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Systems biology is becoming increasingly important for the study of living organisms.

It focuses on the mathematical understanding of biological systems. Cells, the basic

units of all living creatures, are biological systems of major interest. Considerable work

is being done towards modeling cells as mathematical systems.

At the same time, great effort has been made in an attempt to use chromatophore cells

as biosensors for various substances. The results of changes in these cells induced by

various substances can be seen under the microscope. Therefore, efficient digital image

and video processing algorithms are required to help extract these changes.

This dissertation establishes a link between the biological aspect of chromatophores and

digital image/video processing techniques used for chromatophore characterization. A

complete model of the motion signal transduction pathway is

proposed, starting from the input ligand and ending in features extracted from the

microscope image. The model is developed by extending an existing system biology

differential equation based model of the G8—AC—PKA transduction pathway obtained

from the Database of Quantitative Cellular Signaling (DQCS). The extension of the



mode! is founded on physical assumptions about the dynamic behavior of pigment

granules as well as on image feature extraction. Several image and video processing

methods have been either newly developed or adapted for the characterization of

pigment granule distribution images. Examples are presented to demonstrate the

effectiveness of the developed image processing methods and of the proposed system

model.
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Chapter 1

Introduction

Systems biology is a new science field that combines classical molecular and cell biology

with systems theory and focuses on the new forms of behavior that emerge when systems

of genes and proteins are studied in a unified way. This "kind" of biology is computer-

based in order to construct explicit models of biological systems [1J, [2].

Cells are biological systems. They are unique systems because of their small size and

high system complexity. Cells are small membrane-bounded compartments filled with a

concentrated aqueous solution of chemicals. All living creatures are made of these

systems including such complex organisms as the human being [31.

The ultimate aim of system biology is the development of a "virtual organism". In order

to reach this aim, it is necessary to develop a "virtual cell" by constructing explicit

models of the cell's intricate signal transduction pathways. The challenge in modeling a

cell is that a "virtual cell" should resemble a real cell. At this time, enough is known

about cells so that system modeling is possible. Nevertheless, there is no obvious limit on

how much more needs to be learned to fully understand cells. As a consequence,

modeling is a process in constant progress. In other words, the more that is learned about

cells, the more needs to be taken into account in the model. System biology cell modeling

is a joint work of a large number of researchers in different fields (e.g., biology,

bioengineering, chemical engineering, physics, mechanical engineering, electrical

engineering, computer engineering, mathematics, statistics, computer science).

Current models of cells are constructed at different levels of sophistication and at a

variety of scales. Modeling takes a number of forms from the description of the network
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interaction topology (network graphs), through models that take into account the Boolean

interactions between molecules or other entities, to quantitative modeling using sets of

differential equations. These models encapsulate the current understanding of a cell

system and a living creature as a whole system. They enable predictions of how these

systems should respond, and help in the design of experiments to improve the current

understanding. System biology modeling will advance medicine, pharmacology,

toxology, genetics, and other disciplines.

This dissertation deals with the biological systems of chromatophores. Chromatophores

are colored cells whose color intensity changes are brought about by an active

redistribution of pigment-containing organelles. Transfections of these systems with

selected receptors enable the detection of various substances [4]. Also, the effect of an

applied drug can be detected by means of the induced color intensity change in the

system and it can be used for toxological and pharmacological studies. Redistribution of

pigment is easily seen under the microscope.

A lot of research has been done on chromatophores involving several scientific fields.

This includes a substantial number of different biological studies which identify the

AC—PKA (stimulatory guanosine triphosphate binding regulatory protein—adenylyl

cyclase—protein kinase A) signal transduction pathway (e.g., [3}-[7]). The use of

chromatophores as biosensors has been examined in [4]. Substantial research towards the

development of biological sensors using signal processing in sensor arrays has been done

[8]. Microtubule dependent dispersion and aggregation of pigment granules in

chromatophores has been studied, identifying kinesin and dynein as motor proteins [3],

[9]. A differential equation based model of the signal transduction pathway

has been proposed in [10]. Nevertheless, a complete, unified model of the

pigment granule motion pathway has not been developed to this date.

The main goal of this dissertation is to develop a system level model of a fish

chromatophore cell that relates the applied chemical to features of a microscope image.
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The model is constructed through a link between the biological aspect of chromatophores

and digital image/video processing techniques developed for sequences of chromatophore

microscope images. The link is established in the form of an extension to an existing

system biology differential equation based model of the pathway. This

differential equation based model is obtained from the Database of Quantitative Cellular

Signaling (DQCS) [10]. Differential equation based models of biological reaction

pathways are the most detailed quantitative pathway models available at this time. They

contain a time domain mathematical relationship between concentrations of the chemicals

involved in the reaction pathway. The current knowledge of the main chromatophore

signal transduction pathway provides an incomplete model that is disconnected from

motor transport proteins (kinesin, dynein), which are thought to be involved in pigment

granule motion [31. The missing connection is built in this work based on a physical

model that makes simple assumptions about the shape of an average pigment distribution

and about the velocities of the pigment granules.

The second goal of this work is the development of digital image and video processing

algorithms for chromatophore image sequences. Color to gray-scale conversion using

principal component analysis has been performed. A segmentation algorithm for poorly

illuminated chromatophore pigment granule distribution images has been developed.

Also, global motion estimation using the optical flow equation method has been applied

to sequences of chromatophore pigment granule distribution images. Furthermore, the

study of feature extraction of chromatophore pigment granule distribution by an

analytical model has been performed.

In Chapter 2 of this dissertation, the biological background material on pigment granule

in fish chromatophores has been provided. It covers chromatophores, microtubule

motors, transport, and signal transduction. Chapter 3 presents image and video processing

techniques that have been developed for pigment granule distribution sequences in fish

chromatophores. In Chapter 4, the mathematical model of the Gs—AC—PKA signal
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transduction pathway is described and linked with the image processing techniques of

Chapter 3. Finally, in Chapter 5, concluding remarks on this work are made.
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Chapter 2

Pigment Granule Transport in Fish Chromatophores

2.1 Introduction

This chapter introduces the biological background needed for understanding the visible

behavior of fish chromatophores. It also illustrates the basic chemical mechanisms behind

pigment granule transport in fish chromatophore cells. The theory presented here is pro-

vided both for completeness and for easier understanding of the ideas that appear in later

chapters.

2.2 Chromatophores

Some vertebrates such as fish, amphibians, and reptiles, and many invertebrates, have

adaptable color patterned integument (skin). Chromatophores are specialized pigment

cells in the integument that mediate the color. They synthesize and store pigments.

Chromatophores posses thousands of pigment granules, membrane bound organelles

which contain color pigment. Changes in the distribution of pigment granules permit an

animal to display variations in color.

The color of the integument is a result of absorption and reflection of light rays of certain

wavelengths. The coloration can change quickly in response to changes in the environ-

ment, such as photic or thermal variations. An adaptable color pattern integument can for

instance be used for camouflage, sun protection, thermoregulation, and social interac-

tions.

The morphology of the chromatophores varies from highly dendritic to discoid shape,

depending on the location in the animal and on animal species.
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There are six kinds of chromatophores, each recognized by its color. They are the

melanophores (black), erythrophores (red), cyanophores (blue), xanthophores (yellow),

leucophores (white), and iridophores (metallic). Leucophores and iridophores lack color.

When variations in the environment are detected, the animal regulates its colors and pat-

terns via communicating nerve cells and hormones in the blood stream, which affect the

chromatophores. Hormones and neurotransmitters act on transmembrane receptors lo-

cated on the chromatophore cell surface. For example, the drugs clonidine, neurotoxin,

nonrepenephrine, and melanocortictrophic hormone can induce movement of color-filled

pigment granules. In response to these hormonal or neural stimulations, the pigment

granules are transported along parts of the cell's cytoskeleton (along microtubules) at

rates of about 1 either towards or away from the cell center. When pigment gran-

ules are dispersed throughout the cell, the cell is uniformly color pigmented. The chro-

matophores hide the color of background cells and the animal bearing such cells appears

darkly colored. On the other hand, when pigment granules are aggregated in the cell cen-

ter, most of the cell is unpigmented, and colors from underneath are exposed (Figure 2-

1). An animal bearing such cells would appear lightly colored.

Figure2- 1: Movement of pigment granules: dispersed and aggregated pigment granules in
chromatophores.

Fish chromatophores are about 100 in diameter, located mostly in the dermal layer of

the integument but can also be found in the epidermal layer.
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In this dissertation, the movement of pigment granules in fish chromatophores is studied

in vitro and modeled.

2.3 Microtubule Motors and Transport

The cytoskeleton is a complex network of protein filaments that extends throughout the

cytoplasm. The existence of the cytoskeleton is one of the characteristics of the eu-

caryotic fish chromatophore cell. It enables the cell to adopt a variety of shapes and to

cany out coordinated and directed movements.

There are three types of protein filaments that comprise the cytoskeleton. They are: actin

filaments, microtubules, and intermediate filaments. Each type of filament is formed from

a different protein subunit: actin for actin filaments, tubulin for microtubules, and fibrous

proteins for intermediate filaments.

Chromatophores, like many eukaryotic cells, contain a radial array of microtubules.

Microtubules are attached to a single microtubule organizing center (MTOC) called a

centrosome. They are polar structures. This means that one end (plus end) is capable of

rapid growth, while the other end (the minus end) tends to lose subunits and it is embed-

ded in a structure called the centrosome. The centrosome stabilizes the minus end (Fig-

ure 2-2).

Figure 2-2: A centrosome with attached microtubules.
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The pigment granules in chromatophores are attached to microtubules. They either ag-

gregate in the center of the cell or disperse through the cytoplasm along the microtubules.

The movements of pigment granules in fish chromatophores are generated by motor pro-

teins, which use energy derived from repeated cycles of ATP hydrolysis (Figure 2-3) to

move steadily along the microtubule.

Hydrolysis
AlP > ADP + + Energy

Adenosine Adenosine Inorganic
triphosphate diphosphate phosphate

Figure 2-3: AlP hydrolysis.

Motor proteins belong to one of two families: the kinesins and the dyneins. Both the cy-

toplasmic dyneins and the kinesins are composed of two heavy chains plus several light

chains. Each heavy chain contains a conserved, globular, AlP-binding head and a tail

composed of a string of rod like domains. The two head domains are ATPase motors that

bind to microtubules, while the tails generally bind to specific cell components and

thereby the type of cargo that the protein transports (Figure 2-4).
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} Tail

Stalk

}
Head

Figure 2-4: Microtubule motor protein (kinesin).

Movement of pigment granules in fish chromatophores towards the center of the cell (ag-

gregation) is believed to involve the activation of the associated dynein motors. Move-

ment towards the cell periphery (dispersion) is believed to involve the associated kinesin

motors [3] (Figure 2-5).
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Figure 2-5: The movement of the motor protein (kinesin) along microtubules.

2.4 Signal Transduction

2.4.1 Introduction

A chromatophore cell, like all living cells, is composed of a restricted set of elements,

four of which (C, H, N and 0) make up nearly 99% of its weight. Living organisms syn-

thesize only a small number of the organic molecules that they in principle can make.

Cells contain just four major families of small organic molecules: the simple sugars, the

fatty acids, the amino acids and the nucleotides. Each family serves a different fimction in

the cell. Particularly relevant for the study of pigment granule movement in chromato-

phores are nucleotides and amino acids.

Nucleotides act as caniers of chemical energy. The triphosphate ester of adenine, ATP

(Figure 2-6), participates in the transfer of energy in hundreds of individual cellular reac-

tions. It is composed of adenine, ribose, and three phosphate groups. Its terminal phos-

phate is added using energy from the oxidation of foodstuffs, and this phosphate can be

split off by hydrolysis to release energy that drives energetically unfavorable biosynthetic
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reactions elsewhere in the cell. Also, nucleotides are used as specific signaling molecules

in the cell (for example cAMP).

Adenine

0 1) 0
II ii II0—p--" 0— 0—P OCH 0

OHOH

Figure 2-6: Chemical structure of ATP

Amino acids serve as subunits in the synthesis of proteins. Proteins are long linear poly-

mers of amino acids joined by a peptide bond between the carboxyolic acid group of one

amino acid and the amino group of the next. They make up most of the dry mass of a cell.

They have precisely engineered moving parts whose mechanical actions are coupled to

chemical events.

One of the most important functions of proteins in chromatophores cells is to act as en-

zymes that catalyze specific biochemical reactions. Catalysts are chemicals that while

helping a reaction come about, are not themselves changed. If there is any chemical reac-

tion in chromatophores (as in any living thing) there is an enzyme that works to bring it

about.

