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[1] The impact of assimilation of wave-averaged flow velocities on the bathymetric
correction is studied in tests with synthetic (model-generated) data using tangent-linear and
adjoint components of a one-way coupled nearshore wave-circulation model. Weakly and
strongly nonlinear regimes are considered, featuring energetic unsteady along-beach flows
responding to time-independent wave-averaged forcing due to breaking waves. It is found
that assimilation of time-averaged velocities on a regular grid (mimicking an array of
remotely sensed data) provides sensible corrections to bathymetry. Even though the wave
data are not assimilated, flow velocity assimilation utilizes adjoint components of both the
circulation and wave models. The representer formalism allows separating contributions of
these two components to the bathymetric correction. In a test case considered, involving a
beach with an alongshore varying bar, the adjoint wave model contribution was mainly to
determine the cross-shore position of the bar crest. The adjoint circulation model provided
an additional contribution, mostly adding to alongshore variability in the shape of the bar.
The array mode analysis reveals that there are very few modes that can be effectively
corrected, given the assumed data error level. Bathymetry perturbations associated with
these modes are a mixture of near-coast intensified modes as well as modes extending their
influence to deep water (along the background wave characteristics). Additional tests show
the utility of different observational arrays in providing the bathymetric correction.
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1. Introduction

[2] In the nearshore surf zone, knowledge of accurate ba-
thymetry %(x,y) is crucial in many applications, including
wave and circulation forecasting and beach erosion moni-
toring. In response to storms, sand bars and other bathymet-
ric irregularities can be formed, modified, or moved rapidly
offshore, sometimes over the span of a day [Gallagher et
al., 1998]. Frequent high-resolution bathymetric surveys
are difficult given harsh surf zone conditions as well as
logistical constraints. Inversion of remotely sensed obser-
vations of oceanic variables that are sensitive to bathymetry
(including currents, wave setup, celerity, dissipation, etc.)
can provide an opportunity to obtain estimates of bathymet-
ric changes without direct surveys. As an example, the
Beach Wizard system [van Dongeren et al., 2008] utilizes
estimates of wave celerity, wave dissipation, and intertidal
bathymetry (derived from optical or radar observations of
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the nearshore ocean over an extended period of time) to
correct bathymetry locally at points where data are avail-
able. The prior estimates of the observed variables are
obtained from a numerical wave and circulation model, and
a sequential assimilation scheme is devised to constrain ba-
thymetry. This system can assimilate observations of varia-
bles that can be expressed in mathematical terms as
analytical differentiable functions depending locally on 4.
Similarly, the c-Bathy algorithm [Holman et al., 2013] pro-
vides estimates of bathymetry using wave celerity proper-
ties derived from the optical image analysis and local
inversion of the wave dispersion relation.

[3] Not every observed oceanic variable sensitive to 7
can be written as a local analytical function of 4. For
instance, estimates of wave-averaged currents can be
obtained from microwave radar imagery [Farquharson et
al., 2005] or feature tracking using a sequence of optical
images [Chickadel et al., 2003]. These currents are influ-
enced by both local bathymetry and bathymetric variability
at a distance. For example, bathymetry errors at some dis-
tance from the coast can affect estimates of shoreward
wave propagation, resulting in erroneous estimates of wave
breaking, dissipation, and forcing of wave-averaged cur-
rents closer to the coast. In addition, bathymetry also enters
explicitly into governing equations of the circulation and
thus has a direct effect on a wave-averaged flow field.
Hence, bathymetry estimation using observed nearshore
currents requires a method that can account for both local
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and nonlocal dependence on / and utilizes both wave and
circulation models.

[4] Some data assimilation methods [Bennett et al.,
2002; Evensen, 2007] are designed to find ocean state esti-
mates that fit the model and the data in a least squares
sense. These methods use model error covariances (com-
puted or specified a priori) to provide interpolation and fil-
tering of sparse data sets and to correct model inputs
(including in our case bathymetry) at the locations where
data are not available. The model error (and correction) is
propagated in space and time using the model dynamics,
e.g., traveling as waves or advected by currents. Wilson et
al. [2010] made a step in this direction by assimilating in
situ velocity observations and correcting bathymetry, using
an ensemble approach to compute model error covariances
[Evensen, 2007]. An ensemble of bathymetries was gener-
ated using empirical orthogonal functions (EOFs) of the ba-
thymetry time series from a series of surveys in the study
region. An ensemble of model solutions was obtained using
this bathymetry ensemble. From these, the velocity-
bathymetry error covariance matrix was obtained, which
was used to form a transfer function between the velocity
model-observation difference and the bathymetry correc-
tion. This method was also later applied in a river setting
[Wilson and Ozkan-Haller, 2012].

[s] Variational methods [Bennett, 2002] are based on an
explicit formulation of a cost function, which is a sum of
quadratic terms penalizing deviations of the model inputs
from their prior estimates and model-data differences,
defined over a fixed time interval. In the statistical interpre-
tation of the variational method, under a number of
assumptions, the minimizer of the cost function yields the
best linear unbiased estimate of the model state. In practical
applications, the minimum of the cost function is usually
found iteratively, by running repeatedly a linearized ver-
sion of the dynamical model (a so-called tangent linear
(TL) model) and its adjoint (AD) counterpart. Building tan-
gent linear and adjoint models may be a challenging exer-
cise. However, once these are developed, variational
methods can provide advantages, including: (i) a very clear
and explicit formulation of statistical hypotheses about
errors in model inputs (including bathymetry), (ii) ability to
show error propagation in the model in space and time,
e.g., in the spatiotemporal structures of so-called repre-
senter functions [Chua and Bennett, 2001 ; Kurapov et al.,
2003, 2011], and (iii) ability to explore covariability of
model input and output errors. They also allow avoiding
some of the problems of ensemble methods, including
insufficient ensemble sizes, erroneous long-tail model cor-
relations, and the ensemble spread reduction, which would
require sequential ad hoc rescaling [Hamill et al., 2001]. In
the context of our study, the variational formalism will
allow us to separate contributions of the wave and circula-
tion models to the bathymetry correction.

