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Alongshore flow in the direction of propagation of coastal trapped waves can result
in upwelling at the shelfbreak. The intensity of this upwelling can be comparable in
magnitude to wind-driven coastal upwelling, with its associated ecological features.
Recent numerical experiments by Matano & Palma indicate that this upwelling results
from convergence of Ekman transport at the shelfbreak. The mechanism for this
phenomenon can be understood in terms of steady solutions to the shallow water
equations in the presence of Coriolis force and bottom drag. Matano & Palma
interpreted their numerical results in terms of the arrested topographic wave, but did
not present direct comparisons. Here we present a family of analytical solutions to the
equations of the arrested topographic wave that shows striking quantitative agreement
with earlier numerical results.
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1. Introduction
The fundamental physical basis for understanding upwelling at the shelfbreak in

the case in which a steady alongshore current flows in the direction of the coastal
trapped waves is the arrested topographic wave (Csanady 1978). The spreading of
the inflow jet results in an alongshore gradient in sea surface height, which, in turn,
results in a cross-shore current that is partly geostrophically balanced. Mass balance
is maintained by cross-shore Ekman transport in the bottom boundary layer. Rapid
change in the Ekman transport at the shelfbreak results in upwelling. Recently, Matano
& Palma (2008) (hereafter MP08) performed a series of numerical experiments in
which they used the Princeton Ocean Model (Blumberg & Mellor 1987) to investigate
this phenomenon. A schematic diagram of the upwelling process appears in figure 2 of
MP08.

Matano & Palma described their results qualitatively in terms of the arrested
topographic wave, but did not present quantitative comparisons between their model
results and the values predicted by the arrested topographic wave. Here we exhibit
a family of analytic solutions to the equations of the arrested topographic wave. We
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focus on the case investigated by Hill (1995), in which there is no inflow on the shelf.
Hill (1995) derived his solution in the course of investigating the onshore intrusions
of a slope current. He did not show the solution for the slope, nor did he relate his
solution to the generation of shelfbreak upwelling. We also present a generalization
to a two-parameter family of inflow conditions with inflow on the shelf. Our results
agree remarkably well with the numerical results of MP08. Most of the features of
the output of the model of the fully stratified, nonlinear ocean can be reproduced
quantitatively with this relatively simple analytical calculation.

Chapman (1986) used a linearized shallow water model similar to the one used
here to study the formation of the shelf/slope front in the middle Atlantic bight. He
justified the use of a vertically homogeneous model by citing observational evidence
that salinity and density gradients in the middle Atlantic bight tend to compensate
in a fashion that reduces cross-shelf density contrast, and therefore hypothesized that
density may act like a passive tracer in this context. In his calculations, he imposed
an upstream boundary condition with inflow confined to a region on the shelf inshore
of the shelfbreak. His solutions were characterized by convergence of the flow, and
therefore downwelling. He did not comment on the vertical structure of the flow, but
his solutions, in agreement with ours, exhibit convergent flow at the shelfbreak, and
hence downwelling, in the case of an imposed upstream boundary condition with flow
confined to the shelf.

Gawarkiewicz & Chapman (1991) performed an experiment with a three-
dimensional unstratified linearized primitive equation model coupled to an
advection–diffusion model of tracer concentrations. They described three-dimensional
tracer distributions, but did not show explicit three-dimensional circulation results.
Like Chapman (1986), they were interested in the density front in the middle Atlantic
bight, and their upstream boundary condition did not include flow on the slope.

2. The arrested topographic wave
We write the steady linearized shallow water equations on the f -plane with Rayleigh

friction:

gηx − fv =−ru/h, (2.1)

gηy + fu=−rv/h, (2.2)

(hu)x + (hv)y = 0, (2.3)

where u and v are the horizontal velocity components, η is the surface height anomaly,
fu is the Coriolis acceleration, h is the depth of the undisturbed fluid and r is the
coefficient of linear friction. Subscripts denote partial differentiation. Consider the
case of northward flow in the southern hemisphere. Our domain extends eastward
from a north–south oriented coastline. We assume a simple geometry, with topography
independent of the alongshore (y) coordinate, and constant bottom slopes on the shelf
and offshore of the shelfbreak.

