
RESEARCH ARTICLE

Classification of Animal Movement Behavior

through Residence in Space and Time

Leigh G. Torres1*, Rachael A. Orben1, Irina Tolkova2, David R. Thompson3

1 Department of Fisheries and Wildlife, Marine Mammal Institute, Oregon State University, Hatfield Marine

Science Center, Newport, Oregon, United States of America, 2 Applied Math and Computer Science

Departments, University of Washington, Seattle, Washington, United States of America, 3 National Institute

of Water and Atmospheric Research Ltd., Hataitai, Wellington, New Zealand

* Leigh.Torres@oregonstate.edu

Abstract

Identification and classification of behavior states in animal movement data can be complex,

temporally biased, time-intensive, scale-dependent, and unstandardized across studies and

taxa. Large movement datasets are increasingly common and there is a need for efficient

methods of data exploration that adjust to the individual variability of each track. We present

the Residence in Space and Time (RST) method to classify behavior patterns in movement

data based on the concept that behavior states can be partitioned by the amount of space

and time occupied in an area of constant scale. Using normalized values of Residence Time

and Residence Distance within a constant search radius, RST is able to differentiate behav-

ior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area

restricted search), and transit (short time and distance). We use grey-headed albatross

(Thalassarche chrysostoma) GPS tracks to demonstrate RST’s ability to classify behavior

patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate

RST’s ability to discriminate between behavior states relative to other classical movement

metrics. We then temporally sub-sample albatross track data to illustrate RST’s response to

less resolved data. Finally, we evaluate RST’s performance using datasets from four taxa

with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST

is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses

of behavioral states in animal movement data based on its ability to integrate distance and

time measurements into one descriptive metric of behavior groupings. Given the increasing

amount of animal movement data collected, it is timely and useful to implement a consistent

metric of behavior classification to enable efficient and comparative analyses. Overall, the

application of RST to objectively explore and compare behavior patterns in movement data

can enhance our fine- and broad- scale understanding of animal movement ecology.

Introduction

Time and space are fundamental to animal ecology, as these factors limit and scale behavior

patterns. Animal-borne location tags are prolifically used to capture animal movement in both
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of these dimensions, yet behavioral analyses of these data have primarily focused on the assess-

ment of temporal patterns across space (i.e., first passage time [1]; residence time [2]; time-in-

grid [3]). While informative, the omission of analogous cumulative spatial metrics limits the

ability of these methods to discriminate between time intensive behaviors such as rest and area

restricted search (ARS; [1, 4]), which can have variable distance values, but similar time values.

Additionally, commonly applied imputs to describe behavior states such as step-length and

turning angle are often constranind to the scale of the sampling interval rather than a scale

selected based on the movement or perception of the animal (behavioral change point analysis

[5]; hidden Markov models [6]). Therefore, classification of behaviors can be enhanced by

describing both spatial and temporal occupancy patterns, while also considering both the tem-

poral and spatial scale of the analysis. To illustrate this, consider an area of constant scale (e.g.,

1 x 1 km), within which animal behaviors differentiate based on the relationships between the

total distance traversed and the amount of time spent in the area of constant scale (Fig 1). The

axes of this schematic scale from low to high distance (x-axis) or time (y-axis) so that when an

animal’s spatial and temporal occupancy patterns are related, behavioral groupings emerge.

The corners of this schematic represent the polar, dichotomous behavior states of (1) transit,

near the origin, where the animal incurs low time and low distance in the area, (2) time inten-

sive behaviors such as rest, in the upper left, where the animal incurs high time in the area but

covers little distance, and (3) time & distance intensive behaviors in the upper right where

the animal incurs high time and distance covered within the area, representing behaviors such

as ARS that are influenced by any combination of reduced speed, increased turning, and

increased time spent in the area. Given the inability to move large distances in short time peri-

ods (teleportation), it is impossible to fall within the ‘black hole’ of our schematic in the bottom

right. Within the boundaries of these three dichotomous behavior groupings, multiple other

behavior states can be identified and grouped also based on the comparative amount of time

and space within the area such as graze, feast, and quick search.