The signal transduction pathway is a cascade of biochemical reactions inside the cell. It is

a method by which molecules inside the cell can be altered by molecules on the outside.

In other words, it is the conversion of the reception signal, typically found at the surface

of the cell, to a signal that directly facilitates a response. The original signal molecule is

not physically passed along the pathway, just certain information is passed on. Very often
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signal transduction involves a number of steps. At each step the signal is transduced into

a different form, commonly a shape change in a protein.

There are two major intracellular signaling mechanisms that are used to control protein

activity in fish chromatophores. These are signaling by a GTP-binding protein (guanine

nucleotide binding protein) and signaling by phosphorylation.

Signaling by a GTP-binding protein is accomplished by phosphate addition and removal.

The phosphate is not attached directly to the protein; instead it is a part of the guanine

nucleotide (GTP), which binds tightly to the protein. With GTP bound to it, the protein is

active. The loss of phosphate group occurs when the bound GTP is hydrolyzed to GDP in

a reaction that is catalyzed by the protein itself. With GDP bound the protein becomes

inactive.

Protein phosphorylation-dephosphorylation is another way to control protein activity, but

this time by phosphate transfer. It represents one of the preeminent molecular mecha-

nisms for modulating the functional properties of proteins. It takes place in a!! living

cells. The protein phosphorylation-dephosporylation process includes two thermody-

namically favorable reactions; the water-driven hydrolysis by enzyme protein phosphates,

and high-energy compound-driven phosphorylation by enzyme protein kinase.

A phosphate group is transferred from an ATP molecule to a hydroxyl group on a serine,

threonine, or tyrosine side chain of protein. A large amount of free energy is released

when the phosphate-phosphate bond in ATP is broken to produce ADP. The phosphory-

lations catalyzed by protein kinases can be reversed by protein phosphates which remove

the phosphate (Figure 2-7).
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ADP El

(Phosphatase)

Dephosphorylation
(Phosphatase)

Figure 2-7: Signaling by phosphorylation/dephosphorylation.

In order to sustain reasonable target specificity among thousands of phosphoproteins, a

network of hundreds of protein kinases and protein phosphatases is required.

2.4.2 G-protein Mediated Pathway

2.4.2.1 G-protein Linked Receptors

A targeted fish chromatophore cell responds to molecules of various substances. The sub-

stance molecules behave as a ligand, the tenn used for a small molecule that specifically

binds to a larger one. Ligand binding generally causes a receptor protein to undergo a

change in conformation, i.e., to change shape. This shape change directly activates the

receptor in a fish chromatophore. Receptors become activated so as to generate a cascade

of intracellular signals to alter the behavior of the cell. They act as signal transducers.
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In fish the receptors are fransmembrane proteins on the surface of the target-cell and be-

long to the class known as the G-protein-linked receptors. Ligands that cause aggregation

of pigment in fish chromatophores bind to special type of G-protein-linked receptors, for

example a2-receptors. All of the G-protein-linked receptors belong to a large superfamily

of seven-pass transmembrane proteins. They consist of a single polypeptide chain that

threads back and forth across the lipid bilayer seven times (Figure 2-8).

Extracellular fluid

Plasma
membrane

CYTOSOL Segment that
interacts with
G proteins

Figure 2-8: A schematic drawing of a G-protein-linked receptor.

These kinds of receptors act indirectly to regulate the activity of a separate plasma-

membrane-bound target protein. In fish this membrane-bound target protein is the en-

zyme adenylyl cyclase.

2.4.2.2 Heterotrimeric G-protein

The interaction between the receptor and the target protein is mediated by a third protein.

S even-helix receptors always act through a heterotrimeric GTP-binding regulatory pro-

tein (G-protein). GTP stands for guanosine triphosphate (Figure 2-9).

Messenger binding site

V

a



Figure 2-9: GTP (guanosine-5 '-triphosphate).

G-proteins have GTP binding and GTP hydrolysis capabilities The activated receptor

changes its conformation and switches on the trimeric G proteins that associate with it

causing them to eject their GDP (GDP stands for guanosine diphosphate) and replace it

with GTP (Figure 2-10).

H+R

,4 GaGTP+G13'rGTP/\\
Effectors

Figure 2-10: GTP—GDP exchange.
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A trimeric G-protein is composed of three different polypeptide chains, called a, 13 and 'y.

The excitation signal is usually carried forward by the a chain. The active protein has an

opportunity to diffuse away from the receptor and deliver its message for a prolonged pe-

riod to its downstream target.

The a chain (subunit) of the G-protein hydrolyzes its own bound GTP to return the G-

protein to the inactive form, converting it back to GDP. The proportion of G-protein in

the active state is determined both by the rate of receptor-catalyzed GTP-GDP exchange

and by the rate of hydrolysis of bound GTP (Figure 2-11).

EXTRACELLU-
LAR
FLUID

M

U

CYTOSOL
GTP

Ga releases !- 3) Subunits
GDP and binds! separate
GTP,
Gprotein

R U U U U U U U U U U U U U U i! U U U U U U U U U U U U U U U I U U U U UU

GDP Subunits
4) G protein subunits 5) Ga subunit hydrolyzes recombine

activate or inhibit its bound GTP to GDP form
target proteins and becomes inactive inactive

Gprotem

Figure 2-11: The G-protein activation/inactivation cycle.

1) Ligand binds

U

U U
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2.4.2.3 Adenylyl Cyclase Enzyme

Adenylyl cyclase, or abbreviated AC, is the protein that the G-protein activates in the fish

chromatophore cell. AC is a plasma-membrane-bound enzyme responsible for signal

transduction.

G-protein-linked receptors activated by ligands that cause aggregation of pigment in fish

cliromatophores inactivate adenylyl cyclase. They act indirectly via inhibitory G-proteins

(G1-proteins).

The protein is composed of a1 (a chain) and a tight complex formed from a chain

and a y chain. When activated, a G-receptor binds to causing its a1 polypeptide chain

to bind GTP and dissociate from the complex. Both the released a and fry contribute

to the inhibition of adenylyl cyclase. aj inhibits the adenylyl cyclase indirectly, whereas

13y inhibit synthesis of one or more small intracellular signaling molecules. Synthesis of

intracellular molecules can be inhibited in two ways-directly, by binding to the cyclase

itself, and indirectly, by binding to any free subunits in the same cell, thereby prevent-

ing them from activating cyclase molecules. a chain of a stimulatory G protein (Ga).

Receptors that activate adenylyl cyclase are coupled to this enzyme via trimeric pro-

tein. The fish who are genetically deficient in show decreased responses to certain

hormones and, consequently, have metabolic abnormalities, abnormal bone development,

and are mentally retarded.

Inactivation of adenylate cyclase stops the conversion of ATP to small intracellular mole-

cules.

2.4.2.4 Cyclic AMP — a Second Messenger

Ligand activated G-protein-linked receptors in fish chromatophores, activate binding of

G-proteins that inactivate (or activate) AC enzyme that regulate the concentration of
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small intracellular molecules called cAMP. cAMP stands for a adenosine 3',5'-cyclic

monophosphate (Figure 2-12).

CH2

Figure 2-12: Cyclic AMP.

This cyclic nucleotide is synthesized from AlP by the AC enzyme and serves as an intra-

cellular mediator (intracellular messenger, or second messenger). This means that these

small molecules in turn pass the signal on by altering the behavior of selected cellular

proteins (Figure 2-13).

Figure 2-13: The pathway by which a G-protein-linked cell-surface receptor generates
a cAMP second messenger.

Adenine

OH

S Ligand (primary, messenger)

1)

2) Signal
transduction
(via second
messengers)

4) Changes in
gene expression
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Cyclic AMP concentration levels can change up to five-times in seconds. Such rapid syn-

thesis of the molecule is balanced by rapid and continuous destruction by one or more

cyclic AMP phosphodiesterases. Cyclic AMP phosphodiesterases hydrolyze cAMP to

adenosine 5'-monophosphate (5'-AMP) (Figure 2-14).

Adenylyl
cyclase

Adenine (active form)

OH
C clic AMP

OH OH

Figure 2-14: The synthesis and degradation of cAMP.

2.4.3 Protein Phosphorylation/Dephosphorylation

2.4.3.1 Protein Kinase A — cAMP Dependent Kinase

Most effects of cyclic AMP in eukaiyotic cells, to which chromatophores belong, are

mediated by activation of a key enzyme — protein kinase A (PKA). The PKA enzyme is

phosphoryltransferase. This means that it catalyzes the transfer of a phosphoryl group

from a high-energy ATP molecule to a hydroxyl group located on the amino acid side-

chain of a target protein. Acceptor sites in fish chromatophores are the hydroxyl groups

of serine, threonine, and tyrosine. A large amount of free energy is released when the

phosphate-phosphate bond in ATP is broken to produce ADP.

O 0I Ii
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PKA is an enzyme complex. This means that it is not made as a single, giant, covalently

linked molecule. Instead, it is formed by a noncovalent assembly of many preformed

molecules, which are called subunits. In the inactive state, PKA consists of a complex of

two catalytic subunits and two regulatory subunits. Regulatory subunits can bind cAMP

which was the fmal product of the pathway. If this binding happens, catalytic subunits

become free to bind and phosphorylate specific substrate proteins that are the next sub-

stance in the pathway (Figure 2-15).

Regulatory
subunit

Catalytic

cAMP-
subunits

binding
sites

Regulatory
subunit

Figure 2-15: The activation of cAMP dependent PKA.
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2.4.3.2 Protein Phosphatase

Protein phosphatase is a second group of enzymes that can reverse the phosphorylation

catalyzed by PKA. Protein phosphatases are phosphoesterases that catalyze the hydrolytic

removal of a phosphate group from the hydroxylated amino acid residue of a protein.

When PKA is inhibited protein phosphatase is active and dephosphorylate proteins that

were phosphoiylated by active PKA. The fish pigment granules aggregate.

There are stimulating substances which can activate adenylyl cyclase. In this case, cAMP

levels are high, PKA activated and pigment granules disperse (Figure 2-1).

2.4.4 Signal Transduction in Chromatophores

Pathways that affect pigment granule mobility include changes in the intracellular con-

centration of cAMP. Dispersion is activated by increase in cAMP levels while aggrega-

tion occurs when cAMP levels are depressed.

In this study of fish chromatophores, the synthetic drug clonidine (C9H9CI2N3) binds to a

cell receptor, which interacts with heterotrimeric U-protein. Binding of clonidine to its

receptor causes the exchange of GTP for UDP; the U-protein is now considered activated.

In this case the U-protein is an inhibitory G-protein. When it is activated, it inhibits the

enzyme AC. Active AC converts ATP to cAMP. The cAMP activates cAMP dependent

protein kinase (PKA) which can phosphorylate many targets. When clonidine is added to

fish chromatophores, AC is inhibited, cAMP levels drop, PKA is inhibited, and the pig-

ment granules aggregate. It is believed that when cAMP is low, protein phosphatase is

active and can dephosphorylate proteins that were phosphorylated by active PKA (Figure

2-16).



Figure 2-16: The signal transduction pathway in fish chromatophores.
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3.1 Introduction

In this chapter, a range of image and video processing techniques are applied to fish

chromatophore image sequences. Several new analysis and modeling methods, special-

ized for chromatophores, are developed. Chromatophore pigment granule distributions

are characterized using various parameters obtained from these methods. Figure 3-1

summarizes the methods described in the chapter and their relationships.
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Chapter 3

Image and Video Processing of Pigment Granule Distribution
Sequences in Fish Chromatophores

Input
Image
Sequence

(r, g, b)

Grayscale
Image
Sequence

Motion
Vectors

Aligned
Grayscale
Image
Sequence

Figure 3-1: Block diagram of methods presented in Chapter 3.
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3.2 Chromatophore Perception and Acquisition

In general, cells are small and complex. Most cells in their natural state are almost invisi-

ble under an ordinary microscope. There is little in the contents of most cells, which are

70% water by weight. It is hard to see their structure, hard to discover their molecular

composition, and harder still to find how their various components function. However,

the movement of pigment granules in chromatophores is easily visible by bright field mi-

croscopy.

In recent years electronic imaging systems and the associated technology of image proc-

essing have had a major impact on light microscopy. Pigment granule movement in

chromatophores is observable for long periods of time when color video cameras are at-

tached to a microscope. By using a video camera it is possible to record a sequence of

pictures ("movie"). A movie consists of taking snap shots in regular intervals (e. g., every

two seconds) using the video camera (Figure 3-2).

