidly and may become harder to solve.  

The lower bounds are valid only when all the SPs are solved optimally and exact optimization is applied. 

An optimal solution of an SP cannot be guaranteed by heuristic procedure. Apart from this, there may exist 

negative reduced cost columns but the heuristic is not able to identify them. In order to deal with this 

problem, a two-phase approach is employed to solve the SPs. In the first phase, a fast heuristic is used to 

solve the SP approximately as long as it identifies a negative reduced cost column. In case the heuristic 

fails to identify such a column, an exact algorithm that solves the SP to optimality is invoked to prove 

optimality or to generate a column with a negative reduced cost in the second stage. Although the column 

generation algorithm is initialized by either a solution obtained heuristically or the developed initial solution 

finding mechanism, this acceleration technique to solve the SPs is more beneficial in solving the SPs 

obtained from DWD1 as the SPs obtained from DWD2 and DWD3 might be optimally solved, particularly 

for small- and medium-size problems.  

5.3.1.5. Comparison between developed DWDs 

During the iterative process of column generation for a small-, medium-, and large-size problem, the 

progress of DWDs are demonstrated in Figures 21 through 23, respectively, and the following results are 

obtained from comparison between DWDs: 

• The lower bound obtained by DWD3 present the minimum gap from either the optimal solution or 

the upper bound compared to the lower bounds obtained by DWD1 and DWD2 for all problem 

sizes.  
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• Since the number of violations on batch sizes is not significant, DWD2 is capable of identifying a 

lower bound with 4.5% deviation from the lower bound developed by DWD3 for a small-size 

problem. In addition, DWD2 develops lower bounds with a gap of around 21.2% and 13.5% from 

the lower bounds identified by DWD3 for medium- and large-size problems because the number 

of violations on batch sizes is significant.   

• The lower bounds obtained by CPLEX are very poor in quality compared to the upper bounds 

obtained by PSO/LSA. Alternatively, DWD3 establishes good quality lower bounds as a baseline 

for evaluation of the proposed algorithms.  

• The lower bound developed by DWD1 has a large gap compared to the lower bounds developed 

by DWD3, particularly for the large-size problem, because the SPs obtained by DWD1 are still so 

large that they cannot be optimally solved.  

• Although DWD2 converges to the upper bound faster than DWD3 in early iterations of column 

generation, there is a significant gap between the lower bounds developed by DWD2 and DWD3 

because the SPs obtained by DWD2 violate significantly the desired lower bounds on batch sizes.  

 

Figure 21. Iterative progress of DWDs on a small-size problem 
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Figure 22. Iterative progress of DWDs on a medium-size problem 

 

 

Figure 23. Iterative progress of DWDs on a large-size problem 
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In conclusion, our preliminary experiments revealed that the SPs obtained by the DWD3 decomposition 

technique can be optimally solved, while DWD1 is only capable of finding lower bounds for small-size 

problems. Also, for larger size of problems, the SPs obtained by DWD1 are still NP-hard so that they cannot 

be optimally solved, even when the acceleration technique is applied for developed SPs. Therefore, DWD1 

is not capable of finding even good quality lower bound for large-size problems. In addition, the SPs 

obtained by DWD2 can be optimally solved but the desired lower bounds on batch sizes might be violated 

by some of the SPs. Therefore, DWD2 cannot guarantee finding tight lower bounds if the number of 

violations in 𝐿𝐵𝑖ℎ
𝑘  is significant. Thus, DWD2 and DWD3 are the only approaches that have been used in 

the B&P algorithm.  

5.3.2. Stabilization 

Barnhart et al. (1998) noted that column generation has been successfully applied to many large size 

problems, particularly in the field of routing and scheduling. However, this approach is known for its slow 

convergence. In other words, remarkable improvement is achieved in a very short period of time, only 

during the first iterations of column generation, while little progress is obtainable when the search is close 

to the optimal solution in later iterations. This phenomenon is referred to as the tailing-off effect, and usually 

causes adverse impacts on the efficiency of the algorithm (Lübbecke and Desrosiers 2005).  

It is possible that the reduced costs of promising columns are not appropriately estimated by dual values in 

early iterations of column generation. The dual values obtained by the DLMP are the extreme points of the 

dual polyhedron, which are characterized by very large values of some columns while the others are set to 

zero. Therefore, the reduced costs estimated by those extreme points oscillate severely, which lead the 

algorithm to perform many more iterations to find the optimal solution of the RLMP.  

In order to accelerate the convergence of column generation, several techniques, which are generally 

referred to as stabilization, are proposed in the literature in order to accelerate the convergence of column 

generation. The main idea behind all techniques lies on the fact that these techniques prevent the dual 

variables from taking extreme values. Marsten et al. (1975) proposed one of the earliest stabilization 

techniques, referred to as BOXSTEP. Kim et al. (1995) pursue the same purpose, but used a different 

approach. Du Merle et al. (1997) proposed a very well-known stabilization technique, which combines the 

concepts of both the approaches proposed by Marsten et al. (1975) and Kim et al. (1995), referred to 

BOXPEN. Also, Rousseau et al. (2007) proposed a totally different stabilization technique compared to the 

approach proposed by Du Merle et al. (1997). In this research, the BOXPEN technique is implemented to 

stabilize column generation since it is shown to be very effective in reducing the total computational time 

(Bozorgirad 2013). Based on this technique, a soft box is considered for each dual variable to prevent them 
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from taking extreme values. In the following sub-sections, the BOXPEN stabilization method is 

implemented for DWD2 and DWD3 so that some modifications must be made in the RLMP and DLMP 

while there is no modification needed for the SPs.   

5.3.2.1. Stabilizing DWD2 

𝑳𝑴𝑷𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅  

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗(𝛼. 𝑋𝑖𝑗
(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡

+∑ ∑ ∑ (−𝛿𝑖𝑗𝑟
− . 𝜉𝑖𝑗𝑟

− + 𝛿𝑖𝑗𝑟
+ . 𝜉𝑖𝑗𝑟

+ )

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑔𝑖𝑖∈𝐺

 

(5.68) 

Subject to:  

∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 
𝑡∈𝒯

𝜆𝑡 − 𝜉𝑖𝑗𝑟
− + 𝜉𝑖𝑗𝑟

+ ≥ 0;  

𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1; 

(5.69) 

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.70) 

−𝜉𝑖𝑗𝑟
− ≥ −𝜀𝑖𝑗𝑟

−  (5.71) 

−𝜉𝑖𝑗𝑟
+ ≥ −𝜀𝑖𝑗𝑟

+  (5.72) 

𝜆𝑡 ≥ 0; 𝜉𝑖𝑗𝑟
− ≥ 0; 𝜉𝑖𝑗𝑟

+ ≥ 0;  

𝑡 ∈ 𝒯; 𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2, … ,𝑚𝑖𝑗 , 𝑚𝑖𝑗 + 1. 
(5.73) 

where 𝜉𝑖𝑗𝑟
−  and 𝜉𝑖𝑗𝑟

+  are the BOXPEN artificial variables so that the term σ σ σ (−𝛿𝑖𝑗𝑟
− . 𝜉𝑖𝑗𝑟

− +
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺

𝛿𝑖𝑗𝑟
+ . 𝜉𝑖𝑗𝑟

+ ) in the objective function of the LMP penalizes theses variables. In order to create limits on the 

dual variables, constraint (5.69) is modified to include 𝜉𝑖𝑗𝑟
−  and 𝜉𝑖𝑗𝑟

+ . In addition, constraints (5.71) and 
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(5.72) define 𝜀𝑖𝑗𝑟
−  and 𝜀𝑖𝑗𝑟

+  as upper bounds on 𝜉𝑖𝑗𝑟
−  and 𝜉𝑖𝑗𝑟

+ , respectively. The following new dual variables 

are defined: 

𝜚𝑖𝑗𝑟
−  Dual variable associated with constraint (5.71) 

𝜚𝑖𝑗𝑟
+  Dual variable associated with constraint (5.72) 

𝑫𝑳𝑴𝑷𝑺𝒕𝒂𝒃𝒊𝒍𝒊𝒛𝒆𝒅 

𝑀𝑎𝑥 𝑍 = 𝜓 +∑ ∑ ∑ (−𝜀𝑖𝑗𝑟
− . 𝜚𝑖𝑗𝑟

− − 𝜀𝑖𝑗𝑟
+ . 𝜚𝑖𝑗𝑟

+ )

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑔𝑖𝑖∈𝐺

 (5.74) 

Subject to:  

∑ ∑ ∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 ×
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺
Φ𝑖𝑗𝑟 + 𝜓 

(5.75) 

≤∑ ∑ 𝑤𝑖𝑗 (𝛼. 𝑋𝑖𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
;  𝑡 ∈ 𝒯; 

−Φ𝑖𝑗𝑟 − 𝜚𝑖𝑗𝑟
− ≤ −𝛿𝑖𝑗𝑟

−  (5.76) 

Φ𝑖𝑗𝑟 − 𝜚𝑖𝑗𝑟
+ ≤ 𝛿𝑖𝑗𝑟

+  (5.77) 

Φ𝑖𝑗𝑟 ≥ 0; 𝜚𝑖𝑗𝑟
− ≥ 0; 𝜚𝑖𝑗𝑟

+ ≥ 0; ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 = 1,2, … ,𝑚𝑖𝑗; (5.78) 

𝜓    𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑.  (5.79) 

Constraints (5.76) and (5.77) create limits on the dual variables. However, these variables are allowed to 

exceed those limits with the assignment of a penalty in the objective function (5.74). 

5.3.2.2. Stabilizing DWD3 

𝑳𝑴𝑷𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅 
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𝑀𝑖𝑛 𝑍 =∑ (∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
)

𝑡∈𝒯
𝜆𝑡 +∑ ∑ (−𝛿𝑗𝑟

− . 𝜉𝑗𝑟
− + 𝛿𝑗𝑟

+ . 𝜉𝑗𝑟
+ )

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑁

 (5.80) 

Subject to:  

∑

(

 
 
𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

   ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙 )

 
 

𝑡∈𝒯
𝜆𝑡 − 𝜉𝑗𝑟

− + 𝜉𝑗𝑟
+ ≥ 0;  

∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1; 

(5.81) 

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.82) 

−𝜉𝑗𝑟
− ≥ −𝜀𝑗𝑟

−  (5.83) 

−𝜉𝑗𝑟
+ ≥ −𝜀𝑗𝑟

+  (5.84) 

𝜆𝑡 ≥ 0; 𝜉𝑗𝑟
− ≥ 0; 𝜉𝑗𝑟

+ ≥ 0; 

∀𝑡 ∈ 𝒯;  𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1. 
(5.85) 

Define the following new dual variables: 

𝜚𝑗𝑟
−  Dual variable associated with constraint (5.83) 

𝜚𝑗𝑟
+  Dual variable associated with constraint (5.84) 

𝑫𝑳𝑴𝑷𝑺𝒕𝒂𝒃𝒊𝒍𝒊𝒛𝒆𝒅 

𝑀𝑎𝑥 𝑍 = 𝜓 +∑ ∑ (−𝜀𝑗𝑟
− . 𝜚𝑗𝑟

− − 𝜀𝑗𝑟
+ . 𝜚𝑗𝑟

+ )

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑁

 (5.86) 

Subject to:  



146 

 

∑ ∑

(

 
 
𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

   ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙 )

 
 
×

𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑁
Φ𝑗𝑟 + 𝜓 

(5.87) 

≤∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
;  𝑡 ∈ 𝒯; 

−Φ𝑗𝑟 − 𝜚𝑗𝑟
− ≤ −𝛿𝑗𝑟

−  (5.88) 

