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Abstract— Designing tensor fields in the plane and on surfaces performing anisotropic remeshing in surrounding regions [1],
is a necessary task in many graphics applications, such as[13], [7]. While tensor field smoothing can remove a large
painterly rendering, pen-and-ink sketch of smooth surfaces, and percentage of degenerate points, it often “washes away” nat-
anisotropic remeshing. In this paper, we present an interactive | feat in the field. T ,f' Id desi id
design system that allows a user to create a wide variety of ur.a eatures in the neld. lensor fie esign proyl €s a user
surface tensor fields with control over the number and location With control over the smoothness of a tensor field as well
of degenerate points. Our system combines basis tensor fieldsas the number and location of the degenerate points that it
to make an initial tensor field that satisfies a set of user- contains. Lastly, a tensor field design system can also be used
specifications. However, such a field often contains unwanted 1, tagt the efficiency of tensor field visualization algorithms.

degenerate points that cannot always be eliminated due to B ti ¢ field ith Kk fi fi it i
topological constraints of the underlying surface. To reduce the y creatng tensor Tieids wi nown configurations, 1t 1S

artifacts caused by these degenerate points, our system allows theStraightforward to verify whether a visualization algorithm has

user to move a degenerate point or to cancel a pair of degenerate correctly identified these configurations.

points that have opposite tensor indices. _ There are several challenges to tensor field design. First,
We observe that a tensor field can be locally converted into 01y 5 system should enable a user to create a wide variety

a vector field such that there is a one-to-one correspondence . . . .

between the set of degenerate points in the tensor field and the of tensor fields with relatively I|tt|g effort. Second, the user

set of singularities in the vector field. This conversion allows Should have control over tensor field topology, such as the

us to effectively perform degenerate point pair cancellation number and location of the degenerate points in the field.

and movement by using similar operations for vector fields. In  Thjrd, the system should allow interactive design and display

addition, we adapt the image-based flow visualization technique of a tensor field. While there are many high-quality off-

to tensor fields, therefore allowing interactive display of tensor i . lizati thods. int tive techni h b
fields on surfaces. ine visualization methods, interactive techniques have been

We demonstrate the capabilities of our tensor field design lacking. Finally, creating a continuous tensor field on a 3D
system with painterly rendering, pen-and-ink sketch of surfaces, mesh surface requires that we deal with the discontinuities of

and anisotropic remeshing. surface normal at the vertices and across the edges.
Index Terms—Tensor field design and visualization, non-  To achieve these goals, we develop a two-stage tensor field
photorealistic rendering, remeshing, tensor field topology. design system for both planar domains and curved surfaces.
In the first stage, a user can quickly produce an initial tensor
|. INTRODUCTION field through a set of design elements. Every element is used

ANY graphics applications make use of a second® create a ba}5|s tensor fl'eldlover the domalrj that has a
order symmetric tensor field, which is equivalent t(Sjegenerate point of a particulamdex All basis fields are
y Ilgen summed along with an input field that is either zero or

a line field that does not distinguish between the forwal lication-d dent field h ical estimati
and backward directions. In painterly rendering, for instanc@, appiication-dependent field, Such as a numerical estimation
Itlthe curvature tensor in a 3D surface. In the second stage,

brush stroke orientations are guided by a line field that is oft e user modifies the initial tensor field through a set of pre-

chosen to be perpendicular to the image gradient field [1 gfined editing operations, such as moving a degenerate point

[9]. In hatch-based illustration of smooth surfaces, hatcht desirable locati i - of d i
usually follow one of the principle directions of the curva-2 & More desirable focation or cancetiing a pair of degenerate

ture tensor [10]. Similarly in anisotropic remeshing, principlgg;;'ms that have opposite tensor indices. As the user modifies

curvature directions are used to build a quad-dominant met field, our system quickly analyzes the result and provides

from an input mesh [1], [13], [7] visual feedback. A user may perform any number of editing
Tensor field designthe main topic of this paper, enablesOperatlons before accepting the result.

applications such as painterly rendering and hatch-based illusOUr systte;)m perforrps degieneratfe_: Tg'_ntt pair ca?ce]!!a;c;on ar;]d
tration to achieve different visual effects by using differe ovement by converting a tensor ield into a veclor Tield suc
tensor fields. It also allows a user to modify an existin at there is a one-to-one correspondence between the set of

tensor field to improve its quality. For instance, a numeric |egenerate points in the tensor field and the singularities in

estimation of the curvature tensor field on a polygonal surfa e vectotr field. Th|s lcol?versllon and”'tf. mversde operatlor:
often leads to excessivdegenerate pointswhere anisotropy aflow tl_JS ofuse SIPguf_arlldy p\?v'r (;]ance ?'Ond anl mo(;/eme_n
disappears. Degenerate points often cause visual artifactg |y o ons Tor veclor fields. We have aiso developed an in-

hatch- ketching [1 h . ial Wctivg visualizgtion algorithm fpr second-order symmetric
atch-based sketching [10], and they require special care Wtgnsor fields, which is an extension of theage-based flow