Since images produced by color video cameras are in electronic form, they can be readily

digitized. In other words, they can be represented by arrays of finite length binary words.

In order to be digitized, the given image is sampled on a discrete grid and each sample or

picture element is quantized using a fmite number of bits. The digitized image can then

be processed by the computer.

Each color image frame that represents a picture of the pigment granule distribution in a

chromatophore cell contains an array of m x n picture elements (also called pixels or

pels). This number of pixels per unit area, called the sampling rate, is determined by the

bandwidth of the imaging system. In general, any two-dimensional function that bears

information can be considered an image. The bandwidth is chosen large enough to pre-

serve the useful information in an image that represents the pigment granule distribution.



(c) (d)

Figure 3-2: A sequence of pictures from a biological experiment that results in
the movement of pigment granules in chromatophores.

In the color image frame, each pixel is defmed by a three-component vector that repre-

sents a color. The human perception of color is a by-product of visual perception. The

world of electromagnetic stimuli in which we are immersed has a much richer and much

more varied structure than our visual system can process. We only perceive a limited

range of frequencies of electromagnetic radiation, the narrow band of "visible light"

which ranges in wavelength from approximately 360 nm to 660 nm. The visible wave-

lengths of light that are reflected from the objects in our everyday world are composed of

mixtures of sometimes hundreds of separate and distinct frequencies of light. We some-

how represent a distribution of frequencies of visible light as a single percept which we
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call a color. In doing so we have lost a great deal of the information that was originally

present in light, in fact many different distributions of visible light can produce the same

subjective color percept.

The human retina (Figure 3-3) has three types of color photoreceptor cone cells, which

respond to incident radiation with different spectral response curves (Figure 3-4).

Because there are exactly three types of color photoreceptors, three components are nec-

essary and sufficient to describe a color, providing that spectral weighting functions are

used. These three components are the intensities of the red, green and blue colors (RGB).

The RGB color space is used to display graphics on display devices, such as the computer

monitor, since for any given color, a suitable set of these three primary sources can be

found (Figure 3-4).

Light

Optic nerve

Sciera

Figure 3-3: Cross-section of the human eye.
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-0.1

Figure 3-4: Spectral matching tristimulus curves for the CIE (the International Committee
on Color Standards) spectral primary system. The negative tristimulus values
indicate that the colors at those wavelengths cannot be reproduced by CIE
primaries.

A sampled image is quantized to a fmite number of RGB vectors. Computer images can

be processed in various ways to extract latent information.

3.3 Color to Gray Scale Conversion Using Principal Component
Analysis

The original images that are studied in this work contain various colors. Colored images

contain a large amount of data that is to be manipulated for further image and video proc-

essing. Since this work is concerned with processing techniques that are practical for im-

plementation in software or hardware form, the speed of the algorithms and the storage

requirements are of major concern. Therefore, one of the requirements for the image

processing part is to reduce the dimensionality of the problem.

0.4

Tristimulus values

Green

0.1

0
700

Wavelength (X), rim
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Fortunately, it turns out that in images that represent chromatophore pigment granule dis-

tributions, the three-dimensional color information contained in each pixel can be re-

duced (compressed) to one variable. This is best done through a technique called princi-

pal component analysis.

Principal component analysis (PCA) is an efficient dimension reduction technique capa-

ble of transforming a set of p variables to a set of q variables, where q can be considera-

bly smaller that p. Principal components are defined as optimal linear combinations of the

original p variables, optimality meaning that a maximum of the variability of the original

variables is extracted, and that the reduced q components are uncorrelated. Principal

component analysis is also called the Karhunen-Loeve (KL) transform. It was first intro-

duced by Pearson [141 who used it in a biological context. It was then developed by Ho-

telling [151 in work done on psychometry. It appeared once again quite independently in

the setting of probability theory, as considered by Karhunen [161, and generalized by Lo-

eve [I'TJ. For a full treatment of principal component analysis, see, e.g., [18J.

The KL transform can be applied to the images that represent pigment granule distribu-

tions in chromatophores by considering the sequence of pixels in an image as a discrete

random process. It is assumed that the RGB vectors of the pixels are arrayed into a 3 by

N matrix

ri r2 ... rr4l
U= gi g2 ... gN j' (3-1)

b1 b2 ... bNj

where (r1,g,,b,) are the RGB components of each pixel i, and N is the total number of pix-

els in the color image. The autocorrelation matrix for the three colors is defmed as

([ri ([rr rg
(3-2)

) bg bbi)
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where E is the expectation operator. The expectation is approximated as the mean over all

pixels in the image. It can be shown that Ra is a symmetric positive definite matrix. Its

elements are a measure of correlation between the color components. For a single image,

the color autocorrelation matrix can be approximated as

Erjrj r1b1

, (3-3)

b'r, b'g1 b1b1

where T is the matrix transpose operator.

The right eigenvectors of R define the principal axes. The matrix Q composed of the

right eigenvectors of R satisfies

RQ=QD, (3-4)

where D is the diagonal matrix of eigenvalues. For convenience, the eigenvalues on the

diagonal of D are ordered from the largest to the smallest in absolute value. According to

the PCA theory, the linear KT transformation

x Fri
y (35)
z Lbi

has the property that the transformed components (x, y, z) are uncorrelated. It is seen from

(3-5) that the components (x, y, z) are the projections of the original (r, g, b) vector onto

the principal axes. Another characteristic of the KL transform is that the component of

the transformed vector corresponding to the largest eigenvalue carries the most informa-

tion in the sense that for q i, x gives the best approximation of (r, g, b). The relative

importance of the components (x, y, z) is therefore determined by the ratio of the magni-

tudes of the eigenvalues. Since the eigenvectors are ordered from large to small, the x
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component in (3-5) is the most important component and z is the least important compo-

nent. By selecting x as the only variable for each pixel, a color to gray scale conversion

that is optimal in the least squares sense is achieved.

Numerous experiments were carried out in the course of this work on different chromato-

phore images with the result that the largest eigenvalue in (3-4) is always much larger

than the remaining two eigenvalues. Typical ratios of the magnitudes of the largest ei-

genvalue, and next eigenvalue in size, range from around / =20 to /

80. As a result, a color image that represents pigment granules distribution in chromato-

phores can be reduced to a gray scale image with a negligible loss in the information con-

tent. The direction of the principal component is usually aligned with the direction of one

of the image components. For erythrophores, this is the direction of the r axis and for

cyanophores, it is the b axis. The direction of the principal component does not appear to

have an important role on the fmal results. Figure 3-5 compares a color erithrophore im-

age with its gray scale counterpart obtained by projection on the dominant principal

component.

(a) (b)

Figure 3-5: Two chromatophore images: (a) color; (b) gray scale obtained by projection
on principal vector component.
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3.4 Global Motion Estimation Using the Optical Flow Equation Model

3.4.1 Introduction

A chromatophore image sequence from a biological experiment that represents the distri-

bution of pigment granules in the cell is a series of two-dimensional sequentially ordered

images. Since imperfections in the biological experimental system can introduce un-

wanted global motion, the images in the sequence need to be stabilized or aligned. This

can be done using optical flow methods for image motion estimation. Two dimensional

(2D) optical flow methods for motion estimation are capable of estimating small non-

integer frame to frame displacements accurately and efficiently.

3.4.2 Optical Flow Equation Methods

Optical flow equation based methods are based on solving the so called optical flow

equation (OFE). This is a first order partial differential equation relating the components

of the frame coordinate velocity vector to the partial derivatives of the image intensity.

The optical flow equation is derived in the following way.

Assuming a continuous space-time distribution of the image intensity, s(xy,t), the image

intensity will not change along a motion trajectory. On this motion trajectory we have

ds(x(t), y(t), t)
— 3 6di - ' (-)

where (x(t), y(t)) is the motion trajectory. Using the chain rule of differentiation, (3-6) can

be expressed as

as(x,y,t)
+ +vx vy at —

where = dx(t)/dt, and = dy(t)/dt are the components of the coordinate ve-

locity vector. Equation (3-7) is the optical flow equation or optical flow constraint.
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Using vector notation, (3-7) can be expressed as

as(x,y,t)
Vs(x,y,t).v

+ at
= (3-8)

where Vs = v = [vi, and the "•" denotes the vector inner

product (e.g., {20]).

From (3-8) it is seen that the OFE constrains only the component of the motion vector

that is in the direction of the spatial image gradient. This is related to the fact that (3-7)

represents one equation with two unknowns, and

3.4.2.1 Limitations

In the considerations so far, it was assumed that the space and time coordinates are con-

tinuous. In practical applications both the space and time coordinates are discrete. This

implies that OFE needs to be used in conjunction with appropriate spatial and temporal

smoothness constraints. These constrains require the following:

1. The image intensity varies slowly over a neighborhood.

2. The image intensity varies slowly over time.

3. The displacement vector varies slowly over a neighborhood.

4. The displacement vector varies slowly over time.

3.4.2.2 Additional Constraints

In order to determine both components of the motion vector, additional constraints must

be introduced on the components of the motion vector, and vj,. Different choices of the

constraints result in different OFE methods. One of the ways of introducing additional

constraints on the velocity vector is to introduce a block motion model. In this model, it is
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assumed that the motion of pixels remains unchanged over a particular block of pixels, B.

This leads to the Lucas-Kanade model [21].

3.4.3. Lucas-Kanade Model

This model starts by defining an error in the optical flow equation over the block of pix-

els B as

E — ç' + +
3 9

— ax
Vx Vy at )

(x,y)€ B

The goal of the method is to find the velocity components that minimize the above error.

Computing the partial derivatives of the above expression with respect to and gives

the following two equations for the estimated motion velocity components, and

(aS(X,y, t),. + as(x,y,t) A + as(x,y, as(x,y, t)
— 3 10

ax ay at ) ax —
'

(x,y)€ B

ç' t) A + as(x,y, t) A as(x,y, as(x,y, t)
— 0 3 1

ay + êt ,) —
. ( - 1)

(x,y)€ B

Solving the above two equations for the components of the estimated velocity gives

rA
I vx
I =A1b (3-12)

where
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3s(x,y,t) 8s(x,y,t) 8s(x,y,t) ôs(x,y,t)
ax ax ax ay

(x,y)€ B (x,y)E B

c' as(x,y, t) ôs(x,y, t) ôs(x,y, t) 5s(x,y, t)

L11 8x ay

....(x,y)E B (x,y)E B -

—

ôs(x,y,t) 8s(x,y,t)
ox

(x,y)E B

Os(x,y,t) Os(x,y,t)

_(x,y)E B

The accuracy of the estimated motion vectors depends on a number of factors, including

the type and size of the chosen blocks, as well as on the accuracy of the computed partial

derivatives, i.e., the smoothness of the image.

3.4.4 Shifted Chromatophore Pigment Distribution Experiment

In order to evaluate the behavior of the method for chromatophores, OFE experiments

were performed on shifted chromatophore pigment distribution images. Table 3-1 sum-

marizes the behavior of the computed motion vectors for one image using different block

sizes. The computations were performed on the image shown in Figure 3-6.

It should be noted that the image of Figure 3-6 contains pigment granule distributions

whose size varies considerably over the image. Some of the distribution are as small as

several pixels in both dimensions and others are as large as 100 x 100 pixels. This type of

image is difficult to process with a single block size and therefore it represents a good test

case for the proposed motion estimation algorithms.
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Figure 3-6: Chromatophore pigment distribution image used for Lucas-Kanade
estimation with different block sizes.

Table 3-1: Lucas-Kanade results for the image of Figure 3-6 shifted by v(0,1) pixels.
All motion vector results are in pixels.

Block Size Mm Max Mean STD

4 x 4 —3.7270 4.5358 0.5 133 0.6075

8 x 8 —1 .2934 2.2 139 0.6368 0.3362

16 x 16 —0.4013 1.2710 0.7241 0.1908

32x32 0.1905 0.9698 0.7581 0.1164

Motion vectors were computed at each image point. The mm, max, mean and the stan-

dard deviation of Table 3-1 were computed over all points. It is seen from Table 3-1 that

the computed motion vector improves slowly with the increase in the block size as it ap-

proaches the exact value pixel. Modifications to the original Lucas-Kanade motion
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estimation method are needed for chromatophore images in order to improve the motion

estimation accuracy.