Φ𝑗𝑟 − 𝜚𝑗𝑟
+ ≤ 𝛿𝑗𝑟

+  (5.89) 

Φ𝑗𝑟 ≥ 0; 𝜚𝑗𝑟
− ≥ 0; 𝜚𝑗𝑟

+ ≥ 0; ∀𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗; (5.90) 

𝜓    𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑.  (5.91) 

5.3.3. Early termination of column generation  

In spite of implementing stabilization technique to reduce the number of iterations required by column 

generation, the difficulties of tailing-off effects do not completely resolve. In other words, there will still 

be large number of columns required to optimally solve the linear master problem (LMP). Therefore, 

instead of solving the LMP to optimality, we can decide to permanently end the column generation progress 

and work with the bounds on the final LMP (Barnhart et al. 1998). Farley (1990), Lasdon (1970), 

Vanderbeck and Wolsey (1996) describe different methods for calculating such a bound in column 

generation. The bound is determined as follows: 

𝑍∗ The optimal solution of the LMP 

�̅� The optimal solution of the RLMP 

𝑍∗𝑠𝑝𝑘  The most negative reduced cost corresponding to the SP 𝑘 

Lübbecke and Desrosiers (2005) describe that when there is an upper bound on the variables of LMP such 

as σ 𝜆𝑗𝑗𝜖𝐽 ≤ 𝜁, where 𝐽 is the set of all possible columns, not only an upper bound, but also a lower bound 

can be established for the optimal solution of the LMP. This bound is presented as �̅� + σ 𝑍∗𝑠𝑝𝑘𝜖𝐾 ≤ 𝑍∗ ≤

�̅�, where k is the set of all SPs. 
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5.3.4. Branching rule 

Since DWD2 and DWD3 are used to decompose the original problem into SPs and DWD3 presents a better 

performance compared to DWD2, the following branching rule is explained in detail for the B&P algorithm 

developed based on DWD3. The following three important decisions should be made in relation to 

branching: 

• variable selection amongst different kinds of variables for branching  

• choice order for branching variables  

• variable selection amongst the same kind of variables for branching  

• node selection for branching 

Combining column generation with a B&B algorithm, known as B&P algorithm, is not straightforward 

since branching on only the integer variables of the MP, i.e., 𝜆, leads to an inefficient B&P algorithm. The 

reason lies on the fact that branching on the 𝜆 variables does not provide an efficient strategy for restricting 

the number of newly generated columns since there is an unlimited number of columns that can be 

introduced to the MP by branching on each node of the B&B tree. A remedy to this difficulty is to perform 

branching on integer variables of the MILP3. An integrality constraint on one of the original variables, such 

as 𝑥, requires that σ 𝑥𝑡𝜆𝑡 = 1𝑡∈𝑇  be integral, where 𝑇 is the set of all columns in the RMP. This constraint 

is equivalent to 𝜆 ∈ {0, 1} in the RMP model (Bozorgirad 2013). Thus, instead of branching directly on the 

𝜆 variables, the integer variables of the original model are participating in the branching scheme. The only 

two integer variables of the MILP3 are binary variables and they are divided into the following two sets: 

• 𝑥-variables that determine the assignment and sequence of jobs on machines 

• 𝑌-variables that determine a sequence of jobs of the same group processed consecutively on 

machines 

The choice order for branching has an impact on the efficiency of the B&P algorithm so that the important 

decisions (which lead to other decisions be made automatically) must be made in early stages of the B&P 

tree. If this were the case, the assignment and sequence of jobs on machines can have the most significant 

impact on completion time of jobs. Therefore, the 𝑥-variables are selected as the first choice for branching. 

Since a tight lower bound is desirable, particularly for large-size problems, the process of branching can be 

terminated anywhere in the tree and the lower bound is determined with the help of the B&B algorithm.  

With respect to the priority of the set of variables selected for branching, i.e., 𝑥-variables or 𝑌-variables, an 

integer variable should be selected for further branching. In order to select a variable amongst the same 
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kind, i.e., 𝑥-variables or 𝑌-variables, on which to perform branching, the value of σ 𝑥𝑡𝜆𝑡 = 1𝑡∈𝑇  is 

calculated for all integer variables so that the one which is closest to 0.5 is selected as the branching variable. 

In relation with the node selection for further branching, a depth-first strategy is used for selecting the node 

with the minimum objective function amongst all possible nodes for branching. In this case, any 

improvement in the objective function of this node will directly improve the lower bound obtained by the 

B&B tree.  

In conclusion, the B&P algorithm is known to be very time consuming. Therefore, it is of vital importance 

to gain the most improvement possible by branching on the minimum number of nodes. The following 

description explains how a high contribution of 𝑥-binary variables in the objective function of the MP can 

reduce the total number of branches. The binary variables 𝑥𝑙𝑗ℎ
𝑘  are interdependent on the constraints (4.33) 

through (4.36) so that knowing the value of one of them will enable determining the value of the rest. For 

example, if job 2 is assigned to machine 3 in stage 4 when job 1 is the predecessor of job 2, and there are 

three machines in the fourth stage of HFS, then it is known that 𝑥123
4 = 1, while 𝑥𝑙2ℎ

4 = 0, ∀𝑙 ∈ 𝑁4 −

{1, 2}, ℎ ∈ 𝑉4 − {3}. Therefore, for job 𝑗 in stage 𝑘, if 𝑥𝑙𝑗ℎ
𝑘 = 1, the value of this binary variable for all the 

other predecessors and machines must be zero. Thus, it is sufficient to consider only the variables that are 

equal to one when branching on the 𝑥-binary variables.  

Briefly, instead of considering the following possible branches for the above example: 

𝑥𝑙2ℎ
4 = 1 or 𝑥𝑙2ℎ

4 = 0, ∀𝑙 ∈ 𝑁4 − {2}, ℎ ∈ 𝑉4 

It is sufficient to consider: 

𝑥𝑙2ℎ
4 = 1, ∀𝑙 ∈ 𝑁4 − {2}, ℎ ∈ 𝑉4 

As a result, the number of branches is substantially reduced by branching on binary variables of the model 

(𝑥-variables or 𝑌-variables). Following the same procedure, the branching rule related to the B&P algorithm 

based on DWD2 is developed. 

In order to show the impact of branching from the root node to the lower levels of the B&B tree, the amount 

of improvement on the lower bounds obtained by DWD3 for a small-, medium-, and large-size problem 

(demonstrated in Figures 21 through 23, respectively), are reported. The B&P optimization algorithm is 

capable of obtaining 1229.23, 6069.80, and 28391.02 as the lower bounds in the third, second, and second 

level of the small-, medium-, and large-size problem, respectively. Therefore, as a result of implementing 

branching from the root node of the B&B tree, an improvement of 3.73%, 6.42%, and 5.15% is obtained 

for the small-, medium-, and large-size problem, respectively.     
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6. EXPERIMENTAL SETUP AND DATA GENERATION 

Developing an efficient approach, namely batch scheduling, to deal with the HFS scheduling problem along 

with proposing a robust algorithm to solve industry-size problems is the main purpose of this research. In 

order to show the benefits of the batching phase in group scheduling as well as to precisely evaluate the 

proposed algorithms in Section 4, three basic questions must be answered: 

1) What is the benefit(s) of integrating the batching decision into the group scheduling approach? 

2) Which algorithm (a basic or hybrid meta-heuristic), if any, outperforms the others for accepted 

standard benchmark of real problems and/or a given test problem?  

3) How well do developed algorithms perform with respect to the optimal solution, or equivalently a 

tight lower bound as described in Section 5?  

With respect to the first question, a comparison between the batch scheduling and group scheduling 

approaches show the benefits of implementing batch scheduling instead of group scheduling. To answer 

the second question, the most widely used benchmark for flow shop scheduling is that of Taillard (1993). 

Vallada et al. (2015) proposed a new benchmark of hard instances for the permutation flow shop scheduling 

problem with the objective of minimizing the makespan. But there is not any accepted standard benchmark 

of real problems or their representatives, for hybrid flow shop group scheduling problems. Therefore, in 

order to reflect the real-world instances, a comprehensive data generation mechanism designs the different 

parameters applied in the model. To answer the third question, the results of the developed algorithms are 

compared with optimal solutions or lower bounds obtained from CPLEX as well as B&P.  

Since the size of a problem has a direct impact on the performance of any of the proposed meta-heuristic 

algorithms as well as the B&P algorithm, any comparison is performed on a set of randomly generated 

sample problems with the help of a comprehensive data generation mechanism. The notation of the MILP1 

model is used to show the equations of the data generation mechanism. The parameters are developed as 

follows:  

Problem size: the size of a problem is determined in terms of the problem structure, which has four different 

levels: (small, small), (small, large), (large, small) and (large, large). The first and second terms in the 

parenthesis denote the range of the number of groups and jobs within each group, respectively. Referring 

to Schaller et al. (2000) and some justifications for batch scheduling problems, “small” and “large” 

parameters in each level refer to a number generated from uniform distributions 𝑢𝑛𝑖𝑓[3, 5] and 𝑢𝑛𝑖𝑓[6, 10], 

respectively. It is worth noting that (small, small) and (large, large) levels can be considered as small- and 

large-size problems, respectively, while the other two levels can be considered as medium-size problems. 
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The range of the number of groups is in agreement with Schaller et al. (2000), while the range of the number 

of jobs within each group is unique to this research.  

Machine capability and eligibility: Logendran and Subur (2004), Mehravaran and Logendran (2011), 

Pandya and Logendran (2010) considered three different types of machines based on the capability of 

processing: least, medium and most capable machines, which are eligible to process 50%, 70% and 85% of 

all jobs, respectively. In order to assign different capabilities to machines in 𝑘𝑡ℎ stage of HFS, if the number 

of machines is 𝑣𝑘 ≤ 3, then one of them is assigned to most capability and for the rest of them, (𝑣𝑘 − 1) 

random numbers are generated in [0, 1]. The numbers with a value less than 1/3 and more than 1/3 will be 

counted separately. The largest and smallest count will be the numbers of least and medium capable 

machines, respectively; Otherwise, if the number of machines is 𝑣𝑘 ≥ 3, three of them are assigned to each 

capability. Thereafter, for the rest of them, (𝑣𝑘 − 3) random numbers are generated in [0, 1]. The numbers 

with a value less than 1/3, between 1/3 and 2/3, and more than 2/3 will be counted separately. The largest 

and smallest count will be the extra numbers of least and most capable machines, respectively, and the 

remaining count will be the extra number of medium capable machines.  

Job run time and machine setup time: the run times related to each stage are generated from 𝑢𝑛𝑖𝑓[𝜗𝑖 + 1,

𝜗𝑖 + 20], where 𝜗𝑖 ∀𝑖 = 1, 2, 3 are considered for the least, medium and most capable machines, 

respectively, and also 𝜗𝑖 is generated uniformly in [1, 10]. The largest and smallest random values are 

assigned to the least and most capable machines and the remaining one is assigned to the medium capable 

machine. The difficulty of flow line scheduling problems with sequence-dependent setup times depend on 

the balance between the average setup time and the average run time (Schaller et al. 2000). With respect to 

an adjustment and some justification for batch scheduling problems, setup-to-runtime ratios of 1.5:1, 3.5:1 

and 5:1 have been considered for least, medium, and most capable machines, respectively. Subsequently, 

with respect to different ratios, the setup times related to each stage are generated from 𝑢𝑛𝑖𝑓[1, 30], 

𝑢𝑛𝑖𝑓[1, 70], and 𝑢𝑛𝑖𝑓[1, 100], for least, medium, and most capable machines, respectively.  

Scenario: the different combinations of the weights associated with the producer and customers in the 

objective function, i.e. 𝛼 and 𝛽, are determined by different scenarios. Three levels are considered for this 

factor including (𝛼 = 0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), and (𝛼 = 0.6, 𝛽 = 0.4).  