visualizationtechnique [28], [29], [12]. In order for our design



Fig. 1. This figure illustrates how painterly rendering can benefit from tensor field design. For an input image of a human eye, three different tensor fielc
(bottom row) were to used to guide brush stroke orientations and produce the van Gogh style paintings (top row): a tensor field extracted from the ima
(left), a combination of the previous field with a user-added center in the middle of eye (middle), and a tensor field designed completely from scratch (right
Notice that both designed fields (middle and right) are smoother in the pupil and near the corners of the eye. Tensor field design allows a user to guide bri
stroke orientations in regions where the image gradient is weak. The painterly images shown here were produced by the algorithm of Hays and Essa [9]. -
colored dots in the bottom images indicate the location and type of degenerate points in the fields: yellow for wedges and blue for trisectors.

system to work on curved surfaces, we adapt the surface vectorhe remainder of the paper is organized as follows. We first
field representation scheme that was developed for vector fiedtiew some relevant background on tensor fields in Section .
design [32] to tensor fields. In this scheme, concepts frofhen, in Section lll, we compare tensor fields and vector
differential geometry such agodesic polar mapandparallel fields in terms of image edge extraction. In Section 1V, we
transport are used to construct initial tensor fields and toeview relevant work in vector field design, and tensor field
perform tensor field analysis and editing. analysis and visualization. We present our interactive tensor
. . .. field visualization technique in Section V and describe our
In this paper, we have made the following contributiongesq; field design system in Section VI. Section VII provides
First, we_have identified te_nsor fleld_deS|gn as an importag - results of applying our tensor field design system to
problem in computer graphics. We will also demonstrate thal i g graphics applications, such as painterly rendering, pen-
the edge field in an image is better modelled as a tensgfy i sketch of surfaces, and anisotropic remeshing. Finally,

field than a vector field when it comes to painterly rendering\,e summarize our contributions and discuss some possible
Second, we present a tensor field design system for m‘?ﬁﬂlre work in Section VIII.

surfaces. This system allows a user to create a wide variety of
tensor fields in a fast and efficient manner, and it provides the
user with control over the degenerate points in the field. To our [I. BACKGROUND ON TENSORFIELDS

knowledge, this is the first time a tensor field design systemyye first review some relevant facts about tensor fields on
has been proposed and developed. Third, we provide effiCiglittaces. A tensor field for a manifold surfaceM is a

implementations of degenerate points pair cancellation agghooth tensor-valued function that associates to every point
movement by locally converting the tensor field into a vector (Tll(p) le(p)>

field. The conversion is conceptually simple, yet it allows & € M & second-order tensaf(p) = Ta(p) To2(p)

to reuse algorithms from vector field analysis and desigfensor(Ti;] is symmetricif and only if Tjj = Tji. Symmetric
Fourth, we develop a piecewise interpolating scheme thahsor fields appear in many graphics applications, such as the
produces a continuous tensor field on a mesh surface bagesiric tensor for surface parameterization, the curvature tensor
on tensor values defined at the vertices. This scheme suppfiiteemeshing, and the diffusion tensor in medical imaging. A
fast and efficient tensor field analysis such as degenergignmetric tensoll can be uniquely decomposed into the sum
point detection and separatrix computation, and it removgsits isotropic partS and anisotropicdeviate part A:

the need for a surface parameterization. Finally, we present an

interactive and high-quality surface tensor field visualization 10 cosf  sind

technique. T=S+A=2 (0 1> + <sin9 —cos@) (1)
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Fig. 2. Example first and second-order degenerate points in a tensor field. Notice that the second-order points (node, focus, center, and saddle) are vist
similar to first-order singularities in a vector field.

where u > 0. A has eigenvalues-u, andA and T have the
same set of eigenvectors. In this paper, we explore the des
of directional fields on 3D surfaces, which is equivalent t
designing deviate tensor fields. A more general design syst
for symmetric tensor fields can be obtained by combining o
system and a scalar field design system, such as [16].

A deviate tensor field\(p) is equivalent to two orthogonal
eigenvector fieldsE; (p) = p(p)er(p) andEx(p) = u(p)ex(p)
when A(p) # 0. Here, e (p) and ex(p) are unit eigenvectors
that correspond to eigenvalugsand —u, respectivelyE; and
E, are themajor and minor eigenvector fields oA. A point
Po is degeneratdor a tensor fieldT if and only if A(pg) = 0.