Given cross-shore and alongshore length scales Lx and Ly, and cross-shore and
alongshore velocity scales U and V , we assume Lx/Ly = U/V = ε � 1. We further
assume r/(|f |H) is of order ε, where H is a depth scale. With these assumptions (2.1)
implies that the alongshore flow is geostrophic. Equation (2.2) becomes first-order in
ε, so we expect that there will be places in which the contribution of bottom friction
is comparable to those of pressure gradient or Coriolis force. With these assumptions,
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following Csanady (1978), we can derive the well-known arrested topographic wave:

η1,2xx −
1
κ1,2

η1,2y = 0, (2.4)

where κ1,2 = r/|f |s1,2, and η1,2 and s1,2 are the solutions and slopes on the shelf and
the slope respectively. We choose coordinates so that the shelf and slope regions
are defined by −L 6 x 6 0 and 0 < x <∞ respectively. Density stratification is the
most important of the effects neglected in the derivation of (2.4); see also §7 of
Gawarkiewicz & Chapman (1991).

Chapman (1986) and Gawarkiewicz & Chapman (1991) used numerical methods to
solve (2.1)–(2.3). They kept the friction term in (2.1), and derived a single elliptic
equation in terms of a transport streamfunction, rather than the parabolic equation
(2.4). Because of their parameter choices their results were similar to ours. They also
included values of r that depended explicitly on x, but Chapman (1986) noted that the
effect of variability of r was not significant.

We first derive solutions to (2.4) for the case investigated by Hill (1995), in which
geostrophic inflow at the upstream boundary is confined to the slope, with no inflow
on the shelf. A case in which inflow on the shelf is allowed is described in the
Appendix. Following Hill (1995), we impose the boundary condition η1x(−L, y) = 0.
We require the solution to be continuous and differentiable at the shelfbreak, i.e.
η1(0, y) = η2(0, y), η1x(0, y) = η2x(0, y). We impose the inflow conditions specified by
Hill, i.e.

η1(x, 0)= 0, (2.5)
η2(x, 0)= η0(e−mx − 1). (2.6)

η0 is the total change in sea level height across the inlet boundary and m defines
the width of the inflow jet. The boundary conditions (2.5)–(2.6) lead to a well-posed
problem, despite the fact that they violate the matching condition η1x(0, y) = η2x(0, y),
and in this idealized example the geostrophic velocity imposed at the upstream
boundary is discontinuous. It is a feature of the solutions that the ηxx ∝ vx will be
discontinuous at the shelfbreak x = 0. This is clearly visible in the top panel of figure
3 of Chapman (1986). Gawarkiewicz & Chapman (1991), in their numerical study,
used a bottom profile similar to ours, but with the slope made continuous by the
addition of quadratic terms near the shelfbreak. Their domain also includes an abyssal
plain beyond the slope, which is not present in our calculations. Like Chapman (1986),
they imposed a discontinuous streamfunction at the upstream boundary, and in the
upper panel of their figure 3, the cross-shelf profiles of the along-shelf velocity appear
to be smooth.

Equation (2.4) can be solved by Laplace transforms (Carslaw & Jaeger 1959):

L η1 = A cosh q1(x+ L), (2.7)

L η2 =−
(
η0

κ2q2
2

+ η0e−mx

κ2(m2 − q2
2)

)
+ Be−q2x, (2.8)

where L denotes the Laplace transform, q1,2 = (s/κ1,2)
1/2 and s is the transform

variable. A and B are constants determined by the matching conditions:

A cosh q1L=− η0

κ2q2
2

− η0

κ2(m2 − q2
2)
+ B, (2.9)

q1A sinh q1L= mη0

κ2(m2 − q2
2)
− q2B. (2.10)
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We can solve for A:

A=−η0
m

κ2(m+ q2)q2
2(cosh q1L+ γ sinh q1L)

(2.11)

where γ = q1/q2 = (κ2/κ1)
1/2.

