

AN ABSTRACT OF THE DISSERTATION OF

Omid Shahvari for the degree of Doctor of Philosophy in Industrial Engineering presented on July

24, 2017.

Title: Bi-Criteria Batching and Scheduling in Hybrid Flow Shops

Abstract approved: __

Rasaratnam Logendran

In this research, a bi-criteria batching and scheduling problem is investigated in hybrid flow shop

environments, where unrelated-parallel machines are run simultaneously with different capacities and

eligibilities in processing, in some stages. The objective is to simultaneously minimize a linear combination

of the total weighted completion time and total weighted tardiness. The first favors the producer’s interest

by minimizing work-in-process inventory, inventory holding cost, and energy consumption as well as

maximizing machine utilization, while the second favors the customers’ interest by maximizing customers’

service level and delivery speed. In particular, it disregards the group technology assumptions (GTAs) by

allowing for the possibility of splitting pre-determined groups of jobs into inconsistent batches in order to

improve the operational efficiency. A comparison between the group scheduling and batch scheduling

approaches reveals the outstanding performance of the batch scheduling approach. As a result, contrary to

the GTAs, jobs belonging to a group might be processed on more than one machine as batches, but not all

machines may be capable of processing all jobs. A sequence- and machine-dependent setup time is required

between each of two consecutively scheduled batches belonging to different groups. Based on

manufacturing company policy, the desired lower bounds on batch sizes are considered for the number of

jobs assigned to batches. Although, the direction in which all jobs move through production line is the

same, some jobs may skip some stages. Furthermore, to reflect real industry requirements, the job release

times and the machine availability times are considered to be dynamic, which means not all machines and

jobs are available at the beginning of the planning horizon.

The problem is formulated with the help of four mixed-integer linear programming (MILP) models. Two

out of four MILP models are formulated as two integrated phases, i.e., batching and scheduling phases,

with respect to the precedence constraints between each pair of jobs/batches and/or the position concept

within batches. The optimal combination between batch compositions of groups are determined in the

batching phase, while the optimal assignment and sequence of batches on machines and sequence of jobs

within batches are determined in the scheduling phase, with respect to a set of operational constraints. A

batch composition of a group corresponding to a particular stage, determined in the batching phase of the

MILP model, represents the number of batches assigned to the group as well as the number and type of jobs

belonging to each batch of that group. Since the first and second MILP models lead to unmanageable

solution space, the relaxed MILP model, which allocates one and only one job to each batch of each group

in each stage, can be developed to focus on the non-dominated solution space. The optimal solutions of

MILP models and relaxed MILP model are equal, if and only if the optimal solution of the relaxed MILP

model does not violate the desired lower bounds on batch sizes. Since the relaxed MILP model cannot

guarantee the optimal solution of the MILP models, a third MILP model is developed by integrating

batching and scheduling phases. This MILP model eliminates an exhaustive combination enumeration

between batch compositions of all groups in all stages. Although the third MILP model converges to the

optimal solution slower than the relaxed MILP model, it guarantees finding the optimal solution of the first

and second MILP models. A comparison between four MILP models shows the superior performance of

the third MILP model.

However, since the problem is strongly NP-hard, it is not possible to find its optimal solution within a

reasonable time as the problem size increases from small to medium to large, even by the relaxed MILP

model or the fourth MILP model. Therefore, several meta-heuristic algorithms based upon basic local

search, basic population-based search, and hybridization of local search and population-based searches are

developed, which move back and forth between batching and scheduling phases. Tabu Search (TS) is

implemented as a basic local search algorithm, while Tabu Search/Path-Relinking (TS/PR) is implemented

as a local search algorithm enhanced with a population-based structure. TS is incorporated into the

framework of path-relinking to exploit the information on good solutions. The TS/PR algorithm comprises

several distinguishing features including relinking procedures to effectively explore trajectories connecting

elite solutions and the methods used to choose the reference solution. Particle Swarm Optimization (PSO)

is implemented as a basic population-based algorithm, while Particle Swarm Optimization enhanced with

a local search algorithm (PSO/LSA) is developed to realize the benefits of batching and, consequently,

enhance the quality of solutions.

Since there is interdependency between positions of a job in different stages of a hybrid flow shop in batch

scheduling, a meta-heuristic algorithm is not capable of capturing these interdependencies and,

subsequently, its efficacy can be diminished. In order to capture this interdependency, the non-, partial-

complete-, and stage-based interdependency strategy are developed. In the stage-based-interdependency

strategy, a complete sequence related to all of the stages is gradually determined, stage by stage. An initial

solution finding mechanism is developed to trigger the search into the solution space and generate an initial

population. The performances of these algorithms are compared to each other in order to identify which

algorithm(s) outperforms the others. Nevertheless, the performances of the best algorithm(s) are evaluated

with respect to a tight lower bound obtained from a branch-and-price (B&P) algorithm.

The B&P algorithm uses Dantzig-Wolfe decomposition (DWD) to divide the original problem into a master

problem and several sub-problems (SPs) corresponding to each stage. The original problem is decomposed

into the SPs by three DWDs corresponding to the three MILP models. Although, by applying DWD

technique in the first and second MILP models, an exhaustive combination enumeration between batch

compositions of all groups in all stages is excluded and, as a result, the SPs are easier to solve than the

original problem, they are still strongly NP-hard because of an enormous number of combinations between

batch compositions of all groups in each stage. However, the DWD technique corresponding to the relaxed

MILP model not only drastically reduces the number of variables and constraints in the SPs, but also

eliminates the batching phase of the first and second MILP models. Decomposing the original problem

based on the relaxed MILP model and implementing the B&P algorithm cannot guarantee optimal solutions

or tight lower bounds of problems unless the number of violations in the desired lower bounds on batch

sizes is not significant. Therefore, the third MILP model is decomposed by DWD so that the B&P algorithm

is capable of finding tight lower bounds even for large-size instances of the problem.

A comparison between the lower bounds obtained from the B&P algorithm and CPLEX reveals the

impressive performance of the B&P algorithm, particularly for large-size problems. The evaluation of the

best algorithms based upon these tight lower bounds developed by the B&P algorithm, uncovers the

outstanding performance of hybrid algorithms compared to the results obtained from CPLEX.

©Copyright by Omid Shahvari

July 24, 2017

All Rights Reserved

Bi-Criteria Batching and Scheduling in Hybrid Flow Shops

by

Omid Shahvari

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented July 24, 2017

Commencement June 2018

Doctor of Philosophy dissertation of Omid Shahvari presented on July 24, 2017.

APPROVED:

Major Professor, representing Industrial Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my dissertation to any reader upon

request.

Omid Shahvari, Author

ACKNOWLEDGEMENTS

The completion of my dissertation and subsequent Ph.D. has been a long-standing desire to me for learning

science and a great source of enthusiasm for developing new ideas. When I look back at all those moments

I have engaged in this research, I see amazing changes not only in my life, but also in my character traits,

all for the better, during this long journey. I owe these successes to several people.

I would like to express my sincere appreciation and thanks to my major professor, Dr. Rasaratnam

Logendran. You have been a tremendous mentor and advisor for me. I want to thank you for encouraging

and supporting my ideas. I appreciate all your help, persistence, enthusiasm, contributions, hard work, and

continued guidance over the last four years. Thank you for patiently reading, correcting, and making

suggestions for improvement on numerous papers and this dissertation. Special thanks for the time you

spent to write letters of recommendation, which helped me a lot throughout my job search.

My gratitude extends to my committee members, Dr. Karl Haapala and Dr. Hector Vergara, for their

guidance and support. Special thanks to Dr. Lisa Madsen for serving as my minor professor and for her

useful feedback. I would like to thank Dr. Ellen Smit and Dr. Roger Graham for serving as the graduate

council representative on my committee.

I would like to express my sincere appreciation to Dr. Nasser Salmasi for supporting me throughout my

entire academic life. Thank you so much for your trust. I may not be where I am today without your support,

guidance, encouragement, and advice. Thanks to Abbas Bozorgirad, Mohammad Yazdani, and Yasaman

Mehravaran for their research as a great source of information. I would like to express my appreciation to

the MIME staff members, Jean Robinson and Phyllis Helvie, for their help. Special thanks to Keith Price

and Lori Burgeson who installed and maintained any software/hardware that I needed for my research.

My time at Oregon State University in Corvallis, Oregon, a beautiful and lovely small city, was a great

chapter in my life due to the support and love of my friends. I will always be grateful to Abbas Abdolahi,

Amir Javaheri, and Amin Mirkouei for their love and support and constantly cheering me up with their

presence.

Last but not least, I would like to thank my family. Words cannot express how grateful I am to my father

and my mother for their endless love, caring, dedication, and all the sacrifices they have made on my behalf

over the years. Dad, you showed me how to be a human and love with no expectation. Mom, you taught

me about hard work and persistence and were a great role model of resilience and strength. I am so proud

of you and grateful for having you. To my sisters Manizheh, Mahnaz, and Mitra, I love you dearly with all

my being and thank you for all of your advice, help, and caring. The last words of this acknowledgment go

to my family: your love is the reason to live.

TABLE OF CONTENTS

Page

1. INTRODUCTION .. 1

1.1. Industrial application ... 3

1.2. Motivation .. 6

1.3. Contributions.. 10

1.4. Research outline ... 11

2. PROBLEM STATEMENT ... 13

3. LITERATURE REVIEW ... 16

3.1. Review of the literature related to hybrid flow shop environments ... 17

3.2. Review of the literature related to group scheduling ... 18

3.3. Review of the literature related to batch scheduling .. 20

3.4. Review of the literature related to bi-criteria scheduling problems ... 21

3.5. Review of the literature related to the methodologies ... 23

3.5.1. Review of the literature related to Tabu Search .. 24

3.5.2. Review of the literature related to Tabu Search/Path-Relinking ... 25

3.5.3. Review of the literature related to Particle Swarm Optimization ... 26

4. METHODOLOGY ... 30

4.1. Mathematical programming model .. 32

4.1.1. MILP1 ... 33

4.1.2. MILP2 ... 38

4.1.3. MILP3 ... 43

4.1.4. RMILP .. 51

4.1.5. Comparison of MILP1, MILP2, MILP3, and RMILP .. 58

4.2. Meta-heuristic algorithm .. 60

4.2.1. Move interdependency .. 60

4.2.2. Initial solution finding mechanism.. 65

4.2.3. Refinement step and adjustment step .. 67

4.2.4. Tabu Search .. 68

4.2.5. Tabu search/Path-Relinking .. 82

4.2.6. Particle swarm optimization .. 92

4.2.7. Particle swarm optimization/local search .. 96

4.2.8. Ineffective neighbor moves ... 100

TABLE OF CONTENTS (Continued)

Page

4.2.9. Calibration of the meta-heuristic algorithms ... 115

5. LOWER BOUNDS ... 117

5.1. Lower bounding mechanisms .. 118

5.2. Review of the literature related to column generation technique... 119

5.3. Branch-and-Price algorithm ... 121

5.3.1. Dantzig-Wolfe Decomposition ... 121

5.3.2. Stabilization .. 142

5.3.3. Early termination of column generation ... 146

5.3.4. Branching rule ... 147

6. EXPERIMENTAL SETUP AND DATA GENERATION .. 149

7. RESULTS ... 154

7.1. Batch scheduling vs. group scheduling .. 154

7.2. Best algorithm .. 155

7.3. Algorithms versus optimal solutions and lower bounds .. 162

8. CONCLUSIONS ... 168

BIBLIOGRAPHY ... 172

APPENDICES .. 180

Appendix A. The solution space of the RMILP model vs. the original MILP model 181

Appendix B. The RMILP model based on the MILP2 model .. 184

LIST OF FIGURES

Figure Page

1. Illustration of job scheduling vs. batch scheduling vs. group scheduling ... 3

2. A general form of components in TFT-LCD panel .. 4

3. A general form of components in LED-backlit LCD panel .. 5

4. Illustration of batch scheduling vs. group scheduling ... 9

5. Research Contribution for the Problems Investigated .. 11

6. Display of Scheduling Problems ... 28

7. No violation on desired lower bounds for the RMILP model ... 56

8. Violation on desired lower bounds for the RMILP model .. 57

9. The stage-based improvement procedure along with the three-level TS algorithm................................ 64

10. The two-phase solution procedure at three levels ... 70

11. Illustration of neighborhood and tabu structures in different levels of TS-based algorithm 76

12. Flow chart for basic TS at each level .. 81

13. Solution representation for PR .. 84

14. The LCS of initial and guiding solutions for the first three iterations .. 87

15. Block-path construction method ... 89

16. Global and local optima in intermediate solutions .. 90

17. Illustration for two-level local search algorithm (LSA) .. 99

18. Illustration for lemma 1-1 & 1-2 ... 104

19. Illustration for lemma 2 .. 106

20. Illustration for lemmas 3-1 & 3-2 ... 108

21. Iterative progress of DWDs on a small-size problem ... 140

22. Iterative progress of DWDs on a medium-size problem ... 141

23. Iterative progress of DWDs on a large-size problem .. 141

24. Deviations from the best algorithm ... 158

25. Comparison between iterative improvement of TS/PR and PSO/LSA ... 159

26. The benefits of integrating the batching decision into group scheduling ... 167

LIST OF TABLES

Table Page

1. Pseudo-code for 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 ... 55

2. Comparison between MILP models and the RMILP model ... 59

3. Pseudo-code for three-level TS-based algorithm .. 80

4. Percentage values and confidence intervals for Q and K .. 82

5. Pseudo-code for the IP generation .. 84

6. Possible moves related to the first iteration .. 88

7. Pseudo-code for PR procedure .. 91

8. Pseudo-code for TS/PR algorithm .. 92

9. Pseudo-code for decoding a position pseudo matrix to a sequence pseudo matrix 96

10. Pseudo-code for PSO/LSA algorithm ... 97

11. Pseudo-code for initializing PSO population .. 98

12. Performance of the TS-based algorithm with and without the lemmas .. 115

13. Empirical formulae for TS parameters .. 116

14. The PSO algorithm parameters ... 116

15. Empirical formulae for PSO/LSA parameters .. 117

16. The range of τ and R ... 151

17. Pseudo-code for determining the desired lower bounds on batch sizes .. 153

18. Performance of batch scheduling vs. group scheduling .. 155

19. Factors and their levels in the experiment... 156

20. ANOVA table on the natural log of data .. 157

21. Paired t-test for scenarios .. 160

22. Paired t-test for interaction between scenarios and due date tightness ... 161

23. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs

𝐿𝐵𝐵𝑆 for (Small, Small) level of problems .. 163

24. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs

𝐿𝐵𝐵𝑆 for (Small, Large) & (Large, Small) levels of problems .. 164

25. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs

𝐿𝐵𝐵𝑆 for (Large, Large) level of problems .. 165

Bi-Criteria Batching and Scheduling in Hybrid Flow Shops

1. INTRODUCTION

Scheduling problems were first considered in the mid-1950s in small industries as minimizing the total flow

time of a group of jobs on a single machine or minimizing the makespan of jobs on a couple of machines.

Then, based on realistic requirements of different manufacturing industries, these problems got more

complex over time. The intense competition faced by manufacturing companies since the late 1970s has

made them very receptive to ideas that improve both operational effectiveness and competitive advantage.

Foremost among these ideas that has achieved widespread acceptance is cellular manufacturing (CM), a

widely-recognized production system, which combines the efficiency of flow shop production with the

flexibility of job shop manufacturing.

With the advent of CM as a manufacturing philosophy, and as a result of scheduling of jobs that belong to

the same family based upon their similarities in processing plans, tooling, shape and size, and setup, has

become a topic of considerable interest among researchers and more suited for today’s lot production

systems (Li et al. 2010). Much of the attention in CM has focused on reduction in 1) total time required to

setup the machines by implementing part family tooling and sequencing since cells process similar parts,

2) total flow times with the help of reducing setup times, move times, and waiting times, and 3) using small

transfer batches. These provide the opportunity to reduce not only lot sizes, which leads to reduced work-

in-process (WIP) inventories, but also manufacturing lead times and, subsequently market response times,

which leads to improved customer satisfaction. Therefore, CM has focused on both producer’s and

customers’ satisfaction.

CM is one of the applications of group technology, seeking to align process flows by families of component

parts, where a portion of a firm’s manufacturing system has been converted to cells. Group technology is a

philosophy that capitalizes on product similarities and was designed as a means of improving manufacturing

and design productivity in an era of rapidly expanding product diversity. A manufacturing cell is a cluster

of dissimilar machines or processes located in close proximity and dedicated to the manufacture of families

of parts. The parts belonging to each family are similar in their processing requirements including required

operations, machine tool capacities, processing plans, tolerances, and so forth. The shop structure of each

cell determines all characteristics of the environment where jobs are processed, such as the number and

type of machines as well as the layout of the workshop. In order to decrease the cycle time of production,

all machines are placed in serial stages based upon jobs’ processing plans so that jobs should move through

these stages in unidirectional passes. Also, in order to increase the flexibility of the production line, all

2

machines related to bottleneck stages are placed in parallel, not necessarily all identical. This is a

sophisticated flow shop known as hybrid flow shop.

Hybrid flow shop (HFS) is one of the advanced flow shop structures that have been studied in the scheduling

literature. HFS is a flow shop, where at least one of the stages includes identical- and/or unrelated-parallel

machines and jobs are required to be processed only on one machine. In contrast, a flow shop with only

identical-parallel machines in at least one of the stages is called flexible flow shop (FFS). HFS environments

have been utilized by many traditional industries including paper, textile, tobacco, pharmaceutical,

metallurgical, oil, chemical, and food industry (Hsu et al. 2009, Zandieh et al. 2006). Semiconductor wafer

fabrication, printed circuit board (PCB), and semiconductor light source manufacturing systems are modern

electronics industries, which utilize HFS as a shop structure (Chang 2000, Choi et al. 2011, Jin et al. 2002,

Neammanee and Reodecha 2009, Uzsoy et al. 1992, Wein 1988).

Effective scheduling approach is crucial to good performance of job shops and flow shops where a large

variety of parts are produced. Therefore, a scheduling rule chosen for a manufacturing cell can have a strong

impact on cell performance, especially when multiple incompatible job families are produced, virtual

cellular manufacturing (VCM) is proposed, setup times are significant, and/or a manufacturing cell is

operating at or near its capacity. Incompatible job families refer to multiple groups of dissimilar jobs, while

the jobs assigned to a group are similar. Setup times need to be explicitly considered while scheduling

decisions are made in order to increase productivity, eliminate waste, improve resource utilization, and

meet deadlines (Allahverdi 2015). The research problem addressed in this paper focuses on determining

the optimal schedule of incompatible job families (groups) in several consecutive cells of a manufacturing

company, where there are negligible setup times (equal to zero) between two jobs belonging to the same

group, while considerable setup times between two jobs of different groups. Therefore, the utilization of an

appropriate scheduling approach along with an efficient optimization algorithm can have a significant effect

in cell performance. There are three choices for scheduling of pre-determined groups of jobs based upon

the industry requirements:

• Group Scheduling (GS): jobs belonging to a group should be processed as a single batch, i.e.,

following the group technology assumptions (GTAs)

• Batch Scheduling (BS): jobs belonging to a group might be processed as multiple batches, i.e.,

violating the GTAs but following the desired lower bounds on batch sizes, 𝐿𝐵𝑏, (the minimum

number of jobs assigned to batches, which are related to batch assignment on machines)

• Job Scheduling (JS): jobs are processed irrespective of their assignment to groups, i.e., violating

both the GTAs and 𝐿𝐵𝑏.

3

Figure 1. Illustration of job scheduling vs. batch scheduling vs. group scheduling

An illustration of GS, BS, and JS related to only one stage of HFS including five unrelated machines is

depicted in Figure 1. By implementing BS instead of GS, each of 3 groups among the 8 groups are split

into two batches. In addition, by implementing JS instead of GS, each of 2 groups among the 8 groups are

split into three batches, while one group is split into two batches. In the following sub-section, an overview

of semiconductor light sources manufacturing systems is presented in order to illustrate the application of

the HFS environment. Apart from this, the contribution and motivation for considering other features of

this research, such as violation in the GTAs, the desired lower bounds on batch sizes, and bi-criteria

objective function are justified.

1.1. Industrial application

The semiconductor industry is the aggregate collection of companies engaged in the design and fabrication

of semiconductor devices. Therefore, semiconductors are a primary input for nearly all electronic products.

The semiconductor industry is widely recognized as a key driver for economic growth in its role as a

multiple lever and technology enabler for the whole electronics value chain. Continuous growth but in a

cyclical pattern with high volatility creates the need for high degrees of flexibility and innovation in

semiconductors in order to constantly adjust to the rapid pace of change in the market. Panel production

market is one of the fastest growing segments related to the semiconductor industry.

Market demand for panel products is rapidly changing and has experienced unexpected fluctuations. These

variations, together with the extensive amount of customization requested from customers underlie the need

for high degrees of flexibility and efficiency in this industry. The LCD, TFT-LCD, LED, LED-backlit LCD,

OLED, and similar semiconductor light source manufacturing systems show rapid changes in

semiconductor light source, and in general the panel production market. The above-mentioned

manufacturing systems are considered as a middle stage in the electronics value chain, which receive

semiconductors as their main input in order to produce LCDs, TFT-LCDs, LEDs, LED-backlit LCD,

OLEDs, and other semiconductor light sources, which are themselves the main input for many other

M1 1 6 1 6 1 6

M2 8 10 11 12 2 8 10 11 12 2 8 11 13 12

M3 21 10

M4 18 20 21 18 21 18

M5 23 9 23 9 23

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Idle time Waiting time Setup time Family/batch

7543

17 19 22

24 25

14161520

25

7

13

20 15 14 16

17 19 22

24 25

2 3 4 7

9 13

17 19 22

24

43 5

14 15 16

5

GROUP SCHEDULING BATCH SCHEDULING JOB SCHEDULING

4

electronic industries. Revolutionary changes in types of equipment, materials, and production technologies

have resulted in extraordinary advances in these industries. Most applications of semiconductor light

sources are television sets, computer monitors, mobile phones, handheld video game systems, personal

digital assistants, navigation systems, and projectors.

Different semiconductor light sources present different quality. The LCD, stands for Liquid Crystal

Display, works by adjusting the amount of light blocked and usually has a backlight. The TFT-LCD, stands

for Thin Film Transistor LCD, is a type of the LCD with a TFT attached to each pixel in order to improve

the quality of images. The LED, stands for Light Emitting Diode, emits light when activated rather than

blocking it like the LCD. The LED-backlit LCD uses LED backlighting instead of the cold cathode

fluorescent (CCFL) backlighting used by most other LCDs. The OLED, stands for Organic LED, is

comparatively recent technology in which the emissive electroluminescent layer is a film of organic

compound that emits light in response to an electric current. Almost all panels that we currently use are

TFT-LCDs, LED, or LED-backlit LCD. Figures 2 and 3 present a general form of components related to

TFT-LCD and LED-backlit LCD panels, respectively. The components of the product are assembled on

top of each other after they have been separately manufactured, either by the same company or by different

suppliers.

Figure 2. A general form of components in TFT-LCD panel

Each semiconductor light source has different types, which can be categorized based on manufacturing

technology and other unique features. In addition to technological differences, each one is also categorized

based on the size of the mother glass that is used in the early stages of the manufacturing process. Therefore,

5

different groups of semiconductor light sources of the same type (for example LED-backlit LCD) are

created in terms of shape, size, technological manufacturing, production planning, etc. Apart from this, each

semiconductor light source manufacturing system includes a lot of individual operations, which can be

divided into several main sub-processes such as fabrication process, cell process, and module process. Each

sub-process performed in a cell of CM includes most complicated machines, which are typically automated

or controlled by computers and placed in a serial sequence, i.e., flow shop. Several parallel machines are

simultaneously run in the stages of a flow shop with long runtime (bottleneck stages) not only to decrease

the cycle time of production, but also increase the flexibility of production at the same time. Parallel

machines, which are expensive and have a wide range of specifications, include all types of identical,

uniform and unrelated machines (Choi et al. 2011, Jeong et al. 2001, Shin and Leon 2004). Finally, the

transportation of materials and maintenance of work-in-process (WIP) inventories between different stages

of HFS are usually performed with the help of automated material handling systems (AMHS) such as

automated guided vehicles (AGV), overhead shuttles (OHS), rail guided vehicles (RGV), and conveyer

systems (Ho and Su 2010, Jang and Choi 2006).

Figure 3. A general form of components in LED-backlit LCD panel

Last but not least, whenever the number of operations is increasing, effective scheduling approaches are

necessary to keep not only high levels of productivity from producer’s point of view, but also high levels

of satisfaction from customers’ point of view. Although scheduling techniques have been employed by the

semiconductor and, subsequently, semiconductor light source manufacturing systems, these techniques

need to evolve at the same step as other advances in these industries.

6

1.2. Motivation

This research specifically addresses scheduling of jobs clustered into pre-determined groups as inconsistent

batches in an HFS environment, which is motivated by real industry applications. The mentioned batching

and scheduling problem, simply known as batch scheduling, covers most of the challenges in the

semiconductor light source manufacturing systems. Since, all jobs/parts should be processed as inconsistent

batches in the same direction in an HFS environment, it lacks the flexibility of job shop production systems.

However, as it has been described for the semiconductor light source manufacturing systems, efficiency

and flexibility are two of the most crucial features of this industry, which is obtainable with the help of

running parallel machines from different types in bottleneck stages. As a result, since these parallel

machines have different rates in processing, a part has different run times on bottleneck stages.

The ever-changing design of products in the semiconductor light source manufacturing systems such as the

LCD, TFT-LCD, LED, LED-backlit LCD, OLED, and others, together with huge seasonal demand for

these products, and generally for related panels, make the introduction of flexibility within job shops in

HFS production systems critical for practitioners. This novel production system is obtainable through CM,

so that all parts are clustered into several families or groups in terms of their similarity and all required

machines are also categorized into different cells in a way that each cell is almost capable of completely

processing multiple groups of jobs. A few inter-cell movements are usually inevitable because complete

disaggregation of cells is not always possible and it might be costly. Therefore, the combined flexibility

and efficiency of this manufacturing structure makes it the best option for today’s small-to-medium lot

production systems (Li et al. 2010).

Instead of focusing only on optimizing the satisfaction of producers as in the literature on most scheduling

problems, this research focuses also on customers’ satisfaction. Therefore, the focus is on a bi-criteria

objective of minimizing a linear combination of total weighted completion time and total weighted

tardiness. From the producer’s point of view, the objective is to not only minimize the total cost of work-

in-process inventory, inventory holding cost, and energy consumption cost, but also to maximize machine

utilization, both by minimizing the total flow time of all jobs. To attain the maximum customer satisfaction,

the objective is to maximize customers’ service level and delivery speed by minimizing the total tardiness

for all jobs. These two criteria are combined with the help of a linear combination, which is referred to as

the weighted sum technique in the literature.

Since the temperature of machines, for example in Polarizer Attachment process (one of the stages in

semiconductor light source manufacturing systems including unrelated-parallel machines), is dependent on

the size of cells (jobs), a set of cells might be processed contiguously as batches with regard to 𝐿𝐵𝑏.

7

Although we assume the setup times between cells (jobs) belonging to the same batch is negligible (equal

to zero), there is a slight difference in the machine temperature (tiny setup time) with regard to different

cells (jobs) belonging to the same batch. Therefore, two cells (jobs) cannot be processed simultaneously by

a machine because of different required temperatures. Since the jobs within different batches are not

necessarily similar to each other, a sequence- and machine-dependent setup time is considered for switching

processes from a batch of a group to a batch of different group on a particular machine. Furthermore, in

order to depict the realistic requirements in industries, jobs are assumed to be released into the production

systems at dynamic times, and machines are also assumed to be made available in the system at dynamic

times. Also, some jobs/batches/groups can skip some stages because they do not need an operation to be

performed in these stages.

As mentioned before, three scheduling approaches, used for sequencing part families as well as parts within

each family in each cell of CM, are job scheduling, group scheduling, and batch scheduling. If the jobs

assigned to a group belong to either one customer or different customers with different due dates, it might

be better to process these jobs as multiple batches. Since GS follows the GTAs, it should process the jobs

in one batch, while BS may choose to process the jobs in multiple batches. The benefits of integrating the

batching decision into the GS approach are to reduce the completion time of jobs with the help of different

machine capabilities and eligibilities, specifically in a bottleneck stage(s), perform timely processing of

jobs with higher priority (based upon weight, tight due date, and earlier release time of jobs), and utilize

the available machine capacities. In a bottleneck stage, since some machines are not eligible to process

some jobs, a machine(s) might use its capacity either more than or less than other machines and,

consequently, the completion time of a group(s) might be either lower than or higher than other groups

when GS is applied. Contrary to GS, BS can potentially lead to a reduction in completion times of some

jobs and/or their tardiness by processing the jobs with higher priorities. While this favors the producer’s

and/or customers’ interests, it might change the production costs due to changes in completion time of other

jobs and/or their tardiness as well as setup times (as multiple batches of the same group may have to be

processed on different machines). So, there is a trade-off between changes in jobs’ completion times and/or

their tardiness on the one hand, and on the other, the changes in setup times. Although we do not expect to

have small batch sizes with large setup times, the optimal schedule of JS may require the use of such

batches. Therefore, there is no guarantee that better results would be obtained if the groups are allowed to

divide into batches as much as possible, when the production costs are important. The manufacturing

companies try to establish a balance between the setup time and the cumulative run time of each batch

processed on a machine so that the production costs are not increased excessively. Thus, BS accompanied

by 𝐿𝐵𝑏 is capable of identifying better solutions compared to GS and JS. Since group scheduling problems

8

are well motivated by industrial applications, we implement batch scheduling instead of group scheduling

in this research to enhance the efficiency and effectiveness of production systems.

A batch composition determines the number of batches assigned to a group as well as the number and the

type of jobs assigned to each batch of that group, in a particular stage. The optimal batch composition of

each group in each stage is determined in the batching phase of the problem. There is an enormous number

of combinations between batch compositions of a group and, subsequently, an exhaustive combination

enumeration between all batch compositions of all groups. Apart from this, the best assignment and

sequence of batches on machines as well as job sequence within each batch should be determined for each

enumeration in order to determine the optimal assignment and sequence of batches on machines and jobs

within batches. Therefore, this feature as well as the previously noted features of the problem place it among

the strongly NP-hard problems. As a result, it is not possible to find the optimal solutions for medium- and

large-size problems, and even for small-size problems due to high complexity of the problem. The main

approach in dealing with these problems is to develop a robust mathematical model and heuristic or meta-

heuristic algorithms to find optimal or near optimal solutions. In addition, tight lower bounds are required

to evaluate the performance of developed algorithms.

For illustration, the non-permutation group scheduling and batch scheduling in a three-stage hybrid flow

shop are depicted in Figure 4. All groups have three jobs each, except one which has four jobs. The idle

time and waiting time on a machine are due to the job release time and the machine availability time,

respectively. By integrating the batching decision into GS, i.e., BS, the following results are obtained in the

optimal schedule of BS:

• The third and fourth groups are divided into two batches, in each stage. Also, the first group is

divided into two batches in the second stage.

o A small batch including only job 3 with a reasonable setup time is created on the first machine

of the second stage due to tight due date of this job.

o Job 8 is processed as a small batch including only one job on the third machine of the second

stage due to its higher priority and early release time.

• The completion time of all jobs and subsequently their tardiness are either reduced or not changed,

except for two jobs (𝑗8 and 𝑗9), which generally led to the reduction in total processing times.

• The job sequence within groups are changed in different stages due to either the job priority and/or

the job release time, which blocks the job from starting early as a result of the split of some groups

into batches.

• The run time of some inserted jobs on different machines are changed due to different capabilities

of machines to process jobs.

9

• The available capacity created on the first machine of the third stage in GS (idle time before job

11) is utilized in BS, while there is idle time on the second machine of the second stage because

the release time of job 4 had blocked this machine from processing this job earlier.

• And finally, the number of setups increases and some setup times change.

Figure 4. Illustration of batch scheduling vs. group scheduling

Therefore, it is clear that it might be advantageous to split one or more groups into batches, thus resulting

in the reduction of job completion time and/or tardiness and, consequently, the reduction in the production

cost. But doing so might increase completion time and/or tardiness of other job(s) and change in setup costs,

as multiple batches of the same group may opt to be processed on different machines, thus resulting in the

increase in the production cost. Therefore, the trade-off between the reduction and increase in the

production cost can be used in favor of implementing BS by considering desired lower bounds.

M11 2 7 10 11

M21 2

M22 13 14

M23

M31 6 14 13

M32

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

M11 2 11 7 10

M21 14 7 10

M22 2 13

M23

M31 6 10 13 9

M32 14

Setup time Idle time Waiting time Family Batch

141 3 4 5 6 8 9 12 13

1 3

4 5 6 12

7 8 10

4 5 11

11

12

1 3 2 7 8 10 9

3 11

1 3 4 5 6

12

8

14 12 13 8 9

1 2 3 11

1 4 5 6

4 5 7 12 8

GROUP SCHEDULING

BATCH SCHEDULING

Machine eligibility

Change in processing time

Job skipping

Idle time due to job release time

Waiting time due to machine availability time

Idle time due to job availability time

10

1.3. Contributions

One of the main purposes of this research is to tackle the scheduling problem in such a manufacturing cell

with the help of a mathematical model as well as providing a set of efficient meta-heuristic algorithms,

specifically for industry-size problems. The orders for semiconductor light sources of the same group might

be released to the manufacturing system by different customers with different due dates. Therefore,

semiconductor light sources of the same group can be processed as multiple batches with respect to

customers’ priorities and batch development restrictions. Thus, another main purpose of the research is to

show the benefits of integrating the batching decision in the traditional group scheduling approach, i.e., the

novel batch scheduling approach. Despite the existing research on different types of hybrid flow shop

scheduling problems, the lack of developing an efficient mathematical model and, consequently, an

optimization algorithm for solving the research problem optimally in a reasonable computational time are

recognizable in the literature. To the best of our knowledge, applying column generation in the framework

of branch-and-bound algorithm (branch-and-price optimization algorithm) to find optimal solutions for

large-size problems has not been implemented for the problem addressed in this research. The branch-and-

price algorithm is efficient because of the use of flow conservation constraints.

Four mixed-integer linear programming (MILP) models are developed in terms of different concepts to

mathematically represent the problem, optimally solve small-size instances of the problem, and construct a

lower bounding mechanism in order to evaluate the performance of non-exact algorithms, particularly for

large-size problems. Several meta-heuristic algorithms in terms of a local search structure, a population-

based structure, and hybridization of local search and population-based structures are developed to find

high quality solutions for the problem. These algorithms are developed based on the most effectively used

meta-heuristics in the literature of HFS scheduling problems, i.e. tabu search (TS) as a local search

algorithm, particle swarm optimization (PSO) as a population-based algorithm, and tabu search

accompanied by path-relinking strategy (TS/PR) as well as particle swarm optimization accompanied by a

local search algorithm (PSO/LSA) as hybrid meta-heuristic algorithms.

In addition, a lower bounding mechanism is constructed with the help of the column generation (CG)

algorithm, also known as “pricing” problem. CG follows the Dantzig-Wolfe decomposition technique and

decomposes the MILP model into a master problem (MS) and a sub-problem(s) (SP). Although the optimal

solution of CG is guaranteed to be a lower bound for the original problem, this lower bound may not

necessarily be one of high quality. Since CG relaxes the integer constraints of the master problem, a

branching procedure (similar to the branch-and-bound (B&B) technique) is performed on fractional

variables obtained from CG to construct a high quality lower bound, commonly referred to as a tight lower

bound in the mathematical programming literature. As a result, collectively the mentioned approach is

11

referred to as branch-and-price (B&P) technique. A graphical representation of the research contribution is

provided in Figure 5.

Figure 5. Research Contribution for the Problems Investigated

1.4. Research outline

Section 2 describes all features of the problem, in detail. These features include batching and scheduling

phases incorporated into the batch scheduling problem, the objective function of the research problem, and

the realistic situations and requirements in industries, i.e., sequence- and machine-dependent setup time,

dynamic job release time, dynamic machine availability, machine capability and eligibility, stage skipping,

and desired lower bounds on batch sizes.

Research Cntribution

Bi-Criteria σ𝑤𝑗𝐶𝑗 + σ𝑤𝑗𝑇𝑗

Hybrid Flow Shop

Lower Bounding
Mechanism

Column Generation

B&P Algorithms

Problem
Decomposition

Solving

Sub-Problems

Sub-Problems
Simplification

Branching
Strategy

Mahematical
Model (MILP)

MILP1, MILP2, &
MILP3

Relaxed MILP

Meta-Heuristic
Algorithms

Move
Interdependency

Tabu Search/Path-Relinking
(TS/PR) Algorithm

Tabu Search (TS) Algorithm

Particle Swarm Optimization/
Local Search Algorithm

Particle Swarm Optimization
(PSO) Algorithm

Comparison between developed
algorithms

12

Batch scheduling is motivated wherever group scheduling is applicable. Therefore, the literature review on

both group scheduling and batch scheduling is provided on Section 3. Besides, the literature review on the

main features of the research problem including hybrid flow shop environment, bi-criteria objective

function, and meta-heuristic algorithms is provided in this section.

Section 4 explains the methodologies proposed to deal with the research problem. These methodologies

include mathematical programing models, which can be used to optimally solve the problem, as well as

several meta-heuristic algorithms that can find optimal or near optimal solutions. The common

implementation strategies related to the search algorithms including move interdependency, initial

solution/population, and refinement/adjustment step are explained. Subsequently, the main characteristics

for each of the search algorithms are individually explained, in detail. The appropriate flow chart and/or

pseudo-code is provided for each algorithm in this section.

The performance of developed meta-heuristics is evaluated with the help of a lower bounding mechanism,

which is described in Section 5. A column generation technique is developed in this section. This section

includes a brief background of this methodology, formulating master and sub problems and establishing

valid lower bounds to the entire problem. Some properties on simplifying sub-problems to a problem with

less complexity are also developed in this section.

A comprehensive data generation mechanism is described in Section 6 to develop test problems, followed

by the experimental setup to evaluate the performance of developed algorithms and lower bounding

mechanism in Section 7. Finally, Section 8 concludes the presentation of research.

13

2. PROBLEM STATEMENT

The problem addressed in this research is to schedule 𝑛 different jobs clustered into 𝑔 pre-determined

groups as inconsistent batches, where each group contains 𝑛𝑖 jobs (i.e., σ 𝑛𝑖
𝑔
𝑖=1 = 𝑁). The scheduling

problems can be defined based on three-field notation 𝛼/𝛽/𝛾 developed by Graham et al. (1979). The first

field (𝛼) describes the shop (machine) setting. The second field (𝛽) describes the setup information. Finally,

the third field (𝛾) defines the performance measure. Therefore, the research problem addressed here is

defined as 𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗, 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗). This problem includes the following

features:

1. Batch scheduling: there are pre-determined groups (families) of jobs based on similarities in

processing requirements. The GTAs restricts all jobs within a group to be processed successively

and without interruption from other groups. Scheduling of groups of jobs in the presence of the

GTAs is referred to as group scheduling. Splitting (batching) pre-determined groups of jobs into

inconsistent batches together with scheduling developed batches on machines as well as jobs within

batches (i.e., violating the GTAs by dividing groups into inconsistent batches), is called as batching

and scheduling problem. In the literature, this is referred to simply as batch scheduling, wherein

sub-groups belonging to each group of jobs are referred to as batches. It might be possible to split

one or more groups into batches, so that all jobs of a batch are processed consecutively on the same

machine. Realistically, a batch cannot be processed on a machine if there is at least one job in the

batch, which cannot be processed on that machine. As a result, contrary to the GTAs, jobs belonging

to a group might be processed on more than one machine as batches, but not all machines may be

capable of processing all jobs. In each stage of batch scheduling, a decision needs to be made

regarding both the batching phase and the scheduling phase.

1.1. Batching phase: a batch composition determines the number of batches assigned to a group as

well as the number and the type of jobs assigned to each batch of that group with regards to

desired lower bounds, in a particular stage. Therefore, the batching phase determines batch

compositions of all groups for the entire stages. Since all jobs of each group can be processed

as different batch compositions corresponding to all stages in batch scheduling, it is referred to

as inconsistent batches.

1.2. Scheduling phase: the sequence of batches on machines as well as the sequence of jobs within

batches are determined in the scheduling phase, for each combination of batch compositions of

all groups for the entire stages, which was determined in the batching phase.

14

2. Hybrid flow shop: in order to decrease the cycle time and increase the flexibility of the production

line, it follows the structure of a unidirectional hybrid flow shop, which includes unrelated-parallel

machines (UPM) in at least one stage. Some parallel machines can also be identical. In HFS, the

machines assigned to a stage with long runtimes (bottleneck stage) are run simultaneously with

different capacities and eligibilities in processing.

3. Bi-criteria objective: the objective function composed of two criteria is to simultaneously minimize

a linear combination of total weighted completion time and total weighted tardiness of jobs. The

first favors the producer’s interest by minimizing work-in-process (WIP) inventory, inventory

holding cost, and energy consumption as well as maximizing machine utilization, while the second

favors the customers’ interest by maximizing customers’ service level and delivery speed. These

two criteria are combined with the help of normalized importance coefficients 𝛼 and 𝛽, which are

the weight attributed to the producer and customers, respectively (0 < 𝛼, 𝛽 < 1 and 𝛼 + 𝛽 = 1).

In order to capture the importance of different products from both the producer’s and customers’

view point, a weight is assigned to each job in the objective function.

4. Sequence- and machine-dependent setup time: processing a job by a machine requires the

machine to be set up first. This setup takes a variable amount of time according to the previous

configuration of the machine. Therefore, a setup is required between each of two consecutively

scheduled batches belonging to different groups, which is dependent on both machine assignment

and sequence of batches. Thus, the problem belongs to the class of sequence-dependent batch

scheduling. Since all jobs within a batch are related to the same group and, subsequently, they are

similar to each other, the setup time required to prepare a machine for switching the process from

one job to another one is assumed to be negligible.

5. Dynamic job release time: the release times for jobs are considered to be dynamic, which means

not all jobs are available at the beginning of the planning horizon (i.e., 𝑡 = 0). Therefore, some

jobs will be released at 𝑡 > 0.

6. Dynamic machine availability time: the availability times of machines are also considered to be

dynamic, which means not all machines are available at the beginning of the planning horizon (i.e.,

𝑡 = 0). Therefore, some machines will be available at 𝑡 > 0. The dynamic machine availability

time usually happens because of maintenance or operations being performed in the previous

scheduling period.

15

Point: all job release times and machine availability times are deterministic and known before the

scheduling process. Therefore, the problem is not among the stochastic scheduling problems.

7. Machine eligibility and capability: in HFS, the machines assigned to a bottleneck stage might not

be eligible to process some jobs. This is referred to as machine eligibility, which is mainly because

of technical incapability of machines. Apart from this, these machines might have different

capacities in processing. Therefore, each job might have different run time in terms of machine

assignment in bottleneck stages.

8. Desired lower bounds on batch sizes: there should be a balance between setup time and cumulative

run time of each batch processed on a machine, which is determined by a manufacturing company’s

policy in terms of the minimum number of jobs assigned to a batch, i.e., the desired lower bounds

on batch sizes.

Point: although there is at least one machine to process consecutively all jobs of each group as a

single batch in each stage, a batch cannot be processed on a machine if there is at least one job in

the batch which cannot be processed on that machine and/or the number of jobs assigned to the

batch is less than the desired lower bound on that machine.

9. Stage skipping: jobs should move through stages so that each job should be processed in at least

one stage. Although, the direction in which all jobs move through is the same, meaning a flow-line

arrangement as required by batch scheduling, some jobs and, subsequently some batches/groups

may skip some stages because they do not need an operation to be performed in these stages.

16

3. LITERATURE REVIEW

Scheduling problems were first considered in the mid-1950s. The comprehensive reviews of scheduling

problems from mid-1998 to mid-2006, reported by Allahverdi et al. (2008), document the advancement

made in scheduling research over the years. Recent comprehensive review by Allahverdi (2015) including

static, dynamic, deterministic, and stochastic environments, classify scheduling problems based upon shop

environments as single machine, parallel machine, flow shop, job shop, or open shop, since the mid-2006

until the end of 2014. Generally, scheduling problems can be classified based upon a number of factors

including setup time/cost, the number of stages jobs need to be processed, job processing requirements, the

number of machines at each stage, and the performance measure to be optimized. The scope of this research

is to improve the objective function value of group scheduling problems. Therefore, the literature reviews

are presented on group scheduling problems with respect to different shop environment and implemented

methodologies, along with some important characteristics of this research including the hybrid flow shop

environment and bi-criteria objective function.

Group scheduling problems are studied by single-machine with different assumptions to capture the real

industries’ requirements. In today’s competitive environments, some manufacturing industries insert

additional machines to the single-machine shop environment to ensure attaining a specific quality,

producing new products, and increasing both the flexibility and capacity of the production system. Shop

structure is changed by inserting new machines in different positions of the single-machine shop

environment, as parallel machines and flow shop, with respect to job processing plans.

When new machines are inserted in parallel, the parallel machine scheduling problems are created, which

can be divided into three categories: Identical machines, 𝑃𝑚, where the run time of a job does not depend

on the machine to which it is assigned; Uniform machines, 𝑄𝑚, where machines have an associated speed

for processing jobs at a consistent rate; and Unrelated machines, 𝑅𝑚, where each type of machines processes

each job in different rates. So the run time of each job on unrelated-parallel machines depends on the

machine to which it is assigned. Since unrelated-parallel machines (UPM) consider different run time for

each job on each machine, it is more prevalent in industry than identical and uniform parallel machines

(Allahverdi et al. 2008).

If the new machines are inserted in series in which the flow or movement of all jobs is the same, from the

first machine in the series to the last one, flow shop (FS) structure is developed. The sophisticated shop

structures are flexible flow shop (FFS) and hybrid flow shop (HFS), when at least one of the serial stages

of a unidirectional flow shop includes identical- and unrelated-parallel machines, respectively. These

extended layouts are sometimes addressed as flow shop with multiple machines, multiprocessor flow shop,

17

or flow shop with parallel machines. The other reason for adding some machines to a stage of a flow shop

is to balance the capacity of the flow shop and increase in demand for customized products.

3.1. Review of the literature related to hybrid flow shop environments

The HFS scheduling problem might be considered as a generalization of two particular types of scheduling

problems: the UPM scheduling problem and the FS scheduling problem. The allocation of jobs to machines

and the sequence of jobs through the shop are the key decisions of the UPM and FS, respectively. Hence,

once the configuration of HFS has been designed, the main decisions in the operation of HFS are to assign

and to schedule the jobs to the machines in each stage according to one or several given criteria. Since, HFS

in this research has batching constraints and bi-criteria objective function, the scheduling approach has a

large impact on the performance of HFS. On the other hand, although HFS increases the productivity and

flexibility of production, it directly has an impact on the complexity of the scheduling problem. Therefore,

HFS is one of the most important characteristic of this research.

A comprehensive set of papers dealing with HFS problems is studied by Ruiz and Vázquez-Rodríguez

(2010). The earliest work on HFS problems started with considering identical-parallel machines in flow

shop so that jobs are not allowed to skip any stage. The simplified versions considered two or three stages

including one or two machines in each stage. The exact algorithms such as B&B and dynamic programming

(DP) have been developed for these problems with unlimited number of stages and machines (Brah and

Hunsucker 1991, Rajendran and Chaudhuri 1992) and more generalized versions of these problems have

been implicitly solved by developing mathematical programming models (Liu and Karimi 2008, Tang and

Xuan 2006).

Ruiz and Maroto (2006) developed hybrid algorithms based on GA-based algorithms with different local

search algorithms to address an HFS scheduling problem with consideration of sequence-dependent setup

times and machine eligibilities. Chen and Chen (2009) developed bottleneck-based heuristic algorithms to

find the minimum total tardiness in an HFS scheduling problem. The comparison between these algorithms

against several commonly used dispatching rules as well as a TS-based algorithms revealed that bottleneck-

based algorithms are not capable of finding solutions better than TS. Jungwattanakit et al. (2009) studied

an HFS problem with the purpose of minimizing a linear combination of the makespan and the mean

tardiness of all jobs. They considered sequence-dependent setup times and dynamic job release times. In

addition to developing a mixed-integer programming (MIP) model, they developed and compared the

performance of different algorithms based on TS, SA and GA.

Yaurima et al. (2009) proposed some algorithms based on GA to find the minimum makespan in an HFS

scheduling problem. The underlying assumptions for this problem were sequence-dependent setup times,

18

machine eligibility, and limited buffers. In addition to the mentioned assumptions, Ruiz et al. (2008)

considered a set of comprehensive assumptions such as stage skipping and job release time for the same

problem. The researchers developed an MIP model as well as several heuristics to deal with the problem.

Zandieh and Karimi (2011) developed an adaptive multi-population GA to solve the multi-objective group

scheduling problem in an HFS environment with sequence-dependent setup times. The objective was to

minimize the summation of makespan and total weighted tardiness in a group scheduling problem. The

underlying assumption for their problem was that the jobs were allowed to skip some stages.

Despite the comprehensive research that has been done on different varieties of HFS scheduling problems,

two important gaps are recognizable in the literature for these problems. The first gap is the lack of violation

in the GTAs in any of the HFS scheduling problems. To the best of our knowledge, the HFS scheduling

problems have been studied so far by considering the GTAs (particularly the ones that follow the cellular

manufacturing concepts). The second gap is the lack of consideration of learning effects in the HFS

scheduling problems. Ignoring learning effects, while scheduling jobs, may result in sub-optimal solutions.

3.2. Review of the literature related to group scheduling

Group technology is a philosophy in which similar parts are clustered into different families in order to take

advantage of the similarities in both design and production. CM is one of the applications of group

technology, seeking to align process flows by families of component parts, where a portion of a firm’s

manufacturing system has been converted to cells. Therefore, CM along with group technology represent a

flexible manufacturing system in which the sequence of families/groups on machines as well as the

sequence of parts/jobs within groups in each cell, can be determined with the help of group scheduling with

respect to the GTAs.

Single machine

The study of group scheduling problems was initiated with the simplest shop structure, i.e. single-machine

problems with different assumptions and constraints, such as single or multi-criteria objective function,

independent or dependent setup times, and many other assumptions to reveal the real-world scheduling

problems (Cheng et al. 1999, Sun et al. 1999, Wang et al. 1999, Webster and Baker 1995). A sequence-

independent group scheduling problem on a single-machine is studied by Li et al. (2011) with respect to

several objective functions including earliness, tardiness, due date assignment, and flow time costs. Gupta

and Chantaravarapan (2008) presented an MILP model for a single-machine group scheduling with family

setups to minimize total tardiness. They also proposed two-phase heuristic algorithms, including SA.

Empirical results indicated that the heuristics are effective. Recent researches in a single-machine group

scheduling dealt more with deterioration and learning effect assumptions. Bai et al. (2012) studied a single-

19

machine group scheduling problem with general deterioration and learning effect. They showed that the

problem is polynomially solvable. Liu et al. (2014) considered the group scheduling on a single-machine

with deteriorating setup and processing times where both setup and processing times are increasing

functions of their starting times. Their primary objective is to minimize total weighted completion time,

while the secondary objective is to minimize maximum cost. They presented a polynomial time algorithm.

Along with learning effect and deterioration assumptions, single-machine group scheduling with other

assumptions including time dependent processing times, ready times, allotted resource, and past-sequence-

dependent setup times have been studied (Low and Lin 2012, Wang et al. 2014, Wang and Wang 2014).

Yazdani Sabouni and Logendran (2013) considered the problem of minimizing the makespan on a single

machine with carryover sequence-dependent setup times in PCB manufacturing.

Parallel machines

Bozorgirad and Logendran (2012) studied sequence-dependent group scheduling problem on unrelated-

parallel machine with respect to a bi-criteria objective function, which simultaneously minimizes total

completion time and total tardiness. Behnamian et al. (2010) addressed sequence-dependent group

scheduling on a set of identical-parallel machines with due windows for jobs, i.e., each job has an interval

rather than a single value. They proposed a multi-phase covering Pareto-optimal front method by using a

multi-phase algorithm iterating over a GA in the first phase and three hybrid metaheuristics in the second

and third phases. They showed that the multi-phase method is a better tool to approximate the efficient set

than the global archive sub-population GA presented previously.

Flow shop

Three lower bounds were developed by Liou and Liu (2010) for sequence-dependent two-machine flow

shop group scheduling problems. They also presented a PSO algorithm and evaluated its performance with

the developed lower bounds. Liou et al. (2013) addressed a new encoding scheme-based hybrid algorithm

for minimizing two-machine flow shop group scheduling problem with transportation times and sequence-

dependent family removal times. They presented some lower bounds and proposed a hybrid heuristic

consisting of PSO and GA. Logendran et al. (2006b) developed different TS-based algorithms to minimize

the total completion time for a two-machine flow shop group scheduling problem. Salmasi et al. (2010)

studied the total flow time minimization for a sequence-dependent group scheduling problem in a flow shop

environment. They developed a mathematical programming model for small size problems, while a TS-

based algorithm as well as a hybrid ant colony optimization (HACO) algorithm are developed to deal with

large size problems. The performances of these algorithms have also been evaluated against a tight lower

bound obtained from a B&P approach. Then, Salmasi et al. (2011) proposed a mathematical programming

20

model as well as a hybrid ACO algorithm for a flow shop sequence-dependent group scheduling problem

to minimize the makespan. Gelogullari and Logendran (2010) studied a carry-over sequence-dependent

group scheduling problem in a flow shop environment for the assembly of PCBs in electronic

manufacturing systems. They developed several TS-based algorithms to find the best sequence of groups

as well as jobs. The performance of these algorithms was also evaluated with the help of a B&P algorithm.

A fast hybrid PSO algorithm (Hajinejad et al. 2011) and efficient upper and lower bounding methods

(Keshavarz and Salmasi 2014) were developed for a flow shop sequence-dependent group scheduling

problem.

Flexible flow shop

Logendran et al. (2005) developed heuristic algorithms to minimize the makespan of a sequence-

independent group scheduling problem in FFS environments. A similar study has been conducted by

Logendran et al. (2006a) to minimize the makespan of a sequence-dependent group scheduling problem in

an FFS environment with the help of TS-based algorithms. This work has also been continued by Shahvari

et al. (2012) to develop a mathematical programming model for the problem as well as efficient TS-based

algorithms to find the optimal or near optimal solutions. Keshavarz and Salmasi (2013) developed an MILP

model for sequence-dependent group scheduling problem in an FFS environment and presented a memetic

algorithm (MA). They also proposed a lower bounding technique and showed that their MA outperforms

the TS algorithm of Shahvari et al. (2012). Luo et al. (2012) considered the GTAs with inconsistent family

formation to minimize the makespan of the sequence in an FFS environment.

3.3. Review of the literature related to batch scheduling

Reviews of batch scheduling problems include those by Potts and Van Wassenhove (1992), Webster and

Baker (1995), and Potts and Kovalyov (2000). Most of the batch scheduling problems consider either

processing batches by batching machines or processing parallel batches by multiple parallel machines. In

both cases, a set of jobs processed simultaneously as batches are completed together as long as the machine

capacity is not exceeded. These batch scheduling problems determine only the sequence of batches,

irrespective of the job sequence within each batch since the jobs assigned to each batch are processed

simultaneously. The problem addressed in this research focuses on a hybrid flow shop batch scheduling

problem, wherein scheduling of jobs that belong to pre-determined groups is permissible by splitting them

into multiple batches, but the jobs in a batch formed from a group must be processed consecutively on a

machine. Therefore, batch scheduling investigated in this research clearly is contrastingly different from

the previous batch scheduling problems, because it assumes processing of a batch is completed when

consecutive processing of all jobs within the batch (instead of simultaneous processing) is finished.

21

The study of batch scheduling problems (i.e., group scheduling without the GTAs) was initiated by a non-

permutation flow shop batching and scheduling problem with sequence-dependent setup time by

minimizing makespan Shen et al. (2014). They developed a tabu search heuristic, which contains several

neighborhood functions, double tabu list, and a multilevel diversification structure. Shahvari and Logendran

(2015) performed a preliminary investigation of a batching and scheduling problem on unrelated-parallel

machines with respect to a bi-criteria objective function, which simultaneously minimizes a linear

combination of total weighted completion time and total weighted tardiness. They developed a TS-based

heuristic, which contains three levels with specialized tabu list for each level. The applicability of developed

TS-based algorithm was demonstrated with the help of an example problem. This study was extended to

cover a variety of research issues and insightful findings (Shahvari and Logendran 2017). These include,

but not limited to, addressing the relative performance of batch scheduling by considering a benchmark of

group scheduling problems on unrelated-parallel machines with the same bi-criteria objective function,

developing a mathematical programming model to evaluate the performance of the TS-based algorithms

with the help of a detailed statistical experimental design, and, more importantly, identifying ineffective

neighborhoods in the implementation of the TS-based algorithms by developing and proving several

theoretical properties with the help of lemmas. Later, Shahvari and Logendran (2016a) extended their work

from a single stage problem to a multiple stages problem, i.e., hybrid flow shop. They addressed the hybrid

flow shop batching and scheduling problem with the same bi-criteria objective function where sequence-

dependent family setup times are present. A benchmark of small size problems is considered to show the

superior performance of batch scheduling compared to group scheduling (Shahvari and Logendran 2016b).

They developed two algorithms, which incorporated tabu search into the framework of path-relinking to

exploit the information on good solutions. These tabu search/path-relinking algorithms comprised several

distinguishing features including two relinking procedures to effectively construct paths and the stage-based

improvement procedure to consider the move interdependency. In all mentioned works related to Shahvari

and Logendran (2015, 2016a, 2016b, 2017), the efficiency and effectiveness of the proposed search

algorithms were verified by comparing the results of these algorithms with optimal solutions obtained from

CPLEX for small size problems. Apart from this, a wide range of realistic characteristics such as sequence-

dependent family setup times, dynamic job releases, dynamic machine availability, machine eligibility and

stage skipping (for HFS) was considered with the help of data generation mechanism. Also, the initial

solution finding mechanism was implemented to trigger the search into the solution space.

3.4. Review of the literature related to bi-criteria scheduling problems

The objective function is one of the challenges in dealing with scheduling problems. In most of the literature

for scheduling problems, the focus has only been on optimizing the satisfaction of producers. Minimizing

22

the completion time is desirable for the producer so they can minimize their work-in-process (WIP)

inventory as well as production costs; however, Armentano and Ronconi (1999) recognized that lots of

manufacturers are now more interested in meeting the customers’ due dates and maximizing the customers’

service level by minimizing the tardiness. The use of a bi-criteria objective is motivated by the fact that

successful companies in today’s environment not only try to minimize their own cost but also try to fulfill

their customers’ need. Successful companies are those that consider both producer’s and customers’ needs.

Therefore, a bi-criteria objective function can truly achieve the real-world stipulation more than a single

criterion. Trying to optimize two mentioned objectives enables incorporating the coordination that must be

maintained between the producer and the customers in scheduling problems. The satisfaction of both

completion time and tardiness objectives moves in the same direction and hence the objectives are not in

conflict. In other words, tardiness of a job is either reduced or not changed when its completion time is

reduced. Comprehensive reviews of the literature on multi-objective scheduling problems include

Behnamian et al. (2011), Dugardin et al. (2010), Mehravaran and Logendran (2011), Rana and Singh

(1994), Tavakkoli-Moghaddam et al. (2010).

There are a couple of studies corresponding to simultaneously minimizing total completion time and total

tardiness. Bi-criteria scheduling problem with sequence-dependent setup times on a single machine is

considered by Eren and Güner (2006). The objective function of the problem was minimization of the

weighted sum of total completion time and total tardiness. They proposed an effective mixed-integer

programming model to find the optimum schedule for problems with up to 12 jobs, while for solving

problems containing large number of jobs a special heuristic algorithm based upon tabu search was

proposed.

Mehravaran and Logendran (2011) considered an unrelated-parallel machine job scheduling problem with

sequence-dependent setup times to jointly minimize the work-in-process inventory for the producer and to

maximize the customers’ service level in a supply chain. Later, Mehravaran and Logendran (2012) studied

a flow shop scheduling problem with sequence-dependent setup times and the same bi-criteria objective

function. They considered permutation and non-permutation schedules in finding the optimal schedule for

a flow shop as well as the operational constraints commonly encountered in the industry, including dynamic

machine availabilities, dynamic job releases, and jobs skipping. In both mentioned works, they assessed the

effectiveness and efficiency of the search algorithm by comparing the search algorithm solutions with that

of the optimal solutions obtained from CPLEX in solvable small problem instances.

