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SUMMARY

We describe a new algorithm for robust principal component analysis (PCA) of electromagnetic
(EM) array data, extending previously developed multivariate methods to include arrays with
large data gaps, and only partial overlap between site occupations. Our approach is based
on a criss-cross regression scheme in which polarization parameters and spatial modes are
alternately estimated with robust regression procedures. The basic scheme can be viewed as an
expectation robust (ER) algorithm, of the sort that has been widely discussed in the statistical
literature in the context of robust PCA, but with details of the scheme tailored to the physical
specifics of EM array observations. We have tested our algorithm with synthetic and real data,
including data denial experiments where we have created artificial gaps, and compared results
obtained with full and incomplete data arrays. These tests reveal that for modest amounts of
missing data (up to 20 per cent or so) the algorithm performs well, reproducing essentially the
same dominant spatial modes that would be obtained from analysis of the complete array. The
algorithm thus makes multivariate analysis practical for the first time for large heterogeneous
arrays, as we illustrate by application to two different EM arrays.

GJI Geomagnetism, rock magnetism and palaeomagnetism
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1 INTRODUCTION

With advances in electromagnetic (EM) geophysical instrumen-
tation large synoptic digital EM array data sets are increasingly
common, begging the development of practical analysis methods
that can fully exploit the simultaneous character of these data. As
discussed in Egbert (2002) one can apply multivariate statistical
methods to EM array data to reduce bias, improve signal-to-noise
ratios (SNR) and provide better control over source effects and
coherent noise contamination in estimates of EM transfer func-
tions (TFs). Furthermore, within a multisite array framework one
is not limited to the classical uniform source magnetotelluric (MT)
impedance and geomagnetic vertical field TFs, but can also include
interstation horizontal magnetic TFs which can be used to map
anomalous induced currents, as well as ‘hybrid’ impedance tensors
between electric and magnetic fields from any pair of stations. The
inclusion of such interstation TFs, which arise quite naturally and
are easy to compute within a multivariate statistical framework,
may provide potentially useful additional constraints on the Earth’s
conductivity.

Simultaneous arrays also provide a powerful tool for detect-
ing and understanding effects of finite spatial scale sources in
TF estimates, whether due to cultural noise (Larsen et al. 1996;
Egbert 1997; Ritter & Banks 1998), or spatial complexity of nat-
ural sources (Egbert et al. 2000; Egbert 2002). At least in some
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cases this understanding can be translated to improved estimates
of TFs (e.g. Qian & Pedersen 1991). At the same time, inhomo-
geneous components of the natural source field might be used
to probe the Earth’s conductivity structure in a different manner.
A natural extension to the usual uniform source assumption im-
plicit in the MT method allows for three curl-free magnetic gra-
dient sources (Kuckes et al. 1985; Egbert & Booker 1989; Egbert
2002; Vozar & Semenov 2010). Quantitative interpretation of the
response of a 3-D earth to these more spatially complex sources
has the potential to provide valuable additional constraints on large-
scale variations in crustal and upper-mantle conductivity. For ex-
ample the horizontal spatial gradients (HSG) technique (Schmucker
2003) uses only magnetic field components to estimate a TE-mode
impedance tensor, which should thus be free of galvanic distor-
tions. Adding HSG responses as additional constraints might help
to overcome problems due to aliasing of near surface distortion in
3-D inversion of widely spaced MT data, such as that collected
in the US Earthscope project (Egbert et al. 2007; Patro & Egbert
2008).

Egbert & Booker (1989) and Egbert (1997) described the ba-
sic multivariate model and estimation methods that we consider
here. However, in these early efforts only data from small (3-5
stations) EM arrays were available, and the small number of si-
multaneous sites (which in some cases were in a profile, rather
than a 2-D array) severely limited opportunities for characterization
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and separation of source components. Egbert (2002) applied these
methods to data from the much larger EMSLAB magnetometer
array, which consisted of 64 sites in a quasi-regular 2-D array cov-
ering much of the Pacific Northwest United States (Gough et al.
1989). However these data were collected with old analogue in-
struments, and only 60 hr of digitized data were available for the
multivariate analysis. A number of large digital EM arrays are now
available, including the EarthScope ‘rolling” MT array (Patro &
Egbert 2008), and the Scandinavian Baltic Electromagnetic Array
Research (BEAR; Korja et al. 2002) and Electromagnetic Mini
Array (EMMA; Smirnov et al. 2008) arrays, some of which we
consider further. These data sets provide new opportunities to test
and further develop multivariate techniques on this sort of large
digital array, which can be expected to be ever more common in
future.

Another potentially important application of the multivariate
analysis approach considered here is to geomagnetic observatory
data (e.g. Fujii & Schultz 2002). For many years the global network
of geomagnetic observatories has been the backbone of studies
concerning the sources of magnetic fields in the Earth’s core, iono-
sphere and magnetosphere, as well as induction by external source
variations. For these very long-period global induction studies there
are few reliable measurements of the surface electric fields, and
inferences of internal conductivity must be based solely on mag-
netic field data. This requires relatively strong assumptions about
external source geometry (e.g. Banks 1969; Olsen 1998), limiting
application to periods and locations where highly idealized exter-
nal sources may plausibly be assumed, for example, a zonal ring
current at periods longer than 5 d at geomagnetic mid-latitudes
(Banks 1969; Fujii & Schultz 2002), or where site density is suffi-
cient to use HSG methods (Olsen 1998). Multivariate methods may
offer a path to better models of external sources, covering a broader
range of periods and geographic locations. Recent studies of deep
conductivity structure of the Earth (Kelbert ef al. 2009), which sug-
gest large lateral variations in transition zone conductivities associ-
ated with subduction of fluids, demonstrate the importance of im-
proved source models for probing 3-D conductivity variations in the
Earth.

Missing data, and more generally temporal and spatial hetero-
geneity of noise, present major challenges to processing EM data
from a large array. The robust multivariate methods for EM data de-
veloped by Egbert (1997) do not explicitly allow for missing data,
forcing the analysis to be restricted to times when all sites operate.
This simple strategy becomes increasingly untenable as the size
of the array increases. For example, if this approach is applied to
the BEAR data set considered later, analysis would have to be re-
stricted to a much reduced array, consisting of fewer than half the
sites, operating for perhaps a week or so. Clearly, analysis of such
large arrays requires a more sophisticated strategy for dealing with
missing data.

Our focus here is on extending the approach for treating out-
liers developed in Egbert (1997) to allow estimation of principal
components (i.e. array spatial modes) for large incomplete arrays.
The diverse applications of principal component analysis (PCA)
discussed earlier, for example, characterizing and modelling global
source structure, novel TF or HSG applications, estimation of MT
impedances, are beyond the scope of this paper. In the next section
we review the statistical model, and outline the general approach to
robust estimation for this model allowing for missing data. The esti-
mation algorithm is presented in detail in Section 3, examples with
synthetic and real data are presented in Section 4 and concluding
remarks are given in Section 5.

2 THE STATISTICAL MODEL

The multivariate analysis scheme for synchronous EM data pro-
posed by Egbert & Booker (1989) can be viewed as PCA of complex
frequency domain data vectors, obtained from a windowed Fourier
transform (WFT) of observed time-series from all channels/sites in
the array. Robust approaches to PCA are by now rather well de-
veloped (e.g. Stanimirova et al. 2007; Serneels & Verdonck 2008;
Frahm & Jaekel 2010). We briefly review a few of the key ideas, but
with the notation and nomenclature used in the statistical literature
modified to be consistent with the discussion in Egbert (1997), and
with all variables taken to be complex. The idea of PCA is to derive
a low-dimensional projection that contains the maximal amount of
variation in the (high-dimension) data vectors. Mathematically the
principal components that define this projection are obtained ac-
cording to some variance maximization criterion. Let X € CV */ be
the data matrix, consisting of J replicates of a multivariate frequency
domain observation, each consisting of N complex variables, that
is, distinct variables are in different rows and correspond to differ-
ent data channels, while each column represents one instance (e.g.
windowed time segment) of the multivariate observation. Then the
principal components Uy are defined as linear combinations of the
data

U, = Xa, (1)
that maximizes some sort of variance

a; = arg max var{Xp*} ?2)
p

under the constraints that ||a,|| = 1 and cov(Uy, Uy) = 0 for k' # k.
Here, and subsequently, * denotes the Hermitian complex conjugate
transpose. In classical PCA var(Xp*) = ||Xp*||?, and exact max-
imization of (2) can be accomplished by the Lagrange multiplier
method, leading to the conclusion that the principal components
are the eigenvectors of the variance—covariance matrix ¥ = %X*X
(Serneels & Verdonck 2008). Note that, consistent with the ter-
minology of frequency domain time-series analysis, Egbert (1997)
refers to ¥ as the spectral density matrix, or SDM.

