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Using national crop and livestock production records from 1961-
2003 and satellite-derived data on pasture greenness from 1982-
2003 we show that the productivity of crops, livestock, and
pastures in Africa is predictably associated with the El Nifio South-
ern Oscillation and the North Atlantic Oscillation. The causal
relations of these results are partly understandable through the
associations between the atmospheric fluctuations and African
rainfall. The range of the explained among-year variation in crop
production in Africa as a whole corresponds to the nutritional
requirements for ~20 million people. Results suggest reduced
African food production if the global climate changes toward more
El Nino-like conditions, as most climate models predict. Maize
production in southern Africa is most strongly affected by El Nifio
events. Management measures include annual changes in crop
selection and storage strategies in response to El Nifio Southern
Oscillation-based and North Atlantic Oscillation-based predictions
for the next growing season.

El Nifio Southern Oscillation | North Atlantic Oscillation | Normalized
Difference Vegetation Index | food production | nonlinear statistical
modelling

lobal climate change is no longer a hypothesis (1), and we

need to better understand its impact on ecosystems and
society (2). Africa is particularly vulnerable to climatic variability
as its economies are largely based on weather-sensitive agro-
pastoral production systems. This vulnerability has been dem-
onstrated by the devastating effects of the various prolonged
droughts in the 20th century. To develop effective agro-pastoral
management strategies to cope with climatic variability and
change, we need detailed knowledge about how different crop
and livestock types respond to climatic variation in the different
regions of Africa. Although it is the local weather that affects
plants and animals, indicators of large-scale climate processes,
such as the El Nifo Southern Oscillation (ENSO) (3) and the
North Atlantic Oscillation (NAO) (4), can often be used to
account for ecological processes better than a reliance only on
local weather variables, because they reduce complex space and
time variability into simple measures (5, 6). Another interest in
the use of such climate proxies is that their states can be
predicted several months ahead (7, 8) and that their possible
long-term change is an important component of future climate
projection scenarios (1).

Primarily ENSO, large-scale air-sea variability in the equato-
rial Pacific (3), but also the NAO, North Atlantic north-south
alternation in atmospheric mass (4), is linked with climatic
variability in Africa as a result of atmospheric teleconnections
(9-12) (Fig. 1). For example, the risk of drought in southern
Africa increases by 120% in El Nifo years (warm ENSO
anomalies) (13). More generally, warm ENSO anomalies lead to
rainfall deficits in southern, western, and northeastern Africa
and rainfall surpluses in eastern Africa, whereas cold ENSO
anomalies have roughly the opposite effects (9-11). Positive
NAO anomalies (steep North Atlantic air pressure gradient)
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Fig. 1. The association between interannual variation in African climate and
NAO and ENSO, indices of large-scale climatic variability, as reported in the
literature. The representation is a simplification, as e.g., temporal aspects are
not considered. To simplify the assessment of the climate impacts (compare
Table 1) Africa is divided into regions that display similar agro-pastoral re-
sponses (dashed lines). Note that these regions are not necessarily identical to
the geographic extents of the reported climate effects.

lead to rainfall deficits in northwestern and southeastern Africa,
whereas negative NAO anomalies lead to rainfall surpluses in the
same areas (4, 12, 14). Effects of ENSO (15-17) and NAO (ref.
18 but see ref. 19) on interannual variation in primary production
in different regions of Africa have been shown, using the
satellite-derived Normalized Difference Vegetation Index
(NDVI) (20, 21) to measure vegetation greenness. Effects on
agricultural primary production have also been demonstrated,
but to our knowledge only at local scales. For example, Cane et
al. (22) showed that >60% of the variance in Zimbabwean maize
yield could be accounted for by an index of ENSO and that
accurate predictions of yield could be made with lead times of
up to 1 year. Because of the predictable association between
ENSO and African climate, ENSO information is being used
with other information to forecast and mitigate climatic impacts
on water supplies, food production, and human health in south-
ern and eastern Africa (23-25). We believe that such use of
ENSO and NAO information could be even more fruitful if the
link between these indices and food production is empirically
assessed at large spatial scales.