Examination of behavioral subsets of movement data allows focused and comparative stud-

ies. Thus, behavior classification is often an early and critical component to movement data

analysis that guides further analysis pathways. While behavioral interpretation is often intui-

tive upon visual assessment of each track, the classification of behavior states can be difficult to

automate and objectively quantify. Many quantitative methods to classify behavior states are

in use but, in addition to being biased toward temporal metrics, these are often statistically

complex (e.g., Bayesian state-space models [7]; biased random bridges [8]; tortuosity entropy

[9]) or require advanced programming skills and ample time to run the models, especially for

first-time users (e.g., hidden Markov models [3]; wavelet analysis [10]). Therefore, there is a

need for a simple and quick method to explore, segment, and behaviorally annotate movement

data with limited supervision [11]. Additionally, these methods may lack transferability

between taxa or studies, or be difficult to successfully apply to large and varied datasets with

high individual variability [12]. These challenges are becoming increasingly salient with the

increasing number and size of animal movement datasets [13] due to miniaturization, and

increased resolution, memory capacity, and battery life. Over 3,500 animal movement studies

containing over 260 million locations have been contributed to movebank.org, seabirdtrack-

ing.org, and OBIS-SEAMAP (tabulated on 31 March 2016). The growth of biotelemetry offers

immense opportunities for discovery, yet ‘methodological ambiguity’ for data exploration

leads to confusion and inconsistency [14] and movement ecologists may struggle to balance

the analytical demands of Big Data [15] with the individuality of each track. In this study, we

offer an efficient, objective and broadly applicable method to explore and identify behavior

patterns at multiple scales in movement data.
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Building off the concept of residence time [2], we first develop a metric of residence dis-

tance. These two metrics quantify cumulative area occupancy in time and distance respec-

tively, and when related to each other, behavioral groups can be discerned (Fig 1). The method

identifies three fundamental movement states: transit, time intensive movement, and time &

distance intensive movement. These states are identified on a continuous scale that can be

applied in further post hoc analyses. Initially, we develop and test our Residence in Space and

Time (RST) method using a highly resolved grey-headed albatross (Thalassarche chrysostoma)

GPS track. We discuss the impact of scale on RST behavior classifications and present methods

to evaluate scale choice. Next, we demonstrate the ability of RST to discriminate between

three discrete behavior states of an albatross (rest, ARS and transit) relative to other classical

Fig 1. Conceptual schematic of behavior groupings captured in movement data based on the relationships between the amount of space

(distance) and time occupied in an area of constant scale. Three polar behavior states across this continuum are represented in the corners:

Transit (low time, low distance in an area), time intensive behaviors such as rest (high time, low distance), and time and distance intensive behaviors

(high time, large distance) such as area restricted search (ARS). Three other possible behavior states are denoted within the continuum of this

schematic. When applying RST, the origin will be double the sampling interval (y-axis) and double the R applied (x-axis), which are the minimal scales

at which behaviors can be described.

doi:10.1371/journal.pone.0168513.g001
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movement metrics. The RST method is then applied to 24 albatross tracks to assess the meth-

od’s ability to describe population-level behavior grouping while assessing individual variation.

Next, we explore RST’s ability to accurately describe behavior states in movement data from

less temporally resolved and temporally intermittent datasets (mimicking Argos/PTT tracks).

Finally, we apply the RST method to animal movement datasets from diverse taxa and ecosys-

tems to evaluate performance and versatility. This exploration demonstrates that RST is flexi-

ble and robust for application to multiple taxa and movement data types, which allows an

efficient initial data exploration method to inform subsequent hypothesis testing, data parti-

tioning, and appropriate analyses.

Materials and Methods

Ethics statement

All handling of albatross was conducted under permit issued by the New Zealand Department

of Conservation and was approved by the NIWA animal ethics committee. All effort was made

to minimize handling time and any suffering to animals.

RST development and dataset

During October and November 2013, grey-headed albatrosses breeding at Campbell Island in

the New Zealand sub-Antarctic were tagged with igotU GPS archival tags (GT-600; http://

www.i-gotu.com/), set to record a position and time every five minutes. We recorded incuba-

tion foraging trips of adult albatross (n = 24) after securing the GPS tag to back feathers using

Tesa1 tape. To focus on at-sea behaviors we removed all points within 5 km of the colony

[16]. We completed all analysis in R [17] and implemented in C, with adapted code from Chi-

rico [18] and Kahle and Wickham [19].

We then calculated residence distance (RD) and residence time (RT) for all points along the

track. A circle of radius R is constructed around every point and the distance traveled (RD;

sum of path lengths within the circle) and time spent (RT; sum of time between locations

within the circle) between consecutive points within the circle is calculated. Unlike Barra-

quand and Benhamou (2) Residence Time method, our calculations of RT and RD do not

include the ‘tails’, which are the path segments between the first or last point in the circle and

the perimeter. With our approach, all points alone within the circle are assigned a value of zero

for both RT and RD. If the path trajectory exits and reenters the circle with no more than a

threshold distance value (Th) traveled outside, the stretches of track outside the circle are also

included in the RD and RT values. We include the option to set a threshold distance in the

RST method for consistency with the original Residence Time method [2], yet within the RST

method its functionality for behavior classification is limited. Therefore, in the following

examples we set Th equal to zero.