Modern robust PCA approaches are typically based on replacing
the variance operator in (2) with some robust estimate of scale.
Several distinct approaches have been proposed and extensively
tested over the last years, including methods based on projection
pursuit (e.g. Croux et al. 2007), methods using an eigenvector de-
composition of a robust estimate of the covariance matrix (e.g.
Hubert et al. 2005), or some combination of these (e.g. Verboven
& Hubert 2005). In the projection pursuit approach, one projects
data onto a lower dimensional space such that a robust measure of
variance of the projected data is maximized. The affine invariant
covariance estimate (Huber 1981), and the minimum covariance
determinant (MCD) estimator (Verboven & Hubert 2010) are good
examples of a robust covariance estimator which has been used for
robust PCA. Both of these general approaches to robust PCA have
been implemented in the Libra statistical library (Verboven & Hu-
bert 2005), where projection pursuit is realized as RAPCA and the
MCD estimator is used in ROBPCA. We consider application of
these procedures to our problem later. Another approach based on
the projection pursuit algorithm developed by Croux et al. (2007,
refereed to as the C—R algorithm) is realized in the Matlab Toolbox
TOMCAT (Daszykowski et al. 2007), and could also be readily
accommodated within the framework of algorithms discussed here.

Egbert & Booker (1989) introduced use of PCA for EM array
data, but also considered a closely related statistical model, the
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multivariate-errors-in-variable (MEV) model (e.g. Gleser 1981)

K
X =) Unaj + ey (€)
k=1

Here X,; are frequency domain data for channels n = 1, N, and
time windows j = 1, J; U, define the components (for channel
n) of spatial modes k = 1,..., K; aj; are generalized ‘polarization
parameters’ giving the coefficients of spatial mode & for window ;.
In the statistical literature on PCA the elements U, are generally
referred to as the loadings, the vectors U, as the principal compo-
nents, and the coefficients ay; are called the scores. The MEV model
explicitly allows for noise, which we represent in (3) as e,;. We as-
sume this noise is incoherent (i.e. uncorrelated between channels,
and between time segments), but allow for variations in amplitude
between channels

cov(e,;, ey 1) = a,fSUanjjr. 4)

Most PCA algorithms require data standardization, that is, shift-
ing and normalizing each variable to zero mean and unit variance,
using robust estimates of scale and location. In the context of the
MEYV model (3), the incoherent noise standard deviation o, should
instead be used to normalize each variable to ensure optimal and
unbiased results (Egbert 1997). A procedure for robustly estimating
these additional parameters must thus be integrated into our analy-
sis scheme. Because the complex Fourier coefficients intrinsically
have randomized phases (in general there is no deterministic or
systematic alignment of signals and the time windows used for the
Fourier transform) data means are already effectively zero.

The MEV model of eq. (3) can be summarized in matrix notation
as

X=[X;---X;]=Ula;---a;]+[e---e;]=UA+E, )
while (4) can be expressed as
cov(e;, e; ) = 4;;Cx, (6)

where Cy is the diagonal matrix of channel incoherent noise
variances o7’

As discussed in Egbert & Booker (1989) the representation of
(3) and (5) is not unique, since UA can be replaced by UA where
A = BA and U = UB™!, with B any non-singular K x K matrix.
However, adopting the conventions of PCA makes the representa-
tion nearly unique: the columns of U can be taken to be the principal
components or loadings, and then the polarization parameters in the
matrix A are just the scores. Any representation of the form UA can
be converted to one satisfying the PCA convention by truncating the
singular value decomposition (SVD) of the matrix UA = USV* to
include only the first K columns of U, V and S (corresponding to the
K non-zero singular values of UA). Then U gives the spatial modes,
which are orthonormal U*U = I, and the polarization parameters
satisfy

A =SV*, V*V =1, S = diag(sy, ..., sk), (7)

with positive decreasing entries on the diagonal (s; >+ > sx), as
for the definition of the ordered principal components. Note that
even with this convention the parametrization is not strictly unique,
since the complex-valued columns u; and v; are still only defined
up to an arbitrary phase factor: multiplying corresponding columns
of U and V by unit magnitude complex numbers e, k =1, ..., K

would still result in the same product matrix UA, if A is defined
by (7).
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Our principal focus here is on estimation of U and A in the
model (3), when there is a significant amount of missing data. One
approach to dealing with missing data in PCA is based on the
expectation maximization algorithm (EMax; Dempster et al. 1977).
The EMax algorithm is an iterative scheme which alternates between
two steps: (i) missing elements are filled in by expected values,
computed based on the most recent value for the parameter estimates
(the expectation step or E-step) and (ii) the model parameters (in the
case of PCA, the loadings and scores) are estimated using the filled-
in data matrix (the maximization step or M-step). When a robust
estimation technique is used for the second step this is sometimes
called the R-step, and the overall iterative scheme is referred to as an
ER algorithm. In either case, the true values of the missing elements
are unknown, so the procedure must be initialized somehow, and
then repeated until some convergence criterion is fulfilled. Both the
EMax and ER algorithms have been applied to PCA with missing
data (e.g. Serneels & Verdonck 2008) .

A slightly different approach to PCA for incomplete data matrices
has been proposed in the context of image processing by De La
Torre & Black (2003). This approach, which can itself be viewed
as a special case of the EMax algorithm is based on ‘criss-cross
regression’ (Gabriel & Zamir 1979). The basic idea here is that if
one had a preliminary estimate of U, then (3) is a linear model, and
A can thus be estimated by linear regression. Conversely, once A
has been estimated, U can be estimated in the same simple way.
Thus, if some initial estimate of either set of parameters can be
provided, these steps can be alternated to convergence. This scheme
can be made robust by replacing the least-squares regression steps
with a robust alternative (De La Torre & Black 2003). For example,
Egbert (1997) used a regression M-estimate in an application of this
iterative estimation scheme to EM array data. Because there is no
obstacle to applying each of the linear problem steps with irregular
data arrays, the criss-cross regression scheme readily generalizes to
allow for missing data. This simple idea, augmented with some of
the other methods for robust PCA discussed earlier, forms the basis
for the robust multivariate analysis scheme we have developed for
EM arrays, which we refer to as MsDEMPCA (missing data EM
PCA).

3 ESTIMATION SCHEME

Our implementation of MsDEMPCA is based on the general ideas
of robust PCA discussed earlier, tailored to characteristics specific
to large EM arrays. We begin with an overview of the scheme,
which is summarized in Fig. 1, before providing specific details on
its component parts.

