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Abstract In this paper we discuss the application of a range of techniques to the

verification of mission-critical flight software at NASA’s Jet Propulsion Laboratory.

For this type of application we want to achieve a higher level of confidence than can

be achieved through standard software testing. Unfortunately, given the current state

of the art, especially when efforts are constrained by the tight deadlines and resource

limitations of a flight project, it is not feasible to produce a rigorous formal proof of

correctness of even a well-specified stand-alone module such as a file system (much less

more tightly coupled or difficult-to-specify modules). This means that we must look for

a practical alternative in the area between traditional testing and proof, as we attempt

to optimize rigor and coverage. The approaches we describe here are based on testing,

model checking, constraint-solving, monitoring, and finite-state machine learning, in

addition to static code analysis. The results we have obtained in the domain of file sys-

tems are encouraging, and suggest that for more complex properties of programs with

complex data structures, it is possibly more beneficial to use constraint solvers to guide

and analyze execution (i.e., as in testing, even if performed by a model checking tool)

than to translate the program and property into a set of constraints, as in abstraction-

based and bounded model checkers. Our experience with non-file-system flight software

modules shows that methods even further removed from traditional static formal meth-

ods can be assisted by formal approaches, yet readily adopted by test engineers and

software developers, even as the key problem shifts from test generation and selection

to test evaluation.
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1 Introduction

1.1 Background: Spacecraft File Systems

In January of 2004, the Jet Propulsion Laboratory, NASA, and the world celebrated

the landing of Spirit, the first of two Mars Exploration Rovers. The science mission

that motivated the engineering triumph was interrupted 18 Martian days later (on “Sol

18”) when Spirit abruptly stopped communicating with Earth [101]. Over the next few

days, Spirit occasionally resumed contact with JPL, but these brief sessions were often

mysteriously cut short. JPL’s software and fault protection team used the pattern of

communication attempts and limited telemetry to trace the problems to a cycle of

reboots. Spirit was encountering fatal errors either during or just after initialization.

On Sol 21, the JPL team commanded the craft (now running low on battery power,

after failing to properly shut down for each Martian night) to go into “crippled” mode,

operating without access to the flash file system.

The reboots were due to an unexpected interaction between the flash file system

and the core flight software: the file system allocated memory at boot time based on

the number of files on the flash storage, including deleted files. Files left over from

landing and new science and engineering data generated during the 18 sols of normal

operation required more memory than was available on the rover, a fatal fault resulting

in a reboot. After recovering as much data as possible, the JPL team re-formatted the

flash device, and Spirit returned to its scientific mission. The full story, presented in

detail in an IEEE Aerospace paper by Reeves and Neilson [101] is a classic example of

software detective work, high-stakes debugging of a system over 55 million kilometers

away.

The Spirit anomaly was not, strictly speaking, due to a bug in either the rover’s

flight software or the file system specifically: both behaved as described, but (due

to limited testing) the implications of combined behavior were not well understood.

However, the Spirit experience and other—less public—bugs or problems with file

systems convinced JPL’s flight software engineers that commercial flash file systems

were not ideal for mission critical use. This was a significant problem, given that in

recent missions, JPL has increasingly relied on flash memory devices [106] to store

critical data: flash uses little power or mass and has a high information density, making

it ideal for space mission use. For convenience and flexibility, most of this data has been

stored in hierarchical file systems. The data stored is often irreplaceable (e.g., landing

telemetry or images of impact with a comet taken by the craft ejecting the crashing

probe), so it is essential that flash file systems provide high reliability for space missions.

A NAND1 flash device consists of a set of blocks, divided into smaller units called

pages; the number of pages per block (and number of blocks) vary from device to

device. The basic operations on a NAND device are: write a page, read a page, and

erase a block. Once a page has been written, it may be read any number of times. In

general it is impossible or unwise to write to a page once it has been written to, until it

has been erased, but pages must be erased at the block granularity. Flash file systems

must therefore manage invalid and outdated pages and perform garbage collection,

rather than rely on overwriting old data. The combined requirements of managing

pages, ensuring reasonable wear-leveling of page writes (each block has a limited life

1 NAND flash is named for the use of the logical NAND operation, as opposed to the NOR
operation used in other flash systems.
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cycle), preserving atomic operation across hardware resets, and responding to hardware

failures requires a fairly complex implementation. Verifying that an implementation

meets these requirements is highly non-trivial.

The Laboratory for Reliable Software (LaRS) [6] took on the task of building an in-

house flash file system with static memory allocation and rigorously tested reliability

across system resets and flash hardware failures. LaRS has also proposed a verified

(flash) file system as a mini-challenge [79] in response to Hoare’s grand challenge of a

verifying compiler [71].

1.2 Contributions

In previous papers [14,53,56,59,60,76–78] we have described the more technical aspects

of our approach to file system development and verification, and the research results

inspired by this effort. In this work, we primarily focus on an overview from a more

practical point of view: why did we select certain verification and testing approaches,

and how well did the various approaches work? What factors appeared to drive effec-

tiveness, and what future directions seem most promising for increasing our confidence

in flight software reliability and correctness? We hope that in addition to providing

other researchers insight into the current applicability of state-of-the-art techniques to

critical software projects, this paper may also provide software practitioners with an

understanding of how novel techniques emerging from the research community can be

integrated into an overall assurance strategy for non-trivial development efforts. This

paper expands on a detailed case study presented at the International Workshop on

Constraints in Formal Verification in 2008 [57], placing the efforts in the context of the

Mars Science Laboratory (MSL) [7] mission’s larger-scale testing efforts and including

further details of each approach we took. We also introduce a consideration of how

to test the tester, in order to evaluate the condition of the test framework itself, as

a prelude to suggesting a broad methodology for similar test efforts. Finally, various

(more engineering-side) details omitted from research papers appear here, which may

interest many readers. What we describe in this paper is an on-going effort: we are

still testing file systems for the Mars Science Laboratory (Curiosity Rover) mission

[7], which successfully landed on Mars on August 6th, 2012, and has operated suc-

cessfully to the date at which we write this introduction (December 2nd, 2013). This

paper discusses precursors to our current testing efforts, which are a refinement of the

approaches discussed below. The bulk of this paper describes our efforts up until the

temporary down-scaling of test efforts for MSL after the delay of launch from 2009 to

2011, with some discussion of work after that point.

1.3 Proof, Analysis, and Testing

We can divide our efforts into three broad classes: proof, analysis, and testing. By

proof we mean the effort to use mathematical reasoning to formally prove the de-

sign and implementation of our system correct. We expect that proof may involve a

significant manual effort, assisted by automated checkers. Analysis refers to a more

automated effort to reason, usually about more limited properties of the design and

implementation. We expect that analysis may be less precise than proof in that static

analysis tools typically return some false positives, errors related to infeasible program
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paths. We also include efforts at more complete symbolic model checking under anal-

ysis. Finally, in this paper testing refers to dynamic exploration of program behavior,

including explicit-state model checking, which can be thought of as systematic testing

with program state backtracking and a memory for visited states. We use testing to

refer to all of our verification efforts that involve actually running the program.

1.3.1 Proof

In an ideal world, we would have first proved a high-level design (data structures

and algorithms described in mathematical terms rather than low-level programming

constructs) of a file system correct, and then proved that our implementation faithfully

instantiated that correct design in C code. In practice, a full refinement-based proof

from the ground up proved impossible given our resource limitations, time constraints,

and shifting requirements and hardware behavior.

We attempted to prove correctness of key parts of the file system design using the

ACL2 theorem prover [48]. ACL2 is a powerful first-order theorem prover that can be

used for complex proofs of recursive datatypes (such as we have in the file system)

[2,80]. However, it is not a fully automatic prover, and requires considerable manual

guidance. We spent around three months on a design-level proof, at the end of which

we were able to show partial correctness of the function to create a directory. In all,

this resulted in proving over 230 theorems in ACL2 (comprising just over 3200 lines of

ACL2 input).

The main challenges encountered in the proof were that (a) many of the theorems

required generalization, and finding this generalization was often nontrivial, and (b)

proving that the file system always remained acyclic turned out to be difficult. One

problem was that the file system design was not layered in a way that was suitable for

proof. As a result, we needed to add auxiliary variables to various functions to help the

prover in finding a suitable well-founded metric to show termination. This motivated

us to reorganize the file system design so as to make such proofs easier in the future.

These efforts to use ACL2 to prove an initial design correct influenced later designs

but never amounted to a basis for confidence in the system. Additionally, connecting

the proof artifacts to the flight software implementation would have been a challenge

even given a good design-level proof (though, given that ACL2 designs are executable

LISP code, we might have performed differential testing as a partial, non-proof-based

response to this problem).

Ongoing research projects at various laboratories (e.g., work at NICTA [86]) aim

at making user-aided proof a more realistic possibility in more resource-constrained

development situations (even with changing specifications) such as ours.

1.3.2 Analysis

As readers would expect, we routinely apply the usual array of static analysis tools to

our code, including Coverity [9], Klocwork [10], Code Sonar [4], Uno [72], and some

hand-made checkers implemented in the CIL framework [95]. In addition to the checks

traditionally performed by static analysis tools, we have attempted to statically show

that code satisfies certain coding guidelines, such as containing only constant-bounded

loops [74]. As a baseline for good code, and as the earliest and likely most cost-effective

method for catching basic coding errors, static analysis tools are indispensable. The
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properties checked by traditional static analysis are unfortunately quite limited. Estab-

lishing reliable data storage across system resets requires much more than the absence

of null pointer dereferences; it requires functional correctness. We also attempted to

use a bounded model checker [26] and model checkers that abstract a model from

source code on portions of the source code. In our experience, these tools, while the-

oretically capable of providing automated verification for richer properties, did not

scale to either our code or our properties. We consider these tools to provide analysis

rather than proof, as they apply to a particular implementation and may only hold for

one configuration (size of flash volume, etc.). Moreover, the properties considered are

generally far less ambitious than full functional correctness, or equivalence to a mathe-

matical reference model. In practice, we obtained useful results only when considering

bounded executions of our implementation, rather than even limited property proof

over a particular concrete implementation.