Here we take an all-African perspective, aiming to quantify
the effects of ENSO and NAO on agro-pastoral production. How
do these effects differ geographically, and how do they differ
among crop or animal types? How much food do the effects
correspond to in terms of the number of people who could be fed
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on above- or below-average production? For this purpose we
used the unique FAOSTAT data set (http://faostat.fao.org)
from the Food and Agriculture Organization of the United
Nations. These data show the actual agro-pastoral production in
different countries each year for >40 years. Our results are
therefore directly interpretable in terms of total amounts of food
produced in each country. For crops we analyzed interannual
variability in yield (harvested production per cultivated area),
and for livestock we analyzed interannual variability in slaughter
weights. Because slaughter weights are also influenced by human
management decisions, we also analyzed variability in pasture
productivity measured by NDVI in three parts of Africa (Mali,
Kenya, and Botswana).

Results and Discussion

We find strong associations between year-to-year variability in
ENSO and yields of maize, sorghum, millet, and groundnuts
(Fig. 2 and see Figs. 3—-12, which are published as supporting
information on the PNAS web site, for plots for all countries with
available data). This association is strongest for southern Africa,
where productivity is expected to drop by 20-50% in extreme El
Nifo years. Note that for sorghum, millet, and groundnuts the
response is nonlinear, as the ENSO effect is only apparent when
the ENSO index surpasses certain thresholds, either an upper
threshold (El Nifio years) or a lower threshold (La Nina years).
The western regions of the continent show similar but weaker
responses for millet and maize, whereas sorghum and groundnut
yields in northwest Africa appear to increase during El Nifio
years. In contrast, rice shows a weaker and geographically more
uniform response to ENSO, whereas cassava and wheat show no
response at all. The weaker response for these crops may be
partly caused by more frequent use of irrigation. However, rice
shows a rather strong response to variability in the NAO,
particularly in the northern and central parts of the continent
(where ENSO generally has relatively low effect). In addition,
variability in the NAO is associated with variability in the yields
of groundnuts and cassava.

The climate impacts on the total production of different
crops in different regions of Africa are summarized in Table
1. The effects we observe are strong, particularly so for
southern Africa, and particularly so for maize, where the
difference in production between the extreme warm and cold
ENSO phases corresponds to what is required to feed close to
15 million people in 1 year (see Table 2, which is published as
supporting information on the PNAS web site). These effects
concern southern Africa especially, where maize is the most
important food crop, and Africa generally, where southern
Africa is the most important maize-producing area. For Africa
as a whole, the effect of variation in ENSO on maize corre-
sponds to what is required to feed a total of close to 20 million
people in a year. The corresponding figures for sorghum,
millet, rice, and groundnuts are ~2 million to 3 million people.
When it comes to the impacts of NAO variability, the corre-
sponding figure for sorghum is ~5 million people, for rice
almost 3 million people, and for cassava almost 2 million
people. Although these figures are highly theoretical, they do
give an impression of the order of magnitude of the effects.
Any management measures that could mitigate some of the
negative climate effects would help a large number of people.

When it comes to the effects on pastures and livestock, we
find that slaughter weights of goats are positively associated
with the previous-year NAO index in the western parts of
Africa. For cattle and sheep no response to either ENSO or
NAO is found. Using NDVI data we find that pasture pro-
ductivity is negatively associated with the ENSO index in
Botswana and negatively with the NAO index in Kenya (long
growing season only; Fig. 2), probably reflecting direct effects
of precipitation variability. There are also indications of
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Fig. 2. Predicted yearly anomalies in agro-pastoral productivity in Africa in
response to ENSO (blue lines) and NAO (green lines). ENSO and NAO are
indices of large-scale climatic variability. A-G are based on FAOSTAT data
from 1961-2003 and show predictions =2 SE on logarithmic scales for repre-
sentative countries for which data exist (see Figs. 3-12 for all countries). H
shows climate effects (=2 SE, linear scale) on the NDVI, a satellite-derived
measure of primary production, for pastoral regions in Mali, Kenya, and
Botswana for 1981-2003. The NDVI response for the Kenyan long growing
season is shown (the short-season response is included in Fig. 13). The tick
marks on the ENSO and NAO scales show the locations of the observations of
these variables.
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delayed ENSO effects in Kenya and a slight ENSO effect in
Mali, but the latter depends on a single La Nifia year with high
NDVI (Fig. 13, which is published as supporting information
on the PNAS web site). The finding of climatic effects on
pasture productivity but not on livestock in some regions could
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Table 1. Climate effects on crop production