3.4.5 Iterative Correction

The Lucas-Kanade motion estimation method is accurate only when the block size is

large, or when the frame-to-frame displacement is small and the changes of the intensity

and the motion vector are slow. The accuracy of the motion vector estimates can be im-

proved through an iterative alignment procedure [221. After an initial estimate of the mo-

tion is obtained, the first image is shifted towards the second to compensate for the esti-

mated displacement. The motion estimation procedure is then repeated between the

shifted first image and the original second image to obtain an estimate of any residual

velocity. This shift-and-estimate procedure can be repeated.

The method was tried on unfiltered and low-pass filtered chromatophore pigment granule

distribution images. It was found to be extremely effective for improving the global mo-

tion estimates of these images using a single iteration. Multiple iterations often made the

result worse and were found to be unreliable. The results for global motion estimation are

summarized in the following section.

3.4.6 Global Motion Estimation Using Corrected Lucas-Kanade Model

The purpose of global motion estimation in this work is to compensate for random shift-

ing or vibrations of the components in the image acquisition system. In order to evaluate

the method for global estimation, the following test was performed.

3.4.6.1 Test 3-1

Image 1: 200 x 200 pixel subset of the image shown in Figure 3-6.

Image 2: 200 x 200 pixel subset of the image shown in Figure 3-7.
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Figure 3-7: Small chromatophore pigment distribution image used for global motion
estimation experiment.

The test images were filtered with a low-pass filter and the resulting images were shifted

by = (1,1). The global motion vector between the two filtered images was esti-

mated using a single 200 x 200 pixel Lucas-Kanade block. The filters were implemented

using the Matlab filter2 function. The size of the filter matrix was variable and the

impulse response of the filter matrix was the half wave cosine function. The filter coeffi-

cients were normalized so that their sum is equal to 1.

Iterative motion vector correction using a single shift-and-estimate step was applied to

the above images. The images were shifted using bilinear interpolation between the near-

est four pixels. Only one iteration step was used since additional steps degraded the accu-

racy of the computed vectors.

3.4.6.2 Test 3-1 Results

Image 1 (large pigment granule distribution, little background, 200 x 200):



a) No filter

b) 3 x 3 filter

c) 6 x 6 filter

d) 9 x 9 filter

044 3,

vx=1. 0142,

vx=l. 0020,

vx=l. 0008,

vy=l. 0309;

vy=l. 0110;

vy=l.00l7;

vy=l.0007.
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Image 2 (small pigment granule distribution, more background, 200 x 200):

a) No filter

b) 3 x 3 filter

C) 6 x 6 filter

d) 9 x 9 filter

vx=l. 0086,

0029,

vx=1. 0017,

vy=l. 0208;

vy=l. 0085;

0031;

vy=l.0022.

It is seen that the shift-and-estimate correction improves the estimated motion vectors

considerably.

The methods described above are suitable for aligning pairs of images before further

processing.

3.5 Segmentation of Chromatophore Pigment Granule Distribution
Images

3.5.1 Introduction

The next image processing goal is to perform bi-level classification of the image pixels in

order to reduce the complexity of the data and to simplify the recognition of the pigment

granule distribution from the background. This is typically accomplished using image

segmentation techniques. However, chromatophore pigment granule distribution images

can contain various effects caused by variable lighting conditions and it is not always

possible to perform segmentation directly. For this reason, a segmentation algorithm for

gray-level, variable lighting condition images was designed in this work.

Due to inconsistent lighting conditions, a global segmentation threshold may produce in-

complete segmentation of images. This is illustrated in Figure 3-8. The reason for the in-
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complete segmentation is that the object (pigment granule distribution) pixels and back-

ground pixels have overlapping gray levels. Therefore, they cannot be distinguished from

each other. The selection of a single threshold for these kinds of images is not possible in

general. Experiments on chromatophore images show that selecting a local segmentation

threshold gives much better results.

The method for segmenting gray-scale chromatophore pigment granule distribution im-

ages that is proposed in this work computes the mean intensity over selected regions of

the image and uses bilinear interpolation to calculate the mean intensity at the remaining

points. The procedure is recursive and adaptive. Once the mean intensity value is ob-

tained for all image points, a threshold value is chosen for each point and the image is

segmented. A simple filtering process is used afterwards to remove some of the unwanted

background noise. The method can also be used for improving existing methods for badly

illuminated images, such as the Z-shaped nonlinear transform (ZNT) method [23].
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Figure 3-8: Example of chromatophore segmentation with a constant threshold.



40

3.5.2 Fundamental Ideas Behind Proposed Segmentation Approach

The segmentation approach is based on two basic ideas:

1. The segmentation threshold should depend on the statistics of the pLvel neighborhood.

Since the threshold must change from location to location, it is logical to determine the

threshold based on statistics of the neighborhood of the segmented pixel. This idea is ex-

plained further in Section 3.5.3. For computational and practical reasons it would be good

if the neighborhood statistics could be described by a single parameter. If a single pa-

rameter is chosen, this parameter can determined using the second idea, described below.

2. The background noise in the original image should be reduced before segmentation.

Background noise, such as variable lighting conditions, is the main reason why a single

threshold cannot segment a chromatophore pigment granule distribution image well. If

some of this noise can be removed from the image, better segmentation results can be ex-

pected.

Based on a large collection of chromatophore pigment granule distribution images, it has

been determined that the background lighting is a slowly changing function of position in

the image. It is reasonable to assume that the variable lighting effects are additive and

that they affect the pigment granule areas in the same way as they affect the non-pigment

granule areas. If a rectangular area of the image is observed, these assumptions lead to

the conclusion that the image can be decomposed into two images:

1. Pigment granules with white background representing ideal lighting conditions;

2. A perturbation to the ideal image representing the variable lighting.

This is illustrated in Figure 3-9.
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Pigment
Distribution

Figure 3-9: Decomposition of original image into ideal image and a variable lighting
perturbation.

If the original image is processed using a linear operation that yields a scalar value (linear

functional), this linear operation, L, can be decomposed into two parts:

L(Original Image) = L(Pigment Distribution) + L(Perturbation).

Two different rectangles of similar size are now chosen at different locations of the image

and L is applied to each rectangle. If each rectangle contains pigment distributions of

several chromatophores, it can be assumed that the effect of L on the pigment distribution

part of the first rectangle is approximately the same as the effect of L on the pigment dis-

tribution part of the second rectangle. This assumption is typically satisfied for larger rec-

tangles. For appropriately chosen linear operators this is equivalent to assuming that both

rectangles contain the same percentage of similar pigment granule distributions. Subtract-

ing the above equations for the two rectangles then gives

L(Original Image 1) — L(Original Image 2) = L(Perturbation 1) — L(Perturbation 2).

Therefore, the goal is to choose L in such a way that by capturing the change in the effect

of L on the original image, the change of the effect of L on background is captured.



42

One more restriction on the choice of L is imposed. It is required of L that its affect on

shrinking rectangles converges to the original image. All of these requirements suggest

that L can be chosen as the mean pixel intensity on the rectangle.

A different way of looking at the choice of L is in terms of standard filtering techniques.

The background noise represents a slowly varying ("low frequency") noise component

that can be isolated using a low-pass type filtering operation. The mean value over a large

rectangle surrounding a point is one particular choice of such a low-pass filter. Subtract-

ing the mean value over a given rectangle from the original image will reduce the vari-

able lighting perturbation.

3.5.3 Proposed Segmentation Method

The main idea behind the method used for chromatophore segmentation in this work is to

use a segmentation threshold that depends on the statistics of some neighborhood of a

given pixel. While computing the statistics of every point in the image can be computa-

tionally costly, the computational cost can be reduced by calculating the statistic only for

certain points and by using interpolated values for the remaining points. If the number of

points where the statistic is computed is kept much smaller than the number of points

where the statistic is obtained by interpolation, the computational cost is dominated by

the interpolation time. This time can be kept within reasonable limits. Due to the slowly

varying nature of the background noise in the images, the number of points where the sta-

tistic needs to be computed can be kept relatively low.

Once the statistic of each point is known (either by direct computation or by interpola-

tion), the threshold for each point is computed. The image is then segmented. The result-

ing segmented image will consist of black and white regions. The black regions corre-

spond to the places in the image where the pigment granule distributions are located and

the white regions correspond to parts of the original image that mostly contained the

background (Figure 3-10 (a)). If the threshold is chosen conservatively—meaning that the
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black pigment granule regions do not contain any areas that correspond to the back-

ground in the original image— it is possible to repeat the segmentation process. In the

second segmentation, only the part of the original image corresponding to the background

in the previous segmentation result is segmented. This newly segmented image is then

combined with the previous segmentation adding parts of the pigment granule distribu-

tions that were not visible in the previous segmentation to the overall result as well as

some background noise (Figure 3-10 (b)). The repetition is stopped once the newly seg-

mented image contains a sufficient amount of background noise. Typical chromatophore

pigment granule distribution images do not require more than two segmentation steps.

50 100 150 200 250

Figure 3-10: Repetitive segmentation: (a) first step; (b) second step showing more of
the granule area together with background noise.

The background noise in the segmented images can be recognized as isolated regions of

black pixels whose area is much smaller than the area of a typical pigment granule distri-

bution. It is possible to filter this type of noise from the fmal segmented image.

3.5.3.1 Overview of Thresholding Procedure

The recursive procedure for determining the threshold is described below.
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1. Calculate the statistical parameter(s) of each image corner (Figure 3-11):

— Choose a minimum size rectangle near each corner and calculate the statistical

parameters from the pixels in this rectangle.

— Increase the rectangle size and recalculate the parameters.

— Repeat the above two steps until a sufficient parameter history list is obtained.

— Evaluate the behavior of the parameter history list and stop if the parameters

the stopping criterion. Otherwise keep on increasing the rectangle until the

maximal allowed size is reached.

2. Calculate the statistical parameter(s) at the image center:

— Vary the size of the calculation rectangle in the manner described in Step 1

and calculate the parameters.

3. Compare the computed parameter(s) at the image center (from Step 2)

with the interpolated parameter value(s) at the image center. The interpolation is

done based on the parameter values(s) at the corners. If the computed and interpo-

lated values are "close" according to some error criterion, skip to step 5.

Figure 3-11: Calculation of statistical parameters at the image corners and in the center.
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4. Subdivide the image into 4 subimages and repeat the process for each subimage

starting from Step 1.

5. Use interpolation to calculate the statistics parameter(s) for every remaining

image point from the parameter values at the computed points.

6. Calculate the threshold value for every point based on the statistics parameter(s)

obtained in the above steps.

Once the threshold of each point is computed, the image can be segmented.

It is important to note that the details of the threshold selection mechanism can be varied

without changing the general procedure described above. Specifically, it is possible to use

different statistical parameters (mean, mm, max functions etc.), different interpolation

functions, and different error evaluation criteria. In the following subsection a simple

choice of these functions is made.

3.5.3.2 Statistical Parameter

The simplest approach is to have one statistical parameter, s. The threshold, T, at each

point will then be a function of one parameter: T = T(s). The first candidate for the statis-

tical parameter, s, is the mean pixel intensity in some neighborhood of the point of inter-

est:

1N
s = U(X/c,yk) (343)

where u(xk,yk) is the pixel intensity of point (xk,yk) and N is the number of pixels in the

neighborhood. The reasoning behind this choice was explained in Section 3.5.2.
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33.3.3 Interpolation Function

Since the values are interpolated at every point based on the values at four corner points,

a logical first candidate for the interpolation function is a function of the form:

f(x,y) = aoo + aox + aoly + all xy, (3-14)

where aoo, are constants determined by the requirement that f matches the

known computed values at the four corner points. This corresponds to bilinear interpola-

tion.

3.5.3.4 Rectangle Selection

For the rectangles used in determining the pixel neighborhood we choose squares. This

removes one degree of freedom in choosing the rectangle size and simplifies the proce-

dure. In the procedure of Section 3.5.3.1, the squares are increased in a geometric pro-

gression to improve the efficiency of the algorithm:

g>1, (3-15)

where is the width of the rectangle in the k-th iteration and g is the rectangle growth

factor. A good choice for the growth factor, g, proves to be a value between and 2.

Smaller growth factors often require a large number of iterations while factors larger than

2 result in rapid changes from iteration to iteration. With large growth factors it is easy to

exceed the optimal square size.

3.5.3.5 Stopping Criterion for the Square Growth

The size of the squares that are used for computing the statistics turns out to be very im-

portant. Pixel neighborhoods that are too small are more problematic than those that are

too large. The reason for this is that statistical parameters computed based on small

neighborhoods do not include the characteristics of the image background. The statistic
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of the background is essential in obtaining a good threshold value that will be able to iso-

late the pigment granule distribution from the background. Therefore, the stopping crite-

rion needs to be very strict, requiring small monotonic variations in the computed values

from one iteration to the next.