A related approach, in the space between analysis and full proof, is to use a lan-

guage aimed at the integration of proof/verification and software implementation, e.g.

SPARK [3], and prove at least some simple properties (for example, that certain ex-

ceptions cannot be produced during execution) with support from the implementation

language and its development tools. In many cases, including ours, integration with,

or inheritance from, an existing code base in another language, or available developer

talent in an organization, makes this approach impossible. We could not have devel-

oped file systems for the MSL mission in SPARK; the mission software is exclusively

C or C++ code.

1.3.3 Testing

The realities of a flight software development schedule did not prevent us from ag-

gressively applying other state-of-the-art verification technologies, including random

testing [65], model checking [37], and constraint-based testing and model checking.

None of these technologies, at least as we are using them, are capable of fully verifying

a file system’s correctness, even in a bounded sense, or under “nominal usage” restric-

tions. Our goal is to concentrate on decreasing risk and increasing (justified) confidence

in the reliability of the systems, with respect to full functional correctness: in other

words, our goals are those of any effective testing effort. Rather than limit analysis to

simple properties for which more complete and automated methods might apply, we

have concentrated on aggressive testing of file system operation: this paper describes a

bug hunt, using the best technologies we know of for this purpose. This paper concen-

trates on the dynamic aspects of our efforts to find errors in the file system. We use

both model checking and constraint-solving not as exhaustive heavyweight alternatives

to testing, but as aids to effective testing by program execution. Complete verification

of the file system’s correctness does not seem to be possible using current technology,

without effort beyond our means. Automated testing (in some cases via model check-

ing) has revealed hundreds of errors, including very subtle faults that would almost

certainly have escaped code inspection or traditional testing. Proof-of-correctness re-

mains beyond our power, given resource and time limitations, at this point, but our

experience shows that automated methods for finding errors in programs (including

static analysis tools, though these are not the focus of this paper) have attained a

promising maturity.

We next provide a high-level definition of each of the approaches we will be dis-

cussing in more detail:
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Table 1 Methods and their results when applied by LaRS at JPL to file systems.

Method
Module Proof Static Rand BLAST MAGIC CBMC SPIN Splat

NVFS1 P/F S S F F F — —
NVFS2 P/F S S F F F P —
NVDS P/F S S F F F S P/S
RAMFS — S S F F P S —
XFS — — S — — — — —
NVFS(MSL) P/F S S — — — S —
NVDS(MSL) P/F S S — — — S P/S
RAMFS(MSL) — S S — — — S —
RAMFS2 — — — — — — S —

- = Did not attempt to apply
S = Successful application (bugs discovered or properties proved)
F = Failed application, due to scalability limitations or bugs in the tool
P = Partial success: very limited results or application to small fragment of code
P/F = Partial success on design, failure for implementation-level
P/S = Partial success for full volume as input; success with operation sequence input

– Random Testing: In random testing, operations and parameters for a test are

generated randomly. The random choices may be biased and depend on past history,

but there is no attempt to systematically exclude already-visited program states or

reach particular states.

– Model Checking (Model-Driven Verification): Model checking [37] is a sys-

tematic method for exploring a system’s state space, in order to verify properties of

the system (or produce an error trace if a desired property does not hold). Because

the size of real-world state spaces makes full exploration impossible, model checking

usually relies on either a symbolic representation of states (based on SAT or BDDs),

an abstraction of the state space, or both of these methods. Model-driven verifi-

cation [75] is an explicit-state model checking method in which a model checker

acts as a test harness, choosing operations and parameters for calls to a program.

The model checker tracks (some portion of) the state vector and backtracks when

exploration reaches an already-visited state.

– Directed Testing: Directed testing [52] combines constraint-solving and random

testing in order to systematically explore all paths through a program (and thus

execute all branches). An initial path is generated randomly, and a constraint-solver

is used to repeatedly find inputs to guide the program through new paths.

– Monitoring and Learning: In monitoring, a program execution is compared

with a specification, to see if it violates any desired properties. Monitoring may be

indifferent as to how the execution is produced (and thus combined with one of the

above testing techniques). An additional application of monitoring is to learn the

behavior of a system, rather than enforce desired behavior. In this case a model

(typically some type of automaton) is generalized from several executions of the

system that exhibit desired behavior.

What we describe in this paper is an on-going effort: we are still testing file systems

for the Mars Science Laboratory mission. We have tested three different implementa-

tions of a POSIX-like (Portable Operating System Interface [for Unix]) [8] flash file

system with hierarchical directory structure, one non-POSIX flash file system with hi-



7

erarchical directory structure, three POSIX-like RAM file systems, and two low-level

flash storage systems (essentially implementing an array with desirable atomic-write

properties and bad-block management on flash storage). POSIX is a standard interface

for file storage systems, providing a specification of behaviors for common file system

functionality such as open, close, read, and write operations. For the purposes of this

paper, the primary features of these systems are twofold. First, these systems feature a

fairly complicated API with rich behavior in the case of the POSIX-like systems. Addi-

tionally, even the considerably less complex API and less rich behavior of the low-level

systems results in an unexplorably large state-space.

Table 1 shows a summary of the methods applied, file storage systems tested, and

the experienced utility of the method in each case. NVFS is the name for all JPL

POSIX-like flash file systems. NVFS1 and NVFS2 are two independently coded ver-

sions for a multi-mission software platform (MSAP). NVDS is the name for all JPL

low-level flash storage modules (not providing a hierarchical POSIX-like file system).

XFS is a contractor-developed flash file system (with a non-POSIX interface) used in a

planetary mission managed by JPL. RAMFS is the name for all JPL POSIX-like RAM

file systems. MSL denotes module versions to be included in the Mars Science Labo-

ratory flight software. Proof and static analysis were not applicable to XFS as we did

not have access to design, requirements, or source code. RAMFS2 is a JPL-developed

reference file system, not implemented for flight use. These test efforts overlapped, but

the order shown in the table is roughly chronological.

Of course, these results may not be typical: we describe our experience, with one

particular set of modules, with these approaches. We also report on preliminary efforts

to apply more formal specification, learning of specifications, and monitoring to other

aspects of MSL flight software. The fine details of both the code and the application

of the tools or methods are specific to our circumstances. Our research interests, our

expectations, and our initial experiences also influenced the effort given to each ap-

proach: in some cases, success may have been a product of greater effort, and in other

cases limited success or failure may have partly been due to limited resource alloca-

tion. Every software testing effort is a resource-use optimization problem with limited

information as to costs and rewards.

1.4 Related Work

The general literature of software verification, program proof, and particularly that of

software testing [23,12] is too well-known and extensive to be addressed here, but has

obviously influenced our efforts at complete proof and effective testing. More automated

verification of file systems and flash devices is a popular topic in the recent literature.

Yang et al. have used model checking [113] and symbolic execution-based [112,111]

approaches successfully on Linux file systems. Some of this work uses CMC [94], a

model checker that, like SPIN, directly executes C programs. Kim et al. focus on

lower-level verification of flash device drivers, but with considerable overlap in the

kinds of behavior being verified [84,81,82]; for example, they have shown that heavy

use of assumptions may make a bounded model-checking approach with CBMC [87]

more feasible than we have come to expect.

Random or stochastic testing dates to the early days of computer programming

[65], and has occasionally been endorsed as competitive with partition testing [45,64].

McKeeman noted that random testing was highly effective for fault detection when
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combined with a powerful differential reference oracle [90]. Miller et al. employed a form

of random testing to crash system utilities [92]. Recently, the merits of random testing

have been more widely acknowledged [66], resulting in a large emerging body of work on

sophisticated random testing tools [41,15,13,36,35,114] and key factors in the success

or failure of random testing efforts [88,44]. Random testing often performs better than

even approaches using sophisticated machine learning techniques to generate tests,

when the time to generate each test is taken into account [54].

The earliest model checking algorithms [38] were applied to software, but it is, again,

only in recent years that software model checking has emerged as a practically effective

method [37]. The blurring of the distinction between model checking (exhaustive, using

temporal logic) and testing (partial, typically employing assertions [39] and differential

methods) has been a major theme of recent work in this field [69,24]. Godefroid’s

Verisoft anticipated this concept of a more dynamic and testing view of model checking,

where code is actually executed (in place of a model extracted from code) [50]. Java

PathFinder 2 [108], Bandera [40], Bogor [102], and CMC [94] typically preserved the

possibility of exhaustive model checking, but enabled an approach more focused on

bug-finding than full verification. Mercer and Jones showed that even machine code

could be model checked using GDB [91]. Visser et al. implemented BET and random

testing methods in the JPF2 model checker in order to compare testing approaches,

making it particularly clear that explicit-state model checking was a form of software

testing [109]. Qadeer and Rehof’s context-bounded approach has applied the insights

of bounded exhaustive testing to model checking concurrent systems [100], and served

(with more traditional BMC) as an inspiration for some of our approaches to downwards

scalability, a testing approach in which resources are limited to achieve “exhaustive”

checks over smaller models. Dwyer et al. proposed exploitation of parallel searches

similar to that in the swarm method [77] we employ [46]2.