Machine availability time: the memoryless property of the Exponential distribution can simulate the 

machine availability time in terms of the average processing time of a group in each stage. Assume 𝑆̅𝑘 and 

𝑡̅𝑘 represent the average sequence-independent setup time and the average run time of any group on all 

machines in 𝑘𝑡ℎ stage, respectively. Then, the machine availability time is determined as follows: 
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𝑎ℎ
𝑘 = exp(20 +∑ �̅�𝑡

𝑘−1

𝑡=0
) | (�̅�0 = 0) (6.1) 

�̅�𝑘 = (𝑆̅𝑘 + 𝑡̅𝑘) (6.2) 

𝑆̅𝑘 =

(

 
 
(σ σ σ 𝑆𝑝𝑖ℎ

𝑘
𝑖∈𝐼𝑘

𝑖≠𝑝
𝑝∈𝐼𝑘+{0}ℎ∈𝑉𝑘 )

(𝑔2×𝑣𝑘)
⁄

)

 
 

 (6.3) 

𝑡̅𝑘 = (
(σ σ σ 𝑡𝑖𝑗ℎ

𝑘
ℎ∈𝑉𝑖𝑗

𝑘𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘 )

(σ σ 𝜕𝑖ℎ
𝑘

ℎ∈𝑉𝑘𝑖∈𝐼𝑘 )
⁄ ) (6.4) 

Job due date: the proper due dates should not be generated simply by picking numbers from a given 

distribution. Previous works (Kim et al. 2002, Pandya and Logendran 2010) showed that the generation of 

meaningful due dates in scheduling problems can positively affect the performance of the algorithms. 

Tardiness factor (𝜏) and due date range factor (R) can be used to define due dates of a problem instance. 

The tardiness factor, 𝜏, is defined as 𝜏 = 1 − �̅�/𝐶𝑚𝑎𝑥 where �̅� and 𝐶𝑚𝑎𝑥 are the average due date and the 

maximum completion time of all jobs, respectively. The measure of variability of due dates, 𝑅, is defined 

as 𝑅 = (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) 𝐶𝑚𝑎𝑥⁄  where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the maximum and minimum due date, 

respectively. Different combinations of 𝜏 and 𝑅 from a uniform distribution, which are shown in Table 16, 

generate meaningful due dates with various characteristics (Suresh and Chaudhuri 1994). In other words, a 

large and small values of 𝜏 indicate tight and loose due dates (due date tightness), respectively. A wide 

range of due dates is determined by a large 𝑅, while a small 𝑅 determines a narrow range of due dates.  

Table 16. The range of τ and R 

𝝉 0.2 0.2 0.2 0.5 0.5 0.5 0.8 0.8 0.8 

𝑹 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 

Degree of 

tightness 
Loose Loose Loose Medium Medium Medium Tight Tight Tight 

Width of range Narrow Medium Wide Narrow Medium Wide Narrow Medium Wide 

𝑅 and 𝜏 have to be used simultaneously to determine due dates of jobs. In this research, the range factor has 

been set as 𝑅 = 0.2, which provides narrow range of due dates. A random number from 0 to 1 is selected 

to generate a due date. If the random number falls into [0, 𝜏], the due date is generated from a uniform 
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distribution [�̅� − 𝑅�̅�, �̅�]; and if the random number falls into [𝜏, 1], the due date is generated from a 

uniform distribution [�̅�,  �̅� + (𝐶𝑚𝑎𝑥 − �̅�)𝑅] (Kim et al. 2002, Logendran and Subur 2004, Pandya and 

Logendran 2010). With the help of the following iterative equations, the completion time of any job 𝑗 of 

group 𝑖 in 𝑘𝑡ℎ stage (𝑥𝑖𝑗
𝑘 ) and, consequently, 𝐶𝑚𝑎𝑥 is estimated.  

{
  
 

  
 
𝑥𝑖1
𝑘 = (

(σ (max(𝑥𝑖1
𝑘−1,𝑚𝑟𝑖

𝑘 + 𝛾�̅�𝑖
𝑘) + (𝑡𝑖1ℎ

𝑘 ))ℎ∈𝑉𝑖1
𝑘 )

𝜉𝑖1
𝑘

⁄ )

𝑥𝑖𝑗
𝑘 = max(𝑥𝑖𝑗

𝑘−1, 𝑥𝑖(𝑗−1)
𝑘 ) + (

(σ 𝑡𝑖𝑗ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘 )

𝜉𝑖𝑗
𝑘

⁄ )               

 (6.5) 

where �̅�𝑖
𝑘 is the average run time of group 𝑖 in 𝑘𝑡ℎ stage. 𝑚𝑟𝑖

𝑘, the first available time of machines to start 

processing group 𝑖 in 𝑘𝑡ℎ stage, is estimated as follows: 

𝑚𝑟𝑖
𝑘 = {

min(𝑥𝑝(𝑛𝑝)
𝑘 ) , 𝑝 = (𝑖 − 1), (𝑖 − 2), … , (𝑖 − 𝑣𝑘)

𝑎𝑖
𝑘                      , otherwise

 (6.6) 

where 𝑥𝑝(𝑛𝑝)
𝑘  is the completion time of the last job in group 𝑝 in 𝑘𝑡ℎ stage. 

𝛾 was proposed by Logendran et al. (2007) as an adjustment on the average setup time because of sensitivity 

of the completion time to the sequence-dependent family setup times. They suggested a linear relationship 

between 𝛾 and 𝐶𝑉, where 𝐶𝑉 is the coefficient of variation related to the sequence-dependent setup times. 

This relationship can be described by the interpolation of (𝐶𝑉, 𝛾) = (0.01,0.9) and (𝐶𝑉, 𝛾) = (1,0.1). 

Finally, 𝑥𝑖𝑗
0 = 𝑟𝑖𝑗 in the first stage and 𝐶𝑚𝑎𝑥 = max

∀𝑖∈𝐺,𝑗∈𝐺𝑖
𝑥𝑖𝑗
𝑚, in the last stage.  

Desired lower bounds on batch sizes: the proper lower bounds on batch sizes are generated by balancing 

the setup time and cumulative run time of a batch. An estimation of the minimum number of jobs assigned 

to a batch of a group on each machine is determined by initial ratio developed for each group on each 

machine in 𝑘𝑡ℎ stage (𝐼𝑅𝑖ℎ
𝑘 ) along with pre-determined base ratio (𝐵𝑅) and adjusted ratio (𝐴𝑅 = 𝑘×𝐼𝑅𝑖ℎ

𝑘 ) 

developed for each problem structure. Initial ratio of a group is considered as the average setup time to the 

average run time. Base ratio is equal to 1.3, 5, 7, and 8 for (small, small), (small, large), (large, small) and 

(large, large) levels, respectively. coefficient 𝑘 is equal to 0.3, 0.1, 0.05, and 0.04 for (small, small), (small, 

large), (large, small) and (large, large) levels, respectively.   

𝐼𝑅𝑖ℎ
𝑘 =

�̅�𝑖ℎ
𝑘

𝑡�̅�ℎ
𝑘⁄  (6.7) 
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𝐶𝑅𝐵𝑖ℎ
𝑘
=
(�̅�𝑖ℎ

𝑘 + 𝐵𝑡�̅�ℎ
𝑘 )

(𝐵𝑡�̅�ℎ
𝑘 )

⁄  (6.8) 

𝑀𝑅𝑖ℎ(𝐵→𝐵+1)
𝑘 =

(𝐶𝑅𝐵𝑖ℎ
𝑘
)

(𝐶𝑅(𝐵+1)𝑖ℎ
𝑘
)

⁄ , ∀ 𝐵 = 1,2, … , 𝑛𝑖 − 1 (6.9) 

𝑇𝑉𝑖ℎ
𝑘 = 1 + (

�̅�𝑖ℎ
𝑘

(𝐴𝑅 (�̅�𝑖ℎ
𝑘 + 𝑡�̅�ℎ

𝑘 (𝐴𝑅 + 1)))
⁄ ) (6.10) 

where �̅�𝑖ℎ
𝑘 /𝑡�̅�ℎ

𝑘  is the average setup time/ job run time of group 𝑖 on machine ℎ in 𝑘𝑡ℎ stage, which is obtained 

by Eq. (4.60)/Eq. (4.64). 𝐵 is the number of jobs assigned to a batch. And finally, 𝐶𝑅𝐵𝑖ℎ
𝑘

, 𝑀𝑅𝑖ℎ(𝐵→𝐵+1)
𝑘 , 

and 𝑇𝑉𝑖ℎ
𝑘  are cumulative ratio, movement ratio, and threshold value of group 𝑖 on machine ℎ in 𝑘𝑡ℎ stage, 

respectively. Then, 𝐿𝐵𝑖ℎ
𝑘  is determined from one of the conditions shown in Table 17. 

Table 17. Pseudo-code for determining the desired lower bounds on batch sizes 

if 𝐼𝑅𝑖ℎ
𝑘 ≤ 𝐵𝑅 then 

 𝐿𝐵𝑖ℎ
𝑘 = 1 

else if 𝐼𝑅𝑖ℎ
𝑘 > 𝐵𝑅 & 𝐴𝑅 ≤ 1 then 

 𝐿𝐵𝑖
ℎ = 2 

else if 𝐴𝑅 > 1 then 

 𝐿𝐵𝑖ℎ
𝑘 = (𝐵 + 1) | min

𝐵∈{1,2,…,𝑛𝑖−1}
(|𝑀𝑅𝑖(𝐵→𝐵+1)

ℎ  − 𝑇𝑉𝑖ℎ
𝑘 |) 

end if 

Other parameters: the number of stages of hybrid flow shop and the number of machines in each stage are 

generated from 𝑢𝑛𝑖𝑓[2, 7] and 𝑢𝑛𝑖𝑓[1, 6], respectively. Apart from this, the job release times and job 

weights are generated based upon an Exponential distribution with a mean of 20, i.e., 𝑒𝑥𝑝(20), and uniform 

distribution, i.e., 𝑢𝑛𝑖𝑓[1, 4], respectively.  
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7. RESULTS 

In this section, first two approaches to deal with the scheduling problem addressed in this research are 

compared to show the benefit(s) of batching: group scheduling and batch scheduling. Then, the 

computational experiments are performed to compare the performance of the proposed meta-heuristic 

algorithms. Finally, the performance of the proposed algorithms is evaluated with respect to optimal 

solutions or tight lower bounds obtained by CPLEX and proposed B&P algorithm. Also, a comparison 

between implemented DWDs based on column generation determines the performance of each of the DWD 

decomposition techniques. For this purpose, the proposed search algorithms are implemented using C# 

programming language, while the optimal/upper bounds and lower bounds are obtained from solving the 

MILP models or SPs with CPLEX 12.2 (CPLEX 2009). All runs relating to parameter tuning and 

experiments have been performed on identical computers with Intel(R) Core(TM) 2 Duo CPU T9300 @ 

2.50 GHz processors & 4.00 GB of RAM. 

7.1. Batch scheduling vs. group scheduling 

Group scheduling developed by Bozorgirad and Logendran (2013) is arguably the best available approach 

to deal with the research problem addressed here, specifically with respect to comparing the performances 

of both. It is therefore important to compare the performance of the proposed batch scheduling approach 

with this approach to see the benefits of batching. With respect to three days’ time limit (𝐶𝑇𝑙𝑖𝑚𝑖𝑡 = 3𝑑), 

several experiments (19 problems shown in Table 18) conducted on the benchmark problem instances 

confirm the benefits of batching.  