The first processing step, which we do not discuss in detail here,
is to use a WFT (or equivalent scheme) to convert time-series for
all channels at all sites into a set of complex frequency domain
‘data matrices’, each corresponding to a different frequency band.
MsDEMPCA is applied to each frequency band independently, so
we consider further only a single complex N x J data matrix X.
Each of the J columns of X is an N-dimensional complex data
vector corresponding to Fourier coefficients for all channels for
a fixed frequency/time window. For example, for an array of N,
five-channel MT sites N = 5N,; if the frequency band consisted of
two adjacent Fourier harmonics and the total number of windowed
segments were N,, we would have J = 2N,,. Note that we typically
use longer time windows (and decimated time-series) for lower
frequency bands, as, for example, in Egbert (1997), so J typically
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Compute WFT = X(N, J) = complex data matrix

Initialization
Select core sub-array = X(N', J'), N’ < N, J" < J (Sec. 3.5)
Initial estimate of U for core array (Sec. 3.1)
Compute Cy, clean data (Sec. 3.4)
Re-estimate U using cleaned data, Cn (Sec. 3.1)

Set U_Estimated = True

Outer Loop: Building up full array from core (Sec. 3.6)
While N’ < N or J' < J (array not complete)
Execute Inner Loop
Increase # active segments .J', keeping N’ fixed
Execute Inner Loop
Increase # active channels N, keeping J' fixed
Set U_Estimated = False

Execute Inner Loop

Inner Loop (For fixed sub-array):
‘While not converged
If U_Estimated
Compute Cy, clean data (Sec. 3.4)
Estimate A, with U fixed (Sec. 3.3)
Estimate U, with A fixed (Sec. 3.2)
Set U_Estimated = True

Figure 1. Summary of robust multivariate array analysis scheme. The inner
loop implements the ER algorithm for a fixed array. The outer loop is used
to build the full array up from an initial smaller core array, for which only
a small fraction of data are missing. The inner loop can also be used alone
when a small fraction of data are missing.

decreases with frequency. Note also that N x J represents the
nominal size of the data matrix; many of the entries in the matrix
will in general be missing.

The core of MsDEMPCA (inner loop in Fig. 1) is based on the
criss-cross regression scheme, with alternating robust estimates of
the polarization parameters A and the spatial modes U, augmented
with estimates of the channel incoherent noise variances Cy. These
three steps are described in Sections 3.2-3.4. If the fraction of
missing data is not too great (e.g. a few tens of per cent total, with
no long gaps at any sites), initial estimates of U and/or A (required
to start the criss-cross regression) can be obtained by setting any
missing values to zero, and then applying the robust SVD scheme
described in Section 3.1. However, this simple scheme may fail,
for instance when there are individual sites with more extensive
data gaps. To handle this case we first reduce to a ‘core’ array
(Section 3.5) consisting of a subset of all sites, operating over a
possibly shorter time interval, for which the fraction of missing data
is small enough for the simple inner loop scheme to be effective.
Once we have initial estimates of spatial modes and polarization
vectors, restricted to the core sites and time intervals, the array can

then be built up to ultimately include all sites and time segments, a
process described in Section 3.6, and represented by the outer loop
in Fig. 1.

Before proceeding two general comments are in order. First, the
number of modes estimated, denoted by K, may not be known a
priori. Obviously L = min (J, N) sets an upper bound on the num-
ber of estimable modes, and in fact we cannot expect statistically
meaningful results for all modes unless K < L. Ideally, if the data
set is large enough, we can set K to a large value, and then es-
timate the number of statistically significant coherent modes, for
example, following ideas discussed in Egbert (1997). However, for
very large arrays (such as the BEAR example considered later) the
number of actual coherent modes may well exceed the number that
may be reliably estimated, given the available number of segments
J. Experiments with a range of values for K suggest that a set of
dominant modes Uy, . ..U, (associated with the k largest variances)
are insensitive to the truncation level provided & is not comparable
to K. Higher modes (especially as k approaches K), as well as esti-
mates of incoherent noise variance, are more sensitive to the choice
of K. For the arrays discussed later we have focused on obtaining
estimates for five to six modes (which carry the bulk of the signal
for these arrays), and set K = 10. For other applications, such as the
global array of geomagnetic observatories, other values of K may be
appropriate. Secondly, in our discussion later we frequently use the
superscript (i) to denote inner-loop step or iteration number, with
the convention that if i corresponds to a spatial mode (U) estimation
step, i + 1 will denote a polarization parameter (A) step. Thus a full
iteration of the inner loop increments i by 2.

The algorithm described here has been realized in MATLAB us-
ing object-oriented programming. The framework allows for easy
modification, development and extensions of the code. Separate
classes are coded for spectral analysis, PCA, plotting and subse-
quent post-processing of the principal components. With the object-
oriented approach it is easy to modify or replace individual com-
ponents of the overall scheme. For example, we have experimented
with several approaches for robust regression, and for robust co-
variance estimation. In the following subsections we focus on our
basic ‘default’ implementations of individual algorithmic steps, be-
ginning with the robust covariance estimator used for initialization
of the criss-cross regression, followed by a description of the alter-
nating estimation steps for U, A and Cy—all that would be required
for an array with only a small amount of missing data (inner loop
alone). In the last two subsections we consider extension to the gen-
eral case: first describing our procedure for stripping down to a core
array with minimal missing data, and then our approach to building
the array back up to obtain estimates for the full set of sites, using
as many time segments as possible.

3.1 Robust covariance estimation

If the data matrix is complete (or has been completed by setting a
small fraction of missing data to zero) estimates of U and A can
be obtained from the eigenvector decomposition of the normalized
SDM or generalized SVD of X. As in Egbert (1997) this estimate
can be made more robust by applying the affinely invariant ro-
bust covariance matrix estimate of Huber (1981). Here we adopt a
slightly modified approach and work directly with the SVD of the
data matrix. In this form the estimator extends easily to the case
where there are more channels than segments (N > J; so that the
sample SDM is not of full rank). This extension is especially useful
for the large arrays considered here.
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Normalize: Z = Cn~/2X
Compute initial SVD: Z = u(@s() [v()]*

(with L = min(N, J) defining size of s())
Initialize weights: W(©) =T
Loop over i:

YO = [yl --yy) = s u]*z

7‘_5') = Hy_gl)H JIL
1 if r_(}-i) <7y
A >

J

W) —
! rU/r_(}-i) if 7

WO = diag(wi, ..., w ;)

compute SVD of YOW ) = ul+Dgli+1) [y i1+

if Jul+ Vs DD || < € break

Using final weights, compute SVD of ZW = USV*

Figure 2. Affinely invariant robust covariance estimate of Huber (1981),
slightly modified and recast in terms of the SVD, instead of an eigenvector
decomposition. L = min(N,J) is the rank of the data matrix, and in the SVD
Uis N x L, Sis L x L diagonal and V is J x L. The computation of Y
can be stabilized by adding a small constant to the singular values on the
diagonal of s,

The basic idea is to estimate U from the generalized SVD of the
scaled data matrix

Cx '2XW =7 = USV*. (8)

Multiplication of X on the left-hand side by Cx~'/? rescales each
channel by the inverse of the estimated incoherent noise standard
deviation, so that all channels are non-dimensional, and noise levels
are uniform across channels. In (8), W = diag(w, . .., w,) is a diag-
onal matrix of segment weights (0 < w; < 1). These are determined
iteratively, as in the affinely invariant covariance estimate described
in Egbert (1997), and as outlined in the pseudo-code in Fig. 2. Note
that because the channels are scaled by incoherent noise variance,
the components of U and the singular values are non-dimensional.
The singular values can be interpreted as the SNR (amplitude),
with values significantly above one indicative of coherent signal.
The singular value spectrum can thus guide the choice of truncation
level K. The transformation U = Cll\,/ *U converts the spatial modes
back to physical units, which is required for physical interpretation
of the principal components.

For the initial call to the robust covariance estimator, we generally
will not yet have estimates of Cy. In this case we use the individual
channel variances for scaling (so the initial principal components
are based on the correlation matrix). Then, as outlined in Fig. 1, we
compute estimates of incoherent noise variances (see Section 3.4),
and repeat the robust covariance estimator using Cy. Note also
that we can obtain initial estimates of A from this step: essentially
A =SV~

We have also experimented with alternative robust PCA algo-
rithms from the Libra statistical library (Verboven & Hubert 2005).
In particular, ROBPCA, which is based on a fast projection pur-
suit algorithm, appears to be a promising alternative to the affinely
invariant covariance estimator.