A degenerate point for a tensor field often serves the sal
purpose as a singularity for a vector field. The most basic typ\
of degenerate points arevedgesand trisectors (Figure 2).
Delmarcelle and Hesselink [6] definetansor indexfor an
isolated degenerate poipg as follows. Lety be a small circle |
aroundpg such thaty contains no degenerate points and |
encloses only one degenerate pop, Starting from a point
on y and travelling counterclockwise along the major field
(after normalization) covers the circle a number of times. Thigg. 3.  This figure illustrates the difference between vector-based image

; ; ; : edge field (VIEF) and tensor-based image edge field (TIEF). For the rectangle
number is the tensor index qlfo’ and it must be a multlple (top row), the image gradient vector field along the walls points to the other

of 1/2 due to the sign ambiguity. It i4/2 for a wedge and side (left, red arrows). This causes VIEF to point in opposite directions,

—1/2 for a trisector. The tensor index for a regular point isnd extrapolating values from the wall to the interior of the rectangle cause

zero. There are also higher—order degenerate points, such' larities (middle, green ar)d t_)lut_e an_'ows'). TIEE does not suffer from this
Y . .. problem due to the sign ambiguity in directions (right). For the heart, TIEF

centers, nodes, and foci with an indexIofand saddles with (right) is much smoother than VIEF (left) in the interior region.

an index of—1 (Figure 2). As in the case of vector field, the

total indices of a tensor field with only isolated degenerated

points is related to the topology of the underlying surface. L&perstreamlines includseparatricesandclosed orbitswhich

Sbe a closed orientable manifold with an Euler characteristiggether with degenerate points define tiygologyof a tensor

X(S), and letT be a continuous tensor field with only isolatedield [6]. In this work, we focus on controlling the degenerate
degenerate pointfp; : 1 <i < N}. Denote the tensor index of points in a tensor field.
pi asl(pi). Then

e
T
- <y
= =

IIl. | MAGES AND TENSORS

N
3 1P = X(S) 2)

When it comes to representing natural directions in an image
or on a 3D shape, tensor fields provide a larger vocabulary of

Delmarcelle and Hesselink [6] suggest visualizimgper- visual elements than vector fields. For instance, the basic types
streamlineswhich are curves that is tangent to an eigenvectof degenerate points (wedges and trisectors) do not appear
field everywhere along its trace. To trace a hyperstreamlifre continuous vector fields. On the other hand, higher-order
from a point, one needs to trace in both directions to obtaffegenerate points can be used to mimic the visual behavior of
two “half” hyperstreamlines. Tracing in one direction resulta vector field singularity of any order. For instance, a node in
in the loss of sign ambiguity along the path, effectively turning tensor field is visually similar to a source or sink in a vector
the tensor field into a vector field. Different hyperstreamlinefield, and a fourth-order degenerate point has a similar appear-
can only meet at degenerate points, and a degenerate poirinise as a dipole in the vector field. In painterly rendering,
a hyperstreamline that consists of a single point. Other spedalish stroke orientations are often guided by a flelthat is
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Fig. 4. Comparison between vector-based image edge field (VIEF, left) and tensor-based image edge field (TIEF, right) for painterly rendering of an im:
of a duck. Notice that TIEF is much smoother than VIEF (top row), and their impact on the painterly results are clearly visible near the beak of the duck

perpendicular to the image gradient vector field. There are twesults (compare the region near the beak).
ways of representing: vector-based image edge field (VIEF) A vector field can be treated as a tensor field if one ignores
and tensor-based image edge field (TIEF). VIEF is obtainelitections. However, treating a tensor field as a vector field
by rotating the image gradient biy/2 counterclockwise, and requires that sign ambiguity be removed, which in general
TIEF is the tensor field whose minor eigenvector field iwill create discontinuities in the resulting vector field. This
colinear with the image gradient. Often, the image edge fieldigsue has two implications that we have to deal with. First,
computed where the image gradient is strong. Then, valuestie image-based flow visualization technique does not directly
these regions are propagated to other regions where the imagply to tensor fields. Second, using a vector field design
gradient is weak. Under this scenario, however, TIEF providegstem to modify a tensor field is likely to be unsuccessful.
a smoother representation than VIEF. Figure 3 illustrates this
with two examples: a rectangle and a heart. In the rectangle
example (top), the values of the image gradient vector field
are strong on the inner walls (left, red arrows), and they pointTensor field analysis and visualization have been well-
towards the other side. This causes VIEF (middle) to poingsearched by the scientific visualization community. To re-
upward along the left wall and downward along the rightiew all of this work is beyond the scope of our paper. We will
wall (green arrows). Propagating these values to the interioraily refer to the work that are most relevant to ours. Tensor
the rectangle leads to singularities. On the other hand, TIEEId synthesis or design, on the other hand, have received
does not suffer from this problem due to the sign ambiguitglatively little attention. To the best of our knowledge, there
(right). In the heart example, both VIEF and TIEF capturare no published tensor field design systems. Next, we will
the boundary of the shape. However, TIEF is smoother areliew the work in tensor field visualization and analysis, and
more uniform elsewhere than VIEF. Figure 4 illustrates th&e will also look at design systems for vector fields.
difference between VIEF and TIEF in painterly rendering with Delmarcelle and Hesselink [5] propose to visualize 2D or
an example image of a duck. Notice VIEF (left) contains mor@D tensor fields witthyperstreamlingswvhich has proven very
noise than TIEF (right), which causes artifacts in the paintergfficient in revealing the features in a tensor field. Around the
same time, Carbal and Leedom [2] present a texture-based