[6]] Among the contributions utilizing the variational
approach with nearshore models, Feddersen et al. [2004]
tested the method with an alongshore uniform surf zone
model. They assimilated in situ observations of pressure
and velocities and included bottom friction as one of the
corrected variables (but they did not correct /). Kurapov et
al. [2007] developed TL and AD components of a shallow-
water nearshore circulation model and utilized these to

demonstrate that variational assimilation can work over
extended time windows in strongly nonlinear flow regimes,
where the alongshore currents become unstable and eddies
are shed. In that study, the dynamics and wave forcing for-
mulation were borrowed from Slinn et al. [2000]. The
assimilation system was utilized with synthetic (model-
generated) velocity data and provided corrections to initial
conditions and the circulation model forcing. Bathymetry
or offshore wave conditions were not included as control
parameters, and the TL and AD components of the wave
model were not developed. More recently, Veeramony et
al. [2010], developed an adjoint component of the near-
shore spectral wave model SWAN. They assimilated
observed two-dimensional wave spectra to correct bound-
ary conditions of the wave model. However, again, 4 was
not corrected.

[7] In the present manuscript, we will explore opportuni-
ties that variational assimilation may offer correcting /4 in a
coupled wave-circulation model. The adjoint component of
the model, which provides sensitivity to bathymetry, will
be described in section 2. The model is similar to that of
Kurapov et al. [2007] and only includes one-way coupling.
So, the incident wave field is allowed to force nearshore
currents; however, the resulting circulation does not affect
the incident wave field. We run a series of assimilation
experiments with synthetic (model-generated) data and
demonstrate the impact of assimilation of velocities to cor-
rect errors in bathymetry (section 3). Wave data are not
assimilated in our tests here and we focus only on the role
played by flow velocity data via both circulation and wave
model adjoint components. Compared to other assimilation
studies mentioned above, which considered steady flows,
we consider weakly and strongly nonlinear regimes, where
alongshore flows are unsteady (equilibrated waves or aperi-
odic eddy-shedding) in response to steady wave-averaged
forcing. Analyses of representer functions and array modes
(section 4) are utilized to help understand the relative con-
tributions of the wave and circulation model components to
the bathymetry correction.

2. Model Setup

[8] The model setup repeats that in Kurapov et al.
[2007]. Results discussed in this paper are obtained in a do-
main extending 256 m in the alongshore and 512 m in the
offshore direction (Figure 1). The coastline is straight.
Boundary conditions are periodic in the alongshore direc-
tion. The model resolution is 2 m. A Cartesian coordinate
system is introduced with x directed alongshore and y
directed offshore. Over the modeling time intervals consid-
ered here, the mean water level is assumed to be constant.
No wetting-drying is allowed, which is a common assump-
tion for models based on wave-averaged equations [e.g.,
Svendsen, 2006; Slinn et al., 2000; Ozkan-Haller and Li,
2003]. The minimum depth of 0.08 m is set along the
coastline.

[o] Figure la shows the true bathymetry in the twin
experiments, which is identical to that in Kurapov et al.
[2007]. It has the bar centered at y =80 m. The bar height
varies in the alongshore direction. The prior bathymetry
(Figure 1b) has the bar displaced offshore by 20 m. Its
shape and height are almost uniform in the alongshore
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Figure 1. Model bathymetry in twin experiments:
true and (b) prior. Black contours are every 0.5 m.
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direction (slight nonuniformity is allowed to excite along-
shore wvariability and instabilities in currents). In twin
experiments, we will run the nonlinear coupled model both
with the true and prior bathymetries. The velocity values
from the case with the true bathymetry will be assimilated
in the model using the prior bathymetry, and an attempt to
correct 2 will be made.

[10] The diagram in Figure 2a shows information flow in
the nonlinear coupled model. Inputs to the wave model
component (WAVE) include bathymetry A(x,y) and the
incoming wave parameters in deep water (the latter are
kept constant in our study and are not shown in the dia-
gram). In all experiments below, similarly to Kurapov et al.
[2007], we assume that narrow-banded waves are incident
at the offshore boundary at an angle of 135°, measured in
the clockwise direction from the y axis. The peak wave pe-
riod is at 7,=8 s. The root mean square (RMS) wave
height in the deep water is H,,,;=0.7 m. The wave model
[Slinn et al., 2000; Ozkan-Haller and Li, 2003] yields fields
of two components of the wave vector k and / (in the direc-
tions x and y, respectively), wave energy E, wave dissipa-
tion e, and also forcing of the circulation model

a) Nonlinear model

b) Tangent linear model

f = (fx, fv), which is obtained as the linear combination
of derivatives of the components of the radiation stress ten-
sor (see Appendix A for the wave model equations).

[11] The nonlinear circulation model (denoted CIRC in
Figure 2a) is based on the shallow-water equations with
biharmonic horizontal dissipation and linear bottom drag
[Kurapov et al., 2007]:

¢  0(Du) O(Dv)
a o ey O (1)
O(Du)  O(Duu) 8(Dvu) B 8(
a T ox oy o = aVE (i)
)
d(Dv)  O(Duv) 9(Dwv) ¢ 2 (1w
o + B + o _—gDa—y—l—fy—rv—aV (hV v)

3)

where ( is the sea surface height, u and v are two orthogo-
nal components of depth-averaged velocity, in the direc-
tions x and y respectlvely, D(x,y,t) = C(x,y,t) + h(x,y),
and a=1.25 m* s™'. Inputs to the circulation model (see
Figure 2a) include forcing computed by the wave model
f = (fx, fr), bathymetry A(x,y), and the vector of initial
conditions #(0) (which combines elements of (, u, and v).
[12] The response of the circulation model to the time-
invariant (fy,fy) depends on the value of the bottom drag
coefficient r. For large values, the system started from rest
would equilibrate to a steady flow. For small 7, the along-
shore current can become unstable. Two cases will be con-
sidered in this manuscript, similarly to Kurapov et al.
[2007]. In the first case »=0.004 m s, and the flow re-
gime is weakly nonlinear. After a ~1 h spin-up period, the
flow, started from rest, will achieve an equilibrated wave
regime, with the currents meandering and flowing in the
direction of negative x. Several snapshots of velocity and
Vortlclty o — 6— L corresponding to this regime are shown in
Figure 3 (top) ’In the second case 7=0.002 m s ' , and the
flow regime is strongly nonlinear. After a ~1 h spln—up pe-
riod, the area-averaged kinetic energy of the system levels
off and begins to vary near a certain level, but the solution

c) Adjoint model

h WAVE 8h

(hw
TLW A AD_W

)

@42

TLC

Figure 2. The schematics of the coupled model components: (a) nonlinear, (b) tangent linear (informa-
tion flow is similar to the nonlinear model), and (c) adjoint (information flow is reversed compared to

the nonlinear and tangent linear models).