The solution on the shelf is

η(x, y)=− η0

(1+ γ )
∞∑

n=0

(
−1− γ

1+ γ
)n

(F(2nL− x)+ F(2(n+ 1)L+ x)), (2.12)

F = erfc
(

x

2(κy)1/2

)
− ehx+κh2yerfc

(
x

2(κy)1/2
+ h(κy)1/2

)
, (2.13)

where κ = κ1 and h = γm. This is Hill’s solution. The ‘−’ sign appears here because
the solution in this setup has to be negative for positive y.

The solution on the slope is more complicated. From (2.9) we have

B= A cosh q1l+ η0

κ2q2
2

+ η0

κ2(m2 − q2
2)

(2.14)

≡ B(1) + B(2) + B(3). (2.15)

The contribution to the solution in physical space of the term corresponding to
B(2) is L −1((η0/s)e−q2x)= η0erfc(x/2(κ2y)1/2). The solution defined by the second two
terms of (2.14) along with the expression in parentheses in (2.8), i.e. everything but
the contribution of B(1)e−q2x, is given by

L −1((B(2) + B(3))e−q2x)+L −1

(
−
(
η0

κ2q2
2

+ η0e−mx

κ2(m2 − q2
2)

))
= η0(−1+ erfc(x/2(κ2y)1/2))+ η0e−mxem2κ2y

− η0

2
eκ2m2y

(
e−mxerfc

(
x

2(κ2y)1/2
− m(κ2y)1/2

)
+ emx erfc

(
x

2(κ2y)1/2
+ m(κ2y)1/2

))
. (2.16)

The contribution of L −1B(1)e−q2x to the solution in physical space is

L −1(B(1)e−q2x)= η0

1+ γ
∞∑

n=0

(
−1− γ

1+ γ
)n

× (F(2γ nL+ x)+ F(2γ (n+ 1)L+ x)) (2.17)

where F is as in (2.13), with κ = κ2 and h= m. So the full solution on the slope is the
sum of the right-hand sides of (2.16) and (2.17).

3. Results
Our scale assumptions imply that the alongshore current v is geostrophically

balanced, so v = gηx/f and u can be calculated from (2.2). Taking the curl of the
momentum equations (2.1)–(2.2) we find

f (ux + vy)=−fwz =−
(rv

h

)
x
, (3.1)
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FIGURE 1. Height anomaly in centimetres from the solution to the arrested topographic wave.
The inflow boundary condition is imposed at y = 0 (arrows). The shoreline boundary is at
x= 0 and the model shelfbreak (dashed line) is 50 km offshore.

where we have neglected the friction term in (2.1). Integrating over the water column:

w(−h)= h(ux + vy)= −rvx

f
+ rvhx

fh
. (3.2)

We have used the three-dimensional continuity equation along with the assumption
of vertical homogeneity and the fact that, at this level of approximation, the vertical
velocity component w vanishes at the free surface. The two terms on the right-hand
side of (3.2) represent the curl of the bottom stress and the lifting and lowering of
water parcels by advection in the cross-shore direction by the ageostrophic velocity, cf.
equation (4.9.32) of Pedlosky (1979).
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FIGURE 2. Vertical velocity sections. Maximum vertical velocity as a function of alongshore
distance. Solid curves: no inflow on shelf, for selected values of maximum inflow velocity in
m s−1. s1,2 = 2× 10−3, 3× 10−2 respectively. Dashed curve: slope and shelf inflow maximum
velocities equal 0.5 m s−1. r̂ = 2 × 10−4. Dash-dotted curve: zero inflow on the slope, shelf
inflow defined by (A 1), r̂ = 2× 10−4.