To test the hypothesis that variation between RT and RD is related to movement behavior,

we calculated the residuals (difference in value) between these metrics for each point. First, RD

and RT values were normalized by dividing by the maximum respective value within each

track so that distance and time values were unit-less and therefore comparable, and so all val-

ues consistently ranged between 0 and 1. Then residuals for each location were calculated by

subtracting RT from RD. To complete these steps the following formula was applied:

Residuals ¼ ððRDÞ = ðmax: RD of the trackÞÞ � ððRTÞ = ðmax: RT of the trackÞÞ ð1Þ

We used the difference between RD and RT to describe behavior patterns, rather than pro-

portion, sum, or other complex comparison, because this approach (1) results in a consistent

Residence in Space and Time
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range of residuals between -1 and 1 that is comparable between individuals and datasets, and

(2) allows for a relatively limited chance that the same value will result from different combina-

tions of RD and RT (S1 Appendix). Speed also describes the relationship between distance and

time, but is not directly suitable for behavior classification because speeds at large and small

scales can be equivalent and therefore difficult to relate to behavior states.

The scale-dependence of RST relates to R, and both RD and RT assign zero to locations that

are> R away from other points. The appropriate R value depends on the temporal sampling

interval and animal behavior patterns captured by the data. We offer two approaches to the

selection of R based on animal transit speed. Transiting is a fundamental and shared behavior

between animals, which is constrained by physiology, morphology and environment. There-

fore, with RST, transit points separate positive (time & distance intensive) and negative (time

intensive) residuals, so that the classification of transit points influences the behavior types

described. One approach to R selection is derived by the following formula:

R ¼ ðmean transit speed � sampling intervalÞ=2 ð2Þ

which assumes that the average distance between transit points should be approximately equal

to the average transit speed multiplied by the sampling rate, and divided by two to uncouple

two consecutive points. This approach assumes a priori knowledge of transit speed. Alterna-

tively we apply a diagnostic tool to calculate the percent of points with positive, negative and

zero residual values at multiple (user defined) scales to assess the impact of R selection. We

apply Formula 2 again and determine the numerator as the scale where the number of transit

points approaches zero (where all points have at least one other point inside its circle).

Extremely fast movements or large data gaps prevent this value from actually reaching zero, so

we use<5% transit points as the cutoff. A benefit to this approach is automated dynamic scal-

ing for each track.

Example application of RST to one albatross track

Grey-headed albatrosses have three dominant and discrete behavior states at-sea: transit, ARS

foraging, and rest; which are linked to strong diurnal patterns of limited activity during dark-

ness [20]. We illustrate the behavioral classification capability of RST using one albatross GPS

track (Bird 23059) by assessing the relationship between RD and RT, and the variation in

residual values relative to day and night. A static R of 1.935 was applied based on Formula 2,

using a mean transit speed of 45 km/hr [21] and mean time interval between locations of

5.16 ± 1.0 min. The dynamic scaling approach was also applied to this albatross track for com-

parison of radii values.

Comparison of metrics in three behavior states

RST’s ability to discriminate between three discrete behavior states along this grey headed

albatross track (Bird 23059) was directly compared to other classical movement metrics of

speed, path straightness (straight-line distance between points / cumulative path lengths

between points), and residence time and residence distance using the Barraquand and Benha-

mou [2] approach that includes the ‘tails’. Three experienced seabird ecologists very familiar

with albatross movement data (L.G.T., R.A.O. and D.R.T.) manually and independently classi-

fied each GPS location into rest, transit or ARS behavior states. Without direct observation it

is near impossible to know the true behavior state of a tracked animal. Therefore, we assumed

the points with matching behavior state assignment between the three classifiers to be ‘true’,

and compared frequency histograms of the movement metrics speed, path straightness,

Residence in Space and Time
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residence time, residence distance, and RST in the three behavior states rest, transit, and ARS.

All metrics were calculated using an R = 1.935.

From individual to population

To evaluate RST’s ability to classify behavior states within movement data from a sampled pop-

ulation, we applied the method to all albatross incubation trips (n = 24). We analyzed the alba-

tross tracks with Th = 0 and (1) a constant R based on a transit speed of 45 km/hr and a mean

GPS fix interval = 5.63 ± 0.59 min, and (2) using the dynamic scaling method for each track.

As before, we assessed behavior classification based on residual variation relative to daylight.

We also timed this analysis to demonstrate the method’s speed.