Xu and Yin (2011) proposed a corrected integer programming model that was proposed by Eren and Güner

(2006) for a flow shop scheduling problem that was incorrect. They both considered the same bi-criteria

objective function including a linear combination of total completion time and total tardiness. Ribas-Vila

23

et al. (2009) presented and evaluated six simple heuristic algorithms for the problem of sequence-dependent

identical-parallel machines with respect to simultaneously minimizing total completion time and total

tardiness.

A bi-criteria group scheduling problem in a flow shop with sequence-dependent setup time was investigated

by Lu and Logendran (2013) with dynamic job releases and machine availabilities. The goal was to

minimize the weighted sum of total weighted completion time and total weighted tardiness. A mathematical

model was also developed and implemented to evaluate the optimality of the results from search algorithms

based on tabu search for small size problems.

Bozorgirad and Logendran (2012) addressed a sequence-dependent group scheduling problem on a set of

unrelated-parallel machines. Later, Bozorgirad and Logendran (2013) extended their work to address a

sequence-dependent group scheduling problem in hybrid flow shop where the parallel machines in one or

more stages of the flow shop are unrelated and have different run times for the same job. Similar to previous

work, the objective of the problem was to simultaneously decrease the producer’s cost by minimizing the

WIP and increase the customers’ satisfaction by minimizing the total tardiness. In both mentioned works,

the efficiency and effectiveness of the proposed search algorithms were verified by comparing the results

of these algorithms with optimal solutions obtained from CPLEX for small size problems. They assumed

that all of the jobs and machines may not be ready at time zero, meaning that they can be released at different

times during the scheduling period. Apart from this, job skipping and group skipping were assumed for the

second work. Bozorgirad and Logendran (2014) also proposed a lower bounding mechanism for the

previous work without considering machine availability times. They proposed a lower bounding

mechanism, based on the column generation algorithm that is able to find lower bounds, which are

remarkably tighter than the bounds from CPLEX.

Shahvari and Logendran (2015, 2016a, 2016b, 2017) addressed a bi-criteria batch scheduling problem on

unrelated-parallel machines and hybrid flow shop environments where the GTAs were disregarded. The

mentioned works are completely reviewed in the literature related to batch scheduling.

3.5. Review of the literature related to the methodologies

Ruiz and Vázquez-Rodríguez (2010) classified all techniques in dealing with a variety of scheduling

problems in HFS environments into three broad categories, i.e., exact algorithms, deterministic heuristics,

and meta-heuristics. The exact algorithms, B&B, and DP are the most preferred algorithms for optimally

solving very simplified versions of HFS scheduling problems, i.e., problems with a limited number of stages

(mostly two or three stages) and machines in each stage (usually one or two machines in each stage)

(Dessouky et al. 1998, Gupta et al. 1997, Haouari et al. 2006).

24

The complexity of most of HFS scheduling problems on one hand along with considering a wide variety of

processing constraints, production requirements, resource and precedency constraints, buffer limits,

machine eligibility and different types of objective functions on the other hand, lead to developing

mathematical programming models for optimally solving the complicated HFS scheduling problems (Liu

and Karimi 2008, Sawik 2000, Tang and Xuan 2006). Although B&B algorithms have also been used to

solve complicated versions of HFS scheduling problems, mathematical programming models are developed

to present mathematically sophisticated scheduling constraints and solve small-size problems. In addition,

the mathematical programming models have been used as a basis to implement the B&B algorithm.

Since most of HFS scheduling problems are among the strongly NP-hard problems and their developed

mathematical programming models should implement different optimization solvers based on exact

algorithms, such as B&B or DP, these exact methodologies will not be able to optimally solve the problem

within a polynomial/reasonable time. Therefore, deterministic heuristics and meta-heuristic algorithms are

commonly used methodologies to deal with complicated HFS scheduling problems. The performance of

deterministic heuristics, known as tailored heuristics or dispatching rules, is highly dependent on the

structure of the problem and is usually lower than meta-heuristic algorithms. The higher performance in

meta-heuristics is due to the avoidance of getting trapped into local optimal solutions. Based on a

comprehensive survey on the literature related to methodologies implemented for HFS scheduling problems

(Ruiz and Vázquez-Rodríguez 2010), TS, SA and GA are three of the most commonly used meta-heuristics

in dealing with the complicated HFS scheduling problems. The permutation assumption cannot be followed

by batch scheduling problems investigated in this research due to different batch compositions of all groups

in all stages. Thus, it seems a local search algorithm enhanced with a population-based structure or a

population-based algorithm enhanced with a local search structure will have a better performance compared

to a basic local search algorithm and a population-based algorithm, respectively. Therefore, four types of

the most commonly used meta-heuristics, i.e., TS as a basic local search algorithm and TS/PR as a local

search algorithm enhanced with a population-based structure, PSO as a basic population-based algorithm

and PSO enhanced with a local search structure, are proposed in order to capture the move interdependency

between stages. A brief of the literature corresponding to these algorithms is presented next.

3.5.1. Review of the literature related to Tabu Search

TS, introduced by Glover (1986), is a remarkably successful algorithm for solving hard combinatorial

problems. The application of TS on a large number of combinatorial optimization problems has shown its

effectiveness in solving this type of problem (Logendran and Sonthinen 1997). The application of TS started

with solving simplified versions of single-machine problems (Laguna et al. 1991). Then, TS was developed

for single-machine problems with sophisticated scheduling constraint and assumptions.

25

Due to the characteristics of TS, such as its ability to avoid getting trapped in a local optima and identify

multiple-local optima in exploring the solution space, it was a promising technique for solving scheduling

problems with more realistic constraints and assumptions, in different shop environments. With respect to

parallel machines environments, TS showed superior performance compared to other existing solutions

(Kang et al. 2007, Kim et al. 2006, Lee et al. 2013). Logendran and Subur (2004) and Logendran et al.

(2007) implemented TS to minimize the total weighed tardiness of unrelated-parallel machine scheduling

problems with consideration of job splitting and sequence-dependent setup times, respectively.

TS has also been shown to be very effective in dealing with flow shop scheduling problems, although most

of these problems were restricted to permutation sequences (Armentano and Ronconi 1999, Ben-Daya and

Al-Fawzan 1998, Nowicki and Smutnicki 1996). Hendizadeh et al. (2008) proposed meta-heuristic

algorithms based on TS by applying the concept of elitism and the acceptance of worse move to improve

the intensification and diversification of moves for sequence-dependent flow shop with respect to

minimizing the makespan. Salmasi et al. (2011) developed a TS-based algorithm to minimize the makespan

of a sequence-dependent group scheduling problem in a flow shop environment. Shahvari et al. (2012)

developed six meta-heuristic algorithms based on TS to minimize the makespan of a sequence-dependent

group scheduling problem in an FFS environment. Bozorgirad and Logendran (2013) addressed sequence-

dependent group scheduling in a hybrid flow shop problem with bi-criteria objective function and presented

an MILP model and proposed four TS algorithms. They showed that one of the TS algorithms performs

well.

TS was successfully implemented for scheduling problems with bi-criteria and multi-criteria objective

function and sequence-dependent setup times (Bozorgirad and Logendran 2012, 2013, 2014, Choobineh et

al. 2006). Eren (2007) developed an integer programming model and presented heuristics based on TS and

random search for two-stage flow shop with multi-criteria objective function including total completion

time, makespan, maximum tardiness and maximum earliness. He showed that the heuristic based on TS

performs better than those based on a random search.

3.5.2. Review of the literature related to Tabu Search/Path-Relinking

A hybridization of some algorithms with TS-based algorithm leads to improving the performance of basic

TS. Pacheco et al. (2013) proposed a heuristic method, hybridization of multi-start strategies with TS, for

sequence-dependent single-machine problem with makespan minimization and they showed that their

hybridized heuristic outperforms a metaheuristic based on GRASP. Allahverdi and Al-Anzi (2009)

proposed three heuristics for assembly flow shop with minimization of total completion time. The three

heuristics were a hybrid TS and two versions of self-adaptive differential evolution algorithm. They showed

26

that one version of the self-adaptive differential evolution algorithm performs much better than the other

version and the hybrid TS. Varmazyar and Salmasi (2012) presented an MILP model and proposed several

metaheuristics based on TS and Imperialist Competitive Algorithm (ICA). They showed that the hybrid

heuristic of TS and ICA performs the best. The sequence-dependent family setup time in a flow shop

scheduling problem with minimization of total flow time was addressed by Salmasi et al. (2010) for the

first time. They proposed a mathematical programming model and a branch-and-price algorithm. In

addition, they presented a TS algorithm along with a hybrid ACO algorithm. The computational analysis

indicated that the hybrid approach performs better than TS.

Due to the lack of mechanisms that exploit the information on good solutions, the performance of a

straightforward TS might be unsatisfactory, even when it is accompanied by delicate memory structures

and effective neighborhood mechanisms (Jia and Hu 2014). Thus, an auxiliary heuristic, namely path-

relinking (PR), is incorporated into the basic TS-based algorithm. PR is an enhancement to TS-based

procedure, leading to significant improvements in the solution quality. In principle, the tabu search/path-

relinking (TS/PR) algorithm repeatedly operates back and forth between a path relinking method that is

used to generate promising solutions on the trajectory set up from an initiating solution to a guiding solution,

and a TS procedure that improves the generated promising solution to a local optimum (Peng et al. 2015).

PR is intimately related to the TS-based meta-heuristic and derive additional advantages with the help of

adaptive memory and associated memory-exploiting mechanisms that are capable of being adapted to

particular contexts, such as job shop and flexible job shop scheduling problems (Jia and Hu 2014, Peng et

al. 2015). Due to the lack of exploiting the information on good solutions in the HFS scheduling problems,

Shahvari and Logendran (2016b) developed a local search algorithm enhanced with a population-based

structure, which is called TS/PR algorithm and comprises several distinguishing features such as two

relinking procedures to effectively construct paths. The results showed that the performance of TS/PR is

better than basic TS for batch scheduling in HFS. The reason is that the performance of basic TS is

diminished due to different batch compositions of groups in different stages. Therefore, PR is incorporated

into a basic TS in order to increase its performance by exploring on the information of good quality solutions

in the solution space.

3.5.3. Review of the literature related to Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a fast-evolutionary algorithm, which is applied on a population of

candidate solutions (Eberhart and Kennedy 1995). PSO has gained much attention in a variety of fields,

particularly for continuous optimization problems. Based on a few scheduling problems in flow shop and

flexible flow shop environments, the encouraging performance of the PSO algorithm in scheduling

27

problems, and the increased application of the PSO algorithm in different scheduling areas, we are

motivated to apply the PSO algorithm for the research problem.

Research reported in the past shows a significant interest in implementing the PSO algorithm for solving

scheduling problems. Tasgetiren et al. (2004b) develop a PSO algorithm for the single machine total

weighted tardiness scheduling problem. They use the smallest position value (SPV) rule, and a non-

decreasing order mechanism, to convert a position vector of a particle to a job permutation. With the same

approach, Tasgetiren et al. (2004a) solve the permutation flow shop problem with makespan and maximum

lateness minimization criteria. They hybridize a local search algorithm based on variable neighborhood

search (VNS) with a PSO algorithm and show that VNS improves the performance of the PSO algorithm

for the proposed research problem.

Pan et al. (2008) propose a discrete PSO algorithm to solve no-wait sequence-dependent flow shop

problems with respect to makespan minimization and total completion time minimization. They hybridize

discrete PSO with variable neighborhood descent algorithm to improve the solution quality. They also

propose several speed-up methods for neighborhood structures. Pan and Wang (2008) present a novel multi-

objective PSO algorithm for a no-wait flow shop problem by considering the minimization of makespan

and maximum tardiness as bi-objective. Hajinejad et al. (2011) generate a PSO algorithm for group

scheduling in a permutation flow shop by considering the minimization of total completion time of jobs.

Lian et al. (2006) proposed a PSO algorithm for permutation flow shop scheduling problems with makespan

minimization where the crossover operators are used in PSO. Then, Lian et al. (2008) also proposed a novel

PSO algorithm, which used crossover and mutation operators for the same problem. Tasgetiren et al. (2007)

combined the PSO algorithm and the Variable Neighborhood Search (VNS) method to minimize the

makespan and total flow time in a permutation flow shop sequencing problem. Liu et al. (2008) extended a

hybrid PSO algorithm for flow shop scheduling with limited buffers.

Tseng and Liao (2008) perform the research to solve a flexible flow shop scheduling problem by applying

the PSO algorithm. They addressed a flexible flow shop scheduling problem with multiprocessor tasks,

which means each job has to be processed on several machines in each stage. They develop a regular PSO

algorithm to solve the problem with minimization of makespan as the criterion. Tadayon and Salmasi

(2013) applied a PSO algorithm for a flexible flow shop problem and show that the algorithm is capable of

providing good quality solutions.

28

Figure 6 demonstrates and compares the types of all scheduling problems, including the types of problems

investigated in this research. As stated above, there are many works on group scheduling with respect to

the GTAs, but only a few of them focus on group scheduling without the GTAs, i.e., batch scheduling.

Figure 6. Display of Scheduling Problems

In this research, we are emphasizing the optimization of a HFS with unrelated-parallel machines at least in

one stage and sequence-dependent setup times as in most of the previous works. In addition, our research

deals with bi-criteria objective function, and dynamic machine availability and job releases times. However,

the main characteristic of this research that has never been studied before is splitting jobs belonging to pre-

determined groups as inconsistent batches and then scheduling developed batches on machines as well as

jobs within each batch to improve the objective function value of group scheduling in HFS. This being the

case, a linear mixed-integer programming model, four different types of meta-heuristics, and a method of

29

lower bounding are proposed. To the best of our knowledge, there is no prior work on bi-criteria batching

and scheduling problem in HFS that deals with this problem as comprehensively as our research, reported

here.

30

4. METHODOLOGY

The complexity of a problem mostly determines the methodology to deal with the problem. As Gupta and

Darrow (1986) mentioned, group scheduling problems in flow shop structures are NP-hard problems, and

the problem addressed in this paper is not an exception. There are a number of techniques to prove that a

problem is a member of a certain complexity class. Although three techniques including restriction, local

replacement, and component design are given by Garey and Johnson (1979) to prove the complexity of a

problem, proof by restriction is the most applicable and simplest compared to the other two. An NP-

hardness proof by restriction for a given problem PϵNP consists of simply showing that P contains a known

NP-hard problem Q as a special case and therefore it is NP-hard too. It is worth noting that the main point

in this method lies in the specification of the additional restrictions to be placed on the instances of P in

such a way that the resulting restricted problem will be identical to Q. Accordingly, as long as there is a

one-to-one correspondence between P and Q, it can be concluded that the restricted problem Q is NP-hard

and thus the original problem P, which is a harder instance of Q remains NP-hard. The problem addressed

in this research is represented by 𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗) in the literature

of scheduling problems.

Theorem 1. Hybrid flow shop batch scheduling problem with minimization of sum of completion time,

dynamic job release time, dynamic machine availability time, sequence-dependent setup, machine

eligibility, and desired lower bounds is NP-hard in the strong sense.

Proof: Let P be the hybrid flow shop batch scheduling problem with minimization of sum of completion

time, dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|σ𝐶𝑗). Construct problem Q as a two-machine flow shop

scheduling problem with a single machine in each stage and the objective of minimizing the sum of

completion time (𝐹2||σ 𝐶𝑗). Clearly, problem Q is a special case of problem P even when problem P

involves more than two machines, since all the setup and run times on the machines other than the first two

can be restricted to be 0 in problem P. Problem P can be considered as Q by adjusting the following

parameters in the original MILP model:

• the number of batches assigned to each group is restricted to one;

• a desired lower bound is equal to one;

• each batch includes only one job;

• the number of machines is two, so that each stage includes one machine;

• each machine in each stage is identical instead of being unrelated and is capable of processing all

jobs;

31

• all jobs are processed by two machines (no skipping);

• there is no setup time instead of being sequence-dependent setup times;

• the weight of each job is equal to one;

• all jobs and machines are available at the beginning of the planning horizon;

Observe that problem Q is equivalent to the two-machine flow shop scheduling problem with the objective

of minimizing the sum of completion time, which has been shown to be strongly NP-hard (Garey et al.

1976). It follows that problem P is NP-hard in the strong sense.

Theorem 2. Hybrid flow shop batch scheduling problem with minimization of sum of tardiness, dynamic

job release time, dynamic machine availability time, sequence-dependent setup, machine eligibility, and

desired lower bounds is NP-hard in the strong sense.

Proof: Let P be the hybrid flow shop batch scheduling problem with minimization of sum of tardiness,

dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|σ𝑇𝑗). Construct problem Q as a single machine scheduling

problem with the objective of minimizing the sum of tardiness (1||σ𝑇𝑗). Clearly, problem Q is a special

case of problem P even when problem P involves more than one machine, since all the setup and run times

on the machines other than the first one can be restricted to be 0 in problem P. Problem P can be considered

as Q by adjusting the following parameters in the original MILP model:

• the number of batches assigned to each group is restricted to one;

• a desired lower bound is equal to one;

• each batch includes only one job;

• the number of machines is restricted to only one single machine (one stage), which is capable of

processing all jobs;

• all jobs are processed by the machine (no skipping);

• there is no setup time instead of being sequence-dependent setup times;

• the weight of each job is equal to one;

• all jobs and a machine are available at the beginning of the planning horizon;

Observe that problem Q is equivalent to the single machine scheduling problem with the objective of

minimizing the sum of tardiness, which has been shown to be strongly NP-hard (Du and Leung 1990). It

follows that problem P is NP-hard in the strong sense.

Theorem 3. Hybrid flow shop batch scheduling problem with bi-criteria objective function of

minimization of a linear combination of total weighted completion time and total weighted tardiness,

32

dynamic job release time, dynamic machine availability time, sequence-dependent setup, machine

eligibility, and desired lower bounds is NP-hard in the strong sense.

Proof: Let P be the hybrid flow shop batch scheduling problem with bi-criteria objective function of

minimization of a linear combination of total weighted completion time and total weighted tardiness,

dynamic job release time, dynamic machine availability time, sequence-dependent setup, and machine

eligibility (𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗 , 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗)). Construct problem Q1 as a hybrid flow

shop batch scheduling problem with minimization of sum of completion time (𝐻𝐹𝑚|… |σ𝐶𝑗) and construct

problem Q2 as a hybrid flow shop batch scheduling problem with minimization of sum of tardiness

(𝐻𝐹𝑚|… |σ𝑇𝑗). Both problem Q1 and Q2 follow the same assumptions of problem P. Clearly, problem Q1

and Q2 are special cases of problem P.

Problem P can be considered as Q1 by adjusting the following parameters:

• the weight of individual job’s equal to one (𝑊𝑗 = 1);

• the sum of weighted tardiness’s weight equal to zero (𝛽 = 0).

• Problem P can be considered as Q2 by adjusting the following parameters:

• the weight of individual job’s equal to one (𝑊𝑗 = 1);

• the sum of weighted completion time’s weight equal to zero (𝛼 = 0).

Problems Q1 and Q2 are proved to be strongly NP-hard based upon Theorems 1 and 2, respectively. It

follows that problem P is NP-hard in the strong sense.

Therefore, it can be concluded that the problem investigated in this research is also strongly NP-hard, and

there is no guarantee of solving this problem optimally in polynomial time. This remains to be a challenge

in solving most complex scheduling problems. In this research two different methodologies are used to deal

with the HFS problem, i.e. a mathematical programming model and meta-heuristic algorithms. Since the

batch scheduling problem addressed here is among the NP-hard problems, mathematical programming may

not be helpful in finding the optimal solution for medium and large size problems. Nevertheless, the

mathematical formulation is implemented to represent and communicate with the batch scheduling

problem, and evaluate the performance of the heuristic or meta-heuristic algorithms by developing tight

lower bounds.

4.1. Mathematical programming model

In this research, four mathematical programming models based on mixed-integer linear programming

(MILP) are developed in terms of three approaches used to model scheduling problems.

33

• The first MILP model, i.e., MILP1, is developed in terms of the precedence constraints between

each pair of jobs belonging to the same batch as well as each pair of batches assigned to the same

machine (Manne 1960). In this type of formulation, the job sequence is obtained by comparing the

sequence of all pairs of jobs within batches. Likewise, the batch sequence is obtained by comparing

the sequence of all batches on the same machine. This type of modeling scheduling problems leads

to a smaller number of binary variables, but more difficult constraints.

• The second MILP model, i.e., MILP2, considers set of positions for each of the batches and assigns

the jobs to those positions. Therefore, the job sequence within batches is determined by finding the

job assignment to those positions. Like MILP1, the batch sequence on machines in the MILP2 is

determined by the precedence constraints between each pair of batches on the same machines.

• The third MILP model, i.e., MILP3, an adapted version of that proposed by Guinet (1993), is based

on the flow conservation constraints to order the jobs on machines.

• Finally, the relaxed MILP model, i.e., RMILP, referred to as the fourth model in this research, is

developed as a relaxed version of any of the above MILP models to reduce the solution space of

MILP models and find either the optimal solutions or good quality lower bounds within affordable

computational time. This relaxed version is obtained by assuming each batch formed from a group

is of size 1, and thereby remove the challenge of having to determine the various batch sizes that

are applicable to the original MILP model.

Each of these MILP models are described in detail next, based on proposed modeling techniques for

scheduling problems.

4.1.1. MILP1

The first MILP model is developed based on the precedence constraints between each pair of jobs and

developed batches to mathematically represent the batch scheduling problem and solve small-size problems

optimally. This mathematical programming model is developed at two integrated phases including batching

and scheduling phases. While the optimal combination of batch compositions is determined by the batching

phase, the optimal batch assignment and sequence on machines as well as the optimal job sequence within

batches are determined by the scheduling phase, with respect to the batching phase. In the following, first

sets, subsets, indices, and parameters that have been used are introduced. Then, all decision variables,

including continuous or binary variables, are listed, followed by the mathematical formulation.

Sets and Indices

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔}

34

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖}

𝑆𝑖 Set of batches of group 𝑖, indexed by 𝑠, 𝑡 𝑆𝑖 = {1,2,… , 𝑛𝑖}

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚}

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘}

Subsets

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖

𝑆𝑖
𝑘 Subset of batches of group 𝑖, which can be developed in stage 𝑘 𝑆𝑖

𝑘 ⊂ 𝑆𝑖

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾

Parameters

𝑔 Number of groups

𝑛𝑖 Number of jobs of group 𝑖

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘

𝑚 Number of stages

𝑣𝑘 Number of machines in stage 𝑘

𝑚𝑖𝑗 Number of stages, which must be visited by job 𝑗 of group 𝑖

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗

𝑡𝑖𝑗ℎ
𝑘 Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘

𝑆𝑝𝑖ℎ
𝑘 Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if batch 𝑝 is the

preceding batch (𝑝 = 0 refers to the reference batch)

𝑑𝑖𝑗 Due date of job 𝑗 of group 𝑖

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘

𝛼 Weight attributed to the producer

𝛽 Weight attributed to the customer

𝐿𝐵𝑖ℎ
𝑘 Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine

ℎ in stage 𝑘

35

It is worth noting that a desired lower bound, i.e., 𝐿𝐵𝑖ℎ
𝑘 , is determined in terms of a manufacturing

company’s policies with regard to operating a particular machine to ensure processing a minimum number

of jobs. Therefore, 𝐿𝐵𝑖ℎ
𝑘 is not a variable and it is determined before solving the problem.

Decision variables

𝑋𝑖𝑠𝑗
𝑘 The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘

𝑇𝐷𝑖𝑗 The tardiness of job 𝑗 of group 𝑖

𝐶𝑖𝑠
𝑘 The completion time of batch 𝑠 of group 𝑖 in stage 𝑘

∅𝑖𝑠𝑗
𝑘 1 if job 𝑗 is assigned to batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise

𝑍𝑖𝑠ℎ
𝑘 1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise

𝐴𝑝𝑡𝑖𝑠
𝑘 1 if batch 𝑠 of group 𝑖 is processed after batch 𝑡 of group 𝑝 in stage 𝑘; 0 otherwise

𝑌𝑖𝑠𝑗𝑞
𝑘 1 if job 𝑞 is processed after job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise

Mathematical formulation

Based on the precedence constraints to the job sequence within batches and the batch sequence on

machines, the MILP1 is developed as follows:

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑠𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝑔𝑖𝑖∈𝐺
 (4.1)

The objective function (4.1) minimizes a linear combination of total weighted completion time and total

weighted tardiness. 𝛼 and 𝛽 are the weights attributed to producer and customers, respectively, and are

normalized with the help of the following equation: 𝛼 + 𝛽 = 1. Set of constraints (4.2) through (4.5),

known as batching constraint sets, are incorporated into the model to determine the optimal batch

composition of each group in each stage.

∑ ∅𝑖𝑠𝑗
𝑘

𝑠∈𝑆𝑖
𝑘

= 1

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.2)

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.3)

36

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥ ∅𝑖𝑠𝑗

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(4.4)

∑ ∅𝑖𝑠𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ (𝐿𝐵𝑖ℎ
𝑘)𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑉𝑘

𝑠 ∈ 𝑆𝑖
𝑘; 𝑖 ∈ 𝐼𝑘; 𝑘 ∈ 𝐾;

(4.5)

A batch composition of group 𝑖 with 𝐽𝑖
𝑘 jobs in 𝑘𝑡ℎ stage represents the number of batches assigned to group

𝑖 as well as the number and type of jobs belonging to each batch of group 𝑖, with respect to the desired

lower bounds on batch sizes (𝐿𝐵𝑖ℎ
𝑘). In other words, 𝑛𝑖

𝑘 jobs should be assigned to 𝑠 batches processed on

one or more machines in 𝑘𝑡ℎ stage, where 𝑠 ∈ {1,max
ℎ∈𝑣𝑘

⌈𝑛𝑖
𝑘 𝐿𝐵𝑖ℎ

𝑘⁄ ⌉}. Apart from this, in each stage of a hybrid

flow shop, not only each job of a group (which is not skipping the stage) must be assigned to one and only

one batch of its group (constraint (4.2)), but also a batch including at least one job must be assigned to one

and only one machine (constraints (4.3) and (4.4)). Constraint (4.5) ensures that the minimum number of

jobs assigned to a batch should be equal or greater than its lower bound on a related machine.

Set of constraints (4.6) through (4.13), known as scheduling constraint sets, are incorporated into the model

to determine the optimal batch sequence on machines and job sequence within batches, with regard to the

batching phase.

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘) +𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) +𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗
𝑘) ≥ 𝐶𝑝𝑡

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑖
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑔𝑝

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;
(4.6)

𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) + 𝑀(1 − ∅𝑝𝑡𝑗
𝑘) ≥ 𝐶𝑖𝑠

𝑘 + 𝑆𝑖𝑝ℎ
𝑘 + 𝑡𝑝𝑗ℎ

𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑝
𝑘; ℎ ∈ 𝑣𝑝𝑡

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑔𝑝

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(4.7)

The sequence of batches is determined in each stage by constraints (4.6) and (4.7), so that they

simultaneously assign values to binary variables 𝐴𝑝𝑡𝑖𝑠
𝑘 . These constraints restrict the completion time of

each job belonging to each batch of each group (which is not skipping the stage) to be greater than the

completion time of the previous batch plus the sequence-dependent machine setup time, and the required

run time for processing the job on a particular stage.

37

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − ∅𝑖𝑠𝑗

𝑘) ≥∑ (𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘)𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑣𝑖𝑗
𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(4.8)

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1) +𝑀(1 − ∅
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1)) ≥ 𝑟𝑖𝑗 + ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(1))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(1)

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑠 ∈ 𝑆
𝑖

𝑠𝑡𝑖𝑗(1) ;

(4.9)

Constraints (4.8) together with constraint (4.9) account for dynamic machine availability and dynamic job

release time, respectively. In other words, constraint (4.8) ensures that a job cannot to be processed if the

assigned machine is not available in each stage, while constraint (4.9) ensures that the processing of each

job cannot be started if the job is not released.

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(𝑌𝑖𝑠𝑗𝑞
𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘) ≥∑ 𝑡𝑖𝑗ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘)

ℎ ∈𝑣𝑖𝑗
𝑘 ∩𝑣𝑖𝑞

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(4.10)

𝑋𝑖𝑠𝑞
𝑘 − 𝑋𝑖𝑠𝑗

𝑘 +𝑀(1 − 𝑌𝑖𝑠𝑗𝑞
𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘) ≥∑ 𝑡𝑖𝑞ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘)

ℎ ∈𝑣𝑖𝑗
𝑘∩𝑣𝑖𝑞

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(4.11)

The sequence of jobs within batches are determined in each stage by constraints (4.10) and (4.11), so that

they simultaneously assign values to binary variables 𝑌𝑖𝑠𝑗𝑞
𝑘 . These constraints ensure that, in each stage, the

difference between the completion times of any two jobs within a batch (which are not skipping the stage)

is equal or greater than the run time of the succeeding job.

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾

(4.12)

The completion time of each batch of each group in each stage is determined by constraint (4.12), so that

it should be greater than the completion times of all of its jobs, if it is not skipping that stage.

38

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙)
− 𝑋

𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥ ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙))

ℎ∈𝑣
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

+ (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙) + 𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) − 2)𝑀

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(𝑟) ; 𝑠′ ∈ 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑟−1); 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗};

(4.13)

Constraint (4.13) in scheduling constraint sets ensures that the operation of each job in each stage cannot

be started until it has been completely processed on a prior stage. This prior stage is where the job had its

latest operation.

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑠𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑠 ∈ 𝑆𝑖

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) ;

(4.14)

Constraint (4.14) is applied to find the tardiness of each job, which should be greater than or equal to both

the completion time minus due date and zero.

𝑋𝑖𝑠𝑗
𝑘 , 𝑇𝐷𝑖𝑗, 𝐶𝑖𝑠

𝑘 ≥ 0;

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1};

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ; 𝑀: large number.

(4.15)

Constraint (4.15) defines the variables used.

4.1.2. MILP2

The second MILP model is very similar to the MILP1, except that it follows the position concept within

batches to determine the job sequence within batches in the scheduling phase. The main reason for

developing this model is to eliminate the precedence constraints related to the job sequence within batches.

If this were the case, the MILP1 is improved by reducing the number of constraints and variables and,

consequently, the model complexity. The sets, subsets, indices, parameters, decision variables, and

mathematical formulation for the MILP2 are presented next.

Sets and Indices

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔}

39

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖}

𝑆𝑖 Set of batches of group 𝑖, indexed by 𝑠, 𝑡 𝑆𝑖 = {1,2,… , 𝑛𝑖}

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚}

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘}

Subsets

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖

𝑆𝑖
𝑘 Subset of batches of group 𝑖, which can be developed in stage 𝑘 𝑆𝑖

𝑘 ⊂ 𝑆𝑖

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾

Parameters

𝑔 Number of groups

𝑛𝑖 Number of jobs of group 𝑖

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘

𝑚 Number of stages

𝑣𝑘 Number of machines in stage 𝑘

𝑚𝑖𝑗 Number of stages, which must be visited by job 𝑗 of group 𝑖

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗

𝑡𝑖𝑗ℎ
𝑘 Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘

𝑆𝑝𝑖ℎ
𝑘 Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝 is

the preceding batch (𝑝 = 0 refers to the reference batch)

𝑑𝑖𝑗 Due date of job 𝑗 of group 𝑖

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘

𝛼 Weight attributed to the producer

𝛽 Weight attributed to the customer

𝐿𝐵𝑖ℎ
𝑘 Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine

ℎ in stage 𝑘

40

Decision variables

𝑋𝑖𝑠𝑗
𝑘 The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘

𝑇𝐷𝑖𝑗 The tardiness of job 𝑗 of group 𝑖

𝐶𝑖𝑠
𝑘 The completion time of batch 𝑠 of group 𝑖 in stage 𝑘

∅𝑖𝑠𝑟𝑗
𝑘 1 if job 𝑗 assigned to 𝑟𝑡ℎ position of batch 𝑠 of group 𝑖 in stage 𝑘; 0 otherwise

𝑍𝑖𝑠ℎ
𝑘 1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise

𝐴𝑝𝑡𝑖𝑠
𝑘 1 if batch 𝑠 of group 𝑖 is processed after batch 𝑡 of group 𝑝 in stage 𝑘; 0 otherwise

Mathematical formulation

Based on the precedence constraints for the batch sequence on machines, the MILP2 is developed as

follows:

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑠𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑠∈𝑆𝑖𝑗∈𝐺𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝐺𝑖𝑖∈𝐺
 (4.16)

A linear combination of total weighted completion time and total weighted tardiness of jobs is considered

as the objective function presented in (4.16). Set of constraints (4.17) through (4.22), known as batching

constraint sets, are incorporated into the model to determine the optimal combination of batch compositions.

Regarding 𝐿𝐵𝑖ℎ
𝑘 , the range of possible developed batches of group 𝑖 in stage 𝑘 is {1,𝑚𝑎𝑥

ℎ∈𝑉𝑘
⌊𝑛𝑖

𝑘 𝐿𝐵𝑖ℎ
𝑘⁄ ⌋}.

∑ ∑ ∅𝑖𝑠𝑟𝑗
𝑘 = 1

𝑟∈𝐽𝑖
𝑘𝑠∈𝑆𝑖

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.17)

∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ ∅𝑖𝑠(𝑟+1)𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘 − {1}; 𝑘 ∈ 𝐾;

(4.18)

It is assumed that 𝑛𝑖
𝑘 positions exist for each batch of group 𝑖 in stage 𝑘. Therefore, in each stage of HFS,

not only each job of a group (which is not skipping the stage) must be assigned to one and only one position

41

available for only one batch of its group (constraint (4.17)), but also the jobs that belong to a batch must be

assigned to the consecutive positions available for that batch from the first position (constraint (4.18)).

∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≤ 1

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘; 𝑘 ∈ 𝐾;

(4.19)

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.20)

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥∑ ∅𝑖𝑠𝑟𝑗

𝑘

𝑟∈𝐽𝑖
𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(4.21)

∑ ∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘𝑗∈𝐽𝑖

𝑘
≥∑ (𝐿𝐵𝑖ℎ

𝑘)𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.22)

The other constraints of batching constraint sets (constraints (4.19) through (4.22)) are incorporated into

the model to assign a batch including at least one job to a machine, with respect to 𝐿𝐵𝑖ℎ
𝑘 . Set of constraints

(4.23) through (4.29), known as scheduling constraint sets, are incorporated into the model to determine

the optimal batch assignment and sequence on machines as well as job sequence within batches, with regard

to the batching phase.

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) + 𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

)

≥ 𝐶𝑝𝑡
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑖𝑓 𝑝 = 𝑖 → 𝑡 ≠ 𝑠); 𝑗 ∈ 𝐽𝑖
𝑘; ℎ ∈ 𝑉𝑖𝑗

𝑘; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑆𝑝

𝑘;

(4.23)

𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) +𝑀(1 −∑ ∅𝑝𝑡𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥ 𝐶𝑖𝑠
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗ℎ
𝑘 (4.24)

42

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑖𝑓 𝑝 = 𝑖 → 𝑡 ≠ 𝑠); 𝑗 ∈ 𝐽𝑝
𝑘; ℎ ∈ 𝑉𝑝𝑗

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑆𝑝

𝑘;

Constraint (4.23) together with constraint (4.24) are incorporated to find the sequence of batches on

machines (𝐴𝑝𝑡𝑖𝑠
𝑘).

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) +𝑀(1 −∑ ∅𝑖𝑠(𝑟−1)𝑞
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥∑ (𝑡𝑖𝑗ℎ
𝑘 ×𝑍𝑖𝑠ℎ

𝑘)
ℎ ∈𝑉𝑖𝑗

𝑘 ∩𝑉𝑖𝑞
𝑘

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑠 ∈ 𝑆𝑖

𝑘; 𝑟 ∈ 𝐽𝑖
𝑘 − {1}; 𝑘 ∈ 𝐾;

(4.25)

Constraint (4.25) is incorporated to find the sequence of jobs within each batch (∅𝑖𝑠𝑟𝑗
𝑘).

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝑍𝑖𝑠ℎ

𝑘) + 𝑀(1 −∑ ∅𝑖𝑠𝑟𝑗
𝑘

𝑟∈𝐽𝑖
𝑘

) ≥ 𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 +∑ (∅𝑖𝑠𝑟𝑗
𝑘 ×𝑡𝑖𝑗ℎ

𝑘)
𝑟∈𝐽𝑖

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; ℎ ∈ 𝑉𝑖𝑗
𝑘; 𝑘 ∈ 𝐾;

(4.26)

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(1) +𝑀(1 − 𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(1)) +𝑀(1 −∑ ∅
𝑖𝑠𝑟𝑗

𝑠𝑡𝑖𝑗(1)

𝑟∈𝐽
𝑖

𝑠𝑡𝑖𝑗(1)
) ≥ 𝑟𝑖𝑗 + 𝑡

𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1)

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(1) ; ℎ ∈ 𝑉

𝑖𝑗

𝑠𝑡𝑖𝑗(1) ;

(4.27)

Constraint (4.26) together with constraint (4.27) account for dynamic machine availability and dynamic job

release time, respectively.

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(4.28)

𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑙) − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑙−1) +𝑀(1 − 𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙)) ≥ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) + (∑ ∅
𝑖𝑠𝑟𝑗

𝑠𝑡𝑖𝑗(𝑙)
𝐽
𝑖

𝑠𝑡𝑖𝑗(𝑙)

𝑟=1
+∑ ∅

𝑖�́�𝑟𝑗

𝑠𝑡𝑖𝑗(𝑙−1)
𝐽
𝑖

𝑠𝑡𝑖𝑗(𝑙−1)

𝑟=1
− 2)𝑀

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆𝑖
𝑠𝑡𝑖𝑗(𝑙) ; 𝑠′ ∈ 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑙−1) ; ℎ ∈ 𝑉
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙); 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗};

(4.29)

43

Constraint (4.28) determines the completion time of each batch in each stage, while constraint (4.29),

known as the linking constraint, ensures that there is a connection between completion times of a job related

to each of two sequential stages, where the job had operations.

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑠𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑠 ∈ 𝑆
𝑖

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗);

(4.30)

Constraint (4.30) is applied for finding the tardiness of each job.

𝑋𝑖𝑠𝑗
𝑘 , 𝑇𝐷𝑖𝑗, 𝐶𝑖𝑠

𝑘 ≥ 0;

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1}(𝑝 ≤ 𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑝 = 𝑖 𝑡ℎ𝑒𝑛 𝑡 < 𝑠); ∅𝑖𝑠𝑟𝑗
𝑘 ∈ {0,1}

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑡 ∈ 𝑆𝑝
𝑘; 𝑟 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑉𝑖𝑗
𝑘; 𝑘 ∈ 𝐾;𝑀: large number.

(4.31)

Finally, constraint (4.31) defines the variables used.

4.1.3. MILP3

The third MILP model, an adapted version of that proposed by Guinet (1993), is developed in terms of the

flow conservation constraints to order the jobs within the machines, while respecting the desired lower

bounds on batch sizes. Therefore, the MILP1 and MILP2 models are improved by integrating variables,

which indicate job assignment to batches, batch assignment on machines, job sequence within batches, and

batch sequence on machines. Thus, batching and scheduling phases are integrated in the MILP3 model. The

following sets and indices for the MILP3 are defined.

Sets and Indices

𝐺 Set of groups, indexed by 𝑖 𝐺 = {1,2,… , 𝑔}

𝑁 Set of jobs (of all groups), indexed by 𝑙, 𝑗 𝑁 = {1,2,… , 𝑛}

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚}

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘}

The group and batch indices of the MILP1 and MILP2 models are eliminated from the MILP3 model to

reduce the complexity of the model. And, instead, the set of indices of job numbers is determined in terms

of the ascending order of group numbers. Then, the results obtained by the MILP3 model can be interpreted

44

as batch scheduling by considering the consecutive jobs of the same group in the schedule as batches. The

set of indices of job numbers related to 𝑖𝑡ℎ group is determined as follows:

Sets and Indices (Cont.)

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑙, 𝑗 𝐺𝑖 = [1 + σ 𝑛𝑔
𝑖−1
𝑔=1 , 2 + σ 𝑛𝑔

𝑖−1
𝑔=1 , … , σ 𝑛𝑔

𝑖
𝑔=1]

where 𝑛𝑖 (𝑖 ∈ 𝐺) indicate the number of jobs of group 𝑖. Thus, the group index is removed from the

following subsets and parameters.

Subsets

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺

𝑁𝑘 Subset of jobs, which must be processed in stage 𝑘 𝑁𝑘 ⊂ 𝑁

𝑉𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 𝑉𝑗

𝑘 ⊂ 𝑉𝑘

𝐾𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 𝐾𝑗 ⊂ 𝐾

Parameters

𝑔 Number of groups

𝑛𝑖 Number of jobs of group 𝑖

𝑛 Number of jobs of all groups, σ 𝑛𝑖 = 𝑛𝑖∈𝐺

𝑚 Number of stages

𝑣𝑘 Number of machines in stage 𝑘

𝑚𝑗 Number of stages, which must be visited by job 𝑗

𝑠𝑡𝑗(𝑟) 𝑟
𝑡ℎ stage among subset 𝐾𝑗

𝑡𝑗ℎ
𝑘 Run time of job 𝑗 on machine ℎ in stage 𝑘

𝑆𝑙𝑗ℎ
𝑘 Required setup time to process job 𝑗 on machine ℎ in stage 𝑘 if job 𝑙 is the preceding job (𝑙 = 0

refers to the reference job)

𝑑𝑗 Due date of job 𝑗

 𝑟𝑗 Release time of job 𝑗

𝑤𝑗 Weight of job 𝑗

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘

𝛼 Weight attributed to the producer

𝛽 Weight attributed to the customer

45

𝐿𝐵𝑖ℎ
𝑘 Desired lower bound for the minimum number of jobs assigned to a batch of group 𝑖 on machine

ℎ in stage 𝑘

A machine- and sequence-dependent setup time 𝑆𝑙𝑗ℎ
𝑘 (𝑙, 𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ℎ ∈ 𝑉𝑙

𝑘 ∩ 𝑉𝑗
𝑘, and 𝑘 ∈ 𝑀) is incurred

whenever 𝑙, 𝑗 ∉ 𝐺𝑖 (𝑖 ∈ 𝐺); 𝑆𝑙𝑗ℎ
𝑘 = 0, otherwise.

Decision variables

𝑥𝑙𝑗ℎ
𝑘 1 if job 𝑗 is scheduled immediately after job 𝑙 on machine ℎ in stage 𝑘; 0 otherwise

𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 1 if for a 𝐿𝐵𝑖ℎ

𝑘 jobs of group 𝑖 on machine ℎ in stage 𝑘, there is at least one sequence including

at least two jobs; 0 otherwise

𝑋𝑗
𝑘 The completion time of job 𝑗 in stage 𝑘

𝑇𝑗 The tardiness of job 𝑗

The variable 𝑥0𝑗ℎ
𝑘 /𝑥𝑗(𝑛+1)ℎ

𝑘 = 1 if the first/last job processed by machine ℎ is job 𝑗 in stage 𝑘;

𝑥0𝑗ℎ
𝑘 /𝑥𝑗(𝑛+1)ℎ

𝑘 = 0, otherwise.

Mathematical formulation

Based on the flow conservation constraints to the job sequence within machines, the MILP3 model is

developed as follows:

𝑀𝑖𝑛 𝑍 =𝛼∑𝑤𝑗𝑋𝑗
𝑠𝑡𝑗(𝑚𝑗)

𝑗∈𝑁

+ 𝛽∑𝑤𝑗𝑇𝑗
𝑗∈𝑁

 (4.32)

The objective function (4.32) is to simultaneously minimize the total weighted completion time and total

weighted tardiness.

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑙≠𝑗

= 1

∀𝑗 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀,

(4.33)

46

Constraint (4.33) ensures that, in each stage of a hybrid flow shop, each job (which is not skipping the

stage) is assigned to exactly one machine with exactly one predecessor. The dummy jobs 0 are applied for

the first job processed on a machine, i.e., 𝑥0𝑗ℎ
𝑘 .

∑ 𝑥0𝑗ℎ
𝑘

𝑗∈𝑁𝑘

≤ 1

∀ℎ ∈ 𝑉𝑘, ∀𝑘 ∈ 𝑀,

(4.34)

Constraint (4.34) guarantees that each machine is used at most once.

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑗∈𝑁𝑘

𝑙≠𝑗

≤ 1

∀𝑙 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀,

(4.35)

Constraint (4.35) limits the maximum number of successors of every job (which is not skipping the stage)

to one, on each machine in each stage. The jobs must be properly linked in each machine so that if a given

job 𝑙 is processed on a given machine ℎ, a predecessor 𝑢 must exist on the same machine.

∑ 𝑥𝑙𝑗ℎ
𝑘

𝑙∈𝑁∪{0}
𝑙≠𝑗

= ∑ 𝑥𝑗𝑙ℎ
𝑘

𝑙∈𝑁∪{𝑛+1}
𝑙≠𝑗

∀𝑗 ∈ 𝑁𝑘 , ∀ℎ ∈ 𝑉𝑗
𝑘, ∀𝑘 ∈ 𝑀

(4.36)

Constraint (4.36), known as flow conservation constraint set, is incorporated into the model to ensure that

the jobs are properly linked within a machine schedule.

Assume 𝑄𝑖ℎ
𝑘 (∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘, ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ

𝑘 > 1) is a set of all possible combinations of ℓ different jobs

𝑗1, 𝑗2, …, and 𝑗𝑙 belonging to group 𝑖, which can be processed by machine ℎ in stage 𝑘, where ℓ = 𝐿𝐵𝑖ℎ
𝑘 .

The number of members of 𝑄𝑖ℎ
𝑘 is 𝐶ℓ𝑛𝑖ℎ

𝑘
. = (𝑛𝑖ℎ

𝑘

ℓ
), where 𝑛𝑖ℎ

𝑘 represents the number of jobs in group 𝑖, which

can be processed by machine ℎ in stage 𝑘. Then, define the binary variables 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 for each member of

𝑄𝑖ℎ
𝑘 (∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘), which is composed of ℓ different jobs 𝑗1, 𝑗2, …, and 𝑗𝑙. For each member

47

of 𝑄𝑖ℎ
𝑘 , i.e., {𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 |𝑗1 ≠ 𝑗2 ≠ ⋯ ≠ 𝑗ℓ, the value of the binary variable 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 is automatically

set in the model as follows:

𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 {

1; if ∃𝑗, 𝑗′ ∈ {𝑗1, 𝑗2, … , 𝑗𝑙}|𝑥𝑗𝑗′ℎ
𝑘 = 1 or 𝑥𝑗′𝑗ℎ

𝑘 = 1

0; otherwise

For each member of 𝑄𝑖ℎ
𝑘 , the number of subscript indices of 𝑌𝑗1𝑗2…𝑗𝑙

𝑖ℎ𝑘 is equal to ℓ. For example, for the first

group with 4 jobs and 𝐿𝐵1ℎ
𝑘 = 2, the set of binary variables {𝑌12

1ℎ𝑘, 𝑌13
1ℎ𝑘, 𝑌14

1ℎ𝑘 , 𝑌23
1ℎ𝑘, 𝑌24

1ℎ𝑘, 𝑌34
1ℎ𝑘}

corresponds to the members of 𝑄1ℎ
𝑘 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, on machine ℎ.

(∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘)

 𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,…,𝑙≠𝑗ℓ

𝑗ℓ

𝑗=𝑗1

)+ 2(∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

)

≥ 2(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘)(𝐿𝐵𝑖ℎ

𝑘 − 1)

(4.37)

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘) ≥ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

 (4.38)

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 − 1) ≤ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

− 𝜀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘) (4.39)

 ∀𝑘 ∈ 𝑀, ∀ ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ
𝑘 = ℓ (ℓ > 1), ∀{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 , 0 < 𝜀 < 1

Constraints (4.37) through (4.39), known as desired lower bounds constraint sets, are incorporated into the

model to establish a balance between processing and setup times of each batch formed on a machine in each

stage. These constraints work jointly for each combination of parameters. Basically, if the desired lower

bounds on batch sizes for group 𝑖 (𝑖 ∈ 𝐼𝑘) on machine ℎ (ℎ ∈ 𝑉𝑘) in stage 𝑘 (𝑘 ∈ 𝑀) is equal to ℓ (i.e.,

𝐿𝐵𝑖ℎ
𝑘 = ℓ), these constraints limit the minimum number of jobs assigned to each batch of group 𝑖, which is

formed on machine ℎ in stage 𝑘 to ℓ. This being the case, this set of constraints indicate that the number of

sequential jobs of a group assigned to a machine must be equal or greater than 𝐿𝐵𝑏 of the group on that

machine. The functionality of constraints (4.37) through (4.39) is further explained in the next sub-section

using an example problem.

48

𝑋𝑗
𝑘 +𝑀(1 − 𝑥𝑙𝑗ℎ

𝑘) ≥ 𝑋𝑙
𝑘 + 𝑆𝑙𝑗ℎ

𝑘 + 𝑡𝑗ℎ
𝑘

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘, ∀𝑘 ∈ 𝑀,
(4.40)

Constraint (4.40) is incorporated to control the completion times of the jobs at the machines in each stage.

This constraint restricts the completion time of job 𝑗 (𝐶𝑗
𝑘) to be greater than the completion time of job 𝑙

(𝐶𝑙
𝑘), plus the setup time between jobs 𝑙 and 𝑗 (𝑆𝑙𝑗ℎ

𝑘), and the run time of job 𝑙 (𝑡𝑙ℎ
𝑘), if job 𝑗 is processed

immediately after job 𝑙 on machine ℎ in 𝑘𝑡ℎ stage (i.e., 𝑥𝑙𝑗ℎ
𝑘 = 1). If 𝑥𝑙𝑗ℎ

𝑘 = 0, then the big constant 𝑀

renders the constraint redundant.

𝑋0
𝑘 = 𝑎ℎ

𝑘

∀ℎ ∈ 𝑉𝑘, ∀𝑘 ∈ 𝑀,
(4.41)

𝑋
𝑗

𝑠𝑡𝑗(1) ≥ 𝑟𝑗 + ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(1) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(1))

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑗≠𝑙

∀ 𝑗 ∈ 𝑁𝑘 ,

(4.42)

Constraints (4.41) and (4.42) account for dynamic machine availability time and dynamic job release time,

respectively. They ensure that a job can be processed by a machine only when the job is released to the

machine and the assigned machine is available.

𝑋
𝑗

𝑠𝑡𝑗(𝑟) − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1) ≥ ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟))

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑗≠𝑙

∀𝑗 ∈ 𝑁𝑘 , 𝑟 ∈ {2,3,… ,𝑚𝑗}

(4.43)

Constraint (4.43) ensures that the operation of each job in each stage cannot be started until it has been

completely processed on a prior stage, where the job had its latest operation.

𝑇𝑗 ≥ 𝑋
𝑗

𝑠𝑡
𝑗(𝑚𝑗) − 𝑑𝑗 (4.44)

49

∀𝑗 ∈ 𝑁,

Constraint (4.44) determines the tardiness of a job, which is equal or greater than both the completion time

on the last stage minus due date, and zero.

𝑋𝑗
𝑘 ≥ 0

∀𝑗 ∈ 𝑁𝑘 , ∀𝑘 ∈ 𝑀,

(4.45)

𝑇𝑗 ≥ 0

∀𝑗 ∈ 𝑁,

𝑥𝑙𝑗ℎ
𝑘 ∈ {0, 1}

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘 ∪ {𝑛 + 1}|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘, ∀𝑘 ∈ 𝑀.

Finally, constraint (4.45) defines the real and integer requirements imposed on the variables.

4.1.3.1. Functionality of desired lower bounds constraints

The desired lower bounds on batch sizes must be satisfied by the jobs assigned and arranged on machines.

This being the case, each member of 𝑄𝑖ℎ
𝑘 (∀𝑘 ∈ 𝑀, ∀ℎ ∈ 𝑉𝑘 , 𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ

𝑘 > 1) including at least one

internal connection (IC) in the sequence must satisfy constraint (4.37); otherwise there is a violation on

𝐿𝐵𝑖ℎ
𝑘 . If at least a pair of jobs 𝑗 and 𝑗′ belonging to {𝑗1, 𝑗2, … , 𝑗𝑙} satisfies 𝑥𝑗𝑗′

ℎ = 1 or 𝑥𝑗′𝑗
ℎ = 1, there is at

least one IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙}. The maximum number of ICs between jobs belonging

to a selected member of 𝑄𝑖ℎ
𝑘 is (𝐿𝐵𝑖ℎ

𝑘 − 1). If there is not any IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙},

there are at least three and at most six external connections (ECs) related to those jobs in the sequence. An

EC is a connection between job 𝑗 ∈ {𝑗1, 𝑗2, … , 𝑗𝑙} and job 𝑙 ∈ 𝐺𝑖|𝑙 ∉ {𝑗1, 𝑗2, … , 𝑗𝑙}, i.e., 𝑥𝑗𝑙
ℎ = 1 or 𝑥𝑙𝑗

ℎ = 1.

In order to show functionality of constraints (4.37) through (4.39), consider the following job sequence of

group 𝑖 with 7 jobs and 𝐿𝐵𝑖ℎ
𝑘 = 3 on a particular machine ℎ in stage 𝑘 and the Gantt chart below as a guide.

J1 J3 J5 J1 J2 J3 J4 J7J6Machine J2 J1 J2 J4

50

The batch including jobs 4 and 5 as well as the batch including jobs 6 and 7 violate 𝐿𝐵𝑖ℎ
𝑘 , while the batch

including jobs 1, 2, and 3 satisfies 𝐿𝐵𝑖ℎ
𝑘 . The first and second parts of the left-hand side in equation (4.37)

enumerate the number of ECs and ICs related to a selected member of 𝑄𝑖ℎ
𝑘 , respectively. Equations (4.38)

and (4.39) are accompanied by equation (4.37) so that if there is any IC between a selected member of 𝑄𝑖ℎ
𝑘 ,

equation (4.37) must be satisfied by that member; otherwise equation (4.37) is considered as a redundant

constraint. This being the case, equations (4.38) and (4.39) determine the binary variable corresponding to

{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ
𝑘 as 𝑌𝑗1𝑗2…𝑗𝑙

𝑖ℎ𝑘 = 1 if there is at least one IC between jobs belonging to {𝑗1, 𝑗2, … , 𝑗𝑙};

otherwise 𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 = 0. In the following, with the help of three scenarios, we explain the relationship

between these constraints.

Scenario 1: consider the following selected jobs, i.e., {1, 2, 3} ∈ 𝑄𝑖ℎ
𝑘 :

∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘)

 𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,𝑙≠𝑗3

𝑗3

𝑗=𝑗1

= (𝑥41ℎ
𝑘 + 𝑥14ℎ

𝑘) + (𝑥51ℎ
𝑘 + 𝑥15ℎ

𝑘) + ⋯+ (𝑥73ℎ
𝑘 + 𝑥37ℎ

𝑘) = 0

∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘)

𝑗3

 𝑗′=𝑗+1

𝑗3

𝑗=𝑗1

= (𝑥21ℎ
𝑘 + 𝑥12ℎ

𝑘) + (𝑥31ℎ
𝑘 + 𝑥13ℎ

𝑘) + (𝑥32ℎ
𝑘 + 𝑥23ℎ

𝑘) = 2

The number of ECs and ICs related to selected jobs, i.e., {1, 2, 3} ∈ 𝑄𝑖ℎ
𝑘 , are 0 and 2, respectively.

Consequently,

{
𝑀(𝑌123

𝑖ℎ𝑘) ≥ 2

𝑀(𝑌123
𝑖ℎ𝑘 − 1) ≤ 2 − 𝜀(𝑌123

𝑖ℎ𝑘)
 ⟹ 𝑌123

𝑖ℎ𝑘 = 1 and equation (4.37) is satisfied as follows:

(0) + 2(2) ≥ 2(1)(3 − 1) ⇒ 4 ≥ 4

Scenario 2: consider the following selected jobs, i.e., {2, 4, 6} ∈ 𝑄𝑖ℎ
𝑘 :

Group i Invalid batch Selected job External connection

Group j Rest of schedule

Group k Valid batch Setup Internal connectionJob

Job

Job

Job

J1 J3 J5 J1 J2 J3 J4 J7J4 J6Machine J2 J1 J2

J1 J3 J5 J1 J2 J3 J4 J7J6J2 J1 J2 J4Machine

51

∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘)

 𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,𝑙≠𝑗3

𝑗3

𝑗=𝑗1

= (𝑥12ℎ
𝑘 + 𝑥21ℎ

𝑘) + (𝑥32ℎ
𝑘 + 𝑥23ℎ

𝑘) + ⋯+ (𝑥76ℎ
𝑘 + 𝑥67ℎ

𝑘) = 4

∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘)

𝑗3

 𝑗′=𝑗+1

𝑗3

𝑗=𝑗1

= (𝑥42ℎ
𝑘 + 𝑥24ℎ

𝑘) + (𝑥62ℎ
𝑘 + 𝑥26ℎ

𝑘) + (𝑥64ℎ
𝑘 + 𝑥46ℎ

𝑘) = 0

The ECs and ICs for selected jobs, i.e., {2, 4, 6} ∈ 𝑄𝑖ℎ
𝑘 , are 4 and 0, respectively. Consequently,

{
𝑀(𝑌246

𝑖ℎ𝑘) ≥ 0

𝑀(𝑌246
𝑖ℎ𝑘 − 1) ≤ 0 − 𝜀(𝑌246

𝑖ℎ)
 ⟹ 𝑌246

𝑖ℎ𝑘 = 0 and equation (4.37) is satisfied as follows:

(4) + 2(0) ≥ 2(0)(3 − 1) ⇒ 4 ≥ 0

Scenario 3: consider the following selected jobs, i.e., {3, 4, 5} ∈ 𝑄𝑖ℎ
𝑘 :

Likewise, the ECs and ICs for selected jobs, i.e., {3, 4, 5} ∈ 𝑄𝑖ℎ
𝑘 , are equal to 1 each. Consequently, 𝑌345

𝑖ℎ𝑘 =

1 and equation (4.37) is not satisfied since (1) + 2(1) ≱ 2(1)(3 − 1). Therefore, the jobs must be re-

arranged to satisfy 𝐿𝐵𝑖ℎ
𝑘 as in the following sequence:

In conclusion, constraints (4.37) through (4.39) guarantee that any developed batch of group 𝑖 on machine

ℎ satisfies 𝐿𝐵𝑖ℎ
𝑘 ; otherwise this batch will not be developed on machine ℎ in stage 𝑘.

4.1.4. RMILP

It is essential to develop a robust measure, i.e., a lower bound, to evaluate the performance of meta-heuristic

algorithms developed for the research problem. Therefore, the relaxed MILP model is developed to obtain

an optimal solution or a good quality lower bound in affordable computational time, particularly for large-

size problems. The RMILP model reduces the large solution space considerably by eliminating the batching

phase from the previous MILP models (Appendix A). In other words, unlike the previous MILP models

focusing on all combinations between batch compositions of groups, the RMILP model focuses on only

one combination. The RMILP model can be developed based on any of the proposed MILP models. In this

research, the RMILP model is a relaxed version of the MILP1 model, which is developed based on the

precedence constraints between each pair of jobs on machines. Appendix B shows a relaxed version of the

J1 J3 J5 J1 J2 J3 J4 J7Machine J2 J1 J2 J4 J6

J1 J3 J1 J2 J3 J4 J5 J7Machine J2 J1 J2 J4 J6

52

MILP2 model, as another example, which is developed based on the position concept within machines to

determine the job sequence. The sets, subsets, indices, parameters, decision variables, and mathematical

formulation for the RMILP are presented next.

