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ABSTRACT

Significant declines in spring Northern Hemisphere (NH) snow cover extent (SCE) have been observed

over the last five decades. As one step toward understanding the causes of this decline, an optimal finger-

printing technique is used to look for consistency in the temporal pattern of spring NH SCE between ob-

servations and simulations from 15 global climate models (GCMs) that form part of phase 5 of the Coupled

Model Intercomparison Project. The authors examined simulations from 15GCMs that included both natural

and anthropogenic forcing and simulations from 7 GCMs that included only natural forcing. The decline in

observed NH SCE could be largely explained by the combined natural and anthropogenic forcing but not by

natural forcing alone. However, the 15 GCMs, taken as a whole, underpredicted the combined forcing re-

sponse by a factor of 2. How much of this underprediction was due to underrepresentation of the sensitivity

to external forcing of the GCMs or to their underrepresentation of internal variability has yet to be determined.

1. Introduction

The accumulation of greenhouse gases in the atmo-

sphere has the potential to substantially alter the earth’s

climate in profound ways. Understanding the unfolding

details of those changes poses an important scientific and

societal challenge, especially for those details of climate

that directly affect human well-being. A research ap-

proach called ‘‘detection and attribution’’ compares ob-

served and modeled changes in one or more climate

variables over some past period in order to determine

rigorously whether the changes are (i) outside of natural

variability and (ii) consistent with human modification of

the atmosphere through the addition of greenhouse gases

(and often sulfate aerosol).

Detection and attribution studies (beginning with

Hasselmann 1993) initially focused on global tempera-

ture means and patterns (Hegerl et al. 1997; Stott et al.

2000), in both longitude–latitude and latitude–altitude

(Stott et al. 2001; Santer et al. 2003). Subsequently, de-

tection and attribution has been applied to zonal mean

precipitation patterns (e.g., Lambert et al. 2005), surface

temperature extremes (e.g., Tebaldi et al. 2006; Stott et al.

2011), ocean heat content (Barnett et al. 2005), Arctic sea

ice (Min et al. 2008), western U.S. hydroclimate (Barnett
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et al. 2008; Pierce et al. 2008), northern and southern

annular modes (Gillett et al. 2005), and more. A related

approach, fractional attributable risk, has been applied

to specific extreme events like the 2003 European heat

wave (e.g., Stott et al. 2004). Other important aspects of

global climate, for example, the El Ni~no–Southern Os-

cillation and tropical cyclones, have not exhibited a

detectable change (Hegerl et al. 2007).

Northern Hemisphere (NH) snow cover extent (SCE)

is among themost important indicators of global climate

variability and change. An increase in global tempera-

ture should cause a decline in total snow cover extent

given the 08C-threshold response of snow formation and

melt. However, increases in winter precipitation could

be sufficient to offset this response regionally, particu-

larly at high latitudes and elevations (Brown and Mote

2009).Of course, a decrease inwinter precipitation would

also bring less snow, temperature being equal.

To date, no detection and attribution studies of spring

NH SCE have been published. Brown and Mote (2009)

did compare satellite-derived snow cover patterns with

simulated snow cover from global climate models

(GCMs) for the years 1970–99 but did not compare the

temporal trends. Very recently, Derksen and Brown

(2012) showed that late spring–early summer (May–

June) NH snow cover, which is predominantly over the

Arctic, decreased significantly over the last four decades

and that the decrease in June SCE was greater than that

simulated by an ensemble of eight GCMs in phase 5 of

the Coupled Model Intercomparison Project (CMIP5).

In contrast, our study compares 90 years of observed

snow cover inMarch–April (when the snow cover extent

is much greater) to simulations from 15 CMIP5 GCMs

and performs a formal detection and attribution exercise

known as optimal fingerprinting.

2. Data

Our source for observed SCE was March and April

snow covered area for the Northern Hemisphere over

the period from 1922 to 2010 from Brown (2000)

and Brown and Robinson (2011). Simulated monthly

NH SCE was obtained from the CMIP5 multimodel en-

semble (Taylor et al. 2012). We acquired SCE for two

CMIP5 experiments for the period 1850–2005. The first

experiment, ‘‘historicalNat,’’ used natural external forcings

only, which include solar irradiance and volcanic gases.