Beginning with DART [52] testing researchers have explored numerous variations

of a methodology combining constraint-solving with random testing [31,103,30,110].

In this work, an initial random execution is followed by tests guided by constraint-

solving, with the goal of exploring new paths. The term “concolic” is used to describe

this work, which uses concrete values from the previous execution whenever constraints

produced by symbolic execution are too difficult for a constraint solver to handle.

Recent approaches have focused on controlling the path explosion problem [51,28],

analogous to the state-explosion problem faced in model-checking. The reader will

find further references to tools and approaches of particular relevance to our methods

throughout the remainder of the paper.

There has also been substantial recent progress in the effort to generate complete

correctness proofs of complex implementations written in the C language. A group

at the Australian Information and Communications Technology Centre of Excellence

(NICTA) proved correctness of the seL4 microkernel, consisting of around 8700 lines

of C, by showing that it refines an abstract specification [86,105]. Their approach

involved writing an executable specification in Haskell and proving that the C code was

a refinement of the Haskell specification, using the prover Isabelle/HOL [96]. Another

ongoing project is the effort to prove correctness of the Microsoft Hyper-V hypervisor

[5], which consists of over 60,000 lines of concurrent, highly-optimized, C code. The

project has developed a verifier (VCC) for concurrent C [11], which uses the automatic

2 Swarm replaces a single model checking run with multiple runs using search diversity to
explore more of an essentially infinite state space.
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prover Z3 [42] to discharge proof obligations generated automatically from the source

code. Further progress in this area might make it feasible to considerably extend the

proof component of efforts such as that described in this paper.

1.5 Outline

We first present our three primary approaches to testing: random testing (Section 2),

model checking (Section 3), and directed testing (Section 4). We briefly discuss a more

speculative approach that combines constraint-solving and model checking (Section 5).

In order to place our file system work in a larger context, we discuss the problem of

testing the integrated MSL flight software, rather than a component in isolation; in

particular, we briefly take a look at how, for larger scope test efforts, the problem

of specification and test evaluation has tended to overshadow the question of which

tests to execute (Section 6). We finally discuss the problem of a faulty test framework

(Section 7), and propose a possible methodology for practitioners meeting challenges

similar to those we face in the file system efforts (Section 8).

2 Random Testing

Once the LaRS development team produced a minimal running version of a flash file

system, the dedicated test engineer developed a random testing [65] system, using a

differential comparison [90] with a Linux file system as a test oracle [56]. One of the

great challenges of automated testing is the oracle problem: how do we know what

the results of an automatically generated test should be, without human inspection,

in the absence of a complete formal specification? Differential testing avoids the oracle

problem by performing all operations on (at least) two different systems that are sup-

posed to satisfy the same (often informal or unknown) specification, and comparing

the results. If the systems diverge in behavior for any inputs, it can be assumed that

a flaw in at least one of the systems has been detected. Differential testing requires no

complicated evaluation of temporal logic formulas, and can be implemented (usually as

a simple set of assertions over outputs) just as easily for explicit-state model checking

as for random testing. Differential testing is applicable to systems with slightly differ-

ent specifications, so long as the intended differences are known and can be handled

by an interface layer.

Figure 1 shows the core of the differential test approach we used, which remains

(with minor alterations) the heart of our file system testing process (for both random

testing and model checking) to this day. Again, the key point is that differential testing

compares the results from performing the same operation on two systems with differing

implementations. In the case of a file system, we compare the return values of function

calls, the error codes set, and the actual resulting file systems (using the “query”

functions such as readdir and stat). Faults (shown in square brackets because a fault

is not injected for every operation) are only injected for the tested system, and require

a specification of correct behavior with respect to a fault-free system. For file systems,

this specification is often an atomicity model: no operation completes partially; when

a reset or other fault arises, the observable file system state must either be unaltered

or consistent with completion of the operation. Invariant checking, e.g. to ensure that

directory structures are never cyclic, is an additional non-differential aspect of testing.
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file systems

Check
invariants

tested system
Apply to

reference
Apply to

Choose POSIX
operation

[Inject a fault]

Compare
return values

Fig. 1 Differential testing process: comparing two similar systems is a particularly effective
test oracle approach for file systems.

In principle, most faults detected by checking invariants of the tested file system will

eventually be exposed by differential testing, but it is always best for debugging to find

errors as early as possible, and invariant checks often reveal faults many operational

steps before differential outcomes appear.

We chose differential random testing over differential model checking initially be-

cause we assumed (correctly, at the time) that the difficulties of engineering a model

checking harness and backtracking the state of the file system and the reference file

system would significantly delay the start of testing. As we discuss below, some of these

engineering difficulties have been addressed by our work on automatic code instrumen-

tation, leaving random testing preferable for our applications only when backtracking

the reference system is particularly difficult or when testing must be performed on a

system with very limited memory. Although Hamlet [66] argues that “only random

testing will do” in cases of large structured input domains and persistent state, we be-

lieve that, when it can be applied, model-driven verification (see below) is likely to be

at least as effective. Indeed, Hamlet himself does not argue that “only random testing

will do” when compared with bounded exhaustive testing 3.

3 A possible exception may be in cases where there is a need to randomly explore inputs
with very large ranges (i.e., drawn from the full set of 32-bit integers) [60].
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full random?

n

y
pick length n
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n components? n

y
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return chosen path

Tune P(full random) to
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operations with ability to
catch unlikely faults

Note that no operation should
ever succeed on a path that
can’t be produced from history
plus one extra component

/
/alpha
/alpha/beta
/gamma
/delta/delta
/gamma/beta
…

/delta/delta/alpha

2

/beta

/beta/alpha

Fig. 2 Feedback approach for path name selection based on file system history: dice and coin
flips indicate random selection of numeric/boolean values.

We expected random testing to quickly expose many shallow bugs, especially POSIX

error code conformance problems. We also expected that detecting most of the more

subtle errors in the design would require more sophisticated approaches, such as model

checking. Random testing proved surprisingly effective for both purposes, exposing

dozens of subtle errors arising only in very low probability states, and producing a

very compact, high-coverage, regression suite (composed of the 200+ minimized failing

test cases for the full fault set found during testing) [56]. The errors detected included a

checksum collision resulting from a warm-reboot taking place at the vulnerable point in

a block memcpy, bad block information lost due to very complex sequences of writes and

reboots, and numerous errors resulting from very low probability interactions between

the rename operation and write failures. The sheer number of tests generated allowed

us to find even very low probability events. Executing a million tests overnight ensures

that software errors exposed in only one out of a million tests will almost certainly be

found in a few nights of testing; it is only when error propagation is so constrained

as to occur in only one in a billion or fewer tests that random testing becomes less

effective.

2.1 Keys to Successful Random Testing

We attribute this surprising to us success to several factors. First, we avoided the

primary difficulty of random testing and other automated testing approaches, the test

oracle problem. Differential testing, when possible, makes it easy to concentrate effort

on choosing executions to run, rather than determining if those executions are correct.

Second, we used feedback [56,98] to reduce the number of redundant and irrelevant

operations randomly generated. In feedback, a weak model of system state is used to
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bias test operation and parameter selection, with the goal of reducing the high rate of

invalid or redundant operations that random testing can produce (i.e., deleting files that

do not exist, creating the same file over and over, accessing closed file descriptors). An

example of using feedback is to limit pathname choices to the set of pathnames provided

as arguments to successful mkdir or creat operations (a set that would initially contain

only the root path /), with the possibility of adding one additional random pathname

component (Figure 2). E.g., if the history set of created paths was {/, /a, /b}, path

choices would include the members of the set plus /c, /d, /a/a, /a/b, and so forth (any

of which might result in another successful mkdir or creat), but not /a/b/c or /c/a—

where a prefix of the path did not exist. The restriction is based on the observation

that if the file system is correct, no POSIX operation can ever succeed on a path that

is not of this form (with a prefix taken from a previous successful operation). We would

not remove paths from the history when they are deleted from the file system, as the

“resurrection” of dead files is a common fault, so we would prefer frequent attempts to

access those files. Of course, we cannot assume that our system is correct, but feedback

biases the testing toward errors that seem plausible. Informally, we can argue that a

bug that causes the file system to incorrectly allow an operation on a pathname with a

completely invalid prefix would require very peculiar pathname processing code (e.g.,

some kind of embedded special case for certain path fragments).

Finally, all of our testing and model checking relies on an early emphasis on design

for testability [99,56]. Testing code with many invariants and assertions and the ability

to operate on unrealistically small configurations (making corner cases the common

cases) is much easier than testing code without such observability and flexibility. The

preference for testable, predictable, behavior continued to guide design choices in all

of the file system work that followed our initial efforts.

2.2 Lessons Learned in Random Testing

Because random testing was only intended to be a stopgap measure, the first version

of the test framework was hastily implemented and lacked a coherent architecture. We

re-designed and implemented the system as part of a black box acceptance testing

effort (at mission request) for a file system developed by an outside contractor. The

improvement in adaptability and ease of debugging test code suggested that the cost

of a slight delay in initial testing would have been wise to accept in order to improve

the rest of the testing experience. It is, of course, conventional wisdom to “build one

to throw away” [29], as it is difficult to know how best to build a system without

experience with a prototype, but the temptation to dive into test code without any

effort to make it maintainable is a serious threat to effective testing.