Sets and Indices

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔}

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖}

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚}

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘}

Subsets

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾

Parameters

𝑔 Number of groups

𝑛𝑖 Number of jobs of group 𝑖

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘

𝑚 Number of stages

𝑣𝑘 Number of machines in stage 𝑘

𝑚𝑖𝑗 Number of stages, which must be visited by job 𝑗 of group 𝑖

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗

𝑡𝑖𝑗ℎ
𝑘 Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘

𝑆𝑝𝑖ℎ
𝑘 Required setup time to process a batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝 is

the preceding batch (𝑝 = 0 refers to the reference batch)

𝑑𝑖𝑗 Due date of job 𝑗 of group 𝑖

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘

𝛼 Weight attributed to the producer

𝛽 Weight attributed to the customer

53

𝐿𝐵𝑖ℎ
𝑘 Desired lower bound for the minimum number of jobs assigned to any batch of group 𝑖 on machine

ℎ in stage 𝑘

Decision variables

𝑋𝑖𝑗
𝑘 The completion time of job 𝑗 of group 𝑖 in stage 𝑘

𝑇𝑖𝑗 The tardiness of job 𝑗 of group 𝑖

𝑍𝑖𝑗ℎ
𝑘 1 if job 𝑗 of group 𝑖 is assigned to machine ℎ in stage 𝑘; 0 otherwise

𝐴𝑝𝑗′𝑖𝑗
𝑘 1 if job 𝑗 of group 𝑖 is processed after job 𝑗′ of group 𝑝 in stage 𝑘; 0 otherwise

Mathematical formulation

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑗∈𝑔𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝑖𝑗

𝑗∈𝑔𝑖𝑖∈𝐺
 (4.46)

The objective function (4.46) is to simultaneously minimize the total weighted completion time and total

weighted tardiness.

∑ 𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘

= 1

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(4.47)

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑗′𝑖𝑗

𝑘) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘) ≥ 𝑋𝑝𝑗′
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑖
𝑘; 𝑗′ ∈ 𝐽𝑝

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ; 𝑘 ∈ 𝐾; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;
(4.48)

𝑋𝑝𝑗′
𝑘 +𝑀(𝐴𝑝𝑗′𝑖𝑗

𝑘) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘) ≥ 𝑋𝑖𝑗
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗′ℎ
𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑝
𝑘; 𝑗′ ∈ 𝐽𝑝

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ; 𝑘 ∈ 𝐾; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;
(4.49)

Constraint (4.47), known as assignment constraint, is incorporated into the model to determine the optimal

job assignment on machines in each stage, while set of constraints (4.48) and (4.49), known as scheduling

constraint set, determine the optimal job sequence on machines with regard to the assignment constraint.

𝑋𝑖𝑗
𝑘 ≥∑ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘)𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘

 (4.50)

54

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(1) ≥ 𝑟𝑖𝑗 + ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(1))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(1)

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;

(4.51)

Constraint (4.50) together with constraint (4.51) account for dynamic machine availability and dynamic job

release time, respectively.

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙)
− 𝑋

𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥ ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑙) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑙))

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗};

(4.52)

The linking constraint (4.52) ensures the connection between completion times of a job related to each of

two sequential stages, where the job had operations.

𝑇𝑖𝑗 ≥ 𝑋
𝑖𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;

(4.53)

Constraint (4.53) is applied to find the tardiness of each job.

𝑋𝑖𝑗
𝑘 , 𝑇𝑖𝑗 ≥ 0;

𝑍𝑖𝑗ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠);

𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑗′ ∈ 𝐽𝑝

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ; 𝑀: large number.

(4.54)

Finally, constraint (4.54) defines the variables used. It is worth noting that the number of decision variables

and constraints of the RMILP model are considerably less than those related to the previous MILP models.

55

4.1.4.1. Functionality of the RMILP model

Although the RMILP model is still strongly NP-hard (Du and Leung 1990), it drastically reduces the gap

between the upper and lower bounds of solutions compared to this gap for the MILP models, especially for

large-size problems. It is worth noting that a lower bounding mechanism or a branch-and-price algorithm

can also present a good quality lower bound compared to the RMILP model, but the computational time is

high. As a result, during the same computational time limit, the optimal solution of the RMILP model is

equal to the optimal solution of the MILP models, provided the RMILP model does not violate any 𝐿𝐵𝑖ℎ
𝑘 ;

otherwise, the optimal solution and lower bound identified for the RMILP and any of the MILP models,

respectively, determine the best lower bound for the MILP model. Likewise, the lower bounds identified

for both RMILP and any of the MILP models determine the best lower bound for the MILP model, when

the optimal solution for the RMILP model is not attainable during the computational time limit. In this case,

the optimal solution/lower bound identified for both RMILP and any of the MILP models determine the

best lower bound for the problem to evaluate the performance of meta-heuristic algorithms. Thus, given the

computational time limit (𝐶𝑇𝑙𝑖𝑚𝑖𝑡), there is a possibility of obtaining an optimal solution/a good quality

lower bound of any of the MILP models by the RMILP model, particularly for medium- and large-size

problems. The pseudo-code of this mechanism is shown in Table 1.

Table 1. Pseudo-code for 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

 Result of the MILP models

1: Input: 𝑀𝐼𝐿𝑃𝑅𝐷 & 𝑀𝐼𝐿𝑃𝑂𝐿

2: Output: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 & 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

3: Solve 𝑀𝐼𝐿𝑃𝑅𝐷 during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡

4: if 𝑂𝑝𝑡𝑅𝐷 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then

5: if 𝑂𝑝𝑡𝑅𝐷 does not violate any 𝐿𝐵𝑖ℎ
𝑘 then

6: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑅𝐷

7: else

8: Solve 𝑀𝐼𝐿𝑃𝑂𝐿 during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡

9: if 𝑂𝑝𝑡𝑂𝐿 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then

10: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑂𝐿

11: else
12: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝑂𝑝𝑡𝑅𝐷, 𝐿𝐵𝑂𝐿}

𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑂𝐿

13: end if

15: end if
15: else

16: if 𝑂𝑝𝑡𝑂𝐿 is attainable during 𝐶𝑇𝑙𝑖𝑚𝑖𝑡 then

17: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑂𝐿

18: else
19: 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝐿𝐵𝑅𝐷, 𝐿𝐵𝑂𝐿}

𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑈𝐵𝑂𝐿

20: end if
21: end if
22: return 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 & 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

56

𝑀𝐼𝐿𝑃𝑂𝐿 and 𝑀𝐼𝐿𝑃𝑅𝐷 in Table 1 represent the original and relaxed MILP models, respectively, while

𝑂𝑝𝑡𝑂𝐿/𝑂𝑝𝑡𝑅𝐷 and 𝐿𝐵𝑂𝐿/𝐿𝐵𝑅𝐷 represent the optimal solution and lower bound of 𝑀𝐼𝐿𝑃𝑂𝐿/𝑀𝐼𝐿𝑃𝑅𝐷,

respectively. The original MILP model refers to the MILP1, MILP2, and MILP3 models. The result of

𝑂𝑝𝑡𝑂𝐿/𝐿𝐵𝑂𝐿 and/or 𝑂𝑝𝑡𝑅𝐷/𝐿𝐵𝑅𝐷 determine the best lower bound of 𝑀𝐼𝐿𝑃𝑂𝐿, i.e., 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, while the

result of 𝑂𝑝𝑡𝑅𝐷 and/or 𝑂𝑝𝑡𝑂𝐿/𝑈𝐵𝑂𝐿 determine the best upper bound of 𝑀𝐼𝐿𝑃𝑂𝐿, i.e., 𝑈𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒. 𝑈𝐵𝑂𝐿 is

the upper bound of 𝑀𝐼𝐿𝑃𝑂𝐿.

In summary, the optimal solution of the RMILP model is certainly equal to the optimal solution for any of

the MILP models, when 𝐿𝐵𝑖ℎ
𝑘 = 1,∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀; otherwise, the optimal solution of the RMILP

model might be either the optimal solution or the lower bound for the MILP models, when 𝐿𝐵𝑖ℎ
𝑘 > 1, ∃𝑖 ∈

𝐼𝑘 , ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀. It is worth noting that despite being a desired lower bound(s) on batch sizes, the optimal

solutions of both MILP and any of the RMILP models are equal, when the optimal solution of the RMILP

model does not violate any desired lower bounds on batch sizes. Therefore, the deviation between the

optimal solutions of both MILP and any of the RMILP models indicates at least one of the desired lower

bounds on batch sizes is violated by the RMILP model.

This superiority in the quality of lower bounds is intensified when most of the groups have the desired

lower bounds on batch sizes close to 1 (i.e., 𝐿𝐵𝑖ℎ
𝑘 → 1). This being the case, the evaluation of meta-heuristic

algorithms will be performed by the outcome of optimal solutions/lower bounds of the RMILP model and

lower bounds of any of the MILP models (pseudo-code presented in Table 1). With respect to no/any

violation on desired lower bounds, all possible combinations between the optimal solutions and lower

bounds of both RMILP and any of the MILP models are depicted in Figures 7 and 8. With the help of lines

shown for the optimal solutions, lower bounds, and upper bounds of both MILP and RMILP models in

Figures 7 and 8, the reader can interpret the relationships between the optimal solution/lower bound of the

RMILP model and the lower bound of the MILP model, in all possible cases depicted in Figures 7 and 8.

The same optimal solution for

all models with no violation on

𝐿𝐵𝑏 by the RMILP model

The optimal solution of the

MILP model is guaranteed by

the RMILP model

Fast convergence between the

LB & UB of the RMILP model

compared to the LB & UB of

the MILP model

Chart Guide

Figure 7. No violation on desired lower bounds for the RMILP model

57

Since 𝐿𝐵𝑖ℎ
𝑘 is not violated by the RMILP model in all possible cases in Figure 7, the optimal solutions/lower

bounds of the RMILP model are the optimal solutions/good quality lower bounds for the MILP model.

Unlike cases shown in Figure 7, 𝐿𝐵𝑖ℎ
𝑘 is violated by the RMILP model in all cases shown in Figure 8. In

this case, the outcome of optimal solutions/lower bounds of the RMILP model and lower bounds of the

MILP models determine the best lower bounds for the MILP models.

The optimal solutions for all

models with violations on 𝐿𝐵𝑏

by the RMILP model

The optimal solution of the

RMILP model is a good

quality lower bound for the

MILP model

The optimal solution of the

RMILP model is not able to

provide even a good quality

lower bound for the MILP

model

The LB of the RMILP model is

not able to provide a good

quality lower bound for the

MILP model

1 < 𝐿𝐵𝑏 < 𝑛𝑖

𝐿𝐵𝑏 → 1

𝐿𝐵𝑏 → 𝑛𝑖 Chart Guide

Figure 8. Violation on desired lower bounds for the RMILP model

Generally, the lower and upper bounds of the RMILP model converge faster than the ones of the original

MILP model, when there is no violation on 𝐿𝐵𝑖ℎ
𝑘 by the RMILP model (case 3 in Figure 7). This fast

convergence might be true for the RMILP model even if it violates 𝐿𝐵𝑖ℎ
𝑘 , when the number of violations in

𝐿𝐵𝑖ℎ
𝑘 is not significant (case 6 in Figure 8). This being the case, the RMILP model still gives a good estimate

of lower bounds for any of the MILP model. Apart from this, the optimal solutions/lower bounds of the

RMILP model might not provide good quality lower bounds for any of the MILP models (case 7 in Figure

8), when the number of violations in 𝐿𝐵𝑖ℎ
𝑘 is significant and/or most of the groups have the desired lower

bounds on batch sizes close to 𝑛𝑖 (i.e., 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖). The reason lies in the fact that the combinations between

batch compositions are decreased significantly, when 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖 for most of the groups, and consequently,

the lower and upper bounds of the MILP model converge faster. Therefore, the quality of the lower bound

identified by any of the MILP model is better than the one identified by the RMILP model.

58

4.1.5. Comparison of MILP1, MILP2, MILP3, and RMILP

With the help of several test problems, the following results are obtained from a comparison between the

MILP models and the RMILP model with 8 hours’ time limit presented in Table 2:

• The MILP3 model develops good quality solutions for all test problems, compared to the solutions

developed by the MILP1 and MILP2 models.

• The MILP3 model is capable of obtaining the optimal solution for 9 out of 19 problems, while for

the rest of the problems it presents good quality lower bounds compared to the MILP1 and MILP2

models.

• Compared to the MILP1 and MILP2 models, the performance of the MILP3 model increase as the

size of problems is increased.

• The performance of the MILP2 model is slightly better than the MILP1 model, particularly for

large-size problems.

• Although the RMILP model is capable of obtaining the optimal solutions for 13 out of 19 problems,

it presents the optimal solution of MILP models only for 6 out of 13 problems due to violation on

the desired lower bounds on batch sizes.

• For all test problems, the MILP1 and RMILP models have the maximum and minimum

computational times to identify optimal solutions, while the MILP2 and MILP3 models have the

second and third maximum computational times, respectively.

The MILP1 and MILP2 models are developed in two integrated phases, i.e., the batching and scheduling

phases. Therefore, for any combination between batch compositions determined in the batching phase, the

batch sequence on machines and job sequence within batches should be determined by the precedence

constraints and/or the position concept in the scheduling phase. Although both the MILP3 and RMILP

models focus on transferring a batch scheduling problem formulated by the MILP1 and MILP2 to a job

scheduling problem by eliminating the batching phase, they are different with respect to considering 𝐿𝐵𝑏.

In other words, unlike the RMILP model, the MILP3 model considers 𝐿𝐵𝑏 and, consequently guarantees

identifying the optimal solution for the batch scheduling problem.

Our preliminary experiments revealed that the MILP3 model is capable of finding optimal solutions or good

quality lower bounds in less computational time, particularly for large-size problems, compared to the

MILP1 and MILP2 models. Thus, the MILP3 model along with the RMILP model have been used to

determine optimal solutions/lower bounds of problems.

59

Table 2. Comparison between MILP models and the RMILP model

 MILP1 MILP2 MILP3 RMILP

Best measure to

evaluate the

performance of a

meta-heuristic

algorithm

P
ro

b
lem

𝑔 ∑𝑛𝑖 𝑚 OFV LB OFV LB OFV LB OFV LB
V

io
latio

n
 o

n
 𝐿
𝐵
𝑖ℎ 𝑘

1 5 15 2 1782.02 1260.80 1752.02 1738.02 1738.80 1682.32 Yes 1738.80

2 3 9 3 3697.54 3697.54 3697.54 3697.54 No 3697.54

3 3 9 2 956.20 956.20 956.20 914.15 Yes 956.20

4 3 9 2 1330.06 1302.98 1303.06 1303.06 1278.80 Yes 1303.06

5 3 10 3 2287.60 2287.60 2287.60 2287.60 No 2287.60

6 5 15 4 5748.70 4071.99 5696.80 4376.80 5502.69 5502.69 No 5502.69

7 3 15 5 4300.60 3688.21 4396.78 3770.12 4209.71 4180.87 4180.87 No 4180.87

8 3 9 4 4318.08 3895.44 4329.65 3945.70 4298.00 4247.63 Yes 4298.00

9 3 9 4 1579.95 1516.75 1568.39 1523.50 1551.67 1548.80 1479.95 Yes 1548.80

10 3 9 6 4808.82 3997.15 4692.70 4061.90 4495.08 4495.08 No 4495.08

11 4 15 6 4651.47 3517.29 4607.26 4167.98 4523.56 4451.47 Yes 4523.56

12 3 9 6 5787.07 4802.98 5700.26 5151.08 5502.18 5468.80 5459.97 No 5459.97

13 4 15 6 7489.88 6095.70 7729.56 7129.40 7398.70 7359.34 7264.90 Yes 7359.34

14 4 20 4 8488.69 8009.89 8463.22 8193.76 8359.83 8295.37 8129.67 7972.88 NK 8295.37

15 5 20 5 13871.80 9571.54 12595.59 11765.80 12128.43 11988.07 11983.80 11689.86 NK 11988.07

16 6 28 3 16872.90 12579.76 15822.28 11598.32 13981.20 13039.20 12873.88 12688.41 NK 13039.20

17 5 29 5 18823.80 14677.92 19030.86 13787.60 15781.49 14756.88 14987.20 14698.34 NK 14756.88

18 6 24 2 3487.56 3038.90 3308.09 3069.90 3298.90 3087.20 2989.40 2871.89 NK 3087.20

19 7 47 4 19182.90 13729.98 18760.88 14138.50 16993.43 15382.88 15879.70 15028.21 NK 15382.88

NK, OFV, and LB stand for “Not Known”, “Objective Function Value”, and “Lower Bound”, respectively.

60

4.2. Meta-heuristic algorithm

The problem addressed here is strongly NP-hard and, consequently, its complexity motivates investigating

into the development of an algorithm, which can efficiently explore the solution space and find the best

solution from among local optima. Heuristic and meta-heuristic algorithms are the main approaches used

in dealing with medium- and large-size problems, which are strongly NP-hard. Apart from this, not only

meta-heuristic algorithms usually show higher performance compared to heuristic algorithms due to using

a mechanism to avoid getting trapped in local optima, but also their performance differs in dealing with

different types and sizes of problems.

A basic local search meta-heuristic, a population-based meta-heuristic, and a combination of both have

been developed for scheduling problems. A local search algorithm is an iterative algorithm so that, in each

iteration, it searches for a solution in a local area in the solution space. This local area including neighbor

solutions is usually the neighborhood of a particular solution called seed. Therefore, the search starts with

an initial seed and searches the neighborhood of this solution to find a possible seed for the next iteration.

The next seed is usually selected based on its quality compared to other solutions in the neighborhood. A

population-based structure is an evolutionary algorithm so that, in each iteration, a population of solution

is converted to another population with superior characteristics of the older population. Therefore, an

iteration of a population-based structure can be considered as several consecutive iterations of a local search

structure.

For the research problem, eight algorithms are considered so that two out of eight algorithms are developed

in terms of a basic local search and a basic population-based meta-heuristic, while the rest of them are

developed based on either a local search meta-heuristic enhanced with a population-based structure or a

population-based meta-heuristic enhanced with a local search structure. The notation of the MILP1 model

is used to show the equations in developed meta-heuristics. Before going into the details of the developed

meta-heuristic algorithms, common implementation strategies are explained first.

4.2.1. Move interdependency

The optimal solution of HFS problems are not generally in the form of permutation sequences, but very

close to these sequences. Since there is a different combination between batch compositions of all groups

in each stage of HFS in batch scheduling, the permutation schedule does not hold true in the problem

addressed in this research. Therefore, a solution might be represented by different batch compositions in

each stage.

61

Since there is interdependency between positions of a job in different stages of HFS in batch scheduling, a

meta-heuristic algorithm is not capable of capturing these interdependencies and, subsequently, its efficacy

can be diminished. Therefore, the move interdependency (MI) is referred to the impact of either a move

created on 𝑘𝑡ℎ stage or several concurrent moves created on several stages up to 𝑘𝑡ℎ stage on the job and/or

batch sequence and assignment related to the following stages, i.e., 𝑘 + 1,… ,𝑚. In a local search structure,

a move in 𝑘𝑡ℎ stage of HFS for creating an adjacent solution should be accompanied by the MI for the

following stages. Since several concurrent moves related to a stage(s) of HFS might create an adjacent

solution in a population-based structure, it is more critical and complicated to accompany the moves’

interdependencies on the following stages, compared to a local search structure.

Therefore, after applying a move or several concurrent moves for creating an adjacent solution, this move

can be accompanied with and without considering the MI for the following stages. Thus, the batch

compositions corresponding to 𝑘 + 1, 𝑘 + 2,… ,𝑚 might be changed with respect to the MI in the

scheduling and/or the batching phase, while they are assumed to be fixed (i.e., the same as its seed/parent)

without considering the MI. Unlike group scheduling problems, due to different combinations of batch

compositions for each stage of HFS in batch scheduling problems, the MI can be dealt with one of the

following strategies:

Non-interdependency strategy: A single perturbation performed on 𝑘𝑡ℎ stage or several perturbations

performed up to 𝑘𝑡ℎ stage is not accompanied by any changes on 𝑘 + 1,… ,𝑚 stages. This strategy evaluates

a move or concurrent moves without considering the MI. Since a single perturbation or several perturbations

is performed on a stage or up to a stage, respectively, while all the other following stages remain unchanged,

the outcomes of this perturbation(s) is non-interdependency sequence, which clarifies the name of this

strategy.

Performing any perturbation(s) on HFS environments may result in the emergence of idle times (delays) in

the entire schedule. These predictable delays, which represent a potential deficiency of meta-heuristic

algorithms in dealing with the HFS scheduling problems, lead the efficiency of a meta-heuristic algorithm

to be drastically diminished. Apart from this, a single perturbation in a local search algorithm can change

the position of multiple jobs at each perturbation. Therefore, the multiple combinations of perturbations in

a population-based algorithm to generate each solution may result in a non-polynomial search algorithm,

which is not desirable in dealing with strongly NP-hard problems. In order to avoid these deficiencies in

dealing with the HFS batch scheduling problem, one remedy is to account for simultaneous

interdependencies (partial- or complete- interdependencies). In other words, while changing the position of

62

a job(s) and/or batch(s) in any stage(s), batch composition of groups as well as positions of jobs in the

following stages should be checked and accordingly changed to avoid the possible delays.

Partial-interdependency strategy: This strategy retains the same batch compositions and job order within

batches from 𝑘𝑡ℎ stage, i.e, 𝑘 = 1,2, … ,𝑚 − 𝑖 − 1, up to the last stage, for each of two consecutive stages,

i.e, (𝑘 + 𝑖)𝑡ℎ & (𝑘 + 𝑖 + 1)𝑡ℎ stages, where 𝑖 = 0,1,2,… ,𝑚 − 𝑘 − 1, after accounting for the adjustment

step (in the following section 4.2.3) for the first stage of each two consecutive stages. The sequence and

assignment of batches on machines corresponding to each stage of 𝑘 + 1,… ,𝑚 stages are determined based

upon both the earliest available machine times and earliest batch availability times. The batch availability

time in (𝑘 + 𝑖 + 1)𝑡ℎ stage of each of two consecutive stages is determined in terms of the completion time

of its first job in (𝑘 + 𝑖)𝑡ℎ stage.

Complete-interdependency strategy: Unlike the partial-interdependency strategy, this strategy does not

keep the same batch composition for each of two consecutive stages. This strategy determines only job

orders on machines (not within batches) for 𝑘 + 1,… ,𝑚 stages, based upon both the earliest available

machine times and earliest job availability times, regardless of which batch a job is assigned to before. This

strategy applied for each two consecutive stages of 𝑘, 𝑘 + 1,… ,𝑚, determines simultaneously the batch

compositions, batch sequence and assignment on machines, and job sequence within batches. In other

words, for each of two consecutive stages, the first available job of a group in the prior stage is assigned to

the first available machine on the following stage as a batch. The other available jobs of the same group in

the prior stage must be assigned to the same batch on the following stage based on their availability times,

until the desired lower bound for this batch is satisfied. Then, for the rest of jobs belonging to this group,

the same process follows until all jobs are assigned to a machine(s) as batches.

As much as possible, the machine eligibilities for a job/batch assignment to a machine(s) and 𝐿𝐵𝑖ℎ
𝑘 for job

assignment must be considered in both partial- and complete-interdependency strategies. Ties will be

broken in favor of the smallest machine and/or batch and/or job index in both procedures.

It is obvious that an effective move(s) cannot be created without considering the MI, due to emergence of

idle times in the entire schedule. Apart from this, with respect to the MI, partial-interdependency strategy

takes the flexibility of batch scheduling for stages 𝑘 + 1, 𝑘 + 2,… ,𝑚 − 1 and 𝑚, because it behaves as in

group scheduling and follows the GTAs (the same batch composition for these stages. Furthermore,

complete-interdependency strategy increases the number of setups, because the job assignments are based

on only job availability times. Therefore, complete-interdependency strategy results in not only its objective

function value being worse, but also its schedule cost to be increased. These arguments led us to probe into

63

the properties of the stage-based interdependency strategy in the HFS batch scheduling problem, described

next.

Stage-based interdependency strategy: Creating idle times, taking the flexibility of batch scheduling, and

increasing the number of setups, are the potential deficiencies of non-, partial-, and complete-

interdependency strategy, respectively. These deficiencies lead to the reduction in the efficiency of the local

search and population-based algorithms. Stage-based interdependency strategy gradually determines the

best job and batch sequences as well as batch compositions in each stage. Considering the MI, this strategy

is defined with the help of the following statement:

Regardless of setting batch compositions, machine assignments, batch sequences on machines, and job

sequences within batches which are determined up to (𝒌 −)𝒕𝒉 stage, the best of their setting corresponding

to 𝒌𝒕𝒉 stage is determined with the help of stage-based release time and stage-based due date.

As a result of this strategy, the HFS problem is decomposed into 𝑚 sub-problems (𝑆𝑃𝑘 , 𝑘 ∈ 𝑚), where each

sub-problem is a batch scheduling problem on either a single machine or a set of unrelated-parallel

machines. The sub-problems link together with the help of stage-based release time (similar to constraints

(4.9) and (4.13) in section 4.1.1), while the approximate impact, known as load ratio (𝐿𝑅𝑖𝑗
𝑘), of tardiness of

jobs is considered with the help of stage-based due date in each stage.

The stage-based release time of a job is equivalent to the completion time of the job in the immediately

preceding stage. The most important point in developing the stage-based interdependency strategy is to

follow the bi-criteria objective function in each stage. Thus, the stage-based due date needs to be considered

in each stage due to the tardiness criterion in the bi-criteria objective function. The stage-based due date,

which is based upon modified due dates, is obtained with the help of the load ratio of real due dates, so that

the stage-based due date will be equivalent to the real due date in the last stage. Therefore, the stage-based

due date considers customers’ interests in all stages of batch scheduling. The stage-based release time (�̂�𝑖𝑗
𝑘)

and stage-based due date (�̂�𝑖𝑗
𝑘) of job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage are determined by the following equations:

�̂�𝑖𝑗
𝑘 = 𝐶𝑖𝑗

𝑘−1 (4.55)

�̂�𝑖𝑗
𝑘 = 𝐿𝑅𝑖𝑗

𝑘 ∗ 𝑑𝑖𝑗 (4.56)

where 𝐶𝑖𝑗
𝑘 is the completion time of job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage. Load ratios are obtained as follows:

64

𝐿𝑅𝑖𝑗
𝑘 = (

(σ 𝑆�̅�𝑗
𝑙 + 𝑡�̅�𝑗

𝑙𝑘
𝑙=1)

(σ 𝑆�̅�𝑗
𝑙 + 𝑡�̅�𝑗

𝑙
𝑙∈𝐾)

⁄) (4.57)

𝑆�̅�𝑗
𝑘 = (

(σ 𝑆�̅�ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘)

𝜉𝑖𝑗
𝑘

⁄) (4.58)

𝑡�̅�𝑗
𝑘 = (

(σ 𝑡𝑖𝑗ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘)

(σ 𝜕𝑖ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘)

⁄) (4.59)

𝑆�̅�ℎ
𝑘 = (

(σ 𝑆𝑝𝑖ℎ
𝑘

𝑝∈𝐼𝑘+{0})
𝑔
⁄) (4.60)

𝜉𝑖𝑗
𝑘 indicates the total number of machines, which can process job 𝑗 of group 𝑖 in 𝑘𝑡ℎ stage. 𝜕𝑖ℎ

𝑘 indicates

the total number of jobs in group 𝑖, which can be processed by machine ℎ in 𝑘𝑡ℎ stage. The stage-based

interdependency strategy is shown in Figure 9.

Figure 9. The stage-based improvement procedure along with the three-level TS algorithm

65

In the first and last sub-problem, i.e., (𝑆𝑃1) and (𝑆𝑃𝑚), �̂�𝑖𝑗
1 = 𝑟𝑖𝑗 and �̂�𝑖𝑗

𝑚 = 𝑑𝑖𝑗, respectively. The sign ⇔↔

in Figure 9 indicates that the best schedule in 𝑘𝑡ℎ stage is determined only with the help of the SBRT,

SBDD, and developed IS (in the following section 4.2.2) in 𝑘𝑡ℎ stage, independent of the best fixed

schedules up to (𝑘 − 1)𝑡ℎ stage (𝑘 = 2,… ,𝑚). In the stage-based interdependency strategy, a partial

solution represents the sequence from the first stage up to 𝑘𝑡ℎ stage (𝑘 = 1,… ,𝑚 − 1). A complete solution

is obtained for all stages of the stage-based interdependency strategy, only when the search algorithm

reaches the last stage.

The preliminary results show the superior performance of the stage-based interdependency strategy on local

search and population-based structures for batch scheduling in HFS. Although the other interdependency

strategies might be capable of obtaining better results compared to the stage-based interdependency

strategy, a paired t-test performed to compare different strategies at a significance level of 5% for each

comparison shows there is a significant difference between the stage-based interdependency strategy and

the other strategies. Therefore, only this strategy is accompanied by all meta-heuristic algorithms in this

research.

4.2.2. Initial solution finding mechanism

An initial solution finding mechanism is applied to generate the initial solution (IS) and, consequently, the

initial population (IP) of meta-heuristic algorithms. From a combinational optimization perspective, a

randomly generated solution frequently is of poor quality and thus is too costly or impossible to improve

that to an optima. Therefore, in order to be efficient in finding good quality IS, an IS finding mechanism is

generated since the quality of the final solution is sensitive to the IS (Logendran and Subur 2004). Also, the

computational time is remarkably reduced when a feasible, high quality IS is used, instead of using a

random solution, which might be infeasible.

Considering that the processing time is a combination of setup and run times, in a single machine job

scheduling problem, the weighted shortest processing time (WSPT) and weighted earliest due date (WEDD)

rules can determine the optimal/near optimal solutions for the objective functions of total weighted

completion time and total weighted tardiness of jobs, respectively. Since the objective function of the

proposed problem is a linear combination of two mentioned objective functions, we conjecture that

developing the IS finding mechanisms, inspired by WSPT and WEDD heuristics, leads to an effective IS

for the HFS scheduling problem. Since the bi-criteria objective function is considered in this research, a

producer’s sequence (PS) and customers’ sequence (CS) can be generated (Bozorgirad and Logendran

2013) by applying modified WSPT and WEDD rules, respectively. Then, the PS and CS are combined to

determine the final sequence by considering the normalization of their positional values (𝛼. 𝑃𝑆 + 𝛽. 𝐶𝑆).

66

The IS is gradually determined, stage by stage, according to the progress of the stage-based interdependency

strategy. The stepwise IS finding mechanism as well as finding the PS and CS are described as follows:

• Step 0: Consider 𝑘 = 1.

• Step 1: Calculate �̂�𝑖𝑗
𝑘 and �̂�𝑖𝑗

𝑘 .

• Step 2: Determine the group sequence (𝐺𝑆𝑄) on each machine by non-decreasing sorting of

(𝛼. [𝑃𝑆𝑖ℎ
𝑘] + 𝛽. [𝐶𝑆𝑖ℎ

𝑘]), ∀𝑖 ∈ 𝐼𝑘. [𝑃𝑆𝑖ℎ
𝑘] and [𝐶𝑆𝑖ℎ

𝑘] are the positional values of group 𝑖 in the 𝐺𝑆𝑄 of

machine ℎ in 𝑘𝑡ℎ stage, which are obtained by non-decreasing sorting of the following equations on

machine ℎ:

[𝑃𝑆𝑖ℎ
𝑘] ⟶ (𝑡�̅�ℎ

𝑘 + 𝑆𝑖ℎ
𝑘 + �̅�𝑖ℎ

𝑘) (4.61)

[𝐶𝑆𝑖ℎ
𝑘] ⟶ (�̅�𝑖ℎ

𝑘 + �̅�𝑖ℎ
𝑘) (4.62)

where,

𝑆𝑖ℎ
𝑘 = 𝑚𝑖𝑛

𝑝∈𝐼𝑘+{0}−{𝑖}
𝑆𝑝𝑖ℎ
𝑘 (4.63)

𝑡�̅�ℎ
𝑘 = (

(σ (𝑡𝑖𝑗ℎ
𝑘 𝛾𝑖𝑗ℎ

𝑘)𝑗∈𝐽𝑖
𝑘)

𝜕𝑖ℎ
𝑘

⁄) (4.64)

�̅�𝑖ℎ
𝑘 = (

(σ (�̂�𝑖𝑗
𝑘𝛾𝑖𝑗ℎ

𝑘)𝑗∈𝐽𝑖
𝑘)

𝜕𝑖ℎ
𝑘

⁄) (4.65)

�̅�𝑖ℎ
𝑘 = (

(σ (�̂�𝑖𝑗
𝑘 𝛾𝑖𝑗ℎ

𝑘)𝑗∈𝐽𝑖
𝑘)

𝜕𝑖ℎ
𝑘

⁄) (4.66)

• Step 3: Determine the batch sequence (𝐵𝑆𝑄) on each machine according to the 𝐺𝑆𝑄 on each machine,

so that a permissible job(s) belonging to each group will be assigned to the earliest available machine

as a batch. The permissible job is a job which does not violate the machine eligibility for processing.

𝐿𝐵𝑖ℎ
𝑘 and the machine eligibilities should be considered, as much as possible.

• Step 4: Apply first the refinement step and then the adjustment step for created IS.

67

• Step 5: Determine the job sequence (𝐽𝑆𝑄) within each batch belonging to the 𝐵𝑆𝑄 by non-decreasing

sorting of (𝛼. [𝑃𝑆𝑖𝑗
𝑘] + 𝛽. [𝐶𝑆𝑖𝑗

𝑘]), ∀𝑖 ∈ 𝐼𝑘 & 𝑗 ∈ 𝐽𝑖
𝑘|𝑡𝑖𝑗ℎ

𝑘 ≠ ∞. [𝑃𝑆𝑖𝑗
𝑘] and [𝐶𝑆𝑖𝑗

𝑘] are the positional

values of job 𝑗 of group 𝑖 assigned to a batch in the 𝐵𝑆𝑄 of machine ℎ in 𝑘𝑡ℎ stage, which are obtained

by non-decreasing sorting of the following equations on machine ℎ:

[𝑃𝑆𝑖𝑗
𝑘] ⟶ (

(𝑡𝑖𝑗ℎ
𝑘 + �̂�𝑖𝑗

𝑘)
𝑤𝑖𝑗
⁄) (4.67)

[𝐶𝑆𝑖𝑗
𝑘] ⟶ (

(�̂�𝑖𝑗
𝑘 + �̂�𝑖𝑗

𝑘)
𝑤𝑖𝑗
⁄) (4.68)

• Step 6: Determine the best sequence of jobs on each machine as batches in 𝑘𝑡ℎ stage with the help

of a meta-heuristic algorithm.

• Step 7: Set 𝑘 = 𝑘 + 1 and go to step 1 until 𝑘 = 𝑚 + 1.

𝛾𝑖𝑗ℎ
𝑘 is equal to one when job 𝑗 of group 𝑖 can be processed by machine ℎ in 𝑘𝑡ℎ stage.

4.2.3. Refinement step and adjustment step

After developing an initial solution/population and generating neighbor solutions relating to both local

search and population-based structures, two steps might be needed: The refinement step, which is

implemented for modifying the batch compositions of groups, batch assignment and sequencing on a

machine(s), and job sequencing within some batches, after any perturbation(s) on a seed. For example, after

a perturbation on a seed, a batch of group 𝑖 is divided into two batches and, consequently, the batch

composition of group 𝑖 must be changed. Second, the adjustment step, which is implemented for the

solutions which violate the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . If a solution does not meet the machine

eligibility(s) and/or 𝐿𝐵𝑖ℎ
𝑘 , some job assignment must be changed based on the following procedure:

• Step 1: identify sets of jobs (𝐿𝑖𝑠𝑡𝐽) and batches (𝐿𝑖𝑠𝑡𝑆) separately, which violate the machine

eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 , respectively.

• Step 2: ∀𝑗 ∈ 𝐿𝑖𝑠𝑡𝐽, assign job 𝑗 to the best permissible batch 𝑠, 𝑠 ∈ 𝐿𝑖𝑠𝑡𝑆, and revise 𝐿𝑖𝑠𝑡𝑆;

otherwise assign job 𝑗 to the best permissible batch 𝑠, 𝑠 ∉ 𝐿𝑖𝑠𝑡𝑆. The permissible batches are

batches of group 𝑖 which can include job 𝑗, while the best permissible batch is the one with the

minimum processing time.

68

• Step 3: ∀𝑠 ∈ 𝐿𝑖𝑠𝑡𝑆, and for each job 𝑗 of batch 𝑠, assign each job to the best permissible batch

𝑠′, 𝑠′ ∈ (𝐿𝑖𝑠𝑡𝑆 − 𝑠), and revise 𝐿𝑖𝑠𝑡𝑆; otherwise assign this job to the best permissible batch 𝑠′, 𝑠′ ∉

𝐿𝑖𝑠𝑡𝑆.

• Step 4: apply the refinement step.

The position of assigned job 𝑗 within current jobs of the new batch is the same as its current position in the

current batch. It is worth noting that merging a batch which violates 𝐿𝐵𝑖ℎ
𝑘 with other possible batches of the

same group, instead of using the adjustment step, might reduce the performance of the search algorithm. In

the following four sections, meta-heuristic algorithms are explained in details.

4.2.4. Tabu Search

Tabu Search, a local search algorithm introduced by Glover (1986), has the ability to move through different

local optima in the solution space with the help of its memory function. TS is an effective iterative meta-

heuristic algorithm, which is guided by tailored neighborhood structures. TS applies tabu list as the Short-

Term Memory (STM) function in order not to be trapped in a local optimum. The STM prohibits the search

from choosing some of the previously identified neighborhoods to avoid being trapped in local optima.

Apart from the STM, the Long-Term Memory (LTM) can be typically applied at each level of the search

algorithm to explore more by intensifying and diversifying the search based upon maximum frequency

(LTM-MAX) and minimum frequency (LTM-MIN), respectively. This can result in improving the quality

of the objective function value. The LTM-MAX intensifies the search into a region that has been explored

before more frequently, while the LTM-MIN diversifies the search into a region that has not been explored

before. In the following, notations of TS-based algorithm as well as its algorithmic structure are briefly

presented, and then the algorithm is completely presented with respect to solution representation,

neighborhood finding mechanisms, tabu list structures, algorithmic steps, and finally the level moving in

TS.

4.2.4.1. Components of Tabu Search

Initial solution (IS): TS needs an IS to trigger the search into the solution space.

Neighborhood: a local search-based algorithm searches between the neighbor solutions of each solution for

possible improvements. The neighbor solution of each solution is obtained by perturbing different elements

of the solution. The types and number of these perturbations are dependent on the structure and the size of

the problem, respectively. A local search-based algorithm might require an excessively large computation

time for solving large-size instances of the problem, if the number of perturbations is polynomial with

respect to the size of the problem.

69

Candidate: the seed in each iteration of TS is called a candidate, referred to the potentiality of the solution

for being a local or global optimum. A next candidate in each iteration is usually the best solution between

neighbor solutions of the current candidate with respect to tabu list and candidate list. In other words, TS

follows a mechanism that prohibits the algorithm from always selecting the best neighbor solution as a

candidate to avoid getting trapped in local optima.

Candidate list (CL): the CL records each selected candidate found during the search of each iteration of the

algorithm. The new entry into the CL is not necessarily better than its current members due to the existence

of tabu solutions. After each insertion into the CL, the inserted candidate will be compared to the previous

candidate. If the objective function value has improved then the current candidate will be assigned a star

(*), which indicates it is capable of becoming the next local optima. If the objective function value has not

improved and the previous entry into the CL already has a star, it will be assigned another star (**) and

entered into the index list.

Index list (IL): the IL, a subset of the CL, records all local optima found during the search. A local optima

in the IL is a member of the CL, which is better than both its preceding and succeeding entries into CL. A

certain pre-defined number of local optima in the IL, commonly referred to as index list size (ILS), is one

of the criteria used to stop the search.

Tabu list (TL): the TL is used to avoid the cyclical problem by forbidding certain perturbations (moves),

which are called tabu. Therefore, in each iteration, the perturbation, which led to an entry into the CL, enters

into the TL and remains there for a certain pre-defined number of iterations, which is known as tabu list

size (TLS). The TL together with the TLS performs the role of what is referred to as the STM. Since the

TL is a “first in first out” list, whenever the TL is filled to its capacity, the move which was forbidden for

the longest duration (the oldest move in the TL) is replaced with the most recent move in the TL. A neighbor

solution, obtained from tabu moves, cannot be considered as the next candidate unless it leads to the best

solution found so far, i.e., better than the aspiration level defined so far. In this case, the move will re-enter

into the TL.

Aspiration level (AL): the AL is the best solution found so far by the search. As mentioned, whenever a

tabu move results in finding a solution better than the AL, the tabu status of that move is overridden, and

the solution can be selected as the next candidate.

Stopping criteria: several criteria may be chosen for stopping the search, including the maximum number

of iterations without improvement (MIWOI), maximum number of the IL/local optima (MIL), or maximum

amount of CPU/computation time (MCPU). When a feasible solution is added to the CL, and its value is

not less than the value of the previous member of the CL, the value of iterations without improvement

70

(IWOI) is increased by one; otherwise this counter is reset to zero. If either of the mentioned criteria or a

combination of both attains its predefined values, the search will be stopped.

4.2.4.2. Algorithmic structure

Based upon decomposition concept, a hierarchical TS implementation is appropriate for batch scheduling

problems. In order to reduce the computational burden of traditional two-level TS algorithm (job and group

levels) applied for group scheduling problems as well as increase its efficiency, Shahvari and Logendran

(2015, 2017) proposed a three-level TS algorithm for batch scheduling problems. A three-level TS-based

algorithm first divides groups into batches and then for a created combination between batch compositions

of groups, the sequence of batches on machines as well as the sequence of jobs within batches are

determined, i.e., integrating the batching phase into the scheduling phase. The TS-based algorithm used in

this research includes three levels, which move back and forth between batching and scheduling phases.

These three levels are the central level, the outside level, and the inside level. It is worth noting that the job

sequence within the same batch and the job assignment within different batches performed by the job level

of a two-level TS algorithm are divided into the inside and central levels of the three-level TS algorithm,

respectively. The outside level of the three-level TS algorithm, which determines the batch sequence on

machines, is similar to the group level of a two-level TS algorithm. The three-level TS-based algorithm is

shown in Figure 10. As it is shown, the batching phase includes splitting and merging batches, while the

scheduling phase includes batch sequencing and job sequencing.

Figure 10. The two-phase solution procedure at three levels

71

The central tabu search (CTS) performed by job assignment within different batches, determines the batch

combinations. The outside tabu search (OTS) performed by batch sequencing on machines, determines the

batch sequence and assignment on each machine based upon the batch combinations, which is identified in

the CTS. It is worth noting that in the batching phase, batches can be either split or merged together in the

CTS, while they can only be merged in the OTS. Finally, the inside tabu search (ITS) performed by job

sequencing within the same batch, determines the job sequence within each batch based upon the batch

assignment and sequence, which is identified in the OTS. The CTS, OTS, and ITS are implemented in the

central, outside, and inside levels, respectively. Each level of the three-level TS-based algorithm follows

the same algorithmic steps of tabu search (Glover 1986).

Due to changes in at least one characteristic of a solution, i.e., a batch composition(s), machine assignment

for batches, batch order on a machine(s), and job order within a batch(es), the refinement step might be

implemented when the search moves from the CTS to the OTS and also from the OTS to the ITS. This step

modifies the batch composition and/or machine assignment and/or batch order and/or job order in a level

moving. Level moving includes any movement of a solution between levels of the three-level TS-based

algorithm (in the following section 4.2.4.7). Laguna et al. (1993) used four restarts associated with the LTM

for their single machine scheduling problem. Since there is three search levels in the algorithm and because

the CTS plays an important role in obtaining a better solution than both OTS and ITS in this research, based

upon preliminary investigations on test problems, only three restarts are performed in the CTS with the

LTM-MAX or LTM-MIN, whenever it is needed.

Apart from STM in each level of TS, LTM-MAX and LTM-MIN in the highest level of TS, i.e., CTS,

specific types of diversifications are activated at the middle (OTS) and lowest level (ITS) of TS. Since the

first best neighbor solution identified amongst all neighbor solutions with the same objective function value

is always to be selected as a seed for the next iteration of the ITS, the location of the neighbor chosen is

randomly changed in order to avoid concentrating on a particular part of the solution space. Also, the

sequence of batches in the current schedule is arbitrarily changed, after several iterations without

improvement in the OTS.

4.2.4.3. Solution representation

With respect to the stage-based interdependency strategy and the algorithmic structure, each solution

including an IS is represented with the help of a combination of the central seed (𝐶𝑆𝐷𝑘), outside seed

(𝑂𝑆𝐷𝑘), and inside seed (𝐼𝑆𝐷𝑘), in each stage of HFS (∀ 𝑘 ∈ 𝑚). The 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘 show the

job assignment and sequence on machine(s) in the CTS, the batch assignment and sequence on machine(s)

in the OTS, and the job sequence within batches in the ITS, respectively, corresponding to 𝑘𝑡ℎ stage. By

72

recognizing that 𝑗𝑠𝑖𝑗 represents job 𝑗 assigned to 𝑠𝑡ℎ batch of group 𝑖, 𝑆𝑠𝑖 represents 𝑠𝑡ℎ batch of group 𝑖,

and 𝑗𝑗 represents job 𝑗, a solution related to 𝑘𝑡ℎ stage of HFS including 𝑣𝑘 unrelated-parallel machines is

represented by the following set of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘:

{

 𝐶𝑆𝐷𝑘 = [{𝑗𝑠𝑖𝑗}𝑣1

 | {𝑗𝑠𝑖𝑗}𝑣2
 | … | {𝑗𝑠𝑖𝑗}𝑣𝑘]

𝑂𝑆𝐷𝑘 = [{𝑆𝑠𝑖}𝑣1 | {𝑆𝑠𝑖}𝑣2 | … | {𝑆𝑠𝑖}𝑣𝑘]

𝐼𝑆𝐷𝑘 = [{𝑗𝑗}𝑣1 | {𝑗𝑗}𝑣2 | … | {𝑗𝑗}𝑣𝑘]

{𝑗𝑠𝑖𝑗}𝑣𝑘
 represents the job assignment and sequence on machine ℎ of 𝑘𝑡ℎ stage. Hyphens in each set of jobs,

i.e., {𝑗𝑠𝑖𝑗}𝑣𝑘
, separate between 𝑗𝑠𝑖𝑗 belonging to the same machine and vertical lines in 𝐶𝑆𝐷𝑘 separate

{𝑗𝑠𝑖𝑗}𝑣𝑘
 between different machines. {𝑆𝑠𝑖}𝑣𝑘 represents the batch sequence on machine ℎ of 𝑘𝑡ℎ stage.

Hyphens in each set of batches, i.e., {𝑆𝑠𝑖}𝑣𝑘, separate between 𝑆𝑠𝑖 belonging to the same machine and

vertical lines in 𝑂𝑆𝐷𝑘 separate {𝑆𝑠𝑖}𝑣𝑘 between different machines. {𝑗𝑗}𝑣𝑘 represents the job sequence

within batches assigned to machine ℎ of 𝑘𝑡ℎ stage. Commas and hyphens in each set of jobs, i.e., {𝑗𝑗}𝑣𝑘,

separate sequentially jobs belonging to the same batch and jobs belonging to different batches, respectively,

according to the batch sequence on the same machine in the 𝑂𝑆𝐷𝑘. Also, vertical lines in 𝐼𝑆𝐷𝑘 separate

{𝑗𝑗}𝑣𝑘 between different machines.

A complete solution related to the entire stages is represented by 𝑘 sets of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘, each

set related to a particular stage. An example sequence related to a stage (𝑘 ∈ 𝑚) of HFS including three

unrelated-parallel machines can be represented as follows:

𝐶𝑆𝐷𝑘 [𝑗113-𝑗111-𝑗121 | 𝑗144-𝑗142-𝑗141-𝑗143-𝑗223-𝑗222 | 𝑗151-𝑗153-𝑗154-𝑗212-𝑗133-𝑗131-𝑗134-𝑗135]

𝑂𝑆𝐷𝑘 [𝑆11-𝑆12 | 𝑆14-𝑆22 | 𝑆15-𝑆21-𝑆13]

𝐼𝑆𝐷𝑘 [𝑗3, 𝑗1-𝑗1 | 𝑗4, 𝑗2, 𝑗1, 𝑗3-𝑗3, 𝑗2 | 𝑗1, 𝑗3, 𝑗4-𝑗2-𝑗3, 𝑗1, 𝑗4, 𝑗5]

𝑗2 of both group 3 and 5 are skipped in 𝑘𝑡ℎ stage. The 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘 are all related to each other

so that the 𝐶𝑆𝐷𝑘 simultaneously includes both the 𝑂𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘. Therefore, the 𝑂𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘 are

changed, when the 𝐶𝑆𝐷𝑘 changes. Likewise, the 𝐶𝑆𝐷𝑘 and 𝐼𝑆𝐷𝑘 are changed, when the 𝑂𝑆𝐷𝑘 changes.

Also, the 𝐶𝑆𝐷𝑘 and/or 𝑂𝑆𝐷𝑘 are changed, when the 𝐼𝑆𝐷𝑘 changes.

73

4.2.4.4. Neighborhood Finding Mechanisms

A combination of the insertion- and swap-related operators, considered as the neighborhood structure, is

performed at each level of the TS-based algorithm. Generally, the insertion-related operator is obtained by

inserting a job/batch across other jobs/batches, either on the same machine or different machines, yet one

move at a time. Apart from this, the swap-related operator is obtained by exchanging the positions of two

jobs/batches, either on the same machine or different machines, while maintaining the same positions for

the remaining jobs/batches.

With respect to both insertion- and swap-related operators, two types of moves are implemented to

determine neighbor solutions: dividing move and sequencing move. The outcome of a dividing or

sequencing move might lead to merging batches, when two batches of the same group are processed one

after another on the same machine.

Move type 1: dividing move

The dividing move, performed by the job assignment within different families/batches, splits

families/batches and changes a batch composition(s). Subsequently, the machine assignment for batches,

batch order on a machine(s), and job order within a batch(s) change. Therefore, the dividing moves

implemented by the CTS, determine the best batch compositions.

Since insertion-related move in the CTS provides a more reasonable change in the current schedule

compared to swap-related move, moves proposed in the CTS are mostly based upon insertion techniques

due to reduction in the computational burden of the search algorithm. Therefore, the neighbor solutions are

obtained by inserting the jobs, yet one move at a time, between jobs across other batches, both on the same

machine and different machines. Performing an insert move in the CTS can also effectively split and/or

merge batches. Such divisions and merging in the CTS may directly affect the objective function value

more than any move in the OTS and ITS. The central moves which violate desired lower bounds for newly

formed and moved batches must be forbidden.

Move type 2: sequencing move

The sequencing move, performed by the job sequencing on the same families/batches as well as the batch

sequencing on a machine(s), changes the job order, batch order, and machine assignment and, consequently,

the batch composition might change. Therefore, the sequencing moves implemented by the ITS and OTS,

determine, respectively, the best job sequence within batches as well as the best batch sequences on

machines.

74

The neighborhoods for the OTS are generated by moving the batches, yet one move at a time. The benefits

of these moves consist of re-sequencing newly formed batches after performing an insert/swap move at the

upper level (the CTS). Another benefit lies in the fact that these moves are capable of changing the batch

composition(s) by merging batches. Based upon swap-related move, the swap move changes the positions

of two batches by maintaining the same positions for the remaining batches either on the same machine or

different machines, regardless of which batches of the same group or different groups will be swapped.

Based upon insertion-related move, the insert move removes a batch scheduled to be processed on a

machine from its current position and inserts it in any available position, either on the same machine or

different machines.

Basically, the neighborhood for the ITS are similarly defined as those for the OTS. However, the

neighborhood mechanisms are restricted only to the jobs within each batch. Note that performing these

types of moves only alter the job sequence in each batch and refine the schedule after applying the OTS. It

is worth noting that for any combination between batch compositions, the GTAs are not violated by

performing inside moves.

It is worth noting that during the generation of neighbor solutions in the central and outside search levels,

the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 must be considered for processing a moved job(s)/batch(es) as well as

a newly formed batch(es). Apart from this, the neighborhood search mechanisms are the same for all search

levels and performed at each level in order to determine simultaneously the best neighbor solutions at the

same level as well as the upper level of the search. In other words, the ITS is performed on each OTS

neighbor solution in order to obtain the best job sequence within each batch of each OTS neighbor solution

so that the best OTS neighbor solution is identified. Likewise, the OTS is performed on each CTS neighbor

solution in order to obtain the best batch sequence on each machine of each CTS neighbor solution so that

the best CTS neighbor solution is identified.

4.2.4.5. Tabu List Structures

TS applies tabu list as the Short-Term Memory (STM) function in order not to be trapped in a local optima.

The STM prohibits the search from choosing some of the previously identified neighborhoods to avoid

being trapped in a local optima. Due to involving different types of operations related to neighborhood

mechanisms at each level of the search algorithms, different types of tabu structures are implemented.

The tabu structure in the ITS is based upon positions of a job(s) related to a batch belonging to a group. In

other words, if a job belonging to 𝑆𝑠𝑖 is inserted from its current position 𝑝 to another position 𝑝′ (𝑝 ≠ 𝑝′),

the sequencing move 𝑣𝐼(𝑆𝑠𝑖|𝑝′, 𝑝) is stored in the ITL. 𝑣𝐼(𝑆𝑠𝑖|𝑝′, 𝑝) indicates that a job belonging to 𝑆𝑠𝑖

75

cannot be inserted from its current position 𝑝 to a new position 𝑝′ for several predetermined iterations.

Apart from this, if a job belonging to 𝑆𝑠𝑖 in position 𝑝 is exchanged with another job belonging to the same

batch of the same group in position 𝑝′ (𝑝 ≠ 𝑝′), the sequencing move 𝑣𝐸(𝑆𝑠𝑖|𝑝′, 𝑝) is stored in the ITL.

Likewise, 𝑣𝐸(𝑆𝑠𝑖|𝑝′, 𝑝) indicates that a job belonging to 𝑆𝑠𝑖 in position 𝑝 cannot be swapped with another

job belonging to the same batch in position 𝑝′ for several predetermined iterations.

The tabu structure in the OTS is based upon positions of a batch(es) on a machine(s). In other words, if a

batch assigned to machine 𝑚 is inserted from its current position 𝑝 to another position 𝑝′ (𝑝 ≠ 𝑝′) on

machine 𝑚′, the sequencing move 𝑣𝐼(𝑚𝑝′
′ ,𝑚𝑝) is stored in the OTL. 𝑣𝐼(𝑚𝑝′

′ , 𝑚𝑝) indicates that a batch

assigned to position 𝑝 on machine 𝑚 cannot be inserted to position 𝑝′ on machine 𝑚′ for several

predetermined iterations. Apart from this, if a batch assigned to machine 𝑚 in position 𝑝 is exchanged with

another batch assigned to machine 𝑚′ in position 𝑝′ (if 𝑚 = 𝑚′ then 𝑝 ≠ 𝑝′), the sequencing move

𝑣𝐸(𝑚𝑝′
′ ,𝑚𝑝) is stored in the OTL. Likewise, 𝑣𝐸(𝑚𝑝′

′ ,𝑚𝑝) indicates that a batch assigned to position 𝑝 on

machine 𝑚 cannot be swapped with another batch assigned to position 𝑝′ on machine 𝑚′ for several

predetermined iterations.

Finally, the tabu structure in the CTS is based upon triple groups involved in a move and is stored in the

CTL as a triple group sequential on a machine. Triple group sequential is referred to three groups that are

not necessarily different from each other, and are related to three jobs which are processed one after another

on the same machine. In other words, if 𝑗𝑠𝑖𝑗 is inserted between two jobs belonging to groups 𝑖′ and 𝑖′′ on

machine 𝑚 (i.e. 𝑗𝑠′𝑖′𝑗′ and 𝑗𝑠"𝑖"𝑗" are processed immediately before and after 𝑗𝑠𝑖𝑗, respectively), then the

dividing/sequencing move 𝑣𝐼(𝑚|𝑔𝑖′ , 𝑔𝑖, 𝑔𝑖′′) is stored in the CTL. 𝑣𝐼(𝑚|𝑔𝑖′ , 𝑔𝑖, 𝑔𝑖′′) indicates that a job

belonging to group 𝑖 cannot be inserted between two jobs, which belong to groups 𝑖′ and 𝑖′′ on machine 𝑚

for several predetermined iterations. Apart from this, if 𝑗𝑠𝑖𝑗, which is processed immediately before and

after jobs of groups 𝑖′ and 𝑖′′ on machine 𝑚, respectively, is exchanged with another job of group 𝑝, which

is processed immediately before and after jobs of groups 𝑝′ and 𝑝′′ on machine 𝑚′, respectively, then the

dividing/sequencing move 𝑣𝐸(𝑚𝑔
𝑖′
,𝑔𝑝,𝑔𝑖′′

|𝑚′
𝑔
𝑝′
,𝑔𝑖,𝑔𝑝′′

) is stored in the CTL. Likewise,

𝑣𝐸(𝑚𝑔
𝑖′
,𝑔𝑝,𝑔𝑖′′

|𝑚′
𝑔
𝑝′
,𝑔𝑖,𝑔𝑝′′

) indicates that a job of group 𝑖 cannot be swapped with another job of group 𝑝,

for several predetermined iterations, so that a job of group 𝑖 is peocessed between two jobs of group 𝑝′ and

𝑝′′ on machine 𝑚′ and a job of group 𝑝 is processed between two jobs of groups 𝑖′ and 𝑖′′ on the same

machine. If there is no group before the inserted job, the reference group is used as the first group in a triple

group sequential. Likewise, if there is no group after the inserted job, the group assigned to the inserted job

is used as the last group in a triple group sequential. In all tabu formulation above, 𝑣𝐼 and 𝑣𝐸 stand for

insertion-related and swap-related operator, respectively. Figure 11 illustrates an example of tabu list as

76

well as neighborhood structures by applying insertion-related move on the CTS followed by swap-related

move on the OTS, which itself is followed by swap-related move on the ITS.

Figure 11. Illustration of neighborhood and tabu structures in different levels of TS-based algorithm

By inserting 𝐽111 to 𝑚2 in the CTS and applying the refinement step, the completion times of 𝐽233, 𝐽234,

and 𝐽235 are decreased, while the completion times of 𝐽211, 𝐽141, and 𝐽142 are increased. The move

𝑣𝐼(2|1,1,4) is stored in the CTL. Also, by swapping 𝑆12 and 𝑆21 on 𝑚2 in the OTS, the completion times

of 𝐽211 and 𝐽212 are decreased, while the completion times of 𝐽121 and 𝐽122 are increased. It is worth noting

that by applying this move, an idle time is created on 𝑚2 due to the release time of 𝐽212. In addition, setup

times of the first batch of the second group and the second batch of the first group are changed. The move

𝑣𝐸((𝑚2)2+𝑘 , |(𝑚2)1+𝑘) is stored in the OTL. 𝑘 represents the number of batches processed before 𝐽122 in

the parent. Finally, the completion times of 𝐽211, 𝐽121, 𝐽122, 𝐽141, and 𝐽142 are decreased by exchanging

positions of 𝐽211 and 𝐽212 on 𝑚2 in the ITS. Then, the move 𝑣𝐸(𝑆21|2,1) is stored in the ITL. In all levels,

the completion times of jobs which are not mentioned are held fixed. Also, the tardiness of a job, due to its

completion time being decreased, is either decreased or not changed. Likewise, the tardiness of a job, due

to its completion time being increased, is either increased or not changed. As a result, the objective function

M1 … …

M2 … …

M3 … …

Parent

M1 … …

M2 … …

M3 … …

Insert Move on CTS

M1 … …

M2 … …

M3 … …

Swap Move on OTS

M1 … …

M2 … …

M3 … …

Swap Move on ITS

Idle time Setup time Moved job Family/batch

J 151 J 153 J 152

J 212J 211 J 122 J 121 J 142 J 141

J 113 J 233 J 235 J 234

J 142 J 141

J 131 J 132 J 153 J 152

J 141

J 113 J 233 J 235 J 234

J 131 J 132 J 153 J 152

J 122 J 121 J 212 J 211 J 142

J 113 J 233 J 235 J 234

J 141

J 131 J 132 J 151 J 152

J 122 J 121 J 212 J 142

J 153

J 113 J 111 J 234

J 131 J 132

J 151

J 121J 122J 212 J 211

J 151

J 233 J 235

77

value of the solution created by a combination of those moves is decreased, even though the completion

time and/or tardiness of 𝐽121 and 𝐽122 are increased.

4.2.4.6. Algorithmic steps of three-level TS

Step 1 (IS): Determine a random feasible IS or an IS with the help of an IS finding mechanism as a

combination of the 𝐶𝑆𝐷𝑘, 𝑂𝑆𝐷𝑘, and 𝐼𝑆𝐷𝑘, ∀ 𝑘 ∈ 𝑚.