3.2 Estimation of the spatial modes

We assume we have an estimate of the polarization parameters
a,(ffl), k=1,K;j =1,J (e.g. from iteration i — 1, or from the

robust covariance estimate of the previous section). Treating these

© 2012 The Authors, GJI, 190, 1423-1438
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parameters as fixed and known, (3) represents N decoupled linear
statistical models, one for each data channel. For each fixed » we can
thus compute refined estimates f/;?, k =1, K by applying a robust
regression estimator to (3), omitting any segments j for which X, is
missing. We have primarily used the regression M-estimate (RME;
Huber 1981), but within our object-oriented framework alternative
robust regression procedures [e.g. the repeated medians scheme
used by Smirnov (2003)] could quite easily replace the M-estimate.

The RME can be viewed as an iterative weighted LS estimate,
with the weights for segment j determined from the magnitude of
the residuals w,; = w(|X,; — X 1i1), where the predicted data are
given by

an =

M~

@) (i=1)
nk akj . (9)

=~
Il

1

In our implementation of the RME we have used a Huber loss
function, for which the weights take the form

1 7] < 6,70
(8ur0)/17]

where 67 is a robust estimate of the error variance for channel n.
Because the weights depend on the residuals (and these depend,
through the predicted data, on the weights) the weights must be
computed through an iterative procedure.

The RME can also be viewed as an unweighted LS estimate, with
the raw data ‘cleaned’ by pulling observations with large residuals
towards the predicted data

w(r) (10)

B
|V| > 0,10

Xy =X +wy (X, — X). (11)

The weights in (11) are also given by (10). The cleaned data com-
puted in the iteration i update of the spatial mode estimates are
denoted as X, and are saved for use in subsequent processing
steps. For observations X, that are missing, the prediction X, ;j can
be saved in the cleaned data array.

Note that the estimates for each channel are computed indepen-
dently. Thus, estimates of the spatial mode vectors U, assembled
from these estimated components will not in general be orthonor-
mal. As noted earlier we can orthogonalize the spatial modes, and
also ensure that the polarization parameters are consistent with the
PCA convention of (7), by computing the SVD of the predicted data
matrix

XD = POATD = g [SV] = UDAD, (12)

Note that the spans of the columns of U? and U® are identical.

3.3 Estimation of polarization parameters

For this step we assume we have an estimate of the spatial modes
UA(,;), k=1,K;n =1, N, which are now to be treated as fixed and

known. Then (3) represents J decoupled linear statistical models,
that is, for each time segment j we have

P;X; =P;U",; +Pje,, (13)

where P; is the N; x N matrix which selects the N; < N channels
which are available for this segment. If no data are missing for
segment j, P; is the identity, the design matrix for the linear model
of (13) reduces to the unitary matrix U?, and the least-squares
estimate will simply be

al " = (U7X, (14)
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In the more general case with missing data the design matrix will
not be unitary, and, if the fraction of missing data is large, it may
even be poorly conditioned. Moreover, if the number of channels
exceeds the available number of data segments the problem would
be undetermined. We thus use a regularized or damped LS approach
to obtain stable estimates of the polarization vectors a;.

In fact, within the framework of our iterative scheme, we will
generally have reasonably good prior information about the statis-
tics of both the data errors and the model parameters in (13), and
these can be used to justify a sensible regularization. In the notation
used earlier, the covariance of data errors can be estimated (using
the incoherent noise variance estimates) as C; = P /CNP;‘., while
the covariance of model parameters (a;) can be estimated from the
statistics of all polarization parameters estimated from the previous
iteration (or initially from the robust covariance estimate). Because
the spatial modes U are orthonormal this covariance is simply C,, =
S2/J, where S is the diagonal matrix of singular values of the pre-
dicted data matrix X, and J the number of available time segments.
For simplicity in the following we use the notation ¥; = P;U?” and
E; = P/X;, and, in the usual way for weighted damped LS (Menke
1989), we minimize the objective function

®=(E;, —¥,a)'C;(E; — ¥,a;) + aa’C,'a; (15)
to obtain
A = (v e, +aC,) T C E) (16)

This estimate, with & = 1, is the minimum variance linear unbiased
estimate under the covariance assumptions given earlier, and is also
the Bayesian estimate of a; when prior distributions for both the
model parameter and data errors are Gaussian, with the covariances
given (e.g. Menke 1989).

The estimate (16) can also be computed using the SVD of the
appropriate submatrix for segment j, that is, if

v, = UAV", (17)
then the estimate of (16) can be written as
a,=C!>VA (A +1)"' U"C; g, (18)

Note that we have again taken o = 1 since the covariance of model
parameters and data errors have already been independently esti-

-1 . Y
mated, and that A (A* +1) = diag [A%H

] is easily computed
from the singular values of ;.

To reduce the effect of outllers one could in principal also use
a robust regression estimator. Instead, we replace the raw data X
by the cleaned data X (see 11) in the definition of E;. Because
the polarization parameters are estimated independently for each
segment, additional computations are required (as for the spatial
mode step) to maintain the orthogonality/normalization conditions
(7) for the new estimates at step i. Here this is accomplished by
computing the SVD of the matrix A assembled from all of the
estimated polarization vectors (i.e. 4; from 18 forj =1,...,J)

A=1[a ---a,]=UAV*. (19)
The estimates for step i + 1 are then

ACTD = AV, Uit = g, (20)

3.4 Estimation of incoherent noise variances

Estimates of the channel incoherent noise variances (4), which are
used to define relative channel weights for the robust covariance

estimate of Section 3.1, and for the estimates of A in Section 3.3,
can be derived from residuals in the fit of each channel to a set of
predicting variables, for example, from the residual variances from
the spatial mode estimation step of Section 3.2. However, this simple
approach may fail when noise heavily contaminates a single site.
In this case, one or more of the modes (which by definition explain
maximal variance in the overall array) can become dominated by
the noisy site. This noise would then be very easy to fit (essentially
predicted by itself), leading to the erroneous conclusion that this site
has high SNR. This causes the noisy site to be more heavily weighted
in subsequent estimation steps, further increasing contamination of
the modes.

We thus follow the approach advocated by Egbert (1997), with
each channel in turn excluded from predicting itself. More specif-
ically, residual variances for the N, channels at a single site (de-
noted by index s) are constructed as follows. First, we use the
matrix of cleaned data from all other sites, with any missing data
filled in by predictions, as computed from (9). Call this matrix of
N — N,-dimensional data vectors X!"). These data vectors are then

(s)°
‘projected’ onto the current estimate of the spatial modes via

Ay =1 X0, @21

where UEV)) is the current estimate of the spatial modes with the
channels from site s excluded; this submatrix can be reorthonor-
malized but this is not necessary. As our notation suggests, this
process results in something very like an estimate of the polariza-
tion parameters, but with data from site s excluded. We then fit
the N,-dimensional site s data vectors, not filled in or cleaned, and
denoted as X, using the RME. This produces a robustly estimated

TF T(S), which relates channels at site s to columns of Am as

X, =T Ay, (22)

(s)

together with robust estimates of residual variances for the N pre-
dicted components. Note that T, = T(S)[Um] provides the corre-
sponding TF, which predicts data at site s using all other sites in the
array.

The whole process outlined earlier is repeated for each site, with
the results assembled into a vector of N residual variances (one
for each channel) and an N x N TF matrix T (assembled from
the individual site TFs T, and with zeros on diagonal blocks. The
variances and T can then be used in the scheme given in Egbert
(1997) to allow for effects of noise in the predicting channels, and
thus to obtain approximately unbiased estimates of the incoherent
noise parameters o2, n = 1, N. Calls to the RME in the incoherent
noise estimation step can also be used to generate a cleaned data
matrix X. Indeed, we prefer this computation of X to that result-
ing from the RME in the spatial mode estimation step, since only
variables from other sites are used to compute the predicted data,
thereby minimizing the potential influence of large-amplitude noise
at isolated sites.