In particular, we found that making the language in which test cases were stored

human-readable made it much easier to debug the system and the test harness. We also

implemented a simple mechanism for automatically producing stand-alone C test cases,

consisting of a main function initializing the system and calling all operations involved

in the failure. This mechanism simplified communication with the non-JPL developer

of the file system being tested in that effort, and improved confidence that erroneous

behaviors were not an artifact of the test generation process. The triviality of producing

stand-alone executable test cases independent of any framework or abstraction is a very

useful feature of more dynamic verification approaches. The mechanism for generating

stand-alone test cases may be as simple as printing the literal C code that executes,
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For this version of the file system, very short tests produced very few failures, but increasing test
length to more than 200-300 operations also significantly decreased test effectiveness.

Fig. 3 Failure detection, early versions of NVFS: how failures/operation changes with maxi-
mum test length, for 1,000,000 test operations.

with constants in place of variables, for all operations and assertions needed by the test.

Such code can be easily inserted in a standard boilerplate body that handles system

initialization.

We additionally discovered that the length of each random test is a significant factor

in the effectiveness of the testing [14], with a change in maximum test length in many

cases resulting in a one or two orders-of-magnitude change in the number of failing

test cases produced per test operation. The probability of a fault manifesting from

any operation is not independent of the number of operations previously performed,

nor is it always monotonically increasing; consider the case of a bug that relies on no

other code initializing an uninitialized variable. That is, given a fixed test budget of

operations, B, performing B
k1

tests of length k1 can, in real systems, produce 10 or
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more times as many failures as performing B
k2

(6= k1) tests of length k2 (e.g., as in

Figure 3). The optimal length for tests varied as the software matured, suggesting an

experimental, iterative approach to test length selection.

Our experiences also confirmed the importance of minimizing [115] randomly pro-

duced test cases before debugging [88]. In general, we found that understanding and

debugging non-minimized random tests was not an effective use of developer time, while

debugging minimized tests in our setting was easy enough that we did not require any

kind of bug triage or fuzzer taming [34] system. The only such effort needed was to

add the requirement to the delta-debugging loop that the final POSIX operation of

any reduced version of the test case be the same as in the original test case (otherwise

certain “ubiquitous” bugs embedded in all test cases tended to obscure more interest-

ing faults, in some cases). One test case for each failing operation was provided to the

developer.

Minimization became much less important when we switched to model checking

as our primary test method, as test cases were generally much shorter and irrelevant

operations were typically more obvious upon inspection.

3 Model Checking

3.1 Bounded and Abstraction-Based Model Checking

We hoped to use model checking to fully verify certain critical components of the file

system. We have considerable experience with bounded model checking and abstraction-

based model checking, including contributions to the implementation of some better-

known tools for checking C code [87,32]. We selected a very small (50 line) function

with no dependence on the larger code base as a case study: if the more ambitious

tools proved unable to handle such a small and self-contained fragment of critical code,

we would limit our investment of time in a perhaps doomed effort. The function in

question, given a string, canonizes the string as a pathname by removing extraneous

“/” and “.” characters and returns an error code if any illegal characters appear in the

string or if it exceeds the maximum path length. To our surprise, the abstraction-based

tools, including BLAST [70] and MAGIC [32] either failed to extract a model from the

code or failed to find a proof or a counterexample.

A bounded model checker for software checks a program for correctness by pro-

ducing a SAT (or SMT) formula that is satisfiable only by a bounded-length trace

demonstrating that the program does not satisfy a given property. If the formula is un-

satisfiable, the program cannot produce an execution of the given length that violates

the property. The CBMC bounded model checker [87] was able to verify the important

properties of the canonizer up to a maximum path length of 6 characters (the length

controls the number of executions of each loop in the code). We attempted to increase

the bound, but CBMC timed out (after 24 hours or more) for larger bounds, with a

variety of SAT solvers, including ZChaff, limmat, and MiniSAT [93,25,47]. We made

limited efforts to apply BLAST and CBMC to other code fragments, but in general

found that the tools did not scale to the file system code, and that slicing the code to

push it through the tools was an unrewarding effort. The success of various groups in

applying similar research tools to low-level device driver software [17] suggests that our

problems with more complete model checking may arise from the heavy use of more
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complex data structures in the file system: even involved manipulation of strings seems

to pose a challenge for the abstraction-based tools.

Perhaps with assistance from the tool authors we might have been able to handle

the canonizer function, but the turnaround for such a process is often impractical,

especially for flight code where export-control concerns are also a factor. That is, with

current abstraction-based tools, it seems to be the case that obtaining good results

without the ability to actually share source code with tool authors is at best unlikely;

this is not unexpected in an emerging research area, but makes practical exploitation

of these methods very difficult. In general, most available abstraction based tools have

been developed and applied by research teams, rather than production teams, with

a resulting emphasis on producing results for publication on a limited set of known

benchmarks, rather than an emphasis on reliability over a wide range of program

targets. The Microsoft SLAM project’s eventual transformation into a tool (the Static

Driver Verifier [1]) for driver developers suggests that technology transfer is possible

with sufficient resources, but perhaps only as part of an institutional effort, not as a

testing activity of an individual project in an organization. The contrast between the

abstraction tools and static source code analyzers is interesting: in general, the static

analysis tools work on a much larger range of programs, and require configuration of

far fewer highly esoteric parameters in order to produce acceptable results. In part

this is due to differences in the underlying technologies (e.g., the abstraction tools

are more ambitious in terms of properties checked), but we believe that the eventual

emergence of a commercial market, and the origin of source code analysis tools in

“developer-driven” utilities rather than academic and industrial research also explains

the difference in usability.

3.2 Model Checking via Program Execution: Model-Driven Verification with SPIN

In a sense, most of our model checking efforts are closer to aggressive systematic testing

with backtracking than to traditional model checking. We actually execute implemen-

tation code, rather than building a model or abstracting a model from source code,

and we do not expect to explore the entire state space of the system. This model-driven

verification approach [75] is based on two observations: (1) for critical applications, it

is essential to test actual implementation code and not just design models, and (2)

as noted above, for most real programs, complete verification of rich properties is not

possible with current complete model checking technologies.

Model-driven verification with SPIN [73] relies on the fact that SPIN is a model-

checker generator. Given a model written in the PROMELA language, the SPIN tool

generates a customized explicit-state model checker written in C. In model-driven ver-

ification, PROMELA is extended to allow embedded fragments of pure C code, which

are executed during transitions of the model. The PROMELA model (now essentially

a test harness for a C program, see Figure 4) includes information on the memory

locations of the state of the C program, enabling SPIN to backtrack the running C

program. The PROMELA harness resembles a C program for selecting test operations

and checking that results match expectations, but provides explicit syntax for nonde-

terministic selection (e.g., the if / :: / fi construct), improving the readability of

the test definition. Using the specialized model construction language of SPIN makes

the structure of the test itself clear, while the infrastructure for random choice selec-

tion, systematic exploration, test case storage and replay, etc., in C or Python often
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:: choice == UNLINK -> /* unlink */
pick(pathindex, NUM PATHS); /* Choose a path */
c code { enter nvfs(); /* Allow memory access to NVFS region */

now.res = nvfs unlink (path[now.pathindex]);
now.nvfs errno = errno;
leave(); /* Disallow memory access */ };

check reset(); /* Check for system reset and reinitialize/mount NVFS if needed */
if
:: (res < 0) && (nvfs errno == ENOSPC) -> /* If there was an out-of-space error */

check space();
:: ((!did reset) || (res != -1)) && !((res < 0) && (nvfs errno == ENOSPC)) ->

c code{ enter ramfs(); /* Allow memory access to RAMFS region */
now.ramfs res = ramfs unlink (path[now.pathindex]);
now.ramfs errno = errno;
leave(); /* Disallow memory access */ }

:: else -> skip
fi;
...
assert (res == ramfs res);
assert (nvfs errno == ramfs errno);

Fig. 4 Simplified PROMELA code for file system testing: note mix of C calls with nondeter-
ministic choice operations in PROMELA (::).

Fig. 5 Using SPIN to model check a program, with CIL annotation to integrate dynamic
analyses into model checking via source instrumentation.

obscures the test process. The model checker runs the C program, providing inputs and

choosing function calls as dictated by the nondeterminism expressed in the PROMELA

test harness. When the model checker reaches a state that has been previously visited,

it backtracks both the harness and the C program.

We used model-driven verification to check the pathname canonizer discussed above.

After introducing a relatively obvious abstraction (limiting characters in the strings to

the set of special characters tested for in the code, plus one valid component character),

we were able to verify the properties of interest for a much larger depth than with the

bounded model checker CBMC.

We next applied SPIN to a low-level flash storage module we were developing for

flight use in storing critical engineering parameters. We expected this to be easier than

using SPIN for a full POSIX file system, as writing a backtrackable C reference was a

trivial exercise, and all parameters were small integers, rather than complex pathnames.

To our surprise, model checking revealed only one interesting error, a complex space

usage problem, that had not been detected by random testing.

In order to apply model checking to the full flash file system, we developed a suite

of engineering tools for debugging test harness backtracking and checking properties

inside C code [59]. Essentially, this approach relies on using automatic code instru-

mentation via CIL [95] to automate memory safety checks and overcome the primary

limitations of model-driven verification for sequential software (Figure 5). CIL, the C
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Intermediate Language, supports instrumentation and static analysis for C programs,

after transformation to an unambiguous canonical form. The CIL instrumentation aug-

ments the C program we are model checking with automatically inserted function calls

that both support features of general utility—such as checking memory safety and cor-

rectness of model-checker backtracking, supporting novel heuristic search approaches,

etc.—and features more specific to flight software, such as the simulation of software

resets during operation.