The typical behavior of the mean value as a function of square size for four corners of a

chromatophore pigment granule distribution image is shown in Figure 3-12.
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Figure 3-12: Typical behavior of mean pixel intensity as a function of square size.

It is seen from Figure 3-12 that the mean changes quickly at first and then converges to

the mean value of the whole image nearly monotonically. The oscillating behavior occurs

while the size of the square is smaller than or comparable to the size of the pigment gran-

ule distributions in the image. Once the square size exceeds the size of the average pig-
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ment distribution, the mean value changes nearly monotonically. The growth of the

squares should not be stopped before the oscillations become small. The relative ampli-

tude of the oscillations is monitored and when it becomes sufficiently small, the growth

of the squares is stopped.

3.5.3.6 Error Evaluation at the Image Center

At the center of the image the computed mean intensity is compared to the interpolated

intensity. The relative error between the two intensities proves to be a good measure of

the accuracy of our interpolation.

3.5.3.7 Subdivision of the Image into Smaller Images

In the procedure of Section 3.5.3.1 it may become necessary to subdivide the image into

smaller images. In this case it is important that the mean values at the corners of each

subimage are computed consistently. The interpolation function should be continuous

over the whole image. Therefore, the computed means at the corners that are shared be-

tween two subimages should agree. This suggests that the squares used for computing

means of the subdivided image must span two adjacent images. The approach is illus-

trated in Figure 3-13.

Figure 3-13: Choosing the statistical neighborhood areas when the image is divided into
subimages.
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3.5.3.8 First Segmentation

Once the interpolated mean intensity is obtained over the whole image, the segmentation

threshold must be calculated. Before the segmentation threshold is chosen, we subtract

the calculated mean intensities from the original image. This operation reduces the vari-

able lighting from the image and improves the segmentation:

IACI'm, (3-16)

where I is the matrix of original image intensities and Im is the calculated matrix of mean

intensities. The resulting matrix 'AC is segmented with a threshold of 0 for each pixel.

This corresponds to choosing the threshold equal to the computed mean intensity: T(s)=s.

The mean image intensity proves to be a high threshold for chromatophore pigment gran-

ule distribution images. The black areas in the resulting image will contain little or no

background while the white areas will contain both the background and parts of the pig-

ment granule distributions. We can now isolate the regions of the original image corre-

sponding to the white areas in the segmented image and repeat the whole segmentation

procedure only on this white part of the image.

3.5.3.9 Repeated Segmentation

The regions of the image used in the second segmentation contain mostly pigment gran-

ule distribution background but they also include parts of pigment granule distributions

whose intensity is very similar to the intensity of the surrounding background. Therefore,

the result of the second segmentation usually contains some black noise pixels which do

not correspond to pigment granules in the original image. However, these pixels can be

recognized and removed if necessary. The result of the second segmentation is combined

with the result of the first segmentation to produce the resulting segmented image after

each step.
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In the second and subsequent steps, it is possible to vary the segmentation threshold. A

higher threshold will include more pigment areas in the segmented image as well as more

removable noise. Threshold values between and 0 prove to be good choices for the

fmal segmentation, where is the computed standard deviation of the image intensity in

the region that is segmented in the last step.

3.5.4 Segmentation Examples

3.5.4.1 Example 3-1

In the first example the image shown in Figure 3-14 is segmented using the procedure

described above. Figure 3-14 is a gray scale version of an original image obtained using

principal component analysis.

The image obtained after the first segmentation is shown in Figure 3-15. It is seen that

some of the pigment granule parts are missing from the segmented image.

50

100

150

200

250

300

350

400

450

Figure 3-14: Original image 1.
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Figure 3-15: Result of the first segmentation step.

Figure 3-16 shows the combined results of the first and second segmentations. Most of

the pigment granule parts are represented correctly in this image, but some background

noise is contained as well.
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Figure 3-16: Result after the second segmentation step with a low threshold (—a).
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Figures 3-17 and 3-18 show the effect of increasing the segmentation threshold in the

second segmentation. The threshold is increased in steps of a/2 from the threshold in

Figure 3-16. The figures contain much more noise. Experiments on chromatophore pig-

ment granule distribution images show that a threshold of around —a for the second seg-

mentation gives the best results.
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Figure 3-17: Result after the second segmentation step with a medium threshold (—a/2).
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Figure 3-18: Result after the second segmentation step with a high threshold (0).

A simple filter for removing isolated patches was implemented and used for improving

the segmented images. The filter is based on the idea that if the image is scanned in the

horizontal, vertical, and the two diagonal directions, we can distinguish most of the back-

ground noise from the pigment granules based on the lengths of the intersected segments.

The filtering procedure can be summarized as follows:

• Perform four scans through the image in the horizontal, vertical, and the two 45°
directions.

• In each scan remove groups of black pixels whose length is smaller than

While this simple filter cannot recognize all of the background noise, it can improve the

image significantly without the need of excessive computation. The computational com-

plexity of the filter grows linearly with the number of image pixels. Therefore it is more

practical than filters that would scan the neighborhood of each potential noise point for

connected points. Figure 3-19 shows the filtered result for the segmented image of Figure

3-16. It is seen that most of the background noise is removed from this figure.
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Figure 3-19: Final result after passing the segmented image of Figure 3-16 through
a simple filter of isolated patches.

When the same filter is applied to the noisiest image of Figure 3-18, only a part of the

noise is removed (Figure 3-20), but the resulting image still improves even the worst

segmented result. This experiment shows that noise filtering of segmented images can be

very useful.

When the above filtering process is applied to a hole sequence of images, even the results

that contain significant background noise after the segmentation, such as those of Fig-

ure 3-20, correctly capture the dynamic behavior of pigment granules as a function of

time. This is seen in Chapter 4.
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Fi8pre 3-20: Result after filtering fit noisiest segmented image of Figure 3-18.

3.5.4.2 Example 3-2

The original scale im*ge used for the second example is shown in Figure 3-21.
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Figure 3-21: Original image 2.

The image segmented using the proposed method is shown in Figure 3-22. No filtering is

required for this image since there is very little background noise in the segmented re-

suits.
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Figure 3-22: Image 2 after performing proposed segmentation without filtering.
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3.5.4.3 Example 3-3

The chromatophores in the third example, shown in Figure 3-23, are distributed non-

uniformly over the surface of the image. The image contains large areas which are

densely populated with pigment granules and areas of similar size with no visible pig-

ment granules at all.

The segmentation result for this image is show in Figure 3-24.
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Figure 3-23: Original image 3.
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Figure 3-24: Image 3 after segmentation.

The filtered result is shown in Figure 3-25.
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Figure 3-25: Segmented and filtered image 3.
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3.6 Feature Extraction of Chromatophore Pigment
Granule Distributions by Fitting an Analytical Model

3.6.1 Introduction

In this dissertation, one aim of chromatophore pigment granule distribution processing is

to extract important features from image data. Features, such as size and gray color in-

tens ity of pigment granule distribution provide a description, interpretation, or under-

standing of the chromatophore's scene and aid in the identification of the pigment gran-

ule distribution object.

Chromatophore pigment granule distributions on a particular image have similar proper-

ties. These properties are shape and intensity. The idea is to capture these dominant char-

acteristics of the chromatophore pigment granule distribution in the form of a simple ana-

lytical model. This way chromatophore pigment granule distributions are described by a

small set of coefficients. The coefficients carry information about the model at each cen-

trosome.

There are several benefits in pigment granule distribution modeling. First of all, the pig-

ment granule distribution model is much easier to work with. Secondly, the amount of

data associated with visual information is so large that its storage requires enormous stor-

age capacity. Although the capacities of several storage media are substantial, their ac-

cess speeds are usually inversely proportional to their capacity. When chromatophore

pigment granule distributions are described by small sets of coefficients, the amount of

information is reduced significantly, which helps processing speed.

Modeling can be considered a data compression technique for chromatophore pigment

granule distribution images since the number of bits required to store or transmit images

is reduced without any appreciable loss of relevant information. Furthermore, pigment

granule distributions can be recognized based on their coefficients and tracked from

frame to frame.
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3.6.2 Analytical Model of Chromatophore Pigment Granule
Distributions

Different gray level intensities on the image represent different concentrations of pigment

granules for a chromatophore (Figure 3-26). Areas of greater concentration are repre-

sented by lower intensity levels, while areas of lower concentration are represented by

higher intensity levels.

Figure 3-26: Pigment granule distribution of a single cell: (a) Intensity I(x,y); (b) l—I(x,y).

The idea of analytical modeling is to fmd an analytical function, J(x,y), which approxi-

mates the shape of the image intensity corresponding to a local pigment granule distribu-

tion. The analytical function should be relatively simple in the sense that it is described

by a small set of coefficients. For convenience, the image intensity, I(x,y), is inverted so

that the central dark area around the centrosome has a maximum value. The resulting im-

age, g(x,y)1—I(x,y), is then considered to be the image than needs to be approximated.

It is seen from Fig. 3-26 that the pigment granule distribution function g(x,y) has a bell-

like shape. This suggests that it should be possible to model it with a function of the form

where a1>O, a2>O (Figure 3-27).
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Figure 3-27: Pigment distribution function g(x,y) and its modelf(x,y).

The modeling problem consists of the following steps:

1. Find the model origin (position of the model).

2. Choose a rectangular area for fitting the model to the image.

3. Compute the coefficients al, a2 and b.

3.6.3 Pigment Granule Distribution Modeling Equations

The equations for computing the model coefficients are derived next. The starting equa-

tion is the modeling function

(3-17)

where x, y are the local coordinates of a granule distribution point with respect to the

model origin. The above function will approximate a pigment granule distribution image

locally.

The first step for fitting model (3-17) to the distribution function g(x,y) is to introduce an

error function. The approach used here is to choose the square of the difference betweenf



62

and g for the error function and to find the coefficients that minimize the error function.

This corresponds to the well known least squares approach.

The error function has the form

e(ai, a2 b) [j(xj,yj) — g(xj,yj)]2 =
+ a2y? — gi)2 (3-18)

where g(xj,yj) is the granule distribution to be fitted by the model and i indexes alt of the

points (pixels) in the fitting rectangle.

At the error minimum, the partial derivatives of the error function with respect to the co-

efficients ai, a2 and b are zero:

5e ( b I
= + a1x12+ a2y? — gi) 1 + aj Xj2+ a2yi (3-19)

I

(3-20)

aa2
(3-21)

The system of equations (3-19)--(3-21) is linear in b but it is nonlinear in aI and a2.

Therefore, it cannot be solved directly. It turns out that a simpler set of equations is ob-

tamed for 1/fl

1
1+ax2+a 2

j(x,y) = b
• (3-22)

A new error function is computed between 1IJ(x,y) and 1/g(x,y):
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1 I (1 + aix?+ a2y?
e(aj, az b)

1' g(xj,yj)1 b — (gi) 1) (3-23)

Taking the partial derivatives of the error function with respect to the coefficients gives

2(1+ (1+ ajx?+ = 0, (3-24)

f =0, (3-25)

&12 =
2

(1 + aix?+ a2y12
— (gj) 0. (3-26)

In the above system of equations, the last two are linear in ai and a2. The whole system of

equations (3-24)--(3-26) can now be solved iteratively in the following way. Multiiilica-

tion of (3-24) by b3 gives

[(1 + a2y12) — b (gj) 11(1+ ajxj2+ a2yf2) 0 (3-27)

from which

[1+ ajxl2+ a2yj2}2

I
. (3-28)

1
[1 + a1x1

I

Therefore, if the coefficients at and a2 are known, b can be computed directly us-

ing (3-28).

To calculate and a2, the system of linear equations (3-26)—(3-27) is rearranged. First

(3-26) and (3-27) are multiplied by b2 obtaining



64

[(1 + ajx?+ — b (gj) '1 =0. (3-29)

[(1+ a1x12+ a2yj2)— b (gj)1} y12 = 0. (3-30)

Equations (3-29) and (3-30) are then written in the form of a linear system for a1 and a2:

=>(b (3-31)
i I I

+ = (b — (3-32)
I i i

The iterative solution approach then proceeds as follows:

1. Choose a starting value for b (b = g(at model origin) turns out to be a good

choice).

2. Solve the linear system (3-31)-{3-32) for and a2.

3. Compute the next b using (3-28).

4. Repeat steps 2 and 3 until the change in the computed coefficients is sufficiently

small.