3.5 Choosing a ‘core array’

When the amount of missing data are not too great the steps out-
lined already suffice for robust PCA: obtain initial estimates of U
and A by setting missing values to zero and using the robust covari-
ance estimation scheme of Section 3.1, and then iterate the steps
described in Sections 3.2-3.4 to refine these estimates (inner loop
in Fig. 1). In the simplified synthetic data tests discussed later this
scheme is successful with up to a few tens of per cent of randomly
distributed missing data. If the fraction of missing data is greater,
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and for more realistic patterns of missing data (e.g. some sites with
long gaps), we find that the iterative estimation process cannot be
reliably initiated by just setting missing observations to zero. In
general we thus adopt a more complex strategy, first reducing the
full array to a ‘core’ subarray (fewer sites, and segments) with a
relatively small amount of missing data (e.g. 5—10 per cent overall;
no sites with a very high fraction of missing data). After obtaining
estimates of U and A for this subarray, we then extend estimates to
the full array, following the approach described in the next section.

Our scheme for choosing the core array is relatively simple, com-
promising between the number of sites retained and the number of
segments analysed. We first eliminate all segments for which the
fraction of available channels falls below some threshold pcy;, set
to a relatively low value to eliminate those segments with few func-
tioning channels (e.g. at the very beginning and end of the array
deployment). Then, among this reduced set of segments, all chan-
nels for which the available fraction of segments is not at least pycq
are eliminated. Finally, using this reduced set of channels, all seg-
ments are eliminated for which a fraction of the remaining channels
available falls below pcyy > pcni- Appropriate values for the param-
eters will depend on array-specific details, including the number
of sites, duration of occupation and the pattern of missing data, as
discussed further in the context of specific examples. An example
of the core selection process is given in Figs 3(a) and (c), for an
array with 13 five-channel MT sites (so N = 65 channels) and with
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the three parameters set to pcpi = 0.5, pseg = 0.75 and pcny = 1,
respectively.

3.6 Outer loop

Once the core array is chosen, we use the methods of Section 3.1
to obtain estimates of the spatial modes U, and polarization pa-
rameters A. We can then estimate the incoherent noise variances
Cy = diag(o}, ..., 0%), using the procedure described in Sec-
tion 3.4. As discussed there, as a by-product of estimating Cy,
outliers in individual data channels are pulled towards predicted
values, resulting in a cleaned data matrix X. We thus repeat this step
two to three times to further refine the data cleaning, and enhance ro-
bustness of incoherent noise variance estimates. We then alternately
estimate A (following Section 3.3) and U (following Section 3.2),
requiring typically only a few iterations of this inner loop to obtain
stable estimates.

The next step (assuming that the core is a subset of the full array)
is to extend the analysis to a larger number of segments, but still
restrict to the core subset of data channels for which components
of U have already been estimated (Fig. 3d). In particular, we use
all segments j for which N; > f K, where N; is the number of
channels, among those in the core array, which are available for
segment j. The parameter f, > 1 is an adjustable scale factor,

used to ensure that there are sufficient channels available for the

Site

Site

10

15
Day #

Figure 3. Upper panel: Selection of the core array. Three steps are shown with segments, sites and the last segments omitted in grey (slightly lighter for each
successive step). Black is missing data. The remaining white area at the end is the core array (in this case pcny = 1, so there are no missing data in the core).
Lower panel: shows how the array is built back up, after estimating for the core. Now data not yet used are a single colour of grey. The first illustrates adding
segments using the PCs estimated for the core segments, the second extends to additional sites (all in fact), and the third shows the final extension to include
all segments with the minimum number of sites (four in this case, corresponding to fse; K = 20 channels).
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segment to estimate K polarization parameters; in the applications
discussed later (and in particular in Fig. 3) we have set f', = 2.
Using this larger set of segments, the incoherent noise estimate is
updated, and the alternating sequence of A and U estimation (i.e. the
inner loop) is iterated to convergence. This step provides estimates
of the polarization parameters for more segments, and incorporates
additional data into the spatial mode estimates.

Next, the number of data channels is increased (Fig. 3e), now
using all channels » for which J,, > f.,K, where J,, is the number
of segments (among those used in the previous step) available for
channel n, and f, > 1 is again a scale factor (which we have again
taken to be 2). For this larger array estimates of the polarization
parameters are available for all segments, but spatial modes have not
yet been estimated for the additional channels. Thus, it is necessary
to begin the alternating estimation sequence by estimating U. This
is followed by estimation of Cy (incoherent noise variances must be
estimated for the new channels), and then by a refined estimate of
A. The sequence is again iterated to convergence. Finally, (Fig. 3f)
the time interval used is extended to include all segments with a
sufficient number of channels (i.e. /s, K), and estimates of A, U and
Cn are again iteratively refined. Depending on the pattern of missing
data and the parameters used, additional steps to increase first the
number of sites and then the analysis interval may be required. The
process is terminated when no segments remain with at least f', K
channels.

4 EXAMPLES

In the following we describe a range of tests we have performed with
MsDEMPCA. We keep our focus here on the initial multivariate
analysis phase, testing the ability of the algorithm to cope with
missing data and noise when estimating spatial modes.

4.1 Synthetic data tests

As a first test of MSDEMPCA we consider a relatively simple syn-
thetic data set, generated to be qualitatively similar to what might
be expected from a modest-sized array of MT sites. Here we aim to
examine the ability of the algorithm to cope with missing data and
noise. For these initial tests we do not reduce to a core array, but
rather apply only the inner loop steps to the full array, to explore
limits of this simple approach.

To generate the synthetic data two vectors (U), representing the
idealized plane-wave response for 10 sites (a total of K = 50 chan-
nels) were generated, with electric channels E, and E, assigned
random amplitudes 5-10 times larger than the horizontal magnetic
components H, and H,, which were scaled to unity. Vertical H.
components were in turn given amplitudes a factor of 2—10 times
smaller than the horizontal magnetic components. Then, pairs of
random polarization parameters (a) for 1000 segments were drawn
from a N(0, 1) distribution and used to generate the synthetic data
matrix X = Ua, of size 50 x 1000.

These synthetic data were contaminated by multiple components
of noise, and randomly selected segments were deleted. First, nor-
mally distributed random noise with constant amplitude, on average
10 per cent of the horizontal magnetic signal, were added to all chan-
nels to simulate incoherent instrumental/site noise. Note that this
homogeneous component of noise is relatively smaller for the elec-
tric channels, which have significantly larger absolute amplitudes.
To simulate outliers we then added large amplitude random errors
drawn from an exponential distribution, contaminating a variable

fraction (1-10 per cent) of segments, which was chosen randomly
for each site, and for each synthetic data realization. To further
model intersite variations in data quality, we subdivided nine of
the sites between two groups, with different fractions/patterns of
missing data. The first group was allowed to have at maximum
90 per cent missing segments, while the second group had at most
30 per cent of the segments deleted. One site out of 10 was always
kept complete, with no missing data. We ran Monte Carlo simula-
tions to generate 1000 realizations of synthetic array data following
this general template, but with randomly varying fractions of miss-
ing and severely contaminated data. It should be noted that we did
not introduce any noise which was coherent between sites, so the
coherence dimension of the data always remained equal to two.

To compare true and estimated PCs we need a measure of the
distance between the subspaces spanned by the columns of the
orthonormal matrices U (two PCs used to generate the synthetic
data) and U (the two PCs estimated from noisy and incomplete
data). This measure must allow for the indeterminacy in the phases
ofiindividual PCs, as well as possible mixing between modes (which
isnot relevant to the distance between the subspaces). Thus we allow
the two matrices to be related through multiplication by an arbitrary
complex matrix

U=0C+e, (23)

where e represents the error matrix, associated with differences
in the column spaces of U and U. Taking into account that the
columns of both matrices are unit vectors, the LS estimate for C
would be C = U*U so that the error matrix can be expressed
as e = (I — UU*)U. The size of the relative error can then be
summarized as € = ,/Tr(e*e)/ K, which we refer to in the following
as the subspace distance. Note that for two orthogonal spaces € =
1, while for two coincident spaces € = 0. For small deviations the
subspace distance can be taken as an average relative error in the
PC components, ignoring mixing between modes.