The following results 1 through 3 are obtained from comparison between the group scheduling and batch 

scheduling approaches: 

Result 1. The benefits of batching are especially obvious for instances with more machines per stage (on 

average). This confirms that batch scheduling can utilize the available machine capacities and perform 

timely processing of jobs with higher priorities and, consequently, increase scheduling flexibility.  

Result 2. Although dividing groups into batches promotes more setups, they may be performed during 

machine idle times (Shen et al. 2014). More importantly, forming different combinations of batch 

compositions related to stages allows varied job assignment and sequences on each machine, which can 

effectively reduce total processing time of jobs. Consequently, it may not negatively affect the completion 

time of all jobs and their tardiness.  
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Result 3. Although there is a trade-off between any changes in jobs’ completion times, jobs’ tardiness, and 

setup times, batch scheduling gives a schedule, which is at least as good as the optimal schedule obtained 

by group scheduling.  

Table 18. Performance of batch scheduling vs. group scheduling 

T
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 Group Scheduling (GS)  Batch Scheduling (BS)    PImp 

 
Obj Func 

Val. 

Comp Time 

(Sec) 

 

Obj Func 

Val. 

Comp Time 

(Sec) Lower Bound 

 𝐵
𝑆
 𝑣
𝑠 𝐺

𝑆
 

1  3 2 8 6  880.20 0.55  862.80 83.0   2.0% 

2  3 2 8 12  1170.60 1.08  1008.80 138748.5   13.8% 

3  2 4 8 2  1535.40 1.19  1535.40 6.8   0.0% 

4  3 2 8 3  1720.08 1.42  1720.08 9.1   0.0% 

5  3 3 9 6  2215.80 1.36  2006.82 24873.4   9.4% 

6  7 4 12 28  2733.20 351.00  2235.68 Fixed 1897.45  18.2% 

7  7 4 12 28  3764.60 10.09  3058.26 39398.5   18.8% 

8  7 3 12 28  3299.40 7.21  2981.61 29847.9   9.6% 

9  4 5 20 4  8257.00 337024.00  8189.00 Fixed 7199.34  0.8% 

10  2 4 16 2  3436.40 14.00  3420.70 245598.1   0.5% 

11  2 5 15 10  1447.00 11.37  1244.42 Fixed 1038.78  14.0% 

12  3 5 20 15  2148.00 429203.00  1808.40 Fixed 1692.82  15.8% 

13  2 2 10 4  1860.00 2.00  1699.67 30938.7   8.6% 

14  5 2 14 25  3373.60 5235.00  2668.85 Fixed 2482.70  20.9% 

15  2 6 24 8  3355.20 447923.00  2869.03 Fixed 2490.28  14.5% 

16  2 7 21 10  1928.40 -  1679.05 Fixed 1423.51  12.9% 

17  4 5 15 24  2045.00 -  1649.49 Fixed 1481.19  19.3% 

  Average  2657.05 81319.08  2390.47 151947.29 2463.26  10.5% 

The sign “-“ indicates that no computational time is reported by group scheduling. 

Thus, from the benchmark problem instances shown in Table 18, it is beneficial to drop the GTAs. By 

applying the proposed batch scheduling instead of group scheduling, further improvement in the objective 

function value can be obtained (from 0.5% up to approximately 21%). Using the following one-way 

hypothesis test at a 5% significance level, the result obtained from a paired t-test on the average objective 

function values of both approaches showed there is a statistically significant reduction in the objective 

function value of group scheduling by allowing for the possibility of splitting groups as multiple batches 

(𝑃𝑣𝑎𝑙𝑢𝑒 < 0.00001).  

{
𝐻0: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 = 0 
𝐻𝑎: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 < 0

 

7.2. Best algorithm 

The basic TS and PSO along with TS/PR PSO/LSA as hybrid algorithms developed in Section 4 must be 

compared to each other to determine what type of meta-heuristic(s) has better performance in dealing with 
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batch scheduling problems in HFS. In this case, a comprehensive set of experiments have been designed 

based upon a split-plot design (Montgomery 2009) with five factors, shown in Table 19. The main-plot 

factors include the structure (Str) of the problem, setup to run time ratio (StoR), due date tightness (DDT), 

and scenario (Sc), while the eight different algorithms (Alg) belong to the sub-plot factor.    

Table 19. Factors and their levels in the experiment 

Factor name  Levels 

Whole-plot   

Structure Str (Small, Small), (Small, Large), (Large, Small), (Large, Large) 

Setup-to-run time ratio StoR 1.5, 3.5, 5 

Due date tightness DDT 𝑡𝑖𝑔ℎ𝑡 (0.2),𝑀𝑒𝑑𝑖𝑢𝑚 (0.5), 𝐿𝑜𝑜𝑠𝑒 (0.8) 

Scenario Sc (𝛼 = 0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), (𝛼 = 0.6, 𝛽 = 0.4) 

Sub-plot   

Algorithm Alg 𝐴𝑙𝑔1, 𝐴𝑙𝑔2, 𝐴𝑙𝑔3, 𝐴𝑙𝑔4, 𝐴𝑙𝑔5, 𝐴𝑙𝑔6, 𝐴𝑙𝑔7, 𝐴𝑙𝑔8 

Eight levels have been considered for Alg factor to balance between path construction techniques and local 

search algorithms for TS/PR and PSO/LSA algorithms, respectively. Constructing a good path between two 

elite solutions in the population is a key step in TS/PR. Therefore, based on the importance of introducing 

the promising solutions in relinking paths, four algorithms are generated as follows:  

Alg1 PR is excluded and a basic TS algorithm is developed 

Alg2 PR explores trajectories connecting elite solutions based on only LCS-based construction 

Alg3 PR explores trajectories connecting elite solutions based on a combination of LCS- & block-based constructions 

Alg4 PR explores trajectories connecting elite solutions based on a combination of LCS- & swap-based contractions 

Although implementation of LSA for all particles within a population may take a considerable amount of 

time, there should be a trade-off in the frequency of using LSA within the structure of PSO. Therefore, 

based on the frequency of implementing LSA to improve the performance of the PSO, four algorithms are 

generated as follows:  

Alg5 LSA is excluded and PSO that stands for the basic PSO algorithm is developed 

Alg6 LSA is implemented for only 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙  vector at each iteration 

Alg7 LSA is implemented for 𝑃𝑏𝑒𝑠𝑡  vectors of particles at each iteration 

Alg8 LSA is implemented for all particles within the population at each iteration  

The ten replications, each with a different number of groups, jobs belonging to groups, stages, and machines 

belonging to each stage have randomly been generated for any combination of Str, StoR, DDT, and Sc 

factors. Each of these replications has been solved by all eight algorithms, which resulted in a total number 

of 8640 computer runs (108 combination of Str, StoR, DDT, and Sc × 10 replications × 8 Alg = 8640).  

The statistical model for this design is: 
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𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝜇 + 𝜏𝑖 + 𝜗𝑗 + 𝜌𝑘 + 𝛾𝑙 + 𝛿𝑚 + (𝜗𝜌)𝑗𝑘 + (𝜗𝛾)𝑗𝑙 + (𝜗𝛿)𝑗𝑚 + (𝜌𝛾)𝑘𝑙 + (𝜌𝛿)𝑘𝑚 + (𝛾𝛿)𝑙𝑚 + (𝜗𝜌𝛾)𝑗𝑘𝑙

+ (𝜗𝜌𝛿)𝑗𝑘𝑚 + (𝜌𝛾𝛿)𝑘𝑙𝑚 + (𝜗𝜌𝛾𝛿)𝑗𝑘𝑙𝑚 + 𝜃𝑖𝑗𝑘𝑙𝑚 + 𝜑𝑛 + (𝜗𝜑)𝑗𝑛 + (𝜌𝜑)𝑘𝑛 + (𝛾𝜑)𝑙𝑛 + (𝛿𝜑)𝑚𝑛

+ (𝜗𝜌𝜑)𝑗𝑘𝑛 + (𝜗𝛾𝜑)𝑗𝑙𝑛 + (𝜗𝛿𝜑)𝑗𝑚𝑛 + (𝜌𝛾𝜑)𝑘𝑙𝑛 + (𝜌𝛿𝜑)𝑘𝑚𝑛 + (𝛾𝛿𝜑)𝑙𝑚𝑛 + (𝜗𝜌𝛾𝜑)𝑗𝑘𝑙𝑛

+ (𝜗𝜌𝛿𝜑)𝑗𝑘𝑚𝑛 + (𝜌𝛾𝛿𝜑)𝑘𝑙𝑚𝑛 + (𝜗𝜌𝛾𝛿𝜑)𝑗𝑘𝑙𝑚𝑛 

𝑖 = 1,2, … ,10; 𝑗 = 1,2,3,4; 𝑘, 𝑙,𝑚 = 1, 2, 3; and 𝑛 = 1, 2, … , 8 where 𝜇 is the overall mean effect, 𝜏𝑖 is the 

replicate effect, 𝜗𝑗 is the effect of 𝑗𝑡ℎ level of Str, 𝜌𝑘 is the effect of 𝑘𝑡ℎ level of StoR, 𝛾𝑙 is the effect of 𝑙𝑡ℎ 

level of DDT, 𝛿𝑚 is the effect of 𝑚𝑡ℎ level of Sc, and finally 𝜑𝑛 shows the effect of 𝑛𝑡ℎ level of Alg. The 

resulting ANOVA table is presented in Table 20. 

Table 20. ANOVA table on the natural log of data 
 

 Sum of Square   Degree of Freedom Mean of Square F-Statistic P-value 
Source (main plot) 
Rep (or Blocks) 17.943 9                      1.994  0.890 0.533 

Str 4,363.881 3              1,454.627  649.438 0.000 

StoR 412.998 2                 206.499  92.194 0.000 

DDT 164.358 2                    82.179  36.690 0.000 

Sc 91.300 2                    45.650  20.381 0.000 

Str:StoR 3.045 6                      0.508  0.227 0.968 

Str:DDT 20.623 6                      3.437  1.535 0.164 

StoR:DDT 2.295 4                      0.574  0.256 0.906 

Str:Sc 8.236 6                      1.373  0.613 0.720 

StoR:Sc 9.185 4                      2.296  1.025 0.393 

DDT:Sc 38.646 4                      9.662  4.314 0.002 

Str:StoR:DDT 32.713 12                      2.726  1.217 0.266 

Str:StoR:Sc 29.272 12                      2.439  1.089 0.366 

Str:DDT:Sc 15.695 12                      1.308  0.584 0.856 

StoR:DDT:Sc 24.017 8                      3.002  1.340 0.219 

Str:StoR:DDT:Sc 35.595 24                      1.483  0.662 0.890 

Main Plot Error 2,156.951 963                      2.240    
      

Source (Sub-plot)      

Alg 3.623 7                      0.518  193.490 0.000 

Str:Alg 0.582 21                      0.028  10.355 0.000 

StoR:Alg 0.230 14                      0.016  6.152 0.000 

DDT:Alg 0.000 14 0.000                                0.000 1.000 

Sc:Alg 0.115 14                      0.008  3.073 0.000 

Str:StoR:Alg 0.173 42                      0.004  1.540 0.014 

Str:DDT:Alg 0.087 42                      0.002  0.773 0.854 

StoR:DDT:Alg 0.107 28                      0.004  1.429 0.067 

Str:Sc:Alg 0.116 42                      0.003  1.035 0.409 

StoR:Sc:Alg 0.000 28 0.000                              0.000 1.000 

DDT:Sc:Alg 0.113 28                      0.004  1.514 0.040 

Str:StoR:DDT:Alg 0.220 84                      0.003  0.978 0.536 

Str:StoR:Sc:Alg 0.288 84                      0.003  1.282 0.043 

Str:DDT:Sc:Alg 0.159 84                      0.002  0.708 0.980 

StoR:DDT:Sc:Alg 0.217 56                      0.004  1.446 0.017 

Str:StoR:DDT:Sc:Alg 0.475 168                      0.003  1.056 0.298 

Subplot Error 18.201 6804                      0.003    

Total 7,451.459 8639    

Rep=Replicate;Str=Structure;StoR=Setup to Runtime Ratio;DDT= Due Date Tightness;Sc=Scenario; Alg=Algorithm 
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Due to violations in normality assumption and constant variance assumption, the natural logarithm 

transformation of the response variable has been employed to totally resolve all the deviations (R 2. 13.0., 

2011). Based on the ANOVA table for these experiments, all factors in the main-plot (Str, StoR, DDT, and 

Sc) impose statistically significant effects on the objective function of the test problems (𝑃𝑣𝑎𝑙𝑢𝑒 <

0.00001), while the effect of their interactions is not significant except the interaction between DDT:Sc. 