4675



KURAPOV AND TUBA OZKAN-HALLER: BATHYMETRY CORRECTION USING AN ADJOINT

=1.5h t=1.76 h t=2h
e [ [
200..:::::::...... S B
R e [ e
e = e = —
0

—_———
,,,,,, SN o v o E e BN 3 o e
B i T I B
o —————— L s o e
e S S ————— o —
R -— i =iy o
TS

T —— b, R
-
T e NN
e - NN NN - //,_-\"\ AL -

o s v NN

e - -
S

P
.—’:\E\ N

e e e =

0 100

= 4

200
X (m)

Figure 3. Snapshots of velocity (vectors) and vorticity (contours) at three time instances (left to right:
1.5, 1.75, and 2 h since the start from rest). Upper plots (rows 1 and 2): » =0.004 m/s; lower plots (rows
3 and 4): »=0.002 m/s. Half-tone contours in the background of the velocity plots are 4 =2 m (showing

the location of the bar between 70 and 100 m offshore); vorticity contours are every 0.01 s~ (top)/0.02 s

(bottom), with positive values shaded.

is aperiodic, affected by the generation of energetic eddies
(Figure 3, bottom).

[13] The tangent linear (TL) model describes evolution
of a small perturbation to the model inputs with respect to a
given nonlinear model solution (background model state).
The information flow in the TL coupled model (Figure 2b)
is similar to that in the nonlinear model. The linearized
coupled model has been built using wave and circulation
model components (TL_W and TL_C). The TL computer
codes have been written by hand using recipes for line-by-
line code differentiation [Guiring and Kaminski, 1998]. To

build TL_C, we modified the shallow-water model code
used in Kurapov et al. [2007] to include perturbation in 4.
This modification was relatively easy since the original
code already had dependency on perturbation of the total
depth D(x,y,t) = ¢ + h. Specifically, in the original code,
we had 6D = 6(, where 6 denotes the perturbation variable.
In the new code, 6D = 6¢ + 6k, where the bathymetry per-
turbation 6/ is provided as the input to the TL model.

[14] The background solution is provided into TL_C
(and its adjoint counterpart AD_C) as a series of instanta-
neous fields from the nonlinear circulation model saved at
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Figure 4. The alongshore current averaged in space in
the alongshore direction and in time (over the interval of
(1, 2) h); the solid (dashed) line corresponds to the current
over the true (prior) bathymetry: (a) »=0.004 m s~ ' and
(b) r=0.002m s

specified time intervals (every 30 s in the weakly nonlinear
case and 15 s in the strongly nonlinear case). Then the TL
and AD circulation models determine background circula-
tion fields at every time step by linear interpolation
between the saved snapshots.

[15] Model TL_W had to be newly developed. To allow
line-by-line code differentiation, the original nonlinear
wave model had to be modified in the following respect.
Slinn et al. [2000] solve wave propagation equations by
integration along wave characteristics. The resulting £ and /
are found along the wave characteristics and then interpo-
lated on the regular Cartesian grid. To avoid difficulties lin-
earizing this two-dimensional interpolation algorithm, we
replaced integration along the wave characteristics by solv-
ing the following equation on the regular grid:

ol Ok
curl(k,l) = oy (4)

[16] This equation expresses conservation of wave crests
[Dean and Dalrymple, 1991]. It can be integrated numeri-
cally from the offshore boundary toward the coast, e.g.,
using a fourth-order Runge-Kutta method, along lines
y=const of the original rectangular grid. In all other
aspects (dispersion relation, wave energy equation, and
parameterization of dissipation, see Appendix A) the wave
model is easily differentiable.

[17] Note that 6/ influences the output of TL_C in two
ways (see Figure 1b). The first is direct, since A enters
equations (1)—(3) via D; the second is via the wave model
TL_W, providing forcing due to the radiation stress
divergence.

[18] Since a discrete numerical model is utilized, a TL
model implementation can be viewed as the result of matrix-
vector multiplication, éov = [TL]6¢, where ¢ and b« are the
vectors of model inputs and outputs, respectively. As a part
of code testing, we have verified that the result of TL_W
implementation, [7Ly]6¢, tends to the difference of two
nonlinear models, [NLy|(¢ + 6¢ ) — [NLy](¢), as the mag-
nitude of 6¢ is reduced.

[19] Following the same matrix-vector interpretation, the
AD model can be defined as the matrix transpose of [7L].
Of course, we do not store every element of [7L] or its

transpose. Instead, the AD model code provides the rule by
which the matrix [4D] multiplies an appropriate vector of
inputs. It can be built by transposition of the TL code line-
by-line (and reversing the order of operators) using recipes
from Guiring and Kaminsky [1998]. Both the circulation
and wave components of the coupled AD model have been
tested to guarantee that the matrix-product Q’[4D][TL]Q
(where Q = [6p,]0p,| ... |0p,] is a collection of n ran-
domly generated TL model input vectors) is an n X n sym-
metric and positive-definite matrix (within machine
precision).