Region Year* Maize Sorghum Millet Rice Groundnuts Cassava
Amount required to feed 1 228 224 255 300 191 752
million people®
NW Normal 130 68 9 80 49 0
High ENSO -5 +3 +0 -2 +5 —
Low ENSO +5 +9 +1 +2 +3 —
High NAO +0 -2 +0 +2 -3 —
Low NAO +0 -1 +0 +4 +0 —
NE Normal 6,327 975 7 6,400 224 0
High ENSO +117 +68 +0 —145 +4 —
Low ENSO -96 +1 +0 +124 +1 —
High NAO +0 —51 +0 +532 -1 —
Low NAO +0 +23 +0 +11 +0 —
Sahel W Normal 1,531 2,443 2,675 1,213 1,088 205
High ENSO —55 +57 -9 —34 -7 +0
Low ENSO +47 +217 +236 +30 +73 +0
High NAO +0 -114 +0 +27 -6 -1
Low NAO +0 —57 +0 +49 +0 +2
Sahel E Normal 185 5,706 3,015 21 1,903 403
High ENSO +0 +228 +53 -6 +65 +0
Low ENSO +0 +7 +97 +5 +36 +0
High NAO +0 —348 +0 +10 —67 -6
Low NAO +0 +1 +0 +4 +0 -6
Equat. W Normal 3,379 749 358 3,092 1,122 19,206
High ENSO -114 +8 +1 -96 —36 +0
Low ENSO +99 +52 +29 +82 +68 +0
High NAO +0 -39 +0 +27 +10 -170
Low NAO +0 -23 +0 +91 +0 +55
Equat. C. Normal 7,337 8,038 5,602 5,796 3,187 55,005
High ENSO -202 +247 +67 -172 +25 +0
Low ENSO +173 +335 +305 +148 +120 +0
High NAO +0 —454 +0 +170 +2 —706
Low NAO +0 -182 +0 +130 +0 —359
Equat. E Normal 8,780 2,898 1,192 835 279 12,596
High ENSO —=101 —-108 +25 —27 +9 +0
Low ENSO +89 +3 +32 +23 +13 +0
High NAO +0 -216 +0 +34 -18 —-229
Low NAO +0 —-35 +0 -2 +0 —-217
South Normal 14,893 1,001 316 280 706 17,409
High ENSO -1,741 —-164 —-37 -10 -115 +0
Low ENSO +1,643 +85 +42 +9 +75 +0
High NAO +0 -94 +0 +7 +35 —-280
Low NAO +0 —67 +0 +5 +0 —-128
Total Normal 42,561 21,878 13,175 17,908 8,558 104,824
High ENSO -2,101 +339 +100 —492 —49 +0
Low ENSO +1,961 +710 +742 +422 +389 +0
High NAO +0 -1,318 +0 +810 —58 -1,392
Low NAO +0 —340 +0 +291 +0 —654

Expected total crop production (103 metric tons) in different parts of Africa during normal years and anomalies during extreme ENSO
or NAO years. The numbers are based on country-specific estimates, using information on cultivated area, time-averaged yield, and
geographic-specific climate effects, and are summed across the countries in each region (as defined in Fig. 1).

*Climatically normal or extreme years of magnitudes as expected to occur every 20 years, as estimated by the 5% and 95% percentiles
of the ENSO or NAO indices 1961-2003 [ENSO: —0.89 (La Nifia) and 1.13 (El Nifio), NAO: —3.53 and 3.91].
The amount needed to feed 1 million people for 1 year at 2,000 calories per person per day.

be caused by management interventions (e.g., supplemental
feeding, pastoralist mobility) or a general excess of pastures in
these areas, but more detailed data would be needed to
determine this issue.