Impact of temporal resolution on RST

To evaluate RST’s ability to classify behaviors using less temporally resolved data, we com-

pleted two subsampling exercises. First, we subsampled all albatross tracks at across a range of

increasing temporal intervals (10, 20, 30, 60, 120, 180 min) and applied the dynamic scaling

method to choose an appropriate R for each sampling interval and individual combination (S2

Appendix). Secondly, we stochastically subsampled the 60 min subsample of a single albatross

track (Bird 23059) 100 times to randomly select 1/3 of the locations. These subsampled tracks

mimic the erratic sampling of commonly used satellite telemetry. For each subsampled track,

we calculated the percent of locations matching the residual state (positive, negative, or zero)

of the original 5-min sampling interval track to assess the variance of behavior classification

relative to temporal resolution of the tracking data.

Application of RST to diverse taxa

To evaluate and expand the application of the RST method, we used movement datasets from

four taxa with diverse life-history patterns (predator, prey, grazer, migrator), with variable

home range scales, from terrestrial and marine ecosystems, and of different data types. Three

datasets were freely downloaded from the Movebank Data Repository (https://www.

movebank.org/), which has proven to be a powerful resource for our exercise: (1) a 2-month

GPS track of a medium-sized carnivore, the fisher (Martes pennanti), tagged in New York,

USA, in March. 2011, with dynamic sampling using tri-axial accelerometer data (2-min sam-

pling when moving; 1-hr sampling when resting (tag M4 [22, 23]); (2) a 2-month GPS track of

an African buffalo (Syncerus caffer) collected in Kruger National Park, South Africa, from 10

October to 7 December 2005, with 1-hr sampling interval (tag 1764827 [24]); (3) a 5-year GPS

track of a Galapagos tortoise (Chelonoidis vandenburghi), tracked on Isabela Island, Galapagos,

beginning in October. 2010, with 1-hr sampling intervals and a duty cycle shutdown period

from 0100 to 1100 GMT when the animal is generally stationary (tag 1388 [25]). Additionally,

we analyzed a satellite telemetry track of a blue whale (Balaenoptera musculus) tagged off

Southern California, USA, with movement data from September 2007 to February 2008 (tag

23043 [26, 27]). We analyzed these four datasets using the RST method and a dynamic scaling

approach (Th = 0), as we assumed no a priori knowledge of animal transit speed.

Results

Application of RST to one albatross track

A very similar R value of 1.9 was selected by the dynamic scaling approach when applied to the

albatross track compared to the static R value calculated through Formula 2 (R = 1.935). The

Residence in Space and Time
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resulting scale plot (Fig 2) illustrates that as R increases the number of transit points decreases

while positive and negative residuals increase.

Overall, the response of RD and RT to albatross track geometry agree during daylight (Fig

3a). However, during nighttime, RT values are elevated compared to RD values that remain at

a more average value compared to daytime variation. The inflation of RT illustrates the behav-

ioral bias of a time metric toward resting behavior, which albatross are generally engaged in at

night. In contrast, RD is immune to this response. Yet, behavioral separation of the movement

data is evident when RD and RT are compared using the RST method (Fig 3b). Time intensive

Fig 2. Scale plot of grey-headed albatross GPS track illustrating how radius size influences the proportion of positive (blue), negative (red)

and zero (black) residuals. Dark gray bar = fixed radius (R = 1.935). Light gray bar = dynamically scaled radius (R = 1.9). Dashed line indicates 5%

transit points.

doi:10.1371/journal.pone.0168513.g002

Residence in Space and Time
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Fig 3. RST analysis of example grey-headed albatross GPS track. Day and night (shaded) periods compared to

(a) normalized residence distance (black) relative to normalized residence time (blue), and (b) residuals of

normalized residence distance minus normalized residence time (positive = blue, negative = red; zero = black). (c)

GPS track color coded by residuals (black = transit, red = rest, blue = area restricted search). The three movement

states identified by RST are illustrated and (d) enlarges a region of the track to demonstrate the classification of

three locations into these movement states within the applied radius size. Grey arrows indicate direction of travel.

Green star is colony location at Campbell Island, New Zealand.

doi:10.1371/journal.pone.0168513.g003

Residence in Space and Time

PLOS ONE | DOI:10.1371/journal.pone.0168513 January 3, 2017 8 / 18



behaviors, representing rest periods in this case, are evident at night with RT > RD, equaling

negative residuals. Positive or zero value residuals generally occur during daylight, when alba-

tross are travelling or engaged in ARS. Correspondence between behavior and residual groups

is visually evident (Fig 3c and 3d) with transit between foraging areas (black), clustered ARS

(blue), and interspersed rest segments (red).