After accounting for the effect of those factors, the ANOVA table reveals convincing evidence of non-zero 

differences between levels of algorithms (𝑃𝑣𝑎𝑙𝑢𝑒 < 0.00001). With the help of Tukey test on the levels of 

Alg factor, Alg8 has the best performance among the eight algorithms with a confidence level of 95%.  

The deviation of all algorithms from the best algorithm is calculated as 𝑑𝑒𝑣 = ((𝐴𝑙𝑔𝑖 − 𝐴𝑙𝑔𝑏𝑒𝑠𝑡)/

(𝐴𝑙𝑔𝑏𝑒𝑠𝑡))×10, ∀𝑖 = 1, 2, … , 7 to demonstrate the relative performance of all algorithms with each other. 

These deviations are depicted in the left side of Figure 24 by a box plot diagram. The results of relative 

performances indicate Alg4 and Alg7 have the second and third best performance with the mean deviations 

of 1.5% and 3.0%, respectively. Since there is no meaningful difference between the performances of Alg2, 

Alg3, and Alg6, they are considered as the fourth best algorithms with the mean deviations of 4.7%, 4.6%, 

and 4.2%, respectively. Finally, Alg1 and Alg5 are demonstrated as the algorithms with the largest 

deviations around 6.7% and 8.8%, respectively. The 95% confidence intervals (CI) for the means of these 

deviations, depicted in the right side of Figure 24, suggest no significant difference between the 

performance of Alg4 and Alg8 because of the smallest deviation from Alg8 along with the short range of 

deviations. Apart from this, the box plot of Alg4 depicted in Figure 24 suggests Alg4 can give a better 

solution compared to Alg8 in some problems.  

  

Figure 24. Deviations from the best algorithm 

The following results 4 through 6 are obtained from comparison between algorithms: 

Result 4. Since a basic local search algorithm can decompose the batch scheduling problem into several 

hierarchical levels to take advantage of batching, it presents a better performance compared to a basic 
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population-based algorithm, especially when there is an exhaustive combination enumeration between 

batch compositions of all groups in all stages of a problem. This being the case, Alg1 has the ability to 

generate solutions with better quality compared to Alg5. 

Result 5. Due to involving several moves at the same time for creating a neighbor solution, a population-

based structure is able to find good quality solutions in less iterations compared to local search algorithms 

for batch scheduling in HFS. In addition, a population-based algorithm enhanced with a local search 

structure is able to integrate the batching phase into the scheduling phase. Therefore, Alg8 is able to identify 

good quality solutions compared to Alg4, in less computational time. 

Result 6. Based on a test problem in (large, large) level, a comparison of the iterative improvement in the 

objective function value between TS/PR and PSO/LSA, depicted in Figure 25, indicates PSO/LSA is able 

to obtain the same best solution compared to TS/PR in less iterations and, subsequently, in less 

computational time. Although TS/PR and PSO/LSA give the same best solution, TS/PR gradually improves 

the objective function in each stage, while PSO/LSA has more and less improvement in the objective 

function in the initial and final iterations, respectively, in each stage. As a result, PSO/LSA converges to 

the best solution faster than TS/PR. Since the stage-based interdependency strategy is implemented for each 

algorithm, there are unusual increases in the objective function value when the algorithm goes through 

stages.    

 

 Figure 25. Comparison between iterative improvement of TS/PR and PSO/LSA 

There are strong evidences of a nonzero difference between the interaction effect of Str:Alg, StoR:Alg, and 

Sc:Alg. Since the interpretation of a high rank interaction is quite difficult to explain, only the interactions 

between Str:Alg, StoR:Alg, and Sc:Alg are explained with the help of Tukey test on each level of Str, StoR, 

and Sc factors to compare the performance of the developed algorithms. Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a significance 
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level of 5% for each comparison in each level of Str, StoR, and Sc, it can be concluded that the problem 

structures, different ratios between setup-to-run time, and different importance coefficients associated with 

a producer and customers (scenarios) have an effect on the performance of the developed algorithms.  

Generally, since the average objective function value of Alg8 is less than all the other developed algorithms 

for all levels of aforementioned factors, it can be concluded that Alg8 provides better solutions for the 

proposed research problem, particularly for problems with (large, large) structure. Although Alg4 presents 

a close performance compared to Alg8 for problems with (small, large) & (large, small) structures, Alg8 

presents a slightly better performance compared to Alg4 for problems with (large, large) structure. With 

respect to the interaction effect of Str:Alg, it can be concluded that the total number of jobs of all groups is 

very sensitive to the processing time and tardiness of jobs. In relation to the interaction effect of Sc:Alg, the 

difference between the developed algorithms, particularly Alg8 and Alg4, is more pronounced when 

customers’ satisfaction has high priority compared to the production cost, i.e., a larger coefficient assigned 

to customers.  

Finally, since a bi-criteria objective is considered in the research problem, not only the interaction of the 

developed algorithms and Sc is pronounced, but also the individual contribution of Sc as a factor is equally 

pronounced. On the other hand, the ANOVA table reveals moderate evidence of non-zero differences 

between different levels of interaction between DDT:Sc. This being the case, a paired t-test is performed to 

compare the different levels of Sc with respect to the average objective function values of the two best 

algorithms, i.e., Alg4 and Alg8, i.e., 1×3 = 3 comparisions. Likewise, another paired t-test is performed to 

compare the different levels of DDT:Sc, i.e., 3×3 = 9 comparisions. Sc1, Sc2, and Sc3 are referred to (𝛼 =

0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), and (𝛼 = 0.6, 𝛽 = 0.4) scenario, respectively. The principal results of a 

paired t-test performed to compare the different levels of Sc are shown in Table 21.  

Table 21. Paired t-test for scenarios 

Pair 

Paired differences 

t df 
Sig. 

(2-tailed) Mean 
Std. 

deviation 

Std. error 

mean 

95% confidence interval 

of the difference 

Lower Upper 
         

Sc1 - Sc2 814.424 861.375 157.265 495.176 1275.209 5.179 35 9.34384E-06 

Sc1 - Sc3 730.967 972.416 177.538 370.565 1251.154 4.117 35 2.22097E-04 

Sc2 - Sc3 83.456 1129.523 206.222 -335.174 687.686 0.405 35 6.88167E-01 

Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a 5% significance level for each comparison, it can be concluded that the objective 

function value is sensitive to the scenario. In other words, the average objective function value obtained 

from Sc1 is considerably less than the ones obtained from Sc2 and Sc3. In addition, although the average 
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objective function value obtained from Sc2 is less than the one obtained from Sc3, there is no statistical 

evidence of a difference between Sc2 and Sc3. 

The principal results of a paired t-test performed to compare the different levels of Sc for each level of due 

date tightness are shown in Table 22. Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a 5% significance level for each comparison in 

each due date tightness level, it can be concluded that there is a significant difference between the results 

of these scenarios in each level of due date tightness. In other words, since the average objective function 

value obtained from Sc1 is considerably less than the ones obtained from Sc2 and Sc3 for all due date 

tightness levels, it can be concluded that Sc1 reduces the objective function value of a problem more in 

comparison to when Sc2 and Sc3 are considered, particularly when the jobs have tight and moderate due 

dates, i.e., 𝐷𝐷𝑇 = 0.2 or 𝐷𝐷𝑇 = 0.5. In addition, Sc2 reduces the objective function value of a problem 

slightly more than Sc3 when the jobs have moderate due date. With respect to the interaction effect of 

DDT:Sc, it can be concluded that the objective function value is simultaneously very sensitive to the 

importance coefficients associated with the producer and customers along with the degree of tightness of 

jobs’ due date. These results are in agreement with the results obtained for scenario sensitivity analysis.  

Table 22. Paired t-test for interaction between scenarios and due date tightness 

DDT Pair 

Paired differences 

t df 
Sig. 

(2-tailed) Mean 
Std. 

deviation 

Std. error 

mean 

95% confidence interval 

of the difference 

Lower Upper 
          

T
ig

h
t 

Sc1 - Sc2 816.244 526.428 96.112 604.797 1027.690 8.493 11 3.68457E-06 

Sc1 - Sc3 795.970 734.903 134.174 500.787 1091.153 5.932 11 9.83980E-05 

Sc2 - Sc3 20.274 962.781 175.779 -366.440 406.987 0.115 11 9.10258E-01 
          

M
ed

iu
m

 

Sc1 - Sc2 342.061 224.474 40.983 251.898 432.224 8.346 11 4.35568E-06 

Sc1 - Sc3 606.870 965.104 176.203 219.224 994.517 3.444 11 5.48432E-03 

Sc2 - Sc3 264.810 960.946 175.444 -121.167 650.786 1.509 11 1.59381E-01 
          

L
o

o
se 

Sc1 - Sc2 567.442 419.725 76.631 398.854 736.030 7.405 11 1.35159E-05 

Sc1 - Sc3 790.062 1229.625 224.498 296.166 1283.957 3.519 11 4.80488E-03 

Sc2 - Sc3 222.619 1427.341 260.596 -350.691 795.930 0.854 11 4.11173E-01 
          

In conclusion, since both objectives (total completion time and total tardiness of jobs) are not in conflict, 

the tardiness of a job is either reduced or not changed when its completion time reduces. In addition, the 

completion time of a job is certainly reduced when its tardiness (positive value of lateness) reduces. 

Regarding the two previous statements, the objective function value is reduced more when larger 

importance coefficient is assigned to customers and/or tight due date is considered for the jobs.  
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7.3. Algorithms versus optimal solutions and lower bounds 

One of the main purposes of this research is to take the benefits of integrating the batching decision into 

the group scheduling approach. Therefore, the performance of batch scheduling and group scheduling 

should be compared. Another purpose of this research is to develop robust meta-heuristic algorithms to deal 

with the batch scheduling problem in HFS. Therefore, the performance of the meta-heuristic algorithms 

should be evaluated with respect to either optimal solutions or tight lower bounds obtained from the B&P 

algorithm. For these comparisons and evaluations, a total of 30 sample problems, generated by the 

comprehensive data generation mechanism (Section 6) and divided into three groups of 10 problems, are 

tested. Those three groups represent (small, small), (small, large) & (large, small), and (large, large) 

problem structures. Observe that, as noted before, (small, large) & (large, small) problems are considered 

as one level or medium-size problems.     