Step 2 (CTS): Enter all neighbor solutions of the 𝐶𝑆𝐷𝑘 generated with the help of insertion and/or swap

operators into a list named central temporary candidate list (CTCL).

Step 3 (Refinement): Modifying the batch combination, the refinement step is needed for each neighbor

solution after applying insertion and/or swap operators in the CTS. This step (that leads to the refined seed

in the CSD, OSD and ISD parts) includes: modifying the number of batches belonging to each group

together with the number and the type of jobs belonging to each batch (the batch combination), and

modifying batch sequencing on machine(s) as well as job sequencing within each batch. In other words, the

OSD and ISD sequences related to a machine(s), which is a candidate for a move in the CTS, are changed

when the sequence in the CSD changes on the machine(s). Therefore, the refined seed for the CSD, OSD

and ISD parts (known as the refined CSD, OSD, and ISD) is achieved after applying the insertion and/or

swap operators and then the refinement step on the CSD in the CTS.

Step 4 (OTS): The OTS is implemented for the best / all / part of neighbor solution(s) in the CTCL in order

to find the best sequence of batches associated with this solution(s). In each iteration of the OTS, the batch

sequence and job sequence within batches of each refined CSD will be considered as the OSD and ISD,

respectively. The following steps illustrate the OTS applied for each refined CSD.

Step 4.1: Enter all neighbor solution of the OSD generated with the help of insertion and swap operators

into a list named outside temporary candidate list (OTCL).

Step 4.2 (Refinement): Similar to that explained for the refinement step in the CTS, the refinement step

might be needed after applying insertion and swap operators in the OTS. This step includes: modifying

batch sequence on each machine, job sequence on each batch, and the batch combination.

Step 4.3 (ITS): The ITS is implemented for the best / all / part of neighbor solution(s) in the OTCL in order

to find the best sequence of jobs within batches associated with this solution(s). In each iteration of the ITS,

the job sequence within batches of each refined OSD will be considered as the ISD. The following steps

illustrate the ITS applied for each refined OSD.

78

Step 4.3.1: Enter all neighbor solutions of the ISD generated with the help of insertion and swap operators

into a list named inside temporary candidate list (ITCL).

Step 4.3.2: Update the following parameters for the ITS. The job sequence of the refined OSD in the OTS

(i.e., the refined ISD) is considered as the first member of the inside candidate list (ICL) and inside index

list (IIL). The objective function value of this solution is set as the inside aspiration level (IAL). As it is

mentioned, the IAL is the best value found among all the neighbor solutions of the current inside

neighborhood search. Then, the first best solution in the ITCL is inserted into the ICL, only if the ICL has

not included this solution and the inside tabu list (ITL) has not included the move, which led to this solution;

otherwise the next best solution is inserted into the ICL. This remains true unless the forbidden move leads

to a solution better than the IAL. Each solution in the ICL is called a candidate and all of these solutions

should be distinct from each other. Also, the neighborhoods included in the candidate list must be excluded

from further consideration. If more than one neighborhood has the same value, then the neighborhood with

the first best solution is chosen. Tabu list (TL) is used to avoid the cyclical problem by forbidding certain

moves which are called tabu. All moves in the TL will be considered as forbidden moves for a certain

number of iterations, which is known as inside tabu list size (ITLS). The ITL is updated and the move which

led to an entry into the ICL is stored in the ITL. So if the ITL is filled to its capacity, the move which was

forbidden for the longest duration (the oldest move in the ITL) is replaced with the most recent move in the

ITL. After each insertion into the ICL, the inserted candidate will be compared to the previous candidate.

If the objective function value has improved then the current candidate will be assigned a star (*), which

indicates it is capable of becoming the next local optimum. If the objective function value has not improved

and the previous entry into the ICL already has a star, it will be assigned another star (**) and entered into

the inside index list (IIL). The IIL is a subset of the ICL, which includes the local optima.

Step 4.3.3: When a feasible solution is added to the ICL, and its value is not less than the value of the

previous member of the ICL, the value of inside iterations without improvement (IIWOI) is increased by

one; otherwise, this counter is reset to zero. The ITS will stop, whenever the IIWOI attains the maximum

inside iterations without improvement (MIIWOI), or a certain number of local optima, referred to as inside

index list size (IILS), reaches to the maximum inside index list (MIIL). If either of these criteria attains its

predefined values, the search will be stopped, and the best sequence of jobs within each batch is considered

as the best solution for the current batch sequence and the search is switched to the OTS; otherwise, the last

entry in the ICL will be considered as the next seed for the ITS and the search will be directed to step 4.3.1.

Step 4.4 (back to the OTS): The batch sequence as well as the job sequence belonging to each batch of the

refined CSD in the CTS (i.e., the refined OSD and ISD) is considered as the first member of the outside

candidate list (OCL) and outside index list (OIL). It is necessary to hold both the OSD and ISD as one

79

member of the OCL and OIL, because the ISD might be changed when the OSD changes. Similar to the

ITS in step 4.3.2, the OTS is performed and the outside aspiration level (OAL), the OCL, the outside tabu

list (OTL), and the OIL are updated.

Step 4.5: The OTS will stop, whenever the outside iteration without improvement (OIWOI) attains the

maximum outside iteration without improvement (MOIWOI), or a certain number of local optima, referred

to as outside index list size (OILS), reaches to the maximum outside index list (MOIL). If either of these

criteria attains its predefined values, the search will be stopped, and the best sequence of batches as well as

the best sequence of jobs within batches (determined in the ITS) are considered as the best solution for the

current batch combination and the search is switched to the CTS; otherwise, the last entry into the OCL

will be considered as the next seed for the OTS and the search will be directed to step 4.3.

Step 5 (back to the CTS): The IS composed of the CSD, OSD, and ISD is considered as the first member

of the central candidate list (CCL) and the central index list (CIL). It is necessary to hold the CSD, OSD,

and ISD as one member of the CCL and CIL, because the OSD and ISD are changed when the CSD changes.

Similar to the ITS in step 4.3.2, the CTS is performed and the central aspiration level (CAL), the CCL, the

central tabu list (CTL), and the CIL are updated.

Step 6: The CTS will stop, whenever the central iteration without improvement (CIWOI) attains the

maximum central iteration without improvement (MCIWOI), or a certain number of local optima, referred

to as central index list size (CILS), reaches to the maximum central index list (MCIL). If either of these

criteria attains its predefined values, the search will be stopped, and the search algorithm is switched to the

next stage of the LTM-MAX until it attains the maximum frequency of central search level; otherwise, the

last entry into the CCL will be considered as the next seed for the CTS and the search will be directed to

step 2.

It is worth mentioning that the algorithmic steps of TS, from step 1 to 6, should be consecutively applied

for each stage of HFS, when the stage-based interdependency strategy is implemented. The pseudo-code

for the proposed TS-based algorithm with three search levels as well as the flowchart for each level of the

search algorithm (the CTS, OTS, and ITS) are depicted in Table 3 and Figure 12, respectively.

80

Table 3. Pseudo-code for three-level TS-based algorithm

 TS Algorithm: Outline of TS-based algorithm

1: Input: 𝑆𝑆𝑒𝑒𝑑

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 &
 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆∗ 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑎 𝑠𝑒𝑒𝑑

3: 𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑒 𝑆𝑆𝑒𝑒𝑑 𝑎𝑠 𝐶𝑆𝐷, 𝑂𝑆𝐷, 𝑎𝑛𝑑 𝐼𝑆𝐷

4: while (𝐶𝐼𝐿𝑆 ≤ 𝑀𝐶𝐼𝐿 ||𝑁𝐼𝑊𝑂𝐼 ≤ 𝑀𝐼𝑊𝑂𝐼) do
5: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐶𝑒𝑛𝑡𝑟𝑎𝑙_𝑆𝑒𝑎𝑟𝑐ℎ()
6: 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶𝑇𝑆 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 𝐶𝑇𝐿, 𝐶𝐼𝐿, 𝑁𝐼𝑊𝑂𝐼, 𝑎𝑛𝑑 𝐶𝐴𝐿

7: 𝑇𝐶𝐶𝐿 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑆𝑒𝑒𝑑)
8: for 𝑆𝑘 ∈ 𝑇𝐶𝐶𝐿, 𝑘 = {1,… , 𝑛𝑇𝐶𝐶𝐿} do
9: 𝑇𝐶𝐶𝐿 ← 𝑅𝑒𝑓𝑖𝑛𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
10: end for

11: 𝐺𝑜 𝑡𝑜 𝑡ℎ𝑒 𝑂𝑢𝑡𝑠𝑖𝑑𝑒 𝑆𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑒𝑛𝑡𝑟𝑎𝑙
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 // The same algorithmic steps followed by CTS

12: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑂𝑢𝑡𝑠𝑖𝑑𝑒_𝑆𝑒𝑎𝑟𝑐ℎ()
13: 𝐺𝑜 𝑡𝑜 𝑡ℎ𝑒 𝐼𝑛𝑠𝑖𝑑𝑒 𝑆𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

 // The same algorithmic steps followed by CTS

14: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐼𝑛𝑠𝑖𝑑𝑒_𝑆𝑒𝑎𝑟𝑐ℎ()
15: 𝑆𝑏𝑒𝑠𝑡 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛 𝑇𝐶𝐶𝐿
 // Check 𝑆𝑏𝑒𝑠𝑡 vs CTL & CCL with respect CAL

16: if ((𝑚𝑜𝑣𝑒𝑆𝑏𝑒𝑠𝑡 ∉ 𝑚𝑜𝑣𝑒𝑇𝑎𝑏𝑢 && 𝑆
𝑏𝑒𝑠𝑡 ∉ 𝐶𝐶𝐿) ||

 (𝑆𝑏𝑒𝑠𝑡 ∉ 𝐶𝐶𝐿 && 𝑓(𝑆𝑏𝑒𝑠𝑡) < 𝐶𝐴𝐿)) then
17: 𝐶𝐶𝐿 ← 𝑆𝑏𝑒𝑠𝑡
18: 𝐶𝑇𝐿 ← 𝑚𝑜𝑣𝑒𝑆𝑏𝑒𝑠𝑡
19: 𝑇𝐶𝐶𝐿 = ∅

20: else

21: 𝑆𝑏𝑒𝑠𝑡 ← 𝐹𝑖𝑛𝑑 𝑛𝑒𝑥𝑡 𝑏𝑒𝑠𝑡 𝑒𝑛𝑡𝑟𝑦 𝑖𝑛𝑡𝑜 𝑇𝐶𝐶𝐿
22: 𝐺𝑜 𝑡𝑜 𝐢𝐟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
23: end if
 // 𝑆𝑃𝐸𝐶𝐶𝐿: The entry into CCL immediately before 𝑆𝑏𝑒𝑠𝑡
24: if (𝑆𝑏𝑒𝑠𝑡 ≤ 𝑆𝑃𝐸𝐶𝐶𝐿) then

25: 𝑆𝑏𝑒𝑠𝑡
∗
← 𝑆𝑏𝑒𝑠𝑡

26: 𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡
27: else if (𝑆𝑃𝐸𝐶𝐶𝐿 ℎ𝑎𝑠 𝑎 𝑠𝑡𝑎𝑟 (𝑆𝑃𝐸𝐶𝐶𝐿

∗
) &&

 𝑓(𝑆𝑏𝑒𝑠𝑡) > 𝑓(𝑆𝑃𝐸𝐶𝐶𝐿)) then

28: 𝑆𝑃𝐸𝐶𝐶𝐿
∗∗
← 𝑆𝑃𝐸𝐶𝐶𝐿

∗

29: 𝐶𝐼𝐿 ← 𝑆𝑃𝐸𝐶𝐶𝐿
∗

30: 𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡
31: Else
32: 𝑆𝑆𝑒𝑒𝑑 ← 𝑆𝑏𝑒𝑠𝑡
33: end if
34: end while

35: return 𝑆∗

81

Figure 12. Flow chart for basic TS at each level

82

4.2.4.7. The level moving in three-level TS

In dealing with the batch scheduling problem presented in this research, the TS-based algorithms have been

employed in three levels: the CTS, OTS, and ITS. There are three different ways to move between these

levels. The first method (M1) focuses on all possible neighbor solutions by performing the ITS and OTS

for any individual neighbor solution generated in the OTS and CTS, respectively, until no more

improvement is achievable in the CTS, whereas the second method (M2) performs the ITS and OTS for

Q% and K% of all possible neighbor solutions generated in the OTS and CTS, respectively. The Q% and

K% represent the solutions with the best (smallest) objective function value amongst all solutions

(promising solutions), before performing the OTS for any individual neighbor solution generated in the

CTS and performing the ITS for any individual neighbor solution generated in the OTS, respectively. The

Q% and K% guarantees to obtain the same best solution as the first method at a 5% significance level, but

in drastically shorter computational time. The third method (M3) passes the best neighbor solution obtained

by the ITS to the OTS and also the OTS to the CTS and vice versa, until no more improvement is achievable

at any level of TS. The iterative levels includes: finding the best job order for a given batch composition

and batch order in the ITS; finding the best batch order for a given batch composition and job order in the

OTS; and finally finding the best batch composition for a given batch order and job order in the CTS.

Based upon randomly generated test problems in each problem size and with respect to the minimum

deviation between the first and second methods in the level moving, the average Q% and K% determined

are presented in Table 4. At a 5% significance level, a one-way hypothesis test is used for each problem

size to investigate whether or not the average percentage is smaller than the determined value. Based upon

a large 𝑃𝑣𝑎𝑙𝑢𝑒 corresponding to each hypothesis in Table 4, the results indicate the second algorithm

performs the best at the mentioned Q% and K%. Also, 95% Confidence intervals (CI) are determined for

each problem size in Table 4.

Table 4. Percentage values and confidence intervals for Q and K

Problem size Value % 95% CI 𝑃𝑣𝑎𝑙𝑢𝑒

Small-size
Q% : 25% [22.45 ,27.54] 1.464E-08

K% : 20% [17.06, 22.94] 1.727E-08

Medium-size
Q% : 32% [28.48, 35.52] 1.318E-08

K% : 26% [21.88, 30.12] 1.345E-08

Large-size
Q% : 38% [35.06, 40.94] 1.973E-08

K% : 30% [24.12, 35.88] 1.273E-08

4.2.5. Tabu search/Path-Relinking

The lack of mechanism for exploring the information on good quality solutions becomes more pronounced

when batch scheduling problems in HFS are accompanied by the stage-based interdependency strategy.

83

These arguments led us to probe into the properties of a population-based structure and, consequently,

develop a TS-based algorithm enhanced with a population-based structure. Tabu search/path-relinking

(TS/PR) repeatedly operates back and forth between path-relinking (PR) and TS for a pre-determined

number of iterations without any improvement.

PR was originally proposed by Glover (1997) as an approach to integrate diversification and intensification

strategies in the search (LTM-MAX & LTM-MIN). The PR procedure is implemented to explore

trajectories connecting elite solutions in both directions, which are obtained by tabu search or scatter search

(Glover et al. 2000). The solution that begins the path is called an initial solution (𝑆𝐼), while the solution

that the path leads to is called a guiding solution (𝑆𝐺). PR consists of gradual introduction of attributes of

𝑆𝐺 in 𝑆𝐼. The InitialPathSet is a list of all intermediate solutions generated during PR, while the

PromisingPathSet is a list of candidate solutions, which are a subset of the InitialPathSet. After the

relinking procedure, a so-called reference solution is chosen from the PromisingPathSet that serves to

update the population. TS/PR stops after a predetermined number of iterations without any improvement.

PR mainly integrates two complementary key components to ensure search efficiency:

• the construction approach used for establishing the path between 𝑆𝐺 and 𝑆𝐼; and

• the method used to choose the reference solution (Peng et al. 2015).

Therefore, PR is incorporated into the basic TS to increase its performance. In other words, the PR

procedure explores trajectories connecting elite solutions between 𝑆𝐺 in 𝑆𝐼 in a relinking path, in both

directions (𝑆𝐼 ⇄ 𝑆𝐺), while TS improves the generated promising solution to a local optimum (Peng et al.

2015). The following sections present the algorithmic steps as well as the characteristics of the PR in detail,

with respect to the stage-based interdependency strategy.

4.2.5.1. Solution representation for PR

In PR, a partial solution is represented by 𝑣𝑘 permutation arrays in 𝑘𝑡ℎ stage, so that each permutation array

represents an ordering of operations on ℎ𝑡ℎ machine in 𝑘𝑡ℎ stage (∀ ℎ ∈ 𝑣𝑘). A partial solution of HFS in

𝑘𝑡ℎ stage of PR is represented as follows:

𝑆𝑘 = {(𝑗1,1
𝑠𝑘 , 𝑗2,1

𝑠𝑘 , … , 𝑗𝓙1,1
𝑠𝑘) , (𝑗1,2

𝑠𝑘 , 𝑗2,2
𝑠𝑘 , … , 𝑗𝓙2,2

𝑠𝑘) ,… , (𝑗
1,𝒗𝒌
𝑠𝑘 , 𝑗

2,𝒗𝒌
𝑠𝑘 , … , 𝑗

𝓙ℎ,𝒗
𝒌

𝑠𝑘)}

𝓙ℎ represents the number of operations processed by machine ℎ, i.e., 𝑝 ∈ {1,2,… , 𝓙ℎ}, ∀ ℎ ∈ 𝑣𝑘, i.e.,

σ 𝓙ℎ
𝑣𝑘
ℎ=1 = 𝑁𝑘. 𝑗𝑝,ℎ

𝑠𝑘 represents the 𝑝𝑡ℎ operation processed by machine ℎ related to a partial solution in

𝑘𝑡ℎ stage (𝑆𝑘), where an operation (𝑗𝑝,ℎ
𝑠𝑘) indicates a job of a group (𝑗𝑝,ℎ

𝑠𝑘 = 𝑖𝑗, 𝑖 ∈ 𝐺 & 𝑗 ∈ 𝐺𝑖). The 𝑆𝑘 is

similar to the 𝐶𝑆𝐷𝑘, regardless of which batch of a group a job is assigned to. Figure 13 shows an example

84

sequence presented in section 4.2.4.3. The first operation processed by machine 1 is related to the third job

of group 1 (𝑗1,1
𝑠𝑘 = 13), the first operation processed by machine 3 is related to the first job of group 5 (𝑗1,3

𝑠𝑘 =

51), and so on. We will use this solution representation to develop path construction.

13 11 21 44 42 41 43 23 22 51 53 54 12 33 31 34 35

M1 M2 M3

Figure 13. Solution representation for PR

4.2.5.2. Initial population

In each stage, the initial population (IP) is constructed in order to trigger TS/PR into the solution space as

follows:

I. Construct the IS based on the IS finding mechanism developed in section 4.2.2.

II. Optimize the IS to become a local optima with the help of strong TS.

III. Select 𝑃𝑠𝑖𝑧𝑒 − 1 solutions randomly from the IL and CL of the CTS (CIL & CCL) and add them

along with the improved IS (best sequence) to the IP.

𝑃𝑠𝑖𝑧𝑒 represents the size of the IP, which is equal to 10 in this research. If the CIL size (𝐶𝐼𝐿𝑆𝐼𝑍𝐸) is less than

𝑃𝑠𝑖𝑧𝑒 − 1, the other members of the IP (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐼𝐿𝑆𝐼𝑍𝐸 − 1) are selected from the central candidate list

(CCL). At each iteration of TS/PR, the two improved solutions obtained by implementing TS/PR on a pair

of 𝑆𝐼 and 𝑆𝐺 in both directions (𝑆𝐼 ⇄ 𝑆𝐺), are replaced by the two worst solutions in the IP, if it does not

duplicate any solution currently in the IP. The pseudo-code for the IP is presented in Table 5.

Table 5. Pseudo-code for the IP generation

𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() //Section 4.2.2

𝑆𝐼𝑀𝑃 ← 𝐶𝑒𝑛𝑡𝑟𝑎𝑙. 𝑇𝑎𝑏𝑢. 𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼𝑆) //Section 4.2.4.2

𝐼𝑃 ← 𝑆𝐼𝑀𝑃

𝐼𝑃 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃𝑠𝑖𝑧𝑒 − 1) 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐼𝐿

if 𝑃𝑠𝑖𝑧𝑒 > (𝐶𝐼𝐿𝑆𝐼𝑍𝐸 + 1) then

 𝐼𝑃 ← 𝑆𝑒𝑙𝑒𝑐𝑡 (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐼𝐿𝑆𝐼𝑍𝐸 − 1) 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝐶𝐶𝐿

 if 𝑃𝑠𝑖𝑧𝑒 > (𝐶𝐶𝐿𝑆𝐼𝑍𝐸 + 1) then

 for each 𝑖 ∈ {1,2, … , (𝑃𝑠𝑖𝑧𝑒 − 𝐶𝐶𝐿𝑆𝐼𝑍𝐸 − 1)} do

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑆𝑖 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

 𝐼𝑃 ← 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡. 𝑆𝑡𝑒𝑝(𝑆𝑖) //Section 4.2.3

 end for

 end if

end if

// CIL: central index list; CCL: central candidate list

85

4.2.5.3. Path construction

After randomly choosing 𝑆𝐼 and 𝑆𝐺 from the PairSet, which includes pairs of elite solutions of the IP and

then checking a pair solutions against TabuSet, we can generate a path to link aforementioned solutions.

TabuSet records all pairs of solutions selected during the search procedure and prevents PR to select them

again. According to the neighborhood operators including swap and insert moves, distance or dissimilarity

measure, the position of the candidate jobs and their corresponding insertion points, a path is constructed.

Among many types of moves considered in the literature for the flow shop problems, the swap and the

insertion operators appear prominently (Nowicki and Smutnicki 1996). Taillard (1993) showed that the

insertion operator is more effective than the swap operator when used in a neighborhood search. Therefore,

three path constructions are developed in terms of insertion- and swap-related operators: longest common

subsequence-based and block-based constructions based on insertion-related operator along with swap-

based construction based on swap-related operator. In the following, the aforementioned path constructions

are explained.

LCS-based construction: In this method, a longest common subsequence (LCS) is chosen as a distance

measure to construct a path between 𝑆𝐼 and 𝑆𝐺, for a stage with multiple machines. The distance in the LCS

indicates the minimal number of moves required to link 𝑆𝐼 and 𝑆𝐺 (Basseur et al. 2005, Zeng et al. 2013).

Correspondingly, the distance (𝑑) depends on the length of the LCS (𝑙) shared by 𝑆𝐼 and 𝑆𝐺 in 𝑘𝑡ℎ satge,

in which both 𝑙 and 𝑑 vary in the interval [1, 𝑁𝑘] and (𝑑 + 𝑙) ≥ σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 . The LCS can be calculated in

𝑂(𝑁2) by a dynamic programming algorithm, which is similar to the well-known Needleman-Wunsch

algorithm (Cormen et al. 1990, Schiavinotto and Stützle 2007). The LCS corresponding to 𝑆𝐼 and 𝑆𝐺 is

computed by the following iterative procedure:

• Itr 1: Obtain the smallest value of 𝑝 + 𝑞 when 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

= 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

, regardless of job assignments on

machines (ℎ and 𝑙). A tie is broken in favor of 𝑆𝐼;

• Itr 2: Determine the forward minimum distance between 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

 & 𝑗
𝑝+1,ℎ′
(𝑠𝐼)𝑘

 in 𝑆𝐺 and 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

 & 𝑗
𝑞+1,𝑙′
(𝑠𝐺)𝑘

in 𝑆𝐼, regardless of job assignments on machines (ℎ, ℎ′, 𝑙 and 𝑙′);

• Itr 3: Select the jobs corresponding to the initial and final positions on the forward minimum

distance, determined in the second iteration, in both 𝑆𝐼 and 𝑆𝐺, as the jobs belonging to the LCS;

• Itr 4: Replace 𝑝 & 𝑞 by the last selected positions of the LCS in 𝑆𝐼 and 𝑆𝐺 and go to the first

iteration, until 𝑝 = σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 and/or 𝑞 = σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 .

86

Since the LCS is not unique in most cases, only one of them is randomly chosen to generate the path.

Besides, the jobs, which do not belong to the LCS, are called the candidate jobs. If [𝑗]𝑥,𝑦
𝑠𝑘 represents

candidate job 𝑗 assigned to position 𝑥 of machine 𝑦 in 𝑆𝑘, the LCS-based construction develops solutions

belonging to a relinking path of 𝑆𝐼 to 𝑆𝐺 by the following steps:

• Step 0: Compute the LCS between 𝑆𝐼 and 𝑆𝐺;

• Step 1: Determine all possible insertion points for all the candidate jobs as follows:

o If 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

, when 𝑥 ∈ [𝑞, 𝑞′], 𝑦 ∈ [𝑙, 𝑙′], and 𝑗𝑞,𝑙
(𝑠𝐺)𝑘

 & 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

 are two

neighboring jobs in the LCS, insert the candidate job so that 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

, when

𝑥 ∈ [𝑝, 𝑝′], 𝑦 ∈ [ℎ, ℎ′], 𝑗𝑞,𝑙
(𝑠𝐺)

𝑘

= 𝑗𝑝,ℎ
(𝑠𝐼)

𝑘

, 𝑗
𝑞′,𝑙′
(𝑠𝐺)𝑘

= 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

, and 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

 & 𝑗
𝑝′,ℎ′
(𝑠𝐼)𝑘

 are two neighboring

jobs in the LCS.

o If 𝑗𝑝,ℎ
(𝑠𝐼)𝑘

≤ [𝑗]𝑥,𝑦
(𝑠𝐺)𝑘

≤ 𝑗(𝑝+1),(ℎ+1)
(𝑠𝐼)𝑘

 ∀ℎ ∈ (𝑉𝑘 − {1}), two insertion points are determined

depending on different job assignments to machines.

o Consider the position located before the first job/after the last job as the insertion point for the

job in the beginning/at the end of the permutation.

• Step 2: Analyze all feasible candidate moves incorporating attributes of 𝑆𝐺 with respect to all

possible insertion points determined in the first step;

• Step 3: Choose one feasible candidate move as a current solution (𝑆𝐶) by random selection from

global and/or local optima related to feasible candidate moves determined in the second step;

• Step 4: Enter 𝑆𝐶 into the InitialPathSet, 𝑆𝐼 ← 𝑆𝐶, and 𝑑 ← (𝑑 − 1); and

• Step 5: Go to step 0, until 𝑑 = 0.

Although there are usually several possible insertion points for all candidate jobs (at least one insertion

point for each), only one of them is selected for path generation in each step. Therefore, in each step of the

LCS-based construction, the LCS is computed, then all feasible candidate moves incorporating attributes

of 𝑆𝐺 are analyzed with respect to all possible insertion points, and finally one feasible candidate move is

chosen by random selection from global and/or local optima related to feasible candidate moves. The first

insertion, last insertion, and random insertion are other methods to choose a move. The distance between

𝑆𝐶 and 𝑆𝐺 is decreased by 1, after inserting the selected move in each step. Since the comparison is done

before generating a new intermediate solution 𝑆𝐶, the time complexity of the method is 𝑂(𝑁3) (Zeng et al.

2013).

87

There is at least 𝑑 new solutions in a relinking path corresponding to a minimal path between 𝑆𝐼 and 𝑆𝐺.

Since a selected insertion point(s) must not violate the machine eligibilities and 𝐿𝐵𝑖ℎ
𝑘 , it increases the

possibility to create a good path. As a result, 𝑆𝐶 and 𝑆𝐼 (𝑆𝐶 ← 𝑆𝐼) are different from each other in terms of

the batch composition and/or machine assignment and/or batch order and/or job order.

An example of LCS-based construction related to the first two iterations is shown in Figure 14. First the

distance between 𝑆𝐼 and 𝑆𝐺 is obtained by computing the LCS. In this example, the forward distance

between 𝑗1,1
(𝑠𝐼)𝑘

= 13 & 𝑗2,1
(𝑠𝐼)𝑘

= 11 in 𝑆𝐺 is 2 (jobs 21 and 12). The forward distance between 𝑗1,1
(𝑠𝐺)𝑘

= 13

& 𝑗2,1
(𝑠𝐺)𝑘

= 21 in 𝑆𝐼 is 1 (only job 11). Therefore, the forward minimum distance is equal to 1 and,

subsequently jobs 13 and 21 are considered as jobs belonging to the LCS, both in 𝑆𝐼 and 𝑆𝐺. In the next

iteration, by considering 𝑝 = 3 and 𝑞 = 2, the forward minimum distance is 0, related to 𝑗3,1
(𝑠𝐼)𝑘

= 21 &

𝑗1,2
(𝑠𝐼)𝑘

= 44, and job 44 is added to the LCS. After several iterations, the length of LCS, colored in yellow,

calculates as 𝑙 = 9, which includes job 13, 21, 44, 42, 51, 53, 33, 31, and 35. The remaining jobs are

candidate jobs, including job 11, 12, 22, 23, 34, 41, 43, and 54. These jobs will be moved from their initial

position in 𝑆𝐼 in order to reach 𝑆𝐺, one move at a time.

𝑆𝐼
13 11 21 44 42 41 43 23 22 51 53 54 12 33 31 34 35

M1 M2 M3

𝑆𝐺
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35

M1 M2 M3

 Iteration 1

𝑆𝐼
13 11 21 22 44 42 41 43 23 51 53 54 12 33 31 34 35

M1 M2 M3

𝑆𝐺
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35

M1 M2 M3

 Iteration 2

𝑆𝐼
13 11 21 22 44 42 41 23 51 53 54 12 33 43 31 34 35

M1 M2 M3

𝑆𝐺
13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35

M1 M2 M3

 Iteration 3

Figure 14. The LCS of initial and guiding solutions for the first three iterations

The possible insertion points of candidate jobs as well as the objective function related to each move in the

first iteration are summarized in Table 6. There is two insertion points for job 11 due to different job

assignments to machines. The new solution is obtained by removing job 22 from its current position

88

(𝑗6,2
(𝑠𝐼)𝑘

= 22), and then inserting it amongst jobs 21 and 44 in the first position processed by machine 2

(𝑗1,2
(𝑠𝐶)𝑘

= 22). This solution, considered as the first entry into the InitialPathSet, was selected randomly

between three global and local optima with the objective function values of 6814, 6982 and 7370, in the

first iteration.

Table 6. Possible moves related to the first iteration

 The candidate job in 𝑆𝐼

 12 11 41 22 23 54 43 34

Insertion point (21,44) (21,44) (21,44) (21,44) (21,44) (21,44) (51,53) (33,31) (33,31)

𝑓(𝑚𝑜𝑣𝑒) 6814 6953 7093 7318 6982 7670 7960 7370 7891

The length of LCS is increased by 1 (𝑙 = 10). In the next iteration, 𝑆𝐶 will be replaced by 𝑆𝐼 and the process

will continue until the distance between 𝑆𝐼 and 𝑆𝐺 becomes zero. In the second iteration, by removing job

43 from machine 2 (𝑗5,2
(𝑠𝐼)𝑘

= 43) and inserting it in machine 3 (𝑗6,3
(𝑠𝐶)𝑘

= 43), the batch composition,

machine assignment, batch order, and job order change. This solution is the second entry into the

InitialPathSet.

Block-based construction: A block insertion-related operator is implemented for stages with single

machine to construct a relinking path of 𝑆𝐼 to 𝑆𝐺 (Luo and Hu 2013) by the following steps:

• Step 0: Identify the minimum position 𝑝 (in 𝑆𝐼) where 𝑗𝑝,1
(𝑆𝐼)𝑘

≠ 𝑗𝑝,1
(𝑆𝐺)𝑘

, by checking two jobs in the

same position of 𝑆𝐼 and 𝑆𝐺;

• Step 1: Identify a job block from position 𝑝 (in 𝑆𝐼), which consists of the same consecutive jobs

after job 𝑗𝑝,1
(𝑆𝐼)𝑘

 in 𝑆𝐺;

• Step 2: Insert the identified job block (in 𝑆𝐼) after the job that 𝑗𝑝,1
(𝑆𝐼)𝑘

 follows in 𝑆𝐺 to identify 𝑆𝐶;

• Step 3: Enter 𝑆𝐶 into the InitialPathSet, 𝑆𝐼 ← 𝑆𝐶, and apply the adjustment step for 𝑆𝐶 if it should

be applied; and

• Step 4: Go to step 0, until 𝑗𝑝,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

, ∀ 𝑝 ∈ {1,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 }.

Figure 15 shows an example for this method. There is only one machine in 𝑘𝑡ℎ stage. First, 𝑝 = 2, 𝑗2,1
(𝑆𝐼)𝑘

=

21, and the job block [21,12,11,41] is inserted after job 33 in 𝑆𝐼, which is followed by job 21 in 𝑆𝐺; second,

𝑝 = 2, 𝑗2,1
(𝑆𝐼)𝑘

= 22, and the job block [22,23,44,42,51,54,53] is inserted after job 35 in 𝑆𝐼, which is followed

by job 22 in 𝑆𝐺; and finally, 𝑝 = 7, 𝑗7,1
(𝑆𝐼)𝑘

= 43, and the job block [43,34,31] is inserted after job 53 in 𝑆𝐼,

89

which is followed by job 43 in 𝑆𝐺. Therefore, after three iterations, a path including two intermediate

solutions is developed between 𝑆𝐼 and 𝑆𝐺.

𝑆𝐼 13 21 12 11 41 22 23 44 42 51 54 53 33 43 34 31 35

𝑆𝐺 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31

 Iteration 1

𝑆𝐼 13 22 23 44 42 51 54 53 33 21 12 11 41 43 34 31 35

𝑆𝐺 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31

 Iteration 2

𝑆𝐼 13 33 21 12 11 41 43 34 31 35 22 23 44 42 51 54 53

𝑆𝐺 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31

 Iteration 3

𝑆𝐼 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31

𝑆𝐺 13 33 21 12 11 41 35 22 23 44 42 51 54 53 43 34 31

Figure 15. Block-path construction method

This technique presents a good performance, particularly when 𝐿𝐵𝑖ℎ
𝑘 → 𝑛𝑖. The drawback of this

construction technique is to generate more infeasible 𝑆𝐶 because of the block insertion-related operator

during the path construction procedure, which may violate the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . This being

the case, the infeasible solutions should be either abandoned or adjusted with the help of the adjustment

step. None of these techniques are not a good approach to deal with infeasible solutions developed by this

technique. Therefore, the following swap-based construction technique is developed to reduce the number

of infeasible solutions generated in a relinking path.

Swap-based construction: A swap-related operator is implemented for stages with single machine to

construct a relinking path of 𝑆𝐼 to 𝑆𝐺 (Peng et al. 2015). In each iteration, 𝑆𝐼 is iteratively changed by

exchanging two random operations that are in a different order in 𝑆𝐼 and 𝑆𝐺, with the aim of reducing the

number of different orders of operations in aforementioned solutions. Swap-based construction is

implemented by the following steps:

• Step 0: Define the set of symmetric differences between 𝑆𝐼 and 𝑆𝐺 (𝛿
𝑆𝐼,𝑆𝐺
𝑘) based on job positions

on the machine, i.e., 𝛿
𝑆𝐼,𝑆𝐺
𝑘 = {𝑝 ∈ {1,… , σ 𝑛𝑖

𝑘
𝑖∈𝐼𝑘 } | 𝑗𝑝,1

(𝑆𝐼)𝑘
≠ 𝑗𝑝,1

(𝑆𝐺)𝑘
};

• Step 1: Select randomly position 𝑝 from set 𝛿
𝑆𝐼,𝑆𝐺
𝑘 , and swap 𝑗𝑝,1

(𝑆𝐼)𝑘
 with 𝑗𝑝′,1

(𝑆𝐼)𝑘
 on 𝑆𝐼 to generate

𝑆𝐶, where 𝑗𝑝′,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

, ∀𝑝′ ∈ {{1,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 } − 𝑝};

90

• Step 2: Update set 𝛿
𝑆𝐼,𝑆𝐺
𝑘 by removing position 𝑝, enter 𝑆𝐶 into the InitialPathSet, and 𝑆𝐼 ← 𝑆𝐶,

and apply the adjustment step for 𝑆𝐶, if it should be applied; and,

• Step 3: Go to step 0, until 𝛿
𝑆𝐼,𝑆𝐺
𝑘 = ∅.

The possibility of constructing a diversified path is increased because a random position in the set 𝛿
𝑆𝐼,𝑆𝐺
𝑘 is

chosen in each iteration of swap-related operator. Since there might be more violations on the machine

eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 , the block- and swap-based constructions might not be able to construct a good

relinking path of 𝑆𝐼 and 𝑆𝐺 for stages with multiple machines, even when the adjustment step is

implemented. Instead, the LCS-based construction is a good approach to construct a path in stages with

multiple machines. Therefore, TS/PR algorithms implement the block- or swap-based constructions for

stages with single machine, which are accompanied by the LCS-based construction for stages with multiple

machines.

4.2.5.4. Path solution selection

Each solution in a relinking path must be checked against the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 . If a solution

does not meet a machine eligibility(s) and/or a desired lower bound(s), the job assignment of this solution

must be re-ordered based on the refinement step and/or adjustment step (Section 4.2.3). Each two

consecutive solutions located at a relinking path differ only by inserting a job on a machine (Figure 16).

Therefore, it is not productive to apply a time-consuming improvement procedure for all solutions in the

InitialPathSet, since many of those solutions would lead to the same local optima.

Figure 16. Global and local optima in intermediate solutions

91

Therefore, after the generation of all the intermediate solutions in the path, we select a set of global and/or

local optima from the InitialPathSet, known as the PromisingPathSet, which is used to initialize a reference

solution (𝑆𝑅). As shown in Figure 16, the solutions A, B, C, D, E, F, and G are selected, since A is the global

optimum and the others are local optimum.

4.2.5.5. Reference solution determination

The pseudo-codes for the PR procedure is depicted in Table 7. In order to avoid the problem of proximity

of the local optima to 𝑆𝐼 and 𝑆𝐺, a set of K-middle solutions of the PromisingPathSet is selected (Zeng et

al. 2013).

Table 7. Pseudo-code for PR procedure

 PR Algorithm: Outline of the path-relinking procedure

1: Input: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝐼 , 𝐺𝑢𝑖𝑑𝑖𝑛𝑔 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝐺 , 𝑎𝑛𝑑 𝑣𝑘

2: Output: 𝐴 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑅
// Changes 𝑆𝐼 to 𝑆𝐺 by insertion operators: Section 4.2.4.4

3: if 𝑣𝑘 = 1 then //𝑣𝑘 stands for # of machines in 𝑘𝑡ℎ stage

 // Lines 4-11: Apply block-based construction

4: 𝑆𝐶 = 𝑆𝐼 , 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 = ∅

5: for 𝑝 = {1,… ,𝒫} do

6: if 𝑗𝑝,1
(𝑆𝐼)𝑘

= 𝑗𝑝,1
(𝑆𝐺)𝑘

 then

7: 𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑜𝑟

8: else

9: 𝑆𝐶 ← 𝐴𝑝𝑝𝑙𝑦 𝑏𝑙𝑜𝑐𝑘 − 𝑏𝑎𝑠𝑒𝑑 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛(𝑆𝐼)
10: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ∪ 𝑆𝐶

11: end for

12: else

 // Lines 13-22: Apply LCS-based construction

13: 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝐿𝐶𝑆 𝑎𝑛𝑑 𝑑

14: 𝑆𝐶 = 𝑆𝐼 , 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 = ∅

15: for 𝑙 = {𝑑, … ,1} do
16: 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡(𝑠) 𝑜𝑓 𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑗𝑜𝑏(𝑠) 𝑖𝑛 𝐿𝐶𝑆

17: 𝐷𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

18: 𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑎 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑗𝑜𝑏(𝑠))
19: 𝑆𝐶 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑡 𝑜𝑓 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

20: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ∪ 𝑆𝐶

21: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝐿𝐶𝑆

22: end for

23: end if

 // Lines 24-30: Choose the reference solution 𝑆𝑅 from PromisingPathSet

24: 𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑆𝑒𝑡 ← 𝐿𝑜𝑐𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡ℎ𝑆𝑒𝑡)
25: 𝑆𝑒𝑙𝑒𝑐𝑡 𝐾 −𝑚𝑖𝑑𝑑𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑃𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑃𝑎𝑡ℎ𝑆𝑒𝑡 //Section 4.2.5.5

26: for 𝑆𝑘 ∈ 𝐾 −𝑚𝑖𝑑𝑑𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑘 = {1,… , 𝑁(𝐾𝑀)}

 do
27: 𝑆𝑘 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑘) //Slight TS

28: end for

30: 𝑆𝑅 = argmin {𝑓(𝑆𝑘), 𝑘 = 1,…𝑁(𝐾𝑀)}

31: return 𝑆𝑅

The number of these middle solutions is defined according to the length of the PromisingPathSet as

𝑁(𝐾𝑀) = |√𝑙𝑃𝑃𝑆|, where 𝑙𝑃𝑃𝑆 is the number of solutions in the PromisingPathSet and 𝑁(𝐾𝑀) is the smallest

92

integer that is equal or greater than |√𝑙𝑃𝑃𝑆|. Then, a slight TS is applied for optimizing K-middle solutions

of the PromisingPathSet and then, the best optimized solution is selected and further optimized using a

strong TS. This optimized solution is chosen as 𝑆𝑅. The slight TS in TS/PR determines the best neighbor

solution in the CTS, without considering the OTS and ITS, while the strong TS performs the OTS and ITS

for each neighbor solution generated in the CTS and OTS, respectively. The pseudo-codes for TS/PR is

depicted in Table 8.

Table 8. Pseudo-code for TS/PR algorithm

 TS/PR Algorithm: Outline of algorithm TS/PR for HFS

1: Input: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 //Section 4.1.1

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 &
 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑠𝑜 𝑓𝑎𝑟

3: 𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() //Section 4.2.2

4: 𝑆𝐼𝑀𝑃 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼𝑆) //Section 4.2.4.6

5: 𝑃 = {𝑆1, … , 𝑆𝑝−1, 𝑆𝐼𝑀𝑃} ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑆𝐼𝑀𝑃) //Section 4.2.5.2

6: 𝑆𝑏𝑒𝑠𝑡 = argmin {𝑓(𝑆𝑙)|𝑙 = 1,… , 𝑝}
7: 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← {(𝑆𝑖 , 𝑆𝑗)|𝑆𝑖 ∈ 𝑃, 𝑆𝑗 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑖 ≠ 𝑆𝑗}
8: repeat

9: 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡 𝑜𝑛𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑖𝑟 {𝑆𝑖 , 𝑆𝑗}

 𝑓𝑟𝑜𝑚 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 𝑖𝑓 {𝑆𝑖 , 𝑆𝑗} ∉ 𝑇𝑎𝑏𝑢𝑆𝑒𝑡
10: 𝑆𝑝+1 ← 𝑃𝑎𝑡ℎ_𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆𝑖 , 𝑆𝑗),

 𝑆𝑝+2 ← 𝑃𝑎𝑡ℎ_𝑅𝑒𝑙𝑖𝑛𝑘𝑖𝑛𝑔(𝑆𝑗 , 𝑆𝑖) //Sections 4.2.5.3

11: 𝑆𝑝+1 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑝+1),
 𝑆𝑝+2 ← 𝑇𝑎𝑏𝑢_𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝑝+2) //Strong TS

12: if 𝑆𝑝+1 (𝑜𝑟 𝑆𝑝+2)𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑏𝑒𝑠𝑡 then

13: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑝+1 (𝑜𝑟 𝑆𝑝+2)
14: end if

15: 𝐴𝑑𝑑 𝑆𝑝+1 𝑎𝑛𝑑 𝑆𝑝+2 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃: 𝑃′ = 𝑃 ∪ {𝑆𝑝+1, 𝑆𝑝+2}
16: 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ∪ {(𝑆𝑝+1, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑝+1 ≠ 𝑆𝑙}
17: 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ∪ {(𝑆𝑝+2, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑝+2 ≠ 𝑆𝑙}
18: 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑤𝑜𝑟𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑆𝑚 𝑎𝑛𝑑 𝑆𝑛

 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃′
19: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑟𝑒𝑚𝑜𝑣𝑖𝑛𝑔 𝑆𝑛 𝑎𝑛𝑑 𝑆𝑚:

 𝑃 = {𝑆1 , … , 𝑆𝑝 , 𝑆𝑝+1, 𝑆𝑝+2}\{𝑆𝑚, 𝑆𝑛}
20: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃𝑎𝑖𝑟𝑆𝑒𝑡

 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡\{(𝑆𝑚, 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑚 ≠ 𝑆𝑙}
 𝑃𝑎𝑖𝑟𝑆𝑒𝑡 ← 𝑃𝑎𝑖𝑟𝑆𝑒𝑡\{(𝑆𝑛 , 𝑆𝑙)|𝑆𝑙 ∈ 𝑃 𝑎𝑛𝑑 𝑆𝑛 ≠ 𝑆𝑙}

21: 𝑇𝑎𝑏𝑢𝑆𝑒𝑡 ← (𝑆𝑖 , 𝑆𝑗)
22: until 𝑎 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

23: return 𝑆𝑏𝑒𝑠𝑡

4.2.6. Particle swarm optimization

Particle Swarm Optimization (PSO) is a fast-evolutionary algorithm, which is applied on a population of

candidate solutions (Eberhart and Kennedy 1995). To the best of our knowledge, this is the first time a

research is being performed in the application of the PSO algorithm for a batch scheduling problem in HFS.

The population of the PSO and each potential solution in the population are called swarm and particle,

93

respectively. Each particle flies around in the multi-dimensional search space according to its current

position and velocity to obtain a new position based on the two following vectors:

• The best position experienced by the particle during the previous iterations, which is called the best

position (𝑃𝑏𝑒𝑠𝑡).

• The best position experienced by all particles in the population during the previous iterations, which

is called the global best position (𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙).

4.2.6.1. Solution representation for PSO

A solution is represented by an e-dimensional vector as the sequence of jobs within batches as well as the

sequence of batches on machines, for a particular stage. Due to applying the stage-based interdependency

strategy, an interaction between batch and job sequence, and unequal number of jobs assigned to batches,

a solution is represented as a pseudo matrix in 𝑘𝑡ℎ stage. The dimensions of pseudo matrix of a particle

(solution) is as follows:

𝑒 = (∑ ∑ ∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘

) + 𝑣𝑘

𝑓 = max(max
∀ 𝑖∈𝐼𝑘 & 𝑠∈𝑆𝑖

𝑘
∑ ∅𝑖𝑠𝑗

𝑘

𝑗∈𝐽𝑖
𝑘

, max
∀ ℎ∈𝑉𝑘

∑ ∑ 𝑍𝑖𝑠ℎ
𝑘

𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘

)

Therefore, a solution in 𝑘𝑡ℎ stage is presented by 𝑒 vectors as a pseudo matrix, where the maximum

component of vectors is 𝑓. The number of components at each row of the pseudo matrix might be unequal.

The first (σ σ σ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘𝑠∈𝑆𝑖
𝑘𝑖∈𝐼𝑘) vector of this matrix presents the sequence of jobs within batches,

according to first the sequence of batches on machines and then increasing machine indices, while the last

𝑣𝑘 vector of this matrix presents the sequence of batches on machines, according to increasing machine

indices. A sequence pseudo matrix for a sequence is represented as follows:

𝑆𝑘 =

[

𝑗142 𝑗144 𝑗141 𝑗141
𝑗124 𝑗123 𝑗122 𝑗141
𝑗112 𝑗113 𝑗114 𝑗111
𝑗233 𝑗231 𝑗141 𝑗141
𝑗132 𝑗134 𝑗141 𝑗141
𝑗243 𝑗245 𝑗141 𝑗141
𝑗221 𝑗141 𝑗141 𝑗141
𝑆14 𝑆12 𝑗141 𝑗141
𝑆11 𝑆23 𝑗141 𝑗141
𝑆13 𝑆24 𝑆22 𝑗141]

94

4.2.6.2. Algorithmic structure

In a d-dimensional search space including 𝑃′𝑠𝑖𝑧𝑒 initial solutions (swarm size) with different e-dimensional

particles, 𝑖𝑡ℎ particle in 𝑘𝑡ℎ stage is represented by pseudo matrices 𝑋𝑖
𝑘 and 𝑉𝑒𝑙𝑖

𝑘 as its position and velocity

matrices, both with the dimension 𝑒×𝑓, i.e., 𝑋𝑖
𝑘 = 𝑉𝑒𝑙𝑖

𝑘 = 𝑝𝑠𝑒𝑢𝑑𝑜 𝑚𝑎𝑡𝑟𝑖𝑥(e×f). d represents the maximum

vectors in all particles. Each particle 𝑖 flies in the search space based on its position and velocity as follows:

𝑋𝑖
𝑘 =

[

𝑋𝑖11
𝑘 ……… 𝑋𝑖1𝑓

𝑘

⋮ ⋱ ⋮
𝑋
𝑖(𝑒−𝑣𝑘)1
𝑘 … 𝑋

𝑖(𝑒−𝑣𝑘)𝑓
𝑘

𝑋
𝑖(𝑒−𝑣𝑘+1)1
𝑘 … 𝑋

𝑖(𝑒−𝑣𝑘+1)𝑓
𝑘

⋮ ⋱ ⋮
𝑋𝑖𝑒1
𝑘 … 𝑋𝑖𝑒𝑓

𝑘
]

→ the job sequence within the first batch assigned to the first machine in 𝑘𝑡ℎ stage

⋮

→ the job sequence within the last batch assigned to the last machine in 𝑘𝑡ℎ stage

→ the batch sequence assigned to the first machine in 𝑘𝑡ℎ stage

⋮

→ the batch sequence assigned to the last machine in 𝑘𝑡ℎ stage

𝑉𝑒𝑙𝑖
𝑘 =

[

𝑉𝑒𝑙𝑖11
𝑘 ……… 𝑉𝑒𝑙𝑖1𝑓

𝑘

⋮ ⋱ ⋮
𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘)1
𝑘 … 𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘)𝑓
𝑘

𝑉𝑒𝑙
𝑖(𝑒−𝑣𝑘+1)1
𝑘 … 𝑉𝑒𝑙

𝑖(𝑒−𝑣𝑘+1)𝑓
𝑘

⋮ ⋱ ⋮
𝑉𝑒𝑙𝑖𝑒1

𝑘 … 𝑉𝑒𝑙𝑖𝑒𝑓
𝑘

]

The velocity and position update equations associated with each component of each vector in each particle

are calculated as follows:

𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

= 𝜔𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

+ 𝑐1𝑟1 (𝑌𝑖𝑗𝑙
𝑘 − 𝑋𝑖𝑗𝑙

(𝑡)𝑘
) + 𝑐2𝑟2 (�̂�𝑗𝑙

𝑘 − 𝑋𝑖𝑗𝑙
(𝑡)𝑘

)
(4.69)

𝜒×𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

→ 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

(4.70)

𝑋𝑖𝑗𝑙
(𝑡+1)𝑘

= 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

+ 𝑋𝑖𝑗𝑙
(𝑡)𝑘

(4.71)

where 𝑖 = 1,2, … , 𝑃′𝑠𝑖𝑧𝑒; 𝑗 = 1,2,… , 𝑒; 𝑙 = 1,2,… , 𝑓; 𝑡 = 1,2,… , 𝐼𝑡𝑟𝑀𝑎𝑥; 𝑘 ∈ 𝐾. 𝑋𝑖𝑗𝑙
(𝑡)𝑘

 and 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

 are the

position and velocity, respectively, of the component corresponding to the 𝑗𝑡ℎ row and 𝑙𝑡ℎ column of 𝑖𝑡ℎ

particle at iteration 𝑡 of PSO in 𝑘𝑡ℎ stage. 𝐼𝑡𝑟𝑀𝑎𝑥 stands for maximum iteration number of PSO. 𝑌𝑖𝑗𝑙
𝑘 and

�̂�𝑗𝑙
𝑘 are 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡

𝐺𝑙𝑜𝑏𝑎𝑙, respectively. 𝜔 is the inertia weight to determine the impact of the previous

velocity of the particle in the next iteration. The constant values of 𝑐1 and 𝑐2, known as acceleration

coefficients, determine the impact of 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 to define velocity, respectively, while 𝑟1 and 𝑟2

are incorporated in velocity to consider uncertainty in the meta-heuristic algorithm. In order to control the

95

extreme roaming of particles outside of the search space, the new velocity and position value are restricted

to the interval [𝑣𝑒𝑙𝑚𝑖𝑛, 𝑣𝑒𝑙𝑚𝑎𝑥] and [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], respectively. Generally, the new velocities of particles

are determined by Eq. (4.69) according to their previous velocities as well as the distance of their current

position from both 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙. In order to improve the performance of the PSO algorithms, a

multiplier 𝜒 in Eq. (4.70) is implemented to accelerate the process of the convergence (Poli et al. 2007).

Then, the new position of each particle is determined by Eq. (4.71) according to its new velocity and

previous position. In 𝐼𝑡𝑟𝑀𝑎𝑥
𝑡ℎ iteration of PSO, 𝑃𝑏𝑒𝑠𝑡

𝐺𝑙𝑜𝑏𝑎𝑙 is reported.

4.2.6.3. Encoding and decoding of particles

A conversion on the components of the sequence pseudo matrix to the continuous position values, i.e.,

𝑆𝑖
(𝑡+1)𝑘

→ 𝑋𝑖
(𝑡+1)𝑘

, must be performed to apply the PSO algorithm. 𝑆𝑖
(𝑡)𝑘

 represents the sequence pseudo

matrix of 𝑖𝑡ℎ particle at iteration 𝑡 of PSO in 𝑘𝑡ℎ stage. The following encoding scheme converts job and

batch sequences to the continuous position values.

𝑗𝑠𝑖𝑗 ⟶((∑∑ ∑ ∅𝑥𝑦𝑗
𝑘

𝑗∈𝐽𝑖
𝑘𝑦∈𝑆𝑖

𝑘

𝑖−1

𝑥=0

)+ (∑∑ ∅𝑖𝑦𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

𝑠−1

𝑦=0

) + (∑∅𝑖𝑠𝑧
𝑘

𝑗−1

𝑧=1

)) ; 𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑗 ∈ 𝐽𝑖

𝑘

𝑆𝑠𝑖 ⟶((∑∑ ∑ 𝑍𝑥𝑦ℎ
𝑘

ℎ∈𝑉𝑘𝑦∈𝑆𝑖
𝑘

𝑖−1

𝑥=0

)+ 𝑠) ; 𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘

where ∅𝑥𝑦𝑗
𝑘 is equal to zero for each 𝑥 = 0 and/or 𝑦 = 0. Also, 𝑍𝑥𝑦ℎ

𝑘 is equal to zero when 𝑥 = 0. These

transformations convert the initial sequence pseudo matrix determined in section 4.2.6.1 to the following

pseudo matrix:

𝑋𝑘 =

[

14 15 13 1
7 6 5 1
2 3 4 1
12 11 1 1
 9 10 1 1
16 17 1 1
8 1 1 1
6 2 1 1
1 5 1 1
4 7 3 1]

A decoding scheme based on Ranked Order Value (ROV) shown in Table 9 is developed to convert the

continuous position value of a particle to job and batch sequences, i.e., 𝑋𝑖
(𝑡+1)𝑘

→ 𝑆𝑖
(𝑡+1)𝑘

, for each iteration

of the PSO algorithm. In the ROV rule, the Smallest Position Value (SPV) technique along with one-to-

96

one correspondence between 𝑋𝑖
(𝑡+1)𝑘

 and 𝑆𝑖
(𝑡)𝑘

(meaning 𝑋𝑖11
(𝑡+1)𝑘

 with 𝑆𝑖11
(𝑡)𝑘

, and so on to finally consider

𝑋𝑖𝑒𝑓
(𝑡+1)𝑘

 with 𝑆𝑖𝑒𝑓
(𝑡)𝑘

) are used for this transformation, i.e, 𝑋𝑖
(𝑡+1)𝑘

→ 𝑆𝑖
(𝑡+1)𝑘

.

Table 9. Pseudo-code for decoding a position pseudo matrix to a sequence pseudo matrix

for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒} do

 for each 𝑗 ∈ {1,2, … , 𝑒} do

 𝑆𝑖𝑗
(𝑡+1)𝑘

← 𝑋𝑖𝑗
(𝑡+1)𝑘

 //According to the SPV rule in 𝑋𝑖
(𝑡+1)𝑘

 as well as 𝑆𝑖
(𝑡)𝑘

 end for

end for

For example, 𝑆𝑖1
(𝑡+1)𝑘

= (𝑗213, 𝑗211, 𝑗215, 𝑗216), when 𝑆𝑖1
(𝑡)𝑘

= (𝑗211, 𝑗215, 𝑗213, 𝑗216) and 𝑋𝑖1
(𝑡+1)𝑘

=

(2.98, 3.04, 1.28, 3.92). The smallest value in 𝑋𝑖1
(𝑡+1)𝑘

 is 1.28, which is located at the third position in

vector 𝑋𝑖1
(𝑡+1)𝑘

. Therefore, the job in the third position of 𝑆𝑖1
(𝑡)𝑘

 should be the first job in 𝑆𝑖1
(𝑡+1)𝑘

 (i.e.,

𝑆𝑖11
(𝑡+1)𝑘

= 𝑗213). Other components in 𝑆𝑖1
(𝑡+1)𝑘

 are determined using a similar procedure.

4.2.7. Particle swarm optimization/local search

The lack of mechanism for batching becomes more pronounced when a basic PSO algorithm is applied for

batch scheduling. The neighborhood searches for the best batch sequence on machines as well as the best

job sequence within batches are naturally performed by updating particles, in each iteration of PSO, i.e.,

the scheduling phase. Therefore, a PSO algorithm is accompanied by a local search algorithm (LSA)

between each of two sequential iterations of PSO (PSO/LSA) to take the benefits of batching and,

consequently, enhance the quality of solutions, i.e., the batching phase. The LSA is performed at two search

levels as follows:

• After converting 𝑆𝑖
𝑘 to its own 𝐶𝑆𝐷𝑘 and 𝑂𝑆𝐷𝑘 (Section 4.2.4.3), a feasible neighbor solution in

the 𝐶𝑆𝐷𝑘 is generated by only insertion-related operator in the first search level.

• Then in the second search level, for each generated neighbor solution better than the current seed,

the best feasible neighbor solution(s) of the 𝑂𝑆𝐷𝑘 are determined by both insertion- and swap-

related operator.

• The best neighbor solution obtained by both search levels of the LSA is considered as the next seed

and the process repeats until a stopping criterion is reached.

The pseudo-code for developed PSO/LSA is presented in Table 10. It is worth noting that the difference

between the local search structure in PSO/LSA and TS/PR is that the LSA is applied to enhance the

performance of PSO at two levels, while TS is naturally a local search algorithm, which is performed at

97

three levels and accompanied by a PR procedure to integrate diversification and intensification strategies

of TS. If there is not any feasible neighbor solution in a level of the LSA, the best infeasible neighbor

solution should be converted to a feasible one with the help of the adjustment step. Since there is a need to

keep track of the best position of batches during all previous iterations of PSO/LSA, the refinement step

should not be applied for selected neighbor solutions during the LSA.