Comparison of metrics in three behavior states

Behavior states matched between the three expert classification efforts in 66% of locations

(2336 of 3548 points; n = 708 transit; n = 1080 rest; n = 548 ARS), which were considered the

‘true’ behavior states. The variability in behavior state classification of the remaining 1212

‘ambiguous’ points is likely due to (1) differences in the inferred scale of assessment by each

classifier, (2) presence of points recorded during transitions between states, and (3) the inher-

ent ambiguity of assigning points into one discrete behavior group that are simultaneously

multiple behavior states (e.g., slightly sinuous travel, which can be interpreted as either transit

and ARS). RST residuals aligned with our manual classification effort for 90% of the locations

(2112 of 2336 points; Fig 4a). The majority of discrepancy occurred due to RSTs tendency to

identify points as time & distance intensive movement (n = 143), while the classifiers labeled

such points transit. Similarly, RST classified the majority of ambiguous points as time & dis-

tance intensive points (black bars in Fig 4b).

When compared to other time series metrics, RST residuals were able to discriminate

between the three ‘true’ behavior states with little overlap. Residence time as calculated by Bar-

raquand and Benhamou [2] also shows little overlap between ‘true’ behavioral states (Fig 4a).

However, determining breakpoints of behavior states from the continuous range of residence

time values is difficult (white bars Fig 4b). Furthermore high residence times does not equate

to a distinct behavioral state (either rest or ARS). Speed is almost discrete between the three

‘true’ behavior states as color-coded by RST classification but, like residence time, is unable to

independently group behavior states or classify the ambiguous points (Fig 4b). Path straight-

ness and residence distance were both unable to distinguish between transit and time intensive

behaviors because these points have relatively straight paths and low distance. Behavior

Fig 4. Frequency histograms of RST residuals relative to classical movement metrics (straightness index, residence time, residence

distance, and speed,) for points along the grey-headed albatross track (Bird 23059). (a) Depicts only the ‘true’ behavior states of rest (red),

transit (black), and area restricted search (blue) as agreed on by expert classifiers. Bars are colored based on RST classification with transparency so

that overlap between distributions is illustrated. (b) Describes the distribution of all points along the track (white) and the ambiguous points where the

classifiers did not agree on behavior state assignment (black).

doi:10.1371/journal.pone.0168513.g004

Residence in Space and Time
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classification based on RST benefits from its integration of multiple movement data measure-

ments into one combined metric. Due to the calculation of metrics within an area, RST’s

classification of each point depends on its neighboring points, which results in more stable

behavior states compared to point-based approaches [11, 28] that produce more erratic behav-

ior state switching between points.

Population-level performance of RST

To evaluate the population-level performance of RST, all incubation albatross tracks

(n = 93,481 locations) were analyzed. Using a fixed R = 2.11 km, behavioral classification of

locations resulted in 28.0% transit (residual = 0), 48.8% ARS (residual > 0), and 23.2% rest

(residual < 0). Using the dynamic scaling approach to determine R for each track (mean

R = 2.55 ± 0.41 km), behavioral classification of locations resulted in 22.9% transit, 50.9% ARS,

and 26.2% rest. Using a fixed radius and dynamic scaling, respectively, 74.4% and 76.5% of the

negative residuals (rest) occurred at night, while 82.6% and 82.6% of positive residuals (ARS)

occurred during the day. Similar R values, proportions of behavioral classifications, and diur-

nal behavioral assignment were determined by both methods of R selection, indicating that

dynamic scaling can perform well if animal speed is unknown. Running the RST code to iden-

tify the dynamically scaled radii for each of 24 tracks using 44 radii options took 52 seconds

(CPU time = 9 sec, Processor = 2.66 GHz Intel Core 2 Duo), and once the preferred radius for

each track was identified, these 24 tracks took a mere 22 s (CPU time = 1.8 s) to compute.

RST’s response to less temporally resolved data

The RST behavior class (ARS: residuals > 0; rest: residuals < 0; transit: residuals = 0) agree-

ment test between each location in the original 5-min interval track and the temporally sub-

sampled tracks demonstrate the impact of behavior bout length on behavior class detection

(Fig 5a). At longer time intervals, time intensive behaviors (rest) remain relatively well classi-

fied, but behaviors with shorter bout lengths (ARS and short transits) are increasingly misclas-

sified as the sampling interval grows longer than the bout length (S2 Appendix). In this

example, albatross ARS bouts appear to occur at temporal scales< 30 mins, and transit periods

longer than 60 mins are consistently identified, which likely represent persistent travel to and

from the colony (Fig 5a). The satellite telemetry simulation of stochastically sampled data reit-

erates this pattern: negative values (rest) remain well classified, while positive (ARS) and zero

(transit) value residuals are misclassified more than half the time (Fig 5b; S2 Appendix). This

exercise demonstrates that behavioral analysis of satellite telemetry data may indicate where

animals spend greater time, but not necessarily where they conduct ARS. Speed filtered satel-

lite telemetry data may reduce spatial error and provide more accuracy in behavior classifica-

tion. Additionally, track interpolation would decrease the sampling interval, reducing R
(Formula 1) and increasing the percent of transit points (Fig 2).