The second experiment, ‘‘historical,’’ used both natural

and anthropogenic forcing; the latter includes long-lived

greenhouse gases, aerosols and chemically active gases,

though not all models include the identical suite of an-

thropogenic forcing agents. Simulated monthly SCE that

excluded any time-varying forcing came from long-duration

runs under the CMIP5 preindustrial control experiment

‘‘piControl.’’

We used the following criteria for selecting a subset of

the available (as of 1December 2012)CMIP5 datasets for

this analysis: 1) preindustrial control had to have lengths

of at least 500 continuous years and 2) a GCM had to

have at least three ensemble members for a histor-

icalNat or historical scenario (ensemble members for a

given GCM vary by their initial conditions only). A

total of 30 historicalNat runs from 7 GCMs and 67

historical runs from 15 GCMs were used for testing

whether the observed decline in SCE could be explained

by either forcing. A total of 15 preindustrial simula-

tions (1 per model) were used representing 7500 years.

These preindustrial simulations were used to estimate

internal variability (see section 3). Table 1 provides a

summary of the selected historicalNat and historical

CMIP5 datasets, and the time series of anomalies are

shown in Figs. 1 and 2, respectively.

An initial examination of the CMIP5 historical datasets

revealed climatological biases in spring NH SCE ranging

from 234% (MPI-ESM-MR) to 122% (CNRM-CM5),

with BCC-CSM1.1 showing the least bias (10.2%). Given

that a GCM’s bias could influence its sensitivity in

SCE to external forcing, we performed the optimal

fingerprint analysis on both absolute and relative

anomalies.

Prior to the optimal fingerprint analysis, all observed

and simulated time series were subjected to a Gaussian

smoother to reduce the higher frequency variability, which

is noise in our case, in favor of the multidecadal scale re-

sponse to forcings that is of interest here. We applied the

smoother with two values (1.5 and 2.5 yr) of the standard

deviation of theGaussian kernel to examine the sensitivity

of the detection and attribution methodology to a partic-

ular amount of smoothing.

3. Methodology

The method of detection and attribution known as

optimal fingerprinting is discussed in detail elsewhere

(e.g., Allen and Tett 1999; Allen and Stott 2003), so we

merely give a brief overview here. The method can be

presented in the form of ‘‘total’’ least squares (TLS)

regression,

y5 (x2 v1)b1 v0 , (1)

where y is the filtered version of the observed temporal,

or spatiotemporal, pattern; x contains the filtered sim-

ulated response pattern to the external forcings; b is the

unknown scaling factor; and v0 represents the internal

climate variability or noise. The additional noise term v1
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accounts for the fact that we are using a finite ensemble

of model-simulated response x; thus, x differs by a

quantity v1 from the underlying response from a hypo-

thetical infinite ensemble. Given that our ensemble sizes

were mostly small (as few as three members per model)

it would be improper to assume v1 is negligible (Allen

and Stott 2003; Stott et al. 2003).

Representing the problem as a linear regression with

the assumption that the noise terms are normally dis-

tributed allows for the calculation of a best estimate ~b of

the true scaling factor b, as well as confidence intervals

on ~b, based on established techniques (Allen and Stott

2003). While the noise terms are Gaussian, they include

strong correlations in time and consequently are often

highly correlated with the signal itself. This correlation

between internal variability and forced response is the

challenge in detecting and attributing the observed

changes to external forcing. From these estimates of the

scaling factors ~b, we performed a test of amplitude

consistency (Tett et al. 2002). Amplitude consistency

FIG. 1. Observed and simulated spring (average of March and April) Northern Hemisphere

snow cover extent (SCE) anomalies from the 1922–2005 baseline period. Observed anomalies

are shown by the blue symbols. The red lines show 30 simulations from seven models under

natural forcing only (‘‘historicalNat’’ experiment), and the thick black line is the full ensemble

average. Vertical gray lines denote major volcanic events (thin and thick lines signify volcanic

explosivity index of 5 and 6, respectively).