[20] In the scheme corresponding to the AD model (Fig-
ure 2c) the information flow is reversed compared to the
TL model. In this scheme, symbols A with different super-
scripts denote various components of the input and output
vectors. The set of the AD input fields has the same struc-
ture as the set of outputs of the TL model. In practice, the
AD model is forced by adding impulses to adjoint model
variables at observation locations and times (for a more for-
mal explanation, see, e.g., Kurapov et al. [2007, 2011]).
Observations of the wave properties (such as wave vector
components) would provide forcing d1rect1y to the wave
model component AD_W represented in Figure 2¢ by A
and assimilation of those data types would not require a cir-
culation model component AD_C. Data on currents ass1m1-
lated in the model provide impulse forcing Al ( ) to
AD_C, which in turn yields fields of sensitivity of the
observed circulation variables to initial conditions A (0)
and circulation model forcing )\(f)( t). The latter provides
forcing of the AD_W model component, in addition to A¥
If wave variables are not assimilated, the AD_W will only
be forced by AY)(¢). Note that AD_C, the adjoint of the
time-stepping circulation model, is run backward in tlme
Every time step adjoint sensitivity to 4 is added to AU
Then AD_W (which is integrated from the coast to the off-
shore boundary) provides additional contribution A" ") to
yield the total sensitivity of flow velocities to bathymetry
A = \C) L XBP) We have to stress that A7) should
not be confused with the sensitivity due to assimilation of
wave variables. Even if only wave-averaged currents are
assimilated (as discussed below), bathymetry estimation
will require both model com onents, AD_W and AD_C,
and the adj 01nt sen51t1V1ty A" includes contributions from
terms A”©) and A7),

3. Assimilation Experiments

[21] The assimilation system discussed here can in gen-
eral be used to assimilate any oceanic variables that can be
matched to the model output. In particular, estimates of
the wave vector components (k,/), or wave celerity,
obtained from a sequence of radar or optical images, could
be assimilated. The impact of these data types has been
demonstrated, e.g., by van Dongeren et al. [2008] and Hol-
man et al. [2013] using methods based on local inversion.
In the adjoint counterpart of a one-way coupled model (see
Figure 2c), the information from the wave parameter data
does not go through the adjoint circulation model compo-
nent. Since the focus of this manuscript is on aspects of
assimilation with the coupled model, we do not include
here examples assimilating wave properties and proceed
directly to the case of assimilating currents.
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Figure 5. Time-averaged (¢t = 1-2 h) currents shown at every second observational location: (top) the
weakly nonlinear case, (bottom) the strongly nonlinear case, (left) the true solution, and (right) the prior
solution. Half-tone lines are bathymetry (every 0.5 m).

[22] Model currents are sensitive to the bathymetry
details in our case. For instance, Figure 4 shows cross-
shore profiles of alongshore currents computed over the
true and prior bathymetries, averaged in the alongshore
direction and also averaged in time over the interval of
(1,2) h since the model was started from rest. In both
weakly and strongly nonlinear cases, the largest differences
are found in the area of the bar.

[23] In the first series of assimilation tests, data sets are
formed by sampling the true model velocities at points of a reg-
ular grid in an area extending 256 m offshore. The distance
between neighboring data points is 10 m in both the alongshore
and cross-shore directions (mimicking a data array from remote
sensing ; observation locations are shown in Figure 15¢).

[24] The variational data assimilation problem for a 2 h
spin-up case is considered. The true and prior models are both
started from rest. Velocities from the true solution are aver-
aged over the second half of the time interval (1,2) h and
sampled at the points of the observational array. Comparisons
of the true and prior time-averaged velocity fields sampled at
the observation locations show appreciable differences
(Figure 5). Differences between the true and prior solutions
turn out to be larger in the weakly nonlinear case than the

strongly nonlinear case, which can be confirmed by plotting
the magnitude of the difference of the time-averaged currents
\/(ETRUE _ aPR[()R)Z + (vTRUE _ vPR]OR)Z’ where 7 and v
correspond to the velocity components averaged over interval
t=(1,2) h (Figure 6). In our interpretation, the more energetic
flow corresponding to a smaller bottom friction coefficient
case is less sensitive to the shape of the bottom.

[25] Before assimilation, random noise is added to the
time-averaged synthetic data, with the standard deviation
of 7,=0.03 m s '. Note that this relatively low error level
can be attained for 1 h averaged data even if the instantane-
ous observations are rather noisy (for instance, if the error
of the instantaneous data sampled once every minute is
temporally uncorrelated and normally distributed with the
standard deviation of 0.2 m s ). The correction to A(x,y)
is found by minimizing the cost function as follows:

J = (h _ hPRIOR)TCh—l (h _ hPRIOR) + (d 7LuPRIOR)TC;l (d _ LuPRIOR)’

(5)

subject to the exact model dynamics and exact initial con-
ditions (¢(0) = 0,u(0) = 0,v(0) =0). In (5), & is written
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as a vector including bathymetric values at all interior grid
points; Cj, (x1, ¥1, X, y) is the bathymetric error covariance
matrix, with elements depending on the location of grid
points (x;, y;) and (x, y); d is the vector of all time-
averaged observations; u”*/“ is the prior model solution;
L. is the operator matching the model solution and the
observations (which involves sampling at the data locations
and time-averaging of the model output); the superscript ©
denotes matrix transpose; and C; = aﬁ[ is the data error
covariance (where / is the unity matrix). The following
form is assumed for the bathymetric error covariance:

Ch(xl>y17x7y) = o’ﬁa(xhyl)a(x)y)

2
— 1 —cos[g(x —x 6
exp| -] [N eslae ] (@
Y (qlx)
where

sin? Fh("’y)} , it b < hypn
alx,y) = 2 o (7)

1, if &> hmin

g =27/Ly and Ly. is the periodic channel length. For
given x; and yq, the product of the exponential functions in
(6) is a bell-shaped function in x and y. The functional de-
pendence in x conveniently accounts for the domain perio-
dicity [Ménard, 2005]. Note that this particular functional
form is not influenced by knowledge of the true bathymetry
in our case (the cosine function in (6) emerges if ends of a
periodic domain are connected and the domain presented as
a circle; then the correlation is defined as a Gaussian func-
tion of the distance between points on the circle). The scal-
ing function « (0 < « <1) in equation (7) is to reduce
error standard deviation (and hence the magnitude of the
correction) in very shallow water, to possibly avoid drying.
The following parameters were used in our experiments:
0,=0.05m, h,,;,=1.5m, [y=50m, and [, =20 m.