Our results imply that African food production may be
severely reduced if the global climate changes toward more El
Nifo-like conditions, as most climate models predict (1). This
effect is largely caused by lower total maize yields. It should,
however, be added that this projection of the results does not
take into account climate-related changes in the amount of
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land suitable for farming or direct effects of increased CO; on
crops (26). Negative effects could be mitigated by improved
technology, including increased use of irrigation, and changes
in land use, including the planting of alternative crops. As to
the latter strategy, our results indicate which crops might be
more favorable in which part of Africa under an El Nifno-like
regime.

Because ENSO, and to some extent NAO, can be forecast (7,
8), our analysis suggests a prognostic measure. First, our
results demonstrate that early predictions can be made on how
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climate will affect the total production of different crops in the
different regions of Africa. Hence, governments and nongov-
ernmental organizations can be better prepared for potential
shortages and advised where to organize strategic staple food
reserves. Second, farmers can be advised ahead of extreme
climatic years to plant different crops. For example, cassava
and sorghum have wide soil and climatic adaptability ranges,
including tolerance to drought, and they are well known to
farmers throughout the region. Our analyses point toward
some caution in the case of sorghum, because in the most
extreme El Nino years in southern Africa (drought years)
sorghum yields are equally strongly affected as, for example,
maize. Planting at least a part of the available land with cassava
would then create a safety net (27). However, in other parts of
Africa, maize and sorghum yields show opposite responses to
El Nifio events (see Tables 1 and 2). Our results thus suggest
that switching from maize to sorghum in these regions ahead
of El Nino years may be advantageous.

Some caution is needed before downscaling our results to local
conditions. For example, crops may respond differently when
grown together with other crops. Mixed cropping is a widespread
practice among small-scale farmers in Africa, which buffers food
production against the effects of climatic fluctuations. Further,
our analysis looks at large-scale patterns of the climatic effects,
and thus averages out differences between regions within coun-
tries and microclimatic effects. Our results show the general
patterns of the climatic effects, and, not the least, the effects on
the total amounts of food produced.

A recent G8 meeting (www.g8.gov.uk) pointed out that “[a]ll
countries need further access to information and to develop the
scientific capacity that will allow their governments to integrate
climate, environmental, health, economic and social factors into
development planning and resilience strategies. We note that
Africa’s data deficiencies are greatest and warrant immediate
attention.” Our study demonstrates that much valuable data do
indeed already exist, data which, if properly analyzed, may put us
into a stronger position for dealing with an increasingly more
variable climate.

Methods

Data. Agricultural productivity data (annual mean yields or slaugh-
ter weights) for continental Africa 1961-2003 was obtained from
the United Nations FAOSTAT database (http://faostat.fao.org).
Reportedly constant productivity for 3 years or more in a country
was considered spurious and such data series were not used, nor
were data for countries with <10 years of data. Data of productivity
of maize, sorghum, millet, wheat, rice, cassava, groundnuts, cattle,
sheep, and goats were used. The numbers of countries included in
the final data set for each crop or livestock type were 42, 38, 35, 29,
37,32,41,27, 14, and 11, respectively. The numbers of year-country
combinations were 1,737, 1,551, 1,372, 1,099, 1,481, 1,226, 1,604,
866, 357, and 289, respectively.

Primary production of pastoral regions of Mali, Kenya, and
Botswana for 1982-2003 was measured by NDVI (20, 21) (see
Supporting Text, which is published as supporting information on
the PNAS web site). We here used the data collected by the
National Oceanic and Atmospheric Administration satellites
and processed by the Global Inventory Monitoring and Model-
ing Studies group (28). Average growing season NDVI was used
to estimate annual pasture productivity. The two growing sea-
sons of Kenya (long and short) were treated separately. See Fig.
13 for geographic locations and growing season periods.