IV. PREVIOUS WORK



technique for visualizing planar vector fields with the us}
of line integral convolution(LIC). Given an initial texture [}
of white noises and a vector field, they assign a color
every pixel by performing line interval convolution along the SREREES »
streamline that contains the pixel. The LIC method results U ) it
a high-quality continuous representation of the vector fielf 88 =
However, it is computationally expensive since it require
tracing a streamline for every pixel. Later, Stalling and Heg
describe a faster way of creating LIC images by reducing tl
number of streamlines that need to be tradeas(LIC) [20].
Zheng and Pang [33] propose a tensor field visualizati
technique that they callyperLIC. This method makes use of
LIC to produce images that resemble visualizations based
hyperstreamlines. Van Wijk [28] developed an interactive a
high-quality image-based flow visualization technique (IBF
for visualizing vector fields defined on a planar domain. IBF
enables interactive display of vector fields with the assista
of graphics hardware. Later, van Wijk [29] and Laramee
al. [12] extend IBFV to 3D surfaces. IBFV is at the core of o
visualization technique, which we will describe in Section
Delmarcelle and Hesselink demonstrate the importance
topological analysis for tensor field visualization. They alslgi 5 This fi _ o . ,

. . . . . . 5. gure illustrates our visualization technique with a planar
prowde detailed analy5|s and algomhms for computing of th@ﬁsor field. The system first produces images according to two direction
topology of 2D tensor fields, such as degenerate points aadignmentsvy (upper-left), in the positive-direction andvy (upper-right),
separatrices [6]. Tensor fields from scientific datasets oftérihe positivey-direction. The images are then blended according to weight

. . . . o . . functions Wy (a color coding shown in lower-left) andf, = 1 —W. The
contain noise, which makes visualization difficult. T”COCh?esulting image (lower-right) no longer contains the visual artifacts figm
and Scheuermann [26] simplify the topology of tensor fieldsdy,.
by performing “pair annihilation” on degenerate point pairs
that are spatially close. They also cluster nearby first-order
degenerate points into a higher-order one [24]. Alliez et al. [1] V. IMAGE-BASED TENSORVISUALIZATION
perform tensor field smoothing to remove noise in the field, |, this section, we present our interactive visualization
which also tends to reduce the number of degenerate poiinnique for planar and surface tensor fields. This tech-
Our system provides both types of tensor field simplificatiggue is an extension of the image-based flow visualization
algorithms (Section VI-B). _ techniques [28], [29], [12]. To visualize vector fields, IBFV

While tensor field synthesis and design systems have begBqces streaks in the direction of the flow starting from an
lacking, there have been published work on scalar and vecigfia| image (usually white noise). This initial image is warped
field Qe3|gn. Ni et al. [16] allow a user to desifgir Morse _in the flow direction by texturing a coarse 2D mesh with the
functions (scalar) on 3D surfaces for a number of graphiGs,age and then moving the mesh vertices along the flow. The

applications, such as parameterization and remeshing [{hrmed image is blended with the old image, and the process
Vector field design has been used in texture synthesis [1i_Q'repeated.

[27], [30], fluid simulation [21], and vector field visualiza- 14 \isyalize a tensor field, we find it sufficient to show
tion [28]. These algorithms were developed in a quick manngy,,

and Bunderwala [18] develop a vector field design system, its major fieldE;(T), it is desirable to convety (T) into
based on geometric algebra. All of these design Systems,ntinyous vector fieltt so that we can apply vector field
lack conFroI over vector f|el_d topology, such as S'ngma”t'e%isualization techniques, such as IBFV. One obvious way to
The design system of Theisel [22] allows a user to contrB rform this task is to choose a direction for every point in the

vector field topok_)gy, but it requirgs the user to provide thEomain. HoweveryV will contain discontinuities that cannot
complete Fopologu:al skgleton, \.Nh'Ch IS cqmbersorne. Zha d always be eliminated. For instance, the following tensor
et al. [32] introduced an interactive vector field design system y

that provides users with control over the number and locatiégld T(xy) = ; ) contains a wedge 40,0). Assume

of the singularities in the field. In addition, their system workgere is a way to assign directions to every point such that the
for both planar domains and curved mesh surfaces. Our tensigi ambiguity is removed. Thei®,0) becomes a singularity
field design system is reminiscent of their system in terms\. However, the Poincarindex of a first-order singularity

of the functionalities. However, their system cannot be usesl +1, which is impossible to achieve for the wedge. This
to modify tensor fields, such as the tensor-based image egg@ecause the total Poinéaindex of a region for a vector
fields and curvature tensor fields. field must be an integer, and the total indexTofor the same



Fig. 6. Example high-order design elements with a positive tensor index (top row) and a negative tensor index (bottom row). From left to right are tt
through eighth-order elements.