[26] The minimizer of equation (7) is obtained with the
use of the indirect representer method [Chua and Bennett,
2001; Bennett, 2002; Kurapov et al., 2007, 2011]. Without
discussing every detail, we mention here that the original
nonlinear optimization problem is linearized with respect
to the prior solution and the correction is obtained as an
optimal linear combination of representer functions:

hINVERSE — hPR/OR + Sh = hPR[OR + ibk(Shk (8)
k=1

where 04, is the bathymetry component of the representer
corresponding to the k-th observation, b, are representer
coefficients, and K is the total number of data. Fields 6/,
show zones of influence of each velocity observation on the
bathymetry. To compute each 6/, the AD model can be
forced with the impulse at the corresponding observational
location and time. Since the time-averaged current data are
assimilated, a fraction of the impulse is added to the veloc-
ity component of the adjoint solution multiple times spread
over the period of (1,2) h. The AD model returns adjoint
sensitivity in the initial conditions /\,(C”)(O) and bathymetry
/\,(ch), corresponding to the k-th observation. Then
Shy = Cu\". If the coupled TL model is started with 6/,

a) r=0.004 m/s
250 : :
200
150
E
>
100
50 < |
0 L 1 L L 1
0 50 100 150 200 250
b) r=0.002 m/s
250 02
0.25
200
0.2
150
£ 0.15}
>
100
A 0.1
of__—~ < 1o
0 L n " L 1 —
0 50 100 150 200 250
x (m)

Figure 6. The magnitude of the difference of the true and prior
time-averaged velocities \/ (RVE — PRIORY? 1 (TRUE _ ;PRIOR)?,
where u and v correspond to the velocity components aver-

aged over interval ¢ = (1,2) h: (a) the weakly nonlinear
case and (b) the strongly nonlinear case.

and zero initial condition perturbation (corresponding to
the exact initial conditions in our case), the output will be a
representer r, which would include fields corresponding to
each TL model output component (such as wave vector
components, wave energy, and the time-varying current
fields). Sampling the full set of representers at observation
locations and time, we obtain a symmetric and positive-
definite representer matrix: R = L[ry|-- - |r], of size K x
K. Then, the optimal set of representer coefficients b =
{bi} can be obtained solving the linear algebraic system as
follows:

(R+ Cy)b = d — LuPRIOk 9)

[27] Note that matrix R is generally poorly conditioned
(see discussion of the spectrum of R in section 4). A non-
zero C, stabilizes inversion.

[28] In the indirect representer method [see Bennett,
2002], which is designed for large data sets, it is not
necessary to compute each representer. The initial guess
about b is made. The AD system is forced with a linear
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a) r=0.004, (u,v) obs

b) r=0.002, (u,v) obs

c) r=0.004, u obs.

y (cross—shore coordinate, m)

0
0 100 200 0
X (alongshore, m)

100

Figure 7. Inverse bathymetry: (a) r=0.004 m s~

X (m)

! assimilating u and v components, (b) 7=0.002 ms ",
assimilating « and v components, and (c) »=0.004 m s ",

200 0 100

X (m)

200

1

assimilating the alongshore (1) component

only. The corresponding RMS errors with respect to the true bathymetry are listed in Table 1. For along-

shore average bathymetry profiles see Figure 8.

combination of impulse forcings at data locations and
times, each scaled by b,. The bathymetry component of the
AD model output is convolved with the covariance Cj, to
obtain an estimate of 64. The TL model is then run given
6h and the zero initial condition perturbation. The TL
model output is sampled at the observation locations, using
operator L, and the resulting vector yields the product Rb,
which is used in the conjugate gradient method to solve (9)
iteratively. This product, the data error covariance, and the
prior model-data misfit (the rhs of (9)) are utilized in each
iteration to obtain a better estimate of . This AD-TL cycle
is repeated until the following convergence criterion is
satisfied:

H(RJer)b _ (d*LllPRIOR)”z

-3
d — LuPRIOR||2 < 107

(10)

[29] Three tests have been considered. Plots of estimated
bathymetries in each test are shown in Figure 7. In the ﬁrst
(Figure 7a), the flow was weakly nonlinear (r=0.004 m s~ ")
and both velocity components were assimilated at each
data point. In the second (Flgure 7b), the flow was strongly
nonlinear (»=0.002 m s~ ") and both velocity components
were assimilated. In the third (Figure 7c), the flow was
weakly nonlinear (»=0.004 m s~ ) and only the along-
shore velocity component # was assimilated at each data
point, simulating the observational sets that can be obtained
from optical imagery [Chickadel et al., 2003]. In every
case, the bathymetry is improved qualitatively and also
quantitatively in terms of the area-averaged root mean
square (RMS) error (Table 1). In every case, the bar is
moved toward the shore and is shaped to correspond more
closely to the true bathymetry. The displacement in the bar
location is best seen in alongshore-averaged bathymetry

profiles (Figure 8). In the case of the weakly nonlinear
flow, the result assimilating only the u velocity component
is as good as that assimilating both velocity components
(e.g., compare RMS statistics and Figures 8a and 8c; also
see discussion in section 5). In the case of the strongly non-
linear flow (Figure 8b), although the bathymetry is gener-
ally improved the slope offshore of the bar is not quite
correct.