The ENSO index was derived from monthly (February,
March, and April) equatorial Pacific sea surface temperature
anomalies in the Nino-3.4 region (3). We also considered ENSO
indices based on anomalies in the northern fall, winter, or
summer, but these generally showed weaker relationships with
agro-pastoral production (but see Fig. 13). We used Hurrell’s
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winter NAO index based on the difference of normalized sea
level pressure between Ponta Delgada, Azores and Stykkishol-
mur/Reykjavik, Iceland (4). ENSO data were provided by the
National Oceanic and Atmospheric Administration Climate
Prediction Center, Camp Springs, MD (www.cpc.ncep.noaa.gov/
data/indices), and NAO data were provided by the Climate
Analysis Section, National Center for Atmospheric Research,
Boulder, CO (www.cgd.ucar.edu/cas/jhurrell/indices.html).
The ENSO and NAO indices are not correlated in the study
period (Pearson’s coefficient of correlation = 0.03). See Stens-
eth et al. (5) for a review on the use of ENSO and NAO in
ecological studies.

Statistical Analyses. To account for long-term trends in agricul-
tural productivity caused by technical innovations, changes in
land use, agro-political changes, etc., we fitted generalized
additive models (GAMs) (29) for each country with log-
transformed yield or slaughter weight as response and the year
effect modeled by a smooth term with maximally 4 knots (3 df).
The residuals from these models, i.e., the detrended productiv-
ity, were used as response in the subsequent analyses. We used
the GAM implementation of the “mgcv” library of R (30).

To investigate the possible association between large-scale
climatic fluctuations and (detrended) agro-pastoral productiv-
ity, we fitted generalized additive models for each crop or
livestock type. All countries were analyzed in one model. Geo-
graphic differences in climatic effects were modeled by interac-
tions between linear functions of ENSO or NAO and smooth
functions of the latitude and longitude of each country. The
effects of climate were allowed to change abruptly across one or
two thresholds in the climatic variable, the threshold values being
estimated from the data (31, 32). For any given locality the model
was piecewise linear, which has several advantages compared
with other nonlinear model formulations (32). For fixed thresh-
olds the full model can be written as:

RP; =k + sy(long;, lat;)

+ (ky + s1(long;, lat;))(ENSO; — e)I(ENSO; < ¢,)
+ (ks + s,(long;, lat;)))(ENSO; — e)I(ENSO; > e,)
+ (ks + s5(long;, lat;))(ENSO; — e;)I(ENSO; > e,)
+ (k4 + s4(long;, lat;))(NAO; — ny)I(NAO; = n,)
+ (ks + ss(long;, lat;))(NAO; — ny)I(NAO; > n,)
+ (ke + s¢(long;, lat;))(NAO; — ny)I(NAO; > ny)
+ &,

where RPj is residual productivity for the given crop or livestock
type in country i in year j; e; and e, are threshold values of the
ENSO index; n; and n, are threshold values of the NAO index;
long; and lat; are the longitude and latitude of the country; ko—ke
are constants; so—s¢ are smooth functions with maximally eight
dimensions; the operator I designates indicator variables (1,0);
and g; is a noise term of zero mean and finite variance. For
example, when the ENSO index is between e; and e, the
estimated slope of the ENSO effect in country i equals k, + 52
(long;, lat;). The formulation ensured the climate effects to be
continuous across the thresholds. The constants are included
because the smooth terms are constrained to sum to zero for
model identification purposes (33). We also considered models
with one threshold or no threshold for either climate variable, as
well as models with climatic effects in only some regimes of the
threshold variable (e.g., ENSO effects only when ENSO is above
e, or below ey, but not between e; and e,) and models without
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climate effects. Leave-1-year-out cross validations were used to
find the best model structure for each crop or livestock type. See
also Supporting Text and Table 3, which is published as support-
ing information on the PNAS web site.

The pasture productivity data were analyzed separately for
each country (and for Kenya, growing season) by using gener-
alized additive models of NDVI in response to smooth terms of
ENSO and NAO (maximally 3 knots). The model structure was
primarily chosen based on the generalized cross-validation cri-
terion (30, 32), but a term was not included in the model if it only
led to a small improvement of this criterion, its estimated degrees
of freedom was close to 1, and its plotted confidence band
included zero everywhere (30, 32).
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