RST analysis of diverse datasets

Analysis of the high-resolution fisher track (R = 40 m) through an urban habitat, reflects dis-

crete and clustered locations of periodic short-term resting places [29], with more dispersed

searching/foraging locations interspersed with relatively linear transit segments (Fig 6a). RST

classification of resting/stationary behavior states in this fisher track was not influenced by the

less frequent GPS sampling caused by accelerometer-informed data loggers because RT is a

cumulative measure of time spent within circle of radius R and therefore a resting fisher would

accumulate the same RT value regardless of GPS sampling frequency.

Residence in Space and Time
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RST analysis of the African buffalo track (R = 375 m) effectively describes transit locations

between areas of increased RT or RD. Additionally, the RST analysis highlights a behavior

shift around November 11 with the onset of the wet season (rains began in early Nov. 2005) to

predominantly time & distance intensive behaviors (positive residuals; blue locations) and

altered distribution patterns as the animal moves away from river beds and spends more time

in the plains (Fig 6b), matching their known ecology [30]. Evaluation of the long-term tortoise

track (R = 25 m) revealed oscillation of residual values and intensities relative to its location in

NW and SE seasonal areas, indicating different movement strategies between habitats (Fig 6c).

During one migration cycle depicted (Aug. 2011 –Mar. 2012), transit points are identified

between the two areas, and fine-scale assessment of the SE area illustrates discrete areas of time

intensive and time & distance intensive behaviors.

RST analysis of the lower resolution blue whale track (R = 35 km) identifies alternating

time intensive and time & distance intensive behaviors while foraging off Southern California

and central Baja California, interspersed with transit periods (Fig 6d). The animal switches to

mainly time & distance intensive behaviors off central Mexico, and then to transit behavior

during migration toward the Costa Rica Dome where time intensive behavior is exhibited. At

this scale of analysis, the shifts between time intensive and time & distance intensive behaviors

may represent two different scales of area restricted searching by this whale. Considering the

results of our satellite telemetry simulation, behaviors with bout lengths smaller than the tem-

poral sampling may be misclassified, yet the results coincide with known blue whale ecology in

this region [26]. Overall, the application of the RST method to these various movement data-

sets illustrates its flexibility and explanatory power. For each taxa, RST describes alternating

behavior states that correspond to their known ecology, and comparatively reveals the fisher’s

striking preference for distance intensive movement patterns (Fig 7).

Fig 5. Behavioral state, based on positive, negative, or zero residuals, agreement plots relative to 5-min interval track for (a) population

level temporal sub-sampling of all incubation albatross tracks (shaded areas represent SD), and (b) stochastic sampling of one albatross

track (notch = median, whiskers represent 1.5 * inter-quartile range). Blue = area restricted search (positive residuals); red = rest (negative

residuals); black = transit (zero residuals).

doi:10.1371/journal.pone.0168513.g005
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Fig 6. Application of RST to four diverse movement datasets. (a) 2-month GPS fisher track in an urban area of New

York, USA, and residuals (tag M4 [22, 23]). (b) 2-month GPS African buffalo track and residuals split at 11 Nov 2005 to

demonstrate behavior and distribution change with onset of wet season (tag 1764827 [24]). (c) Residuals from 5-year GPS

Galapagos tortoise track, and spatial representation of track segment from 1 Aug 2011 to 30 Mar 2012; inset map shows

fine-scale movements in southeastern area (tag 1388 [25]). (d) 5-month satellite telemetry blue whale track starting off

southern California and ending near the Costa Rica Dome, and residuals (tag 23043 [26, 27]). Maps produced using R code

by Kahle and Wickham [19].

doi:10.1371/journal.pone.0168513.g006
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Discussion

Given the large and increasing amount of animal movement data collected, it is timely and

useful to implement a consistent metric of behavior classification to enable efficient and com-

parative analyses. Indeed, movement ecology needs unifying paradigms to converge diverse

studies and foster a mature scientific discipline [13]. The RST method offers a fast approach to

the analysis of movement data that requires low computational power and time investment,

while also allowing individualization by track using the dynamic scaling approach. Therefore,

we advocate that RST is an effective and efficient method for initial exploration of movement

data to inform hypothesis testing, data partitioning, and choice of modeling or statistical

framework for subsequent analyses. Such close and detailed exploratory analysis of behavior

state and scale before fitting complex movement models is critical as movements are often

hierarchical and cyclical [14]. Furthermore, RST appears to be robust across taxa, ecosystems,

and movement data types, and generates a consistent range of residual values that are compa-

rable, making it an appropriate method of meta-analyses of movement data. RST is based on

our conceptual schematic illustrating how the comparison of animal movement patterns

through space and time are able to discriminate between behaviors states resolved in the data