4. Representer and Array Mode Analysis:
Experiments With Different Observational Arrays

[30] In this section, analyses of the A-component of the
adjoint sensitivity field )\,({ ), the A- -component of the repre-
senter 64, and the correction 64 (which is the optimal lin-
ear combination of k) are discussed with the goal of
understanding relative contributions of the wave and circu-
lation models to the bathymetry correction. The results
from the weakly nonlinear case assimilating both compo-
nents of velocity are used for 111ustrat10n

[31] The plots of )\ ") and )\ )\( )+ )\ ) corre-
sponding to a single observatlon of the alongshore velocity
at a location over the bar are shown in Figure 9. Velocity-
bathymetry sensitivity \; ) may be interpreted as the model

Table 1. The Bathymetric RMS Error (cm), With Respect to the
True Bathymetry, of the Prior and the Three Inverse Estimates
Obtained in the Assimilation Tests Using the Observational Array
as in Figure 15¢

Prior & 19.1
Inverse &, weakly nonlinear flow, (1,v) observations 7.68
Inverse 4, strongly nonlinear flow, (,v) observations 13.7

Inverse 4, weakly nonlinear flow, u observations 7.11
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a) inv: r=0.004, (u,v) obs.

b) inv: r=0.002, (u,v) obs.

c) inv: r=0.004, u obs.

0
— 1|0
1 = == = prior
E inv
= 2 - - -
2 3 AY A Y \
= A Y AS
4
0 50 100 150 2000 50 100 150 2000 50 100 150 200

offshore coord.: y (m)

offshore coord.: y (m)

offshore coord.: y (m)

Figure 8. Alongshore average bathymetry profiles, true (solid black), prior (dashed), and inverse (half-

tone): (a) r=0.004 m s,
components; (¢c) ¥=0.004 m s~

error covariance of the bathymetry A(x,y) and the time-
averaged velocity component at the observed location
under the assumption that bathymetric errors are spatially
uncorrelated (C;,=1) [see Bennett, 2002]. The wave and

circulation constituents A,({h’W) and A,(Ch’c) have different spa-
tial structures. The output of the adjoint circulation model
/\,(Ch’c) is nearly singular, showing large sensitivity of the
time-averaged velocity to local changes in bathymetry. The
singular behavior of the adjoint sensitivity field is a com-
mon occurrence in advective transport systems [Chua and
Bennett, 2001; Bennett, 2002]. If the color scale was
adjusted, we could also see some influence of the bathyme-
try along the bar (as the effect of advection by the back-
ground current). The alongshore advection also impacts the
forcing of the adjoint wave model )\(f), resulting in
enhanced sensitivity along the bar location (80 <y < 100

m) in the output of the adjoint wave model )\,((h’W). Also,
this field shows sensitivity of the velocity to bathymetry
changes farther offshore, in a general direction of the

500 F
450
400 |
350
300
250

y (m)

200 f
150
100

50

assimilating  and v components; (b) #=0.002 m s,
!, assimilating the alongshore (1) component only.

assimilating « and v

background wave propagation. This pattern could be
expected, as errors (corrections) in the bathymetry offshore
of the observation location would affect propagation and
dissipation of the wave, hence the forcing of the circulation
model and the resulting velocity at the observed location.
[32] Applying the covariance Cj, to each of the two terms

of A,Eh) separately and to the sum, the corresponding fields
of 6h,EV are obtained (Figure 10). The singularity at the ob-
servation location is smoothed as a result of the covariance
implementation. For the selected observation, the structure
of the total 6k, is dominated by its wave constituent,
although the circulation term provides a nonnegligible con-
tribution in the area over the bar (where its magnitude is
about 30% of that of the wave model term). Relative contri-
butions 6] and 6h¢ to the bathymetric correction may
depend on the observation location. The covariability pat-
tern along the wave characteristics in deeper water is pre-
served in both 64 and &h;. This suggests a potential for
correction (or at least an impact) in the deep water area not
covered by the data. In our test case, the true and prior

50 100 150 200 250

50 100 150 200 250 50 100 150 200 250

Figure 9. The adjoint bathymetry field corre ]pondmg
adjoint representer computation; units are (m s

x (m)

the solution is nearly singular: (a) A~

X (m)

! (b) A! i) and () A
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to a single observation, resulting from the
the obser\(fl?%())n locatlon is at the point where
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a)dh

50 100 150 200 250
x (m)

C
b) & h

50 100 150 200 250 50
x (m)

C) ) hk —4

x 10

100 150 200 250
x (m)

Figure 10. The representer bathymetry components, obtained by applying the prior error covariance

Cj, to the adjoint fields shown in Figure 9; contours are every 5 x 10~

m? s~ !; the observation location

is shown as the circle: (a) 67, (b) 6k, and (c) Shy = 6h)) + 6k .

bathymetries are very similar far offshore, where a correc-
tion would not be needed. Remarkably, despite the fact that
the bathymetry error standard deviation a(x,y) (7) is not
reduced in deep water, the offshore impacts from each rep-
resenter nearly cancel in the optimal combination (8) such
that the net bathymetric correction is minimal far offshore
(although small undulations can still be seen in the inverse
bathymetry at y > 250 m, see Figure 7).

[33] To understand relative contributions of the circula-
tion and wave adjoint model components to the bathymetry

a)sh,

y (m)

0 100
x (m)

200 0 100

Figure 11.

b) 8 h_

x (m)

correction given the whole observational array, we will
next analyze the optimal linear combinations

K K
Shy = bedhf,  Shc =" bibhf
k=1 k=1

(11)

as well as the total bathymetric correction 64 = dhy + 6h¢
(the second term on the RHS of (8)) (Figure 11). The term
Ohy (Figure 11a) is positive (negative) in the area offshore
(onshore) of the prior bar location. This means that the

c)dh

100
X (m)

200

Contributions of the wave and circulation models to the bathymetric correction and the total

correction (meters): (a) 6Ayy, (b) 6hc, and (¢) 6h = dhy + dhe. The black lines are the 2 m isobaths in the
prior bathymetry (the two lines offshore show the location of the bar). The case is with »=0.004 m/s,

assimilating u and v components.
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a)BhW b)5hc C)5h
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Figure 12. Similar to Figure 11, for the strongly nonlinear case (#=0.002 m™'). Note a different

(finer) scale of the color bar.

adjoint wave model contributes to the bathymetric correc-
tion mostly by displacing the bar inshore. The term &k¢
(Figure 11b), provided directly by the adjoint circulation
model, is the largest in the area of the true bar location,
additionally deepening the bathymetry at the left and right
sides of the bar. Thus, in our case, the two adjoint model
components have distinct roles. While AD_W is responsi-
ble for displacing the bar, AD_C shapes the bar, varying
bathymetry in the alongshore direction. This is consistent
with our understanding that the wave properties are more
sensitive to the location of the bar than low-amplitude
alongshore variability in the bar shape. In turn, time-
averaged currents are sensitive to the alongshore variability
in the bar shape.