We first tested a direct SVD approach on clean data sets generated
with no missing data and no outliers. This simple approach (and of
course also MsDEMPCA) always reproduces the true PC modes
with accuracy (as measured by the subspace distance €) to better
than a fraction of a per cent. Results for synthetic realizations with
missing data (and outliers) are presented in Fig. 4, where € is plotted
as a function of the missing data fraction for three different cases,
which are distinguished by colour.

The direct SVD applied to the data matrix with missing values
set to zero (red dots) does not reproduce the original PCs reliably
or accurately, even for missing data fractions as low as 1-3 per
cent. MsDEMPCA (green dots) does a much better job, recover-
ing the true PCs within a few per cent in almost all cases, often
even with very high fractions (up to 60-70 per cent) of missing
data. We also used a variant of the basic MsDEMPCA algorithm
outlined earlier, with ROBPCA (Verboven & Hubert 2005) from
the Libra statistical library used instead of the affinely invariant
robust covariance estimator of Section 3.1 to compute the initial
spatial modes estimate (blue dots). Both variants produce results
of similar quality, that is, generally quite good, but with failure
in some cases with large fractions (*30 per cent or more) miss-
ing data. Interestingly, the estimates break down for different spe-
cific cases, which indicates that different estimators have different
protection from outliers and different sensitivity to missing data
pattern. Because the inner loop algorithm begins to break down
when the fraction of missing data is too large we use the outer
loop scheme in such cases, first reducing to a core array. This more
complex estimation scheme is also applied to the real data cases
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Figure 4. Synthetic test showing the dependence of the subspace distance
€ (multiplied by 100, and expressed as per cent) between spaces defined by
the two PC modes from the amount of missing data in per cent. Red squares
show the error of reconstructed PCs using direct SVD of data matrix with
missing elements filled with zeroes, green triangles and blue circles show
the error of PCs reconstruction using MsDEMPCA basic algorithm and with
ROBPCA modification correspondingly. With amount of up to 30 per cent
of missing data the algorithm is able to recover PCs within a few per cent,
independent on missing data patten.

discussed in the following subsections, where signal and noise
are both more complex, and patterns of missing data often more
challenging.

4.2 EMScope ‘rolling arrays’

As a second test case we consider a set of long-period EMScope
MT sites occupied in 2007 in Eastern Washington State, USA, as
part of the EarthScope USArray project (Patro & Egbert 2008).
In the EMScope campaigns up to 20 MT systems are deployed
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simultaneously, but in a ‘rolling array’. After an instrument has
operated for roughly 3 weeks at a site that instrument is moved to a
new location, resulting in an array configuration that changes almost
daily. We consider a set of 13 consecutively installed sites, located
on the quasi-regular USArray grid, with roughly 70 km between
sites (Fig. 5). Because of the timing of site occupations, illustrated
in Fig. 3, there is a trade-off between the number of sites that may be
included in a fully synoptic array and the length of the time window
that may be analysed. If the full set of 13 sites are included, only
~5 d could be used for analysis without the extensions developed
here to treat missing data.

Before considering the larger set of sites with staggered deploy-
ment times, we test the effects of artificially created gaps in a smaller
subarray of six sites (filled symbols in Fig. 5). These all operated
together for roughly a 2-week period, allowing analysis with more
classical (but still robust) methods such as the multivariate scheme
originally described in Egbert (1997). Starting from this small array,
we deleted data segments randomly, as illustrated in Fig. 6, applied
MsDEMPCA, and then compared results to those obtained with the
complete data set. In this first run we again test the core part of the
algorithm (inner loop).

For each site a random number (between 0 and 6) of gaps were
created, with random timing, and with random length distributed
so that the expected fraction of missing data (averaged over all
sites) was pmiss. Note that with this procedure the amount of data
missing is quite variable over sites, with some sites having few or
no gaps (see Fig. 6). Note also that the same gaps were created
for all channels at a site, and for all periods processed. The impact
of the gaps becomes slightly greater at the longest periods, because
with fewer available segments, the fraction of windowed time-series
segments affected by gaps becomes larger. To assess the impact of
these gaps on estimates of the modes we use the subspace distance
€ of Section 4.1, now measuring the distance between the spaces
defined by the two dominant PCs estimated with and without the
artificial gaps. Relative errors (expressed as ‘epsilon’) are plotted
as a function of period in Fig. 7 for three missing data fractions
(pmiss = 5 per cent, 10 per cent and 20 per cent).

For reference, in the same figure we also plot an estimate of errors
in the two leading PCs, computed with the bootstrap (e.g. Efron &
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Figure 5. Location of EarthScope sites used for test arrays. The full set of 13 sites have overlapping occupation times (see Fig. 3), but there were only about
5 d when all were operational. MsDEMPCA allows us to analyse data from the full time window shown in Fig. 3. The six solid dots denote sites which were
occupied successively in the middle of the time interval, with sufficient overlap in all occupation intervals (roughly 2 weeks) for analysis with a standard (no
missing data) approach. We use this subarray to test the effectiveness of MSDEMPCA in recovering these standard estimates when data gaps are introduced

artificially.
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Figure 6. Example of random gaps introduced into the six-site array
for testing the missing data scheme. Here the expected fraction missing is
5 per cent.

Tibshirani 1993). The bootstrap errors, which are also summarized
with the subspace distance €, were computed by sampling indi-
vidual array vectors (i.e. all components at all sites together) with
replacement from the full set of J such vectors, and then applying
the robust PC estimation scheme to the resulting (full, no missing
data) arrays. A total of 20 bootstrap replicas were computed for each
period band. Then, we computed the subspace distance € (for the
two leading PCs) between the population mean (i.e. PCs computed
with all data) and each bootstrap replicate. The dashed line in Fig. 7
gives the rms of € over the 20 replicates, a summary estimate of the
statistical precision of the PC subspaces determined from the full
data set.

In the middle of the period range (*30-1000 s) the effect of
5-20 per cent missing data is minimal, with relative errors a small
fraction of a per cent, and the change in estimates comparable to
or smaller than statistical errors inferred from the bootstrap. The
effects of missing data are somewhat greater at the shortest and
longest periods, especially as the fraction of missing data increases.
In particular, for 10-20 per cent missing data changes in the esti-
mates approach 2 per cent at a period of 10 s, well above statistical
error levels. These short periods are essentially in the ‘dead band’
where the SNR for the fluxgate magnetometers used for the survey
is very low, typically below 1. Although SNRs for the electric chan-
nels are generally higher, overall signal levels are weak, apparently
increasing the negative impact of missing data. At long periods
(beyond 1000 s) changes resulting from missing data become much
larger, approaching 10 per cent at the longest periods (10 000 s) for
the case of 20 per cent missing data. However, the bootstrap error
estimates are comparable in magnitude suggesting that sample sizes
(with 2 weeks of data) are too small for reliable estimation of the
PCs, with or without missing data. Indeed, at the longest periods,
the estimates of statistical precision are themselves quite variable,
and probably not very meaningful. Overall these results suggest
that as long as the SNR is not too low, and the fraction of missing
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Figure 7. Subspace distance € between spaces defined by the two dominant
PC modes, computed with and without artificial gaps in the time-series for
the six-site EarthScope array defined by solid dots in Fig. 5. The three solid
curves give € as a function of period for three different fractions of missing
data, 0.05,0.10 and 0.20. The heavy dashed line gives a bootstrap estimate of
statistical errors in the full data set PC estimates, also expressed as subspace
distance.

data not too great (which we estimate to be about 15-20 per cent),
our estimator performs reliably, reproducing estimates that would
be obtained with a complete data set, at least to within the intrinsic
statistical uncertainty.