(Fig 1). RST is a composite of other movement analysis metrics (RT, RD, speed, and path

straightness) that integrates these descriptions of movement patterns through both space and

time to distinguish between multiple behavior states. RST allows behavior classification to

move beyond the dichotomy of ‘travel’ and ‘resident’ (e.g., [3]), and is a one-step method of

behavior classification, unlike many other methods that first necessitate metric calculation and

then the application of a subsequent time-series or clustering algorithm to define breakpoints

(e.g., [2, 5, 11, 28]). Our novel method is intuitive and simple to implement, offering a flexible

framework to quickly and objectively characterize behavior states, point-by-point, in diverse

movement data types.

The premise of all movement analyses is that animals change movement patterns relative to

different behavior states. But ultimately it is the scale of analysis that determines the movement

patterns described [31], and therefore the behaviors characterized. RST allows various scales

(R) to be examined simultaneously, and we offer two approaches to help the researcher discern

an appropriate scale. The first approach assumes a priori knowledge of the animal’s mean tran-

sit speed and would apply a constant scale across a single-taxa dataset. The dynamic scaling

approach offers two benefits: (1) it allows for scale-dependent comparison of behavior states

Fig 7. Scale plots derived using dynamic scaling choice of radius size (R) for Residence in Space and Time (RST) analysis of the fisher GPS

track, African buffalo GPS track, Galapagos tortoise GPS track and blue whale satellite telemetry track. The comparison illustrates how R

influences the proportion of positive (blue), negative (red) and zero (black) residuals. Dashed line indicates 5% transit points. Light gray line indicates

the dynamically scaled R for each track: Fisher (R = 40 m), African buffalo (R = 375 m), Galapagos tortoise (R = 25 m), blue whale (R = 35 km).

doi:10.1371/journal.pone.0168513.g007
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similar to Postlethwaite et al. [32] but with objective discrimination between behaviors, and

(2) it adjusts R for each track, enabling flexibility of scale application that accounts for inherent

individual movement patterns, such as speed and tag variability. Dynamic scaling prioritizes

the classification of transit points, at all scales analyzed, and therefore performs best on tracks

with some transit behavior.

Nonetheless, one scale is unlikely to be appropriate for long duration tracks with high sam-

pling resolutions due to various behavior patterns layered in the data at multiple scales, and

variable transit speeds during different life history stages. In such cases, tracks may be split by

phase (e.g., migration, breeding, season) prior to final RST analysis, or multiple R can be

applied to resolve behaviors at different scales. This is exemplified by our choice to limit RST

analysis of albatross tracks to movement behavior at-sea. Alternatively, if we had included

incubation periods (high RT, low RD), this would bias the RST values of at-sea resting behav-

ior towards positive values, especially as resting at sea is not stationary. Ultimately, partitioning

of tracks and scale choice is case-dependent and should be based on study questions, taxa, and

environment. However, the primary determinant of minimum scale is data resolution. Only

behaviors that occur at spatial and temporal scales larger than the sampling interval and spatial

resolution of the movement data are recorded, and hence described. This effect is emphasized

by our subsampling analysis. With less resolved data, behaviors with long bout lengths remain

well described, but short-term behaviors, such as ARS, are not consistently captured. Research-

ers often make logistical trade-offs for tag deployments between cost, battery power, tracking

duration, recapture probability, and data resolution. Yet, sampling interval should not be sacri-

ficed idly due to implications on the ability to record shorter-term behaviors. For instance, if

fine-scale management schemes are to be derived from movement data, deployment durations

may need to be sacrificed in favor of a higher sampling resolution.

RST’s value can be broadly extended toward habitat and distribution studies to better con-

nect movement patterns with resource selection. To understand the behavioral mechanisms of

animal space use, species distribution models and resource selection functions should be cali-

brated using behaviorally partitioned movement data [33]. Such partitioning can allow eco-

logical questions to be addressed, such as elucidating environmental co-variates of resting and

foraging areas, and how animals use wind, currents and topography during transit. RST can

efficiently contribute to these efforts, allowing researchers to dedicate more time toward eco-

logical models and interpretations. Although RST describes three discrete behavior groups