This tool set improved the ease of model-driven verification (by greatly reducing

the time spent debugging backtracking) so much that we found it more convenient

to work only with model checking, rather than building both a model checker and a

random tester [60]. For the MSL project, all our file system testing has been based

on model-driven verification with SPIN. This has forced us to abandon the use of

a Linux file system as a reference, due to the difficulty of backtracking. We instead

compare the POSIX flash file system NVFS to both the RAM file system RAMFS

and an independently developed RAM file system. In the case of comparison with

the other MSL file system, an advantage is that both systems are required to present

identical interfaces, including error codes, making any divergence an important error.

The second case, comparing to an independently developed file system, with a slightly

different interface, serves as a guard against missing errors common to both NVFS

and RAMFS. Of course, a more thoroughly tested and widely-used file system would

serve as a better differential basis, but the alterations we have made to POSIX in order

to suit spacecraft usage forced our original random tester to complicate test code in

order to translate errors and call parameters into standard POSIX terms. Moreover,

backtracking the state of most widely used file systems is a non-trivial problem.

Model checking has been quite effective at finding subtle flaws in the file system, as

expected. Complete verification, on the other hand, even for very small flash configura-

tions, has proven impossible: week long runs on a 32-GB machine have confirmed that

even after unsound abstraction, there are (at minimum) trillions of reachable states in

the system. Finding bugs is possible; proving that there are no bugs via complete state

space exploration is not.

This has forced us to move away from pure model checking, in the direction of

extensive testing. For instance, in order to deal with the large range of possible pa-

rameters to function calls, we use feedback [56] just as in our random testing. We also

make heavy use of unsound abstractions [59]. In model-driven verification we typically

apply abstraction by computing an abstract state a(c) from each concrete state c, and

considering a state to be visited if we have seen the abstract state before. The goal,

as with many abstraction approaches, is to choose an abstraction such that if we visit

every reachable abstract state (every possible valuation of a(c) where c is a reachable

concrete state), and show that the properties of interest hold for these states, we know

the property holds for the concrete system. In order to guarantee that we visit every

reachable abstract state, the abstraction function and state-space structure together

must satisfy a critical requirement:

Soundness: An abstraction function a is sound iff:

∀c1, c2 : (a(c1) = a(c2)) ⇒ ∀c3 : (T (c1, c3) ⇒ ∃c4 : T (c2, c4) ∧ a(c3) = a(c4))
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c1 c2

c3 c4

a1

a2 a3

Either c3 or c4 will never be explored,
which may cause us to miss a2 or a3.

Fig. 6 An example of an unsound abstraction.

where T (c1, c2) means that there is a transition from state c1 to c2. We require that if

two concrete states have the same abstraction, then for each successor of the first state

there must exist a successor of the second state with the same abstract value. Why?

Recall that explicit-state model checking is typically a depth-first search. Abstraction,

then, simply increases the set of states for which a DFS visited-check will succeed,

causing the search to backtrack. If two concrete states have the same abstraction but

successors with different abstractions, we will visit either c1 or c2 first (as the graph

transitions may be explored in any order), and thus backtrack when we visit the other

(as the abstract states will match), without visiting one of c3 or c4, which may be

the only way to reach the abstract state a(c3) or a(c4). Figure 6 shows an example of

this problem. Assuming c3 and c4 are the only concrete states for a2 and a3, we are

guaranteed to miss at least one reachable abstract state here.

Unfortunately, abstractions satisfying this requirement, in the case of the file sys-

tems, either fail to reduce the state space sufficiently or do not relate well to any inter-

esting properties (e.g., the abstraction where a(c) is a constant function is “sound” in

this sense but useless for verification purposes). In part this is because the file system

has surprisingly little symmetry: without going into design details, we simply note that

pages on flash are ordered, and that the contents of invalidated pages remain poten-

tially relevant until erased4. We therefore rely on unsound abstractions, with the result

that even if SPIN’s search terminates, we may not have visited all reachable abstract

states. This is an acceptable trade-off, especially given that in many cases the search

does not terminate after days of computation, even after aggressive abstraction; recall

that the system has more than 1012 states, even for a very small configuration. The key

point is that an unsafe abstraction acts less as traditional model checking abstraction

4 We do make use of one trivial abstraction that we believe to be sound, the assumption
that the precise characters and lengths of path components are irrelevant.
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Fig. 7 Coverage for model checking and random testing compared.

guaranteeing a verification result over a smaller state space, and more as a combination

of search heuristic and coverage criteria for testing.

We have also come to rely on a diversified search approach, rather than monolithic

model checking runs. While a SPIN run using bitstate hashing and a large memory

array may run for many hours before detecting an error, we find that a series of

independent runs with different orderings for nondeterministic choices and different

search strategies (depth boundings, etc.) will often reveal the same error in a matter of

seconds [77,76,78]. Experiments show that 1 hour (10 minutes on a 6-core machine) of

swarm exploration produces better branch and path coverage (by more than a factor of

two, in the case of path coverage) than 12 hours of sequential SPIN exploration of the

same model [53]. This search strategy further moves us in the direction of aggressive

systematic testing, and to a large extent makes the soundness of abstractions an even

less relevant factor in our verification.

3.3 Model Checking and Random Testing in One Framework

In recent versions of the test harness, we have integrated model checking and random

testing [60]. We use a macro call for all nondeterminism in the SPIN model checking

harness, and compile the model for either model checking or true random testing. This

lets us compare the testing effectiveness of (1) a systematic exploration with backtrack-

ing and (2) a series of random walks. The results of such a comparison are not obvious

when the state space is far too large to fully explore, either deterministically model

checking with backtracking or in a stochastic fashion. Both approaches to exploring

the behavior of a program may leave a large portion of the state space unexplored. The
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essential question for each program is whether systematic bias limits the effectiveness

of model checking more than redundancy limits random testing.

Our experiments so far indicate that random testing is generally less effective at

covering both source code and file system states than explicit-state model checking, if

more than about an hour of compute time is available for testing. That is, in cases where

test time is very limited, random testing may be more effective than model checking,

but we can find no instances in which, given at least an hour to test, random testing

outperforms model checking in any aspect of coverage or fault detection. Figure 7 shows

a comparison of random testing and model checking, using the same framework and

probabilities for choices (recall that the model checking is incomplete) [60]. The first

two measures indicate statement coverage over modules of the flash file system, while

the third shows coverage of an abstraction of the flash device state (the file system types

of pages stored on the flash device). The graph shows how coverage increases as time

for testing increases. Naturally, more time for exploration produces better coverage.

In one source-code coverage case, random testing and model checking both attain

maximum coverage quickly. Coverage of a lower-level (and more state-based) module

is initially better for random testing, but model checking begins to improve on those

results at around the 50 minute mark and thereafter remains superior. The difference

in statement coverage is probably a good predictor of a fundamental difference in

fault detection effectiveness, as branch and statement coverage are known to predict

mutation detection fairly effectively [49].

The effectiveness of model checking for coverage is best shown, however, by the

abstract state coverage. In this case, abstract state coverage is particularly useful, as

the low-level block and page management of the system should be equivalent for all

concrete states represented by the same abstract state (higher level behavior, such as

file and directory structure, will not be equivalent). We can therefore consider good

coverage of the abstraction as a sign that this aspect of the file system’s behavior

(low-level flash management) is well tested. Model checking covers 100 percent of the

states that we know to be reachable, while random testing never visits more than

65 percent of those states, even after three hours of performing random walk. We

cannot guarantee that model checking achieves truly exhaustive coverage, as we are

unable to perform complete model checking for this system, with this abstraction, but

the final results match what the design predicts: that is, coverage of the unreached

abstract states would violate an intended invariant of the implementation. In general,

we suspect that model checking needs a certain “ramp-up” time to obtain net benefit

from the overhead of state storage, while random testing faces no such initial cost

to overcome. The hour cutoff is, of course, an artifact of our particular benchmarks,

processor speed, and other empirical accidents, but indicates an expected general trend

of “fast vs. thorough” methods, which will be further discussed shortly, in the context

of our last major testing approach, directed testing.

The difference between random testing and model checking becomes even more

clear if we change our approach from a single depth-first search to a swarm verification.

A swarm run explores 240,166 unique program paths during a 10 minute run (using

6 cores), while the same swarm execution using random testing mode only explores

43,128 unique program paths [53]. With the more efficient swarm verification, the

“ramp up” time is collapsed (in part due to search diversity, in part because we make

use of multiple cores to perform “an hour of exploration” in 10 minutes).
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int f (int x, int y) {
...
if (hash(x) == y)

ERROR;
...
return 0;

}

Fig. 8 A “needle in a haystack” motivating example for directed testing.

4 Directed Testing via Constraint-Solving

A fundamental criticism of random testing is that it is difficult to find “needles in

the haystack.” When a branch is guarded by specific input values, the chances of

randomly selecting those values (and thus exploring the branch) are often very low.

Hand-tuning the ranges of random choice can address this problem in some cases,

but reduces test automation, is susceptible to tester bias, and scales poorly. Moreover,

when the guard depends on other inputs, or when various guards obligate different

random bias functions, hand-tuning may be essentially impossible. One solution is to

use symbolic execution and a constraint solver to produce inputs that satisfy guards

[85]. Unfortunately, this approach is limited to the rare cases in which all expressions in

guards are suitable for constraint solving. In particular, pointer dereferences, operating-

system calls, hash value computations, and other “difficult” expressions tend to defeat

the constraint solver and thus the symbolic execution engine. Consider Figure 8, where

x and y are derived from program inputs. On the one hand, randomly producing inputs

such that the hash value of x is y is extremely unlikely, unless the input generation is

manually altered to include such a case. On the other hand, using a constraint solver

to solve for x and y is unlikely to work, unless the hash function is unusually weak 5.