Given the computational time limit (the common 8-hour work-shifts), the benefits of integrating the 

batching decision into the group scheduling approach are again demonstrated by comparing the results of 

upper bounds/optimal solutions of batch scheduling compared to group scheduling. The MILP3 model is 

implemented for group scheduling with regard to 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖, ∀𝑖 ∈ 𝐼

𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝐾 and some 

justifications. Apart from this, the performance of the best meta-heuristic algorithm is evaluated against 

optimal solutions as well as lower bounds obtained from CPLEX and the B&P algorithm. Eight-hour and 

one-hour time limits are considered for CPLEX / the B&P algorithm and meta-heuristic algorithms, 

respectively. The results are shown in Tables 23 through 25 for (small, small), (small, large) & (large, 

small), and (large, large) levels, respectively. Each test problem is represented as a problem class (i.e., level| 

# of groups| # of all jobs| # of stages| # of all machines). The best upper bounds obtained by the best TS/PR 

and PSO/LSA algorithms (i.e., Alg4 and Alg8) are reported under the 𝑈𝐵𝐴𝑙𝑔 column. 

As discussed in Sections 4.1.5 and 5.3.1.3 and based on our preliminary experiments, the MILP3 model 

along with the RMILP model are considered to find optimal solutions or good quality lower bounds, 

particularly for small-size problems. In addition, DWD3 along with DWD2 decomposition techniques are 

considered in the B&P algorithm to develop tight lower bounds, particularly for medium- and large-size 

problems. By considering 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2) and 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3) as the lower bound obtained by the B&P 

algorithm with the help of DWD2 and DWD3, respectively, and some justification on the Pseudo-code in 

Table 1, the best lower bound is determined as follows: 
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Table 23. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Small, Small) level of 

problems 
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Group Scheduling 

(GS) 
 Batch Scheduling (BS) 

 

 

MILP Model  RMILP Model  MILP3 Model  Meta-heuristic  B&P 
 

 

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆  𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘   𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆  𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔 

 

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3 
 

(S
m

all, S
m

all) 

                          

1 𝑆𝑆|3|9|3|5  2209.16   16.73   2209.16   219.19  No  2209.16  29839.93   2209.16 198.06   2054.52 2076.61  0.0 0.0 0.0 0.0 0.0 

2 𝑆𝑆|5|18|6|15  2744.85   37.03   2473.51   1219.01  Yes  2529.57 2459.98 Fixed  2537.68 268.23   2402.48 2478.05  7.8 7.5 2.0 2.4 -0.3 

3 𝑆𝑆|5|18|6|16  4388.81   202633.70   4159.71   246294.06  No  4202.76 4038.67 Fixed  4178.08 21.88   4060.54 4108.11  5.2 4.8 0.0 0.4 -0.4 

4 𝑆𝑆|3|9|2|3  7369.70   54.06   7008.44   222.88  No  7008.44  28084.23   7098.44 119.12   6447.76 6447.76  4.9 3.7 0.0 1.3 -1.3 

5 𝑆𝑆|2|10|4|7  6434.77   61.98   6168.78   662.43  Yes  6308.60  48755.01   6368.6 456.24   4935.02 5803.91  2.0 1.0 0.0 1.0 -1.0 

6 𝑆𝑆|4|12|6|13  4247.74   87495.40   3953.57   214573.27  Yes  3997.88 3938.28 Fixed  4001.88 636.14   3281.46 3558.11  5.9 5.8 1.1 1.2 -0.1 

7 𝑆𝑆|4|13|2|7  4648.82   14.16   4236.73   46.40  Yes  4284.21  207586.9  4298.21 532.41   4024.89 4027.16  7.8 7.5 0.0 0.3 -0.3 

8 𝑆𝑆|5|15|4|11  6849.68   12.18   5976.86   758.20  No  6043.84 5893.02 Fixed  6002.45 597.24   5080.33 5137.26  12.7 12.4 0.0 0.4 -0.4 

9 𝑆𝑆|3|11|4|7  5029.62   36.93   4635.14   633.42  No  4635.14  159687  4685.48 349.27   3986.22 4264.33  7.8 6.8 0.0 1.1 -1.1 

10 𝑆𝑆|3|12|4|9  7872.20   43.66   7013.59   635.95  No  7254.77 6980.02 Fixed  7213.59 205.83   6592.77 6166.55  10.9 8.4 0.0 2.9 -2.9 
                      

    

                   Average  6.5 5.8 0.3 1.1 -0.8 
                          

      UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”. 

      Bold numbers represent UB and LB selected for a test problem. 

      Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm. 

      Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models. 

      B&P algorithm applies DWD3 approach to decompose the problem. 

      𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 . 
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Table 24. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Small, Large) & (Large, 

Small) levels of problems 
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Group Scheduling (GS)  Batch Scheduling (BS) 
 

 

MILP Model  RMILP Model  MILP3 Model  Meta-heuristic  B&P 
 

 

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆  𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘   𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆  𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔 

 

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3 
 

(S
m

all, L
arg

e) &
 (L

arg
e, S

m
all) 

                           

1 𝑆𝐿|3|19|4|14  12233.35   243654.29   9203.07  8282.76 Fixed NK  10434.33 5247.40 Fixed  10409.68  983.87   9082.69 10289.02  14.7 14.9 1.4 1.2 0.2 

2 𝑆𝐿|3|24|3|8  7637.09   244158.10   6812.02  5585.86 Fixed NK  6888.35 3774.32 Fixed  6848.82  2109.40   6700.82 6739.85  9.8 10.3 2.2 1.6 0.6 

3 𝑆𝐿|4|28|3|5  13825.68   207876.19   11651.24   249271.29  Yes  12334.67 6380.52 Fixed  12024.82  2153.16   9204.48 11209.42  10.8 13.0 5.5 3.2 2.5 

4 𝑆𝐿|4|31|6|21  4977.98  4873.68 Fixed  4005.82  2884.19 Fixed NK  4250.71 1651.68 Fixed  4182.98  1354.13   3929.04 4129.20  14.6 16.0 2.9 1.3 1.6 

5 𝑆𝐿|4|25|3|14  9817.66   190738.10   8746.86   250098.02  Yes  9047.65 4180.41 Fixed  9084.83  1219.61   7347.36 8894.48  7.8 7.5 1.7 2.1 -0.4 

6 𝐿𝑆|8|55|6|9  13612.69  11156.51 Fixed  11219.62  7517.15 Fixed NK  11877.74 6175.13 Fixed  10984.24  3027.81   9983.56 9338.62  12.7 19.3 21.4 17.6 7.5 

7 𝐿𝑆|9|54|5|12  13276.16  11812.27 Fixed  12228.02  8926.45 Fixed NK  12365.05 7183.75 Fixed  11746.91  1204.21   10338.88 10837.46  6.9 11.5 12.4 8.4 5.0 

8 𝐿𝑆|8|59|2|6  13847.81  11488.02 Fixed  11947.85  7646.62 Fixed NK  12218.65 5717.20 Fixed  11726.66  1183.14   9934.33 9293.01  11.8 15.3 23.9 26.2 4.0 

9 𝐿𝑆|10|79|5|11  15626.38  14373.26 Fixed  13747.58  9898.26 Fixed NK  14553.98 7310.56 Fixed  12958.78  3600.00   11332.15 11552.79  6.9 17.1 20.6 12.2 11.0 

10 𝐿𝑆|6|41|5|19  11391.55  9564.52 Fixed  9705.43  7764.34 Fixed NK  10274.73 4652.42 Fixed  9075.26  1338.74   7143.50 7184.45  9.8 20.3 24.4 16.9 11.7 
                          

                  Average  10.6 14.5 11.6 9.1 4.4 
                          

      UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”. 

      Bold numbers represent UB and LB selected for a test problem. 

      Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm. 

      Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models. 

      B&P algorithm applies the DWD3 decomposition technique to decompose the problem. 

      𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 . 
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Table 25. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Large, Large) level of 

problems 
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Group Scheduling (GS)  Batch Scheduling (BS) 
 

 

MILP Model  RMILP Model  MILP3 Model  Meta-heuristic  B&P 
 

 

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆  𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘   𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆  𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔 

 

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3 
 

(L
arg

e, L
arg

e) 

                           

1 𝐿𝐿|9|58|5|25  19369.78  13544.87 Fixed  14539.04  4943.27 Fixed NK  15761.68 7365.27 Fixed  14429.74  894.65   11823.77 10610.8  18.6 25.5 25.0 22.0 8.5 

2 𝐿𝐿|7|51|4|12  15600.57  12003.80 Fixed  10279.97  5037.19 Fixed NK  11012.16 4139.91 Fixed  9995.10  2101.30   7955.93 9158.261  29.4 35.9 16.8 9.1 9.2 

3 𝐿𝐿|8|58|5|8  18279.95  12782.77 Fixed  10495.69  5247.85 Fixed NK  11991.34 4508.02 Fixed  11080.98  1401.13   8741.88 9260.098  34.4 39.4 22.8 19.7 7.6 

4 𝐿𝐿|8|62|6|7  16371.37  11448.15 Fixed  10612.74  5943.13 Fixed NK  11235.26 5350.12 Fixed  10669.76  833.87   7483.26 7897.393  31.4 34.8 29.7 35.1 5.0 

5 𝐿𝐿|8|60|2|9  22579.33  17373.59 Fixed  15020.31  4355.89 Fixed NK  15716.98 7079.72 Fixed  13327.35  2021.88   11329.32 12915.38  30.4 41.0 17.8 3.2 15.2 

6 𝐿𝐿|10|68|3|7  17062.89  15352.50 Fixed  13747.26  4674.07 Fixed NK  14553.64 5471.29 Fixed  13967.63  3596.90   11314.98 11815.28  14.7 18.1 18.8 18.2 4.0 

7 𝐿𝐿|7|44|6|21  20779.55  14947.28 Fixed  15594.41  5613.99 Fixed NK  16705.13 7048.58 Fixed  14705.58  1818.48   12222.20 11411.37  19.6 29.2 26.8 20.3 12.0 

8 𝐿𝐿|8|52|4|17  14073.70  9982.51 Fixed  8654.66  4846.61 Fixed NK  9382.47 3514.03 Fixed  8060.20  2098.06   6272.72 6316.303  33.3 42.7 32.7 27.6 14.1 

9 𝐿𝐿|8|49|7|30  20466.06  17388.77 Fixed  16102.24  6923.96 Fixed NK  17456.35 6739.90 Fixed  14820.50  1049.43   11354.02 12616.01  14.7 27.6 27.7 17.5 15.1 

10 𝐿𝐿|8|50|6|15  15475.17  12527.82 Fixed  9796.40  2351.14 Fixed NK  10620.22 3587.91 Fixed  9478.77  923.01   8352.02 8727.133  31.4 38.7 17.8 8.6 10.7 
                          

                  Average  25.8 33.3 23.6 18.1 10.1 
                          

      UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”. 

      Bold numbers represent UB and LB selected for a test problem. 

      Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm. 

      Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models. 

      B&P algorithm applies DWD3 approach to decompose the problem. 

      𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 . 
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• 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝑂𝑝𝑡𝑅𝐷, 𝐿𝐵𝑂𝐿 , 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2), 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3)}, when the optimal solution of the 

RMILP model violates 𝐿𝐵𝑖ℎ
𝑘 .  

• 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝐿𝐵𝑅𝐷, 𝐿𝐵𝑂𝐿 , 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2), 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3)}, when the optimal solutions of both 

the RMILP and MILP3 models are not attainable.  

Thus, the results of the RMILP model, the MILP3 model, and the B&P algorithm (using DWD2 and DWD3 

decomposition techniques) are considered to determine tight lower bound. In order to provide sufficient 

insight for arguments presented in Section 4.1.4.1, we reported the results of the RMILP model, the MILP3 

model, and the B&P algorithm, where 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 are shown by bold numbers in Tables 23 

through 23. For example, the RMILP model violates 𝐿𝐵𝑖ℎ
𝑘  for the sixth test problem in (small, small) level, 

but 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑅𝐷 since 𝑂𝑝𝑡𝑅𝐷 > 𝐿𝐵𝑂𝐿 > 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3) > 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2). Contrary to this problem, 

since 𝑂𝑝𝑡𝑅𝐷 of the fifth test problem in (small, large) level violates 𝐿𝐵𝑖ℎ
𝑘  and 𝐿𝐵𝑂𝐿 < 𝑂𝑝𝑡𝑅𝐷 <

𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2) < 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3), 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3). Generally, one bold number in a row represents 

the optimal solution (i.e., 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒=𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒), while two bolds numbers in a row represent 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 

and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 of the test problem.  