FIG. 2. As in Fig. 1, but for the 67 simulations from 15 models using natural and anthropogenic

forcing (historical experiment).
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tests the null hypothesis that the observed response to

forcing is consistent with the amplitude of the simulated

response: that is, that the two-tailed uncertainty range

about ~b includes unity. Rejection of the null hypothesis

implies that the simulated signal amplitude is inconsistent

with the observations.

The noise v0 was extracted from samples of the control

simulations (Allen and Tett 1999) where the samples

were the same length as that of the observations. Sam-

ples of the control simulations were offset by 10 yr to

increase the number of samples available for the anal-

ysis (e.g., Stott et al. 2001), resulting in 41 control sam-

ples of 84 yr each per GCM. Overlapping samples was

justified because the time series, including the Gaussian-

smoothed series, show essentially no autocorrelation at

lags of 10 yr and greater. Even so, the use of overlapping

samples requires an adjustment to the degrees of free-

dom for significance testing. As in Stott et al. (2001) and

Tett et al. (2002), the degrees of freedom were given as

1.5 times the number of nonoverlapping samples. The

control samples were divided into two sets: one set of

21 samples was used for the ‘‘prewhitening’’ operator,

which was used to produce the optimized fingerprints

from the SCE anomaly components, and the second set

of 20 samples was used for the model consistency test

(Allen and Tett 1999).

As stated above, both the observations and simula-

tions were filtered prior to fitting Eq. (1): note that this

filtering is distinct from the smoothing of the time series.

Filtering was done in order to provide a robust estimate

of the inverse noise covariance, which is needed in order

to normalize model-simulated responses and observa-

tions by internal variability so as to improve the signal to

noise ratio (Allen and Tett, 1999). Filtering was ac-

complished through an empirical orthogonal function

(EOF) analysis. The EOFs were generated from the

preindustrial control samples, which were treated as

‘‘pseudo’’ observations of internal variability. Our EOF

analysis contained N variables, each being spring

NH SCE zi at points in time i 5 1, 2, . . . , N, for N 5 84

(1922–2005). For each zi, there were M 5 21 samples of

pseudo observations. (Note that this differs from the

more familiar way of conducting an EOF analysis where

zi has position i in space and the samples are taken

through time.) All data (observed and simulated) were

then projected onto the leading k eigenvectors, for k,M.

We looked for truncations (k) that provided consis-

tency with the linear statistical model in Eq. (1). The

linear model was accepted when an F test of the ratio of

the variance of the residuals of the regression and the

variance of the control simulation returned p values

that exceeded 0.05 and did not exceed 0.95 (Allen and

Tett 1999). The upper limit of 0.95 was used as a check

against overfitting. In effect, we chose k that returned

the highest p value under 0.95.

In addition to applying Eq. (1) to each GCM sepa-

rately, we also applied it to the multimodel ensemble

(e.g., Gillett et al. 2002). For simplicity, we treated all

ensemble members of each model equally: thus, in-

dividual models were, in effect, weighted by the num-

ber of ensemble members each model contained. The

number of control samples was the number of models

multiplied by M.

4. Results and discussion

The records of observed spring NH snow cover extent

(SCE) show a decline over the last 90 years, with most

of this decline occurring during the last 40 years. From

1970 to 2010, the rate of decline was ;0.8 3 106 km2 per

decade (Brown and Robinson 2011). Putting these

numbers in perspective that is equivalent to a loss of one-

third of the area of Canada, or a 9% reduction, from

average pre-1970 values.

Under natural forcing only, the GCMs as a group did

not simulate any such multidecadal decline in spring

NH SCE (Fig. 1). The most evident naturally forced

response was from volcanic activity; in the multimodel

average, SCE increased by a little over 2% following

each of the four eruptions since 1850 that had the largest

volcanic explosivity index (6). However, the volcanic

influence appeared to become negligible by the third or

fourth year following the eruption. Unfortunately (i.e.,

from a statistical standpoint), only one of these eruptions

(Mount Pinatubo, June 1991) has occurred since 1922,

and the observed SCE record actually shows a small de-

crease in the first spring following the Pinatubo eruption.

The large year-to-year variability in observed spring

NH SCE relative to the apparent simulated response to

volcanic forcing necessitates a much larger sample size

to permit a satisfactory statistical analysis of the ob-

served SCE response to volcanic emissions.