Table 10. Pseudo-code for PSO/LSA algorithm

 PSO/LSA Algorithm: Outline of algorithm PSO/LSA for HFS

1: Input: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 //Section 4.1.1

2: Output: 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 & 𝑇ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑆𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑠𝑜 𝑓𝑎𝑟

3: 𝐼𝑃 ← 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛() //Pseudo-code in section 4.2.7

4: 𝑡 = 0

5: while 𝑡 ≤ 𝐼𝑡𝑟𝑚𝑎𝑥 do

 // Lines 6-10: Apply PSO

6: for each 𝑖 ∈ {1,2,… , 𝑃′𝑠𝑖𝑧𝑒} do

7: 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝜔𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡)𝑘

+ 𝑐1𝑟1 (𝑌𝑖𝑗𝑙
𝑘 − 𝑋𝑖𝑗𝑙

(𝑡)𝑘
) + 𝑐2𝑟2 (�̂�𝑗𝑙

𝑘 − 𝑋𝑖𝑗𝑙
(𝑡)𝑘

)

8: 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝜒×𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

9: 𝑋𝑖𝑗𝑙
(𝑡+1)𝑘

← 𝑉𝑒𝑙𝑖𝑗𝑙
(𝑡+1)𝑘

+ 𝑋𝑖𝑗𝑙
(𝑡)𝑘

10: end for

 // Lines 11-23: Enhance solutions with a local search algorithm (LSA)

11: for each 𝑖 ∈ {1,2,… , 𝑃′𝑠𝑖𝑧𝑒} do

12: 𝑆𝑖
(𝑡+1)𝑘

← 𝑋𝑖
(𝑡+1)𝑘

 //According to the SPV rule in 𝑋𝑖
(𝑡+1)𝑘

 as well as 𝑆𝑖
(𝑡)𝑘

13: 𝐶𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

← 𝑆𝑖
(𝑡+1)𝑘

 & 𝑂𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

← 𝑆𝑖
(𝑡+1)𝑘

14: 𝑡′ = 0

15; while 𝑡′ ≤ 𝐼𝑡𝑟𝐿𝑆𝐴 do

16: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐹𝑖𝑟𝑠𝑡. 𝑆𝑒𝑎𝑟𝑐ℎ. 𝐿𝑒𝑣𝑒𝑙. 𝐿𝑆𝐴(𝐶𝑆𝐷𝑆𝑖
𝑘
)

17: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑒𝑐𝑜𝑛𝑑. 𝑆𝑒𝑎𝑟𝑐ℎ. 𝐿𝑒𝑣𝑒𝑙. 𝐿𝑆𝐴(𝑂𝑆𝐷𝑆𝑖
𝑘
)

18: end while

19: 𝑆𝑖
(𝑡+1)𝑘

← 𝐶𝑆𝐷𝑆𝑖
(𝑡+1)𝑘

20: 𝑆𝑖
(𝑡+1)𝑘

← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑆𝑖
(𝑡+1)𝑘

() //Section 4.2.7.1

21: 𝑋𝑖
(𝑡+1)𝑘

← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑋𝑖
(𝑡+1)𝑘

() //Section 4.2.7.1

22: 𝑌𝑖
𝑘 ← 𝑈𝑝𝑑𝑎𝑡𝑒. 𝑌𝑖

𝑘() //𝑃𝑏𝑒𝑠𝑡 of 𝑖𝑡ℎ particle

23: end for

24: �̂�𝑘 ← 𝑈𝑝𝑑𝑎𝑡𝑒. �̂�𝑘() //𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 related to all particles

25: end while

26: return 𝑆𝑏𝑒𝑠𝑡 ← 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙

A graphical example of one iteration of the two-level LSA is illustrated in Figure 17. In this example, for

four neighbor solutions chosen in the first search level, the second search level is applied and then the

solution with the objective function value 3431.03 is replaced by the current seed (3982.80).

98

In order to maintain consistency between TS/PR and PSO/LSA, both algorithms select the required IP based

on similar procedure. The pseudo-code shown in Table 11 determines the IP with 𝑃′𝑠𝑖𝑧𝑒 members.

Table 11. Pseudo-code for initializing PSO population

𝑆𝐼𝑆 ← 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛() //Section 4.2.2

𝑆𝐼𝑀𝑃 ← 𝐿𝑆𝐴(𝑆𝐼𝑆) //Section 4.2.7

𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝐼𝑀𝑃)
for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 1} do

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑖
𝑘 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐿𝑆𝐴2

 𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝑖
𝑘)

 if 𝑖 = 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 then

 exit for

end for

if 𝑃′𝑠𝑖𝑧𝑒 > 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 + 1 then

 for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 − 1} do

 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎 𝑁𝑜𝑛𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑆𝑖
𝑘 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐿𝑆𝐴1

 𝐼𝑃 ← 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑆𝑖
𝑘)

 if 𝑖 = 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 then

 exit for

 end for

 if 𝑃′𝑠𝑖𝑧𝑒 > 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 + 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 + 1 then

 for each 𝑖 ∈ {1,2, … , 𝑃′𝑠𝑖𝑧𝑒 − 𝐿𝑆𝐴1𝑆𝐼𝑍𝐸 − 𝐿𝑆𝐴2𝑆𝐼𝑍𝐸 − 1} do

 𝑣𝑒𝑙𝑖𝑗
(0)

= 𝑣𝑒𝑙𝑚𝑖𝑛 + 𝑅(𝑣𝑒𝑙𝑚𝑎𝑥 − 𝑣𝑒𝑙𝑚𝑖𝑛)

 𝑥𝑖𝑗
(0)

= 𝑥𝑚𝑖𝑛 + 𝑅(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) // 𝑅 ∈ 𝑢𝑛𝑖𝑓[0, 1]

 if 𝑥𝑖𝑗
(0)

 violates the machine eligibilities and/or 𝐿𝐵𝑖ℎ
𝑘 then

 𝑖 = 𝑖 − 1

 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑓𝑜𝑟

 else

 𝐼𝑃 ← 𝑥𝑖𝑗
(0)

 end if

 end for

 end if

end if

// 𝐿𝑆𝐴1 & 𝐿𝑆𝐴2: the first and second search level of the LSA

99

Figure 17. Illustration for two-level local search algorithm (LSA)

4.2.7.1. Updating process

The following three-phase updating process is implemented for modifying batch compositions of 𝑂𝑆𝐷𝑆𝑖
𝑘

after completing the LSA, updating 𝑆𝑖
𝑘 and, subsequently, 𝑋𝑖

𝑘 before passing them to the next iteration of

PSO/LSA, and updating the values of 𝑌𝑖𝑗𝑙
𝑘 and �̂�𝑗𝑙

𝑘 for each iteration of PSO/LSA.

Updating 𝑺𝒊
𝒌: after completing the LSA, two sequential batches of 𝑖𝑡ℎ group (∀𝑖 ∈ 𝐼𝑘) in the 𝑂𝑆𝐷𝑆𝑖

𝑘
 (∀𝑖 ∈

{1,2,… , 𝑃′𝑠𝑖𝑧𝑒}) should be merged as a single batch with the batch number equal to the batch number of 𝑆𝑠𝑖

including more jobs between two sequential batches. Ties are broken in favor of the smaller batch number.

A batch number is referred to sub-index 𝑠 of 𝑆𝑠𝑖. Apart from this, after splitting a batch of 𝑖𝑡ℎ group into

two batches in the 𝑂𝑆𝐷𝑆𝑖
𝑘
, the batch including more jobs will have the same batch number of its parent,

while the batch number of another batch is determined as the available smallest batch number in the series

of batch numbers, i.e., from 1 up to 𝑛𝑖
𝑘, so that this batch number is not equal to the existing batch numbers

of 𝑖𝑡ℎ group. A result of this step is updated 𝑆𝑖
𝑘 in terms of new batch compositions and batch assignment

by updating 𝐶𝑆𝐷𝑆𝑖
𝑘
 with regard to 𝑂𝑆𝐷𝑆𝑖

𝑘
 and then transforming 𝐶𝑆𝐷𝑆𝑖

𝑘
 to 𝑆𝑖

𝑘.

Updating 𝑿𝒊
𝒌: after completing the LSA and, consequently, updating 𝑆𝑖

𝑘, the continuous position 𝑋𝑖
𝑘 related

to updated 𝑆𝑖
𝑘 should be updated (i.e., updated 𝑋𝑖

𝑘) to guarantee that the sequence resulting from the ROV

100

rule for the new continuous position is the same as the sequence resulting from the two-level LSA. This

being the case, the position value of each member of updated 𝑆𝑖
𝑘, i.e., updated 𝑋𝑖𝑗𝑙

𝑘 , is obtained by one-to-

one correspondence between 𝑋𝑖
𝑘 and 𝑆𝑖

𝑘 (i.e., 𝑆𝑖
𝑘 before updating process) in terms of updated 𝑆𝑖𝑗𝑙

𝑘 . As a

result, the position values of jobs and batches related to updated 𝑆𝑖
𝑘, i.e., updated 𝑋𝑖𝑗𝑙

𝑘 , and subsequently,

updated 𝑋𝑖
𝑘 are obtained. The position value of a batch with the new batch number is determined by previous

encoding rule developed in section 4.2.6.3.

Updating 𝑷𝒃𝒆𝒔𝒕 & 𝑷𝒃𝒆𝒔𝒕
 𝒍𝒐𝒃𝒂𝒍: due to creating different batch compositions during each iteration of

PSO/LSA, 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 of a job cannot depend on its position in a particular batch. Therefore, the

assignment and position of a job on a machine are considered as 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 for the job. In other

words, the values of 𝑌𝑖𝑗𝑙
𝑘 and �̂�𝑗𝑙

𝑘 are updated based on the position of jobs on machines, instead of batches.

Likewise, the assignment and position of a batch on a machine are considered as 𝑃𝑏𝑒𝑠𝑡 and 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 for

the batch.

4.2.8. Ineffective neighbor moves

In addition to developing specific neighborhood structures, we present a method to reduce the

computational burden of a local search algorithm by identifying neighborhoods, which have either no effect

or an inferior effect on the objective function value. These ineffective neighborhoods determined by the

lemmas, presented below, are usually not a candidate for a move. Applying these lemmas guarantee

obtaining the same optimal/near optimal solution by the search algorithm in less computational time. Either

all or part of these lemmas are applicable for any local search structure of developed algorithms. Prior to

identifying ineffective neighbor moves based upon specific lemmas in terms of both insertion- and swap-

related moves, we first introduce the notations relating to a forbidden candidate move.

The following notations are applicable only for lemmas. Consider a particular stage of HFS. Suppose 𝑗𝑘
𝑚

and 𝑗𝑘′
𝑚′ represent job 𝑗 processed on the 𝑘𝑡ℎ position of 𝑚𝑡ℎ machine in the initial schedule and the 𝑘′𝑡ℎ

position of 𝑚′𝑡ℎ machine in the new schedule, respectively, irrespective of which batch the job belongs to.

𝑚, 𝑚′ ∈ [1,… ,𝑚𝑎 ,𝑚𝑏 , … ,𝑀], where 𝑀 is the number of unrelated-parallel machines for the selected

stage, i.e., 𝑀 = 𝑣𝑘, ∀ 𝑘 ∈ 𝑚. The " ′ " sign applies to the new schedule. There are 𝑛 and 𝑛′ jobs on 𝑚𝑡ℎ and

𝑚′𝑡ℎ machines, respectively, meaning 𝑘 ∈ [1,2, … , 𝑛] and 𝑘′ ∈ [1,2,… , 𝑛′]. As a result, for two different

machines 𝑚𝑎 and 𝑚𝑏, the number of jobs assigned to these machines are different in the new schedule

compared to the initial schedule by inserting one job from 𝑚𝑎 to 𝑚𝑏 (i.e., 𝑛′𝑎 = 𝑛𝑎 − 1 and 𝑛′𝑏 = 𝑛𝑏 + 1)

or vice versa. The 𝑘𝑡ℎ and 𝑘′𝑡ℎ positions of any job 𝑗 are not necessarily equal on the same machine (𝑚 =

𝑚′), meaning 𝑘′ = 𝑘 for job 𝑗 when its position is not changed, 𝑘′ > 𝑘 (𝑘′ ∈ [𝑘 + 1, 𝑛]) for job 𝑗

101

inserted/swapped forwardly, 𝑘′ = 𝑘 + 1 for job 𝑗 pushed forwardly, 𝑘′ < 𝑘 (𝑘′ ∈ [1, 𝑘 − 1]) for job 𝑗

inserted/swapped backwardly, and 𝑘′ = 𝑘 − 1 for job 𝑗 pushed backwardly. Likewise, the 𝑘𝑡ℎ and 𝑘′𝑡ℎ

positions of any job 𝑗 inserted/swapped are not necessarily equal on different machines (𝑚 ≠ 𝑚′), meaning

𝑘′ ∈ [1,… , 𝑘, … , 𝑛′].

• Definition 1 (Forward Move): By applying a forward move (insert or swap), job 𝑗𝑘
𝑚 can be inserted

into the 𝑘′𝑡ℎ position between jobs across batches on the same machine 𝑚, so that 𝑘′ > 𝑘 (𝑘′ ∈

[𝑘 + 1, 𝑛]).

• Definition 2 (Backward Move): By applying a backward move (insert or swap), job 𝑗𝑘
𝑚 can be

inserted into the 𝑘′𝑡ℎ position between jobs across batches on the same machine 𝑚, so that 𝑘′ <

𝑘 (𝑘′ ∈ [1, 𝑘 − 1]).

In the initial schedule, the completion time of job 𝑗𝑘
𝑚 (𝐶𝑇𝑗𝑘

𝑚) is equal to the start time of this job (𝑆𝑇𝑗𝑘
𝑚)

plus its run time (𝑅𝑇𝑗𝑘
𝑚). The start time of job 𝑗𝑘

𝑚 is the maximum time between its release time (𝑟𝑗𝑘
𝑚), and

the completion time of job 𝑗𝑘−1
𝑚 (𝐶𝑇𝑗𝑘−1

𝑚) plus the required setup time (𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚) between jobs assigned to

𝑘𝑡ℎ and (𝑘 − 1)𝑡ℎ positions on the same machine 𝑚 (i.e., 𝑆𝑇𝑗𝑘
𝑚 = max {𝑟𝑗𝑘

𝑚 , 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚}), regardless

of which machine 𝑗𝑘
𝑚 will be assigned/inserted to. Likewise, in the new schedule, the start time of 𝑗𝑘′

𝑚′ is

𝑆𝑇𝑗𝑘′
𝑚′ = max {𝑟𝑗𝑘

𝑚 , 𝐶𝑇𝑗𝑘′−1
𝑚′ + 𝑆𝑗𝑘′−1

𝑚′ 𝑗𝑘′
𝑚′}. Note that the release time of a job, 𝑗𝑘

𝑚, does not relate to both the

machine which it is assigned/inserted to and its position on the machine in both new and initial schedules,

but for clarity, the release time of a job is represented as 𝑟𝑗𝑘
𝑚.

𝐶𝑇𝑗
𝑘′
𝑚′ is not changed, regardless of which machine 𝑗𝑘′

𝑚′ will be inserted/swapped (i.e., 𝑚 = 𝑚′ or 𝑚 ≠ 𝑚′),

when 𝑆𝑇𝑗𝑘′
𝑚′ = 𝑆𝑇𝑗𝑘

𝑚, meaning either 𝑟𝑗𝑘
𝑚 = 𝑆𝑇𝑗𝑘

𝑚 or 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 = 𝐶𝑇𝑗

𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ . Apart from

this, 𝐶𝑇𝑗
𝑘′
𝑚′ is increased, regardless of which machine 𝑗𝑘′

𝑚′ will be inserted/swapped, when 𝑆𝑇𝑗𝑘′
𝑚′ > 𝑆𝑇𝑗𝑘

𝑚 ,

meaning 𝐶𝑇𝑗
𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ > 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 . The above inequality may be satisfied, except when

𝐶𝑇𝑗
𝑘′−1
𝑚′ < 𝐶𝑇𝑗𝑘−1

𝑚 and 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ < 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 . As a result, the 𝐶𝑇𝑗
𝑘′
𝑚′ can be equal to or greater than the 𝐶𝑇𝑗𝑘

𝑚 ,

when 𝐶𝑇𝑗
𝑘′−1
𝑚′ < 𝐶𝑇𝑗𝑘−1

𝑚 , 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ > 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 , and the increase in 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ is big enough to compensate for

the reduction in 𝐶𝑇𝑗
𝑘′−1
𝑚′ , so that 𝐶𝑇𝑗

𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ is equal to or greater than 𝐶𝑇𝑗𝑘−1
𝑚 + 𝑆𝑗𝑘−1

𝑚 𝑗𝑘
𝑚 . Likewise,

𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚 , when 𝐶𝑇𝑗
𝑘′−1
𝑚′ > 𝐶𝑇𝑗𝑘−1

𝑚 , 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ < 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 , and the increase in 𝐶𝑇𝑗
𝑘′−1
𝑚′ is big enough to

compensate for the reduction in 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ , so that 𝐶𝑇𝑗
𝑘′−1
𝑚′ + 𝑆𝑗

𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ is equal to or greater than 𝐶𝑇𝑗𝑘−1
𝑚 +

𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚 .

102

In conclusion, the completion time of a job is either increased or not changed in the new schedule, if and

only if the start time of this job in the new schedule is either increased or not changed compared to the one

in the initial schedule (𝑆𝑇𝑗𝑘′
𝑚′ ≥ 𝑆𝑇𝑗𝑘

𝑚). A move is ineffective when the completion time of jobs, both

inserted/swapped and assigned to the machine(s), are either increased or not changed by applying this move.

Sometimes, the completion time of a job is not changed in spite of shifting forwardly the job(s) processed

before this job on a machine due to the existence of idle times on the same machine. The idle time can be

created on a machine when the machine availability time is less than the release time of remaining jobs,

which have not been processed so far by this machine.

Only the jobs assigned to a machine/machines that are considered for performing a predetermined insert or

swap move may have an effect on changing the objective function value (∆𝑍). Among these jobs, the job

𝑗𝑘′
𝑚′ always has no contribution to ∆𝑍, when 𝐶𝑇𝑗

𝑘′−1
𝑚′ = 𝐶𝑇𝑗𝑘−1

𝑚 and 𝑆𝑗
𝑘′−1
𝑚′ 𝑗𝑘′

𝑚′ = 𝑆𝑗𝑘−1
𝑚 𝑗𝑘

𝑚. In other words, only

the jobs that are assigned to this machine(s) and have a contribution in the objective function value should

be considered in evaluating ∆𝑍. The variation in the completion time of a job has a forward relationship

with its tardiness. In other words, by increasing the completion time of a job, the related tardiness is either

increased or not changed. Likewise, by decreasing the completion time of a job, the related tardiness is

either decreased or not changed. It is clear that the tardiness of a job does not change while its completion

time is not changed.

Note that the reference group should be considered as the initial batch when there is no job/batch before the

new position of the job/batch moved backwardly in the new schedule, or the job/batch processed

immediately before the job/batch moved forwardly in the initial schedule. In all of the following lemmas,

the completion time of jobs is either increased or not changed by applying predetermined insert and swap

moves.

Lemma 1-1: Regardless of which batch of the same group or a different group job 𝑗𝑘−1
𝑚 will be inserted to,

due date and release time of other jobs, applying a forward inserting move for job 𝑗𝑘−1
𝑚 on the same machine

provides no improvement in the objective function value, if

I. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚 , where 𝑘′ = 𝑘 − 1 and 𝑚 = 𝑚′; and

II. 𝐶𝑇𝑗
(𝑘′+1)′
𝑚′ ≥ 𝐶𝑇𝑗(𝑘′)

𝑚 , where 𝑘′ ∈ [𝑘, 𝑛] and 𝑚 = 𝑚′.

Proof: Note that by inserting forwardly job 𝑗𝑘−1
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ

position of job 𝑗 in the new schedule is greater than its (𝑘 − 1)𝑡ℎ position in the initial schedule (𝑘′ > 𝑘 −

103

1 (𝑘′ ∈ [𝑘, 𝑛])). By doing this, the completion time of all jobs assigned to the same machine in the new

schedule are either increased or not changed as follows:

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘 − 2]

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘 − 1, 𝑘′ − 1]

• The 𝐶𝑇𝑗𝑘′
𝑚 increases, and

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘′ + 1, 𝑛].

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of job 𝑗 inserted forwardly

and its tardiness can be evaluated as ∆𝑍 ≥ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑘′
𝑚 − 𝐶𝑇𝑗𝑘−1

𝑚) + 𝛽 (𝑇𝑗𝑘′
𝑚 − 𝑇𝑗𝑘−1

𝑚)), where 𝑤𝑗 is the

weight of job 𝑗, 𝛼 and 𝛽 are the weights attributed to the producer and customers, respectively, and 𝑇𝑗𝑘′
𝑚 and

𝑇𝑗𝑘−1
𝑚 are the tardiness of job 𝑗 assigned to the 𝑘′𝑡ℎ and (𝑘 − 1)𝑡ℎ positions in the new and initial schedules,

respectively. The tardiness of 𝑗𝑘
𝑚 is equal to max {0, 𝐶𝑇𝑗𝑘

𝑚 − 𝑑𝑗}. If the due date of job 𝑗 (𝑑𝑗) is equal to or

greater than its completion time in the new schedule (𝑑𝑗 ≥ 𝐶𝑇𝑗𝑘
𝑚), the difference in the objective function

value can be written as ∆𝑍 ≥ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑘′
𝑚 − 𝐶𝑇𝑗𝑘−1

𝑚)).

Lemma 1-2: Regardless of which batch of the same group or a different group job 𝑗𝑘
𝑚 will be inserted to,

due date and release time of other jobs, applying a backward inserting move for job 𝑗𝑘
𝑚 on the same machine

provides no improvement in the objective function value, if

I. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘

𝑚 , where 𝑘′ ∈ [1, 𝑘 − 1] and 𝑚 = 𝑚′; and

II. 𝐶𝑇𝑗
𝑘′
𝑚′ ≥ 𝐶𝑇𝑗𝑘+1

𝑚 , where 𝑘′ = 𝑘 + 1 and 𝑚 = 𝑚′.

Proof: Note that by inserting backwardly job 𝑗𝑘
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ

position of the job 𝑗 in the new schedule is less than its 𝑘𝑡ℎ position in the initial schedule (𝑘′ < 𝑘 (𝑘′ ∈

[1, 𝑘 − 1])). By doing this, the completion time of all jobs assigned to the same machine in the new

schedule are either increased or not changed as follows:

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘′ − 1]

• The 𝐶𝑇𝑗𝑘′
𝑚 is either increased or not changed

104

• The 𝐶𝑇𝑗
𝑙′
𝑚 is increased, where 𝑙′ ∈ [𝑘′ + 1, 𝑘] (referred to as common job(s)), and

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘 + 1, 𝑛].

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of common job(s) and its

tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚) + 𝛽 (𝑇𝑗𝑙′
𝑚 − 𝑇𝑗𝑙

𝑚))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘] by

considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘′ with 𝑘′ + 1, and so on to finally

consider 𝑘 − 1 with 𝑘), which includes the common job(s), which are processed after 𝑗𝑘′
𝑚 in the new

schedule and before 𝑗𝑘+1
𝑚 in the initial schedule. If the due date of the common job(s) assigned to [𝑗𝑘′+1

𝑚 ′ 𝑗𝑘
𝑚]

is equal to or greater than its completion time on the new schedule, the difference in the objective function

value can be written as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘] .

Lemma 1.1 and 1.2 are illustrated in Figure 18. The first forward insertion-related-move illustrates inserting

job 𝑖 after job 𝑗 on the same machine. The completion times of jobs processed after job 𝑗 in developed

neighborhood are either increased or not changed (for the rest of schedule), because the release time of job

𝑗 in the developed neighborhood freezes the schedule for backward movement. By assuming job 𝑖 and 𝑗

belong to the 𝑠𝑡ℎ batch of group 𝑔, move 𝑣𝐼(𝑆𝑠𝑔|1, 2) is stored in the ITL.

Figure 18. Illustration for lemma 1-1 & 1-2

M … j …

M … j …

Forward move - Insert move - Sequencing move

M … j …

M … j …

Forward move - Insert move - Sequencing move

M h … k …

M h k …

Forward move - Insert move - Dividing move

M … k …

M … k …

Backward move - Insert move - Sequencing move

i

i

i j

i j

i

i

i

j

j

i

105

The second forward insertion-related-move is the same as the first forward move, while instead of release

time, the new setup time related to job 𝑗 in the developed neighborhood freezes job 𝑗 for backward

movement. If job 𝑖 is assigned to position 𝑝 on machine 𝑀, move 𝑣𝐼(𝑀𝑝,𝑀𝑝+1) is stored in the OTL. The

third forward insertion-related-move is again the same as the first forward move and the release time of job

𝑖 freezes the schedule. In addition, this move changes the batch composition and represents a dividing move.

In this case, move 𝑣𝐼(𝑀|𝑔𝑔, 𝑔𝑔′, 𝑔𝑔) is stored in the CTL, in which job ℎ belongs to group 𝑔′ and job 𝑗 and

𝑘 belong to group 𝑔. Finally, the forth backward insertion-related-move illustrates inserting job 𝑘 before

job 𝑖 on the same machine. Likewise, job 𝑘 in the developed neighborhood freezes the schedule due to its

release time. The first, second, and forth moves are considered as sequencing move because they only

change the sequence of jobs on batches/machines.

Lemma 2: Regardless of which batch of the same group or a different group job 𝑗𝑘−1
𝑚𝑎 will be inserted to,

due date and release time of other jobs, inserting job 𝑗𝑘−1
𝑚𝑎 in any available position between jobs across

batches on a different machine (𝑚𝑏) provides no improvement in the objective function value, if

I. 𝐶𝑇
𝑗
𝑘′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘

𝑚𝑎 , where 𝑘′ = 𝑘 − 1 and 𝑚′𝑎 = 𝑚𝑎 ; and

II. 𝐶𝑇
𝑗
(𝑘′+1)′

𝑚𝑎
′ ≥ 𝐶𝑇𝑗(𝑘′)

𝑚𝑎 , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑎 ; and

III. 𝐶𝑇
𝑗
𝑘′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘−1

𝑚𝑎 , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑏 .

Proof: Note that by inserting job 𝑗𝑘−1
𝑚𝑎 on a different machine 𝑚𝑏, the 𝑘′𝑡ℎ position of the job 𝑗 in the new

schedule can be any available position as 𝑘′ ∈ [1, 𝑛𝑏]. By doing this, the completion time of all jobs which

are assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule are either increased or not changed as follows:

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎 does not change, where 𝑙′ ∈ [1, 𝑘 − 2] and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎 is either increased or not changed, where 𝑙′ ∈ [𝑘 − 1, 𝑛𝑎 − 1] and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏 does not change, where 𝑙′ ∈ [1, 𝑘′ − 1] and 𝑚′𝑏 = 𝑚𝑏

• The 𝐶𝑇
𝑗𝑘′
𝑚′𝑎 increases or does not change, where 𝑚′𝑎 = 𝑚𝑏 and 𝑘′ ∈ [1, 𝑛𝑏], and

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏 is either increased or not changed, where 𝑙′ ∈ [𝑘′ + 1, 𝑛𝑏 + 1] and 𝑚′𝑏 = 𝑚𝑏.

106

The minimum increase in ∆𝑍 is positive when at least the completion time of one job belonging to either

[𝑘 − 1, 𝑛𝑎 − 1] of machine 𝑚𝑎 or [𝑘′, 𝑛𝑏 + 1] of machine 𝑚𝑏 in the new schedule is increased; otherwise,

the minimum increase in ∆𝑍 is equal to zero.

Lemma 2 is illustrated in Figure 19. The insertion-related-move illustrates inserting job 𝑖, which is assigned

to machine 𝑀1 before job 𝑘, which is assigned to machine 𝑀2. The completion times of jobs processed

after job 𝑖 and 𝑗 in developed neighborhood are either increased or not changed (for the rest of schedule),

because the release time of job 𝑖 and 𝑗 in the developed neighborhood freezes the schedule for backward

movement on machines 𝑀1 and 𝑀2, respectively. In this case, move 𝑣𝐼(𝑀2|𝑔𝑔′, 𝑔𝑔, 𝑔𝑔) is stored in the

CTL, in which job 𝑖, 𝑗, 𝑘 and ℎ belong to group 𝑔. Group 𝑔′ belongs to the job, which is processed

immediately before job 𝑖 on machine 𝑀2.

Figure 19. Illustration for lemma 2

Lemma 3.1: Regardless of which batches of the same group or different groups jobs 𝑗𝑘𝑎
𝑚 and 𝑗𝑘𝑏

𝑚 will be

swapped, due date and release time of other jobs, swapping two jobs 𝑗𝑘𝑎
𝑚 and 𝑗𝑘𝑏

𝑚 on the same machine,

where 𝑘𝑏 > 𝑘𝑎 provides no improvement in the objective function value, if

I. 𝐶𝑇𝑗
𝑘𝑏
′
𝑚′ ≥ 𝐶𝑇𝑗𝑘𝑏

𝑚 , where 𝑘𝑏
′ = 𝑘𝑎 and 𝑚′ = 𝑚 ; and

II. 𝐶𝑇𝑗
𝑘𝑏
′
𝑚′ ≥ 𝐶𝑇𝑗𝑘𝑏+1

𝑚 , where 𝑘𝑏
′ = 𝑘𝑏 + 1 and 𝑚′ = 𝑚.

Proof: Note that by swapping job 𝑗𝑘𝑏
𝑚 with job 𝑗𝑘𝑎

𝑚 processed before 𝑗𝑘𝑏
𝑚 on the same machine, the 𝑘′𝑡ℎ

positions of jobs 𝑗𝑘′𝑏
𝑚′ and 𝑗𝑘′𝑎

𝑚′ in the new schedule is 𝑘𝑎 and 𝑘𝑏, respectively. By doing this, the completion

time of all jobs assigned to machine 𝑚 in the new schedule, are either increased or not changed as follows:

• The 𝐶𝑇𝑗
𝑙′
𝑚 does not change, where 𝑙′ ∈ [1, 𝑘𝑎 − 1]

• The 𝐶𝑇𝑗
𝑘𝑏
′
𝑚 increases or does not change

M1 … j … Idle time

M2 … k h … Setup time

M1 … j …

M2 … k h … Family/batch

Insert move on different machine - Sequencing move Moved job

i

Release time

i

107

• The 𝐶𝑇𝑗
𝑙′
𝑚 is increased, where 𝑙′ ∈ [𝑘𝑎 + 1, 𝑘𝑏 − 1]

• The 𝐶𝑇𝑗
𝑘𝑎
′
𝑚 increases, and

• The 𝐶𝑇𝑗
𝑙′
𝑚 is either increased or not changed, where 𝑙′ ∈ [𝑘𝑏 , 𝑛].

The minimum increase in ∆𝑍 due to the change in the completion time of job(s) assigned to [𝑘𝑎 + 1, 𝑘𝑏]

in the new schedule and their tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 −𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙

′∈[𝑘𝑎+1,𝑘𝑏]

𝐶𝑇𝑗𝑙
𝑚) + 𝛽 (𝑇𝑗𝑙′

𝑚 − 𝑇𝑗𝑙
𝑚)) by considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘𝑎 with

𝑘𝑎 + 1, and so on to finally consider 𝑘𝑏 − 1 with 𝑘𝑏). If the due date of the jobs assigned to [𝑗
(𝑘𝑏

′+1)
𝑚 ′ 𝑗𝑘𝑎′

𝑚]

is equal to or greater than their completion times in the new schedule, then ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝑗𝑙′
𝑚 − 𝐶𝑇𝑗𝑙

𝑚))𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] .

Lemma 3-2: Regardless of which batches of the same group or different group jobs 𝑗𝑘𝑎
𝑚𝑎 and 𝑗𝑘𝑏

𝑚𝑏 will be

swapped, due date and release time of other jobs, swapping two jobs 𝑗𝑘𝑎
𝑚𝑎 and 𝑗𝑘𝑏

𝑚𝑏 on different machines

(𝑚𝑎 ≠ 𝑚𝑏) provides no improvement in the objective function value, if

I. 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗𝑘𝑎

𝑚𝑎 , where 𝑚′𝑎 = 𝑚𝑏 and 𝑘𝑎
′ = 𝑘𝑏; and

II. 𝐶𝑇
𝑗
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝐶𝑇

𝑗𝑘𝑏

𝑚𝑏 , where 𝑚′𝑏 = 𝑚𝑎 and 𝑘𝑏
′ = 𝑘𝑎; and

III. 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝐶𝑇𝑗(𝑘𝑎+1)

𝑚𝑎 , where 𝑚′𝑎 = 𝑚𝑎 and 𝑘𝑎
′ = 𝑘𝑎 + 1; and

IV. 𝐶𝑇
𝑗
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝐶𝑇

𝑗(𝑘𝑏+1)
𝑚𝑏 , where 𝑚′𝑏 = 𝑚𝑏 and 𝑘𝑏

′ = 𝑘𝑏 + 1.

Proof: Note that by swapping job 𝑗𝑘𝑎
𝑚𝑎 with job 𝑗𝑘𝑏

𝑚𝑏 on different machines, the 𝑘′𝑡ℎ positions of jobs 𝑗𝑘𝑎
𝑚𝑎

and 𝑗𝑘𝑏
𝑚𝑏 in the new schedule is 𝑘𝑏 of machine 𝑚𝑏 and 𝑘𝑎 of machine 𝑚𝑎, respectively. By doing this, the

completion time of all jobs which are assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule are either

increased or not changed as follows:

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎 does not change, where 𝑙′ ∈ [1, 𝑘𝑎 − 1] and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝑗
𝑘𝑏
′
𝑚′𝑏 increases or does not change, where 𝑚′𝑏 = 𝑚𝑎 and 𝑘′𝑏 = 𝑘𝑎

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑎 is either increased or not changed, where 𝑙′ ∈ [𝑘𝑎 + 1, 𝑛𝑎] and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏 does not change, where 𝑙′ ∈ [1, 𝑘𝑏 − 1] and 𝑚′𝑏 = 𝑚𝑏

108

• The 𝐶𝑇
𝑗
𝑘𝑎
′
𝑚′𝑎 increases or does not change, where 𝑚′𝑎 = 𝑚𝑏 and 𝑘′𝑎 = 𝑘𝑏, and

• The 𝐶𝑇
𝑗
𝑙′
𝑚′𝑏 is either increased or not changed, where 𝑙′ ∈ [𝑘𝑏 + 1, 𝑛𝑏] and 𝑚′𝑏 = 𝑚𝑏

The minimum increase in ∆𝑍 satisfies when at least one job belonging to both [𝑘𝑎 , 𝑛𝑎] of machine 𝑚𝑎 and

[𝑘𝑏 , 𝑛𝑏] of machine 𝑚𝑏 in the new schedule is increased; otherwise, the minimum increase in ∆𝑍 is equal

to zero.

Lemma 3.1 and 3.2 are illustrated in Figure 20. It represents exchanging job 𝑖 and 𝑘 on the same machine

and also exchanging job 𝑗 and 𝑓 on different machines. The schedules are blocked after the backward

inserted move of job 𝑘 and 𝑗 in the developed neighborhoods due to their release time. By assuming job 𝑖,

𝑗, and 𝑘 belong to the 𝑠𝑡ℎ batch of group 𝑔, move 𝑣𝐼(𝑆𝑠𝑔|1, 3) related to machine 𝑀 is stored in the ITL.

If job 𝑓 belongs to the 𝑠′𝑡ℎ batch of group 𝑝, move 𝑣𝐸(𝑀1𝑔
𝑔′
,𝑔𝑝,𝑔𝑔′′

|𝑀2𝑔
𝑝′
,𝑔𝑔,𝑔𝑝′′

) is stored in the CTL, in

which job 𝑖 is processed immediately before and after jobs of group 𝑝′ and 𝑝′′, respectively, and also job 𝑓

is processed immediately before and after jobs of group 𝑔′ and 𝑔′′, respectively. In this case, 𝑝′ = 𝑝′′ and

𝑔′ = 𝑔′′. The first and second swapping moves are considered as sequencing and dividing move,

respectively.

Figure 20. Illustration for lemmas 3-1 & 3-2

Suppose that each batch is considered as a whole job covering all jobs belonging to this batch, irrespective

of how many jobs are included in the batch. Therefore, it assumes each batch is assigned to the 𝑘𝑡ℎ position

of 𝑚𝑡ℎ machine in the initial schedule (𝑠𝑘
𝑚) and the 𝑘′𝑡ℎ position of 𝑚′𝑡ℎ machine in the new schedule

(𝑠𝑘′
𝑚′), respectively, irrespective of which group the batch belongs to. Apart from this, 𝐽𝑗𝑠𝑘

𝑚 and 𝐽𝑗𝑠𝑘′
𝑚′

represent job 𝑗 belonging to batch 𝑠 assigned to the 𝑘𝑡ℎ position of 𝑚𝑡ℎ machine in the initial schedule and

the 𝑘′𝑡ℎ position of 𝑚′𝑡ℎ machine in the new schedule, respectively. It is assumed that the position of all

M … k …

M … k …

Swap move - Sequencing move

M1 … j …

M2 … h f …

M1 … f …

M2 … h j …

Swap move on different machine - Dividing move

ij

i j

i k

i k

e

e

M1 … j … Idle time

M2 … k h … Setup time

M1 … j …

M2 … k h … Family/batch

Insert move on different machine - Sequencing move Moved job

i

Release time

i

109

jobs belonging to the same batch 𝑠 (𝐽𝑗𝑠𝑘
𝑚) is the same as the position of this batch on 𝑚𝑡ℎ machine (𝑠𝑘

𝑚),

where 𝑗 can at most be equal to the number of jobs belonging to batch 𝑠 (i.e., 𝐽𝑗𝑠𝑘
𝑚 = 𝑠𝑘

𝑚, where 𝑗 ∈ 𝑠). The

release time and the start time of the first job belonging to batch 𝑠 are considered as the release time (𝑟𝑠𝑘
𝑚)

and the start time (𝑆𝑇𝑠𝑘
𝑚) of this batch. Likewise, the completion time of the last job belonging to batch 𝑠

is considered as the completion time of this batch (𝐶𝑇𝑠𝑘
𝑚).

By considering the above mentioned assumptions, the following lemmas 4-1, 4-2, 5, 6-1 and 6-2 applicable

for batches can be proven, similar to lemmas 1-1, 1-2, 2, 3-1, and 3-2 applicable for jobs, simply by

substituting 𝑠𝑘
𝑚 and 𝑠𝑘′

𝑚′ in place of 𝑗𝑘
𝑚 and 𝑗𝑘′

𝑚′, respectively. In other words, by considering just one job in

each batch, lemmas 4-1, 4-2, 5, 6-1 and 6-2 are reduced to lemmas 1-1, 1-2, 2, 3-1, and 3-2, respectively.

Therefore, considering more than one job for at least one batch guarantees to get the same conclusion. As

a result, the completion time of a job belonging to a batch is not changed as long as the start time of this

batch is not changed. On the other hand, the completion time of a job belonging to a batch, with its start

time increased in the new schedule, is either increased or not changed.

• Definition 3 (Forward Move): By applying a forward move (insert or swap), batch 𝑠𝑘
𝑚 can be

inserted into the 𝑘′𝑡ℎ position between batches on the same machine 𝑚, so that 𝑘′ > 𝑘 (𝑘′ ∈ [𝑘 +

1, 𝑛]).

• Definition 4 (Backward Move): By applying a backward move (insert or swap), batch 𝑠𝑘
𝑚 can be

inserted into the 𝑘′𝑡ℎ position between batches on the same machine 𝑚, so that 𝑘′ < 𝑘 (𝑘′ ∈ [1, 𝑘 −

1]).

Lemma 4-1: Regardless of which batch of the same group or a different group batch 𝑠𝑘−1
𝑚 will be processed

after, how many jobs each batch includes, due date and release time of other jobs, applying a forward

inserting move for batch 𝑠𝑘−1
𝑚 on the same machine provides no improvement in the objective function

value, if

I. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘

𝑚 , where 𝑘′ = 𝑘 − 1 and 𝑚 = 𝑚′; and

II. 𝑆𝑇𝑠
(𝑘′+1)′
𝑚′ ≥ 𝑆𝑇𝑠(𝑘′)

𝑚 , where 𝑘′ ∈ [𝑘, 𝑛] and 𝑚 = 𝑚′.

Proof: Note that by inserting forwardly batch 𝑠𝑘−1
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ

position of the batch 𝑠 in the new schedule is greater than its (𝑘 − 1)𝑡ℎ position in the initial schedule (𝑘′ >

110

𝑘 − 1 (𝑘′ ∈ [𝑘, 𝑛])). By doing this, the completion time of all jobs belonging to all batches assigned to the

same machine on the new schedule are either increased or not changed as follows:

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘 − 2]

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘 − 1, 𝑘′ − 1]

• The 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚 increases, where 𝑗 ∈ 𝑠𝑘′

𝑚 , and

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘′ + 1, 𝑛].

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of job(s) 𝑗 belonging to

batch 𝑠 inserted forwardly and its tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚 −𝑗∈[𝑠

𝑘′
𝑚]

𝐶𝑇𝐽𝑗𝑠𝑘−1
𝑚) + 𝛽 (𝑇𝐽𝑗𝑠𝑘′

𝑚 − 𝑇𝐽𝑗𝑠𝑘−1
𝑚)), where 𝑇𝐽𝑗𝑠𝑘′

𝑚 and 𝑇𝐽𝑗𝑠𝑘−1
𝑚 are the tardiness of job 𝑗 belonging to batch 𝑠

assigned to the 𝑘′𝑡ℎ and (𝑘 − 1)𝑡ℎ in the new and initial schedules, respectively. The tardiness of 𝑗𝑘
𝑚 is

equal to max {0, 𝐶𝑇𝑗𝑘
𝑚 − 𝑑𝑗}. If the due date of job 𝑗 belonging to batch 𝑠 (𝑑𝑗𝑠) is equal to or greater than its

completion time in the new schedule (𝑑𝑗𝑠 ≥ 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚), then ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑘′

𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑘−1
𝑚))𝑗∈[𝑠

𝑘′
𝑚] .

Lemma 4-2: Regardless of which batch of the same group or a different group batch 𝑠𝑘
𝑚 will be processed

after, how many jobs each batch includes, due date and release time of other jobs, applying a backward

inserting move for 𝑠𝑘
𝑚 on the same machine provides no improvement in the objective function value, if

I. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘

𝑚 , where 𝑘′ ∈ [1, 𝑘 − 1] and 𝑚 = 𝑚′; and

II. 𝑆𝑇𝑠
𝑘′
𝑚′ ≥ 𝑆𝑇𝑠𝑘+1

𝑚 , where 𝑘′ = 𝑘 + 1 and 𝑚 = 𝑚′.

Proof: Note that by inserting backwardly batch 𝑠𝑘
𝑚 at any available position on the same machine, the 𝑘′𝑡ℎ

position of batch 𝑠 in the new schedule is less than its 𝑘𝑡ℎ position in the initial schedule (𝑘′ < 𝑘 (𝑘′ ∈

[1, 𝑘 − 1])). By doing this, the completion time of all jobs belonging to all batches assigned to the same

machine in the new schedule are either increased or not changed as follows:

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘′ − 1]

• The 𝐶𝑇𝐽𝑗𝑠𝑘′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑘′

𝑚

111

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is increased, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘′ + 1, 𝑘] (common job(s)), and

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘 + 1, 𝑛].

Therefore, the minimum increase in ∆𝑍 due to the change in the completion time of all common job(s)

belonging to the batch(s) and its tardiness can be evaluated as ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 −𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘]

𝐶𝑇𝐽𝑗𝑠𝑙
𝑚) + 𝛽 (𝑇𝐽𝑗𝑠𝑙′

𝑚 − 𝑇𝐽𝑗𝑠𝑙
𝑚)) by considering one-to-one correspondence between 𝑙 and 𝑙′ (meaning 𝑘′

with 𝑘′ + 1, and so on to finally consider 𝑘 − 1 with 𝑘), which includes the common jobs(s) belonging to

the batch(s), which is processed after 𝐽𝑗𝑠𝑘′
𝑚 (the last job 𝑗 of batch 𝑠 on 𝑘′𝑡ℎ position) in the new schedule

and before 𝐽𝑗𝑠𝑘+1
𝑚 (the first job 𝑗 of batch 𝑠 on 𝑘 + 1𝑡ℎ position) in the initial schedule. If the due date of

the common job(s) assigned to [𝑠𝑘′+1
𝑚 , 𝑠𝑘

𝑚] is equal to or greater than its completion time on the new

schedule, the difference in the objective function value can be written as ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚))𝑙∈[𝑘′,𝑘−1],𝑙′∈[𝑘′+1,𝑘] .

Lemma 5: Regardless of which batch of the same group or a different group batch 𝑠𝑘−1
𝑚𝑎 will be processed

after, how many jobs each batch includes, due date and release time of other jobs, inserting batch 𝑠𝑘−1
𝑚𝑎 in

any available position between batches on a different machine (𝑚𝑏) provides no improvement in the

objective function value, if

I. 𝑆𝑇
𝑠
𝑘′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘

𝑚𝑎 , where 𝑘′ = 𝑘 − 1 and 𝑚′𝑎 = 𝑚𝑎 ; and

II. 𝑆𝑇
𝑠
(𝑘′+1)′

𝑚𝑎
′ ≥ 𝑆𝑇𝑠(𝑘′)

𝑚𝑎 , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑎 ; and

III. 𝑆𝑇
𝑠
𝑘′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘−1

𝑚𝑎 , where 𝑘′ ∈ [1, 𝑛𝑏] and 𝑚′𝑎 = 𝑚𝑏 .

Proof: Note that by inserting batch 𝑠𝑘−1
𝑚𝑎 on a different machine 𝑚𝑏 , the 𝑘′𝑡ℎ position of the batch 𝑠 in the

new schedule can be any available position as 𝑘′ ∈ [1, 𝑛𝑏]. By doing this, the completion time of all jobs

belonging to all batches assigned to machines 𝑚𝑎 and 𝑚𝑏 in the new schedule, are either increased or not

changed as follows:

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [1, 𝑘 − 2], and 𝑚′𝑎 = 𝑚𝑎

112

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [𝑘 − 1, 𝑛𝑎 − 1], and 𝑚′𝑎 =

𝑚𝑎

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏 does not change, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [1, 𝑘′ − 1], and 𝑚′𝑏 = 𝑚𝑏

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘′
𝑚′𝑎 increases or does not change, where 𝑗 ∈ 𝑠𝑘′

𝑚𝑏
′

, 𝑘′ ∈ [1, 𝑛𝑏], and 𝑚′𝑎 = 𝑚𝑏, and

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [𝑘′ + 1, 𝑛𝑏 + 1], and 𝑚′𝑏 =

𝑚𝑏.

The minimum increase in ∆𝑍 is satisfied when at least one job belonging to batches at both [𝑘 − 1, 𝑛𝑎 − 1]

interval of machine 𝑚𝑎 and [𝑘′, 𝑛𝑏 + 1] interval of machine 𝑚𝑏 in the new schedule is increased; otherwise,

the minimum increase in ∆𝑍 is equal to zero.

Lemma 6-1: Regardless of which batches of the same group or different groups batches 𝑠𝑘𝑎
𝑚 and 𝑠𝑘𝑏

𝑚 will

be swapped, how many jobs each batch includes, due date and release time of other jobs, swapping two

batches 𝑠𝑘𝑎
𝑚 and 𝑠𝑘𝑏

𝑚 on the same machine, where 𝑘𝑏 > 𝑘𝑎 provides no improvement in the objective

function value, if

I. 𝑆𝑇𝑠
𝑘𝑏
′
𝑚′ ≥ 𝑆𝑇𝑠𝑘𝑏

𝑚 , where 𝑘𝑏
′ = 𝑘𝑎 and 𝑚′ = 𝑚; and

II. 𝑆𝑇𝑠
𝑘𝑏
′
𝑚′ ≥ 𝑆𝑇𝑠𝑘𝑏+1

𝑚 , where 𝑘𝑏
′ = 𝑘𝑏 + 1 and 𝑚′ = 𝑚.

Proof: Note that by swapping batch 𝑠𝑘𝑏
𝑚 with batch 𝑠𝑘𝑎

𝑚 processed before 𝑠𝑘𝑏
𝑚 on the same machine, the 𝑘′𝑡ℎ

positions of the batches 𝑠𝑘′𝑏
𝑚′ and 𝑠𝑘′𝑎

𝑚′ in the new schedule is 𝑘𝑎 and 𝑘𝑏, respectively. By doing this, the

completion time of all jobs belonging to all batches assigned to the machine 𝑚 in the new schedule are

either increased or not changed as follows:

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [1, 𝑘𝑎 − 1]

• The 𝐶𝑇𝐽𝑗𝑠𝑘𝑏′
𝑚 increases or does not change, where 𝑗 ∈ 𝑠

𝑘𝑏
′
𝑚

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is increased, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘𝑎 + 1, 𝑘𝑏 − 1]

• The 𝐶𝑇𝐽𝑗𝑠𝑘𝑎′
𝑚 increases, where 𝑗 ∈ 𝑠𝑘𝑎′

𝑚 , and

113

• The 𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚 and 𝑙′ ∈ [𝑘𝑏 , 𝑛].

The minimum increase in ∆𝑍 due to the change in the completion time of all jobs 𝑗 belonging to batch 𝑠

assigned to [𝑘𝑎 + 1, 𝑘𝑏] in the new schedule and their tardiness can be evaluated as ∆𝑍 ≥

σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚) + 𝛽 (𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝑇𝐽𝑗𝑠𝑙

𝑚)) 𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] , by considering one-to-one

correspondence between 𝑙 and 𝑙′ (meaning 𝑘𝑎 with 𝑘𝑎 + 1, and so on to finally consider 𝑘𝑏 − 1 with 𝑘𝑏).

If the due date of the jobs belonging to batches assigned to [𝑠
(𝑘𝑏

′+1)
𝑚 , 𝑠𝑘𝑎′

𝑚] is equal to or greater than their

completion times on the new schedule, then ∆𝑍 ≥ σ 𝑤𝑗 (𝛼 (𝐶𝑇𝐽𝑗𝑠𝑙′
𝑚 − 𝐶𝑇𝐽𝑗𝑠𝑙

𝑚))𝑙∈[𝑘𝑎,𝑘𝑏−1],𝑙
′∈[𝑘𝑎+1,𝑘𝑏] .

Lemma 6-2: Regardless of which batches of the same group or different groups batches 𝑠𝑘𝑎
𝑚𝑎 and 𝑠𝑘𝑏

𝑚𝑏 will

be swapped, how many jobs each batch includes, due date and release time of other jobs, swapping two

batches 𝑠𝑘𝑎
𝑚𝑎 and 𝑠𝑘𝑏

𝑚𝑏 on different machines (𝑚𝑎 ≠ 𝑚𝑏) provides no improvement in the objective function

value, if

I. 𝑆𝑇
𝑠
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠𝑘𝑎

𝑚𝑎 , where 𝑚′𝑎 = 𝑚𝑏 and 𝑘𝑎
′ = 𝑘𝑏

II. 𝑆𝑇
𝑠
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝑆𝑇

𝑠𝑘𝑏

𝑚𝑏 , where 𝑚′𝑏 = 𝑚𝑎 and 𝑘𝑏
′ = 𝑘𝑎

III. 𝑆𝑇
𝑠
𝑘𝑎
′
𝑚𝑎
′ ≥ 𝑆𝑇𝑠(𝑘𝑎+1)

𝑚𝑎 , where 𝑚′𝑎 = 𝑚𝑎 and 𝑘𝑎
′ = 𝑘𝑎 + 1 , and

IV. 𝑆𝑇
𝑠
𝑘𝑏
′

𝑚𝑏
′ ≥ 𝑆𝑇

𝑠(𝑘𝑏+1)
𝑚𝑏 , where 𝑚′𝑏 = 𝑚𝑏 and 𝑘𝑏

′ = 𝑘𝑏 + 1.

Proof: Note that by swapping batch 𝑠𝑘𝑎
𝑚𝑎 with batch 𝑠𝑘𝑏

𝑚𝑏 on different machines, the 𝑘′𝑡ℎ positions of the

batches 𝑠𝑘𝑎
𝑚𝑎 and 𝑠𝑘𝑏

𝑚𝑏 in the new schedule is 𝑘𝑏 of machine 𝑚𝑏 and 𝑘𝑎 of machine 𝑚𝑎, respectively. By

doing this, the completion time of all jobs belonging to all batches, which are assigned to the machines 𝑚𝑎

and 𝑚𝑏 in the new schedule, are either increased or not changed as follows:

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎 does not change, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [1, 𝑘𝑎 − 1], and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘𝑏
′

𝑚′𝑏 increases or does not change, where 𝑗 ∈ 𝑠
𝑘𝑏
′

𝑚𝑏
′

, 𝑘′𝑏 = 𝑘𝑎, and 𝑚′𝑏 = 𝑚𝑎

114

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′
𝑚′𝑎 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′

𝑚𝑎
′

, 𝑙′ ∈ [𝑘𝑎 + 1, 𝑛𝑎], and 𝑚′𝑎 = 𝑚𝑎

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏 does not change, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [1, 𝑘𝑏 − 1], and 𝑚′𝑏 = 𝑚𝑏

• The 𝐶𝑇
𝐽𝑗𝑠

𝑘𝑎
′

𝑚′𝑎 increases or does not change, where 𝑗 ∈ 𝑠
𝑘𝑎
′
𝑚𝑎
′

, 𝑘′𝑎 = 𝑘𝑏, 𝑚′𝑎 = 𝑚𝑏, and

• The 𝐶𝑇
𝐽𝑗𝑠

𝑙′

𝑚′𝑏 is either increased or not changed, where 𝑗 ∈ 𝑠𝑙′
𝑚𝑏
′

, 𝑙′ ∈ [𝑘𝑏 + 1, 𝑛𝑏] and 𝑚′𝑏 = 𝑚𝑏

The minimum increase in ∆𝑍 is satisfied when at least one job belonging to both [𝑘𝑎, 𝑛𝑎] of machine 𝑚𝑎

and [𝑘𝑏 , 𝑛𝑏] of machine 𝑚𝑏 in the new schedule is increased; otherwise, the minimum increase in ∆𝑍 is

equal to zero.

There are several important points related to developed lemmas.

• First, in all of the above cases related to lemmas, the schedule(s) is blocked due to either release

time of a job(s)/batch(es) or the new setup time for a moved job(s)/batch(es), which can both freeze

some jobs/batches for backward movement on a machine(s), resulting in no improvement.

• Second, an ineffective neighbor move is determined for a particular stage, irrespective of the other

stages.

• Third, the completion time of a job(s) related to immediately prior stage is considered as its release

time(s) for current stage in order to identify an ineffective move with the help of lemmas. This prior

stage is where the job had its latest operation (considering stage skipping).

• Fourth, when the outcome of a move makes no contribution to improve the objective function value

(∆𝑍) in a particular stage, the completion time of jobs for this stage and, subsequently, the release

time of these jobs for the immediately following stage are either increased or not changed. This

scenario repeats for each of two consecutive stages, up to the last stage.

The findings from computational tests in a particular stage of HFS are summarized in Table 12. Applying

lemmas can significantly reduce computational times by about 24.5%, on average (up to 40%). It is worth

noting that this reduction will be more significant when lemmas are implemented in all stages. Also, the

reduction in computational times is far more significant if the lemmas are implemented in solving medium

and large size problems than small ones.

115

Table 12. Performance of the TS-based algorithm with and without the lemmas

E
x

.
P

ro
b

le
m

#
 o

f
g

ro
u
p

s

#
 o

f
m

ac
h

in
es

#
 o

f
 a

ll
 j

o
b

s

 Without

lemmas

 With

Lemmas

Percentage of

Improvement Obj

Func

Val.

Comp

Time

(Sec)

Obj

Func

Val.

Comp

Time

(Sec)

1 7 5 22 1228.4 2305.0 1228.4 2212.8 4.0%

2 7 4 19 1806.6 1061.1 1806.6 1050.5 1.0%

3 7 5 24 4544.4 2566.5 4544.4 2284.2 11.0%

4 4 4 17 2322.6 853.2 2322.6 767.9 10.0%

5 5 5 17 2468.8 118.8 2468.8 115.2 3.0%

6 5 3 23 3230.5 364.2 3230.5 327.8 10.0%

7 8 4 25 2501.0 8767.0 2501.0 7539.6 14.0%

8 8 3 24 3551.5 3549.6 3551.5 2484.7 30.0%

9 7 3 26 6245.5 9878.7 6245.5 7606.6 23.0%

10 8 4 28 4695.2 5905.5 4695.2 4488.2 24.0%

11 7 3 26 3255.4 2921.1 3255.4 1898.7 35.0%

12 6 3 24 3667.0 1618.2 3667.0 1375.5 15.0%

13 9 3 29 3989.6 24034.1 3989.6 16583.5 31.0%

14 9 3 30 4041.6 17044.7 4041.6 13635.8 20.0%

15 13 4 39 3489.6 29510.1 3489.6 17706.1 40.0%

16 9 3 27 3621.0 5369.4 3621.0 4188.1 22.0%

17 11 3 33 5939.8 11319.7 5939.8 8376.5 26.0%

18 12 3 36 5591.0 37176.0 5591.0 24536.2 34.0%

4.2.9. Calibration of the meta-heuristic algorithms

Based on preliminary runs, all algorithms are allowed to run over a 2-h time limit considered to be the point

at which the algorithms become mature. With respect to the stage-based interdependency strategy, the

corresponding parameters are tuned/calculated separately in each stage, based on the performance of the

algorithms in the above-mentioned time interval.

The TS parameters are tuned by performing multiple regressions on some parameters of the problem, i.e.,

number of machines (𝑀), number of batches (𝐵), and average number of jobs in each batch (𝐽)̅. The tuned

parameters for the TS/PR algorithm, shown in Table 13, include the tabu list size (TLS), the index list size

(ILS), and the maximum iterations without improvement (MIWOI), for all search levels of TS-based

algorithms, as well as 𝑃𝑠𝑖𝑧𝑒 for all PR procedures. All parameters are tuned for each problem structure

determined in Section 5. Since 𝐵 and/or 𝐽 ̅might have different values in each level/stage of TS, these

parameters should be tuned whenever the TS-based algorithm moves across levels or stages. The empirical

formulae are obtained for TS parameters with the help of DATAFIT (1995). During TS/PR, two types of

TS are implemented for candidate solutions: slight TS including only the CTS and strong TS including the

CTS, OTS, and ITS. The TS parameters of slight TS follow the central TLS (CTLS), central ILS (CILS),

116

and central MIWOI (MCIWOI) of strong TS. 𝑃𝑠𝑖𝑧𝑒 is dependent on the applied path construction technique

and level of the problem.

Table 13. Empirical formulae for TS parameters

 (Small, Small) (Small, Large) (Large, Small) (Large, Large)

CTLS 2 2 ⌈0.242 + 0.52𝐵 − 0.48𝑀 + 0.1𝐽⌉̅ ⌈2.5 + 0.05𝐵 + 0.06𝑀 − 0.38𝐽⌉̅

CILS ⌈0.82 + 0.74𝐵 − 0.7𝑀 + 0.5𝐽⌉̅ ⌈2.455 + 0.42𝐵 − 0.15𝑀 − 0.05𝐽⌉̅ ⌈−5.5 + 3.545𝐵 − 1.05𝑀 − 1.5𝐽⌉̅ ⌈12.25 + 1.62𝐵 + 0.54𝑀 − 2.48𝐽⌉̅

MCIWOI ⌈0.35 + 0.48𝐵 − 0.3𝑀 + 0.4𝐽⌉̅ ⌈1.05 + 0.28𝐵 − 0.2𝑀 + 0.1𝐽⌉̅ ⌈−8.283 + 1.09𝐵 − 1.11𝑀 + 2.6𝐽⌉̅ ⌈−28.48 + 3.2𝐵 + 1.55𝑀 − 0.05𝐽⌉̅

OTLS ⌈−0.7𝐵 + 1.35𝑀 + 2.75𝐽⌉̅ ⌈0.44𝐵 − 0.68𝑀 + 1.55𝐽⌉̅ ⌈−0.6𝐵 + 1.8𝑀 + 1.25𝐽⌉̅ ⌈0.38𝐵 + 0.1𝑀 − 0.09𝐽⌉̅

OILS ⌈1.21𝐵 − 0.64𝑀 + 0.59𝐽⌉̅ ⌈0.384𝐵 + 0.08𝑀 + 0.13𝐽⌉̅ ⌈1.5𝐵 − 1.1𝑀 − 1.123𝐽⌉̅ ⌈0.28𝐵 + 3.39𝑀 − 1.38𝐽⌉̅

MOIWOI ⌈1.82𝐵 − 0.35𝑀 + 1.66𝐽⌉̅ ⌈0.456𝐵 − 0.05𝑀⌉ ⌈0.473𝐵 − 0.6𝑀 − 0.09𝐽⌉̅ ⌈0.05𝐵 + 1.01𝑀 − 0.23𝐽⌉̅

ITLS ⌈0.88𝐵 − 0.99𝑀 + 1.342𝐽⌉̅ ⌈0.29𝐵 − 0.31𝑀 + 0.98𝐽⌉̅ ⌈0.05𝐵 + 0.2𝑀 + 0.65𝐽⌉̅ ⌈−0.06𝐵 + 1.1𝑀 + 0.152𝐽⌉̅

IILS 2 2 2 ⌈0.03𝐵 + 0.345𝑀 + 0.212𝐽⌉̅

MIIWOI 1 1 1 ⌈0.339𝑀 − 0.03𝐽⌉̅

𝑷𝒔𝒊𝒛𝒆 10 15 15 20

LCS 10 8 7 5
LCS&Block 8 7 5 4
LCS&Swap 8 6 4 3
LCS, LCS&Block, and LCS&Swap stand for LCS-based, LCS- and block-based, LCS- and swap-based construction techniques,

respectively. Ceiling brackets ⌈. ⌉ rounds a number to its larger integer.