The following results 7 through 10 are obtained from Tables 23 through 25: 

Result 7. the performance of the developed batch scheduling approach is compared with the group 

scheduling approach to uncover the benefits of batching. As a result of integrating the batching decision 

into group scheduling and, consequently, dropping the GTAs, Figure 26 show up to 34.4% and 42.7% 

reduction in the objective function value of group scheduling with the help of CPLEX and meta-heuristic 

algorithms, respectively. These benefits of batching become more pronounced as the size of the problems 

is increased, particularly in (large, large) level.  

The result of a paired t-test in the following one-way hypothesis test applied to compare the average 

objective function value obtained by batch scheduling and group scheduling shows there is a statistically 

significant difference between the performances of batch scheduling and group scheduling (𝑃𝑣𝑎𝑙𝑢𝑒 <

0.00001).  

{
𝐻0: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 = 0
𝐻𝑎: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 < 0
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Figure 26. The benefits of integrating the batching decision into group scheduling 

Result 8. the quality of the lower bound is of a vital importance. The quality of the lower bounds obtained 

from the B&P algorithm is more pronounced as the size of the problems is increased, particularly in (large, 

large) level. As seen in Tables 23 and 25, the lower bounds obtained from the B&P algorithm, either using 

DWD2 and DWD3, significantly outperform the lower bounds obtained from CPLEX, except for problems 

3 and 10 in (small, large) and (large, small) levels, respectively. The average deviations between the lower 

bounds obtained from B&P and CPLEX are 17.93% and 77.92% for (small, large) & (large, small) and 

(large, large) levels, respectively. This notable improvement in the quality of the lower bounds increases 

up to 143.24% for problem 9 in (large, large) level.  

Result 9. with respect to batch scheduling, the average deviation of meta-heuristic algorithms from the best 

lower bounds, i.e., 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, is 1.1%, 9.1%, and 18.1%, for (small, small), (small, large) & (large, small), 

and (large, large) level, respectively. Compared to 0.3%, 11.6%, and 23.6% average deviation between 

upper bounds of CPLEX and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, meta-heuristic algorithms present a better performance, except 

for (small, small) level. With respect to (small, large) & (large, small) and (large, large) level, the deviation 

of CPLEX from meta-heuristic algorithms is 4.4% and 10.1% on average, which shows the superior 

performance of meta-heuristic algorithms, particularly for medium and large size problems.  

Result 10. the RMILP model is capable of finding the optimal solutions and good quality lower bounds, 

particularly for small-size problems. Apart from this, the B&P algorithm using DWD2 is capable of finding 

better lower bounds compared to the B&P algorithm using DWD3 in some problems, i.e., problem 6 in 

(small, large) level, problem 8 in (large, small) level, and problems 1 and 7 in (large, large) level, since the 

number of violations on 𝐿𝐵𝑖ℎ
𝑘  is not significant.   
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8. CONCLUSIONS  

Unlike the extensive amount of research on finding schedules for hybrid flow shop problems, little attention 

has been given to form inconsistent batches of jobs belonging to pre-determined groups to minimize any 

measure of performance. By disregarding group technology assumptions, there is the possibility of 

processing jobs belonging to a group in several batches, so that jobs belonging to the same group might be 

processed concurrently on more than one machine in a bottleneck stage. The hybrid flow shop batching and 

scheduling problem with the desired lower bounds on batch sizes, i.e., 

𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗, 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗) is a complex problem with broad applications, 

particularly in many manufacturing industries. A bi-criteria objective function is considered to account for 

the benefits to both the producer and customers by minimizing a linear combination of total weighted 

completion time as well as total weighted tardiness of all jobs, subject to the mentioned operational 

constraints. The possibility of processing jobs belonging to a group in multiple batches is carefully 

investigated, when the number of jobs assigned to each batch does not violate the desired lower bounds on 

batch sizes. To create a balance between setup times and cumulative run times of developed batches on 

machines, the desired lower bounds on batch sizes are considered as the minimum number of jobs assigned 

to each batch. In order to depict the real industry requirements, further constraints of the problem are 

considered as dynamic job release times, dynamic machine availability times, different machine eligibilities 

and capabilities for job processing, and the possibility of stage skipping.   

Four mathematical models have been developed to deal with the batch scheduling problem. The MILP1 

and MILP2 models have been developed in two phases, i.e., batching and scheduling phases. The batching 

phase determines the optimal combination of batch compositions of all groups in all stages, with respect to 

the desired lower bounds on batch sizes, while the optimal assignment and sequence of batches on machines 

as well as sequence of jobs within batches are determined in the scheduling phase, regarding operational 

constraints and different combinations of batch compositions in the batching phase. The MILP1 model 

determines the job sequence and batch sequence by the precedence constraints between each pair of jobs 

within batches and each pair of developed batches on machines. The MILP2 model is very similar to the 

MILP1 model, except that it follows the position concept within batches to determine the job sequence 

within batches in the scheduling phase. Both MILP1 and MILP2 models have an extremely large solution 

space, particularly with regard to an exhaustive combination of enumerations between batch compositions. 

To combat this difficulty, the MILP3 and RMILP model are developed. The MILP3 model developed in 

terms of the flow conservation constraints integrates batching and scheduling phases of the MILP1 and 

MILP2 models. Therefore, the number of variables and, consequently, the complexity of the model is 

reduced. The RMILP model focuses on a non-dominated solution space by eliminating the batching phase. 
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However, the RMILP is also strongly NP-hard, and its effect is more pronounced on computational times 

as the size of the problem grows. Although the RMILP model cannot guarantee the optimal solution of 

other MILP models since it might violate the desired lower bounds on batch sizes, it is capable of 

developing good quality lower bounds in limited computational times, compared to other MILP models. 

Since the optimal solution for large-size problems (that are commonly found in real industries) cannot be 

found within a reasonable computational time, several meta-heuristics have been developed as the main 

approach to deal with this problem to find the optimal/near optimal solutions, within an affordable time. A 

basic TS along with three TS meta-heuristics enhanced with a population-based structure, i.e., TS/PR, as 

well as a basic PSO along with three PSO meta-heuristics enhanced with a local search structure, i.e., 

PSO/LSA, are developed to deal with the proposed batch scheduling problem. TS/PR algorithms are 

different in terms of path construction techniques, while PSO/LSA are different in terms of the frequency 

of using LSA within the structure of PSO. An initial solution finding mechanism is developed to generate 

the initial populations. The refinement and adjustment steps are developed to change any infeasible 

solutions to feasible ones, during the search into the solution space. The optimal solution of batch 

scheduling in hybrid flow shop environments are not generally represented in the form of permutation 

sequences because there is a different combination between batch compositions of all groups in each stage 

of the HFS batch scheduling problem. Therefore, the permutation schedule does not hold true in the problem 

addressed in this research. Thus, both sets of hybrid meta-heuristics implement the stage-based 

interdependency strategy on local search and population-based structures to capture the move 

interdependency of jobs within stages and, consequently, increase the flexibility of batch scheduling. 

In order to determine the performance of developed meta-heuristic algorithms, they should be compared 

through a robust measure. The best measure is the optimal solution or good quality lower bounds, which 

are attainable for small-size problems. In addition, with the help of lower bounding mechanism, tight lower 

bounds are obtained for medium- and large-size problems. A lower bounding mechanism based on column 

generation technique is developed, and embedded in the tree structure of a B&B algorithm, i.e., B&P 

algorithm, in order to develop tight lower bounds or optimally solve the HFS batch scheduling problem.  

With the help of Dantzig-Wolfe Decomposition, the HFS problem is decomposed into a master problem 

and a set of sub-problems that are easier to solve. Three different decomposition techniques, DWD1, 

DWD2, and DWD3, are devised in this research in terms of the MILP1, RMILP, and MILP3 models, 

respectively, and the best among them, i.e., DWD3, has been used in column generation. Although each SP 

developed by DWD1 decomposition technique is smaller than the original problem, it has been shown that 

these sub-problems are still strongly NP-hard, and subsequently, cannot be solved to optimality within a 

reasonable amount of time. However, with the help of two virtual stages and eliminating the batching phase, 
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the sub-problems are simplified. Then, by heuristically solving the sub-problems in early stages of the 

column generation algorithm, the sub-problems, and consequently, the restricted master problem have been 

reformulated in a way that they require drastically fewer variables and constraints. This being the case, the 

good quality lower bounds are obtained by this reformulation for small-size HFS problems. The SPs 

obtained by the DWD3 decomposition technique can be optimally solved, while DWD1 is only capable of 

finding lower bounds for small-size problems. Also, for larger size of problems, the SPs obtained by DWD1 

are still NP-hard so that they cannot be optimally solved. Therefore, DWD1 is not capable of finding even 

good quality lower bound for large-size problems. In addition, the SPs obtained by DWD2 can be optimally 

solved but the desired lower bounds on batch sizes might be violated by some of the SPs. Therefore, DWD2 

cannot guarantee to find tight lower bounds if the number of violations in batch sizes is significant. Thus, 

DWD2 and DWD3 are the only approaches that have been used in the B&P algorithm.  

Compared to the group scheduling approach, the proposed batch scheduling approach achieves further 

improvement in the objective function value by taking the benefits of integrating the batching decision into 

the group scheduling approach, when the group technology assumptions (GTAs) are dropped. The superior 

quality of results obtained by the batch scheduling approach will encourage manufacturing industries to 

implement such a scheduling approach to determine the optimal/near optimal schedule. Based on a 

benchmark in the literature, the results of this comparison revealed that the batch scheduling approach is 

able to improve the results of the group scheduling approach up to 21% and even 1% improvement in 

manufacturing companies is significant. With the help of a comprehensive data generation mechanism, 

various experiments conducted on different set of problem structures confirm the superiority of PSO/LSA 

compared to TS/PR. A comparison between all developed algorithms revealed outstanding performance of 

TS/PR where PR explores trajectories connecting elite solutions based on a combination of LCS- & swap-

based contractions (Alg4) as well as PSO/LSA where LSA is implemented for all particles within the 

population at each iteration (Alg8). The results indicate that a basic TS or PSO is not capable of finding 

good quality solution for the HFS batch scheduling problem. For medium- and large-size problems, where 

CPLEX is not able to find optimal solutions, the results of the best developed algorithm (Alg4 and Alg8) 

are compared against the lower bounds obtained from the B&P algorithm and CPLEX. These comparisons 

revealed outstanding performance of developed meta-heuristic algorithms compared to CPLEX. Finally, 

the B&P algorithm is capable of finding tight lower bounds compared to the lower bounds obtained from 

CPLEX, particularly for large-size problems.  