region is1/2. In fact, a necessary condition for the existencBrom 0 to 1 in the increasing order, the colors are dark, red,
of a consistent assignment is that the tensor field contains yallow, and green. To extend this technique to visualizing a
degenerate points of an odd ordér3;....2n+1,...). surface tensor field, we projectEs(T) onto the image space
Let D denote the domain ang(V) C D be the set of points and apply the two-image blending technique to the projection.
whereV is discontinuous. While it is not always possible to
construct a vector field/ from a given tensor fieldl such VI. TENSORFIELD DESIGN
that SV) = 0, we build two vector fieldsv; and V, such
that N; S(Vi) only contains the degenerate points ©f and
every regular point in the domain belongs o\ SV;) for
somei. The major fieldE;(T) for T can be represented in
terms of two spatially-varying scalar fielgsand 8, which are A. Initialization and Analysis
the magnitude and direction @&, respectively. Specifically,  pying the initialization stage, our system allows a user to
Ei(T)==+p g?:g (p > 0). We define the following two quickly create an initial tensor field through a setdsfsign
. . elementsAn element can be eitheegular if a desired tensor
vector fields fromEy(T): . o . . ;
value is specified, asingularif a particular type of degenerate
point is needed. For our applications, we have found that it is

In this section, we describe our two-stage tensor field design
system for planar domains and surfaces.

0 C‘_)SG) if cosf >0 usually sufficient to provide specifications up to second-order
Vi = siné (3) degenerate points (first-order: wedge and trisector; second-
0 _0939> otherwise order: node, center, and saddle; see Figure 2). Every design
—siné element is extended to a globally definiasis fielg and the
p cosG) if sing >0 user-defined tensor field is a sum of these basis fields.
Vi — sin@ - ) Given a regular elementVXy,VYy) defined atpo, we
g o~ 0959) otherwise computepg = /V X2 +VYZ andfp = 2arctarq\\;—£) and define
—sin® the following basis field:
Basically, V is obtained fromE;(T) by choosing directions )
so that thex-component of\ is non-negative everywhere. T(p) = ~dip—poll” o, (CF’SQO S'”GO) (5)
S(V) = {(x,y)|cog8(x.y)) = O}. Similarly, V4, is obtained by sinp  —cosbp

choosing directions so that thecomponent ofVy is non- \where d is a decay constant that is used to control the
negative, andS(Vy) = {(x,y)[sin(6(x,y)) = 0}. S(M)NS(Vy) amount of influence of the basis field. Using weight func-
is the set of degenerate points. Ligtand Iy be the images tjons e~dlP—pol® allows us to combine basis tensor fields by
produced using IBFV with/ andVy, respectively. LeWk = symming them. Singular elements can be extended to create
co$§ and W, = sir’ 8 = 1—W be the blending functions. pagis fields in a similar fashion. For example, to create a
Then the final imagé = I, x\W+ly x W, produces the desired hasis field with a wedge point ato = (Xo,Yo) such that its

lower-right. We compute the IBFV images basedifupper- foliowing formula.

left) and\w (upper-right). Notice the visual artifacts caused by
the discontinuities in these images. The weight functigns T(p) — e-dlp—pol? (X y
shown in lower-left according to the following color coding. (p) = y —X

(6)



Fig. 7. A tensor field (left) is first rotated bsg/4 (middle), then reflected
with respect to thé/-axis (right).

where x = Xp — X0 andy = Yp — Yo. The following matrices Fig. 8. This figure shows a tensor field before and after user-guided tensor
produce a trisector, a node, a center, and a saddle, respecti\@ﬂésmoothmg. The original field (left) has many degenerate points, while

moothed field (right) has only one. Notice that tensor values outside the
X — X2 —y? 2xy
-y —x)’ xy (Y-

smoothing region (the white loop) do not change.
( Y2 — %2 —2xy ) ( X2 —y2 —2xy ) B. Editing

—2y (=) —2y () Our system provides three types of editing operations for
The system allows a user to modify the location, orientatiotensor fields: matrix actions on tensor fields, smoothing, and
and scale of a singular element as well as to remove an existingological editing. These operations are natural adaption of
element. Modifications to a singular element will result ithe editing operations provided in the vector field design

more complicated matrices. system of Zhang et al. [32]. While the functionalities of our
To allow an arbitrary tensor field to be created, our systet@nsor editing operations are similar to their counterpart for
allows the use of a design element of any order. In generggctor fields, the implementations are rather different due
anN"-order elementN > 0) has a tensor index &E%. Such to the sign ambiguity in tensor fields. One of our major
an element can be created by using the following matrix: contributions in this paper is the use of conversions between
vector fields and tensor fields, which allows us to adapt editing