We next consider application of the complete estimator, including
reduction to a core array and execution of the outer loop, to the full
array of 13 sites from Fig. 5. To set the total time interval shown
in figure Fig. 3, we required the minimum number of sites to be
three, ensuring that the minimum number of channels available
exceeded the number of spatial modes estimated (K = 10). Earlier
and later times, when only two or fewer of the 13 sites were operating
are excluded from our analysis. Construction of the ‘core’ for the
initial estimates is illustrated for this array in (already discussed)
Figs 3(a—c). Parameters used for selection of the core were in this
case (see Section 3.5) pyg = 0.75, pcyi = 0.5 and pcy, = 1.0,
resulting in a core array with seven sites (35 channels total) running
for approximately 15 d. Stages in the expansion from the core to the
full array (see Section 3) are illustrated in the bottom three panels
of Figs 3(d—f).

The non-dimensional eigenvalues of the normalized SDM (i.e.
expressed in SNR units) are plotted as a function of period in Fig. 8.
The curves are smooth functions of period, suggesting statistically
stable and reliable estimates. There are two clearly dominant modes,
with SNR about 20 dB above the next most significant mode; these
indeed correspond (at least approximately) to spatially uniform hor-
izontal magnetic fields (Figs 9a and c). The corresponding electric
components exhibit substantially more variability, reflecting site-to-
site variations in conductivity, including very localized near-surface
distortion. In Fig. 9 we have reduced this variability by plotting
electric field components scaled by the inverse of the (frequency-
dependent) rms channel amplitude. With this scaling electric field
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Figure 8. Spectrum of eigenvalues of the normalized SDM estimated for
the 13 site array of Fig. 5, obtained using MsDEMPCA. Eigenvalues give
SNR of each of the modes (PCs). As expected for MT data from a small array
at geomagnetic mid-latitudes, there are two dominant modes, corresponding
roughly to two polarizations of uniform magnetic sources.

components for the first two modes (Figs 9b and d) have similar
amplitudes, directions and phases, revealing current flow in the
Earth that is at least qualitatively consistent with the quasi-uniform
magnetic fields. However, site-to-site variations are still quite
notable.

The general character of the ordered eigenvalue spectrum is quite
similar to that seen previously using the methods of Egbert (1997)
on smaller EarthScope arrays with no missing data (Egbert 2008).
For example, the amplitude of the third mode increases at long
periods; this mode is associated with ‘normal Z’, that is, H, that
is coherent across the array, associated with horizontal magnetic
field gradients (i.e. the signal for an HSG approach). There is also
a peak in the mode 3 curve near a period of 50 s, at this period
range corresponding approximately to N—S gradients of the N-S
magnetic field component (Fig. 9¢). At the geomagnetic latitude of
the array (53.7°) the field line resonance period for PC3 pulsations
is roughly 50 s (Samson et al. 1982). A steep N—S gradient of the
N-S magnetic field is exactly what would be expected near this
resonance period (e.g. Bransky ef al. 1985). The pattern of scaled
electric fields (Fig. 9f) is also consistent with the induced or image
currents associated with the ionospheric current systems resulting
from field line resonance.

Other secondary modes at this and other periods (not shown) have
strong large-scale gradient components in both magnetic and elec-
tric components, consistent with expectations from simple models
(Egbert 1989) and previous experience with PC analysis of geo-
magnetic arrays (Egbert 2002, 2008). There is some indication in
Fig. 9 for a component of spatially uniform horizontal magnetic
fields mixed with the gradients of modes 3-5 (e.g. in Fig. 9g the
average magnetic field points to the northeast, implying a uniform
component in this direction). As discussed in Egbert (2002) this im-
plies that the gradient components also contaminate the (nominally
uniform source) modes 1-2, even though this may not be readily
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apparent from the figure. Further analysis and processing would be
required to allow quantitative interpretation, as discussed in Egbert
(2002). Electric components again are roughly consistent with the
corresponding magnetics, but site-to-site variation and distortion is
even more apparent than for the dominant (first two) quasi-uniform
modes.

4.3 The BEAR array

As a first application of MsDEMPCA to a truly large (and rather
heterogeneous) EM array we consider the BEAR data (Korja et al.
2002) plotted in Fig. 10.

A representative picture of the pattern of available data is shown
with the plot of 1g|X] for 44 sites, for a single period, in Fig. 11.
As this figure shows, the BEAR array has a substantial amount
of missing data, significantly exceeding 20 per cent, with quality
quite variable from site to site. Furthermore, the array is at high
geomagnetic latitude (up to 65°), extending into the auroral zone,
so we can expect quite strong source field effects. This array thus
represents a challenging test case for MsDEMPCA. Initial runs
using data from all 44 sites resulted in noisy and inconsistent results,
with modes sometimes dominated by a few apparently very noisy
sites.

Closer examination of plots, such as Fig. 11, revealed that most
of the troublesome sites had either very short recording times (e.g.
just a few days of acceptable data), or channels that were dead most
of the time or showed little or no coherence with the rest of the
array. Consequently we eliminated eight stations (indicated with
red boxes in Fig. 11) with limited or poor-quality data, reducing the
array to a total of 36 sites. Furthermore we excluded from analysis
segments which had less than 10 simultaneous sites running, as
well as sections of data from individual sites where local multiple
coherences between electric and magnetic channels fell below 0.1.
Pre-processing to eliminate obviously contaminated data, as well as
parts of recordings where only a few sites were running simultane-
ously, is apparently required before applying MsDEMPCA to a real
data set.

For the reduced 36 site array the parameters of Section 3.5
were set at pcyy = 0.5, pcny = 0.9 and py, = 0.8, resulting in a
core array with 19 sites. Note that because there are many more
sites than in the case of the EMScope example, smaller values
of pcn1 and pcny can be used, and the core array still has enough
sites for reliable initial estimates for K = 10 spatial modes. In
Fig. 12 we show the final eigenvalue spectrum resulting from ap-
plication of MsDEMPCA. In contrast to the smaller mid-latitude
EarthScope array discussed in Section 4.2, for which there were
two dominant modes corresponding to nearly spatially uniform
magnetic sources, for BEAR there are a number of modes with
comparable signal power. Clearly the source fields in this larger
high-latitude array are complex, and require significantly more
than two source modes for accurate characterization. Given this
source complexity, the challenges encountered in estimation of
plane-wave TFs for these data (Varentsov et al. 2003) are hardly
surprising.

Although the horizontal magnetic field components in the first
two modes exhibit very similar polarization at all sites (Fig. 13),
there are significant (albeit smooth) variations in direction and am-
plitude across the array. For example, in the first mode amplitudes
of the mostly south-pointing magnetic fields increase by almost a
factor of three from south to north. All five of the modes plotted
in Fig. 13 show smoothly varying horizontal magnetic fields across
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Figure 9. Horizontal magnetic and electric components of the first five spatial modes for the 13 site EarthScope array at a period of 50 s, with blue (red)
arrows denoting real (imaginary) components of the horizontal field vectors. Note that the electric components have been scaled by the inverse rms channel
amplitude, to approximately remove variability due to near-surface conductive heterogeneity. Horizontal magnetic fields for the first two modes are roughly
uniform, with higher modes dominated by gradients; there is also indication for mixing between these two source types. Electric components are physically
consistent with the observed magnetic variations, but even after rescaling exhibit greater site-to-site variability. Mode 3, which exhibits N—S gradients of the
N-S magnetic component (and of the E-W electric component) is likely associated with PC3 pulsations.
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Figure 10. The map of BEAR array with 36 sites indicated by red circles
used for multivariate processing. The other 10 sites were omitted due to
short recording duration or poor data quality.

the array. There are clear signatures of large-scale gradient fields,
as we would expect, but there are also more complex (but still
smoothly varying), spatial structures evident, especially near the
auroral zone. As in Fig. 9 we have scaled electric components based
on overall channel rms. Consistent with the southward-pointing
magnetic fields in the first mode in Fig. 13(a) the corresponding
electric components in panel (b) exhibit dominantly east-west cur-
rent flow, with larger amplitudes in the north. However, there is still
substantial spatial variability in the scaled vectors, consistent with
twisting and distortion of electric fields across the array. This is
even more pronounced in the second mode, for which the horizon-
tal magnetic components are if anything more uniform. The third
mode for the BEAR array is particularly interesting, with the mag-
netic vectors pointing outwards from the centre of the array, while
the scaled electric vectors suggest currents flowing in a circular
fashion around this point. This pattern is consistent with the pri-
mary gradient component, that associated with normal H, over a
layered (1-D) earth (Egbert 2002).