Another important natural forcing agent, total solar

irradiance (TSI), has a dominant mode of variability

with an approximately 11-yr cycle. In addition to this

solar cycle, TSI reconstructions also show a gradual in-

crease from the late nineteenth century to about 1960

(e.g., Lean and Rind 2008). Though both of these fea-

tures of the TSI time series are included in the CMIP5

historicalNat experiment, neither produced a signal that

is visually evident in the multimodel ensemble (Fig. 1).

In contrast to the CMIP5 historicalNat experiment,

the simulations that included anthropogenic forcing

show a clear decline in snow cover since 1970 (Fig. 2).

The two largest short-term reversals of this longer trend

in the simulations followed large volcanic eruptions

6908 JOURNAL OF CL IMATE VOLUME 26



(El Chich�on, March 1982; Mount Pinatubo). Inspection

of the smoothed time series highlights the magnitude of

the post-1970 decline against the (multi)decadal vari-

ability in both observations and simulations (Fig. 3).

While the smoothed observations show high variability

at time scales of 20–30 yr, the magnitude of the marked

decline in SCE over the last four decades appears to

exceed the prior historical variability back to 1922.

The individual GCMs also produced a post-1970 de-

cline in SCE to varying degrees. However, while several

FIG. 3. Time series of spring NorthernHemisphere SCE anomalies. Observations (black) and simulations (gray) with combined natural

and anthropogenic forcing were smoothed with a Gaussian kernel standard deviation of 2.5 yr. The red trace shows the mean of the

simulations.
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GCMs generated multidecadal variability with magni-

tudes similar to what has been observed (e.g., CCSM4.0,

FIO-ESM, and MPI-ESM-LR), many others produced

too little variability (e.g., CNRM-CM, FGOALS-g2,

and MRI-CGCM3).

Results of the optimal fingerprinting further demon-

strated a lack of consistency between observations and

simulations with only natural forcing. The majority of

GCMs in the historicalNat experiment, including the

multimodel ensemble, had negative values of the scaling

factor (Fig. 4, Table 2), which imply an observed re-

sponse to forcing that was of opposite sign of the simu-

lated response. The minority of GCMs with positive

scaling factors had values that were much large than

unity, thus inconsistent with observations. Though the

degree of smoothing of the time series did influence the

scaling factor estimate (more smoothing generally

broadened the confidence intervals, and in two cases

caused a sign reversal), it did not affect in anymeaningful

way the overall results.

With combined natural and anthropogenic forcings,

the optimal fingerprinting revealed much greater con-

sistency between observations and simulations. In the

historical experiment, all GCMs had a scaling factor

significantly greater than 0 (Fig. 5, Table 3). Of the eight

GCMs that were adequately represented by the linear

model in Eq. (1), four had 5%–95% confidence intervals

on ~b that included unity, implying that those four GCMs

were also consistent with the observations in the am-

plitude of their response.

However, the scaling factors were generally greater

than unity across GCMs and ranged from 0.9 to 7.3 where

the linear model [Eq. (1)] was accepted. The multimodel

ensemble had a scaling factor of just under 2, implying

that the GCMs as a group underrepresented the SCE

response to external forcings by a factor of roughly 2. It is

worth noting that Pierce et al. (2008), when examining

1AprilwesternU.S. snowwater equivalent normalized by

precipitation, detected the same degree of underrep-

resentation (32) for two GCMs.

FIG. 4. Best estimates of scaling factors ~b and their 5%–95%

uncertainty estimates for spring NH SCEwith natural forcing only.

Filled (open) symbols indicate where the linear model in Eq. (1)

was accepted (rejected). Triangles (circles) indicate where the

relative SCE anomalies were smoothed with a Gaussian kernel

with a standard deviation of 1.5 (2.5) yr. Note that in some in-

stances the 95% uncertainty limit is outside the plotting area.

TABLE 2. Scaling factor b by GCM for the CMIP5 historicalNat experiment using relative and absolute SCE anomalies, with 5%–95%

confidence intervals (CI) and p values. Anomalies were smoothed with Gaussian kernel with a standard deviation of 2.5 yr.