Parameters were chosen to simulate the numerical experiments in MP08:

L= 50 km, (3.3)
η0 = 0.1 m, (3.4)

m= (1/20 000) m−1, (3.5)
r = 0.001 m s−1. (3.6)

L is the shelf width, equal to that chosen in MP08, m, which defines the width of
the inflow jet, determines the peak inflow velocity (see (2.6)), chosen here to be about
0.5 m s−1. The value of the linear drag coefficient r is typical of studies of this type,
e.g. Chapman (1986) and Gawarkiewicz & Chapman (1991). We choose ranges of
values for the bottom slopes s1 and s2 to illustrate parameter dependences. Nominal
values of s1 and s2 are 2× 10−3 and 3× 10−2 respectively.

We first analyse the upwelling generated by a slope current, with zero inflow on
the shelf. The term balance in the along-shelf momentum equation (2.2) is nearly
geostrophic away from the shelf break. As in figure 5 of MP08, the contribution
of friction takes the opposite sign to that of the pressure gradient inshore of the
shelfbreak and the same sign offshore. In the analytic solution, all three terms in (2.2)
are comparable in magnitude to corresponding quantities shown in figure 5 of MP08.
The surface elevation of the analytical solution is characterized by a downstream
spreading that induces both along-stream and cross-stream sea level gradients as shown
in figure 1. Figure 2 shows the maximum vertical velocity at the shelfbreak as a
function of alongshore distance and inflow magnitude. Upwelling decreases sharply
downstream, but is still O(10−4 m s−1), similar in magnitude to values inferred from
hydrographic data at the shelfbreak in the mid-Atlantic bight (e.g. Pickart 2000) and
those found in coastal upwelling regimes, hundreds of kilometres downstream. As
expected, shelfbreak upwelling increases with increasing bottom friction, since the



Shelfbreak upwelling: analytical and numerical results 245

0.02 0.04 0.06 0.08

V
er

tic
al

 v
el

oc
ity

 (
10

–3
m

s–
1 )

Inclination of the continental slope, s2

s1 = 10–4

s1 = 10–3

s1 = 10–2

MP08
1.25

1.00

0.50

0.75

0.25

0

FIGURE 3. Maximum value of vertical velocity at the shelfbreak as a function of inclination
of continental slope for selected values of the inclination of the shelf.

bottom drag coefficient amounts to parameterization of vertical velocity at the top of
the bottom boundary layer.

Imposition of a shelf current decreases the magnitude of the shelfbreak upwelling
(see dashed curve in figure 2), because the spreading of a shelf current into the
steeper continental slope and consequently into a region with a smaller spreading
rate generates mass convergence and hence downwelling. Thus, while a slope current
generates shelfbreak upwelling, a shelf current generates shelfbreak downwelling, as
shown by the dash-dotted curve in figure 2, consistent with MP08 as well as the
results of Chapman (1986) and Gawarkiewicz & Chapman (1991).

The magnitude of the upwelling has different dependences on the inclination of the
shelf and the continental slope (see figure 3). A steepening of the continental slope
increases the magnitude of the upwelling but a steepening of the shelf decreases it, i.e.
w∝ s2/s1. This reflects the fact that shelfbreak upwelling is produced by the difference
between the spreading rates over the shelf and over the slope. Thus in the limiting
case in which s1 = s2, i.e. no shelfbreak, there is no upwelling (MP08).