The PCA modes contain information about both external sources
and conductivity variations within the Earth. We briefly con-
sider one approach to separating these components, following the
procedure described in (Egbert 2002). Considering that all modes
contain a mixture of plane-wave and spatially more complex
sources, we seek linear combinations of modes which most closely
approximate the form expected for idealized plane-wave sources,
that is, spatially uniform and linearly polarized N-S and E-W. Es-
timates of anomalous horizontal magnetic components for these
two idealized sources, displayed as equivalent internal current sheet
vectors, are displayed in Fig. 14 for a period of 1097 s. Here the
estimated uniform source modes were formed as a sum of the lead-
ing eight modes, with coefficients chosen to minimize large-scale
gradients; see Egbert (2002) for details. For the NS (EW) mode the
horizontal magnetic components have unit magnitude, zero phase
and point in the NS (EW) direction. The anomalous horizontal
magnetic fields represent deviations from this average—that is, we
effectively assume that the average field is ‘normal’, rather than des-
ignating a specific site to define this. Before plotting the anomalous
horizontal fields were rotated 90° counter-clockwise to represent
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Figure 11. Data pattern at a period of 512 s for the BEAR array, consisting
of 44 magnetotelluric sites, recorded simultaneously for about 2 months. The
colour indicates /g|X]|, the amplitude of the signal. Sites that were excluded
from analysis are marked with red boxes.
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Figure 12. Eigenvalues of the scaled SDM for the BEAR data, giving
SNR for the estimated spatial modes. Here all 10 modes are significantly
above estimated noise levels, demonstrating that sources are not reasonably
approximated by plane wave plus gradient terms.

equivalent internal currents, and a small component of the normal
current (0.25 in Fig. 14) was added to enhance clarity of the image of
total electric current flow in the heterogeneous Earth, as discussed
in Egbert & Booker (1993) and Egbert (2002).

The anomalous magnetic fields obtained by this procedure are of
reasonable magnitude (of the order of 0.1-0.3), and vary smoothly
with period, with amplitudes generally reduced at longer periods
(not shown). The mapped internal current systems are spatially co-
herent, and at least qualitatively consistent with conductivity vari-
ations determined from previous studies of the area (Fennoscan-
dian conductivity map; Korja et al. 2002). There are virtually
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(a) Mode 1 Magnetics (c) Mode 2 Magnetics (e) Mode 3 Magnetics
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Figure 13. Horizontal magnetic and electric field components for the first five spacial modes at period 1097 s. As in Fig. 9, electric components are scaled by
the inverse rms channel amplitude, and blue and red arrows indicate real and imaginary parts correspondingly.
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Figure 14. In-phase equivalent internal current sheet vectors, representing horizontal anomalous magnetic fields at period of 1097 s for two different source

polarizations.

no large-scale gradients evident for the N—S magnetic field case
(Fig. 14a), but for the E-W polarization (Fig. 14b) there is at
least some suggestion of residual contamination. The latter can
be seen in the tendency for converging current flow in the south,
with divergence in the north. The more significant source biases
for E-W magnetic fields may result from the dominance for this
polarization of field aligned currents with relatively fixed geom-
etry, while the auroral electrojet currents largely responsible for
N-S polarized fields exhibit greater variations, and as a result
can be more readily superposed to form uniform sources. In con-
trast to the results of Fig. 14, anomalous magnetic fields obtained
from standard interstation TF analysis, for example (Varentsov
et al. 2003) exhibit very large N-S gradients and are virtually
uninterpretable.

5 DISCUSSION AND CONCLUSIONS

In this paper we have extended the multivariate EM array processing
methods suggested by Egbert & Booker (1989) and Egbert (1997)
to allow for analysis of arrays with large data gaps, and only partial
overlaps between site occupations. Our approach is based on a criss-
cross regression scheme in which generalized source polarization
parameters (characterizing temporal variation of the array signal)
and array mode parameters (characterizing spatial structure across
the array) are alternately estimated with robust regression proce-
dures. This idea, which was used previously by Egbert (1997) to
make the array analysis robust to outliers at individual sites, extends
readily to the sort of irregular data patterns frequently encountered
with real arrays. The basic scheme can be viewed as a variant on
the ER algorithm that has been widely discussed in the statistical
literature in the context of robust PCA. However, the MsDEM-
PCA algorithm has been tailored to physical specifics of the EM
array analysis problem, with a number of additional features (e.g.
estimation of individual component noise levels, and damped LS
estimation of polarization parameters) added to improve robustness
and stability.

We have tested MsDEMPCA with synthetic and real data, in-
cluding data denial experiments where we have created artificial
gaps, and compared results obtained with full and incomplete data
arrays. These tests reveal that for modest amounts of missing data
(up to 20 per cent or so) MsDEMPCA performs well, reproduc-
ing essentially the same dominant spatial modes (i.e. those with
good SNR) that would be obtained from analysis of the com-
plete array. MsDEMPCA thus makes multivariate analysis practical
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for the first time for large heterogeneous arrays such as BEAR,
where large gaps are common, and a naive analysis based on sec-
tions without gaps is all but impossible. MsDEMPCA also al-
lows synoptic analysis of larger numbers of sites collected using
practical deployment strategies such as the ‘rolling array’ used by
EMScope.

Our tests have also revealed some limitations to MsDEMPCA.
For example, if we increase the number of sites in the EMScope
example to around 20, so that there is no temporal overlap between
the first and last sites installed, the estimator begins to break down,
with results that are notably less smooth with period, and spatially.
We also encountered some difficulties with a few sites with poor
quality and/or minimal data in our analysis of the BEAR array. One
would hope that the robust methods used for the component steps
of MsDEMPCA would already protect against anomalous or noisy
sites, but we still found it necessary to intervene and remove the
worst quality sites by hand. Further study of how these breakdowns
occur may allow us to make MsDEMPCA more robust to these
sorts of challenging sites, and perhaps to treat arrays with even less
temporal overlap. We view MsDEMPCA as a step towards practi-
cal routine processing of EM array data, but further refinements to
the algorithms are certainly possible, and warranted. We also an-
ticipate that with further experience applying MsDEMPCA to real
data sets, performance may be improved. In particular, appropri-
ate choices for the modifiable parameters discussed earlier (e.g. for
choosing a core array), are expected to depend on the array size
and configuration. In our initial tests we have used a trial-and-error
approach to set these parameters. A more systematic study of this
issue could result in some generally useful guidelines for optimizing
performance.

Another important issue that we have not discussed explicitly
here is characterization and estimation of statistical uncertainty of
the spatial modes. One fairly straightforward approach would be to
apply a bootstrap scheme, such as thatused in Section 4.2 to estimate
the magnitude of the subspace distance € expected due to errors
in PC estimates for a complete array. The same approach could
obviously be applied to MsDEMPCA to estimate uncertainties in
modes computed from an incomplete data array, or other quantities
(such as TF components) derived from these. Error estimates based
on asymptotics for the MEV model, as discussed in Egbert (1997)
could also be adapted to the missing data case, although doing this
in a rigorous manner would probably not be so simple.

Finally, we note that we have focused here on development of
the robust multivariate analysis of EM data, a tool to extract the
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coherent signal (and noise) from an array. Development of meth-
ods for separating PCA modes into source components that can
be usefully interpreted, and application of these methods to large
arrays such as BEAR for source and geological studies, are beyond
the scope of this paper. Our examples here do however illustrate
the value of the methods we have developed. MsDEMPCA makes
robust PCA practical for a very heterogeneous large array such as
BEAR, ultimately enabling new approaches to analysis which will
enhance our understanding of external sources, induction, and Earth
structure.
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