The PSO parameters are calculated by experimental design techniques. Based on extensive experiments

using test problems different from those implemented for TS/PR, the PSO parameters are tuned according

to the values of Table 14.

Table 14. The PSO algorithm parameters

Swarm Size Lower & upper bounds

𝜔𝑚𝑖𝑛 & 𝜔𝑚𝑎𝑥 0.4 & 2.0

𝑐1
𝑚𝑖𝑛 & 𝑐1

𝑚𝑎𝑥 0.4 & 2.4

𝑐2
𝑚𝑖𝑛 & 𝑐2

𝑚𝑎𝑥 0.4 & 2.4

𝑣𝑒𝑙𝑚𝑖𝑛 & 𝑣𝑒𝑙𝑚𝑎𝑥 -4.0 & 4.0

𝑥𝑚𝑖𝑛 & 𝑥𝑚𝑎𝑥 0.0 & 4.0

𝑎 10

𝐼𝑡𝑟𝑚𝑎𝑥 10000

During the evolution process of PSO, the non-linear dynamic coefficients are considered at each stage as

follows:

𝜔 = 𝜔𝑚𝑖𝑛 +

(

 (𝜔𝑚𝑎𝑥 −𝜔𝑚𝑖𝑛)

(1 + exp (
(−𝑎(𝐼𝑡𝑟𝑚𝑎𝑥 − 𝑡))

𝐼𝑡𝑟𝑚𝑎𝑥
⁄))

⁄

)

 (4.72)

117

𝑐1 = 𝑐1
𝑚𝑖𝑛 +

(

 (𝑐1

𝑚𝑎𝑥 − 𝑐1
𝑚𝑖𝑛)

(1 + exp(
(−𝑎(𝐼𝑡𝑟𝑚𝑎𝑥 − 𝑡))

𝐼𝑡𝑟𝑚𝑎𝑥
⁄))

⁄

)

 (4.73)

𝑐2 = 𝑐2
𝑚𝑖𝑛 + (

(𝑐2
𝑚𝑎𝑥 − 𝑐2

𝑚𝑖𝑛)

(1 + exp (−𝑎𝑡 𝐼𝑡𝑟𝑚𝑎𝑥
⁄))

⁄) (4.74)

𝜔𝑚𝑎𝑥/𝑐1
𝑚𝑎𝑥/𝑐2

𝑚𝑎𝑥 represents the highest value of 𝜔/𝑐1/𝑐2 and 𝜔𝑚𝑖𝑛/𝑐1
𝑚𝑖𝑛/𝑐2

𝑚𝑖𝑛 represents the lowest

value of 𝜔/𝑐1/𝑐2. Parameter 𝑎 has a constant value. 𝑟1 and 𝑟2 are independently generated by 𝑢𝑛𝑖𝑓 = [0, 1].

The appropriate value of 𝜒 in the case of meeting condition 𝑐1 + 𝑐2 > 4 is determined by 𝜒 =

2 (𝐶 − 2 + √𝐶2 − 4𝐶)⁄ , where 𝐶 = 𝑐1 + 𝑐2; otherwise 𝜒 = 1. The tuned parameters for the number of

iterations for LSA (𝐼𝑡𝑟𝐿𝑆𝐴) and 𝑃′𝑠𝑖𝑧𝑒 are shown in Table 15.

Table 15. Empirical formulae for PSO/LSA parameters

 (Small, Small) (Small, Large) (Large, Small) (Large, Large)

𝑰𝒕𝒓𝑳𝑺𝑨 ⌈0.2×∑ 𝐽𝑖
𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.16×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.14×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉ ⌈0.1×∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
⌉

𝑷′𝒔𝒊𝒛𝒆 2∑ 𝐽𝑖
𝑘

𝑖∈𝐼𝑘
 2.45∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
 2.55∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘
 3∑ 𝐽𝑖

𝑘

𝑖∈𝐼𝑘

5. LOWER BOUNDS

Due to the inherent complexity of combinatorial optimization problems such as the one considered in this

research, the enormous number of constraints and variables introduced into the model typically results in a

very large solution space. Since the research problem is strongly NP-hard (Section 4), it is not possible to

optimally solve it within a reasonable computational time. Thus, the need for solving the problem in the

hope of finding at least a solution for large industry-size problems has encouraged researchers to develop

advanced heuristic and meta-heuristic algorithms. Since these non-exact algorithms do not guarantee

solving a problem optimally, a mechanism should be established to evaluate the performance of theses

algorithms.

In dealing with NP-hard problems, benchmarking, which is one of the most common approaches for this

evaluation, is not a successful tool for comparison, because the best practices are also non-exact algorithms,

perhaps producing highly inferior solutions. Apart from this, there is no benchmark in the literature that is

related to the research problem addressed in this research. Therefore, developing a lower bound for the

118

optimal solution as the baseline for the minimization problems can determine the relative performance of

the non-exact algorithms. Since the optimal solution must be between the lower bound and the best solution

obtained by a non-exact algorithm, the gap between this bound and the proposed algorithm can be

considered as an indicator of the performance of that algorithm (Bozorgirad and Logendran 2014). The

mentioned gap is composed of two intervals, i.e. the deviation of the proposed algorithm from the optimal

solution, and the deviation of the lower bound from the optimal solution. Therefore, the smaller the gap,

the higher the performance of the proposed algorithm. Also, the closer the lower bound is to the optimal

solution, the more precise is the assessment of the proposed algorithm. Thus, in order to develop a tight

lower bound, the second interval of this gap must be minimized.

5.1. Lower bounding mechanisms

There are several different techniques to develop a lower bound including LP relaxation, Benders

decomposition, column generation, etc. The simplest lower bound for any IP problem is the linear

programming (LP) relaxation of that problem, which is obtained by relaxing integrality constraints of the

problem. Although the LP relaxation technique is very fast in finding a lower bound, the developed lower

bound can have a large deviation from the optimal solution and thus very inferior compared to other

techniques. Selective LP relaxation and iterative selective LP relaxation are extended version of LP

relaxation in order to improve the quality of the developed lower bound (Mehravaran 2013).

Classical Benders decomposition enumerates values of certain variables for solving the problem, which is

decomposed into a master problem (MP) and a set of sub-problems (SPs). For each set of enumerations,

the values of certain variables are fixed and fed into the SPs. Solution of the SPs generates a Benders cut

and must be satisfied in all subsequent solutions enumerated. Logic-Based Benders Decomposition (LBBD)

was introduced by Hooker and Yan (1995) in the context of logic circuit verification. The LBBD is a manual

decomposition technique that generalizes classical Benders decomposition technique (Hooker and Ottosson

2003).

The lower bounds obtained by LP relaxation techniques usually have a large deviation from the optimal

solution. Benders decomposition, known as row generation, is more useful, when it is applied for a problem

with a large number of constraints. In order to find tight lower bounds for large-size linear programming

problems with a large number of variables, an efficient technique called Column Generation (CG) was

developed. Initially starting from a model to cover a manageable part of the solution space, column

generation discovers a feasible solution satisfying the problem and adds it to the latest partial model updated

so far. Gradually, the model gets larger in size until it achieves a satisfactory solution to the entire problem.

The columns are the solutions that are iteratively identified and added to the partial model. Typically, there

119

are a large number of columns for large-size LP problems. Initially, working with all of these columns is

practically impossible and it is equivalent to solving the associated mathematical programing model

formulated for the problem in its entirety. Accordingly, many of the columns are initially left out, yet many

of them may not make a contribution in identifying the optimal solution. The main idea behind this

technique is to deal only implicitly with the columns of an optimization problem. This capability makes

column generation one of the most prominent techniques in solving LPs with a huge number of variables.

5.2. Review of the literature related to column generation technique

Column generation is implemented to solve the IP models obtained by a Dantzig-Wolfe decomposition

(Dantzig and Wolfe 1960), and was first implemented by Gilmore and Gomory (1961, 1963), as part of a

heuristic algorithm to deal with the cutting stock problem. The embedding of column generation in a

branch-and-bound (B&B) framework for solving a vehicle routing problem under time window constraints

(Desrosiers et al. 1984) was a key step in solving large-size IPs to optimality. Wilhelm (2001) provided a

technical review of column generation in integer programming and proposed three different types of column

generation identified in the literature. Each of these types includes a master problem (MP) with restricted

columns (RMP) that has to be optimized.

• Type I column generation uses an auxiliary model (AM) to generate an attractive set of

columns, and then the RMP is optimized over those explicitly identified columns. In this type

of column generation, there is no interaction between the RMP and AM.

• Type II column generation uses a price-out problem (POP) that interacts with the RMP to

identify a non-basic column with the most negative reduced cost.

• Type III column generation applies Dantzig-Wolfe Decomposition (DWD) to the linear

relaxation of an IP. The dual variables of the RMP comprise the objective function coefficients

of one or more SPs, and each SP is solved to introduce improving columns into the RMP.

Using column generation to find lower bounds is not new in the literature of scheduling problems. Column

generation has been used for many scheduling problems including parallel machines and flow shop. Van

Den Akker et al. (1999) applied column generation technique for minimizing the total weighted completion

time of 𝑛 jobs on 𝑚 identical-parallel machines. The problem was formulated as a set-covering problem

with huge number of variables, 𝑛 covering constraints, and a single side constraint. The numerical

experiments revealed that the lower bound was very tight, and the linear program often resulted in integer

solution. Thereafter, Van Den Akker et al. (2000) applied column generation technique to optimize a time-

120

indexed formulation of a single-machine scheduling problem. The main disadvantage of their models was

related to size. This difficulty is alleviated with the help of Dantzig-Wolfe decomposition.

Chen and Powell (1999a) used column generation for the problem of scheduling 𝑛 jobs on 𝑚 identical,

uniform or unrelated-parallel machines with respect to minimizing a linear combination of total weighted

completion time and weighted number of tardy jobs. Also, Chen and Powell (1999b) minimized the total

weighted tardiness and earliness of 𝑛 jobs with a non-restrictively large common due date on 𝑚 identical-

parallel machines with the help of this technique. Each column in their formulation represented a partial

schedule, which was generated by single machine scheduling sub-problem. In both research, they

formulated the problem as an integer program, and then reformulated the problem as a set partitioning

problem. A B&B algorithm is implemented in order to find an optimal integer solution for the second

problem. Later, Chen and Powell (2003) applied column generation to minimize the total weighted

completion time of multiple job families including 𝑛 jobs on 𝑚 identical-parallel machines, with sequence-

dependent or sequence-independent setup times. Chen and Lee (2002) proposed a similar approach

developed by Chen and Powell (1999b) to solve problems with 40 jobs and 6 parallel machines within a

reasonable computational time. They addressed the problem of scheduling 𝑛 independent jobs on 𝑚

identical-parallel machines to minimize the total earliness-tardiness penalty of the jobs. Lopes and de

Carvalho (2007) used the column generation in each branch of a B&B algorithm, known as branch-and

price (B&P) optimization algorithm, for the problem of scheduling a set of independent jobs, with release

dates and due dates, on a set of unrelated-parallel machines with availability dates and sequence-dependent

setup times, to minimize the total weighted tardiness. They used pseudo-polynomial algorithms based on

dynamic programming to solve the SPs, together with an accelerating mechanism for column generation

called primal box and a specific branching variable selection rule that significantly reduced the

computational time.

Column generation has also been successfully implemented for flow shop scheduling problems. Bozorgirad

and Logendran (2014) developed tight lower bounds for group scheduling in hybrid flow shop environment

with respect to minimizing a linear combination of total weighted completion time and total weighted

tardiness of all jobs assigned to pre-determined groups. Bülbül et al. (2004) proposed heuristic algorithms

based upon column generation in order to minimize tardiness, earliness and work-in-process costs for a

flow shop scheduling problem. Gelogullari and Logendran (2010) and Salmasi et al. (2010) implemented

column generation for group scheduling problems in flow shop environment in the framework of a B&B

algorithm in order to derive tight lower bounds. Then, they evaluated the performance of their meta-

heuristics with the help of developed lower bounds.

121

5.3. Branch-and-Price algorithm

A B&P algorithm is developed to obtain a tight lower bound with the help of applying the column

generation in each node, for the HFS scheduling problem addressed in this research. A decomposition of

an MILP model is then presented, which is followed by branching rules for the B&P algorithm. Three types

of decomposition of problems are developed in terms of three different MILP models, i.e., the MILP1,

RMILP, and MILP3 models. Since there is not too much difference between the MILP1 and MILP2, the

decomposition of problems is developed for only one of them. i.e., MILP1. Before going into the details of

different types of decomposition of problems, a common decomposition technique is explained. Then, an

acceleration technique and early termination of column generation are explained.

5.3.1. Dantzig-Wolfe Decomposition

Decomposing the problem into smaller problems which are computationally easier to solve is one of the

successful techniques in dealing with large-size complex problems. Column generation is one of the

decomposing techniques and divides the constraints of the MILP model into two parts, forming two

individual yet independent problems: an MP composed of the objective function and the most difficult

constraints that are dependent on each other; one or more SPs composed of the independent constraints

forming block diagonal structure. In other words, the MP is a set of columns that defines the solution space,

while columns are developed by the SPs. Any solution to the MILP model should satisfy both the MP and

SPs. Each column is a vector that contains a cost coefficient as well as all constraint coefficients for one of

the decision variables. Even though a problem has a restricted number of variables, it can have unlimited

number of columns. Therefore, a restricted master problem (RMP) with limited number of columns (a

subset of whole columns) is implemented in practice (Bozorgirad and Logendran 2014).

The column generation, in this research, applies Dantzig-Wolfe decomposition for the MILP model to

decompose the problem (Bazaraa et al. 2011, Dantzig and Wolfe 1960, Wilhelm 2001). The dual variables

of the RMP comprise the objective function coefficients of one or more SPs, and each SP is solved to

introduce improving columns into the RMP. The optimal solution in the SP or the solution with the most

negative reduced cost is transferred to the RMP and again the same process is repeated until no more

solution with negative reduced cost can be identified in any of the SPs. At this time, the problem is solved

to optimality (Barnhart et al. 1998, Lübbecke and Desrosiers 2005, Vanderbeck 2000, Vanderbeck and

Wolsey 1996, Wilhelm 2001). Identifying a set of constraints that links all the other constraints together

(linking constraints) is the basis of Dantzig-Wolfe decomposition. By relaxing linking constraints, the

problem can be decomposed into a number of independent SPs.

122

5.3.1.1. DWD1

The MILP1 model moves back and forth between batching and scheduling phases. For all of the stages, the

batch assignments to machines, batch sequences on machines, and job sequence within batches are

determined in the scheduling phase, while the batch compositions of groups are determined in the batching

phase. Since the optimal batch assignment to machines, batch sequence on machines, and job sequences

within batches should be determined in the scheduling phase for each combination between batch

compositions of groups related to all stages, which is developed in the batching phase, the solution space

exponentially increases and, subsequently, this leads to unaffordable and unreasonable computational

times.

In the MILP1 model, constraint (4.13) is the only linking constraint. With respect to this constraint,

completion time of a job in each stage is coupled with the completion time of that job in the preceding

stage. This preceding stage is where the job had its latest operation. By relaxing constraint (4.13), all the

other constraints only include the decision variables corresponding to a particular stage at a time and,

consequently, there is one SP for each stage, determining the partial batch sequences on machine(s) as well

as job sequences within batches on that stage. These partial sequences are linked together with the help of

constraint (4.13) in the RMP. In addition to the notations used in section 4.1.1, the following notations are

defined to formulate the RMP and SPs.

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇}

𝑇 Total number of columns, where each column represents the partial schedules for all the stages,

𝑋𝑖𝑠𝑗
𝑘𝑡 The completion time of job 𝑗 assigned to batch 𝑠 of group 𝑖 in stage 𝑘 in column 𝑡

𝑇𝑖𝑗
𝑡 The tardiness of job 𝑗 of group 𝑖 in column 𝑡

 ∅𝑖𝑠𝑗
𝑘𝑡 1 if job 𝑗 is assigned to batch 𝑠 of group 𝑖 in stage 𝑘 in column 𝑡; 0 otherwise

𝑍𝑖𝑠ℎ
𝑘𝑡 1 if batch 𝑠 of group 𝑖 is assigned to machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise

Restricted linear master problem (RLMP)

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗 (∑ 𝛼.𝑋
𝑖𝑠𝑗

(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)
)𝑡

𝑠∈𝑔𝑖

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡 (5.1)

Subject to:

123

∑

(

 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
𝑡∈𝒯

− (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 +𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − 2)𝑀

)

 𝜆𝑡 ≥ 0;

𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑠 = 1,2, … , 𝑆
𝑖

𝑠𝑡𝑖𝑗(𝑟)
; 𝑠′ = 1,2, … , 𝑆

𝑖

𝑠𝑡𝑖𝑗(𝑟−1);

𝑟 = 1,2, … ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

(5.2)

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.3)

𝜆𝑡 ∈ {0,1};

𝑡 ∈ 𝒯

(5.4)

This model is initiated with a given feasible solution as the first column. With the help of developed initial

solution finding mechanism (section 4.2.2), the column generation algorithm is initialized. As the column

generation progresses, the model iteratively includes more columns. Since all variables 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
,

𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡
, 𝜙

𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
, and 𝑇𝑖𝑗

𝑡 related to the original MILP model are assumed to be known, the only decision

variable in the model is binary variables 𝜆𝑡. The objective function of the RMP (5.1) minimizes the

objective function value of the original MILP model over all columns that are introduced into the RMP.

The linking constraint (5.2) relates the completion time of a job belonging to a batch of a group in each

stage to completion time of that job in the prior stage, in which this job had an operation. Convexity

constraint (5.3) ensures that a convex combination of columns is selected in each iteration of the algorithm.

And finally, the integrality of the problem is guaranteed by the binary constraint (5.4).

The RMP does not include all the possible columns and is restricted in the number of columns. Instead, all

feasible columns are generated with the help of the SPs, and the best one will be introduced into the RMP.

The column contributed to the most improvement to the objective function of the RMP is known as the best

column, which is the column with the minimum reduced cost. Therefore, the objective function of the SPs

determine the column with the minimum reduced cost. If this column has a negative reduced cost, it will

be introduced into the RMP. This process will be repeated between the RMP and SPs until no further

improvement to the RMP is obtained. This is considered as the stopping criteria for the column generation

algorithm. In final stage, the optimal solution of this RMP will be equivalent to the optimal solution for the

124

unrestricted master problem. From a linear programming point of view, the reduced cost of the RMP can

be identified based upon the dual of this problem. Therefore, the integrality constraints (5.4) are relaxed

(𝜆𝑡 ≥ 0) and then the dual of this problem is developed as follows:

Φ𝑖𝑗𝑠�́�𝑟 Dual variable associated with constraint (5.2)

𝜓 Dual variable associated with constraint (5.3)

Dual of the linear master problem (DLMP)

𝑀𝑎𝑥 𝑍 = 𝜓 (5.5)

Subject to:

∑ ∑ ∑ ∑ ∑

(

 𝑋
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑠ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)

𝑚𝑖𝑗+1

𝑟=1𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

− (𝜙
𝑖𝑠𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 +𝜙
𝑖𝑠’𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − 2)𝑀

)

 ×Φ𝑖𝑗𝑠�́�𝑟 + 𝜓

≤∑ ∑ 𝑤𝑖𝑗 (∑ 𝛼.𝑋
𝑖𝑠𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

𝑠∈𝑔𝑖

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
;

𝑡 ∈ 𝒯;

(5.6)

Φ𝑖𝑗𝑠�́�𝑟 ≥ 0;

∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑠 = 1,2, … , 𝑔
𝑖

𝑠𝑡𝑖𝑗(𝑟)
; 𝑠′ = 1,2, … , 𝑔

𝑖

𝑠𝑡𝑖𝑗(𝑟−1); 𝑟 = 1,2,… ,𝑚𝑖𝑗;

(5.7)

𝜓 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; (5.8)

As mentioned earlier, each column in the RMP includes all stages in the hybrid flow shop. Apart from this,

there is only one constraint (5.6) for this column in the DLMP. Therefore, there should be only one unified

SP, which includes all stages simultaneously. Since all decision variables corresponding to each stage in

this unified SP are totally independent of each other, the SP is decomposed into multiple SPs related to each

stage. In other words, each SP assigned to each stage includes all variables corresponding to a particular

stage. As a result, an exhaustive combination enumeration between batch compositions of all groups in all

stages is excluded, but an enormous number of combinations between batch compositions of all groups in

each stage still remains. In developing the SPs, two extra virtual stages are introduced as follows:

125

• Stage (0) is an initial virtual stage, where all jobs begin their process from. Run time of all jobs in

this stage is equal to zero, and the only constraint in this stage is constraint (4.9), which defines the

non-zero job release times. Therefore, the completion time of each job is equal to its release time

in initial virtual stage.

• Stage (𝑚 + 1) is a final virtual stage, where all jobs will be completed. Run time of all jobs in this

stage is zero, and the only constraint sets in this stage are constraints (4.14) and (4.15), which are

the tardiness and sign constraints, respectively.

With the help of these two virtual stages, the assumptions of non-zero job release time as well as bi-criteria

objective function are excluded from middle stages (𝑘 ∈ 𝐾). Therefore, the objective function associated

with middle stages of SPs is related to only one criterion, i.e., total completion time. These SPs are presented

in the following based upon different stages:

Sub-problems (SPs)

𝑺𝑷(𝟎), 𝒔𝒕𝒊𝒋(𝟎) = 𝟎,∀ 𝒊 ∈ 𝑰𝟎 & 𝒋 ∈ 𝑱𝒊
𝟎

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�1
𝑠∈𝑔𝑖

)𝑋𝑖𝑠’𝑗
0𝑡)

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�1
𝑠∈𝑔𝑖

)𝜙𝑖𝑠’𝑗
0𝑡)

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

(5.9)

 Subject to:

𝑋𝑖𝑠𝑗
0 ≥ 𝑟𝑖𝑗; 𝑖 ∈ 𝐼0, 𝑗 ∈ 𝐽𝑖

0. (5.10)

𝑺𝑷(𝒌), ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒊𝒋(𝒓) = 𝒌, ∀𝒊 = , ,… , 𝒈 & 𝒋 = , ,… , 𝒏𝒊 & 𝒓 = , ,… ,𝒎𝒊𝒋 (5.11)

126

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑟+1)
𝑠∈𝑔𝑖

)𝑋𝑖𝑠’𝑗
𝑘𝑡)

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖

)𝑋𝑖𝑠𝑗
𝑘𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠∈𝑔𝑖

)𝑀×𝜙𝑖𝑠𝑗
𝑘𝑡)

𝑠′∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑟+1)
𝑠′∈𝑔𝑖

)𝑀×𝜙𝑖�́�𝑗
𝑘𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ (∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖

)
ℎ∈𝑉𝑖𝑗

𝑘
𝑡𝑖𝑗ℎ
𝑘)𝑍𝑖𝑠ℎ

𝑘𝑡)
𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+ 2(∑ ∑ ∑ ∑ Φ𝑖𝑗𝑠�́�𝑟
𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

)×𝑀

 Subject to:

∑ ∅𝑖𝑠𝑗
𝑘

𝑠∈𝑆𝑖
𝑘

= 1

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(5.12)

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≤ 1

𝑖 ∈ 𝐼𝑘; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑘 ∈ 𝐾;

(5.13)

∑ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑉𝑘
≥ ∅𝑖𝑠𝑗

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(5.14)

∑ ∅𝑖𝑠𝑗
𝑘

𝑗∈𝐽𝑖
𝑘

≥∑ (𝐿𝐵𝑖ℎ
𝑘)𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑉𝑘

𝑠 ∈ 𝑆𝑖
𝑘; 𝑖 ∈ 𝐼𝑘; 𝑘 ∈ 𝐾;

(5.15)

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑡𝑖𝑠

𝑘) + 𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗
𝑘) ≥ 𝐶𝑝𝑡

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑖
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑔𝑝

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;
(5.16)

127

𝑋𝑝𝑡𝑗
𝑘 +𝑀(𝐴𝑝𝑡𝑖𝑠

𝑘) +𝑀(1 − 𝑍𝑖𝑠ℎ
𝑘) +𝑀(1 − 𝑍𝑝𝑡ℎ

𝑘) + 𝑀(1 − ∅𝑝𝑡𝑗
𝑘) ≥ 𝐶𝑖𝑠

𝑘 + 𝑆𝑖𝑝ℎ
𝑘 + 𝑡𝑝𝑗ℎ

𝑘

𝑖, 𝑝 ∈ 𝐼𝑘(𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑗 ∈ 𝐽𝑝
𝑘; ℎ ∈ 𝑣𝑝𝑡

𝑘 ; 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖
𝑘; 𝑡 ∈ 𝑔𝑝

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(5.17)

𝑋𝑖𝑠𝑗
𝑘 +𝑀(1 − ∅𝑖𝑠𝑗

𝑘) ≥∑ (𝑎ℎ
𝑘 + 𝑆0𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘)𝑍𝑖𝑠ℎ

𝑘

ℎ∈𝑣𝑖𝑗
𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

(5.18)

𝑋𝑖𝑠𝑗
𝑘 − 𝑋𝑖𝑠𝑞

𝑘 +𝑀(𝑌𝑖𝑠𝑗𝑞
𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘) ≥∑ 𝑡𝑖𝑗ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘)

ℎ ∈𝑣𝑖𝑗
𝑘 ∩𝑣𝑖𝑞

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(5.19)

𝑋𝑖𝑠𝑞
𝑘 − 𝑋𝑖𝑠𝑗

𝑘 +𝑀(1 − 𝑌𝑖𝑠𝑗𝑞
𝑘) + 𝑀(1 − ∅𝑖𝑠𝑗

𝑘) + 𝑀(1 − ∅𝑖𝑠𝑞
𝑘) ≥∑ 𝑡𝑖𝑞ℎ

𝑘 (𝑍𝑖𝑠ℎ
𝑘)

ℎ ∈𝑣𝑖𝑗
𝑘∩𝑣𝑖𝑞

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘(𝑗 < 𝑞); 𝑘 ∈ 𝐾; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑀: 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟;

(5.20)

𝐶𝑖𝑠
𝑘 ≥ 𝑋𝑖𝑠𝑗

𝑘

𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾

(5.21)

𝑋𝑖𝑠𝑗
𝑘 , 𝐶𝑖𝑠

𝑘 ≥ 0;

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1};

𝑖 ∈ 𝐺; 𝑗 ∈ 𝑔𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ; 𝑀: large number.

(5.22)

𝑺𝑷(𝒎+), 𝒔𝒕𝒊𝒋(𝒎𝒊𝒋+)
= 𝒎+ , ∀ 𝒊 ∈ 𝑰𝒎+ & 𝒋 ∈ 𝑱𝒊

𝒎+ (5.23)

128

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ ∑ ∑ (𝛼×𝑤𝑖𝑗 − (∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)𝑋𝑖𝑠𝑗
𝑚𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (𝛽×𝑤𝑖𝑗)
𝑗∈𝑔𝑖𝑖∈𝐺

𝑇𝑖𝑗
𝑡

+∑ ∑ ∑ ((∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)𝑀×𝜙𝑖𝑠𝑗
𝑚𝑡)

𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ ∑ ((∑ (∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖

)
ℎ∈𝑉𝑖𝑗

𝑘
𝑡𝑖𝑗ℎ
𝑚)𝑍𝑖𝑠ℎ

𝑚𝑡)
𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

+ 2(∑ ∑ ∑ ∑ Φ𝑖𝑗𝑠�́�(𝑚𝑖𝑗)
𝑠′∈𝑔𝑖𝑠∈𝑔𝑖𝑗∈𝑔𝑖𝑖∈𝐺

)×𝑀 − 𝜓

 Subject to:

𝑇𝑖𝑗 ≥ 𝑋𝑖𝑠𝑗
𝑚 − 𝑑𝑖𝑗

𝑖 ∈ 𝐼𝑚+1, 𝑗 ∈ 𝐽𝑖
𝑚+1; 𝑠 ∈ 𝑆𝑖

𝑚;
(5.24)

𝑋𝑖𝑠𝑗
𝑚 , 𝑇𝑖𝑗 ≥ 0;

𝑍𝑖𝑠ℎ
𝑘 ∈ {0,1}; 𝐴𝑝𝑡𝑖𝑠

𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑡 < 𝑠); 𝑌𝑖𝑠𝑗𝑞
𝑘 ∈ {0,1} (𝑗 < 𝑞); ∅𝑖𝑠𝑗

𝑘 ∈ {0,1};

𝑖 ∈ 𝐺; 𝑗 ∈ 𝑔𝑖; 𝑘 ∈ 𝐾; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗, 𝑞 ∈ 𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑡 ∈ 𝑔𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 ; 𝑀: large number.

(5.25)

A summation of objective function values (5.9), (5.11), and (5.23) is the reduced cost obtained from the

DLMP for finding the next promising column to enter the RLMP. Constraint (5.10) ensures that processing

of each job cannot be started on the first stage if the job is not released in the initial virtual stage. Set of

constraints (5.12) through (5.22) determine independently the partial sequence and assignment of batches

on machines as well as the partial sequence of jobs within batches on each machine in each stage. Set of

constraints (5.12) through (5.15) determine the optimal batch compositions of groups in a stage. Constraints

(5.16) together with constraint (5.17) are incorporated to assign values to binary variables 𝐴𝑝𝑡𝑖𝑠
𝑘 and,

consequently, find the optimal sequence of batches on machines. Constraint (5.18) ensures that the

processing of any job within a batch in each of the stages only starts when the corresponding machine is

available to be setup for that batch. Set of constraints (5.19) and (5.20) are incorporated to assign values to

binary variables 𝑌𝑖𝑠𝑗𝑞
𝑘 and, consequently, find the optimal sequence of jobs within batches. Constraint (5.21)

determines the completion time of each batch. Constraint (5.24) is applied to find the tardiness of each job

in the final virtual stage. Finally, constraints (5.22) and (5.25) contains all the signs and binary constraints.

129

In spite of excluding the combination between batch compositions of all groups for the entire stages as well

as bi-criteria objective function and non-zero job release time from the middle stages, each 𝑆𝑃(𝑘), 𝑘 ∈ 𝐾

is still a sequence-dependent batching and scheduling problem on either a set of unrelated-parallel machines

or one single-machine. Although each SP developed in each node of the B&P algorithm is strongly NP-

hard (Du and Leung 1990, Ho and Chang 1995, Karp 1972, Lenstra et al. 1990), the column generation

technique together with simplified SPs is developed in each node so that it can be applied even on large-

size instances of the batch scheduling problem in HFS. Therefore, DWD2 is introduced in the next section.

5.3.1.2. DWD2

As mentioned before, in the RMILP model, desired lower bound on batch sizes are relaxed from the MILP1

model so that there is a possibility to obtain either an optimal solution or a good quality lower bound for

the MILP1 model. Therefore, the batching phase of the MILP1 model is removed and the job assignment

and sequence on machines are determined for the entire stages. Since the RMILP model is developed based

on the MILP1 model, DWD2 can be considered as a restricted version of DWD1.

Several lifelike assumptions to reflect real industry requirements along with the exhaustive combination

enumeration between batch compositions for the entire stages make the problem very complex. As

mentioned in DWD1, with the help of two virtual stages, initial and final virtual stages, the assumptions of

non-zero job release time as well as bi-criteria objective function are excluded from middle-stage SPs of

DWD1. Therefore, the objective function associated with middle-stage SPs is related to only one criterion,

i.e., total completion time. All jobs begin their process from the initial virtual stage, while all jobs will be

completed at the final virtual stage. Run times of all jobs in these two stages are equal to zero. In addition,

an exhaustive combination enumeration between batch compositions for the entire stages is excluded by

relaxing the linking constraint. Hence, each 𝑆𝑃(𝑘) ∀𝑘 ∈ 𝐾 is still a batching and scheduling problem on

either a single-machine or a set of unrelated-parallel machines.

The identification of structural non-dominance properties corresponding to the batch composition

restrictions is a key step to reduce the solution space of middle-stage SPs to a non-dominated set and,

consequently, to make possible the solution in affordable time. Therefore, the batching phase of middle-

stage SPs of DWD1 is restricted to allocate one and only one job to each batch of each group in DWD2.

Thus, the optimal solution is guaranteed when there is no violation on 𝐿𝐵𝑖ℎ
𝑘 ; otherwise the SP gives a lower

bound for the original SP. This being the case, DWD2 is developed by implementing the following changes

on DWD1:

130

• If there is a desired lower bound(s), relax such requirement(s) as 𝐿𝐵𝑖ℎ
𝑘 = 1, where 𝑖 ∈ 𝐼𝑘; ℎ ∈

𝑣𝑘; 𝑘 ∈ 𝐾;

• Constraints (5.12), (5.14), (5.15), (5.19) and (5.20) are excluded;

• Change variable ∅𝑖𝑠𝑗
𝑘 to a parameter as: 𝑗𝑡ℎ job of group 𝑖 is assigned to 𝑠𝑡ℎ batch of that group in

each stage, so that 𝑗 = 𝑠 (i.e., ∅𝑖𝑗𝑗
𝑘 = 1, where 𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; 𝑘 ∈ 𝐾; ∅𝑖𝑗𝑗
𝑘 = 0, otherwise);

• Change the inequality constraint (5.13) to equality constraint as σ 𝑍𝑖𝑠ℎ
𝑘

ℎ∈𝑣𝑘 = 1; where 𝑖 ∈ 𝐼𝑘; 𝑗 ∈

𝐽𝑖
𝑘; 𝑠 ∈ 𝑆𝑖

𝑘; 𝑘 ∈ 𝐾;

• Remove variable 𝑌𝑖𝑠𝑗𝑞
𝑘 , because there is only one job assigned to each batch.

Consequently, the index “𝑠” is removed from decision variables and each middle-stage SP is converted to

a job scheduling problem, instead of batch scheduling. Although DWD2 can be developed directly from

the RMILP model, it is developed based on DWD1 to show the difference between SPs, particularly middle-

stage SPs, of the two developed DWDs.

In the RMILP model, constraint (4.25) is the only linking constraint. With respect to this constraint,

completion time of a job in each stage is coupled with the completion time of that job in the preceding stage

where the job had its latest operation. By relaxing constraint (4.25), the partial job assignment and

sequences on machines related to each stage are determined. In addition to the notations used in Section

4.1.4, the following notations are defined to formulate the RMP and SPs. Subsequently, objective functions

and constraint sets of the SPs as well as the RMP and dual of the linear master problem (DLMP) are defined.

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇}

𝑇 Total number of columns, where each column represents the partial schedules for all the stages,

𝑋𝑖𝑗
𝑘𝑡 The completion time of job 𝑗 of group 𝑖 in stage 𝑘 in column 𝑡

𝑇𝑖𝑗
𝑡 The tardiness of job 𝑗 of group 𝑖 in column 𝑡

𝑍𝑖𝑗ℎ
𝑘𝑡 1 if job 𝑗 of group 𝑖 is assigned to machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise

Restricted linear master problem (RLMP)

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗(𝛼. 𝑋𝑖𝑗
(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡 (5.26)

Subject to:

131

∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

𝑡∈𝒯

𝜆𝑡 ≥ 0;

𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;

(5.27)

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.28)

𝜆𝑡 ≥ 0; 𝑡 ∈ 𝒯. (5.29)

Since all variables 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡
, 𝑍

𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡
, and 𝑇𝐷𝑖𝑗

𝑡 related to the RMILP model are assumed to be known, the

only decision variable in the model is binary variables 𝜆𝑡. Assume Φ𝑖𝑗𝑟 , ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 =

1,2,… ,𝑚𝑖𝑗 and 𝜓 as dual variables associated with constraints (5.27) and (5.28), respectively.

Subsequently, new objective functions and constraint sets of the SPs as well as the new RMP and DLMP

are defined as follows:

Dual of the linear master problem (DLMP)

𝑀𝑎𝑥 𝑍 = 𝜓 (5.30)

Subject to:

∑ ∑ ∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 ×
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺
Φ𝑖𝑗𝑟 + 𝜓

(5.31)

≤∑ ∑ 𝑤𝑖𝑗 (𝛼. 𝑋𝑖𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
; 𝑡 ∈ 𝒯;

Φ𝑖𝑗𝑟 ≥ 0; ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗; (5.32)

𝜓 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; (5.33)

132

Sub-problems (SPs)

𝑺𝑷(𝟎), 𝒔𝒕𝒊𝒋(𝟎) = 𝟎,∀ 𝒊 ∈ 𝑰𝟎 & 𝒋 ∈ 𝑱𝒊
𝟎

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ ∑ (Φ𝑖𝑗1)𝑋𝑖𝑗
0𝑡

𝑗∈𝑔𝑖𝑖∈𝐺

(5.34)

Subject to:

𝑋𝑖𝑗
0 ≥ 𝑟𝑖𝑗; 𝑖 ∈ 𝐼

0, 𝑗 ∈ 𝐽𝑖
0. (5.35)

𝑺𝑷(𝒌), ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒊𝒋(𝒓) = 𝒌, ∀𝒊 = , ,… , 𝒈 & 𝒋 = , ,… , 𝒏𝒊 & 𝒓 = , ,… ,𝒎𝒊𝒋

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ ∑ (Φ𝑖𝑗(𝑟+1))𝑋𝑖𝑗
𝑘𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
−∑ ∑ (Φ𝑖𝑗𝑟)𝑋𝑖𝑗

𝑘𝑡

𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (∑ 𝑡𝑖𝑗ℎ
𝑘 (Φ𝑖𝑗𝑟)

𝑗∈𝑔𝑖

)𝑍𝑖𝑗ℎ
𝑘𝑡

ℎ∈𝑣𝑖𝑗
𝑘

𝑖∈𝐺

(5.36)

Subject to:

σ 𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘 = 1; 𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; (5.37)

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝐴𝑝𝑗′𝑖𝑗

𝑘) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘) ≥ 𝑋𝑝𝑗′
𝑘 + 𝑆𝑝𝑖ℎ

𝑘 + 𝑡𝑖𝑗ℎ
𝑘

(5.38)

𝑖, 𝑝 ∈ 𝐼𝑘 (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′); 𝑗′ ∈ 𝐽𝑝
𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ;

𝑋𝑝𝑗′
𝑘 +𝑀(𝐴𝑝𝑗′𝑖𝑗

𝑘) + 𝑀(1 − 𝑍𝑖𝑗ℎ
𝑘) + 𝑀(1 − 𝑍𝑝𝑗′ℎ

𝑘) ≥ 𝑋𝑖𝑗
𝑘 + 𝑆𝑖𝑝ℎ

𝑘 + 𝑡𝑝𝑗′ℎ
𝑘

𝑖, 𝑝 ∈ 𝐼𝑘 (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′); 𝑗′ ∈ 𝐽𝑝
𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; ℎ ∈ 𝑣𝑖𝑗
𝑘 ∩ 𝑣𝑝𝑗′

𝑘 ;
(5.39)

𝑋𝑖𝑗
𝑘 ≥ σ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘)𝑍𝑖𝑗ℎ
𝑘

ℎ∈𝑣𝑖𝑗
𝑘 ; 𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; (5.40)

𝑋𝑖𝑗
𝑘 , 𝑇𝐷𝑖𝑗 ≥ 0; 𝑍𝑖𝑗ℎ

𝑘 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗
𝑘 ∈ {0,1} (𝑝 ≤ 𝑖; 𝑝 = 𝑖 → 𝑗 ≠ 𝑗′); 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖

𝑘; 𝑗′ ∈

𝐽𝑝
𝑘; ℎ ∈ 𝑣𝑖𝑗

𝑘 .
(5.41)

133

𝑺𝑷(𝒎+), 𝒔𝒕𝒊𝒋(𝒎𝒊𝒋+)
= 𝒎+ , ∀ 𝒊 ∈ 𝑰𝒎+ & 𝒋 ∈ 𝑱𝒊

𝒎+

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ ∑ (𝛼 ∗ 𝑤𝑖𝑗 −Φ𝑖𝑗𝑚)𝑋𝑖𝑗
𝑚𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
+∑ ∑ (𝛽 ∗ 𝑤𝑖𝑗)𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺

+∑ ∑ (∑ 𝑡𝑖𝑗ℎ
𝑚 (Φ𝑖𝑗𝑟)

𝑗∈𝑔𝑖

)𝑍𝑖𝑗ℎ
𝑚𝑡

ℎ∈𝑣𝑖𝑗
𝑚𝑖∈𝐺

− 𝜓
(5.42)

Subject to:

𝑇𝑖𝑗 ≥ 𝑋𝑖𝑗
𝑚 − 𝑑𝑖𝑗; 𝑖 ∈ 𝐼

𝑚+1, 𝑗 ∈ 𝐽𝑖
𝑚+1; (5.43)

𝑋𝑖𝑗
𝑚, 𝑇𝑖𝑗 ≥ 0; 𝑍𝑖𝑗ℎ

𝑚 ∈ {0,1}; 𝐴𝑝𝑗′𝑖𝑗
𝑚 ∈ {0,1} (𝑝 ≤ 𝑖); 𝑖, 𝑝 ∈ 𝐼𝑚+1; 𝑗 ∈ 𝐽𝑖

𝑚+1; ℎ ∈ 𝑣𝑖𝑗
𝑚+1. (5.44)

Set of constraints (5.26) through (5.29) and set of constraints (5.30) through (5.33) determine the RLMP

and DLMP, respectively, with respect to simplifications to the SPs. A summation of objective function

values (5.34), (5.36), and (5.42) is the reduced cost obtained from the DLMP for finding the next promising

column to enter the RLMP. Constraint (5.35) ensures that processing of each job cannot be started on the

first stage if the job is not released in the initial virtual stage. Set of constraints (5.37) through (5.41)

determine independently the partial sequence of jobs belonging to different groups on each machine in each

stage. Constraint (5.37) ensures that each job of a group is assigned to only one machine. Constraints (5.38)

together with constraint (5.39) are incorporated to find the sequence of jobs. With respect to these

constraints, if two jobs are processed on the same machine, the completion time of the succeeding job

(which is not skipping the stage) must be greater than the completion time of the preceding job, plus the

sequence-dependent setup time and the run time required for processing the job on a particular stage.

Simultaneously, these constraints assign values to binary variables 𝐴𝑝𝑗′𝑖𝑗
𝑘 , which determine the sequence of

jobs on the same machine in each stage. Constraint (5.40) ensures that the processing of any job in each of

the stages only starts when the corresponding machine is available to be setup for that job. Constraint (5.43)

is applied to find the tardiness of each job in the final virtual stage. Finally, constraints (5.41) and (5.44)

contains all the signs and binary constraints.

Since DWD2 is based on the RMILP model, which itself is the restricted version of the MILP1 model, the

lower bound obtained by DWD2 might be a tight lower bound for the RMILP model unless the number of

violations in 𝐿𝐵𝑖ℎ
𝑘 is not significant (case 6 in Figure 8). In this case, given the computational time limit,

134

there is a possibility of obtaining a tight lower bound for any of the MILP models by DWD2, particularly

for medium- and large-size problems.

5.3.1.3. DWD3

Since middle-stage SPs of DWD1 are NP-hard, this algorithm might not be able to present tight lower

bounds, particularly for large-size problems. In addition, DWD2 can obtain tight lower bounds for any of

the MILP models only when the middle-stage SPs of this algorithm do not violate 𝐿𝐵𝑖ℎ
𝑘 significantly.

Therefore, similar to the structure of DWD1, DWD3 is developed based on the MILP3 model so that it

guarantees tight lower bounds of problems, as 𝐿𝐵𝑖ℎ
𝑘 will never be violated.

In the MILP3 model, constraint (4.43) is the only linking constraint. By relaxing this constraint, all the

other constraints include only the decision variables corresponding to a particular stage at a time and,

consequently, there is one SP for each stage, determining the partial job assignment and sequence on that

stage. These partial sequences are linked together with the help of constraint (4.43) in the RMP. Apart from

this, two virtual stages are implemented to simplify middle-stage SPs. In addition to the notations used in

Section 4.1.3 and following the same procedure presented in Section 5.3.1.1, the following notations are

defined to formulate the RMP and SPs. Subsequently, objective functions and constraint sets of the SPs as

well as the RMP and dual of the linear master problem (DLMP) are defined.

𝒯 Set of columns, indexed by 𝑡 𝒯 = {1,2,… , 𝑇}

𝑇 Total number of columns, where each column represents the partial schedules for all the stages

𝑋𝑗
𝑘𝑡 The completion time of job 𝑗 in stage 𝑘 in column 𝑡

𝑇𝑗
𝑡 The tardiness of job 𝑗 in column 𝑡

𝑥𝑙𝑗ℎ
𝑘𝑡 1 job 𝑗 is scheduled immediately after job 𝑙 on machine ℎ in stage 𝑘 in column 𝑡; 0 otherwise

𝜆𝑡 1 if column 𝑡 is selected; 0 otherwise

Restricted linear master problem (RLMP)

𝑀𝑖𝑛 𝑍 =∑ (∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
)

𝑡∈𝒯
𝜆𝑡 (5.45)

Subject to:

135

∑

(

𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

 ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙)

𝑡∈𝒯
𝜆𝑡 ≥ 0;

∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;

(5.46)

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.47)

𝜆𝑡 ≥ 0; 𝑡 ∈ 𝒯. (5.48)

Assume Φ𝑗𝑟, ∀𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗 and 𝜓 as dual variables associated with constraint (5.46) and (5.47),

respectively. Subsequently, new objective functions and constraint sets of the SPs as well as the new RMP

and DLMP are defined as follows:

Dual of the linear master problem (DLMP)

𝑀𝑎𝑥 𝑍 = 𝜓 (5.49)

Subject to:

∑ ∑

(

𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

 ℎ∈𝑉
𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉

𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙)

×

𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑁
Φ𝑗𝑟 + 𝜓

(5.50)

≤∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
; 𝑡 ∈ 𝒯;

Φ𝑗𝑟 ≥ 0;∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗; (5.51)

𝜓 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑; (5.52)

Sub-problems (SPs)

136

𝑺𝑷(𝟎), 𝒔𝒕𝒋(𝟎) = 𝟎, & 𝒋 ∈ 𝑵

𝑀𝑖𝑛 𝑍𝑠𝑝(1) =∑ (Φ𝑗1)𝑋𝑗
0𝑡

𝑗∈𝑁

(5.53)

Subject to:

𝑋𝑗
0 ≥ 𝑟𝑗; 𝑗 ∈ 𝑁. (5.54)

𝑺𝑷(𝒌), ≤ 𝒌 ≤ 𝒎, 𝑓𝑜𝑟 𝒔𝒕𝒋(𝒓) = 𝒌, ∀𝒋 ∈ 𝑵 & 𝒓 = , ,… ,𝒎𝒊𝒋

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑘) =∑ (Φ𝑗(𝑟+1))𝑋𝑗
𝑘𝑡

𝑗∈𝑁
−∑ (Φ𝑗𝑟)𝑋𝑗

𝑘𝑡

𝑗∈𝑁

+∑ ∑ (∑ 𝑡𝑗ℎ
𝑘 (Φ𝑗𝑟)

𝑗∈𝑁
)𝑥𝑙𝑗ℎ

𝑘𝑡

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘
𝑙∈𝑁𝑘∪{0}

𝑗≠𝑙

(5.55)

Subject to:

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑙∈𝑁𝑘∪{0}
𝑙≠𝑗

= 1

∀𝑗 ∈ 𝑁𝑘;

(5.56)

∑ 𝑥0𝑗ℎ
𝑘

𝑗∈𝑁𝑘

≤ 1

∀ℎ ∈ 𝑉𝑘;

(5.57)

∑ ∑ 𝑥𝑙𝑗ℎ
𝑘

 ℎ∈𝑉𝑙
𝑘∩𝑉𝑗

𝑘𝑗∈𝑁𝑘

𝑙≠𝑗

≤ 1

∀𝑙 ∈ 𝑁𝑘;

(5.58)

137

∑ 𝑥𝑙𝑗ℎ
𝑘

𝑙∈𝑁∪{0}
𝑙≠𝑗

= ∑ 𝑥𝑗𝑙ℎ
𝑘

𝑙∈𝑁∪{𝑛+1}
𝑙≠𝑗

∀𝑗 ∈ 𝑁𝑘 , ∀ℎ ∈ 𝑉𝑗
𝑘;

(5.59)

(∑ ∑ (𝑥𝑙𝑗ℎ
𝑘 + 𝑥𝑗𝑙ℎ

𝑘)

 𝑙∈𝑔𝑖|𝑙≠𝑗1,𝑙≠𝑗2,…,𝑙≠𝑗ℓ

𝑗ℓ

𝑗=𝑗1

)+ 2(∑ ∑ (𝑥𝑗𝑗′ℎ
𝑘 + 𝑥𝑗′𝑗ℎ

𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

)

≥ 2(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘)(𝐿𝐵𝑖ℎ

𝑘 − 1)

(5.60)

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘) ≥ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

 (5.61)

𝑀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘 − 1) ≤ ∑ ∑ (𝑥𝑗𝑗′ℎ

𝑘 + 𝑥𝑗′𝑗ℎ
𝑘)

𝑗ℓ

 𝑗′=𝑗+1

𝑗ℓ

𝑗=𝑗1

− 𝜀(𝑌𝑗1𝑗2…𝑗𝑙
𝑖ℎ𝑘) (5.62)

∀ℎ ∈ 𝑉𝑘 , ∀𝑖 ∈ 𝐼𝑘|𝐿𝐵𝑖ℎ
𝑘 = ℓ (ℓ > 1), ∀{𝑗1, 𝑗2, … , 𝑗𝑙} ∈ 𝑄𝑖ℎ

𝑘 , 0 < 𝜀 < 1;

𝑋𝑗
𝑘 +𝑀(1 − 𝑥𝑙𝑗ℎ

𝑘) ≥ 𝑋𝑙
𝑘 + 𝑆𝑙𝑗ℎ

𝑘 + 𝑡𝑗ℎ
𝑘

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘;
(5.63)

𝑋0
𝑘 = 𝑎ℎ

𝑘

∀ℎ ∈ 𝑉𝑘;

(5.64)

𝑋𝑗
𝑘 ≥ 0

∀𝑗 ∈ 𝑁𝑘;

𝑥𝑙𝑗ℎ
𝑘 ∈ {0, 1}

∀𝑙 ∈ 𝑁𝑘 ∪ {0}, ∀𝑗 ∈ 𝑁𝑘 ∪ {𝑛 + 1}|𝑙 ≠ 𝑗, ∀ℎ ∈ 𝑉𝑙
𝑘 ∩ 𝑉𝑗

𝑘.

138

𝑺𝑷(𝒎+), 𝒔𝒕𝒋(𝒎𝒋+)
= 𝒎+ , ∀ 𝒋 ∈ 𝑵

𝑀𝑖𝑛 𝑍𝑠𝑝(𝑚) =∑ (𝛼 ∗ 𝑤𝑗 −Φ𝑗𝑚)𝑋𝑗
𝑚𝑡

𝑗∈𝑁
+∑ (𝛽 ∗ 𝑤𝑗)𝑇𝑗

𝑡

𝑗∈𝑁

+∑ ∑ (∑ 𝑡𝑗ℎ
𝑚(Φ𝑗𝑟)

𝑗∈𝑁
)𝑥𝑙𝑗ℎ

𝑚𝑡

 ℎ∈𝑉𝑙
𝑚∩𝑉𝑗

𝑚
𝑙∈𝑁𝑚∪{0}

𝑗≠𝑙

− 𝜓 (5.65)

Subject to:

𝑇𝑗 ≥ 𝑋𝑗
𝑚 − 𝑑𝑗; ∀𝑗 ∈ 𝑁; (5.66)

𝑋𝑗
𝑚, 𝑇𝑗 ≥ 0; 𝑥𝑙𝑗ℎ

𝑚 ∈ {0,1}; 𝑙, 𝑗 ∈ 𝑁𝑚+1; ℎ ∈ 𝑉𝑙
𝑚+1 ∩ 𝑉𝑗

𝑚+1. (5.67)

Set of constraints (5.45) through (5.48) and set of constraints (5.49) through (5.52) determine the RLMP

and DLMP, respectively, with respect to simplifications for the SPs. A summation of objective function

values (5.49), (5.53), and (5.65) is the reduced cost obtained from the DLMP for finding the next promising

column to enter the RLMP. Constraint (5.54) ensures that processing of each job cannot be started on the

first stage if the job is not released in the initial virtual stage. Set of constraints (5.56) through (5.64)

determine independently the partial sequence of jobs belonging to different groups on each machine in each

stage, regarding the desired lower bounds on batch sizes. Set of constraints (5.56) through (5.59) determine

the sequence of jobs on machines. Set of constraints (5.60) through (5.62) consider the desired lower bounds

on batch sizes. As a result, set of constraints (5.56) through (5.62) determine the optimal job sequence on

machines regarding the desired lower bounds on batch sizes. Constraints (5.63) is incorporated to find the

completion time of jobs. Constraint (5.66) is applied to find the tardiness of each job in the final virtual

stage. Finally, constraints (5.64) and (5.67) contains all the signs and binary constraints.

5.3.1.4. Sub-problem acceleration time

The SPs developed by DWDs should be optimized at each iteration of column generation in order to identify

columns with the most negative reduced costs and introduce the best one to the master problem. However,

not only the column with the most negative reduced cost, but also any column with a negative reduced cost

is a candidate to improve the RMP during the course of column generation. Some researchers (Barnhart et

al. 1998, Vanderbeck 1994) have suggested that a heuristic algorithm can be used in early stages of column

generation algorithm to approximately solve a SP for identifying new columns with negative reduced costs,

especially if they are computationally too expensive to solve. Then, whenever the heuristic fails to find a

139

promising column, the search should be switched to an exact algorithm to optimally solve the SP. Therefore,

a heuristic algorithm can be used to approximately solve the SPs to identify new columns with negative

reduced costs, especially if they are computationally too expensive to solve. With respect to solving the

SPs heuristically, two approaches corresponding to introducing columns to the master problem exist as

follows:

1. Stop a heuristic algorithm as soon as a negative reduced cost column is identified.

2. Select all negative reduced cost columns that the heuristic identifies and append them all into the

RMP.

The first approach will reduce the computation time per iteration but the overall effect may not be attractive

since the number of iterations will probably increase, while the second approach will require more time per

iteration and may decrease the total number of iterations. Since more columns are added to the RMP in

each iteration, the RMP grows rapidly and may become harder to solve.

The lower bounds are valid only when all the SPs are solved optimally and exact optimization is applied.

An optimal solution of an SP cannot be guaranteed by heuristic procedure. Apart from this, there may exist

negative reduced cost columns but the heuristic is not able to identify them. In order to deal with this

problem, a two-phase approach is employed to solve the SPs. In the first phase, a fast heuristic is used to

solve the SP approximately as long as it identifies a negative reduced cost column. In case the heuristic

fails to identify such a column, an exact algorithm that solves the SP to optimality is invoked to prove

optimality or to generate a column with a negative reduced cost in the second stage. Although the column

generation algorithm is initialized by either a solution obtained heuristically or the developed initial solution

finding mechanism, this acceleration technique to solve the SPs is more beneficial in solving the SPs

obtained from DWD1 as the SPs obtained from DWD2 and DWD3 might be optimally solved, particularly

for small- and medium-size problems.

5.3.1.5. Comparison between developed DWDs

During the iterative process of column generation for a small-, medium-, and large-size problem, the

progress of DWDs are demonstrated in Figures 21 through 23, respectively, and the following results are

obtained from comparison between DWDs:

• The lower bound obtained by DWD3 present the minimum gap from either the optimal solution or

the upper bound compared to the lower bounds obtained by DWD1 and DWD2 for all problem

sizes.

140

• Since the number of violations on batch sizes is not significant, DWD2 is capable of identifying a

lower bound with 4.5% deviation from the lower bound developed by DWD3 for a small-size

problem. In addition, DWD2 develops lower bounds with a gap of around 21.2% and 13.5% from

the lower bounds identified by DWD3 for medium- and large-size problems because the number

of violations on batch sizes is significant.

• The lower bounds obtained by CPLEX are very poor in quality compared to the upper bounds

obtained by PSO/LSA. Alternatively, DWD3 establishes good quality lower bounds as a baseline

for evaluation of the proposed algorithms.

• The lower bound developed by DWD1 has a large gap compared to the lower bounds developed

by DWD3, particularly for the large-size problem, because the SPs obtained by DWD1 are still so

large that they cannot be optimally solved.

• Although DWD2 converges to the upper bound faster than DWD3 in early iterations of column

generation, there is a significant gap between the lower bounds developed by DWD2 and DWD3

because the SPs obtained by DWD2 violate significantly the desired lower bounds on batch sizes.

Figure 21. Iterative progress of DWDs on a small-size problem

141

Figure 22. Iterative progress of DWDs on a medium-size problem

Figure 23. Iterative progress of DWDs on a large-size problem

142

In conclusion, our preliminary experiments revealed that the SPs obtained by the DWD3 decomposition

technique can be optimally solved, while DWD1 is only capable of finding lower bounds for small-size

problems. Also, for larger size of problems, the SPs obtained by DWD1 are still NP-hard so that they cannot

be optimally solved, even when the acceleration technique is applied for developed SPs. Therefore, DWD1

is not capable of finding even good quality lower bound for large-size problems. In addition, the SPs

obtained by DWD2 can be optimally solved but the desired lower bounds on batch sizes might be violated

by some of the SPs. Therefore, DWD2 cannot guarantee finding tight lower bounds if the number of

violations in 𝐿𝐵𝑖ℎ
𝑘 is significant. Thus, DWD2 and DWD3 are the only approaches that have been used in

the B&P algorithm.

5.3.2. Stabilization

Barnhart et al. (1998) noted that column generation has been successfully applied to many large size

problems, particularly in the field of routing and scheduling. However, this approach is known for its slow

convergence. In other words, remarkable improvement is achieved in a very short period of time, only

during the first iterations of column generation, while little progress is obtainable when the search is close

to the optimal solution in later iterations. This phenomenon is referred to as the tailing-off effect, and usually

causes adverse impacts on the efficiency of the algorithm (Lübbecke and Desrosiers 2005).

It is possible that the reduced costs of promising columns are not appropriately estimated by dual values in

early iterations of column generation. The dual values obtained by the DLMP are the extreme points of the

dual polyhedron, which are characterized by very large values of some columns while the others are set to

zero. Therefore, the reduced costs estimated by those extreme points oscillate severely, which lead the

algorithm to perform many more iterations to find the optimal solution of the RLMP.

In order to accelerate the convergence of column generation, several techniques, which are generally

referred to as stabilization, are proposed in the literature in order to accelerate the convergence of column

generation. The main idea behind all techniques lies on the fact that these techniques prevent the dual

variables from taking extreme values. Marsten et al. (1975) proposed one of the earliest stabilization

techniques, referred to as BOXSTEP. Kim et al. (1995) pursue the same purpose, but used a different

approach. Du Merle et al. (1997) proposed a very well-known stabilization technique, which combines the

concepts of both the approaches proposed by Marsten et al. (1975) and Kim et al. (1995), referred to

BOXPEN. Also, Rousseau et al. (2007) proposed a totally different stabilization technique compared to the

approach proposed by Du Merle et al. (1997). In this research, the BOXPEN technique is implemented to

stabilize column generation since it is shown to be very effective in reducing the total computational time

(Bozorgirad 2013). Based on this technique, a soft box is considered for each dual variable to prevent them

143

from taking extreme values. In the following sub-sections, the BOXPEN stabilization method is

implemented for DWD2 and DWD3 so that some modifications must be made in the RLMP and DLMP

while there is no modification needed for the SPs.