N (2cogN8) -+ bsin(N8) ccogN8) +dsin(N8) operations for vector fields to tensor fields. We will now
o ( )

ccogNG) +dsin(N8) —(acosNB) + bsin(N8)) describe our editing operations in more detail.
) 1) Matrix Actions on Tensor FieldsiVe consider the action

whereD = /(X—X0)2+ (Y—Yo)?, 6 :arctar(%), and the of a non-degenerat@ x 2 matrix M on a tensor fieldT :
~/a b . _ (M(T))(p) = MTT(p)M. It is straightforward to verify that

matrix ( . ) has a full rank. The sign of tensor index of 4y is a group action on the set of deviate matrices if and

degenerate point equals thatadf —bc. Figure 6 shows some gy it M — p cos§ —sinBy o cost Sin9>

third through eighth-order elements (from left to right), where sin@ cos ~\sin@ —cos

the elements in the top row have a positive tensor index afff somep € R and 6 < [0, 278 Ignoring scales, we con-

the elements in the bottom row have a negative index. sider the following setsR = { C‘?Sg —smee } andF =
The resulting tensor field is interactively updated and dis- sin cos

played as the user continues to make adjustment to the § f
; ' ; sin@

of regular and singular elements. The tensor fields in th Let R b | t iR that rotates th . .

middle and right of Figure 1 and at the right of Figure 1 Ide f'?’ be an eer’lnenfel R 3 ro aets h e ma{ﬁr (mmcz)r)

show examples of designed fields. Colored line segme | 0 i Y r;lntr?ngde 0. et 0€s ?O TC Iingti N num.ter

with arrows indicate the location and orientation of regula(fIr ocation ot the degenerate paints in Furthermore, -

elements, and colored boxes indicate the type and Iocationni]J"f“malns the tensor index of any isolated degenerate point,

. : : L .gnd it can be used to turn a center into a node or a focus
singular elements. Our implementation of field initialization |With an aporobriate rotatio®. Anv elementEs in E also
similar to the vector field design system of [32]. Notice this is bprop - Ay 0

not the only way to create an initial tensor field. Other metho faintains the number and location of the degenerate points in

. S . The signs of tensor indices of degenerate points are negated,
such as constrained optimization could also be used. The . .
ever, by the operators iR. PerformingFy twice results

initial tensor field that a user creates often contains unspecif{éo - :
. i .Inthe original field.
singularities, and our system handles them through topologlcaIF_ ~ ilustrates thi ; field sh in the left
editing operations that we will describe in the next section. . |g]1cgr<te tl lthdre;)es 4Its onbta_ellﬁort 1€ Sf.O\?('jn 'R € lefl
The initial tensor field is then sampled at the vertices aﬂb_'s irst rotated byri/4 to obtain the tensor field shown in

linearly interpolated inside the triangles. Our system théﬂ'ddle’_Wh'Ch S then refle_:cted W't.h respect to thfeams_
to. obtain the field in the right. Notice that tensor rotations

computes the location and e of degenerate points in"a . .
P vp 9 b reflections do not change the number or location of the

tensor field. In addition, we compute separatrices emanal nerat ints. Rotations maintain tensor indi whil
from wedges and trisectors. For planar tensor fields, we follo generate points. Rotations maintain tenso ces €

closely the algorithms described in [5], [25]. reflections negate them.

0sd B sg;g>} where6 € [0, 7).



Fig. 10.  This figure illustrates the topological editing operations in our
system. For an tensor field shown in the left, a user first moves the two
trisectors (blue dots) to be near each other, therefore forming a saddle type
of pattern in the region (middle). Next, the user cancels the trisectors with a
dge from each side, resulting in an elongated center pattern (right). The
nversions between tensor and vector fields enable us to reuse algorithm:s
fom vector fields, such as those in Zhang et al. [32].

Fig. 9. This figure compares the degenerate points in a tensor field (I
to the singularities in the vector field (right) after conversion (Section V
B.3). Notice this conversion does not change the number and location of
degenerate points.

tensor field to a vector field such that any degenerate point

2) Smoothing: Our system allows tensor field smoothingn the tensor field becomes a singularity in the vector field.
inside a user-specified regioR. By holding tensor values One possibility is to remove the sign ambiguity from the
fixed on the boundary dR, the system performs componenteigenvector field. However, as we have seen in Section V,
wise Laplacian-smoothing. Similar smoothing operations hapéaces near odd-order degenerate points (wedge, trisector) will
been used in tensor field smoothing [1], [13], and vect@ause discontinuity in the resulting vector field. Therefore, we
field smoothing [23], [32]. Tensor field smoothing allows anust look for other ways of converting a tensor field into a
user to reduce the geometric complexity of a field as walkector field. Consider the following mappirgfrom a deviate
as the number of degenerate points that it contains. FigureeBisor field to a vector field:
compares a tensor field (left) with its smoothed version (right).
Note the tensor values on and outside the region’s boundary a- (F G ) R (F> )
(the white loop) do not change. \G -F G

_3) Topological Editing: Our system provides two topolog- pag the following desirable properties. First, maps
ical editing operations: degenerate point pair cancellathn, ancontinuous tensor field to a continuous vector field

degenltlar?te podmt movenr;ll;ant. we W'"_Itﬁfer 1o themﬁ = a(T). This is different from the sign ambiguity removal
cancefiationandmovemenirom now on. The pair cancetiation ?oethod that we used in for tensor field visualization (Sec-

operation allows a user to eliminate a pair of unwant n V). Second, a poinp = (xy) is a degenerate point
degenerate points with opposite tensor indices. Due to %FT if.and onIy, if p is a singL;Iarity ofa(T). Third, the
n L