[34] It should be noted that the output of the adjoint
wave model 84y is not independent from the adjoint circu-
lation model. The AD_C component of the coupled assimi-
lation system provides sensitivity of the velocity to the
wave model forcing (\"), see Figure 2¢), which is utilized
to force AD_W. In broad terms, this sensitivity contains in-
formation about where the largest impact of the waves on
the circulation can be.

[35] A similar result, showing different spatial patterns
in 6hy and Ohc, is obtained in the strongly nonlinear case
(Figure 12). The deepening of the slope offshore of the true
bar location is not as pronounced as in the weakly nonlinear
case, in part because the true-prior velocity difference in
the area of the bar is smaller in the strongly nonlinear case
(see Figure 6).

[36] The representer method also allows us to perform
array mode analysis [Egbert, 1997; Bennett, 2002 ; Kura-
pov et al., 2009] to identify spatial structures that can be
corrected most stably given errors in the data. This is illus-
trated here using the weakly nonlinear case, assimilating
both components of velocity. The analysis is based on the
eigenvalue decomposition of R + C,. In our case, there are
only 1250 observations of the time-averaged u and v, such
that computation of all the representers is possible resulting

in the full representer matrix. Since C; = Uf,[ in our case,
we can compute the singular vector decomposition of
R=USU" and rewrite the equation for the optimal repre-
senter coefficients (8) as follows:
b=U(S+02) 'UT(d — Lu"®OF), (12)
[37] Elements of the vector U’d are array modes
obtained as linear combinations of the original data set, and
U'Lu”®O® s their model counterpart. Given the prior
assumptions about the model input errors (in particular Cj,),
the diagonal matrix S is the fprior covariance of errors in
elements of the vector U'Lu’®“% The diagonal elements
sy of this matrix yield the expected prior model error var-
iance in each element of U”Lu”*/OR (Figure 13). The linear
combinations for which s; > 0% can be corrected stably
(with respect to errors in the data). We find that in our case

array mode variance (rn2 3'2)

20 30 40
array mode number

10 50

Figure 13. The representer matrix spectrum (variances of
the first 50 array modes). The dashed line corresponds to o2.
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Figure 14. Bathymetry correction functions corresponding to the first 12 array modes.

only 18 modes satisfy this requirement. The bathymetry
correction structure corresponding to each of these modes
is obtained as Zle Uyibhy, where i is the mode number
(Figure 14). In the first four of these most stably observed
structures, correction in the area of the bar is strongly
coupled with that in the area not covered by the data. These
four modes would be stably constrained even in the case of
very imprecise data (e.g., with o, =0.2 m s, see Figure
13). Mode 5-8 bathymetry correction structures are locally
intensified in the area of the bar and onshore of it. Higher
modes are responsible for correction on smaller spatial
scales, which exhibit some weak coupling with the distant
correction farther offshore.

[38] The fact that only a handful of the model modes can
be effectively corrected encouraged us to explore how
effective assimilation may be with smaller data sets. These
additional observational arrays and posterior bathymetries
resulting from their assimilation are shown in Figures 15d—
15f. For reference, the true and prior bathymetries are also
shown in Figures 15a and 15b. These results correspond to
the weakly nonlinear case. In all the cases, the (u,v) data

are sampled at points on regular grids, which differ in the
offshore extent (Y) and the distance between the data
points in each direction (DX). These assimilation cases
are labeled as Y-DX; for instance case 256-10 (Figure
15c) is one of the initial cases presented earlier. The
inverse bathymetry estimates for each of the cases are pre-
sented in Figure 15 and the corresponding RMS errors in
Figure 16. It turns out that using data only onshore and
over the bar and discarding the points at y > 128 m (case
128-10, Figure 15d) results in a bathymetry estimate of
almost the same (slightly better in terms of RMS error)
quality as the initial case 256-10. Sampling the velocities
every 20 m (instead of originally 10 m) in the same
smaller area (case 128-20, Figure 15¢) degrades the result
of the inversion, although this estimate is still a substantial
improvement compared to the prior. Case 64-10, using a
dense set of data only onshore of the bar trough (Figure
15f), results in an estimate of / that is improved over the
prior, albeit only marginally. In that case, the alongshore
variability in the bar shape is improved, but it is not
moved toward the shore.
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Figure 15. Bathymetries in additional assimilation tests exploring impacts of different data arrays
(dots): (a) true, (b) prior, (c) case 256-10 (i.c., data extend to y =256 m, and the distance between data
points is 10 m in both alongshore and cross-shore directions), (d) case 128-10, (e) case 128-20, and (f)
case 64-10. Bathymetric contours are shown every 0.5 m. RMSE corresponding to these cases is shown

in Figure 16.

5. Discussion

[39] In this section some of the model and assimilation
method assumptions are discussed in view of the results
shown above.

[40] Ozkan-Haller and Li [2003] showed that alongshore
currents may modify the wave field in the nearshore zone,
altering the distribution of radiation stresses and affecting
stability of the alongshore currents. This feedback mecha-
nism is not included in our forward (nonlinear) model.
Although one-way coupling adopted here is certainly an
idealization, it captures the essential mechanism of genera-
tion of wave-forced alongshore flows and their instabilities.
Using such a one-way coupled model is a step toward
increasing complexity in the context of variational data
assimilation compared to the previous efforts that did not
consider model coupling. Using a one-way coupled model
compared to a two-way coupled model (in which currents
affect waves) offers methodological advantages, demon-
strating with great clarity the reversal of the informational
flow in the adjoint counterpart of a forward (nonlinear) sys-

tem, including forcing of the adjoint wave model with sen-
sitivity computed by the adjoint circulation model. As an
additional justification to not including the feedback of cur-
rents on waves, Froude numbers are generally small and do

0.3

0.25}

o
8]

b) prior f) case 64-10 |
'} ) oaee

RMSE, m
o
o

e) case 128-20
A

o
lry

¢) case 256-10 e
A d) case 128-10
0.05} -

0

Figure 16. Bathymetry RMSE with respect to the true #,
for the cases shown in Figure 15.
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not approach unity in this and similar applications [Wilson
etal., 2013].