The procedure converges in a small number of iterations.

3.6.4 Finding the Pigment Granule Distribution Center

In order to calculate the model coefficients and also in order to recognize, select, and

track individual chromatophore pigment granule distributions in an image sequence, it is

necessary to defme and find the positions of these distributions in the image.

As explained in Chapter 1, microtubules are long and straight hollow cylinders. The

granules, which are visible in the images, are attached to microtubules, which are not
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visible. However, the pigment granuLes provide a usefiul marker for the arrangement of

microtubules in the cell. Microtubules are attached to the centrosome (MTOC). The pig-

ment granules in image sequences aggregate in the centrosome. The areas in the image

represented with low intensity levels correspond to the higher pigment granule distribu-

tion densities and consequently to the position of the centrosome. Therefore, the positions

of the centrosome can be determined by finding a minimum intensity for a certain area of

the image. However, the image intensity usually varies considerably from point to point

and contains a large number of local minima within a given chromatophore distribution

(Fig. 3-28 (c)). As a result, the position of the centrosome cannot be determined directly

from the position of the local minima. Two approaches have been tried in this work to

determine the position of the minimum:

1. Find the minimum of the mean intensity in a certain region.

2. Filter the image with a low-pass filter and then fmd the minimum.

Although the two approaches are similar to each other, approach 2 is more general and it

has proven to be more robust for practical applications.

The behavior of the intensity levels of a more complex chromatophore image is illus-

trated in Fig. 3-28. It is clear from Figures 3-28 (c) and (d) why it is much easier to fmd

the pigment distribution center on the filtered image.
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Figure 3-28: Variation of intensity I(x,y) for typical fish chromatophore: (a) original
grayscale image; (b) image filtered with 20 x 20 pixel half wave cosine
filter, fi ite r(I(x,y)); (c) surface plot of 1 — I(x,y);
(d) surface plot of 1 — filter(I(x,y)).

3.6.5 Pigment Granule Distribution Modeling Example

The approach described in Section 3.6.4 can now be used to fmd the positions of the

pigment distributions on the image while the calculation procedure from Section 3.6.3

can be used to compute the coefficient for each distribution. The result is a collection of

coefficient triplets (ai,a2,b), one for each pixel. Only the triplets corresponding to pig-

ment distribution centers (centrosomes) need to be stored. The computed coefficients can
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be used to recognize, select and track desired pigment granule distributions and to charac-

terize their behavior.

The modeling procedure is exemplified on the image shown in Fig. 3-29 (a). The position

of the calculated pigment granule distribution centers is shown on Fig. 3-29 (a) with

white dots. Figure 3-29 (b) shows an image plot of the b coefficient calculated for each

point of the image. It is seen that the b coefficient resembles a low pass filtered version of

the original image. Its value is directly related to the density of the pigment granules.

Figure 3-29: Chromatophore pigment granule distribution modeling: (a) Original image
with calculated positions of pigment distribution centers shown as white
dots; (b) Image plot of b coefficient calculated for every point of the image;
(c) Image plot of asqrt(a12+a22), (d) Image plot of b sqrt(a).
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The calculated model coefficients can be combined to extract various features from the

chromatophore image. For example, the two a coefficients can be combined into a single

coefficient using the relation

a =

a coefficient characterizes the width of the pigment granule distributions. A

large a means aggregated, isolated pigment granules. The behavior a of a for the image of

Fig. 3-29 (a) is shown in Fig. 3-29 (c).

Useful information can also be obtained by combining the a and b coefficients. A plot of

b is shown in Fig. 3-29 (d). It is seen that this combination accentuates the variation

in the granule distributions of the original chromatophore image and shows details that

were not visible in the original image.
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Chapter 4

Mathematical Model of the Signal Transduction Pathway
From the Chemical Reception Signal to the Image Sequence

4.1 Introduction

This chapter proposes a mathematical model (system model) for the behavior of fish

chromatophores. Current biological research in the area of cell pathway modeling is

extended to include the effect of chemical reactants in the pathway on the produced

visual images.

4.2 Fundamentals of Chemical Reaction Modeling

Signaling pathways inside cells represent chains of chemical reactions. An accurate and

general approach for modeling chemical reactions is to model them in terms of coupled

ordinary differential equations. These equations describe the time evolution of the

concentrations of the chemical involved: reactants, intermediaries, catalysts and products.

A wide variety of chemical reactions can be modeled this way, including cell signaling

processes. Due to the fact that relatively large systems of ordinary differential equations

can be solved using today's computers, extensive research is being done worldwide in

applying chemical reaction modeling to biological systems.

For the sake of completeness, the methodology for modeling chemical reactions using

differential equations is described here. Also, the related notation and terminology are

introduced through several simple inorganic examples.
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4.2.1 Simple Reactions

The net chemical reaction that takes place when water (H20) is formed from hydrogen

(H2) and oxygen (02) is

2H2+02—*2H20. (4-1)

The notation used to describe this reaction indicates that two molecules of hydrogen

combine with one molecule of oxygen to form two molecules of water. Any chemical

reaction can be described this way. For example, the net reaction for the formation of

nitrogen dioxide (NO2) from nitrous oxide (NO) and oxygen (02) is

2 NO +02 2 NO2. (4-2)

Another example of a chemical reaction is the decomposition of hydrogen peroxide

(H202) into water and oxygen

2H202-÷2H20+02. (4-3)

The arrow in relations (1)—(3) shows the direction of the chemical reaction. The

molecules in (I)—(3) that are to the left of the arrow are called the reactants and the

molecules on the right are the products.

In general, any chemical reaction of the type (4-1)---(4-3) that involves up to two reactants

and up to products can be written in the form

aA+bB—+cC+dD (4-4)

where the symbols A and B stand for the reactants of the reaction and the symbols C and

D stand for the products of the reaction. The constants a, b, c, and d, which indicate the

proportions in which the reactants combine and the products are formed, are called

stoichiometric coefficients. If any of the terms in (4-4) are missing from the original

reaction, its stoichiometric coefficient is set to zero.
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It is important to note that stoichiometric descriptions of reactions such as (4-4) do not

explain how a reaction takes place. They only specify the net result of the reaction. Most

chemical reactions have a mechanism involving the formation of intermediate products.

For example, the net reaction (4-2) for the formation of nitrogen dioxide actually consists

of three subreactions — all of which occur simultaneously. A believed mechanism for this

reaction is:

2 NO —* N202 (NO reacts with itself to form N202),
N202 —* 2 NO (NO is reformed from some of the N202),
N2O2 +02 —* 2 NO2 (some of the N202 reacts with 02 to form NO2).

The intermediate product of dinitrogen dioxide (N2O2) does not appear in the net

reaction (4-2), but it is involved in the mechanism of the reaction. Therefore, a detailed

mathematical model of the reaction should take the presence of N202 into account.

Nevertheless, even without the detailed representation of the intermediate product,

relation (4-2) correctly describes the net result. This possible simplification of chemical

reactions is extremely important in the modeling of biological systems where whole

sequences of yet unexplained chemical reactions can often be skipped without

significantly affecting the final result.

The generalization of (4-4) to more than two reactants or more than two products is

straightforward. One only needs to add more terms to (4-4). Also, chemical reactions are

usually reversible, i.e., they can proceed in both directions. If the reaction involves the

release of energy in one direction it will involve the absorption of energy in the opposite

direction. Reversible reactions are often represented by replacing the single arrow (—.)

with two separate arrows, one above the other, or a symbol that has arrows on both ends

(+÷). Reversible reactions really represent two different reactions with distinct

characteristics.

4.2.2 Model Variables; Units of Measurement; Notation

The chemicals involved in a chemical reaction are characterized in terms of their quantity

as a function of time. It is customary to measure the quantity of a chemical in units of



72

moles. One mote of molecules is an Avogadro's number of molecules. Avogadrots

number is approximately 6.022x1023 molecules. Concentrations of molecules in a

solution are measured in units of molarities (M). One molarity is one mole of solute per

liter of solution. For example, a 2 M aqueous solution of sodium chloride (NaC1) is a

solution consisting of two moles of NaC1 per each liter of solution. The notation [A} is

used to denote the concentration (in molarities) of a molecule A in a solution. For

example, ft4aCIJ 2 M represents a solution of NaCI who's concentration is 2 M.

4.2.3 Rates of Reactions; The Rate Law

The chemical reaction (4-4) involves the combination of a set of reactants into a set of

products. If there is no accumulation of intermediate products, the rate of change of the

concentration of a reactant is proportional to its stoichioinetric coefficient. The same is

true for the rate of change of the product concentrations. For example, the simple reaction

2A+B->C

involves the combination of two molecules of A and one molecule of B to form one

molecule of C. Because there is no accumulation of intermediate products, the

concentration of A decreases at twice the rate at which the concentration of B decreases.

Therefore, Also, the concentration of C increases at the same rate at

which the concentration of B decreases. Therefore,

In general, the following relationship holds for the simple reaction of (4-4)

45a dt dt dt d dt v(t) (-)
where v(t) is defined as the rate of the reaction. Since the stoichiometric coefficients a, b,

c, d have no units, v has units of M/time. The reaction rate v is generally not a constant,

because the reaction slows as the reactants are used up during the course of the reaction.
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Equation (4-5) represents a system of four differential equations with five unknowns, i.e.,

the number of equations is one less than the number of unknown concentrations. One

more equation is needed to make a determinate system out of (4-5). This last equation is

provided by the rate law of the chemical reaction. For the homogeneous reaction (4) with

the reaction rate of (4-5), the rate law is usually described by the equation

v(t) (4-6)

Equation (4-6) is the framework on which mathematical models of chemical reactions are

built. In this equation, the constant of proportionality, k, is called the rate constant of the

reaction, and the constants a and are called the order of the reaction with respect to the

reactants A and B, respectively. The constants k, a, and can be determined by chemical

experiments. The coefficients a and have no units of measurement and the units of k

are determined from (4-6) as time1.

4.2.4 Stoichiometric Networks; Graph Representation

Chemical reactions can be represented by mathematical graphs. The construction of these

graphs can proceed in different ways. Usually, the nodes of the graph are the chemicals

involved in the reaction while the edges of the graph depend on the reactions. The edges

are assigned the rate law while the nodes are assigned the stoichiometric constants.

Representing chemical reactions by directed graphs leads to stoichiometric networks.

While a direct application of graph theory and network theory is possible, the behavior of

the stoichiometric network is difficult to visualize from the graph. In biological systems

such as the living cell, a large number of complex chemical reactions is involved and a

simpler graphical representation is required. This simpler representation consists of the

chemicals involved and the directions of the chemical reactions. Figure 4-1 illustrates two

simple graphical representations of the reaction (4-4). While both representations are

equivalent, the second form stresses that one reactant—product pair is more important than

the second pair that can be considered as a byproduct. The more important pair is



74

indicated with a straight line. The stoichiornetric coefficients, the reaction rates, and other

information that would be contained in a shoichiometric network model are omitted from

this simpler biological representation, as in Fig. 2-7.

Figure 4-1: Two simplified graphical views of chemical reaction (4).

4.2.5 Graphical Representation of Biochemical Reactions;
Signaling Pathways

In biochemical reactions, a number of reactant compounds are transformed into a number

of product compounds. Eveiy transformation in the sequence is usually catalyzed by one

or more enzymes whose names are drawn next to the direction arrow (Fig. 4-2 (a)). A

pathway is a collection of reactions. The nature of a pathway is that adjacent bioreactions

operate on shared compounds: the main substrates that lie along the backbone of the

pathway. The reactions between the main substrates (along the pathway) are usually

symbolized by straight arrows. The unshared compounds are the side substrates, they are

drawn off to the side of each bioreaction with curved arrows showing whether particular

side substrates are reactants or products of a reaction (Fig. 4-2 (b)).

Main substrate I Main substrate 2

Enzyme
Main substrate I > Main substrate 2

Side substrate 1 Side substrate 2

(a) (b)

Figure 4-2: Graphical representation of biochemical reactions along pathways:
(a) reaction catalyzed by an enzyme; (b) main and side substrates.
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it should be noted that biochemical pathways described by the symbols of Figures 4-i

and 4-2 can also be converted into mathematical graph form. The nodes of the graph are

the main and side substrates as well as the enzymes, while the edges of the graph are the

straight lines that connect the main substrate as well as the curved lines that connect

groups of side substrates. This representation is called the pathway graph.