Poincaé theorem for tensor fields, degenerate points can onlY <or index ofp with respect toT is half of the vector

be eliminated in pairs so that the total index sum does ngf =~ . =~ . .
. . oincaé) index with respect tax(T). Figure 9 shows an
change. The movement operation provides control over the ' . :
example tensor field (left) and the corresponding vector field

location of degenerate points. In our system, both operation ) . . ) f
' 9 po! ur sy perat ;T) (right). Notice that a trisector il becomes a saddle in

are designed to provide topological guarantees in that o . . . o
the intended degenerate points are affected. There have b -IR)’ and a wedge is mapped to afirst-order singularity with a

several algorithms for pair cancellation, such as [26]. To tlpeosmve Poince index (rlght, source. green, S'T"‘: red; centers;
best of our knowledge, the movement operation is new, ~Magenta and cyan). The inversewis well-defined and also
Tricoche and Scheuermann [26] perform degenerate pﬁﬂm'ngfus’ which we denote™". While the concepts ofr
cancellation by first finding a small neighborhood surroundir’d @~ are simple, they enable ideas and algorithms from
the degenerate point pair, and then iteratively update ten¥5ctor fields to be applied to tensor fields, especially those that
values at the interior vertices so that the tensor index for ea@fidress degenerate points. Tricoche [25] describe yet anothe
cell in the region is zero. This method requires planar tendéfationship between a tensor field and a vector field based on
fields, and it is intended for degenerate point pairs that df#€ concept otovering spaceWe did not use this relationship
closer to each other than to other degenerate points. We hBf§ause it maps a wedge in the tensor field to a regular point
set our goals on performing pair cancellation on tensor fielffs the vector field.
that are defined on either planar domains or curved surfacesf0 perform pair cancellation and movement on a tensor
and for degenerate point pairs even when they are not closé&ld T, we first convert it to a vector field = a(T). Next,
neighbors. Zhang et al. [32] provide robust algorithms for pai¥e perform the corresponding topological editing operations
cancellation and movement of singularities in a surface vec® V to obtainV’, which we then convert back to a tensor
field based on Conley index theory [15]. We wish to adapt thefield T’ = a~*(V’). Figure 10 illustrates the topological editing
algorithms to surface tensor fields. However, Conley indéerations on a tensor field with two centers and two trisectors
theory is defined in terms of vector fields, and it is not obvioudeft). First, the trisectors (blue dots) were moved into nearby
how it might be extended to tensor fields. positions to form a saddle pattern. Next, the trisectors were
To address the problem, we consider ways of convertingcancelled with a wedge from each side. This results in an
elongated center pattern (right).



Fig. 11. This figure shows example tensor fields designed on various test models. The tensor field on the sphere (left) was created by placing a ce
element at each of the six evenly-spaced points on the sphere. The topological skeleton of the major field is very similar to the edges of a cube. The fielc
bunny was created by putting node elements on both sides of its face and on the tail. The tensor field on Venus was obtained by combining the curva
tensor field with center elements on her eyes to emphasize them.

C. Tensor Field Design on Surfaces this with three example tensor fields on the same image of

Designing tensor fields on surfaces is considerably mafehuman's eye. The field shown in the left column is the
difficult than on the plane. First, building basis tensor field§nsor-based image edge field (TIEF). While it captures the
requires a global parameterization, which is often lacking f&pain features in the image, such as the eye and the eyebrow,
a surface. Second, the surface normal for a mesh surfdcls Not smooth near the comers of the eye and around the
is discontinuous at the vertices and across the edges. Pil- By adding a center element in the middle of the eye
illustrated in [32], the piecewise linear representation fdfmiddle column), the noise around the pupil becomes less
planar vector fields does not produce continuous vector fielgticeable. Finally, the images shown in the right correspond
on surfaces. This is also true for tensor fields. to a tensor field that was created from scratch. Figure 12

To remedy the problems, we adapt the surface vector fidlPvides additional examples. From left to right are: Mona
representation and design algorithms of [32] to surface tendép@ (TIEF), Mona Lisa (modified TIEF), and a cat's face
fields, which are based on the conceptgebdesic polar maps (2 field designed from scratch). For Mona Lisa, the image
and parallel transport The adaption is straightforward duefdge field contains a wedge on the left side of her forehead
to the connections between vector fields and tensor fields dt iS visually distracting in the painting. Also, a part of her
scribed in the previous section. Interested readers may refel& €ye was “washed out”. By performing degenerate point
their work for details on surface vector field design. Exampf@ovement, the wedge was moved from her forehead to the
tensor fields on various 3D surfaces are shown in Figure £Prner of her left eye, removing the artifacts in both areas. In
The colored boxes indicate singular elements. Also shof cat example, the tips of ears can be easily modelled by
are the separatrices that correspond to the major field (4gd9es. In contrast, it would have been difficult to model the
red curves). Notice that this scheme allows usdasistently €ars smoothly using features in vector fields.
trace hyperstreamlines based on a surface tensor field witho