5.3.2.1. Stabilizing DWD2

𝑳𝑴𝑷𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅

𝑀𝑖𝑛 𝑍 =∑ (∑ ∑ 𝑤𝑖𝑗(𝛼. 𝑋𝑖𝑗
(𝑠𝑡𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑖𝑗

𝑡

𝑗∈𝑔𝑖𝑖∈𝐺
)

𝑡∈𝒯
𝜆𝑡

+∑ ∑ ∑ (−𝛿𝑖𝑗𝑟
− . 𝜉𝑖𝑗𝑟

− + 𝛿𝑖𝑗𝑟
+ . 𝜉𝑖𝑗𝑟

+)

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑔𝑖𝑖∈𝐺

(5.68)

Subject to:

∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

𝑡∈𝒯

𝜆𝑡 − 𝜉𝑖𝑗𝑟
− + 𝜉𝑖𝑗𝑟

+ ≥ 0;

𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;

(5.69)

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.70)

−𝜉𝑖𝑗𝑟
− ≥ −𝜀𝑖𝑗𝑟

− (5.71)

−𝜉𝑖𝑗𝑟
+ ≥ −𝜀𝑖𝑗𝑟

+ (5.72)

𝜆𝑡 ≥ 0; 𝜉𝑖𝑗𝑟
− ≥ 0; 𝜉𝑖𝑗𝑟

+ ≥ 0;

𝑡 ∈ 𝒯; 𝑖 = 1,2, … , 𝑔; 𝑗 = 1,2,… , 𝑛𝑖; 𝑟 = 1,2, … ,𝑚𝑖𝑗 , 𝑚𝑖𝑗 + 1.
(5.73)

where 𝜉𝑖𝑗𝑟
− and 𝜉𝑖𝑗𝑟

+ are the BOXPEN artificial variables so that the term σ σ σ (−𝛿𝑖𝑗𝑟
− . 𝜉𝑖𝑗𝑟

− +
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺

𝛿𝑖𝑗𝑟
+ . 𝜉𝑖𝑗𝑟

+) in the objective function of the LMP penalizes theses variables. In order to create limits on the

dual variables, constraint (5.69) is modified to include 𝜉𝑖𝑗𝑟
− and 𝜉𝑖𝑗𝑟

+ . In addition, constraints (5.71) and

144

(5.72) define 𝜀𝑖𝑗𝑟
− and 𝜀𝑖𝑗𝑟

+ as upper bounds on 𝜉𝑖𝑗𝑟
− and 𝜉𝑖𝑗𝑟

+ , respectively. The following new dual variables

are defined:

𝜚𝑖𝑗𝑟
− Dual variable associated with constraint (5.71)

𝜚𝑖𝑗𝑟
+ Dual variable associated with constraint (5.72)

𝑫𝑳𝑴𝑷𝑺𝒕𝒂𝒃𝒊𝒍𝒊𝒛𝒆𝒅

𝑀𝑎𝑥 𝑍 = 𝜓 +∑ ∑ ∑ (−𝜀𝑖𝑗𝑟
− . 𝜚𝑖𝑗𝑟

− − 𝜀𝑖𝑗𝑟
+ . 𝜚𝑖𝑗𝑟

+)

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑔𝑖𝑖∈𝐺

 (5.74)

Subject to:

∑ ∑ ∑

(

 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)𝑡 − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟−1)𝑡 − ∑ 𝑡
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟) (𝑍
𝑖𝑗ℎ

𝑠𝑡𝑖𝑗(𝑟)𝑡)

ℎ∈𝑣𝑖𝑗

𝑠𝑡𝑖𝑗(𝑟)
)

 ×
𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑔𝑖𝑖∈𝐺
Φ𝑖𝑗𝑟 + 𝜓

(5.75)

≤∑ ∑ 𝑤𝑖𝑗 (𝛼. 𝑋𝑖𝑗

(𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗+1)

)𝑡

+ 𝛽. 𝑇𝑖𝑗
𝑡)

𝑗∈𝑔𝑖𝑖∈𝐺
; 𝑡 ∈ 𝒯;

−Φ𝑖𝑗𝑟 − 𝜚𝑖𝑗𝑟
− ≤ −𝛿𝑖𝑗𝑟

− (5.76)

Φ𝑖𝑗𝑟 − 𝜚𝑖𝑗𝑟
+ ≤ 𝛿𝑖𝑗𝑟

+ (5.77)

Φ𝑖𝑗𝑟 ≥ 0; 𝜚𝑖𝑗𝑟
− ≥ 0; 𝜚𝑖𝑗𝑟

+ ≥ 0; ∀𝑖 = 1,2,… , 𝑔; 𝑗 = 1,2, … , 𝑛𝑖; 𝑟 = 1,2, … ,𝑚𝑖𝑗; (5.78)

𝜓 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑. (5.79)

Constraints (5.76) and (5.77) create limits on the dual variables. However, these variables are allowed to

exceed those limits with the assignment of a penalty in the objective function (5.74).

5.3.2.2. Stabilizing DWD3

𝑳𝑴𝑷𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒆𝒅

145

𝑀𝑖𝑛 𝑍 =∑ (∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
)

𝑡∈𝒯
𝜆𝑡 +∑ ∑ (−𝛿𝑗𝑟

− . 𝜉𝑗𝑟
− + 𝛿𝑗𝑟

+ . 𝜉𝑗𝑟
+)

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑁

 (5.80)

Subject to:

∑

(

𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

 ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙)

𝑡∈𝒯
𝜆𝑡 − 𝜉𝑗𝑟

− + 𝜉𝑗𝑟
+ ≥ 0;

∀𝑗 ∈ 𝑁; 𝑟 = 1,2,… ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1;

(5.81)

∑ 𝜆𝑡
𝑡∈𝒯

= 1; (5.82)

−𝜉𝑗𝑟
− ≥ −𝜀𝑗𝑟

− (5.83)

−𝜉𝑗𝑟
+ ≥ −𝜀𝑗𝑟

+ (5.84)

𝜆𝑡 ≥ 0; 𝜉𝑗𝑟
− ≥ 0; 𝜉𝑗𝑟

+ ≥ 0;

∀𝑡 ∈ 𝒯; 𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗, 𝑚𝑖𝑗 + 1.
(5.85)

Define the following new dual variables:

𝜚𝑗𝑟
− Dual variable associated with constraint (5.83)

𝜚𝑗𝑟
+ Dual variable associated with constraint (5.84)

𝑫𝑳𝑴𝑷𝑺𝒕𝒂𝒃𝒊𝒍𝒊𝒛𝒆𝒅

𝑀𝑎𝑥 𝑍 = 𝜓 +∑ ∑ (−𝜀𝑗𝑟
− . 𝜚𝑗𝑟

− − 𝜀𝑗𝑟
+ . 𝜚𝑗𝑟

+)

𝑚𝑖𝑗+1

𝑟=1
𝑗∈𝑁

 (5.86)

Subject to:

146

∑ ∑

(

𝑋
𝑗

𝑠𝑡𝑗(𝑟)𝑡 − 𝑋
𝑗

𝑠𝑡𝑗(𝑟−1)𝑡 − ∑ ∑ 𝑡
𝑗ℎ

𝑠𝑡𝑗(𝑟) (𝑥
𝑙𝑗ℎ

𝑠𝑡𝑗(𝑟)𝑡)

 ℎ∈𝑉𝑙

𝑠𝑡𝑗(𝑟)
∩𝑉𝑗

𝑠𝑡𝑗(𝑟)𝑙∈𝑁
𝑠𝑡𝑗(𝑟)∪{0}
𝑗≠𝑙)

×

𝑚𝑖𝑗+1

𝑟=1𝑗∈𝑁
Φ𝑗𝑟 + 𝜓

(5.87)

≤∑ 𝑤𝑗(𝛼. 𝑋𝑗
(𝑠𝑡𝑗(𝑚𝑗+1)

)𝑡
+ 𝛽. 𝑇𝑗

𝑡

𝑗∈𝑁
; 𝑡 ∈ 𝒯;

−Φ𝑗𝑟 − 𝜚𝑗𝑟
− ≤ −𝛿𝑗𝑟

− (5.88)

Φ𝑗𝑟 − 𝜚𝑗𝑟
+ ≤ 𝛿𝑗𝑟

+ (5.89)

Φ𝑗𝑟 ≥ 0; 𝜚𝑗𝑟
− ≥ 0; 𝜚𝑗𝑟

+ ≥ 0; ∀𝑗 ∈ 𝑁; 𝑟 = 1,2, … ,𝑚𝑖𝑗; (5.90)

𝜓 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑. (5.91)

5.3.3. Early termination of column generation

In spite of implementing stabilization technique to reduce the number of iterations required by column

generation, the difficulties of tailing-off effects do not completely resolve. In other words, there will still

be large number of columns required to optimally solve the linear master problem (LMP). Therefore,

instead of solving the LMP to optimality, we can decide to permanently end the column generation progress

and work with the bounds on the final LMP (Barnhart et al. 1998). Farley (1990), Lasdon (1970),

Vanderbeck and Wolsey (1996) describe different methods for calculating such a bound in column

generation. The bound is determined as follows:

𝑍∗ The optimal solution of the LMP

�̅� The optimal solution of the RLMP

𝑍∗𝑠𝑝𝑘 The most negative reduced cost corresponding to the SP 𝑘

Lübbecke and Desrosiers (2005) describe that when there is an upper bound on the variables of LMP such

as σ 𝜆𝑗𝑗𝜖𝐽 ≤ 𝜁, where 𝐽 is the set of all possible columns, not only an upper bound, but also a lower bound

can be established for the optimal solution of the LMP. This bound is presented as �̅� + σ 𝑍∗𝑠𝑝𝑘𝜖𝐾 ≤ 𝑍∗ ≤

�̅�, where k is the set of all SPs.

147

5.3.4. Branching rule

Since DWD2 and DWD3 are used to decompose the original problem into SPs and DWD3 presents a better

performance compared to DWD2, the following branching rule is explained in detail for the B&P algorithm

developed based on DWD3. The following three important decisions should be made in relation to

branching:

• variable selection amongst different kinds of variables for branching

• choice order for branching variables

• variable selection amongst the same kind of variables for branching

• node selection for branching

Combining column generation with a B&B algorithm, known as B&P algorithm, is not straightforward

since branching on only the integer variables of the MP, i.e., 𝜆, leads to an inefficient B&P algorithm. The

reason lies on the fact that branching on the 𝜆 variables does not provide an efficient strategy for restricting

the number of newly generated columns since there is an unlimited number of columns that can be

introduced to the MP by branching on each node of the B&B tree. A remedy to this difficulty is to perform

branching on integer variables of the MILP3. An integrality constraint on one of the original variables, such

as 𝑥, requires that σ 𝑥𝑡𝜆𝑡 = 1𝑡∈𝑇 be integral, where 𝑇 is the set of all columns in the RMP. This constraint

is equivalent to 𝜆 ∈ {0, 1} in the RMP model (Bozorgirad 2013). Thus, instead of branching directly on the

𝜆 variables, the integer variables of the original model are participating in the branching scheme. The only

two integer variables of the MILP3 are binary variables and they are divided into the following two sets:

• 𝑥-variables that determine the assignment and sequence of jobs on machines

• 𝑌-variables that determine a sequence of jobs of the same group processed consecutively on

machines

The choice order for branching has an impact on the efficiency of the B&P algorithm so that the important

decisions (which lead to other decisions be made automatically) must be made in early stages of the B&P

tree. If this were the case, the assignment and sequence of jobs on machines can have the most significant

impact on completion time of jobs. Therefore, the 𝑥-variables are selected as the first choice for branching.

Since a tight lower bound is desirable, particularly for large-size problems, the process of branching can be

terminated anywhere in the tree and the lower bound is determined with the help of the B&B algorithm.

With respect to the priority of the set of variables selected for branching, i.e., 𝑥-variables or 𝑌-variables, an

integer variable should be selected for further branching. In order to select a variable amongst the same

148

kind, i.e., 𝑥-variables or 𝑌-variables, on which to perform branching, the value of σ 𝑥𝑡𝜆𝑡 = 1𝑡∈𝑇 is

calculated for all integer variables so that the one which is closest to 0.5 is selected as the branching variable.

In relation with the node selection for further branching, a depth-first strategy is used for selecting the node

with the minimum objective function amongst all possible nodes for branching. In this case, any

improvement in the objective function of this node will directly improve the lower bound obtained by the

B&B tree.

In conclusion, the B&P algorithm is known to be very time consuming. Therefore, it is of vital importance

to gain the most improvement possible by branching on the minimum number of nodes. The following

description explains how a high contribution of 𝑥-binary variables in the objective function of the MP can

reduce the total number of branches. The binary variables 𝑥𝑙𝑗ℎ
𝑘 are interdependent on the constraints (4.33)

through (4.36) so that knowing the value of one of them will enable determining the value of the rest. For

example, if job 2 is assigned to machine 3 in stage 4 when job 1 is the predecessor of job 2, and there are

three machines in the fourth stage of HFS, then it is known that 𝑥123
4 = 1, while 𝑥𝑙2ℎ

4 = 0, ∀𝑙 ∈ 𝑁4 −

{1, 2}, ℎ ∈ 𝑉4 − {3}. Therefore, for job 𝑗 in stage 𝑘, if 𝑥𝑙𝑗ℎ
𝑘 = 1, the value of this binary variable for all the

other predecessors and machines must be zero. Thus, it is sufficient to consider only the variables that are

equal to one when branching on the 𝑥-binary variables.

Briefly, instead of considering the following possible branches for the above example:

𝑥𝑙2ℎ
4 = 1 or 𝑥𝑙2ℎ

4 = 0, ∀𝑙 ∈ 𝑁4 − {2}, ℎ ∈ 𝑉4

It is sufficient to consider:

𝑥𝑙2ℎ
4 = 1, ∀𝑙 ∈ 𝑁4 − {2}, ℎ ∈ 𝑉4

As a result, the number of branches is substantially reduced by branching on binary variables of the model

(𝑥-variables or 𝑌-variables). Following the same procedure, the branching rule related to the B&P algorithm

based on DWD2 is developed.

In order to show the impact of branching from the root node to the lower levels of the B&B tree, the amount

of improvement on the lower bounds obtained by DWD3 for a small-, medium-, and large-size problem

(demonstrated in Figures 21 through 23, respectively), are reported. The B&P optimization algorithm is

capable of obtaining 1229.23, 6069.80, and 28391.02 as the lower bounds in the third, second, and second

level of the small-, medium-, and large-size problem, respectively. Therefore, as a result of implementing

branching from the root node of the B&B tree, an improvement of 3.73%, 6.42%, and 5.15% is obtained

for the small-, medium-, and large-size problem, respectively.

149

6. EXPERIMENTAL SETUP AND DATA GENERATION

Developing an efficient approach, namely batch scheduling, to deal with the HFS scheduling problem along

with proposing a robust algorithm to solve industry-size problems is the main purpose of this research. In

order to show the benefits of the batching phase in group scheduling as well as to precisely evaluate the

proposed algorithms in Section 4, three basic questions must be answered:

1) What is the benefit(s) of integrating the batching decision into the group scheduling approach?

2) Which algorithm (a basic or hybrid meta-heuristic), if any, outperforms the others for accepted

standard benchmark of real problems and/or a given test problem?

3) How well do developed algorithms perform with respect to the optimal solution, or equivalently a

tight lower bound as described in Section 5?

With respect to the first question, a comparison between the batch scheduling and group scheduling

approaches show the benefits of implementing batch scheduling instead of group scheduling. To answer

the second question, the most widely used benchmark for flow shop scheduling is that of Taillard (1993).

Vallada et al. (2015) proposed a new benchmark of hard instances for the permutation flow shop scheduling

problem with the objective of minimizing the makespan. But there is not any accepted standard benchmark

of real problems or their representatives, for hybrid flow shop group scheduling problems. Therefore, in

order to reflect the real-world instances, a comprehensive data generation mechanism designs the different

parameters applied in the model. To answer the third question, the results of the developed algorithms are

compared with optimal solutions or lower bounds obtained from CPLEX as well as B&P.

Since the size of a problem has a direct impact on the performance of any of the proposed meta-heuristic

algorithms as well as the B&P algorithm, any comparison is performed on a set of randomly generated

sample problems with the help of a comprehensive data generation mechanism. The notation of the MILP1

model is used to show the equations of the data generation mechanism. The parameters are developed as

follows:

Problem size: the size of a problem is determined in terms of the problem structure, which has four different

levels: (small, small), (small, large), (large, small) and (large, large). The first and second terms in the

parenthesis denote the range of the number of groups and jobs within each group, respectively. Referring

to Schaller et al. (2000) and some justifications for batch scheduling problems, “small” and “large”

parameters in each level refer to a number generated from uniform distributions 𝑢𝑛𝑖𝑓[3, 5] and 𝑢𝑛𝑖𝑓[6, 10],

respectively. It is worth noting that (small, small) and (large, large) levels can be considered as small- and

large-size problems, respectively, while the other two levels can be considered as medium-size problems.

150

The range of the number of groups is in agreement with Schaller et al. (2000), while the range of the number

of jobs within each group is unique to this research.

Machine capability and eligibility: Logendran and Subur (2004), Mehravaran and Logendran (2011),

Pandya and Logendran (2010) considered three different types of machines based on the capability of

processing: least, medium and most capable machines, which are eligible to process 50%, 70% and 85% of

all jobs, respectively. In order to assign different capabilities to machines in 𝑘𝑡ℎ stage of HFS, if the number

of machines is 𝑣𝑘 ≤ 3, then one of them is assigned to most capability and for the rest of them, (𝑣𝑘 − 1)

random numbers are generated in [0, 1]. The numbers with a value less than 1/3 and more than 1/3 will be

counted separately. The largest and smallest count will be the numbers of least and medium capable

machines, respectively; Otherwise, if the number of machines is 𝑣𝑘 ≥ 3, three of them are assigned to each

capability. Thereafter, for the rest of them, (𝑣𝑘 − 3) random numbers are generated in [0, 1]. The numbers

with a value less than 1/3, between 1/3 and 2/3, and more than 2/3 will be counted separately. The largest

and smallest count will be the extra numbers of least and most capable machines, respectively, and the

remaining count will be the extra number of medium capable machines.

Job run time and machine setup time: the run times related to each stage are generated from 𝑢𝑛𝑖𝑓[𝜗𝑖 + 1,

𝜗𝑖 + 20], where 𝜗𝑖 ∀𝑖 = 1, 2, 3 are considered for the least, medium and most capable machines,

respectively, and also 𝜗𝑖 is generated uniformly in [1, 10]. The largest and smallest random values are

assigned to the least and most capable machines and the remaining one is assigned to the medium capable

machine. The difficulty of flow line scheduling problems with sequence-dependent setup times depend on

the balance between the average setup time and the average run time (Schaller et al. 2000). With respect to

an adjustment and some justification for batch scheduling problems, setup-to-runtime ratios of 1.5:1, 3.5:1

and 5:1 have been considered for least, medium, and most capable machines, respectively. Subsequently,

with respect to different ratios, the setup times related to each stage are generated from 𝑢𝑛𝑖𝑓[1, 30],

𝑢𝑛𝑖𝑓[1, 70], and 𝑢𝑛𝑖𝑓[1, 100], for least, medium, and most capable machines, respectively.

Scenario: the different combinations of the weights associated with the producer and customers in the

objective function, i.e. 𝛼 and 𝛽, are determined by different scenarios. Three levels are considered for this

factor including (𝛼 = 0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), and (𝛼 = 0.6, 𝛽 = 0.4).

Machine availability time: the memoryless property of the Exponential distribution can simulate the

machine availability time in terms of the average processing time of a group in each stage. Assume 𝑆̅𝑘 and

𝑡̅𝑘 represent the average sequence-independent setup time and the average run time of any group on all

machines in 𝑘𝑡ℎ stage, respectively. Then, the machine availability time is determined as follows:

151

𝑎ℎ
𝑘 = exp(20 +∑ �̅�𝑡

𝑘−1

𝑡=0
) | (�̅�0 = 0) (6.1)

�̅�𝑘 = (𝑆̅𝑘 + 𝑡̅𝑘) (6.2)

𝑆̅𝑘 =

(

(σ σ σ 𝑆𝑝𝑖ℎ

𝑘
𝑖∈𝐼𝑘

𝑖≠𝑝
𝑝∈𝐼𝑘+{0}ℎ∈𝑉𝑘)

(𝑔2×𝑣𝑘)
⁄

)

 (6.3)

𝑡̅𝑘 = (
(σ σ σ 𝑡𝑖𝑗ℎ

𝑘
ℎ∈𝑉𝑖𝑗

𝑘𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘)

(σ σ 𝜕𝑖ℎ
𝑘

ℎ∈𝑉𝑘𝑖∈𝐼𝑘)
⁄) (6.4)

Job due date: the proper due dates should not be generated simply by picking numbers from a given

distribution. Previous works (Kim et al. 2002, Pandya and Logendran 2010) showed that the generation of

meaningful due dates in scheduling problems can positively affect the performance of the algorithms.

Tardiness factor (𝜏) and due date range factor (R) can be used to define due dates of a problem instance.

The tardiness factor, 𝜏, is defined as 𝜏 = 1 − �̅�/𝐶𝑚𝑎𝑥 where �̅� and 𝐶𝑚𝑎𝑥 are the average due date and the

maximum completion time of all jobs, respectively. The measure of variability of due dates, 𝑅, is defined

as 𝑅 = (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) 𝐶𝑚𝑎𝑥⁄ where 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are the maximum and minimum due date,

respectively. Different combinations of 𝜏 and 𝑅 from a uniform distribution, which are shown in Table 16,

generate meaningful due dates with various characteristics (Suresh and Chaudhuri 1994). In other words, a

large and small values of 𝜏 indicate tight and loose due dates (due date tightness), respectively. A wide

range of due dates is determined by a large 𝑅, while a small 𝑅 determines a narrow range of due dates.

Table 16. The range of τ and R

𝝉 0.2 0.2 0.2 0.5 0.5 0.5 0.8 0.8 0.8

𝑹 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Degree of

tightness
Loose Loose Loose Medium Medium Medium Tight Tight Tight

Width of range Narrow Medium Wide Narrow Medium Wide Narrow Medium Wide

𝑅 and 𝜏 have to be used simultaneously to determine due dates of jobs. In this research, the range factor has

been set as 𝑅 = 0.2, which provides narrow range of due dates. A random number from 0 to 1 is selected

to generate a due date. If the random number falls into [0, 𝜏], the due date is generated from a uniform

152

distribution [�̅� − 𝑅�̅�, �̅�]; and if the random number falls into [𝜏, 1], the due date is generated from a

uniform distribution [�̅�, �̅� + (𝐶𝑚𝑎𝑥 − �̅�)𝑅] (Kim et al. 2002, Logendran and Subur 2004, Pandya and

Logendran 2010). With the help of the following iterative equations, the completion time of any job 𝑗 of

group 𝑖 in 𝑘𝑡ℎ stage (𝑥𝑖𝑗
𝑘) and, consequently, 𝐶𝑚𝑎𝑥 is estimated.

{

𝑥𝑖1
𝑘 = (

(σ (max(𝑥𝑖1
𝑘−1,𝑚𝑟𝑖

𝑘 + 𝛾�̅�𝑖
𝑘) + (𝑡𝑖1ℎ

𝑘))ℎ∈𝑉𝑖1
𝑘)

𝜉𝑖1
𝑘

⁄)

𝑥𝑖𝑗
𝑘 = max(𝑥𝑖𝑗

𝑘−1, 𝑥𝑖(𝑗−1)
𝑘) + (

(σ 𝑡𝑖𝑗ℎ
𝑘

ℎ∈𝑉𝑖𝑗
𝑘)

𝜉𝑖𝑗
𝑘

⁄)

 (6.5)

where �̅�𝑖
𝑘 is the average run time of group 𝑖 in 𝑘𝑡ℎ stage. 𝑚𝑟𝑖

𝑘, the first available time of machines to start

processing group 𝑖 in 𝑘𝑡ℎ stage, is estimated as follows:

𝑚𝑟𝑖
𝑘 = {

min(𝑥𝑝(𝑛𝑝)
𝑘) , 𝑝 = (𝑖 − 1), (𝑖 − 2), … , (𝑖 − 𝑣𝑘)

𝑎𝑖
𝑘 , otherwise

 (6.6)

where 𝑥𝑝(𝑛𝑝)
𝑘 is the completion time of the last job in group 𝑝 in 𝑘𝑡ℎ stage.

𝛾 was proposed by Logendran et al. (2007) as an adjustment on the average setup time because of sensitivity

of the completion time to the sequence-dependent family setup times. They suggested a linear relationship

between 𝛾 and 𝐶𝑉, where 𝐶𝑉 is the coefficient of variation related to the sequence-dependent setup times.

This relationship can be described by the interpolation of (𝐶𝑉, 𝛾) = (0.01,0.9) and (𝐶𝑉, 𝛾) = (1,0.1).

Finally, 𝑥𝑖𝑗
0 = 𝑟𝑖𝑗 in the first stage and 𝐶𝑚𝑎𝑥 = max

∀𝑖∈𝐺,𝑗∈𝐺𝑖
𝑥𝑖𝑗
𝑚, in the last stage.

Desired lower bounds on batch sizes: the proper lower bounds on batch sizes are generated by balancing

the setup time and cumulative run time of a batch. An estimation of the minimum number of jobs assigned

to a batch of a group on each machine is determined by initial ratio developed for each group on each

machine in 𝑘𝑡ℎ stage (𝐼𝑅𝑖ℎ
𝑘) along with pre-determined base ratio (𝐵𝑅) and adjusted ratio (𝐴𝑅 = 𝑘×𝐼𝑅𝑖ℎ

𝑘)

developed for each problem structure. Initial ratio of a group is considered as the average setup time to the

average run time. Base ratio is equal to 1.3, 5, 7, and 8 for (small, small), (small, large), (large, small) and

(large, large) levels, respectively. coefficient 𝑘 is equal to 0.3, 0.1, 0.05, and 0.04 for (small, small), (small,

large), (large, small) and (large, large) levels, respectively.

𝐼𝑅𝑖ℎ
𝑘 =

�̅�𝑖ℎ
𝑘

𝑡�̅�ℎ
𝑘⁄ (6.7)

153

𝐶𝑅𝐵𝑖ℎ
𝑘
=
(�̅�𝑖ℎ

𝑘 + 𝐵𝑡�̅�ℎ
𝑘)

(𝐵𝑡�̅�ℎ
𝑘)

⁄ (6.8)

𝑀𝑅𝑖ℎ(𝐵→𝐵+1)
𝑘 =

(𝐶𝑅𝐵𝑖ℎ
𝑘
)

(𝐶𝑅(𝐵+1)𝑖ℎ
𝑘
)

⁄ , ∀ 𝐵 = 1,2, … , 𝑛𝑖 − 1 (6.9)

𝑇𝑉𝑖ℎ
𝑘 = 1 + (

�̅�𝑖ℎ
𝑘

(𝐴𝑅 (�̅�𝑖ℎ
𝑘 + 𝑡�̅�ℎ

𝑘 (𝐴𝑅 + 1)))
⁄) (6.10)

where �̅�𝑖ℎ
𝑘 /𝑡�̅�ℎ

𝑘 is the average setup time/ job run time of group 𝑖 on machine ℎ in 𝑘𝑡ℎ stage, which is obtained

by Eq. (4.60)/Eq. (4.64). 𝐵 is the number of jobs assigned to a batch. And finally, 𝐶𝑅𝐵𝑖ℎ
𝑘

, 𝑀𝑅𝑖ℎ(𝐵→𝐵+1)
𝑘 ,

and 𝑇𝑉𝑖ℎ
𝑘 are cumulative ratio, movement ratio, and threshold value of group 𝑖 on machine ℎ in 𝑘𝑡ℎ stage,

respectively. Then, 𝐿𝐵𝑖ℎ
𝑘 is determined from one of the conditions shown in Table 17.

Table 17. Pseudo-code for determining the desired lower bounds on batch sizes

if 𝐼𝑅𝑖ℎ
𝑘 ≤ 𝐵𝑅 then

 𝐿𝐵𝑖ℎ
𝑘 = 1

else if 𝐼𝑅𝑖ℎ
𝑘 > 𝐵𝑅 & 𝐴𝑅 ≤ 1 then

 𝐿𝐵𝑖
ℎ = 2

else if 𝐴𝑅 > 1 then

 𝐿𝐵𝑖ℎ
𝑘 = (𝐵 + 1) | min

𝐵∈{1,2,…,𝑛𝑖−1}
(|𝑀𝑅𝑖(𝐵→𝐵+1)

ℎ − 𝑇𝑉𝑖ℎ
𝑘 |)

end if

Other parameters: the number of stages of hybrid flow shop and the number of machines in each stage are

generated from 𝑢𝑛𝑖𝑓[2, 7] and 𝑢𝑛𝑖𝑓[1, 6], respectively. Apart from this, the job release times and job

weights are generated based upon an Exponential distribution with a mean of 20, i.e., 𝑒𝑥𝑝(20), and uniform

distribution, i.e., 𝑢𝑛𝑖𝑓[1, 4], respectively.

154

7. RESULTS

In this section, first two approaches to deal with the scheduling problem addressed in this research are

compared to show the benefit(s) of batching: group scheduling and batch scheduling. Then, the

computational experiments are performed to compare the performance of the proposed meta-heuristic

algorithms. Finally, the performance of the proposed algorithms is evaluated with respect to optimal

solutions or tight lower bounds obtained by CPLEX and proposed B&P algorithm. Also, a comparison

between implemented DWDs based on column generation determines the performance of each of the DWD

decomposition techniques. For this purpose, the proposed search algorithms are implemented using C#

programming language, while the optimal/upper bounds and lower bounds are obtained from solving the

MILP models or SPs with CPLEX 12.2 (CPLEX 2009). All runs relating to parameter tuning and

experiments have been performed on identical computers with Intel(R) Core(TM) 2 Duo CPU T9300 @

2.50 GHz processors & 4.00 GB of RAM.

7.1. Batch scheduling vs. group scheduling

Group scheduling developed by Bozorgirad and Logendran (2013) is arguably the best available approach

to deal with the research problem addressed here, specifically with respect to comparing the performances

of both. It is therefore important to compare the performance of the proposed batch scheduling approach

with this approach to see the benefits of batching. With respect to three days’ time limit (𝐶𝑇𝑙𝑖𝑚𝑖𝑡 = 3𝑑),

several experiments (19 problems shown in Table 18) conducted on the benchmark problem instances

confirm the benefits of batching.

The following results 1 through 3 are obtained from comparison between the group scheduling and batch

scheduling approaches:

Result 1. The benefits of batching are especially obvious for instances with more machines per stage (on

average). This confirms that batch scheduling can utilize the available machine capacities and perform

timely processing of jobs with higher priorities and, consequently, increase scheduling flexibility.

Result 2. Although dividing groups into batches promotes more setups, they may be performed during

machine idle times (Shen et al. 2014). More importantly, forming different combinations of batch

compositions related to stages allows varied job assignment and sequences on each machine, which can

effectively reduce total processing time of jobs. Consequently, it may not negatively affect the completion

time of all jobs and their tardiness.

155

Result 3. Although there is a trade-off between any changes in jobs’ completion times, jobs’ tardiness, and

setup times, batch scheduling gives a schedule, which is at least as good as the optimal schedule obtained

by group scheduling.

Table 18. Performance of batch scheduling vs. group scheduling

T
est p

ro
b

lem

#
 o

f stag
es

#
 o

f g
ro

u
p

s

#
 o

f jo
b

s

#
 o

f m
ach

in
es

 Group Scheduling (GS) Batch Scheduling (BS) PImp

Obj Func

Val.

Comp Time

(Sec)

Obj Func

Val.

Comp Time

(Sec) Lower Bound

 𝐵
𝑆
 𝑣
𝑠 𝐺

𝑆

1 3 2 8 6 880.20 0.55 862.80 83.0 2.0%

2 3 2 8 12 1170.60 1.08 1008.80 138748.5 13.8%

3 2 4 8 2 1535.40 1.19 1535.40 6.8 0.0%

4 3 2 8 3 1720.08 1.42 1720.08 9.1 0.0%

5 3 3 9 6 2215.80 1.36 2006.82 24873.4 9.4%

6 7 4 12 28 2733.20 351.00 2235.68 Fixed 1897.45 18.2%

7 7 4 12 28 3764.60 10.09 3058.26 39398.5 18.8%

8 7 3 12 28 3299.40 7.21 2981.61 29847.9 9.6%

9 4 5 20 4 8257.00 337024.00 8189.00 Fixed 7199.34 0.8%

10 2 4 16 2 3436.40 14.00 3420.70 245598.1 0.5%

11 2 5 15 10 1447.00 11.37 1244.42 Fixed 1038.78 14.0%

12 3 5 20 15 2148.00 429203.00 1808.40 Fixed 1692.82 15.8%

13 2 2 10 4 1860.00 2.00 1699.67 30938.7 8.6%

14 5 2 14 25 3373.60 5235.00 2668.85 Fixed 2482.70 20.9%

15 2 6 24 8 3355.20 447923.00 2869.03 Fixed 2490.28 14.5%

16 2 7 21 10 1928.40 - 1679.05 Fixed 1423.51 12.9%

17 4 5 15 24 2045.00 - 1649.49 Fixed 1481.19 19.3%

 Average 2657.05 81319.08 2390.47 151947.29 2463.26 10.5%

The sign “-“ indicates that no computational time is reported by group scheduling.

Thus, from the benchmark problem instances shown in Table 18, it is beneficial to drop the GTAs. By

applying the proposed batch scheduling instead of group scheduling, further improvement in the objective

function value can be obtained (from 0.5% up to approximately 21%). Using the following one-way

hypothesis test at a 5% significance level, the result obtained from a paired t-test on the average objective

function values of both approaches showed there is a statistically significant reduction in the objective

function value of group scheduling by allowing for the possibility of splitting groups as multiple batches

(𝑃𝑣𝑎𝑙𝑢𝑒 < 0.00001).

{
𝐻0: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 = 0
𝐻𝑎: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 < 0

7.2. Best algorithm

The basic TS and PSO along with TS/PR PSO/LSA as hybrid algorithms developed in Section 4 must be

compared to each other to determine what type of meta-heuristic(s) has better performance in dealing with

156

batch scheduling problems in HFS. In this case, a comprehensive set of experiments have been designed

based upon a split-plot design (Montgomery 2009) with five factors, shown in Table 19. The main-plot

factors include the structure (Str) of the problem, setup to run time ratio (StoR), due date tightness (DDT),

and scenario (Sc), while the eight different algorithms (Alg) belong to the sub-plot factor.

Table 19. Factors and their levels in the experiment

Factor name Levels

Whole-plot

Structure Str (Small, Small), (Small, Large), (Large, Small), (Large, Large)

Setup-to-run time ratio StoR 1.5, 3.5, 5

Due date tightness DDT 𝑡𝑖𝑔ℎ𝑡 (0.2),𝑀𝑒𝑑𝑖𝑢𝑚 (0.5), 𝐿𝑜𝑜𝑠𝑒 (0.8)

Scenario Sc (𝛼 = 0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), (𝛼 = 0.6, 𝛽 = 0.4)

Sub-plot

Algorithm Alg 𝐴𝑙𝑔1, 𝐴𝑙𝑔2, 𝐴𝑙𝑔3, 𝐴𝑙𝑔4, 𝐴𝑙𝑔5, 𝐴𝑙𝑔6, 𝐴𝑙𝑔7, 𝐴𝑙𝑔8

Eight levels have been considered for Alg factor to balance between path construction techniques and local

search algorithms for TS/PR and PSO/LSA algorithms, respectively. Constructing a good path between two

elite solutions in the population is a key step in TS/PR. Therefore, based on the importance of introducing

the promising solutions in relinking paths, four algorithms are generated as follows:

Alg1 PR is excluded and a basic TS algorithm is developed

Alg2 PR explores trajectories connecting elite solutions based on only LCS-based construction

Alg3 PR explores trajectories connecting elite solutions based on a combination of LCS- & block-based constructions

Alg4 PR explores trajectories connecting elite solutions based on a combination of LCS- & swap-based contractions

Although implementation of LSA for all particles within a population may take a considerable amount of

time, there should be a trade-off in the frequency of using LSA within the structure of PSO. Therefore,

based on the frequency of implementing LSA to improve the performance of the PSO, four algorithms are

generated as follows:

Alg5 LSA is excluded and PSO that stands for the basic PSO algorithm is developed

Alg6 LSA is implemented for only 𝑃𝑏𝑒𝑠𝑡
𝐺𝑙𝑜𝑏𝑎𝑙 vector at each iteration

Alg7 LSA is implemented for 𝑃𝑏𝑒𝑠𝑡 vectors of particles at each iteration

Alg8 LSA is implemented for all particles within the population at each iteration

The ten replications, each with a different number of groups, jobs belonging to groups, stages, and machines

belonging to each stage have randomly been generated for any combination of Str, StoR, DDT, and Sc

factors. Each of these replications has been solved by all eight algorithms, which resulted in a total number

of 8640 computer runs (108 combination of Str, StoR, DDT, and Sc × 10 replications × 8 Alg = 8640).

The statistical model for this design is:

157

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + 𝜏𝑖 + 𝜗𝑗 + 𝜌𝑘 + 𝛾𝑙 + 𝛿𝑚 + (𝜗𝜌)𝑗𝑘 + (𝜗𝛾)𝑗𝑙 + (𝜗𝛿)𝑗𝑚 + (𝜌𝛾)𝑘𝑙 + (𝜌𝛿)𝑘𝑚 + (𝛾𝛿)𝑙𝑚 + (𝜗𝜌𝛾)𝑗𝑘𝑙

+ (𝜗𝜌𝛿)𝑗𝑘𝑚 + (𝜌𝛾𝛿)𝑘𝑙𝑚 + (𝜗𝜌𝛾𝛿)𝑗𝑘𝑙𝑚 + 𝜃𝑖𝑗𝑘𝑙𝑚 + 𝜑𝑛 + (𝜗𝜑)𝑗𝑛 + (𝜌𝜑)𝑘𝑛 + (𝛾𝜑)𝑙𝑛 + (𝛿𝜑)𝑚𝑛

+ (𝜗𝜌𝜑)𝑗𝑘𝑛 + (𝜗𝛾𝜑)𝑗𝑙𝑛 + (𝜗𝛿𝜑)𝑗𝑚𝑛 + (𝜌𝛾𝜑)𝑘𝑙𝑛 + (𝜌𝛿𝜑)𝑘𝑚𝑛 + (𝛾𝛿𝜑)𝑙𝑚𝑛 + (𝜗𝜌𝛾𝜑)𝑗𝑘𝑙𝑛

+ (𝜗𝜌𝛿𝜑)𝑗𝑘𝑚𝑛 + (𝜌𝛾𝛿𝜑)𝑘𝑙𝑚𝑛 + (𝜗𝜌𝛾𝛿𝜑)𝑗𝑘𝑙𝑚𝑛

𝑖 = 1,2, … ,10; 𝑗 = 1,2,3,4; 𝑘, 𝑙,𝑚 = 1, 2, 3; and 𝑛 = 1, 2, … , 8 where 𝜇 is the overall mean effect, 𝜏𝑖 is the

replicate effect, 𝜗𝑗 is the effect of 𝑗𝑡ℎ level of Str, 𝜌𝑘 is the effect of 𝑘𝑡ℎ level of StoR, 𝛾𝑙 is the effect of 𝑙𝑡ℎ

level of DDT, 𝛿𝑚 is the effect of 𝑚𝑡ℎ level of Sc, and finally 𝜑𝑛 shows the effect of 𝑛𝑡ℎ level of Alg. The

resulting ANOVA table is presented in Table 20.

Table 20. ANOVA table on the natural log of data

 Sum of Square Degree of Freedom Mean of Square F-Statistic P-value
Source (main plot)
Rep (or Blocks) 17.943 9 1.994 0.890 0.533

Str 4,363.881 3 1,454.627 649.438 0.000

StoR 412.998 2 206.499 92.194 0.000

DDT 164.358 2 82.179 36.690 0.000

Sc 91.300 2 45.650 20.381 0.000

Str:StoR 3.045 6 0.508 0.227 0.968

Str:DDT 20.623 6 3.437 1.535 0.164

StoR:DDT 2.295 4 0.574 0.256 0.906

Str:Sc 8.236 6 1.373 0.613 0.720

StoR:Sc 9.185 4 2.296 1.025 0.393

DDT:Sc 38.646 4 9.662 4.314 0.002

Str:StoR:DDT 32.713 12 2.726 1.217 0.266

Str:StoR:Sc 29.272 12 2.439 1.089 0.366

Str:DDT:Sc 15.695 12 1.308 0.584 0.856

StoR:DDT:Sc 24.017 8 3.002 1.340 0.219

Str:StoR:DDT:Sc 35.595 24 1.483 0.662 0.890

Main Plot Error 2,156.951 963 2.240

Source (Sub-plot)

Alg 3.623 7 0.518 193.490 0.000

Str:Alg 0.582 21 0.028 10.355 0.000

StoR:Alg 0.230 14 0.016 6.152 0.000

DDT:Alg 0.000 14 0.000 0.000 1.000

Sc:Alg 0.115 14 0.008 3.073 0.000

Str:StoR:Alg 0.173 42 0.004 1.540 0.014

Str:DDT:Alg 0.087 42 0.002 0.773 0.854

StoR:DDT:Alg 0.107 28 0.004 1.429 0.067

Str:Sc:Alg 0.116 42 0.003 1.035 0.409

StoR:Sc:Alg 0.000 28 0.000 0.000 1.000

DDT:Sc:Alg 0.113 28 0.004 1.514 0.040

Str:StoR:DDT:Alg 0.220 84 0.003 0.978 0.536

Str:StoR:Sc:Alg 0.288 84 0.003 1.282 0.043

Str:DDT:Sc:Alg 0.159 84 0.002 0.708 0.980

StoR:DDT:Sc:Alg 0.217 56 0.004 1.446 0.017

Str:StoR:DDT:Sc:Alg 0.475 168 0.003 1.056 0.298

Subplot Error 18.201 6804 0.003

Total 7,451.459 8639

Rep=Replicate;Str=Structure;StoR=Setup to Runtime Ratio;DDT= Due Date Tightness;Sc=Scenario; Alg=Algorithm

158

Due to violations in normality assumption and constant variance assumption, the natural logarithm

transformation of the response variable has been employed to totally resolve all the deviations (R 2. 13.0.,

2011). Based on the ANOVA table for these experiments, all factors in the main-plot (Str, StoR, DDT, and

Sc) impose statistically significant effects on the objective function of the test problems (𝑃𝑣𝑎𝑙𝑢𝑒 <

0.00001), while the effect of their interactions is not significant except the interaction between DDT:Sc.

After accounting for the effect of those factors, the ANOVA table reveals convincing evidence of non-zero

differences between levels of algorithms (𝑃𝑣𝑎𝑙𝑢𝑒 < 0.00001). With the help of Tukey test on the levels of

Alg factor, Alg8 has the best performance among the eight algorithms with a confidence level of 95%.

The deviation of all algorithms from the best algorithm is calculated as 𝑑𝑒𝑣 = ((𝐴𝑙𝑔𝑖 − 𝐴𝑙𝑔𝑏𝑒𝑠𝑡)/

(𝐴𝑙𝑔𝑏𝑒𝑠𝑡))×10, ∀𝑖 = 1, 2, … , 7 to demonstrate the relative performance of all algorithms with each other.

These deviations are depicted in the left side of Figure 24 by a box plot diagram. The results of relative

performances indicate Alg4 and Alg7 have the second and third best performance with the mean deviations

of 1.5% and 3.0%, respectively. Since there is no meaningful difference between the performances of Alg2,

Alg3, and Alg6, they are considered as the fourth best algorithms with the mean deviations of 4.7%, 4.6%,

and 4.2%, respectively. Finally, Alg1 and Alg5 are demonstrated as the algorithms with the largest

deviations around 6.7% and 8.8%, respectively. The 95% confidence intervals (CI) for the means of these

deviations, depicted in the right side of Figure 24, suggest no significant difference between the

performance of Alg4 and Alg8 because of the smallest deviation from Alg8 along with the short range of

deviations. Apart from this, the box plot of Alg4 depicted in Figure 24 suggests Alg4 can give a better

solution compared to Alg8 in some problems.

Figure 24. Deviations from the best algorithm

The following results 4 through 6 are obtained from comparison between algorithms:

Result 4. Since a basic local search algorithm can decompose the batch scheduling problem into several

hierarchical levels to take advantage of batching, it presents a better performance compared to a basic

159

population-based algorithm, especially when there is an exhaustive combination enumeration between

batch compositions of all groups in all stages of a problem. This being the case, Alg1 has the ability to

generate solutions with better quality compared to Alg5.

Result 5. Due to involving several moves at the same time for creating a neighbor solution, a population-

based structure is able to find good quality solutions in less iterations compared to local search algorithms

for batch scheduling in HFS. In addition, a population-based algorithm enhanced with a local search

structure is able to integrate the batching phase into the scheduling phase. Therefore, Alg8 is able to identify

good quality solutions compared to Alg4, in less computational time.

Result 6. Based on a test problem in (large, large) level, a comparison of the iterative improvement in the

objective function value between TS/PR and PSO/LSA, depicted in Figure 25, indicates PSO/LSA is able

to obtain the same best solution compared to TS/PR in less iterations and, subsequently, in less

computational time. Although TS/PR and PSO/LSA give the same best solution, TS/PR gradually improves

the objective function in each stage, while PSO/LSA has more and less improvement in the objective

function in the initial and final iterations, respectively, in each stage. As a result, PSO/LSA converges to

the best solution faster than TS/PR. Since the stage-based interdependency strategy is implemented for each

algorithm, there are unusual increases in the objective function value when the algorithm goes through

stages.

 Figure 25. Comparison between iterative improvement of TS/PR and PSO/LSA

There are strong evidences of a nonzero difference between the interaction effect of Str:Alg, StoR:Alg, and

Sc:Alg. Since the interpretation of a high rank interaction is quite difficult to explain, only the interactions

between Str:Alg, StoR:Alg, and Sc:Alg are explained with the help of Tukey test on each level of Str, StoR,

and Sc factors to compare the performance of the developed algorithms. Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a significance

160

level of 5% for each comparison in each level of Str, StoR, and Sc, it can be concluded that the problem

structures, different ratios between setup-to-run time, and different importance coefficients associated with

a producer and customers (scenarios) have an effect on the performance of the developed algorithms.

Generally, since the average objective function value of Alg8 is less than all the other developed algorithms

for all levels of aforementioned factors, it can be concluded that Alg8 provides better solutions for the

proposed research problem, particularly for problems with (large, large) structure. Although Alg4 presents

a close performance compared to Alg8 for problems with (small, large) & (large, small) structures, Alg8

presents a slightly better performance compared to Alg4 for problems with (large, large) structure. With

respect to the interaction effect of Str:Alg, it can be concluded that the total number of jobs of all groups is

very sensitive to the processing time and tardiness of jobs. In relation to the interaction effect of Sc:Alg, the

difference between the developed algorithms, particularly Alg8 and Alg4, is more pronounced when

customers’ satisfaction has high priority compared to the production cost, i.e., a larger coefficient assigned

to customers.

Finally, since a bi-criteria objective is considered in the research problem, not only the interaction of the

developed algorithms and Sc is pronounced, but also the individual contribution of Sc as a factor is equally

pronounced. On the other hand, the ANOVA table reveals moderate evidence of non-zero differences

between different levels of interaction between DDT:Sc. This being the case, a paired t-test is performed to

compare the different levels of Sc with respect to the average objective function values of the two best

algorithms, i.e., Alg4 and Alg8, i.e., 1×3 = 3 comparisions. Likewise, another paired t-test is performed to

compare the different levels of DDT:Sc, i.e., 3×3 = 9 comparisions. Sc1, Sc2, and Sc3 are referred to (𝛼 =

0.4, 𝛽 = 0.6), (𝛼 = 0.5, 𝛽 = 0.5), and (𝛼 = 0.6, 𝛽 = 0.4) scenario, respectively. The principal results of a

paired t-test performed to compare the different levels of Sc are shown in Table 21.

Table 21. Paired t-test for scenarios

Pair

Paired differences

t df
Sig.

(2-tailed) Mean
Std.

deviation

Std. error

mean

95% confidence interval

of the difference

Lower Upper

Sc1 - Sc2 814.424 861.375 157.265 495.176 1275.209 5.179 35 9.34384E-06

Sc1 - Sc3 730.967 972.416 177.538 370.565 1251.154 4.117 35 2.22097E-04

Sc2 - Sc3 83.456 1129.523 206.222 -335.174 687.686 0.405 35 6.88167E-01

Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a 5% significance level for each comparison, it can be concluded that the objective

function value is sensitive to the scenario. In other words, the average objective function value obtained

from Sc1 is considerably less than the ones obtained from Sc2 and Sc3. In addition, although the average

161

objective function value obtained from Sc2 is less than the one obtained from Sc3, there is no statistical

evidence of a difference between Sc2 and Sc3.

The principal results of a paired t-test performed to compare the different levels of Sc for each level of due

date tightness are shown in Table 22. Based on 𝑃𝑣𝑎𝑙𝑢𝑒 at a 5% significance level for each comparison in

each due date tightness level, it can be concluded that there is a significant difference between the results

of these scenarios in each level of due date tightness. In other words, since the average objective function

value obtained from Sc1 is considerably less than the ones obtained from Sc2 and Sc3 for all due date

tightness levels, it can be concluded that Sc1 reduces the objective function value of a problem more in

comparison to when Sc2 and Sc3 are considered, particularly when the jobs have tight and moderate due

dates, i.e., 𝐷𝐷𝑇 = 0.2 or 𝐷𝐷𝑇 = 0.5. In addition, Sc2 reduces the objective function value of a problem

slightly more than Sc3 when the jobs have moderate due date. With respect to the interaction effect of

DDT:Sc, it can be concluded that the objective function value is simultaneously very sensitive to the

importance coefficients associated with the producer and customers along with the degree of tightness of

jobs’ due date. These results are in agreement with the results obtained for scenario sensitivity analysis.

Table 22. Paired t-test for interaction between scenarios and due date tightness

DDT Pair

Paired differences

t df
Sig.

(2-tailed) Mean
Std.

deviation

Std. error

mean

95% confidence interval

of the difference

Lower Upper

T
ig

h
t

Sc1 - Sc2 816.244 526.428 96.112 604.797 1027.690 8.493 11 3.68457E-06

Sc1 - Sc3 795.970 734.903 134.174 500.787 1091.153 5.932 11 9.83980E-05

Sc2 - Sc3 20.274 962.781 175.779 -366.440 406.987 0.115 11 9.10258E-01

M
ed

iu
m

Sc1 - Sc2 342.061 224.474 40.983 251.898 432.224 8.346 11 4.35568E-06

Sc1 - Sc3 606.870 965.104 176.203 219.224 994.517 3.444 11 5.48432E-03

Sc2 - Sc3 264.810 960.946 175.444 -121.167 650.786 1.509 11 1.59381E-01

L
o

o
se

Sc1 - Sc2 567.442 419.725 76.631 398.854 736.030 7.405 11 1.35159E-05

Sc1 - Sc3 790.062 1229.625 224.498 296.166 1283.957 3.519 11 4.80488E-03

Sc2 - Sc3 222.619 1427.341 260.596 -350.691 795.930 0.854 11 4.11173E-01

In conclusion, since both objectives (total completion time and total tardiness of jobs) are not in conflict,

the tardiness of a job is either reduced or not changed when its completion time reduces. In addition, the

completion time of a job is certainly reduced when its tardiness (positive value of lateness) reduces.

Regarding the two previous statements, the objective function value is reduced more when larger

importance coefficient is assigned to customers and/or tight due date is considered for the jobs.

162

7.3. Algorithms versus optimal solutions and lower bounds

One of the main purposes of this research is to take the benefits of integrating the batching decision into

the group scheduling approach. Therefore, the performance of batch scheduling and group scheduling

should be compared. Another purpose of this research is to develop robust meta-heuristic algorithms to deal

with the batch scheduling problem in HFS. Therefore, the performance of the meta-heuristic algorithms

should be evaluated with respect to either optimal solutions or tight lower bounds obtained from the B&P

algorithm. For these comparisons and evaluations, a total of 30 sample problems, generated by the

comprehensive data generation mechanism (Section 6) and divided into three groups of 10 problems, are

tested. Those three groups represent (small, small), (small, large) & (large, small), and (large, large)

problem structures. Observe that, as noted before, (small, large) & (large, small) problems are considered

as one level or medium-size problems.

Given the computational time limit (the common 8-hour work-shifts), the benefits of integrating the

batching decision into the group scheduling approach are again demonstrated by comparing the results of

upper bounds/optimal solutions of batch scheduling compared to group scheduling. The MILP3 model is

implemented for group scheduling with regard to 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖, ∀𝑖 ∈ 𝐼

𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝐾 and some

justifications. Apart from this, the performance of the best meta-heuristic algorithm is evaluated against

optimal solutions as well as lower bounds obtained from CPLEX and the B&P algorithm. Eight-hour and

one-hour time limits are considered for CPLEX / the B&P algorithm and meta-heuristic algorithms,

respectively. The results are shown in Tables 23 through 25 for (small, small), (small, large) & (large,

small), and (large, large) levels, respectively. Each test problem is represented as a problem class (i.e., level|

of groups| # of all jobs| # of stages| # of all machines). The best upper bounds obtained by the best TS/PR

and PSO/LSA algorithms (i.e., Alg4 and Alg8) are reported under the 𝑈𝐵𝐴𝑙𝑔 column.

As discussed in Sections 4.1.5 and 5.3.1.3 and based on our preliminary experiments, the MILP3 model

along with the RMILP model are considered to find optimal solutions or good quality lower bounds,

particularly for small-size problems. In addition, DWD3 along with DWD2 decomposition techniques are

considered in the B&P algorithm to develop tight lower bounds, particularly for medium- and large-size

problems. By considering 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2) and 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3) as the lower bound obtained by the B&P

algorithm with the help of DWD2 and DWD3, respectively, and some justification on the Pseudo-code in

Table 1, the best lower bound is determined as follows:

163

Table 23. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Small, Small) level of

problems

Average Deviation

L
ev

el

T
est P

ro
b

lem

𝐿𝑒𝑣𝑒𝑙|
𝑔|

∑ 𝑛𝑖
𝑖∈𝑔

|

𝑚|

∑ 𝑣𝑘
𝑘∈𝑚

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝑈
𝐵
𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

Group Scheduling

(GS)
 Batch Scheduling (BS)

MILP Model RMILP Model MILP3 Model Meta-heuristic B&P

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3

(S
m

all, S
m

all)

1 𝑆𝑆|3|9|3|5 2209.16 16.73 2209.16 219.19 No 2209.16 29839.93 2209.16 198.06 2054.52 2076.61 0.0 0.0 0.0 0.0 0.0

2 𝑆𝑆|5|18|6|15 2744.85 37.03 2473.51 1219.01 Yes 2529.57 2459.98 Fixed 2537.68 268.23 2402.48 2478.05 7.8 7.5 2.0 2.4 -0.3

3 𝑆𝑆|5|18|6|16 4388.81 202633.70 4159.71 246294.06 No 4202.76 4038.67 Fixed 4178.08 21.88 4060.54 4108.11 5.2 4.8 0.0 0.4 -0.4

4 𝑆𝑆|3|9|2|3 7369.70 54.06 7008.44 222.88 No 7008.44 28084.23 7098.44 119.12 6447.76 6447.76 4.9 3.7 0.0 1.3 -1.3

5 𝑆𝑆|2|10|4|7 6434.77 61.98 6168.78 662.43 Yes 6308.60 48755.01 6368.6 456.24 4935.02 5803.91 2.0 1.0 0.0 1.0 -1.0

6 𝑆𝑆|4|12|6|13 4247.74 87495.40 3953.57 214573.27 Yes 3997.88 3938.28 Fixed 4001.88 636.14 3281.46 3558.11 5.9 5.8 1.1 1.2 -0.1

7 𝑆𝑆|4|13|2|7 4648.82 14.16 4236.73 46.40 Yes 4284.21 207586.9 4298.21 532.41 4024.89 4027.16 7.8 7.5 0.0 0.3 -0.3

8 𝑆𝑆|5|15|4|11 6849.68 12.18 5976.86 758.20 No 6043.84 5893.02 Fixed 6002.45 597.24 5080.33 5137.26 12.7 12.4 0.0 0.4 -0.4

9 𝑆𝑆|3|11|4|7 5029.62 36.93 4635.14 633.42 No 4635.14 159687 4685.48 349.27 3986.22 4264.33 7.8 6.8 0.0 1.1 -1.1

10 𝑆𝑆|3|12|4|9 7872.20 43.66 7013.59 635.95 No 7254.77 6980.02 Fixed 7213.59 205.83 6592.77 6166.55 10.9 8.4 0.0 2.9 -2.9

 Average 6.5 5.8 0.3 1.1 -0.8

 UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”.

 Bold numbers represent UB and LB selected for a test problem.

 Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm.

 Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models.

 B&P algorithm applies DWD3 approach to decompose the problem.

 𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 .

164

Table 24. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Small, Large) & (Large,

Small) levels of problems

Average Deviation

L
ev

el

T
est P

ro
b

lem

𝐿𝑒𝑣𝑒𝑙|
𝑔|

∑ 𝑛𝑖
𝑖∈𝑔

|

𝑚|

∑ 𝑣𝑘
𝑘∈𝑚

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝑈
𝐵
𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

Group Scheduling (GS) Batch Scheduling (BS)

MILP Model RMILP Model MILP3 Model Meta-heuristic B&P

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3

(S
m

all, L
arg

e) &
 (L

arg
e, S

m
all)

1 𝑆𝐿|3|19|4|14 12233.35 243654.29 9203.07 8282.76 Fixed NK 10434.33 5247.40 Fixed 10409.68 983.87 9082.69 10289.02 14.7 14.9 1.4 1.2 0.2

2 𝑆𝐿|3|24|3|8 7637.09 244158.10 6812.02 5585.86 Fixed NK 6888.35 3774.32 Fixed 6848.82 2109.40 6700.82 6739.85 9.8 10.3 2.2 1.6 0.6

3 𝑆𝐿|4|28|3|5 13825.68 207876.19 11651.24 249271.29 Yes 12334.67 6380.52 Fixed 12024.82 2153.16 9204.48 11209.42 10.8 13.0 5.5 3.2 2.5

4 𝑆𝐿|4|31|6|21 4977.98 4873.68 Fixed 4005.82 2884.19 Fixed NK 4250.71 1651.68 Fixed 4182.98 1354.13 3929.04 4129.20 14.6 16.0 2.9 1.3 1.6

5 𝑆𝐿|4|25|3|14 9817.66 190738.10 8746.86 250098.02 Yes 9047.65 4180.41 Fixed 9084.83 1219.61 7347.36 8894.48 7.8 7.5 1.7 2.1 -0.4

6 𝐿𝑆|8|55|6|9 13612.69 11156.51 Fixed 11219.62 7517.15 Fixed NK 11877.74 6175.13 Fixed 10984.24 3027.81 9983.56 9338.62 12.7 19.3 21.4 17.6 7.5

7 𝐿𝑆|9|54|5|12 13276.16 11812.27 Fixed 12228.02 8926.45 Fixed NK 12365.05 7183.75 Fixed 11746.91 1204.21 10338.88 10837.46 6.9 11.5 12.4 8.4 5.0

8 𝐿𝑆|8|59|2|6 13847.81 11488.02 Fixed 11947.85 7646.62 Fixed NK 12218.65 5717.20 Fixed 11726.66 1183.14 9934.33 9293.01 11.8 15.3 23.9 26.2 4.0

9 𝐿𝑆|10|79|5|11 15626.38 14373.26 Fixed 13747.58 9898.26 Fixed NK 14553.98 7310.56 Fixed 12958.78 3600.00 11332.15 11552.79 6.9 17.1 20.6 12.2 11.0

10 𝐿𝑆|6|41|5|19 11391.55 9564.52 Fixed 9705.43 7764.34 Fixed NK 10274.73 4652.42 Fixed 9075.26 1338.74 7143.50 7184.45 9.8 20.3 24.4 16.9 11.7

 Average 10.6 14.5 11.6 9.1 4.4

 UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”.

 Bold numbers represent UB and LB selected for a test problem.

 Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm.

 Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models.

 B&P algorithm applies the DWD3 decomposition technique to decompose the problem.

 𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 .