To facilitate comparison of our analytical solution to three-dimensional numerical
results, we ran a series of numerical simulations using the barotropic model
configuration described in MP08 with the parameters described above. Direct
comparison of the maximum vertical velocities at y= 20 km for the experiment forced
with a slope inflow of 0.5 m s−1 shows reasonable agreement between the numerical
and analytical models (see figure 4). The numerical solution predicts smaller upwelling
velocities with a maximum slightly displaced offshore of the shelfbreak. These details
depend on the spatial resolution of the numerical model because it is difficult to
represent the sharp change of slope used in the analytical solution. The numerical
and analytical solutions show different parametric dependences, e.g. vertical velocities
of the analytical solution are more sensitive to the magnitude of the bottom friction
coefficient than those of the numerical simulation. The numerical results, nevertheless,
show the same tendency to increase the vertical velocities with increasing bottom
friction coefficient.
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FIGURE 4. Vertical velocity as a function of cross-shore distance for the analytical solution
with no flow on the shelf (solid line) and the numerical solution with no stratification (dashed
line), 20 km from the upstream boundary. Shelfbreak is at x= 50 km.

4. Conclusions
MP08 suggested the arrested topographic wave as the physical mechanism for the

shelfbreak upwelling of regions bounded by cyclonic currents. Our analytical solutions
of the arrested topographic wave suggest strongly that this is, in fact, the case, as the
arrested topographic wave accounts for much of the quantitative detail in the numerical
simulations and is consistent with earlier work. Unlike wind-driven coastal upwelling
systems, the upwelling produced by cyclonic currents can be sustained through the
entire year, thus providing a continuous source of nutrients to the upper ocean. This
should be particularly important in regions like Patagonia, where the nutrient rich
waters of the Southern Ocean can be continuously fertilized by the steady flow of the
Malvinas Current along the South American coast.
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Appendix. Non-zero inflow on the shelf
Here we consider a mild generalization of the inflow condition (2.5) that includes

poleward flow on the shelf:

η1(x, 0)= mη0(cosh(r̂L)− cosh(r̂(x+ L)))

r̂ sinh(r̂L)
, (A 1)

where the parameter r̂ determines the shape of the surface anomaly on the shelf at
inflow. The solution for the case with inflow conditions given by (A 1) and (2.6), is
similar to (2.7) and (2.8):

L η1 = A1 cosh q1(x+ L)+ η0m

κ1r̂ sinh(r̂L)

(
cosh(r̂L)

q2
1

+ cosh(r̂(L+ x))

r̂2 − q2
1

)
, (A 2)

L η2 =−
(
η0

κ2q2
2

+ η0e−mx

κ2(m2 − q2
2)

)
+ B1e−q2x. (A 3)

A1 and B1 are determined by the matching conditions similar to (2.9) and (2.10):

A1 cosh(q1L)+ η0m coth(r̂L)

κ1r̂

r̂2

q2
1(r̂2 − q2

1)
=−η0

κ2

m2

q2
2(m2 − q2

2)
+ B1, (A 4)

q1A1 sinh q1L+ η0m

κ1(r̂2 − q2
1)
= mη0

κ2(m2 − q2
2)
− q2B1. (A 5)

We then have

A1 = A− η0m

cosh q1L+ γ sinh q1L

(
1

q2κ1(r̂2 − q2
1)
+ r̂ coth(r̂L)

s(r̂2 − q2
1)

)
(A 6)

where A is given by (2.11) and γ = q1/q2 = (κ2/κ1)
1/2 as before.

As in the case of the solution with no flow on the shelf, we make use of the identity

cosh q1(x+ L)

cosh q1L+ γ sinh q1L
= 1

1+ γ
∞∑

n=0

(
−1− γ

1+ γ
)n

(e−q1(2Ln−x) + e−q1(2L(n+1)+x)). (A 7)

The contribution of the first term in (A 2) to the full solution is the sum of the
solution with zero inflow on the shelf (2.12) and two additional terms A(2) and A(3)

given by

A(2) =−γ
∞∑

n=0

(
−1− γ

1+ γ
)n

(F2(2Ln− x)+ F2(2L(n+ 1)+ x)), (A 8)