(time & distance intensive positive points, time intensive negative points, and transit points

where residuals equal zero), the residual values are continuous between -1 and 1, which offers

more descriptive capacity of functional response curves derived by modeling studies. Further-

more, the confidence of behavior state assignment of each point by RST can be described by

examining the mean and sd of residuals across variable R, enabling the identification of loca-

tions with simultaneously mixed behavior states (e.g., transit and ARS) or locations in transi-

tion between behavior states. As expected with hierarchical analyses, RST behavior groupings,

as described by residuals, change with scale (Fig 7) and quantifying confidence of each point

assignment as described here will help movement ecologists move away from identification of

dichotomous behavior states and toward a more continuum approach to behavior description

(e.g., [32]). Additionally, the normalized and continuous range of RST residuals allows for fur-

ther examination based on range, clusters, percentage and intensity to compare patterns across

individuals, populations, seasons, habitat, life-history groups and movement association with

anthropogenic entities (e.g., fishing vessels, trash dumps, urban areas).

Unlike most other behavioral classification methods, RST’s functionality is based on classi-

fication of transit points (residuals = 0) as determined by the choice of R. These transit points

then partition time & distance intensive positive residuals from time intensive negative
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residuals. Interestingly, while these positive and negative residuals identify groups of behavior-

ally similar points within a track, it is up to the user to interpret the meaning of this time & dis-

tance intensive and time intensive classification based on scale and ecological knowledge of

the study species. For example, while time intensive points indicate where the animal spent

more time and less distance within the analysis circle relative to other areas where distance

traveled was larger, these negative residuals are interpreted as rest locations in our fine-scale

albatross track example, but are more likely areas of concentrated feeding behavior in the

larger scale blue whale track. Locations with positive residuals along both the albatross and

blue whale tracks indicate where distance traveled was relatively larger at the scale of analysis

and therefore describe more intensive searching behaviors, but at two different scales. Addi-

tionally, due to the great diversity of how animal movement patterns relate to behavior state,

such as the unusual resting behavior of frigate birds (Fregata minor) while in flight [34], the

RST user must interpret the meaning of residuals based on the scale of analysis and the study

animal’s ecology.

As a new method, we promote the cross assessment of RST relative to other movement data

behavior analyses, as these efforts frequently reveal the strengths and weaknesses of various

approaches [14, 35]. To focus analyses and limit time investment, it is important to understand

nuance in both the behavior of the tracked animal and the dataset to be analyzed prior to

implementing hypothesis testing and computationally intensive analysis. It is here that the

RST method can provide insight into the individuality of each track. Furthermore, we encour-

age other researchers to implement RST on movement data across taxa, scales and ecosystems

to examine method performance and to conduct meta-analyses. With diverse datasets, if a

desired scale of analysis is undefined, application of the track-specific dynamic scaling

approach will allow description of scale consistency across the movement datasets and identifi-

cation of outliers that require data exploration and possible correction. Once reliable RST

behavior classifications are derived for each track, then comparisons are feasible due to nor-

malized values of RD, RT and residuals. Additionally, complimentary biologging, such as

immersion, accelerometer, and time-depth recorder data, can be used to further describe taxa

specific behaviors and movements related to the residual results (e.g., [6]) or incorporated into

the RST method. For example, RST could be extended from 2D to 3D by converting from a

circle to a sphere-based analysis, complimentary to spherical first passage time [36].

RST recommendations

The RST code is freely available (S3 Appendix) and we recommend the following initial set-

tings: Implement dynamic scaling approach with a range of R based on prior knowledge of

animal movement patterns and scale of sampling (how far is the animal likely to move between

locations?); visually inspect the classification of the tracks; assess the consistency of choice of R
across individual tracks; investigate tracks with outlier values for R; interpret states. Despite

these recommendations, no one-setting fits all data, but RST analysis of movement data is fast,

allowing users the freedom to iterate analyses to test and refine parameters; this flexibility

allows the user to hone in on the behavioral profile of interest and appropriate spatio-temporal

scales, thus focusing subsequent analyses [14].

Conclusions

Animal tracking is revolutionizing our understanding of animal ecology in a myriad of ways

including behavior, social systems, habitat use, and population connectivity. Yet, choosing and

applying the appropriate analytical method can be challenging and cumbersome, making the

simplest approach often the most desirable [11, 14, 37]. The RST method offers an intuitive,
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rapid, iterative and flexible approach to explore movement data, with limited a priori assump-

tions (except the assumption that the sampling interval of the data is low enough to capture

meaningful movement behaviors), that can assist more sophisticated explanatory and predic-

tive analyses [14]. As a stand-alone method, RST analysis provides the ability to standardize

movement data exploration across taxa, ecosystems, and data-types, offering immense oppor-

tunities for meta-analyses and initial steps toward answering pressing ecological questions

regarding animal movement drivers, response and scale.
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S1 Appendix. Probability of equal residual value resulting from different combinations of
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