165

Table 25. The benefits of batching, performance of 𝑈𝐵𝐴𝑙𝑔 vs 𝑈𝐵𝐵𝑆, and performance of 𝑈𝐵𝐴𝑙𝑔 and 𝑈𝐵𝐵𝑆 vs 𝐿𝐵𝐵𝑆 for (Large, Large) level of

problems

Average Deviation

L
ev

el

T
est P

ro
b

lem

𝐿𝑒𝑣𝑒𝑙|
𝑔|

∑ 𝑛𝑖
𝑖∈𝑔

|

𝑚|

∑ 𝑣𝑘
𝑘∈𝑚

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝑈
𝐵
 𝐺
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐵
𝑆

𝐿
𝐵
 𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

𝑈
𝐵
𝐵
𝑆 𝑣
𝑠 𝑈

𝐵
𝐴
𝑙𝑔

Group Scheduling (GS) Batch Scheduling (BS)

MILP Model RMILP Model MILP3 Model Meta-heuristic B&P

𝑈𝐵𝐺𝑆 𝐿𝐵𝐺𝑆 𝐶𝑇𝐺𝑆 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝐿𝐵𝑖ℎ
𝑘 𝑈𝐵𝐵𝑆 𝐿𝐵𝐵𝑆 𝐶𝑇𝐵𝑆 𝑈𝐵𝐴𝑙𝑔 𝐶𝑇𝐴𝑙𝑔

𝐵&𝑃𝐷𝑊𝐷2 𝐵&𝑃𝐷𝑊𝐷3

(L
arg

e, L
arg

e)

1 𝐿𝐿|9|58|5|25 19369.78 13544.87 Fixed 14539.04 4943.27 Fixed NK 15761.68 7365.27 Fixed 14429.74 894.65 11823.77 10610.8 18.6 25.5 25.0 22.0 8.5

2 𝐿𝐿|7|51|4|12 15600.57 12003.80 Fixed 10279.97 5037.19 Fixed NK 11012.16 4139.91 Fixed 9995.10 2101.30 7955.93 9158.261 29.4 35.9 16.8 9.1 9.2

3 𝐿𝐿|8|58|5|8 18279.95 12782.77 Fixed 10495.69 5247.85 Fixed NK 11991.34 4508.02 Fixed 11080.98 1401.13 8741.88 9260.098 34.4 39.4 22.8 19.7 7.6

4 𝐿𝐿|8|62|6|7 16371.37 11448.15 Fixed 10612.74 5943.13 Fixed NK 11235.26 5350.12 Fixed 10669.76 833.87 7483.26 7897.393 31.4 34.8 29.7 35.1 5.0

5 𝐿𝐿|8|60|2|9 22579.33 17373.59 Fixed 15020.31 4355.89 Fixed NK 15716.98 7079.72 Fixed 13327.35 2021.88 11329.32 12915.38 30.4 41.0 17.8 3.2 15.2

6 𝐿𝐿|10|68|3|7 17062.89 15352.50 Fixed 13747.26 4674.07 Fixed NK 14553.64 5471.29 Fixed 13967.63 3596.90 11314.98 11815.28 14.7 18.1 18.8 18.2 4.0

7 𝐿𝐿|7|44|6|21 20779.55 14947.28 Fixed 15594.41 5613.99 Fixed NK 16705.13 7048.58 Fixed 14705.58 1818.48 12222.20 11411.37 19.6 29.2 26.8 20.3 12.0

8 𝐿𝐿|8|52|4|17 14073.70 9982.51 Fixed 8654.66 4846.61 Fixed NK 9382.47 3514.03 Fixed 8060.20 2098.06 6272.72 6316.303 33.3 42.7 32.7 27.6 14.1

9 𝐿𝐿|8|49|7|30 20466.06 17388.77 Fixed 16102.24 6923.96 Fixed NK 17456.35 6739.90 Fixed 14820.50 1049.43 11354.02 12616.01 14.7 27.6 27.7 17.5 15.1

10 𝐿𝐿|8|50|6|15 15475.17 12527.82 Fixed 9796.40 2351.14 Fixed NK 10620.22 3587.91 Fixed 9478.77 923.01 8352.02 8727.133 31.4 38.7 17.8 8.6 10.7

 Average 25.8 33.3 23.6 18.1 10.1

 UB, LB, CT stand for upper bound, lower bound, and computational time, respectively. NK stands for “Not Known”.

 Bold numbers represent UB and LB selected for a test problem.

 Under average deviation column, 𝐿𝐵𝐵𝑆 is determined in terms of LB related to RMILP model, MILP3 model, and B&P algorithm.

 Under average deviation column, 𝑈𝐵𝐵𝑆 is determined in terms of UB related to RMILP and MILP3 models.

 B&P algorithm applies DWD3 approach to decompose the problem.

 𝑈𝐵𝐺𝑆 and 𝐿𝐵𝐺𝑆 are determined based on the MILP3 model by relaxing desired bound constraints, i.e., 𝐿𝐵𝑖ℎ
𝑘 = 𝑛𝑖 .

166

• 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝑂𝑝𝑡𝑅𝐷, 𝐿𝐵𝑂𝐿 , 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2), 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3)}, when the optimal solution of the

RMILP model violates 𝐿𝐵𝑖ℎ
𝑘 .

• 𝐿𝐵𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = max {𝐿𝐵𝑅𝐷, 𝐿𝐵𝑂𝐿 , 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2), 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3)}, when the optimal solutions of both

the RMILP and MILP3 models are not attainable.

Thus, the results of the RMILP model, the MILP3 model, and the B&P algorithm (using DWD2 and DWD3

decomposition techniques) are considered to determine tight lower bound. In order to provide sufficient

insight for arguments presented in Section 4.1.4.1, we reported the results of the RMILP model, the MILP3

model, and the B&P algorithm, where 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 are shown by bold numbers in Tables 23

through 23. For example, the RMILP model violates 𝐿𝐵𝑖ℎ
𝑘 for the sixth test problem in (small, small) level,

but 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑝𝑡𝑅𝐷 since 𝑂𝑝𝑡𝑅𝐷 > 𝐿𝐵𝑂𝐿 > 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3) > 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2). Contrary to this problem,

since 𝑂𝑝𝑡𝑅𝐷 of the fifth test problem in (small, large) level violates 𝐿𝐵𝑖ℎ
𝑘 and 𝐿𝐵𝑂𝐿 < 𝑂𝑝𝑡𝑅𝐷 <

𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷2) < 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3), 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐿𝐵(𝐵&𝑃𝐷𝑊𝐷3). Generally, one bold number in a row represents

the optimal solution (i.e., 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒=𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒), while two bolds numbers in a row represent 𝑈𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒

and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 of the test problem.

The following results 7 through 10 are obtained from Tables 23 through 25:

Result 7. the performance of the developed batch scheduling approach is compared with the group

scheduling approach to uncover the benefits of batching. As a result of integrating the batching decision

into group scheduling and, consequently, dropping the GTAs, Figure 26 show up to 34.4% and 42.7%

reduction in the objective function value of group scheduling with the help of CPLEX and meta-heuristic

algorithms, respectively. These benefits of batching become more pronounced as the size of the problems

is increased, particularly in (large, large) level.

The result of a paired t-test in the following one-way hypothesis test applied to compare the average

objective function value obtained by batch scheduling and group scheduling shows there is a statistically

significant difference between the performances of batch scheduling and group scheduling (𝑃𝑣𝑎𝑙𝑢𝑒 <

0.00001).

{
𝐻0: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 = 0
𝐻𝑎: 𝜇𝐵𝑆 − 𝜇𝐺𝑆 < 0

167

Figure 26. The benefits of integrating the batching decision into group scheduling

Result 8. the quality of the lower bound is of a vital importance. The quality of the lower bounds obtained

from the B&P algorithm is more pronounced as the size of the problems is increased, particularly in (large,

large) level. As seen in Tables 23 and 25, the lower bounds obtained from the B&P algorithm, either using

DWD2 and DWD3, significantly outperform the lower bounds obtained from CPLEX, except for problems

3 and 10 in (small, large) and (large, small) levels, respectively. The average deviations between the lower

bounds obtained from B&P and CPLEX are 17.93% and 77.92% for (small, large) & (large, small) and

(large, large) levels, respectively. This notable improvement in the quality of the lower bounds increases

up to 143.24% for problem 9 in (large, large) level.

Result 9. with respect to batch scheduling, the average deviation of meta-heuristic algorithms from the best

lower bounds, i.e., 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, is 1.1%, 9.1%, and 18.1%, for (small, small), (small, large) & (large, small),

and (large, large) level, respectively. Compared to 0.3%, 11.6%, and 23.6% average deviation between

upper bounds of CPLEX and 𝐿𝐵𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒, meta-heuristic algorithms present a better performance, except

for (small, small) level. With respect to (small, large) & (large, small) and (large, large) level, the deviation

of CPLEX from meta-heuristic algorithms is 4.4% and 10.1% on average, which shows the superior

performance of meta-heuristic algorithms, particularly for medium and large size problems.

Result 10. the RMILP model is capable of finding the optimal solutions and good quality lower bounds,

particularly for small-size problems. Apart from this, the B&P algorithm using DWD2 is capable of finding

better lower bounds compared to the B&P algorithm using DWD3 in some problems, i.e., problem 6 in

(small, large) level, problem 8 in (large, small) level, and problems 1 and 7 in (large, large) level, since the

number of violations on 𝐿𝐵𝑖ℎ
𝑘 is not significant.

168

8. CONCLUSIONS

Unlike the extensive amount of research on finding schedules for hybrid flow shop problems, little attention

has been given to form inconsistent batches of jobs belonging to pre-determined groups to minimize any

measure of performance. By disregarding group technology assumptions, there is the possibility of

processing jobs belonging to a group in several batches, so that jobs belonging to the same group might be

processed concurrently on more than one machine in a bottleneck stage. The hybrid flow shop batching and

scheduling problem with the desired lower bounds on batch sizes, i.e.,

𝐻𝐹𝑚|𝑆𝑇𝑠𝑑,𝑓 , 𝑟𝑗, 𝑎𝑗, 𝑀𝑗, 𝐿𝐵𝑖, 𝑠𝑘𝑖𝑝|𝐹𝑙(𝛼 σ𝑤𝑗𝐶𝑗 , 𝛽 σ𝑤𝑗𝑇𝑗) is a complex problem with broad applications,

particularly in many manufacturing industries. A bi-criteria objective function is considered to account for

the benefits to both the producer and customers by minimizing a linear combination of total weighted

completion time as well as total weighted tardiness of all jobs, subject to the mentioned operational

constraints. The possibility of processing jobs belonging to a group in multiple batches is carefully

investigated, when the number of jobs assigned to each batch does not violate the desired lower bounds on

batch sizes. To create a balance between setup times and cumulative run times of developed batches on

machines, the desired lower bounds on batch sizes are considered as the minimum number of jobs assigned

to each batch. In order to depict the real industry requirements, further constraints of the problem are

considered as dynamic job release times, dynamic machine availability times, different machine eligibilities

and capabilities for job processing, and the possibility of stage skipping.

Four mathematical models have been developed to deal with the batch scheduling problem. The MILP1

and MILP2 models have been developed in two phases, i.e., batching and scheduling phases. The batching

phase determines the optimal combination of batch compositions of all groups in all stages, with respect to

the desired lower bounds on batch sizes, while the optimal assignment and sequence of batches on machines

as well as sequence of jobs within batches are determined in the scheduling phase, regarding operational

constraints and different combinations of batch compositions in the batching phase. The MILP1 model

determines the job sequence and batch sequence by the precedence constraints between each pair of jobs

within batches and each pair of developed batches on machines. The MILP2 model is very similar to the

MILP1 model, except that it follows the position concept within batches to determine the job sequence

within batches in the scheduling phase. Both MILP1 and MILP2 models have an extremely large solution

space, particularly with regard to an exhaustive combination of enumerations between batch compositions.

To combat this difficulty, the MILP3 and RMILP model are developed. The MILP3 model developed in

terms of the flow conservation constraints integrates batching and scheduling phases of the MILP1 and

MILP2 models. Therefore, the number of variables and, consequently, the complexity of the model is

reduced. The RMILP model focuses on a non-dominated solution space by eliminating the batching phase.

169

However, the RMILP is also strongly NP-hard, and its effect is more pronounced on computational times

as the size of the problem grows. Although the RMILP model cannot guarantee the optimal solution of

other MILP models since it might violate the desired lower bounds on batch sizes, it is capable of

developing good quality lower bounds in limited computational times, compared to other MILP models.

Since the optimal solution for large-size problems (that are commonly found in real industries) cannot be

found within a reasonable computational time, several meta-heuristics have been developed as the main

approach to deal with this problem to find the optimal/near optimal solutions, within an affordable time. A

basic TS along with three TS meta-heuristics enhanced with a population-based structure, i.e., TS/PR, as

well as a basic PSO along with three PSO meta-heuristics enhanced with a local search structure, i.e.,

PSO/LSA, are developed to deal with the proposed batch scheduling problem. TS/PR algorithms are

different in terms of path construction techniques, while PSO/LSA are different in terms of the frequency

of using LSA within the structure of PSO. An initial solution finding mechanism is developed to generate

the initial populations. The refinement and adjustment steps are developed to change any infeasible

solutions to feasible ones, during the search into the solution space. The optimal solution of batch

scheduling in hybrid flow shop environments are not generally represented in the form of permutation

sequences because there is a different combination between batch compositions of all groups in each stage

of the HFS batch scheduling problem. Therefore, the permutation schedule does not hold true in the problem

addressed in this research. Thus, both sets of hybrid meta-heuristics implement the stage-based

interdependency strategy on local search and population-based structures to capture the move

interdependency of jobs within stages and, consequently, increase the flexibility of batch scheduling.

In order to determine the performance of developed meta-heuristic algorithms, they should be compared

through a robust measure. The best measure is the optimal solution or good quality lower bounds, which

are attainable for small-size problems. In addition, with the help of lower bounding mechanism, tight lower

bounds are obtained for medium- and large-size problems. A lower bounding mechanism based on column

generation technique is developed, and embedded in the tree structure of a B&B algorithm, i.e., B&P

algorithm, in order to develop tight lower bounds or optimally solve the HFS batch scheduling problem.

With the help of Dantzig-Wolfe Decomposition, the HFS problem is decomposed into a master problem

and a set of sub-problems that are easier to solve. Three different decomposition techniques, DWD1,

DWD2, and DWD3, are devised in this research in terms of the MILP1, RMILP, and MILP3 models,

respectively, and the best among them, i.e., DWD3, has been used in column generation. Although each SP

developed by DWD1 decomposition technique is smaller than the original problem, it has been shown that

these sub-problems are still strongly NP-hard, and subsequently, cannot be solved to optimality within a

reasonable amount of time. However, with the help of two virtual stages and eliminating the batching phase,

170

the sub-problems are simplified. Then, by heuristically solving the sub-problems in early stages of the

column generation algorithm, the sub-problems, and consequently, the restricted master problem have been

reformulated in a way that they require drastically fewer variables and constraints. This being the case, the

good quality lower bounds are obtained by this reformulation for small-size HFS problems. The SPs

obtained by the DWD3 decomposition technique can be optimally solved, while DWD1 is only capable of

finding lower bounds for small-size problems. Also, for larger size of problems, the SPs obtained by DWD1

are still NP-hard so that they cannot be optimally solved. Therefore, DWD1 is not capable of finding even

good quality lower bound for large-size problems. In addition, the SPs obtained by DWD2 can be optimally

solved but the desired lower bounds on batch sizes might be violated by some of the SPs. Therefore, DWD2

cannot guarantee to find tight lower bounds if the number of violations in batch sizes is significant. Thus,

DWD2 and DWD3 are the only approaches that have been used in the B&P algorithm.

Compared to the group scheduling approach, the proposed batch scheduling approach achieves further

improvement in the objective function value by taking the benefits of integrating the batching decision into

the group scheduling approach, when the group technology assumptions (GTAs) are dropped. The superior

quality of results obtained by the batch scheduling approach will encourage manufacturing industries to

implement such a scheduling approach to determine the optimal/near optimal schedule. Based on a

benchmark in the literature, the results of this comparison revealed that the batch scheduling approach is

able to improve the results of the group scheduling approach up to 21% and even 1% improvement in

manufacturing companies is significant. With the help of a comprehensive data generation mechanism,

various experiments conducted on different set of problem structures confirm the superiority of PSO/LSA

compared to TS/PR. A comparison between all developed algorithms revealed outstanding performance of

TS/PR where PR explores trajectories connecting elite solutions based on a combination of LCS- & swap-

based contractions (Alg4) as well as PSO/LSA where LSA is implemented for all particles within the

population at each iteration (Alg8). The results indicate that a basic TS or PSO is not capable of finding

good quality solution for the HFS batch scheduling problem. For medium- and large-size problems, where

CPLEX is not able to find optimal solutions, the results of the best developed algorithm (Alg4 and Alg8)

are compared against the lower bounds obtained from the B&P algorithm and CPLEX. These comparisons

revealed outstanding performance of developed meta-heuristic algorithms compared to CPLEX. Finally,

the B&P algorithm is capable of finding tight lower bounds compared to the lower bounds obtained from

CPLEX, particularly for large-size problems.

Some directions for future research are to extend the application of this research to other critical areas such

as health care systems to improve the performance of their scheduling system. Also, due to the wide range

of group scheduling applications, there will be growing interest on the improvement of the group scheduling

171

approach by dropping the GTAs. i.e., batch scheduling. In realistic situations, as the workers learn how to

perform a job, they will act faster in processing similar jobs. In the literature for the scheduling problems,

this is referred to as the learning effect and represents the learning abilities of workers to perform similar

jobs. Therefore, the runtime of jobs can be assumed to be dynamic. Finally, decomposing the problem into

the SPs so that each SP is related to a machine in a stage, developing a master problem to create a connection

between the SPs, and solving the problem optimally by the B&P algorithm in the basis of column generation

can indeed be a challenging research issue worth pursuing in the future.

172

BIBLIOGRAPHY

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European

Journal of Operational Research, 246(2), 345-378.

Allahverdi, A. and F. S. Al-Anzi. (2009). The two-stage assembly scheduling problem to minimize total completion

time with setup times. Computers & Operations Research, 36(10), 2740-2747.

Allahverdi, A., C. Ng, T. E. Cheng and M. Y. Kovalyov. (2008). A survey of scheduling problems with setup times

or costs. European journal of operational research, 187(3), 985-1032.

Armentano, V. c. A. and D. P. Ronconi. (1999). Tabu search for total tardiness minimization in flowshop scheduling

problems. Computers & operations research, 26(3), 219-235.

Bai, J., Z.-R. Li and X. Huang. (2012). Single-machine group scheduling with general deterioration and learning

effects. Applied Mathematical Modelling, 36(3), 1267-1274.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh and P. H. Vance. (1998). Branch-and-price: Column

generation for solving huge integer programs. Operations research, 46(3), 316-329.

Basseur, M., F. Seynhaeve and E.-G. Talbi (2005). Path Relinking in Pareto Multi-objective Genetic Algorithms.

EMO, Springer.

Bazaraa, M. S., J. J. Jarvis and H. D. Sherali (2011). Linear programming and network flows, John Wiley & Sons.

Behnamian, J., M. Zandieh and S. Fatemi Ghomi. (2010). A multi-phase covering Pareto-optimal front method to

multi-objective parallel machine scheduling. International Journal of Production Research, 48(17), 4949-

4976.

Behnamian, J., M. Zandieh and S. F. Ghomi. (2011). Bi-objective parallel machines scheduling with sequence-

dependent setup times using hybrid metaheuristics and weighted min–max technique. Soft Computing, 15(7),

1313-1331.

Ben-Daya, M. and M. Al-Fawzan. (1998). A tabu search approach for the flow shop scheduling problem. European

journal of operational research, 109(1), 88-95.

Bozorgirad, M. A. (2013). Bi-criteria group scheduling with learning in hybrid flow shops (Doctoral Dissertation),

Oregon State University, Oregon, U.S.A.

Bozorgirad, M. A. and R. Logendran. (2012). Sequence-dependent group scheduling problem on unrelated-parallel

machines. Expert Systems with Applications, 39(10), 9021-9030.

Bozorgirad, M. A. and R. Logendran. (2013). Bi-criteria group scheduling in hybrid flowshops. International Journal

of Production Economics, 145(2), 599-612.

Bozorgirad, M. A. and R. Logendran (2014). Developing tight lower bounds for hybrid flow shop scheduling

problems. IIE annual conference proceedings. Montreal: Institute of industrial engineers.

Brah, S. A. and J. L. Hunsucker. (1991). Branch and bound algorithm for the flow shop with multiple processors.

European journal of operational research, 51(1), 88-99.

Bülbül, K., P. Kaminsky and C. Yano. (2004). Flow shop scheduling with earliness, tardiness, and intermediate

inventory holding costs. Naval Research Logistics (NRL), 51(3), 407-445.

Chang, W. (2000). 7.2: Invited Paper: Fourth‐Generation TFT‐LCD Production Line. SID Symposium Digest of

Technical Papers, Wiley Online Library.

Chen, C.-L. and C.-L. Chen. (2009). Bottleneck-based heuristics to minimize total tardiness for the flexible flow line

with unrelated parallel machines. Computers & Industrial Engineering, 56(4), 1393-1401.

Chen, Z.-L. and C.-Y. Lee. (2002). Parallel machine scheduling with a common due window. European Journal of

Operational Research, 136(3), 512-527.

Chen, Z.-L. and W. B. Powell. (1999a). A column generation based decomposition algorithm for a parallel machine

just-in-time scheduling problem. European Journal of Operational Research, 116(1), 220-232.

173

Chen, Z.-L. and W. B. Powell. (1999b). Solving parallel machine scheduling problems by column generation.

INFORMS Journal on Computing, 11(1), 78-94.

Chen, Z. L. and W. B. Powell. (2003). Exact algorithms for scheduling multiple families of jobs on parallel machines.

Naval Research Logistics (NRL), 50(7), 823-840.

Cheng, R., M. Gen and Y. Tsujimura. (1999). A tutorial survey of job-shop scheduling problems using genetic

algorithms, part II: hybrid genetic search strategies. Computers & Industrial Engineering, 36(2), 343-364.

Choi, H.-S., J.-S. Kim and D.-H. Lee. (2011). Real-time scheduling for reentrant hybrid flow shops: A decision tree

based mechanism and its application to a TFT-LCD line. Expert systems with Applications, 38(4), 3514-

3521.

Choobineh, F. F., E. Mohebbi and H. Khoo. (2006). A multi-objective tabu search for a single-machine scheduling

problem with sequence-dependent setup times. European Journal of Operational Research, 175(1), 318-337.

Cormen, T., C. Leiserson, R. Rivest and C. Stein. (1990). Introduction to Algorithms, The MIT Electrical Engineering

and Computer Science Series.

CPLEX, I. I. (2009). V12. 1: User’s Manual for CPLEX. International Business Machines Corporation, 46(53), 157.

Dantzig, G. B. and P. Wolfe. (1960). Decomposition principle for linear programs. Operations research, 8(1), 101-

111.

Desrosiers, J., F. Soumis and M. Desrochers. (1984). Routing with time windows by column generation. Networks,

14(4), 545-565.

Dessouky, M. M., M. I. Dessouky and S. K. Verma. (1998). Flowshop scheduling with identical jobs and uniform

parallel machines. European Journal of Operational Research, 109(3), 620-631.

Du, J. and J. Y.-T. Leung. (1990). Minimizing total tardiness on one machine is NP-hard. Mathematics of operations

research, 15(3), 483-495.

Du Merle, O., D. Villeneuve, J. Desrosiers and P. Hansen. (1997). Stabilisation dans le cadre de la génération de

colonnes. Cahiers du GERAD,

Dugardin, F., F. Yalaoui and L. Amodeo. (2010). New multi-objective method to solve reentrant hybrid flow shop

scheduling problem. European Journal of Operational Research, 203(1), 22-31.

Eberhart, R. and J. Kennedy. (1995). Particle swarm optimization, proceeding of IEEE International Conference on

Neural Network. Perth, Australia, 1942-1948.

Eren, T. (2007). A multicriteria flowshop scheduling problem with setup times. Journal of Materials Processing

Technology, 186(1), 60-65.

Eren, T. and E. Güner. (2006). A bicriteria scheduling with sequence-dependent setup times. Applied Mathematics

and Computation, 179(1), 378-385.

Farley, A. A. (1990). A note on bounding a class of linear programming problems, including cutting stock problems.

Operations Research, 38(5), 922-923.

Garey, M. and D. Johnson (1979). Computers and intractability. New York: H, Freeman and Company.

Garey, M. R., D. S. Johnson and R. Sethi. (1976). The complexity of flowshop and jobshop scheduling. Mathematics

of operations research, 1(2), 117-129.

Gelogullari, C. A. and R. Logendran. (2010). Group-scheduling problems in electronics manufacturing. Journal of

Scheduling, 13(2), 177-202.

Gilmore, P. C. and R. E. Gomory. (1961). A linear programming approach to the cutting-stock problem. Operations

research, 9(6), 849-859.

Gilmore, P. C. and R. E. Gomory. (1963). A linear programming approach to the cutting stock problem-Part II.

Operations research, 11(6), 863-888.

174

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers & operations

research, 13(5), 533-549.

Glover, F. (1997). Tabu search and adaptive memory programming—advances, applications and challenges.

Interfaces in computer science and operations research, Springer: 1-75.

Glover, F., M. Laguna and R. Martí. (2000). Fundamentals of scatter search and path relinking. Control and

cybernetics, 29(3), 653-684.

Graham, R. L., E. L. Lawler, J. K. Lenstra and A. R. Kan. (1979). Optimization and approximation in deterministic

sequencing and scheduling: a survey. Annals of discrete mathematics, 5, 287-326.

Guinet, A. (1993). Scheduling sequence-dependent jobs on identical parallel machines to minimize completion time

criteria. The International Journal of Production Research, 31(7), 1579-1594.

Gupta, J., A. Hariri and C. Potts. (1997). Scheduling a two-stage hybrid flow shop with parallel machines at the first

stage. Annals of Operations Research, 69, 171-191.

Gupta, J. N. and S. Chantaravarapan. (2008). Single machine group scheduling with family setups to minimize total

tardiness. International Journal of Production Research, 46(6), 1707-1722.

Gupta, J. N. and W. P. Darrow. (1986). The two-machine sequence dependent flowshop scheduling problem.

European Journal of Operational Research, 24(3), 439-446.

Hajinejad, D., N. Salmasi and R. Mokhtari. (2011). A fast hybrid particle swarm optimization algorithm for flow shop

sequence dependent group scheduling problem. Scientia Iranica, 18(3), 759-764.

Haouari, M., L. Hidri and A. Gharbi. (2006). Optimal scheduling of a two-stage hybrid flow shop. Mathematical

Methods of Operations Research, 64(1), 107-124.

Hendizadeh, S. H., H. Faramarzi, S. A. Mansouri, J. N. Gupta and T. Y. ElMekkawy. (2008). Meta-heuristics for

scheduling a flowline manufacturing cell with sequence dependent family setup times. International journal

of production economics, 111(2), 593-605.

Ho, J. C. and Y.-L. Chang. (1995). Minimizing the number of tardy jobs for m parallel machines. European Journal

of Operational Research, 84(2), 343-355.

Ho, Y.-C. and T.-S. Su (2010). The machine layout within a TFT-LCD bay with an in-line stocker system and an RGV

system. Computers and Industrial Engineering (CIE), 2010 40th International Conference on, IEEE.

Hooker, J. N. and G. Ottosson. (2003). Logic-based Benders decomposition. Mathematical Programming, 96(1), 33-

60.

Hooker, J. N. and H. Yan. (1995). Logic circuit verification by Benders decomposition. Principles and practice of

constraint programming: The Newport Papers, 267-288.

Hsu, H.-M., Y. Hsiung, Y.-Z. Chen and M.-C. Wu. (2009). A GA methodology for the scheduling of yarn-dyed textile

production. Expert Systems with Applications, 36(10), 12095-12103.

Jang, Y. J. and G.-H. Choi (2006). Introduction to automated material handling systems in LCD panel production

lines. Automation Science and Engineering, 2006. CASE'06. IEEE International Conference on, IEEE.

Jeong, B., S.-W. Kim and Y.-J. Lee. (2001). An assembly scheduler for TFT LCD manufacturing. Computers &

Industrial Engineering, 41(1), 37-58.

Jia, S. and Z.-H. Hu. (2014). Path-relinking Tabu search for the multi-objective flexible job shop scheduling problem.

Computers & Operations Research, 47, 11-26.

Jin, Z., K. Ohno, T. Ito and S. Elmaghraby. (2002). Scheduling hybrid flowshops in printed circuit board assembly

lines. Production and Operations Management, 11(2), 216-230.

Jungwattanakit, J., M. Reodecha, P. Chaovalitwongse and F. Werner. (2009). A comparison of scheduling algorithms

for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria. Computers

& Operations Research, 36(2), 358-378.

175

Kang, Y.-H., S.-S. Kim and H. J. Shin. (2007). A scheduling algorithm for the reentrant shop: an application in

semiconductor manufacture. The International Journal of Advanced Manufacturing Technology, 35(5), 566-

574.

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of computer computations, Springer:

85-103.

Keshavarz, T. and N. Salmasi. (2013). Makespan minimisation in flexible flowshop sequence-dependent group

scheduling problem. International Journal of Production Research, 51(20), 6182-6193.

Keshavarz, T. and N. Salmasi. (2014). Efficient upper and lower bounding methods for flowshop sequence-dependent

group scheduling problems. European Journal of Industrial Engineering, 8(3), 366-387.

Kim, D.-W., K.-H. Kim, W. Jang and F. F. Chen. (2002). Unrelated parallel machine scheduling with setup times

using simulated annealing. Robotics and Computer-Integrated Manufacturing, 18(3), 223-231.

Kim, S.-I., H.-S. Choi and D.-H. Lee (2006). Tabu search heuristics for parallel machine scheduling with sequence-

dependent setup and ready times. International Conference on Computational Science and Its Applications,

Springer.

Kim, S., K.-N. Chang and J.-Y. Lee. (1995). A descent method with linear programming subproblems for

nondifferentiable convex optimization. Mathematical programming, 71(1), 17-28.

Laguna, M., J. W. Barnes and F. Glover. (1993). Intelligent scheduling with tabu search: an application to jobs with

linear delay penalties and sequence-dependent setup costs and times. Applied Intelligence, 3(2), 159-172.

Laguna, M., J. W. Barnes and F. W. Glover. (1991). Tabu search methods for a single machine scheduling problem.

Journal of Intelligent Manufacturing, 2(2), 63-73.

Lasdon, L. S. (1970). Optimization theory for large systems, Courier Corporation.

Lee, J.-H., J.-M. Yu and D.-H. Lee. (2013). A tabu search algorithm for unrelated parallel machine scheduling with

sequence-and machine-dependent setups: minimizing total tardiness. The International Journal of Advanced

Manufacturing Technology, 69(9-12), 2081-2089.

Lenstra, J. K., D. B. Shmoys and É. Tardos. (1990). Approximation algorithms for scheduling unrelated parallel

machines. Mathematical programming, 46(1), 259-271.

Li, S., C. Ng and J. Yuan. (2011). Group scheduling and due date assignment on a single machine. International

Journal of Production Economics, 130(2), 230-235.

Li, X., M. Baki and Y. P. Aneja. (2010). An ant colony optimization metaheuristic for machine–part cell formation

problems. Computers & Operations Research, 37(12), 2071-2081.

Lian, Z., X. Gu and B. Jiao. (2006). A similar particle swarm optimization algorithm for permutation flowshop

scheduling to minimize makespan. Applied mathematics and computation, 175(1), 773-785.

Lian, Z., X. Gu and B. Jiao. (2008). A novel particle swarm optimization algorithm for permutation flow-shop

scheduling to minimize makespan. Chaos, Solitons & Fractals, 35(5), 851-861.

Liou, C.-D., Y.-C. Hsieh and Y.-Y. Chen. (2013). A new encoding scheme-based hybrid algorithm for minimising

two-machine flow-shop group scheduling problem. International Journal of Systems Science, 44(1), 77-93.

Liou, C.-D. and C.-H. Liu. (2010). A novel encoding scheme of PSO for two-machine group scheduling. Advances in

Swarm Intelligence, 128-134.

Liu, B., L. Wang and Y.-H. Jin. (2008). An effective hybrid PSO-based algorithm for flow shop scheduling with

limited buffers. Computers & Operations Research, 35(9), 2791-2806.

Liu, J., Y. Wang and X. Min. (2014). Single-machine scheduling with common due-window assignment for

deteriorating jobs. Journal of the Operational Research Society, 65(2), 291-301.

Liu, Y. and I. Karimi. (2008). Scheduling multistage batch plants with parallel units and no interstage storage.

Computers & Chemical Engineering, 32(4), 671-693.

176

Logendran, R., S. Carson and E. Hanson. (2005). Group scheduling in flexible flow shops. International Journal of

Production Economics, 96(2), 143-155.

Logendran, R., P. deSzoeke and F. Barnard. (2006a). Sequence-dependent group scheduling problems in flexible flow

shops. International Journal of Production Economics, 102(1), 66-86.

Logendran, R., B. McDonell and B. Smucker. (2007). Scheduling unrelated parallel machines with sequence-

dependent setups. Computers & Operations Research, 34(11), 3420-3438.

Logendran, R., N. Salmasi and C. Sriskandarajah. (2006b). Two-machine group scheduling problems in discrete parts

manufacturing with sequence-dependent setups. Computers & Operations Research, 33(1), 158-180.

Logendran, R. and A. Sonthinen. (1997). A tabu search-based approach for scheduling job-shop type flexible

manufacturing systems. Journal of the Operational Research Society, 48(3), 264-277.

Logendran, R. and F. Subur. (2004). Unrelated parallel machine scheduling with job splitting. IIE Transactions, 36(4),

359-372.

Lopes, M. J. P. and J. V. de Carvalho. (2007). A branch-and-price algorithm for scheduling parallel machines with

sequence dependent setup times. European journal of operational research, 176(3), 1508-1527.

Low, C. and W.-Y. Lin. (2012). Single machine group scheduling with learning effects and past-sequence-dependent

setup times. International Journal of Systems Science, 43(1), 1-8.

Lu, D. and R. Logendran. (2013). Bi-criteria group scheduling with sequence-dependent setup time in a flow shop.

Journal of the Operational Research Society, 64(4), 530-546.

Lübbecke, M. E. and J. Desrosiers. (2005). Selected topics in column generation. Operations Research, 53(6), 1007-

1023.

Luo, H., G. Q. Huang, Y. Shi, T. Qu and Y. F. Zhang. (2012). Hybrid flowshop scheduling with family setup time and

inconsistent family formation. International Journal of Production Research, 50(6), 1457-1475.

Luo, J. and Y. Hu (2013). A new GRASP and path relinking for single machine scheduling with sequence dependent

setups. Control and Automation (ICCA), 2013 10th IEEE International Conference on, IEEE.

Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219-223.

Marsten, R. E., W. Hogan and J. W. Blankenship. (1975). The boxstep method for large-scale optimization.

Operations Research, 23(3), 389-405.

Mehravaran, Y. (2013). Hybrid Flowshop Scheduling with Dual Resources in a Supply Chain (Doctoral Dissertation),

Oregon State University, Oregon, U.S.A.

Mehravaran, Y. and R. Logendran. (2011). Bicriteria supply chain scheduling on unrelated-parallel machines. Journal

of the Chinese Institute of Industrial Engineers, 28(2), 91-101.

Mehravaran, Y. and R. Logendran. (2012). Non-permutation flowshop scheduling in a supply chain with sequence-

dependent setup times. International Journal of Production Economics, 135(2), 953-963.

Montgomery, D. C. (2009). Introduction to statistical quality control, John Wiley & Sons (New York).

Neammanee, P. and M. Reodecha. (2009). A memetic algorithm-based heuristic for a scheduling problem in printed

circuit board assembly. Computers & Industrial Engineering, 56(1), 294-305.

Nowicki, E. and C. Smutnicki. (1996). A fast tabu search algorithm for the permutation flow-shop problem. European

Journal of Operational Research, 91(1), 160-175.

Pacheco, J., F. Ángel-Bello and A. Álvarez. (2013). A multi-start tabu search method for a single-machine scheduling

problem with periodic maintenance and sequence-dependent set-up times. Journal of Scheduling, 16(6), 661-

673.

Pan, Q.-K., M. F. Tasgetiren and Y.-C. Liang. (2008). A discrete particle swarm optimization algorithm for the no-

wait flowshop scheduling problem. Computers & Operations Research, 35(9), 2807-2839.

177

Pan, Q. and L. Wang. (2008). A novel multi-objective particle swarm optimization algorithm for no-wait flow shop

scheduling problems. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 222(4), 519-539.

Pandya, V. and R. Logendran (2010). Weighted tardiness minimization in flexible flowshops. IIE Annual Conference.

Proceedings, Institute of Industrial and Systems Engineers (IISE).

Peng, B., Z. Lü and T. Cheng. (2015). A tabu search/path relinking algorithm to solve the job shop scheduling problem.

Computers & Operations Research, 53, 154-164.

Poli, R., J. Kennedy and T. Blackwell. (2007). Particle swarm optimization. Swarm intelligence, 1(1), 33-57.

Potts, C. and L. Van Wassenhove. (1992). Integrating scheduling with batching and lot-sizing: a review of algorithms

and complexity. Journal of the Operational Research Society, 395-406.

Potts, C. N. and M. Y. Kovalyov. (2000). Scheduling with batching: A review. European journal of operational

research, 120(2), 228-249.

Rajendran, C. and D. Chaudhuri. (1992). Scheduling in n-job, m-stage flowshop with parallel processors to minimize

makespan. International Journal of Production Economics, 27(2), 137-143.

Rana, S. and N. Singh. (1994). Group scheduling jobs on a single machine: A multi-objective approach with

preemptive priority structure. European Journal of Operational Research, 79(1), 38-50.

Ribas-Vila, I., R. Companys-Pascual and M. Mateo-Doll. (2009). Bicriteria scheduling problem on parallel machine.

DYNA, 84(5), 429-440.

Rousseau, L.-M., M. Gendreau and D. Feillet. (2007). Interior point stabilization for column generation. Operations

Research Letters, 35(5), 660-668.

Ruiz, R. and C. Maroto. (2006). A genetic algorithm for hybrid flowshops with sequence dependent setup times and

machine eligibility. European Journal of Operational Research, 169(3), 781-800.

Ruiz, R., F. S. Şerifoğlu and T. Urlings. (2008). Modeling realistic hybrid flexible flowshop scheduling problems.

Computers & Operations Research, 35(4), 1151-1175.

Ruiz, R. and J. A. Vázquez-Rodríguez. (2010). The hybrid flow shop scheduling problem. European Journal of

Operational Research, 205(1), 1-18.

Salmasi, N., R. Logendran and M. R. Skandari. (2010). Total flow time minimization in a flowshop sequence-

dependent group scheduling problem. Computers & Operations Research, 37(1), 199-212.

Salmasi, N., R. Logendran and M. R. Skandari. (2011). Makespan minimization of a flowshop sequence-dependent

group scheduling problem. The International Journal of Advanced Manufacturing Technology, 56(5), 699-

710.

Sawik, T. (2000). Mixed integer programming for scheduling flexible flow lines with limited intermediate buffers.

Mathematical and Computer Modelling, 31(13), 39-52.

Schaller, J. E., J. N. Gupta and A. J. Vakharia. (2000). Scheduling a flowline manufacturing cell with sequence

dependent family setup times. European Journal of Operational Research, 125(2), 324-339.

Schiavinotto, T. and T. Stützle. (2007). A review of metrics on permutations for search landscape analysis. Computers

& operations research, 34(10), 3143-3153.

Shahvari, O. and R. Logendran. (2015). Bi-Criteria Batch Scheduling on Unrelated-Parallel Machines. Proceedings

of the 2015 Industrial and Systems Engineering Research Conference (ISERC) (CD-ROM), Nashville,

Tennessee, USA.

Shahvari, O. and R. Logendran. (2016a). Bi-Criteria Batch Scheduling in Hybrid Flow Shop. Proceedings of the 2016

Industrial and Systems Engineering Research Conference (ISERC) (CD-ROM), Anaheim, California, USA.

Shahvari, O. and R. Logendran. (2016b). Hybrid flow shop batching and scheduling with a bi-criteria objective.

International Journal of Production Economics, 179, 239-258.

178

Shahvari, O. and R. Logendran. (2017). An Enhanced tabu search algorithm to minimize a bi-criteria objective in

batching and scheduling problems on unrelated-parallel machines with desired lower bounds on batch sizes.

Computers & Operations Research, 77, 154-176.

Shahvari, O., N. Salmasi, R. Logendran and B. Abbasi. (2012). An efficient tabu search algorithm for flexible flow

shop sequence-dependent group scheduling problems. International Journal of Production Research, 50(15),

4237-4254.

Shen, L., J. N. Gupta and U. Buscher. (2014). Flow shop batching and scheduling with sequence-dependent setup

times. Journal of scheduling, 17(4), 353-370.

Shin, H. and V. Leon. (2004). Scheduling with product family set-up times: an application in TFT LCD manufacturing.

International journal of production research, 42(20), 4235-4248.

Sun, X., J. S. Noble and C. M. Klein. (1999). Single-machine scheduling with sequence dependent setup to minimize

total weighted squared tardiness. IIE transactions, 31(2), 113-124.

Suresh, V. and D. Chaudhuri. (1994). Minimizing maximum tardiness for unrelated parallel machines. International

Journal of Production Economics, 34(2), 223-229.

Tadayon, B. and N. Salmasi. (2013). A two-criteria objective function flexible flowshop scheduling problem with

machine eligibility constraint. The International Journal of Advanced Manufacturing Technology, 1-15.

Taillard, E. (1993). Benchmarks for basic scheduling problems. european journal of operational research, 64(2), 278-

285.

Tang, L.-x. and H. Xuan. (2006). Lagrangian relaxation algorithms for real-time hybrid flowshop scheduling with

finite intermediate buffers. Journal of the Operational Research Society, 57(3), 316-324.

Tasgetiren, M. F., Y.-C. Liang, M. Sevkli and G. Gencyilmaz (2004a). Particle swarm optimization algorithm for

makespan and maximum lateness minimization in permutation flowshop sequencing problem. Proceedings

of the fourth international symposium on intelligent manufacturing systems, Sakarya, Turkey.

Tasgetiren, M. F., Y.-C. Liang, M. Sevkli and G. Gencyilmaz. (2007). A particle swarm optimization algorithm for

makespan and total flowtime minimization in the permutation flowshop sequencing problem. European

journal of operational research, 177(3), 1930-1947.

Tasgetiren, M. F., M. Sevkli, Y.-C. Liang and G. Gencyilmaz (2004b). Particle swarm optimization algorithm for

single machine total weighted tardiness problem. Evolutionary Computation, 2004. CEC2004. Congress on,

IEEE.

Tavakkoli-Moghaddam, R., N. Javadian, A. Khorrami and Y. Gholipour-Kanani. (2010). Design of a scatter search

method for a novel multi-criteria group scheduling problem in a cellular manufacturing system. Expert

Systems with Applications, 37(3), 2661-2669.

Tseng, C.-T. and C.-J. Liao. (2008). A particle swarm optimization algorithm for hybrid flow-shop scheduling with

multiprocessor tasks. International Journal of Production Research, 46(17), 4655-4670.

Uzsoy, R., C.-Y. Lee and L. A. Martin-Vega. (1992). A review of production planning and scheduling models in the

semiconductor industry part I: system characteristics, performance evaluation and production planning. IIE

transactions, 24(4), 47-60.

Vallada, E., R. Ruiz and J. M. Framinan. (2015). New hard benchmark for flowshop scheduling problems minimising

makespan. European Journal of Operational Research, 240(3), 666-677.

Van Den Akker, J., C. A. Hurkens and M. W. Savelsbergh. (2000). Time-indexed formulations for machine scheduling

problems: Column generation. INFORMS Journal on Computing, 12(2), 111-124.

Van Den Akker, J. M., J. A. Hoogeveen and S. L. van de Velde. (1999). Parallel machine scheduling by column

generation. Operations Research, 47(6), 862-872.

Vanderbeck, F. (1994). Decomposition and column generation for integer programs, Université catholique de

Louvain.

179

Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in

a branch-and-price algorithm. Operations Research, 48(1), 111-128.

Vanderbeck, F. and L. A. Wolsey. (1996). An exact algorithm for IP column generation. Operations research letters,

19(4), 151-159.

Varmazyar, M. and N. Salmasi. (2012). Sequence-dependent flow shop scheduling problem minimising the number

of tardy jobs. International Journal of Production Research, 50(20), 5843-5858.

Wang, D., M. Gen and R. Cheng. (1999). Scheduling grouped jobs on single machine with genetic algorithm.

Computers & industrial engineering, 36(2), 309-324.

Wang, D., Y. Huo and P. Ji. (2014). Single-machine group scheduling with deteriorating jobs and allotted resource.

Optimization Letters, 8(2), 591-605.

Wang, J.-B. and J.-J. Wang. (2014). Single machine group scheduling with time dependent processing times and ready

times. Information Sciences, 275, 226-231.

Webster, S. and K. R. Baker. (1995). Scheduling groups of jobs on a single machine. Operations Research, 43(4),

692-703.

Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on semiconductor

manufacturing, 1(3), 115-130.

Wilhelm, W. E. (2001). A technical review of column generation in integer programming. Optimization and

Engineering, 2(2), 159-200.

Xu, D. and Y. Yin. (2011). Comments on “A bicriteria flowshop scheduling problem with setup times”. Applied

Mathematics and Computation, 217(17), 7361-7364.

Yaurima, V., L. Burtseva and A. Tchernykh. (2009). Hybrid flowshop with unrelated machines, sequence-dependent

setup time, availability constraints and limited buffers. Computers & Industrial Engineering, 56(4), 1452-

1463.

Yazdani Sabouni, M. and R. Logendran. (2013). A single machine carryover sequence-dependent group scheduling

in PCB manufacturing. Computers & Operations Research, 40(1), 236-247.

Zandieh, M., S. F. Ghomi and S. M. Husseini. (2006). An immune algorithm approach to hybrid flow shops scheduling

with sequence-dependent setup times. Applied Mathematics and Computation, 180(1), 111-127.

Zandieh, M. and N. Karimi. (2011). An adaptive multi-population genetic algorithm to solve the multi-objective group

scheduling problem in hybrid flexible flowshop with sequence-dependent setup times. Journal of Intelligent

Manufacturing, 22(6), 979-989.

Zeng, R.-Q., M. Basseur and J.-K. Hao. (2013). Solving bi-objective flow shop problem with hybrid path relinking

algorithm. Applied Soft Computing, 13(10), 4118-4132.

180

APPENDICES

181

Appendix A. The solution space of the RMILP model vs. the original MILP model

By recognizing that 𝐶𝑟𝑛𝑖
. represents the total number of batch compositions of group 𝑖 with 𝑛𝑖

𝑘 jobs in stage

𝑘, when 𝑛𝑖
𝑘 jobs should be assigned to 𝑟 batches (𝑟 ∈ 𝑆𝑖, 𝑆𝑖 = {1,… , max

ℎ∈𝑉𝑘
⌈𝑛𝑖

𝑘/𝐿𝐵𝑖ℎ
𝑘 ⌉}), all possible

combinations 𝐶𝑟𝑛𝑖
. , ∀𝑖 ∈ 𝐺, 𝑟 ∈ 𝑆𝑖, are determined as follows:

𝐶1𝑛𝑖
𝑘
. = (

𝑛𝑖
𝑘

𝑛𝑖
𝑘) → if there is only one batch.

𝐶2𝑛𝑖
𝑘
. = (

𝑛𝑖
𝑘

1
) + (

𝑛𝑖
𝑘

2
) +⋯+ (

𝑛𝑖
𝑘

⌊𝑛𝑖
𝑘/2⌋

) /(2
⌊
⌊𝑛𝑖

𝑘/2⌋

𝑛𝑖
𝑘/2

⁄ ⌋
) → if there are only two batches.

⋮ ⋮

𝐶
𝑛𝑖
𝑘

𝑛𝑖
𝑘
. = ((

𝑛𝑖
𝑘

1
)(

𝑛𝑖
𝑘 − 1

1
)…(

2

1
)) /𝑛𝑖

𝑘! → if there are 𝑛𝑖
𝑘 batches.

Ceiling brackets ⌊. ⌋ rounds number to a lower integer. Then, the total number of batch compositions of

group 𝑖 in stage 𝑘, i.e., 𝐵𝐶𝑖, is determined as follows:

𝐵𝐶𝑖
𝑘 = ∑ 𝐶𝑟𝑛𝑖

𝑘
.

𝑟∈𝑆𝑖

As a result, there is an enormous number of combinations (𝐵𝐶𝑘) between 𝐵𝐶𝑖
𝑘 of all groups in stage 𝑘,

which is determined as follows:

𝐵𝐶𝑘 =∏𝐵𝐶𝑖
𝑘

𝑖∈𝐼𝑘

=∏(∑ 𝐶𝑟𝑛𝑖
𝑘
.

𝑟∈𝑆𝑖

)

𝑖∈𝐼𝑘

Consequently, an exhaustive combination enumeration between 𝐵𝐶𝑖
𝑘 of all groups in all stages, i.e.,

𝐵𝐶𝑇𝑜𝑡𝑎𝑙, is determined as follows:

𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =∏𝐵𝐶𝑘

𝑖∈𝐼𝑘

=∏(∏(∑ 𝐶𝑟𝑛𝑖
𝑘
.

𝑟∈𝑆𝑖

)

𝑖∈𝐼𝑘

)

𝑘∈𝑀

For example in a two-stage problem including 3 groups with 3 jobs each (without job skipping and 𝐿𝐵𝑖ℎ
𝑘 =

1), 𝑛𝑖
𝑘 = 3 and 𝐵𝐶𝑖

𝑘 = σ 𝐶𝑟3
.3

𝑟=1 = 5 (∀ 𝑖 = 1, 2, 3; ∀ 𝑘 = 1, 2) and, subsequently, 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =

182

∏ ∏ (5)3
𝑖=1

2
𝑘=1 = 15,625. By increasing 𝑔 and 𝑛𝑖

𝑘 by one each (𝑔 = 4 and 𝑛𝑖
𝑘 = 4), 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 =

∏ ∏ (9)4
𝑖=1

2
𝑘=1 = 43,046,721.

Since in the original MILP models, particularly the MILP1 and MILP2 models, the best sequence should

be determined for each member of 𝐵𝐶𝑇𝑜𝑡𝑎𝑙 to determine the optimal solution, the solution space increases

exponentially, which leads to requiring unaffordable solution space and unreasonable computational time.

The identification of structural non-dominance properties (usually corresponding to the batch composition

restrictions in this research) is a key step to reduce the solution space to a non-dominated set and,

consequently, to make possible the solution in affordable time.

Proposition: By restricting the batching phase of batch scheduling to allocate one and only one job to each

batch of each group, the optimal solution is guaranteed when there is no violation on desired lower bounds

on batch sizes.

Proof. Batch scheduling addressed here has multiple optimal solutions so that all optimal solutions have

the same job assignments and job sequences on machines. The only difference is related to different

combination between batch compositions in the entire stages, leading to different batch assignments and

sequences on machines as well as different job sequences within batches. Apart from this, as long as job

assignments and job sequences on machines of a schedule are not changed, the completion time of jobs

and, subsequently, their tardiness are not changed, irrespective of which batch a job is assigned. Also, there

is no setup time between batches belonging to the same group.

With the help of these arguments, it is concluded that these multiple optimal solutions can be converted to

each other by changing at least one batch composition of a group related to a stage. As a result, if 𝐿𝐵𝑖ℎ
𝑘 = 1

(∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝑀), then each optimal schedule (𝑆𝑂𝑝𝑡) can be converted to the specific optimal

schedule (𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

), by decomposing and replacing each batch including more than one job in 𝑆𝑂𝑝𝑡 to

several batches including only one job in 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

, for the entire stages. 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

 restricts the batching

phase to allocate one and only one job to each batch of each group in each stage. Therefore, based on

𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

, the RMILP model is developed so that it guarantees to obtain the optimal solution in fraction of

the computation time required by the original MILP model, because of focusing on the non-dominated

solution space. This being the case, the batching phase is eliminated from batch scheduling and,

consequently the optimal sequence of the RMILP model (𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

) can be interpreted as the optimal

sequences for the original MILP model with the help of merging sequential batches of the same group as a

single batch(es) on each machine. An extension of the developed proposition is that the RMILP model

183

presents the optimal solution of the original MILP model as long as the desired lower bounds are not

violated by 𝑆𝑅𝑒𝑙𝑎𝑥𝑒𝑑
𝑂𝑝𝑡

.

Therefore, non-dominated solution space as a structural non-dominance property is identified based on the

batch composition restrictions to reduce the solution space and, consequently, to make possible either the

optimal solutions or good quality lower bounds for problems in affordable computational times. This being

the case, the RMILP model is developed by relaxing the desired lower bounds on batch sizes (i.e., 𝐿𝐵𝑖ℎ
𝑘 =

1;∀𝑖 ∈ 𝐼𝑘; ℎ ∈ 𝑉𝑘; 𝑘 ∈ 𝐾) and eliminating the job assignment to batches, i.e., the batching phase.

184

Appendix B. The RMILP model based on the MILP2 model

Sets and Indices

𝐺 Set of groups, indexed by 𝑖, 𝑝 𝐺 = {1,2,… , 𝑔}

𝐺𝑖 Set of jobs of group 𝑖, indexed by 𝑗, 𝑞 𝐺𝑖 = {1,2,… , 𝑛𝑖}

𝐾 Set of stages, indexed by 𝑘 𝐾 = {1,2,… ,𝑚}

𝑉𝑘 Set of machines in stage 𝑘, indexed by ℎ 𝑉𝑘 = {1,2,… , 𝑣𝑘}

Subsets

𝐼𝑘 Subset of groups, which must be processed in stage 𝑘 𝐼𝑘 ⊂ 𝐺

𝐽𝑖
𝑘 Subset of jobs of group 𝑖, which must be processed in stage 𝑘 𝐽𝑖

𝑘 ⊂ 𝐺𝑖

𝑉𝑖𝑗
𝑘 Subset of machines in stage 𝑘, which can process job 𝑗 of group 𝑖 𝑉𝑖𝑗

𝑘 ⊂ 𝑉𝑘

𝐾𝑖𝑗 Subset of stages in an ascending order, which must be visited by job 𝑗 of group 𝑖 𝐾𝑖𝑗 ⊂ 𝐾

Parameters

𝑔 Number of groups

𝑛𝑖 Number of jobs of group 𝑖

𝑛𝑖
𝑘 Number of jobs of group 𝑖, which must be processed in stage 𝑘

𝑚 Number of stages

𝑣𝑘 Number of machines in stage 𝑘

𝑚𝑖𝑗 Number of stages, which must be visited by job 𝑗 of group 𝑖

𝑠𝑡𝑖𝑗(𝑙) 𝑙
𝑡ℎ stage among subset 𝐾𝑖𝑗

𝑡𝑖𝑗ℎ
𝑘 Run time of job 𝑗 of group 𝑖 on machine ℎ in stage 𝑘

𝑆𝑝𝑖ℎ
𝑘 Required setup time to process any batch of group 𝑖 on machine ℎ in stage 𝑘 if a batch of group 𝑝

is the preceding batch (𝑝 = 0 refers to the reference batch)

𝑑𝑖𝑗 Due date of job 𝑗 of group 𝑖

 𝑟𝑖𝑗 Release time of job 𝑗 of group 𝑖

𝑤𝑖𝑗 Weight of job 𝑗 of group 𝑖

𝑎ℎ
𝑘 Availability time of machine ℎ in stage 𝑘

𝛼 Weight attributed to the producer

𝛽 Weight attributed to the customer

185

𝐿𝐵𝑖ℎ
𝑘 Desired lower bound for the minimum number of jobs assigned to any batch of group 𝑖 on machine

ℎ in stage 𝑘

Decision variables

𝑍𝑖𝑗ℎ𝑟
𝑘 1 if job 𝑗 of group 𝑖 is scheduled in 𝑟𝑡ℎ position of machine ℎ in stage 𝑘; 0 otherwise

𝑋𝑖𝑗
𝑘 The completion time of job 𝑗 of group 𝑖 in stage 𝑘

𝑇𝑖𝑗 The tardiness of job 𝑗 of group 𝑖

Mathematical formulation

𝑀𝑖𝑛 𝑍 = 𝛼∑ ∑ 𝑤𝑖𝑗𝑋𝑖𝑗
𝑠𝑡𝑖𝑗(𝑚𝑖𝑗)

𝑗∈𝐺𝑖𝑖∈𝐺
+ 𝛽∑ ∑ 𝑤𝑖𝑗𝑇𝐷𝑖𝑗

𝑗∈𝐺𝑖𝑖∈𝐺
 (1)

The objective function (1) is to simultaneously minimize the total weighted completion time and total

weighted tardiness. Set of constraints (2) through (8), known as assignment constraint sets, are incorporated

into the model to determine the optimal job sequence on machines. It is assumed that there is at most

σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 positions on each machine in stage 𝑘, so that each job of each group must be assigned to one and

only one position 𝑟 (𝑟 ∈ 𝑁𝑘 , 𝑁𝑘 = {1,2,… , σ 𝑛𝑖
𝑘

𝑖∈𝐼𝑘 }) of a machine.

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑟∈𝑁𝑘ℎ∈𝑉𝑖𝑗
𝑘

= 1

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(2)

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

≥∑ ∑ 𝑍𝑖𝑗ℎ(𝑟+1)
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

 ∀𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘;

(3)

∑ ∑ 𝑍𝑖𝑗ℎ𝑟
𝑘

𝑗∈𝐽𝑖
𝑘𝑖∈𝐼𝑘

≤ 1

∀𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘;

(4)

Constraint (2) ensures that each job is assigned to only one position on machines in each stage, while

constraint (3) guarantees that the jobs should be assigned to machines from the first position (𝑟 = 1) as

consecutive positions. Since there are parallel machines in some stages, constraint (4) indicates that all

positions of a machine might not be assigned to jobs.

186

𝑋𝑖𝑗
𝑘 ≥ ∑ (𝑎ℎ

𝑘 + 𝑆0𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘)𝑍𝑖𝑗ℎ1
𝑘

ℎ∈𝑉𝑖𝑗
𝑘

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑘 ∈ 𝐾;

(5)

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(1) ≥ 𝑟𝑖𝑗 +∑ ∑ (𝑡𝑖𝑗ℎ
𝑠𝑡𝑖𝑗(1)×𝑍𝑖𝑗ℎ𝑟

𝑘)
𝑟∈𝑁

𝑠𝑡𝑖𝑗(1)ℎ∈𝑉𝑖𝑗
𝑠𝑡𝑖𝑗(1)

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;

(6)

𝑋𝑖𝑗
𝑘 +𝑀(1 − 𝑍𝑖𝑗ℎ𝑟

𝑘) + 𝑀(1 − 𝑍𝑝𝑞ℎ(𝑟−1)
𝑘) ≥ 𝑋𝑝𝑞

𝑘 + 𝑆𝑝𝑖ℎ
𝑘 + 𝑡𝑖𝑗ℎ

𝑘

∀𝑟 ∈ 𝑁𝑘 − {1}; 𝑖, 𝑝 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑞 ∈ 𝐽𝑝

𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑖𝑗
𝑘 ∩ 𝑉𝑝𝑞

𝑘 ;

(7)

Set of constraints (5) through (7) determine the completion time of jobs on machines. Constraint (5) together

with constraint (6) account for dynamic machine availability and dynamic job release time, respectively,

while constraint (7) determines the completion time of jobs.

𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙) − 𝑋
𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙−1) ≥∑ ∑ (𝑡𝑖𝑗ℎ
𝑠𝑡𝑖𝑗(𝑙)×𝑍

𝑖𝑗ℎ𝑟

𝑠𝑡𝑖𝑗(𝑙)
)

𝑟∈𝑁
𝑠𝑡𝑖𝑗(𝑙)ℎ∈𝑉𝑖𝑗

𝑠𝑡𝑖𝑗(𝑙)

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖; 𝑙 ∈ {2,3,… ,𝑚𝑖𝑗};

(8)

The linking constraint (8) ensures the connection between completion times of a job related to each of two

sequential stages, where the job had operations.

𝑇𝐷𝑖𝑗 ≥ 𝑋
𝑖𝑗

𝑠𝑡
𝑖𝑗(𝑚𝑖𝑗) − 𝑑𝑖𝑗

∀𝑖 ∈ 𝐺; 𝑗 ∈ 𝐺𝑖;

(9)

Constraint (9) is applied for finding the tardiness of each job.

𝑋𝑖𝑗
𝑘 , 𝑇𝐷𝑖𝑗 ≥ 0;𝑍𝑖𝑗ℎ𝑟

𝑘 ∈ {0, 1}

∀𝑖 ∈ 𝐼𝑘; 𝑗 ∈ 𝐽𝑖
𝑘; 𝑟 ∈ 𝑁𝑘; 𝑘 ∈ 𝐾; ℎ ∈ 𝑉𝑘.

(10)

Finally, constraint (10) defines the variables used.