T Yoen-and-ink sketching is an efficient tool in illustrating the
the need for a surface parameterization. In fact, we used

to trace lines of curvature in anisotropic remeshing (Figure 1 emonstrate that principle curvature directions are best in

illustrating the shape of a surface. Salisbury et al. [19] provide
VII. RESULTS AND APPLICATIONS a direction design tool that allows an artist to match the
All tensor fields shown in this paper were created usirttatch orientations to the features in the input image through a
our system. In addition, we demonstrate the capability of oset of functions such as “comb”, blending tool, and region
system with three graphics applications: painterly renderinij]. These functionalities are vector-based, and topological
pen-and-ink illustration of surfaces, and anisotropic remeshirapntrol is lacking in the system. Hertzmann and Zorin [10]
Painterly rendering is a well-researched area, and to reviese principle curvature directions to guide the hatch fields.
all existing algorithms is beyond our scope. In this work, win their algorithm, two families of evenly-spaced streamlines
use the approach of Hertzmann [11] and Hays and Essa @& computed from the principle curvature directions, and
with the following modification: instead of using the imagédatches are generated based on these streamlines. We adopt
edge field to guide brush stroke orientations, the user creates aimilar approach with one modification: we allow a user
tensor field either from scratch or by modifying the image edde create a synthetic tensor field from which streamlines are
field with our tensor field design system. Figure 1 illustrategeated. There are two advantages to this modification. First,
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Fig. 12. Additional examples of applying tensor field design to painterly rendering. For Mona Lisa, the tensor-based image edge field contains artifacts
her left eye and the forehead (left column). Through a degenerate point movement operation, a wedge was moved from her forehead to the corner of
eye, and artifacts in both regions were removed (middle column). For the cat, the user created a tensor field from scratch to match the main features.
painterly results were obtained based on the off-line high-quality painterly rendering program of Hays and Essa [9].

while there have been many algorithms for estimating thmetween any line from each family is found, and dangling
curvature tensor field of a 3D surface [10], [14], [3], it remainedges are removed. Finally, the intersection points are used
a challenge due to the numerical difficulties associated with produce quad-dominant meshes. Optimal remeshing near
polygonal surfaces. There is often the need to tune certalagenerate points (aumbilics when the tensor field is the
control parameters in order to get a reasonable estimaticorvature tensor) is more difficult than for regions that are
and the tuning process can be considereddasign Our free of degenerate points. Therefore, it is important to control
design system also involves a design process. Howeverthié number and location the degenerate points in the field. Fig-
provides explicit control over the number, location and typere 15 illustrates the need for topological editing in anisotropic
of degenerate points in the field. In Figures 13 and 14, wemeshing. The curvature tensor on the horse surface contains
compare pen-and-ink sketch using curvature tensor fields (leftyvedge and trisector pair near the belly that requires special
and with user-designed fields (right). The designed field feare during anisotropic remeshing (left). By performing pair
the feline was produced from scratch, and the one for tkancellation, the same region becomes degenerate point free,
bunny was constructed by adding center elements to createdhd remeshing becomes straightforward (right).
illustration of eyes. With design, the user was able to create
features without causing problems elsewhere on the model.
Anisotropic remeshing has received much attention recently,
thanks to the work of Alliez et al. [1]. Anisotropic remeshing In this paper, we have identified tensor field design as an
converts an input mesh that is often noisy and over-tessellatetghbortant problem in computer graphics, and we advocate that
into a quad-dominant mesh to achieve an optimal sampliedges in an image be treated as a tensor field rather than
rate. A typical algorithm works as follows. First, a tensor field vector field. We present an interactive tensor field design
is computed by either estimating the curvature tensor [1], [18ystem that allows a user to create a wide variety of tensor
or through the design of fair Morse functions [7]. Second, feelds on planar domains and curved surfaces with relatively
family of evenly-spaced streamlines are traced for both thigle effort. We also provide control over the number and
major and minor eigenvector fields. Third, every intersectidocation of degenerate points in the field. Our system supports

VIII. CONCLUSIONS ANDFUTURE WORK
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Fig. 13. Pen-and-ink sketch of the feline using the curvature tensor (left) and a user-designed field (right). Notice the user-designed field contains less r
in flat regions (body and legs). ‘

Fig. 14. A pair of center elements were used to create artificial eyes on the bunny in pen-and-ink sketch (right). Notice that the original curvature ter
field (left) does not contain such features.

efficient degenerate point pair cancellation and movemenrbits. Second, we are investigating techniques for automatic
operations by converting a tensor field into a vector fielpairing degenerate points for cancellation. The algorithm of
with the same set of singularities, which allows us to reuSgicoche and Scheuermann [26] is a good starting point.
similar algorithms for vector fields. While the conversion3hird, we wish to extend our system to other domains, such
are simple, they can be useful for other types of tensor fiedd volumes. Finally, understanding and visualizing high-order
operations that involve degenerate points. We also provitensor data is of great interests to us.

an interactive tensor field visualization algorithm for both
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