Relative anomalies Absolute anomalies

GCM Estimated b CI p value Estimated b CI p value

Multimodel 211 230 to 26 0.106 210 231 to 25 0.160

CanESM2 213 286 to 27 0.904 212 269 to 26 0.903

CCSM4.0 15 2 to 24* 0.813 14 2 to 24* 0.799

CNRM-CM5 233 33 to 210* 0.277 226 27 to 29* 0.289

CSIRO Mk3.6.0 223 20 to 27* 0.070 233 26 to 210* 0.401

FGOALS-g2 11 5–188 0.689 8.8 4–93 0.682

GISS-E2-R 4.0 2–10 0.263 3.7 2–10 0.258

MIROC-ESM 22.9 24 to 22 0.294 23.0 24 to 22 0.274

* CI passes through 6infinity.

FIG. 5. As in Fig. 4, but for simulations with combined natural and

anthropogenic forcing.
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The best estimates of the scaling factors for a given

GCMwere generally similar whether a standard deviation

of 1.5 or 2.5 was used with the Gaussian smoother (Fig. 5),

though in some cases the effect was dramatic (e.g.,

CNRM-CM5). However, the results of the significance

testing varied with degree of smoothing. With the greater

smoothing, six more GCMs were found to show consis-

tency with Eq. (1). However, increasing the smoothing

also tended to broaden the confidence intervals about ~b.

While there appears to be general consistency between

the scaling factors in Table 3 and the magnitude of the

modeled SCE declines in the time series in Fig. 3, the

relationship is not direct because the data are first pro-

jected onto a user-selected number k of leading eigen-

vectors that are derived from an independent set of

control runs. To demonstrate the effect of this EOF fil-

tering, we provide more detailed results from the histor-

ical experiment for four example cases: the multimodel

ensemble mean, two GCMs with a scaling factor close

to unity (CCSM4.0 and MPI-ESM-MR), and one GCM

with a high scaling factor (GISS-E2-H). In each case, the

selection of k followed an examination of scaling factors

calculated for all possible k (Fig. 6, left column). Stability

in the scaling factor across several values of k increased

confidence in the results (see multimodel ensemble,

CCSM4.0, and MPI-ESM-MR examples in Fig. 6). In

contrast, our confidence in the estimated scaling factor

for GISS-E2-H was lower because the value was less

stable across values of k.

The observed and simulated time series, both pro-

jected onto the selected k eigenvectors, are shown in

Fig. 6 (center column). These two projected time series

form y and x, respectively, in Eq. (1). Recall that the

noise in y, or v0, derives from internal variability in the

control runs. The TLS procedure also assumes there is

noise v1 in the simulated pattern (owing to finite en-

semble size), which must also be estimated. Plotting y

against the estimated noise-freemodel response (x2 v1)

illustrates the relationship between the noise and the

estimated scaling factor ~b (Fig. 6, right column); large

simulation noise v1 relative to observation noise v0 is

generally associated with larger values of ~b (e.g., multi-

model ensemble and GISS-E2-H).

A conspicuous result of optimal fingerprinting using

the historicalNat experiment is the very wide range in

the values of the scaling factor among GCMs (Fig. 4).

This result by itself is evidence that the naturally forced

simulations do not have variations that project easily

onto the observations. In other words, the natural ex-

periments are more or less approximately orthogonal to

the observed changes.

Though a much narrower range of scaling factors was

estimated from the historical experiment, some of these

scaling factors did vary among GCMs and in some cases

significantly (Fig. 5). These differences in the historical

experiment scaling factors may be caused by differences

across GCMs in, among other things, unforced variabil-

ity, bias, and climate sensitivity due to a different physics

representation. Though an in-depth analysis of the causes

of the variability in scaling factors is beyond the scope of

this paper, we took an exploratory look at the possible

influences of unforced variability and bias (focusing on

the time series smoothed with a 2.5 standard deviation

kernel). These two factors may be related, as GCMs that

TABLE 3. Scaling factor b by GCM for the CMIP5 historical experiment using relative and absolute snow cover extent anomalies, with

5%–95% CI and p value. Anomalies were smoothed with Gaussian kernel with a standard deviation of 2.5 yr.