A(3) = coth(r̂L)

r̂

∞∑
n=0

(
−1− γ

1+ γ
)n

(F3(2Ln− x)+ F3(2L(n+ 1)+ x)), (A 9)

where

F2 = 1
2r̂

(
e−r̂xerfc

(
x

2(κ1y)1/2
− r̂(κ1y)1/2

)
− er̂xerfc

(
x

2(κ1y)1/2
+ r̂(κ1y)1/2

))
, (A 10)
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F3 = 1
r̂2

erfc
(

x

2(κ1y)1/2

)
− eκ1 r̂2y

2r̂2

(
e−r̂xerfc

(
x

2(κ1y)1/2
− r̂(κ1y)1/2

)
+ er̂xerfc

(
x

2(κ1y)1/2
+ r̂(κ1y)1/2

))
. (A 11)

The contribution of the second term in (A 2) is

L −1 η0m

κ1r̂ sinh(r̂L)

(
cosh(r̂L)

q2
1

+ cosh(r̂(L+ x))

r̂2 − q2
1

)
= η0m

r̂ sinh(r̂L)
(cosh(r̂L)− eκ1 r̂2y cosh(r̂(L+ x))). (A 12)

For the slope, we may write as before

η2 = η0(eκ2m2ye−mx − 1)+L −1(B1e−q2x). (A 13)

From (A 5) we have

B1 = mη0

q2(m2κ2 − s)
− mη0

q2(r̂2κ1 − s)
− γA1 sinh(γ q2L). (A 14)

We begin by computing L −1(B1e−q2x):

L −1 mη0e−q2x

q2(m2κ2 − s)
= −η0eκ2m2y

2

(
e−mxerfc

(
x

2(κ2y)1/2
− m(κ2y)1/2

)
− emxerfc

(
x

2(κ2y)1/2
+ m(κ2y)1/2

))
, (A 15)

L −1 mη0e−q2x

q2(r̂2κ1 − s)
= −η0γ eκ1 r̂2y

2r̂

(
e−r̂x/γ erfc

(
x

2(κ2y)1/2
− r̂(κ1y)1/2

)
− er̂x/γ erfc

(
x

2(κ2y)1/2
+ r̂(κ1y)1/2

))
. (A 16)

We must now calculate L −1(γA1 sinh(γ q2L)e−q2x). From (A 6) we have

γA1 = γA− γ η0m

cosh(γ q2L)+ γ sinh(γ q2L)

(
1

q2(κ1r̂2 − s)
+ κ1r̂ coth(r̂L)

s(κ1r̂2 − s)

)
. (A 17)

The inverse Laplace transforms are similar to those in the shelf calculation. Write
G1 = F/m, where F is as in (2.13) with κ = κ2 and h= m,

G2 =L −1 e−q2x

q2(κ1r̂2 − s)

= −γ eκ1 r̂2y

2r̂

(
e−r̂x/γ erfc

(
x

2(κ2y)1/2
− r̂(κ1y)1/2

)
− er̂x/γ erfc

(
x

2(κ2y)1/2
+ r̂(κ1y)1/2

))
, (A 18)
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G3 = κ1r̂ coth(r̂L)L −1

(
e−q2x

s
− e−q2x

s− κ1r̂2

)
= coth(r̂L)

r̂
erfc

(
x

2(κ2y)1/2

)
− coth(r̂L)

r̂

× eκ1 r̂2y

2

(
e−r̂x/γ erfc

(
x

2(κ2y)1/2
− r̂(κ1y)1/2

)
+ er̂x/γ erfc

(
x

2(κ2y)1/2
+ r̂(κ1y)1/2

))
. (A 19)

So finally, in physical space, we have

L −1(γA1 sinh(γ q2L)e−q2x)= 1
1+ γ

3∑
j=1

∞∑
n=0

(
−1− γ

1+ γ
)n

× (Gj(x+ 2γ nL)− Gj(x+ 2γ (n+ 1)L)). (A 20)
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