Directed random testing combines random testing with symbolic execution to avoid

this problem [52]. Expressions that cannot be handled symbolically are reduced to

concrete values (taken from a particular execution) before calling a constraint solver.

Symbolically solving for y, given the concrete value of hash(x), however, may be easy.

The “static” symbolic evaluation is assisted by the results of dynamic execution.

Recent work in directed testing has shown that path enumeration with a fixed sized

input is effective in uncovering bugs and exploring branches that are extremely unlikely

to be found with pure random testing [52,103,31]. Each element of the fixed sized input

is represented by a symbolic value. The input is symbolically executed as the program is

run. At each branch, the predicate representing whether the branch is been taken or not

is noted. The conjunction of these predicates over the symbolic input (called the path

constraint) represents a unique path within the program. To generate a new unique

path, one predicate in the path constraint is negated. The solution to the modified

path constraint, generated by a constraint solver (after replacing any unmanageable

expressions with their concrete values), yields a new input that will follow a different

path. Repeating this procedure over all possible branch points results in enumeration

of all paths. Of course, the exponential cost of such a procedure is problematic, and

approaches based on procedure summaries or directed search for new branch coverage

first have attempted to mitigate this cost [51,28].

5 We have actually experimented with using CBMC to solve for hash collisions for checksums,
but find that the computational expense is too high for repeated use during testing.
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We applied the directed testing tool Splat [110] to the pathname canonizer, and

observed much better scalability than with the bounded model checker CBMC. Of

course, the results are not directly comparable: CBMC explores all possible executions

(including data values) up to a bounded depth of loop unrollings, while Splat explores

all control flow paths (with the limit defined by the size of symbolic inputs). In the case

of the canonizer, we hypothesize that complete path coverage without error essentially

guarantees correctness of the code. As with CBMC, we must choose some maximum

input size before applying the tool (as otherwise there are an infinite number of po-

tential program paths). For the CBMC input limit of 6 characters, Splat requires only

2 seconds to generate 137 paths. Increasing the maximum path size (equivalent to the

loop bound in this case) to 12 characters, Splat needs a little over an hour to generate

36,857 paths.

We also applied Splat to NVDS, the low-level storage module of the file system.

Initially, influenced by the successful experiments performed with EXE on Linux file-

systems [31], we defined the input as a 504 byte buffer that represented the smallest

formattable flash memory: 3 blocks of 3 pages per block with 56 bytes per page. This

504 byte buffer was used to enumerate paths in the mount function followed by a write

operation. Splat generated 79,548 “flash volumes” over a period of 13 days, on a 2.8-GHz

P4 with 1 GB of RAM. However, none of these disks were mountable: although many

paths leading to a failure in the mount function were explored, the write operation was

never called (the test harness only writes if the volume successfully mounts). We were

facing a problem analogous to the state space explosion problem in model checking: a

path explosion problem. The number of ways to fail to mount a flash volume effectively

hid the few paths leading to a successful mount and the possibility of a write, a different

kind of needle in a haystack, resulting from simple combinatorics (there are more invalid

volumes than valid volumes).

Why the large number of paths? Consider the structure of a flash volume, as the

file system reads in pages during the mount operation. Each permutation of pages (de-

pending on page type, version number, and status) may create a different path through

the mount operation. For as few as 24 pages, given the ordering of version numbers and

other distinctions, the number of paths becomes extremely large, especially considering

the high overhead per path produced, due to solving complex constraints. Of course,

any new path might reveal an unknown error, but we were not finding new bugs or

improving on the coverage results. We didn’t even improve path coverage, since most

paths produced were also produced easily by random testing or model checking. We

investigated a number of approaches to path abstraction or pruning, but the various

algorithms proposed resulted in the loss of many of the benefits of aiming at complete

path coverage. At this point, we reconsidered our definition of the test input. Rather

than generating volumes, we generated operations (as in random testing and model

checking) and applied them to a fixed initialized volume.

This second attempt to apply directed testing was much more successful, and re-

vealed previously undetected arithmetic overflow bugs in the read and write oper-

ations. The much smaller input buffer now represented parameters to three write

operations and a read operation that followed a mount of a freshly formatted volume.

Splat quickly generated an input that caused a buffer overrun due to an arithmetic

overflow in bounds checking. After these arithmetic overflow bugs were fixed, all paths

were generated within an hour. The overflow bugs were not detected by model checking

or random testing. In both cases, we had limited the range of inputs to “reasonable”

choices, based on the maximum file size for the flash volume, maximum buffer sizes,
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and other (we thought) safe constraints. Simply adding an additional choice, rather

than enlarging the range, would not have sufficed to find the error: the buffer overrun

required the values to overflow into a specific range (where x + y overflows, yet results

in a value that is smaller than the size of the file). Obviously extending the range

of inputs to the full 32-bit values would result in very low probability of performing

any interesting operations (or finding the overflow) for random testing, and create a

prohibitive number of successor states for SPIN to explore in model checking.

Unfortunately, after revealing this difficult-to-find error (later discovered in various

other systems, after we knew the pattern of parameter-checking to look for), directed

testing with a small operation set revealed no new errors undetected by model checking

or random testing. Increasing the number of operations rapidly increased the time

before completion without an equivalent increase in code or abstract state coverage.

In general, we expect that the efficiency, in terms of new states/paths per second

for directed testing will be much worse than that for pure random testing or model

checking, due to the high overhead of constraint-solver calls. The key to effective use of

directed testing would seem to be a focus on the ability to “close the gaps” by finding

precisely those “needles-in-the-haystack” that other methods miss. In this instance, we

independently applied directed testing, largely duplicating previous efforts, but with a

critical payoff in terms of one error.

One promising approach is to explicitly integrate directed testing with a more gen-

erally efficient method [89]. In general, we note that the three primary testing methods

we used differ, perhaps most importantly, in terms of the balance between short-term

efficiency and long-term thoroughness. A testing method must pay a price, in overhead,

to store the information or perform the computation to ensure that, over the long run,

it will cover a system’s behavior well. Random testing produces new paths very effi-

ciently, and exposes high probability faults with ease, but pays a price in redundant

and irrelevant activity over longer test periods, and lacks any non-probabilistic guar-

antees of coverage. Explicit-state model checking pays a penalty for state storage and

backtracking, but quickly outpaces random testing in terms of paths or coverage when

longer test runs are feasible. Directed testing pays a very high price in overhead, but

is the only method that will find certain paths and certain faults. In future work, we

plan to make use of the faster methods to obtain solid basic path and branch coverage,

then analyze the test cases stored and use directed testing to complete coverage.

5 Work in Progress: Using a Constraint Solver to Select an Initial State

We are now experimenting with an alternative use for constraint solvers in testing:

using a constraint solver to find an initial state for the system, and then starting

model checking (or random testing) from that initial state. Rather than relying on

path coverage to produce a large set of starting flash volumes (with the attendant

difficulties noted above), we intend to rely on developer/tester definition of interesting

starting states, e.g., “states in which the flash volume is almost full” or “states in

which there are two bad blocks with valid data”6. The key motivation is to begin

model checking from deep states that may not be easily reached during the depth-first

search, even with search diversification. Ideally, constraints define system states that

6 A block may be bad in the sense that writes to it are not reliable, but correctly written
information may still be read.
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are both hard to reach and likely to be near (as measured in the number of operations

that must be applied) to states exposing a fault in the file system.

The novelty of the approach is that our constraints are defined by executable C

code, including a rep ok function to determine if a volume embeds a valid file system

and a series of abstraction functions that take a concrete volume and produce an

abstraction. We use CBMC [87] (and a SAT solver, called by CBMC) as our “constraint

solving” engine. The advantage of this approach is that a developer can write invariant-

checking functions and abstract coverage functions, then use these functions to guide

model checking. The approach allows us to stage generation of concrete states. We

can use CBMC to find an abstract state matching a specification, then use faster,

more scalable hand-coded generators to produce random concretizations of the abstract

state. For example, CBMC may only determine the type of each flash page, and a second

tool may populate pages with random bytes. In general, for smaller flash configurations

this staging is not required, but checking for resource-limit based errors may require

larger flash volumes than CBMC can directly handle.

Our current implementation of this constraint-based approach works within a SPIN

test harness for the file system: the harness calls CBMC to generate an initial flash

configuration, embedding a specified structure of files and directories (we have modified

CBMC to produce counterexamples as executable C code fragments that assign values

to variables).

Unfortunately, evaluating the utility of this method has proven difficult, as it is

not a fully automated approach. The value of the initial states lies in the skill of the

developer or tester in finding deep corner cases that are not easily generated by model

checking or random testing.

6 Testing, Monitoring, and Learning

Testing requires two equally important efforts: (1) generating inputs that produce

executions showing interesting program behavior, and (2) determining whether the

executions produced conform to expectations. The first problem was the topic of pre-

vious sections on random testing, model checking, and constraint-directed testing. We

now turn to the second effort, often referred to as the oracle problem: the challenge

is to produce an oracle that, for a given input, monitors and determines whether a

given execution is correct. In previous sections the oracle problem was solved by us-

ing differential testing where executions of the system under test are compared with

executions for the same input of an alternative, more trusted system. Testing the file

system posed no significant oracle problem, thanks to the existence of several other

trusted file systems, including the various Linux file systems. Often, however, there

is no such alternative system to compare against, and the oracle problem becomes a

question of defining expected behavior in a formalized machine-readable manner. Tra-

ditionally, such oracles are written as test scripts in a high-level scripting language,

e.g., Python. A typical test script will emit a sequence of commands or call a program,

and subsequently check that the resulting observed behavior is correct.