Relative anomalies Absolute anomalies

GCM Estimated b CI p value Estimated b CI p value

Multimodel 1.9 1.0–2.8 0.897 1.9 1.1–2.7 0.560

BCC-CSM1.1 1.4 0.9–2.0 0.409 1.4 0.9–2.0 0.476

CanESM2 1.8 1.4–2.3 0.007* 1.5 1.1–2.0 0.022*

CCSM4.0 0.9 0.5–1.4 0.793 0.9 0.5–1.4 0.827

CNRM-CM5 5.8 4.0–9.7 0.013* 3.2 2.0–5.6 0.033*

CSIRO Mk3.6.0 3.1 1.8–5.3 0.000* 4.6 3.1–7.3 0.000*

FGOALS-g2 1.0 0.8–2.9 0.002* 1.7 1.1–2.6 0.002*

FIO-ESM 1.0 0.7–1.4 0.000* 1.3 0.9–1.8 0.000*

GISS-E2-H 7.3 4.7–15.2 0.889 5.9 3.7–12.0 0.906

GISS-E2-R 3.0 2.1–4.4 0.198 2.7 1.9–4.1 0.275

MIROC-ESM 2.7 1.8–4.5 0.781 2.8 1.8–4.6 0.759

MIROC5 5.2 2.6–22 0.000* 4.2 1.9–16.7 0.000*

MPI-ESM-LR 0.8 0.6–2.1 0.000* 2.2 1.7–1.8 0.000*

MPI-ESM-MR 0.9 0.1–2.1 0.612 1.3 0.3–3.7 0.050

MRI-CGCM3 2.8 1.5–6.8 0.938 2.6 1.5–5.2 0.720

NorESM1-M 2.4 0.8–16.2 0.905 1.7 1.2–2.5 0.005*

* Linear model [Eq. (1)] rejected.
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tend to generatemore snow covermay tend to have higher

variance in their absolute anomalies. In fact, the standard

deviations of the preindustrial control runswere positively,

albeit weakly, correlated with model bias (r 5 0.34).

It is possible that underrepresentation in internal

variability can inflate the scaling factor. However, we

found that the standard deviations of the preindustrial

absolute anomalies explained none of the scaling factor

FIG. 6. (left) Scaling factor estimate ~b and its 5%–95% uncertainty against number of EOF patterns retained k for the multimodel

ensemble and three example GCMs. Filled (open) symbols indicate where the linear model was accepted (rejected). (center) Observa-

tions vs simulations after projecting each onto selected number of eigenvectors, or y vs x [see Eq. (1)]. (right) Projected observed pattern

(y) against estimates of noise-free projected simulated pattern (x2 v1). The thick black line in the right column shows the estimated noise-

free projected observed pattern (y 2 v0) vs the estimated noise-free projected simulated pattern (x 2 v1).
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variance (R2 5 0.00). Interestingly, we conducted the

optimal fingerprinting with both absolute and fractional

anomalies because of the possibility that bias-driven

model differences in internal variability could be a fac-

tor. However, using relative anomalies in place of ab-

solute anomalies did not reduce the variability in scaling

factor values and, for most GCMs, had only a modest

effect (Table 3).

For combined natural–anthropogenic forcing,we found

that climatological SCE bias explained a noteworthy

proportion of the scaling factor variance (R2 5 0.30).

Curiously, the trend of scaling factor with bias was

positive (Fig. 7), whereas we expected smaller scaling

factors resulting from greater positive bias if greater

positive bias implied greater internal variability.

This leads us toward the conclusion that physics-

representation-driven differences in climate sensitivity

to external forcings amongGCMs are the principal cause

of the scaling factor variability. However, a thorough

investigation of the causes requires much more analysis

than we have presented. One step would be to compare

our results with a similar optimal fingerprinting analysis

of both temperature and precipitation response among

the same set of CMIP5 models. Given, for example, that

Brown and Robinson (2011) found that near-surface air

temperature (408–608N) explained 49% of the variability

in spring NH SCE, we would expect that scaling factors

estimated from NH surface air temperature in particular

would explainmuch of the variability seen amongmodels

in this study. Furthermore, the sensitivities should vary in

space (e.g., Brown andMote 2009); therefore, an analysis

of the spatiotemporal consistency between observations

and models is a logical follow up to the study presented

here.
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