Some directions for future research are to extend the application of this research to other critical areas such 

as health care systems to improve the performance of their scheduling system. Also, due to the wide range 

of group scheduling applications, there will be growing interest on the improvement of the group scheduling 
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approach by dropping the GTAs. i.e., batch scheduling. In realistic situations, as the workers learn how to 

perform a job, they will act faster in processing similar jobs. In the literature for the scheduling problems, 

this is referred to as the learning effect and represents the learning abilities of workers to perform similar 

jobs. Therefore, the runtime of jobs can be assumed to be dynamic. Finally, decomposing the problem into 

the SPs so that each SP is related to a machine in a stage, developing a master problem to create a connection 

between the SPs, and solving the problem optimally by the B&P algorithm in the basis of column generation 

can indeed be a challenging research issue worth pursuing in the future.  
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Appendix A. The solution space of the RMILP model vs. the original MILP model 

By recognizing that 𝐶𝑟𝑛𝑖
.  represents the total number of batch compositions of group 𝑖 with 𝑛𝑖

𝑘 jobs in stage 

𝑘, when 𝑛𝑖
𝑘 jobs should be assigned to 𝑟 batches (𝑟 ∈ 𝑆𝑖, 𝑆𝑖 = {1,… , max

ℎ∈𝑉𝑘
⌈𝑛𝑖

𝑘/𝐿𝐵𝑖ℎ
𝑘 ⌉}), all possible 

combinations 𝐶𝑟𝑛𝑖
. , ∀𝑖 ∈ 𝐺, 𝑟 ∈ 𝑆𝑖, are determined as follows: 

𝐶1𝑛𝑖
𝑘
. = (

𝑛𝑖
𝑘

𝑛𝑖
𝑘) → if there is only one batch. 

𝐶2𝑛𝑖
𝑘
. = (

𝑛𝑖
𝑘

1
) + (

𝑛𝑖
𝑘

2
) +⋯+ (

𝑛𝑖
𝑘

⌊𝑛𝑖
𝑘/2⌋

) /(2
⌊
⌊𝑛𝑖

𝑘/2⌋

𝑛𝑖
𝑘/2

⁄ ⌋
) → if there are only two batches. 

⋮ ⋮ 

𝐶
𝑛𝑖
𝑘

𝑛𝑖
𝑘
. = ((

𝑛𝑖
𝑘

1
)(

𝑛𝑖
𝑘 − 1

1
)…(

2

1
)) /𝑛𝑖

𝑘! → if there are 𝑛𝑖
𝑘 batches. 

Ceiling brackets ⌊. ⌋ rounds number to a lower integer. Then, the total number of batch compositions of 

group 𝑖 in stage 𝑘, i.e., 𝐵𝐶𝑖, is determined as follows: 

𝐵𝐶𝑖
𝑘 = ∑ 𝐶𝑟𝑛𝑖

𝑘
.

𝑟∈𝑆𝑖

 

As a result, there is an enormous number of combinations (𝐵𝐶𝑘) between 𝐵𝐶𝑖
𝑘 of all groups in stage 𝑘, 

which is determined as follows: 

𝐵𝐶𝑘 =∏𝐵𝐶𝑖
𝑘

𝑖∈𝐼𝑘

=∏(∑ 𝐶𝑟𝑛𝑖
𝑘
.

𝑟∈𝑆𝑖

)

𝑖∈𝐼𝑘

 

Consequently, an exhaustive combination enumeration between 𝐵𝐶𝑖
𝑘 of all groups in all stages, i.e., 

𝐵𝐶𝑇𝑜𝑡𝑎𝑙, is determined as follows: 

𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =∏𝐵𝐶𝑘

𝑖∈𝐼𝑘

=∏(∏(∑ 𝐶𝑟𝑛𝑖
𝑘
.

𝑟∈𝑆𝑖

)

𝑖∈𝐼𝑘

)

𝑘∈𝑀

 

For example in a two-stage problem including 3 groups with 3 jobs each (without job skipping and 𝐿𝐵𝑖ℎ
𝑘 =

1), 𝑛𝑖
𝑘 = 3 and 𝐵𝐶𝑖

𝑘 = σ 𝐶𝑟3
.3

𝑟=1 = 5 (∀ 𝑖 = 1, 2, 3; ∀ 𝑘 = 1, 2) and, subsequently, 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =
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∏ ∏ (5)3
𝑖=1

2
𝑘=1 = 15,625. By increasing 𝑔 and 𝑛𝑖

𝑘 by one each (𝑔 = 4 and 𝑛𝑖
𝑘 = 4), 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =

∏ ∏ (9)4
𝑖=1

2
𝑘=1 = 43,046,721.  

Since in the original MILP models, particularly the MILP1 and MILP2 models, the best sequence should 

be determined for each member of 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 to determine the optimal solution, the solution space increases 

exponentially, which leads to requiring unaffordable solution space and unreasonable computational time. 

The identification of structural non-dominance properties (usually corresponding to the batch composition 

restrictions in this research) is a key step to reduce the solution space to a non-dominated set and, 

consequently, to make possible the solution in affordable time. 

Proposition: By restricting the batching phase of batch scheduling to allocate one and only one job to each 

batch of each group, the optimal solution is guaranteed when there is no violation on desired lower bounds 

on batch sizes. 

Proof. Batch scheduling addressed here has multiple optimal solutions so that all optimal solutions have 

the same job assignments and job sequences on machines. The only difference is related to different 

combination between batch compositions in the entire stages, leading to different batch assignments and 

sequences on machines as well as different job sequences within batches. Apart from this, as long as job 

assignments and job sequences on machines of a schedule are not changed, the completion time of jobs 

and, subsequently, their tardiness are not changed, irrespective of which batch a job is assigned. Also, there 

is no setup time between batches belonging to the same group.  

With the help of these arguments, it is concluded that these multiple optimal solutions can be converted to 

each other by changing at least one batch composition of a group related to a stage. As a result, if 𝐿𝐵𝑖ℎ
𝑘 = 1 

(∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀), then each optimal schedule (𝑆𝑂𝑝𝑡) can be converted to the specific optimal 

schedule (𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

), by decomposing and replacing each batch including more than one job in 𝑆𝑂𝑝𝑡 to 

several batches including only one job in 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

, for the entire stages. 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

 restricts the batching 

phase to allocate one and only one job to each batch of each group in each stage. Therefore, based on 

𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

, the RMILP model is developed so that it guarantees to obtain the optimal solution in fraction of 

the computation time required by the original MILP model, because of focusing on the non-dominated 

solution space. This being the case, the batching phase is eliminated from batch scheduling and, 

consequently the optimal sequence of the RMILP model (𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

) can be interpreted as the optimal 

sequences for the original MILP model with the help of merging sequential batches of the same group as a 

single batch(es) on each machine. An extension of the developed proposition is that the RMILP model 
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presents the optimal solution of the original MILP model as long as the desired lower bounds are not 

violated by 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

. 

Therefore, non-dominated solution space as a structural non-dominance property is identified based on the 

batch composition restrictions to reduce the solution space and, consequently, to make possible either the 

optimal solutions or good quality lower bounds for problems in affordable computational times. This being 

the case, the RMILP model is developed by relaxing the desired lower bounds on batch sizes (i.e., 𝐿𝐵𝑖ℎ
𝑘 =

1;∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝐾) and eliminating the job assignment to batches, i.e., the batching phase.  
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Appendix B. The RMILP model based on the MILP2 model 

 

Sets and Indices  

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔} 

𝐺𝑖  Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖} 

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚} 

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘} 

   

Subsets  

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺 

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖 

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘 

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾 

   

Parameters  

𝑔 Number of groups  

𝑛𝑖 Number of jobs of group 𝑖  

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘  

𝑚 Number of stages  

𝑣𝑘 Number of machines in stage 𝑘  

𝑚𝑖𝑗  Number of stages, which must be visited by job 𝑗 of group 𝑖  

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗  

𝑡𝑖𝑗ℎ
𝑘  Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘  

𝑆𝑝𝑖ℎ
𝑘  Required setup time to process any batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝 

is the preceding batch (𝑝 = 0 refers to the reference batch) 

𝑑𝑖𝑗  Due date of job 𝑗 of group 𝑖  

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖  

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖  

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘  

𝛼 Weight attributed to the producer  

𝛽 Weight attributed to the customer  
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𝐿𝐵𝑖ℎ
𝑘  Desired lower bound for the minimum number of jobs assigned to any batch of group 𝑖 on machine 

ℎ in stage 𝑘 

 

Decision variables 

𝑍𝑖𝑗ℎ𝑟
𝑘  1 if job 𝑗 of group 𝑖 is scheduled in 𝑟𝑡ℎ position of machine ℎ in stage 𝑘; 0 otherwise 

𝑋𝑖𝑗
𝑘  The completion time of job 𝑗 of group 𝑖 in stage 𝑘 

𝑇𝑖𝑗 The tardiness of job 𝑗 of group 𝑖 

Mathematical formulation 

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑗∈𝐺𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝐺𝑖𝑖∈𝐺
 (1) 

The objective function (1) is to simultaneously minimize the total weighted completion time and total 

weighted tardiness. Set of constraints (2) through (8), known as assignment constraint sets, are incorporated 

into the model to determine the optimal job sequence on machines. It is assumed that there is at most 

σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘  positions on each machine in stage 𝑘, so that each job of each group must be assigned to one and 

only one position 𝑟 (𝑟 ∈ 𝑁𝑘 , 𝑁𝑘 = {1,2,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 }) of a machine. 

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑟∈𝑁𝑘ℎ∈𝑉𝑖𝑗
𝑘

= 1 

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾; 

(2) 

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

≥∑ ∑ 𝑍𝑖𝑗ℎ(𝑟+1)
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

 

 ∀𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘; 

(3) 

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

≤ 1 

∀𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘; 

(4) 

Constraint (2) ensures that each job is assigned to only one position on machines in each stage, while 

constraint (3) guarantees that the jobs should be assigned to machines from the first position (𝑟 = 1) as 

consecutive positions. Since there are parallel machines in some stages, constraint (4) indicates that all 

positions of a machine might not be assigned to jobs.  
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𝑋𝑖𝑗
𝑘 ≥ ∑ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘 )𝑍𝑖𝑗ℎ1
𝑘

ℎ∈𝑉𝑖𝑗
𝑘

 

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾; 

(5) 

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(1) ≥ 𝑟𝑖𝑗 +∑ ∑ (𝑡𝑖𝑗ℎ
𝑠𝑡𝑖𝑗(1)×𝑍𝑖𝑗ℎ𝑟

𝑘 )
𝑟∈𝑁

𝑠𝑡𝑖𝑗(1)ℎ∈𝑉𝑖𝑗
𝑠𝑡𝑖𝑗(1)

 

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 

(6) 

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝑍𝑖𝑗ℎ𝑟

𝑘 ) + 𝑀(1 − 𝑍𝑝𝑞ℎ(𝑟−1)
𝑘 ) ≥ 𝑋𝑝𝑞

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘  

∀𝑟 ∈ 𝑁𝑘 − {1}; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑞 ∈ 𝐽𝑝

𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑖𝑗
𝑘 ∩ 𝑉𝑝𝑞

𝑘 ; 

(7) 

Set of constraints (5) through (7) determine the completion time of jobs on machines. Constraint (5) together 

with constraint (6) account for dynamic machine availability and dynamic job release time, respectively, 

while constraint (7) determines the completion time of jobs.  

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙) − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥∑ ∑ (𝑡𝑖𝑗ℎ
𝑠𝑡𝑖𝑗(𝑙)×𝑍

𝑖𝑗ℎ𝑟

𝑠𝑡𝑖𝑗(𝑙)
)

𝑟∈𝑁
𝑠𝑡𝑖𝑗(𝑙)ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙)
 

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗}; 

(8) 

The linking constraint (8) ensures the connection between completion times of a job related to each of two 

sequential stages, where the job had operations.  

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗 

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 

(9) 

Constraint (9) is applied for finding the tardiness of each job.  

𝑋𝑖𝑗
𝑘 , 𝑇𝐷𝑖𝑗 ≥ 0;𝑍𝑖𝑗ℎ𝑟

𝑘 ∈ {0, 1} 

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘. 

(10) 

Finally, constraint (10) defines the variables used.  

 