LaRS joined the task of testing a broader selection of MSL flight software com-

ponents, in both a workstation simulation environment and on the actual hardware

test-beds, as part of the MSL team’s Flight Software Internal Test (FIT) team. Prior

to our involvement, both the test inputs and evaluation produced by FIT members

were written as Python programs. As a result, the specifications were obfuscated and
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difficult to apply to other tests, resulting in considerable duplication of effort and weak

regression suites.

1 

architecture 
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logs 

spec 

yes 

no: 
… 
… 

spec 

Fig. 9 LogScope consists of two modules: (1) a learner that produces specs, and (2) a monitor
that checks specs against log files.

The MSL ground software stores all visible events in an SQL data base, inter-

pretable as a chronologically ordered sequence of events. We have developed a Python

framework, called LogScope, for post-processing this information and checking that it

conforms to expectations formalized in a specification language [19,18,55]. LogScope

consists of two parts: (1) a log extractor, which extracts a log file for a particular run

from the SQL database, identified by a test key ID, and (2) a log monitor, for check-

ing logs against formal specifications (Figure 9). LogScope supports both manually

written specifications and specifications learned from recorded, correct, logs.

6.1 Log Extraction

The log extractor generates a Python list object, where each element is an event: a

record implemented as a Python dictionary mapping field names to their values. A

special field indicates what kind of event it is. There are four kinds: commands being

issued to the system, internal state readings, internal logging events called EVRs [58]

produced by the system, and data products produced by the system which contain the
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pattern CommandSuccess :
COMMAND{Type: "FlightSoftwareCommand", Stem: x, Number: y} =>

{
EVR{VC1Dispatch: x, Number: y},
[EVR{Success: x, Number: y}, !EVR{Success: x, Number: y}],
not EVR{DispatchFailure: x},
not EVR{Failure : x, Number : y}

}

Fig. 10 A generic specification for flight software commands, in the pattern language.

outputs of the system, for example science data and images. The log extractor sorts

events according to spacecraft event times, since the order in which events are received

by ground communications software does not correspond to the order in which events

are generated on-board, due to varying communication priorities. The log extractor

handles all MSL-specific event semantics, producing a generalized log format applicable

to other missions and systems.

6.2 Monitoring

The log monitor takes two arguments: (1) a log generated by the log extractor, and

(2) a specification written in a textual format. The specification language consists of

an expressive rule-based language, which includes support for state machines, and a

higher-level, more convenient but less expressive, pattern language, which is translated

into the more expressive specification language before interpretation.

Specifications in the pattern language are easy for test engineers and software

developers to read and write. We are working with test engineers to build a library

of patterns for common flight software behaviors checked in tests, e.g., that shown in

Figure 10.

First, recall that EVR indicates a flight software event, a kind of “printf” used to

monitor spacecraft behavior. Therefore, this pattern, named CommandSuccess, states

that in case a command event occurs (meaning a command is issued to the flight

software), where the Type field has the string value "FlightSoftwareCommand", the

Stem field (the name of the command) has a value x (x will be bound to that value),

and the Number field has a value y (also a binding variable), then (=>), we want to see

(in any order, as indicated by set brackets {...}): (1) a dispatch of the command x

with the number y; (2) a success, and after that no more successes. The square brackets

[...] indicate an ordering of the event constraints. Furthermore, (3) we do not want

to see any dispatch failures for the command; and finally (4) we do not want to see

any failures for the command.

The interesting features of this language are its mixture of ordered and unordered

sequences of event constraints, including negations, and its support for capturing data

values embedded in events and using them later in the test. The pattern language

is translated into the core rule-based language, derived from the Ruler specification

language [20,21]. A useful subset of this language defines state machines with parame-

terized events and states, where a transition may enter many target states, essentially

supporting alternating automata with data (making it possible to specify a family of

events with differing details in one pattern). The core language is also inspired by

previous state-machine oriented specification languages for monitoring, such as Rcat
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[104] and Rmor [67]. The rule-based specification language style is itself a synthesis of

previous work on runtime verification as documented in numerous publications [107],

and implemented in tools and languages such as Mac [83], Mop [33], and Jpax [68].

6.3 Learning

The specification and monitoring framework just described has been well-received by

test engineers, and was integrated into some MSL flight software test suites shortly

after release. Feedback from users with no formal methods expertise has guided the

language development and resulted in a system that we suspect may be more practical

than most monitoring systems developed without the context of an on-going mission

critical test effort. One important result has been to alert us to the burden of writing

specifications that are more specific than the kind of generic rule shown above. In order

to ease this burden we are experimenting with learning specifications from runs. The

intended procedure consists of running the flight software one or more times, refining

a specification after each run to capture an abstraction of the system’s behavior. If

these runs have been “good” runs from the perspective of the test engineer, he/she can

“endorse” (perhaps after making manual modifications) the specification, and it can

be used to monitor subsequent executions. If these later runs differ, for example due

to code modifications, warnings highlighting the discrepancies are issued.

Learning requires that the system can determine when two events are “equal”,

and users can define which fields should be compared for testing event equality (for

example, exact timing is usually abstracted away). We have implemented and applied

an exact learner which learns the set of all execution sequences seen so far. We are

working on a mechanism for learning a mapping from commands to events expected

in all execution contexts. We hope to incorporate classic automata-learning results

[16] in order to generalize these specifications. This poses a significant challenge, in

that we cannot determine that an event sequence is impossible without including the

timing of events in the query language, which would make the size of the alphabet

prohibitive. Using an offline finite state machine learning algorithm (e.g., Biermann’s

[27]) would address this query problem. Unfortunately, the SAT queries required to

solve the constraint problems produced may be too large to solve.

6.4 Finding an Appropriate Role for Verification Technology

The relevance of the MSL integration testing effort to this paper resides in the selection

of where to apply more formal or automated methods. Members of the FIT team have

used limited random testing, but LaRS has not pursued more sophisticated approaches

(i.e., model checking, random testing with feedback, or directed testing) to test gener-

ation for the integrated MSL flight software. The complexity, size, and fragility of full

builds makes simply running the software a challenge: maintaining a fully automated

testing system and implementing heavyweight oracles is not a reasonable allocation

of resources when simply evaluating the results of simple scripted tests is a signifi-

cant challenge. Here, the utility of formal approaches and constraint-solving lies in test

understanding and disposition. In our experience, while the oracle problem remains

significant for hand-constructed tests, efforts to automate test generation provide lit-

tle benefit. Even random tests to detect crashes may provide limited information, as
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early versions of these systems are often so brittle that triage and fault-isolation based

on unexpected operation combinations can overwhelm the more systematic effort to

understand faults in simple, expected behaviors. It is critical to identify the dominant

problem in a testing effort: if specification is highly problematic, the payoff for au-

tomated test generation is fundamentally limited by the lack of a useful test oracle.

Moreover, the complex or large systems that most often make specification difficult

tend to have extremely complex input structures and poorly understood state spaces,

making abstraction and parameter/operation generation difficult to automate. In such

cases, more formal methods may still be useful for evaluating tests designed by humans.

7 An Open Problem: Testing the Tester

Complex, frequently modified software systems have bugs. This truth motivates auto-

mated testing; unfortunately, it also applies to automated testing systems. Our SPIN

framework for testing the various MSL file systems is a complex, frequently modified

software system. Over a period of four months, after our test framework had reached a

significant level of maturity (and had detected important faults in the file system), we

discovered, after long delays and painful debugging, configuration and implementation

faults in the tester, introduced during efforts to improve it and adaptations to changes

in the file system’s interface. We were fortunate that new changes to the file system

introduced faults that the LaRS development team became aware of through indepen-

dent testing. These were very basic faults that should certainly have been detected by

our tester. Without this “alarm” we might have continued to proceed with a testing

program that inspired false confidence in the file system and our test framework for

checking future modifications of the file system.

The problem of detecting faults in a test framework remains an open problem: a

test framework is a complex, extremely difficult-to-specify software artifact. The most

critical faults in the framework will manifest as missed faults in the system under test,

and these will obviously be hard to detect as we typically lack an independent list of

faults in the system we are testing!

As a minimal defense against tester faults, we propose that testers examine path

coverage statistics [53,49]. In particular, if path coverage unexpectedly decreases after a

modification to the tester, this is a warning sign that a fault may have been introduced.

Branch coverage may serve the same purpose, but is a coarse enough measure that even

random testing and model checking do not dramatically differ in branch coverage for

very short runs. The advantage of path coverage is that a significant decrease can be

detected with even very short test runs, rather than only appearing as an anomaly after

an overnight test run. The overhead for collecting path coverage, even if implemented in

the most simplistic and inefficient fashion, is only around 12-15% for model checking,

inexpensive enough to be a default option for shorter test runs [59]. Table 2 shows

differences in path coverage of key functions for a variety of versions of our MSL file

system test harness, after only 10 minutes of testing with swarm. We mark the “known

bad” versions with an X in the table: these are actual faulty versions of the tester,

applied at least once during our testing efforts. We highlight the best path coverage

results for each function. Observe that no faulty version improves on more than one

function, over the standard tester configuration. If we consider total path coverage

rather than per-function coverage, every faulty version decreases path coverage by at
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Table 2 Detailed coverage results from file system testing: total unique function paths ex-
plored by different test harness versions.