A large amount of research is being done in cataloging biochemical pathways inside the

cell as well as in automated ways of accessing this information and casting it into

different representations. In this chapter, recent developnients in the modeling of the fish

chromatophore signal pathway of Fig. 3-7 are extended to describe the visual behavior of

fish chromatophores.

4.3 .DQCS Database

A number of open access cellular signaling databases exist worldwide to facilitate the

exchange of biological research information. One such database is the Database of

Quantitative Cellular Signaling (DQCS), maintained by The National Center of

Biological Sciences, Banglore, India [101. DQCS is a repository of models of signaling

pathways which includes reaction schemes, concentrations, rate constants, as well as

annotations on the models. The database provides a number of search, navigation, and

comparison functions. From this database, a differential equation based model of the

AC—PKA signal transduction pathway of fish chromatophores is extracted. The model is

then extended to include the effect of the reactants on the chromatophore image

sequence.

4.4 Pathway Model

The chromatophore pathway of greatest importance for this dissertation is the Ge—AC—

PKA pathway. This pathway consists of receptor—ligand interaction, G-protein activation,
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adenylyl cyclase mediated formation of cAMP, and activation of PKA. The graphical

representation of the main components of the pathway are presented below.

4.4.1 G-protein Activation

The layout of the G-protein activation pathway is shown in Fig. 4-3.

L

G137 /
GDP.Gc43)'

R.GDP . L R.GDP GDP.Gct <,,—> GDP

L Gpy

Figure 4-3: Layout of (i-protein activation pathway.

It is assumed that GTP is present in fixed amounts, so it is left out of the explicit

equations in the mathematical model that is explained below.

4.4.2 AC Pathway

The AC pathway is shown in Fig. 4-4. Adenylyl cyclase is also known as adenylate

cyclase. There are a number of isoforms. This model includes only the canonical Gs-

stimulated activity.



Figure 4-4: Layout of AC pathway.
4.4.3 PKA Pathway

The layout of the PICA pathway is shown in Fig. 4-5.

cAMPATP

Gs.ACAC ADP
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PDE

I )PDE*

Inlhibited-PKA

PKA-inlhibitor
PKA-active

cAMP
R2C2

cAMP
cAMP.R2C2

CAMP
cAMP2.R2C2

cAMP3.R2C2
cAMP

< cAMP4 > cAMP4 R2

Figure 4-5: Layout of PICA pathway.

The complete GS—AC---PKA pathway is summarized in graphical form in Figure 4-6.
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'RGDPGS R2C2 AMP/ Li" P inhibitor I (GTPGaI i
1. (

L [L

L R... L.R.GDP.Gs ATP cAMP I
c4.R2C2 c4.R2C R2 AMP

Figure 4-6: Summary of pathway.

4.5 Mathematical Model of Pathway

A differential equation based mathematical model of the pathway shown in

the first part of Fig. 2-16 was proposed by researchers at the National Center of

Biological Sciences and it is obtainable from DQCS [10]. The model contains 27

differential equations corresponding to 27 of the 30 pathway substrates shown in the

pathway graphs of Figs. 4-3 to 4-5. The concentrations of the three remaining substrates

are assumed constant throughout the chemical reaction. These are the buffered molecules.

For the purpose of this dissertation, the initial ligand concentration is considered to be the

input of the model. Since the same model is intended to describe many different types of

chrornatophores and many different types of ligands, the input to the model is scaled

depending on the actual chromatophore and the actual ligand used.

4.5.1 Pathway Differential Equations and
Nonzero Initial Conditions

The net behavior of the pathway is described by concentrations of 30

substrates. These are the model variables. There are 27 coupled ordinary differential

equations relating the 30 pathway variables. All of the reactions are modeled by the first

order rate law. Most of the initial conditions are chosen as zero. Those initial conditions

that are nonzero are given below. All concentrations are given in and the time is in

seconds.



Initial conditions of unbuffered molecules:

1. [ACJ = 0.015

2. {cANP-PDEI = 0.5

3.. [GDP.Gabcj =1

4. [PKA-inhibitorj 0.25

5. [RI = 0.083333

6. [R2C21 = 0.5

Concentrations of buffered molecules:

1. = 1000

[ATPI = 5000

3. [LI Scaled model input.

Differential Equations:

1. d[AC}/dt = - 500[AC][GTP.GaJ +l[Gs.ACJ

2. d[cANP]/dt = - + 110[cANP3.R2C2} —

75[cAMPI[cAMP3.R2C21 + 32.5[cAMP4.R2C2] — 54{R2C2}{cAMPI +

33[cAMP.R2C21 — 54[cAMP.R2C2J [cAMPJ + 33[cAMP2.R2C2TJ —

2.5200342724661 [cAMP] [cAMP—PDEI+ 40[cAMP—PDEPDEcomplexl-
5.0400685449322 [cAMP] [cAMP_PDE*] + 80[cAMP_PDE* PDE* complex] +
18 [Gs ..ACcyclasecomplex]

3. d[cAMP-PDEI/dt = + 0.1[cAMP_PDE*] — 6[cM4P—PDE][PKA-active) +

36[PKA—active phosph—PDE complex] — 2.5200342724661 [cAMP) [cAMP—

PDE] + 50 [cAMP-PDE PDE complex]

4. d[cAMP_PDE*}/dt * 0.1[cAMP_PDE*] + 9[PKA—activephosph-
PDE complex] — 5.0400685449322{cAMPT[cAMP_PDE*1+ 100[cAMP—
PDE *PDE * complex I

5. d[cANP.R2C2J/dt = — 54[cAMP.R2C2J [cAMP] + 33[cAMP2.R2C2J
54[R2C2] [cAMP] — 33[cAMP.R2C2]

6. d[cAMP2.R2C2]/dt = — 75[cAMP2.R2C2] [cAMP) + 110[cAMP3.R2C2] +

54[cAMP.R2C21 [cAMP] — 33{cAMP2.R2C2)

7. d[cAMP3.R2C2]/dt - 75[CANP]{CAMP3.R2C2] + 32.5{cAMP4.R2C2] +

75[cAMP2.R2C2] [cAMP] - 110[cAMP3.R2C2]

8. d[cANP4.R2]/dt = + 60[cANP4.R2C] — 18[PKA—active] [cAMP4.R2]
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9. d[cAMP4.R2CJ/dt = 60[cAMP4.R2CJ + 18[PKA-activej[cAMP4.R2] +

.R2C2] — 18 [PKA—active] [cAMP4 .R2C1

10. d[cAMP4.R2C2J/dt = — 60[cAMP4.R2C21 + 18[PKA-activeUcAMP4.R2CJ +

75[cAMP][cAMP3.R2C2J —

11. d[Gbg}/dt - 6[GDP.Ga][GbgJ + 0.025[L.R.GDP.Gabc}

12. d[GDP.Ga}/dt = - 6{GDP.Ga][GbgJ + 0.066667[GTP.GaJ

13. d[GDP.Gabc]/dt = - + 0.l[L.R.GDP.Gabc} -

0.2[GDP.Gabcj[RJ + 0.1[R.GDP.Gabcj + 6[GDP.Ga)[Gbg]

14. d[Gs.ACJ/dt = +

500 1[Gs.ACJ — 0.066667[GTP.Ga} +

0. 025[L.R.GDP.Gabcl

16. d[inhibited—PKA}/dt = + 60[PKA—activej [PKA—inhibitorl —
1 {inhibited-PKAJ

17. d[L.RJ/dt = - 10[GDP.Gabc] [L.R] + 0.1{L.R.GDP.Gabc] +

0.025[L.R.GDP.Gabc] + 0.1[R)[L] — 0.1[L.R1

18. d[L.R.GDP.Gabcj/dt - 0.025{L.R.GDP.Gabcj + 5[LJ[R.GDP.Gabcl -

0.1{L.R.GDP.Gabcj + 10[GDP.Gabc][L.RJ - 0.l[L.R.GDP.Gabc}

19. d[PKA—active]/dt = — 60[PKA-active] [PKA—inhibitor} + 1[inhibited-
PKA} + 60[cANP4.R2C2} - 18[PKA-active] [cAMP4.R2C} +
- 18[PKA-activel[cAMP4.R2J — 6[cAMP-PDEJ{PKA-activej+ 45[PKA-
act lye phosph—PDE complex]

20. d[PKA—inhibitorj/dt = — 60[PtKA—activej[PKA—inhibitorj +

1 [inhibited—PKA}

21. d[R}/dt = — 0.1[RJ[L] + 0.1[L.RJ — 0.2[GDP.Gabcj[R] +

0.1{R.GDP.Gabc]

22. d[R.GDPGabc}/dt = - 5[L][R.GDP.Cabc} + 0.1[L.RGDP.Gabc] +

0.2[GDP.Gabc} [RI — 0.1{R.GDP.Gabcj

23. d[R2C2]/dt — 54[R2C2J [cAMP] + 33[cAMP.R2C2]

24. d{Gs.AC cyclasecomplex}/dt 4.5[ATPI [Gs.ACI—
90 [Ga .ACcyclasecomplexj

25. d[cAMP—PDE POE complex]/dt = 2.5200342724661 [cAMP] [cAMP-PDE]—
50 [cAMP—POE POE complex]

26. d{cAMP_PDE* PDE* complex}/dt = 5.0400685449322[cAMP][cAMP_PDE*]_
100 [cAMP_PDE* PDE* complex]

27. d[PKA-active phosph-PDE complex]/dt = 6 [cAMP-POE] [PKA-activel-
45 [PKA—activephosph—PDE complex]
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4.5.2 Pathway Response

The system of ordinary differential equations describing the pathway can

be readily integrated to yield the response of all the pathway substrate concentrations. For

the purpose of illustrating the pathway behavior, three example responses are given. The

initial ligand concentration is used as the input to the model. It is normalized with respect

to a reference ligand concentration L0 = 1 pM. This reference ligand concentration

corresponds to a very small value below which the model is typically not used. The time

responses of two substrate concentrations (cAMP and Active PKA) that are positioned

near the output of the pathway is shown in Figures 4-7 to 4-9.

-— [cAMPIIIOO
0.9-

j

0.8

0.7L :

2 -

=
C /

0 2 4 6 8 10 12

t js]

Figure 4-7: Pathway model response for input ligand concentration i05 L0.

It is seen from Figures 4-7 to 4-9 that the main effect of the change in the input ligand

concentration is in the change of the time constants of the response curves. Higher ligand

concentrations result in faster responses. Also, for high ligand concentrations, large

changes of the ligand produce small changes in the time constants. At low ligand

concentrations, the time constants are more sensitive to the relative change in the ligand

concentration. It is also seen that the PKA curves lag the cAMP curves indicating that the

change of PKA concentration is a consequence of the change in the cAMP concentration.
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Figure 4-8: Pathway model response for input ligand concentration of 102 L0.
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Figure 4-9: Pathway model response for input ligand concentration of L0.

The input ligand concentrations in Figures 4-7 to 4-9 were chosen on purpose to cover a

large range of concentrations. The actual input ligand concentrations used in the models

of the following sections fall in the range bounded by Figures 4-8 and 4-9.
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4.6 Link Between Pathway and Visual Image

The differential equation based model gives the concentrations of the various substrates

as a function of time for a given input ligand concentration. The next step in the modeling

of fish chromatophores is to link the chemical concentrations to the obtained visual

image. This link is established based on a physical model of pigment granule motion

along the microtubules.

It is believed that the pigment granules are carried along the microtubules by two motor

protein families: kinesins and dyneins. However, the exact chemical reactions linking the

kinesins and dyneins to the pathway are unknown to this date. Instead of

trying to build the missing link from the pathway to the kinesins and

dyneins, a link based on active PKA is proposed in this dissertation. There are two

reasons for the choice of active PKA as the link to the granule motion: (1) its response to

an input ligand lags the response of cAMP which is known to be linked to pigment

motion, i.e., it is further along the pathway; (2) numerical experiments on measured

image sequences performed for this work show that the simplest and the best model is

obtained when active PKA is used as the link to granule motion. Active PKA is therefore

used to form the output from the chemical reaction pathway model.

The differential equations for the Gs—AC—PKA pathway model the dispersion of pigment

granules. In reality, pigment granules can either aggregate or disperse with the

application of a ligand, depending on which receptor the ligand binds to. In order to

model aggregation with the dispersion model, it is necessary to the model output.