Function
Version mount write read lseek mkdir rmdir creat unlink
+No hw fault 31,958 18,222 89 131 19,072 19,353 16,411 2,072
+No lseek 25,433 19,934 93 0 16,980 12,482 12,319 3,020
+R/W step > 21,394 16,837 92 141 13,418 11,865 10,633 3,252
Standard 21,246 16,203 97 140 13,252 11,615 10,960 2,935
+No close 21,097 18,545 87 135 13,111 11,087 10,721 2,832
+No read 21,202 16,324 0 140 11,955 10,038 9,971 2,943
X+ No resets 19,200 19,687 74 89 12,132 9,542 10,254 1,655
X Abs. bug 18,685 16,120 86 142 11,905 10,016 9,427 2,358
X+ FD bug 18,880 12,148 64 151 11,942 9,110 9,009 2,617
+ No unlink 18,077 15,288 99 153 10,064 8,618 8,144 0
+ 1 hw fault 18,689 15,712 82 120 9,858 7,295 8,440 2,347
- With rename 17,169 15,564 78 142 9,506 7,161 7,517 1,726
- R/W step < 15,277 13,771 93 134 9,432 6,729 7,345 1,775
X Choice bug 7,738 7,693 91 126 4,577 4,275 4,730 2,743
+ No dirs 18,116 59,850 160 206 0 0 3,803 4,707
X Path bug 12,903 12,641 23 104 1,243 1 1,266 1
X Rand. test 11,026 1,741 61 66 2,197 1,599 2,542 1,246
X 2 erases 10 2 3 2 2 1 2 1
No swarm 7,324 823 9 10 9,062 8,749 6,131 91

least 5,000 paths. Increasing focus, e.g., by simply not testing directory operations,

however, may considerably improve path coverage for certain functions.

7.1 Test Focus

Examining path coverage as test framework configuration parameters change also sug-

gests that altering the focus of tests, as swarm alters the model checker’s search mech-

anism, may improve test efficiency. In the table, versions with a + indicate increased

test focus (more thorough testing of a smaller range of behaviors) while those with

a - involve testing more behavior than the standard configuration for testing. As a

simple example of change in focus, consider adding or removing a test operation: if

we have a fixed test budget, and only call 5 operations, each of the 5 operations will

be called more often than if we test 6 operations for the same test budget. However,

the 5 operation test may miss interactions with the 6th operation, which may result

in missed faults. As the table shows, however, the payoff for missing those interactions

may be a significant increase in path coverage over the tested operations. There is a

delicate tradeoff between potentially missing some errors due to a narrow focus, and

only shallowly covering complex behaviors due to a very broad focus. Given that our

framework relies on 130 configuration parameters, automation is essential if we hope

to exploit this alternative source of test diversity.

Exploiting focus diversity in model checking is complicated by the lengthy run-

time of each exploration, even in swarm verification. In pure random testing, however,

a different “swarm” strategy that simply randomly selects a new configuration before

each test case has proven extremely effective for testing compilers as well as an open

source flash file system [62,34]. Because the test effectiveness gains for file systems

are generally not as large as those for compilers, in the MSL testing we have thus far

chosen the advantages of swarmed model checking over the alternative swarmed random

testing approach, but in settings where less model checking expertise is available, the
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random testing approach with diversified test focus may be preferable. Additionally,

the gains from configuration swarming, if it could be applied to model checking, are

probably more modest than in random testing: a major source of swarm’s power is

the problem that some API calls or test features suppress other behavior (i.e., close

calls make it harder to explore write behaviors) [61]. In model checking, however,

paths without close calls will be explored frequently, due to state tracking and DFS

behavior, while in random exploration such paths are almost never taken.

8 A Goal-Oriented Approach to Methodology

We do not claim to extract a detailed verification methodology from our experiences

with JPL flight software. However, our experience (both positive and negative) suggests

that constructing a methodology around certain goals may be beneficial, in situations

similar to ours. By “situations similar to ours” we encompass cases where (1) the

chief purpose is to establish reliability of a critical software system, and the resources,

expertise, and commitment exist to benefit from aggressive automated testing and

verification technologies, (2) the system is self-contained and well-defined enough that

the specification problem does not dominate the verification problem, (3) resources,

particularly time, are constrained, (4) the software in question is written in a language

with significant verification tool support, such as C or Java, but not in a language,

e.g. SPARK [3], aimed at integrated development and verification and (5) the system

is sufficiently large or complex that complete proof of correctness is not possible. For

software systems larger than 1,000 lines of code, (5) seems likely to be the case in most

realistic projects. For very large systems, such as our integrated MSL flight software

build, (2) seems unlikely to be the case. Our core proposals are:

1. Run tests. As soon as a software system, or a executable design prototype, exists,

it is time to begin running tests. Even when a completely test-driven development

[22] is not suitable, reliable systems should be designed with testing in mind [99,

56]. Early testing can reveal critical design flaws before they become embedded

in too many aspects of an implementation to cleanly modify, and early testing

gives the test effort time to mature with the implementation. Even a very limited

automated testing system will help to understand the specification and behavior

of the system, and will, if created early in the life-cycle of the program, grow

with the implementation. Early testing also forces test engineers and developers

to face any major limitations in testing: highly complex input structures, very

large input ranges, nondeterministic behavior, and the like. If these problems are

only discovered after the implementation is mature, solutions will be much more

limited than if the software can potentially be adapted to be more testable. This

principle also applies to the last stages of development. When a critical module has

been integrated into a working system and passed a large number of sophisticated

automated tests, and has accumulated many pages of good coverage statistics, it is

tempting to stop testing. A good automated testing system, by removing human

effort from the test loop, should allow us to resist this temptation: if the system

is working, the test effort will continue as a background task, without consuming

resources other than computing power. If continued testing begins to consume
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human resources again, it is presumably because faults are being detected, and

this is better than the alternative of not testing7.

2. Do not make the perfect the enemy of the useful. If a method could produce

powerful verification results, but in practice is not working out, i.e., is not exposing

faults, or even running tests that could expose faults, it is reasonable to abandon

it. Approaches providing no test benfit are perhaps best put aside until a less

powerful method can be matured to the point of executing tests while human

resources concentrate on the more difficult approach. Simple random testing can

serve as a mitigation for the risk of test efforts that fail because they rely on

immature technologies or unknown properties of the code being tested (small model

properties, exploitable abstractions, sensitivity to search strategies, etc.). There

are no clear reliability gains from determining that a software system is not a

suitable target for a verification technology, but the risk-reward balance becomes

less unpleasant if some form of automated testing is already in place and executing

tests without using many human resources.

3. Know the implications of faults, and use them. While we believe that path

and branch coverage may help detect gaps in a testing process, we know that known,

undetected faults can expose problems with a test framework. Assuming that a test

effort will involve multiple approaches, including mental execution, by independent

testers and developers, it is critical to make sure that an understanding of every

detected fault is communicated to the entire team. It is obviously important for

developers to understand faults, in order to produce bug fixes or workarounds,

but it is also critical that test engineers know as much as possible about faults.

Most importantly, knowledge of faults that were not detected by a test system

may imply a weakness of the test system. Understanding detected faults may also

expose test framework problems: if the existence of a fault implies the existence

of a simple test case that detects the fault, then if that test case has never been

observed, the test framework may be missing other faults, or at a minimum pro-

ducing overly complex (and thus hard-to-debug) test cases. Without endorsing full

mutation testing [43,63,97], which is effective but may be too expensive or difficult

for resource-constrained test efforts, we also suggest mutation testing a test frame-

work by introducing simple, well-understood faults that both developers and test

engineers believe should be detected.

4. Exploit computing power. Automated testing is effective in large part because

the computing power available to execute tests is such that even if each test is

highly unlikely to expose a fault or contribute to coverage, the overall result may

be effective. Random testing can exploit as much compute power as is available:

there is no reason to have idle hardware, when more random tests can be generated.

With model checking, exploiting massive parallelism is slightly more involved than

choosing a new set of random seed ranges, but swarm technology extends to many

machines as well as many cores on a single machine, as there is no communication

overhead between searches. Even if much of the additional exploration is redundant,

using commodity hardware rather than specialized clusters makes this a very cost

effective way to improve testing.

7 It may also be because the automated tester is poorly designed and fragile, which is often
a consequence of not beginning testing early enough, once again emphasizing the importance
of running tests early, often, and until a project is complete and the code will never execute
again.
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5. Use static analysis. It is difficult to imagine any good reason not to make static

bug detection tools a routine part of the build process for any critical software

project. In fact, rewriting code to remove even false positive warnings produced by

static analysis can be a helpful discipline, re-enforcing the need for clean compila-

tion and analysis before code is considered ready to execute. Static analysis tools

are generally mature and well supported, requiring few project resources beyond

the purchase price of the commercial tools (the resources required for fixing bugs

detected by the tools are not a liability!).

9 Conclusions

At this time fully automated verification methods, whether based on constraint solving

or other approaches, do not, in our experience, easily scale to verification of rich proper-

ties of complex software systems such as flash file systems. Verification approaches more

akin to aggressive testing, with more guidance by the tester or developer than push-

button model-checking, have served as the basis for checking functional correctness

of our software modules, with more heavyweight model checking and static analysis

reserved either for simpler properties or small modules of the system. For the more

complex properties of programs with complex data structures, we believe it may be, at

present, more practical to use constraint solvers to guide execution than to translate

the program and property into a set of constraints. Given more resources and time

(and better tools), user-assisted proof would be the ideal approach for ensuring cor-

rectness, but did not prove feasible in our circumstances, even for a self-contained and

well-specified module such as a file system. For now, we can only suggest that you test

early, and test often.
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