For aggregation, the model output is taken to be

— [PKA-active](t) (4-7)

where [PKA-active](tp is the final concentration of active PKA at saturation.
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4.6.1 Model of Pigment Granule Motion: Average Cell Approach

It is believed that the motion of pigment granules occurs primarily along the

microtubules. Microtubules generally stretch outwards from the centrosome forming

curved lines. Although the exact shape of the pigment granule distribution varies from

cell to cell, for modeling purposes it is reasonable to assume that the pigment granule

distribution has a regular shape. This is equivalent to modeling an average cell in large

collection of individually varying cells. Since there is no preferred direction in the

average cell, it is also assumed that the granule distribution of the average chromatophore

is of circular shape and that the microtubules are straight radial lines. The model of the

pigment granule distribution for the average cell is shown in Fig. 4-10 (a) together with a

few selected pigment granules. The pigment granules that are shown in Fig. 10 (a) and

(b) are the outermost granules which define the outer boarder of the visible pigment

distribution.

After a time At, the pigment granules shown in Fig. 4-10 (a) will move radially towards

the center by a distance v(t) At along the microtubules, where v(t) is the speed of motion

of a pigment granule at the time t. The position of the new pigment boarder is shown in

Fig. 4-10 (b).

Figure 4-10: Model of average pigment granule distribution with selected pigment
granules marking the outer border of the visible pigment distribution:
(a) at the time t, (b) at t+At.
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Assuming that the colored region of the average chromatophore is a circle or radius r(t), a

relationship between the area, A(t), of the colored circle and the speed v(t) can be derived.

The area of the circle is

A(t) = r(t)2 = (r(0) - f v(t) dt )2 (4-8)

where r(0) is the radius at the start time t = 0. The speed v(t) is taken to be positive when

the pigment granule is moving towards the center. If the initial radius of the pigment

distribution, r(0), is expressed in terms of the initial area, A(O), (4-8) becomes

A(t) = — fv(t) dt )2 (4-9)

The next step is to determine the relationship between the speed of the granules and the

concentration of the chemical that directly or indirectly causes the motion along the

microtubule. As a first approximation the speed of granule motion in the radial direction

is assumed proportional to the output concentration from the differential equation model,

v(t) = k u(t). (4-10)

where k is the unknown proportionality constant and u(t) is either

u(t) = [PKA-active}(t). (4-11)

for chromatophores and ligands that result in pigment dispersion with time or

u(t) = — [PKA-active](t) (4-12)

for the case of pigment aggregation with time.

Equations (4-9), (4-10) and (4-11) or (4-12), together with the 27 differential equations

for the chemical concentrations, complete the model. Only three constants remain to be
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determined from experimental data on a given type of chromatophore: (1) the initial

pigmented area, A(0), of (4-9); (2) the proportionality constant k of (4-10) and (3) the

input ligand proportionality constant that multiplies [LI in the differential equations of the

pathway. The first one of these unknown coefficients represents the initial condition of

the model while the remaining two coefficients are the model parameters. Determining

the two unknown model parameters for a given type of chromatophore and for a given

ligand represents the calibration of the model.

4.6.1.1 Model Initial Conditions

The unknown model coefficients are determined from an experimentally obtained

calibration image sequence in the following way. First, the average initial pigmented area

needs to be determined from the first image of the sequence. This is the initial condition

for the model. The average pigmented area for a cell can be determined by computing the

total pigmented area and dividing by the total number of cells on the image. However,

since the average pigmented area is just proportional to the total area, the model can also

be formulated in terms of the total area. This way there is no need to fmd the number of

cells on the image. The total pigmented area, A(0), is now computed by segmenting the

images using the techniques described in the previous chapter.

4.6.1.2 Model Calibration

Once the initial pigmented area, A(0), is determined using segmentation, the remaining

two coefficients are computed iteratively from the following two conditions:

1. The fmal area, predicted by the model must match the total pigmented

area on the last image of the calibration sequence.

2. Given the above requirement, the least square error between the predicted area

and the actual pigmented area on the calibration sequence should be minimal.

The first requirement gives the coefficient k in terms of the first and last areas in the

calibration sequence as
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(4-13)
tF!NAL

5 u(r) dt
0

The input ligand proportionality constant can then be determined by iterating between

(4-13) and requirement 2.

4.6.2 Modeling Example 4-1: Average Cell Approach

The modeling approach described in Section 4.6.1 is validated on a chromatophore image

sequence consisting of 150 images. The images were taken at intervals of 4 seconds for a

total duration of 10 minutes. Clonidine was used as the input ligand. It was applied in a

concentration of 5 jtM (initial concentration). The first, middle and last images from the

150 image sequence are shown in Figs. 4-11 to 4-13.

Figure 4-11: First image in 150 image sequence of Example 4-1.
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Figure 4-12: Middle image in 150 image sequence of Example 4-1.

Figure 4-13: Last image in 150 image sequence of Example 4-1.

The 150 images were converted to grayscale and segmented using the approach described

in Chapter 3. The total colored area of each image was calculated from segmented

experimental data. This area corresponds to the curve labeled "From Measurement" in

Fig. 4-14. The results obtained by the modeling approach described in Section 4.6.1 are
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also shown in Fig. 4-14. The agreement between measured and simulated results is

remarkably good considering the simplicity of the physical model and the fact that only

two model parameters were calculated from measured data.

1.1

80.8

t [s]

Figure 4-14: Area of pigment granules from pathway model and from measurement.

Since the pigment granules in the experiment aggregate with time, (4-12) was used for

the pathway output, u(t), in (4-10). The chemical response of the signaling pathway

corresponding to the model of this experiment is illustrated in Fig. 4-15. Several

chemicals near the output of the pathway are shown.
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Figure 4-15: Pathway substrate response for Example 4-1.

4.6.3 Model of Pigment Granule Motion: Individual Cell Approach

In the previous chapter, chromatophore pigment granule distributions of each cell were

modeled by fitting bell-like surfaces to the chromatophore image. This individual cell

modeling approach is now linked to the signaling pathway. The end result is a system

model for an individual cell from the input ligand to the mathematical surface describing

the pigment distribution.

Starting from a particular cell, a surface j(x,y) of the form

J(x,y)
1 + a! + a2y2

(4-14)

is assigned to the cell using the methods of Chapter 3. The coefficients al and a2 in the

denominator of (4-14) are related to the width of the pigment distribution and they

change with time. The width of the distribution (4-14) in one direction, e.g., the y

direction, can be determined by integratingf(x,y) from —cc to cc:



b I' du
I(x)

7z Jc(x)+u2
u=—oD

/

J(O)= fflOo?) dy
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1' ( dy
jJ(x,y)dy = b

j c(x)+a2y2

b b ( b?t
= C(X) c(x) Lao

(4-15)

where c(x) = 1 + al x2. The area of (4-15) is maximal for x = 0. Introducing the effective

width of the curve j(0,x) as the width of the rectangle whose area is equal to 1(0)

(Fig. 4-16) gives

Weff — (446)

(o,y)

Figure 4-16: Defmition of effective width off(Oy).

The effective half-width of (4-14) is linked to the signaling pathway using ideas similar

to the average cell approach of the previous sections. Due to the motion of the pigment

granule the effective half-width will change with time according to the relation

Weii(t)/2 = Weff(O)/2 — 5 v(t) dr, (4-17)
0
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where v(t) is the speed of granule motion towards the distribution center. Using (4-16) for

the effective width in (4-17) leads to

1 1
— fv(t)dt. (4-18)

Assuming that the motion of the granules towards the distribution center is proportional

to the output reactant concentration u(t) according to v(t) u(t), gives

1 1
— (4-19)

where is the unknown constant of proportionality. A similar relationship holds for the

granule motion in the x direction:

I I
— u(t) dt. (4-20)

In general, and can be different. However, the model calibration is simplified

significantly if the two coefficients ai and a2 are combined into one coefficient, a,

according to

a(t) = iJai(t)2 + a2(t)2. (4-2 1)

Equations (4-19) and (4-20) can now be replaced by one equation containing a single

unknown coefficient k:

— (4-22)

Equation (4-22) can be used together with the differential equations of the signaling

pathway to form a complete input—output model of the system. The resulting model is
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calibrated in a similar maimer as in the average cell approach. First, the initial coefficient

a(Q) is computed from the first image in the sequence. This determines the initial

condition for the model. Next, the remaining two unknown coefficients, k and the input

ligand proportionality constant, are determined from the requirements:

1. The final a coefficient predicted by the system model, agrees with the

corresponding coefficient calculated from the last image in the calibration

sequence.

2. The difference between the predicted a coefficient and a(t) computed from the

calibration sequence is minimal in the least square sense.

The first of these requirements gives k as

tFJNAL (- )

5 u(t) dr
0

Equation (4-23) is used iteratively together with requirement 2 to find the ligand

proportionality constant that gives the best model.

4.6.4 Modeling Example 4-2: Individual Cell Approach

The approach described in the previous section has been validated on the image sequence

of Example 4-1. Figures 4-17 to 4-19 show a small area around a selected cell from the

image sequence of Example 4-1. The locations of the distribution center that was found

using the methods described in Chapter 4-1 are shown as white dots on the figure. The

image sequence was first low-pass filtered with a 20 x 20 pixel two dimensional

convolution filter in the shape of a half wave cosine function. It was then processed to

fmd the model coefficients.
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Figure 4-17: Image for calibrating individual cell model (t = 0 s).
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Figure 4-18: Image for calibrating individual cell model (t 59 s).
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Figure 4-19: Image for calibrating individual cell model (t = 103 s).
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Figure 4-20: Comparison of model widths predicted by pathway model (system model)
and computed directly from the image sequence (measured).

Figure 4-20 compares the a coefficient predicted by the system model with the

corresponding coefficient calculated directly from the image sequence. It is seen that the

agreement is better at later times than near the initial time. This is related to the fact that
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the rectangle used to compute the a coefficient does not vary with time. Its size is much

smaller than optimal initially and becomes optimal near the middle of the simulation. It is

likely that the model prediction could be improved using time varying rectangles in the

computation of model coefficients.

4.6.5 Average Cell Modeling Approach Applied to Single Cell

The average cell modeling approach described in Section 4.6.1 makes use of the total

pigmented area for constructing the system model. As such it is very general, and it

works on image sequences which contain only one pigment granule distribution. To

illustrate this, the method is applied to the image sequence of Figures 4-17 to 4-19. A

comparison between the time evolution of pigmented areas predicted by the system level

model and extracted directly from the image sequence is shown in Fig. 4-21.
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Figure 4-21: Comparison of pigmented areas predicted by pathway model (system
model) and computed directly from the image sequence (measured).
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Chapter 5

Conclusion

In this dissertation, a link between the biological aspect of chromatophores and digital

image/video processing techniques developed for sequences of chromatophore

microscope images has been established. The link makes it possible to model the

complete chromatophore signal transduction pathway which is believed to be involved in

pigment granule motion. Two system level models have been developed. Both models

begin with the input ligand and end in extracted image features. The two models differ in

the type of features extracted and in their applicability. While the first model predicts

areas of arbitrary groups of pigment distributions, the second model treats individual

pigment distributions and predicts coefficients of an analytical function. The whole

modeling process makes use of image and video processing algorithms which have been

adapted or developed for this purpose. To the best of the author's knowledge, this is the

first full chromatophore motion—image feature system level mode!

of this type.

The proposed model has the following possibilities:

• It can be used in both directions:

• The type and concentration of the applied ligand can be determined based on the

aggregation or dispersion of pigment granules.

• The time evolution of the chromatophore pigment granule areas can be

predicted for a given initial ligand concentration.
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• Since the model includes detailed information about the concentrations of

intermediary substances, it is also possible to predict their concentration from known

microscope images.

• The model is determined by only two coefficients. Therefore, it significantly

compresses the information needed to describe a particular ligand—chromatophore

pair.

• Since the model is determined by only two coefficients, it is practical to build lookup

tables of models for a given type of ligand and a given type of chromatophore.

It is the author's belief that the developed model has important potential applications. The

applications include:

• Development of intelligent biosensors capable of recognizing the type of applied

chemical and its concentration based on easily obtainable low resolution cell images.

• Development of experiments that will lead to a better understanding of the Gs—AC—

PKA—granule motion pathway in chromatophores and other cells.

All of the above areas represent opportunities for further study and refinement of the

model.

Additional items for future exploration and research include:

• Mathematical reduction of the model's system of differential equations.

• Error estimation for principle component analysis.

• Investigation of the robustness of segmentation.

• Local motion estimation for non-integer movement of small objects.

• The effect of noise on the motion vectors estimates.

• Develop other relationships between cell biology and image/video processing.



• Electromagnetic biosensors (lower frequency of EM waves than visible light).

• Research the effect of brain cells in the control of cell organelle movement.
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