[41] For consistency with the assumption of no wetting-
drying, the bathymetry error variance was reduced toward
the coast. Despite this detail, the variance was nearly con-
stant in the area of the bar where maximum impact on ba-
thymetry was expected. The model error covariance
formulation involves several functional forms and parame-
ters. We did not study solution sensitivity to all (or any) of
them. The alongshore and cross-shore horizontal decorrela-
tion length scales were chosen to be comparable to the spa-
tial scales in the bathymetry and currents. Those are taken
to be sufficiently small. Based on experience, assuming
overly long model error decorrelation length scales may de-
grade the quality of data inversion [e.g., Kivman, 1997].
However, it is important to mention that assuming uncorre-
lated errors (e.g., C, = o071, where [ is the unity matrix)
would yield a singular correction (a linear combination of
structures such as that shown in Figure 9).

[42] The correction may also be sensitive to details of
the data error covariance. Although we did not investigate
this sensitivity, it should be mentioned that processing of
the remote sensing data may introduce spatial correlations
in errors. Using a diagonal C, simplifies inversion and is a
common practice in data assimilation. Future studies will
show how important those details are compared to uncer-
tainties in the choice of C,.

[43] The array mode analysis suggests a rather limited
number of significant orthogonal modes in the bathymetry
correction. A possible reason may be a limited alongshore
extent of the domain and periodic boundary conditions that
constrain alongshore variability in the model. Analysis of
the model behavior in a larger domain is a topic of future
research. However, we note that advection by a 0.5-1 m
s~ ! alongshore current for a period of 2 hours (the length of
the assimilation window) may result in rather long-tailed
adjoint sensitivity for a 1 h averaged velocity observation.

[44] Since the manuscript is focused on aspects of assim-
ilation in a coupled model, we do not provide examples of
assimilation of wave data. In future studies, it would be
interesting to assess the relative impact of assimilation of
observed wave parameters and wave-averaged velocities,
e.g., using tools developed within the variational formalism
[Moore et al., 2011D].

[45] Curiously, the case assimilating only the alongshore
velocity component worked as well as the case in which
both along- and cross-shore components were assimilated
(see Figure 16). As a possible explanation, the depth-
integrated continuity equation (1) is satisfied exactly. This
equation, combined with the no-flow boundary condition,
provides a constraint on the cross-shore component of the
current given the alongshore currents.

[46] The key result in Kurapov et al. [2007] assimilating
velocity data in the nearshore circulation model was
obtained by building a rather involved error covariance for
f(x,y) (see (2)—(3)). We note that in our coupled case,
errors in the wave forcing of the circulation model are
solely due to errors in /4 and there is no need to guess the
error covariance for f(x, ).

[47] Adjoint sensitivity (Figure 9) and representer fields
(Figure 10) can be interpreted as model error covariances.
In ensemble-based methods [see Wilson et al., 2010] esti-

mation of those can be attempted by averaging over ensem-
bles of model runs. However, because of limited number of
elements of these ensembles, long-tail correlations are usu-
ally interpreted as erroneous and localization methods are
applied to artificially reduce covariances far from observa-
tions. Using the variational representer method, we can
compute the error covariance fields with long-tail correla-
tions far offshore and provide their dynamical interpreta-
tion. Such a result would be analogous to using a
representative ensemble of infinitely many model states.

[48] It may be suggested that in the present study, the
prior bathymetry is close enough to the truth, such that the
method based on linearized dynamics works well. For cases
involving larger prior-true differences, the “outer-loop”
iterations of the representer method may be used. The
inverse bathymetry would be obtained solving a series of
linearized problems. On each iteration, the inverse solution
from the previous iteration serves as the background state
for linearization [Chua and Bennett, 2001; Bennett et al.,
2002; Kurapov et al., 2007]. The effectiveness of the non-
linear part of the optimization algorithm in the context of a
coupled wave-circulation model is not verified here and is
left as a topic of future studies.

6. Summary

[49] Opportunities for bathymetry correction provided
by the variational data assimilation method have been
explored in the context of a one-way coupled nearshore
wave-circulation model. Tests using synthetic data show
that assimilation of velocity observations can provide a
useful correction to bathymetry. The variational formalism
allows separating contributions to bathymetry correction
coming directly from the adjoint circulation model and
adjoint wave model. In our case, the wave component was
responsible for the bar displacement toward the coast and
the circulation model for alongshore variability in the bar
shape.

[s0] Our idealized study discussed advantages of using
the variational method, which include a very clear formula-
tion of the optimization problem, a framework for provid-
ing bathymetry correction at locations where observations
are not available, the possibility to determine contributions
from different model components in the coupled system,
and the analysis of best constrained spatial structures (array
modes). We found that individual representers show local
correction as well as correction to bathymetry in areas oft-
shore along the propagation direction of the waves.

[51] Analysis of the array modes suggests that the bathy-
metric correction can be constrained with relatively few
linear combinations of observations. Tests with truncated
observational arrays confirm that qualitative and quantita-
tive improvement of the bathymetry can be obtained with
observational arrays that mimic those used for remotely
sensed (e.g., video-based) surf zone current observations.

[52] Future steps in the direction of using variational
methods in the nearshore zone will include the following
elements: combined assimilation of wave and circulation
data, a wave model describing an evolution of a full spec-
trum of waves [see Veeramony et al., 2010]; a three-
dimensional circulation model and its TL and AD compo-
nents [Moore et al., 2011a; Kurapov et al., 2011; Yu et al.,
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2012]; and two-way coupling between the wave and circu-
lation models [Ozkan-Haller and Li, 2003; Uchiyama
et al., 2009].

Appendix A: The Wave Model

[s3] Here, for reference, the wave model from Slinn et al.
[2000] is briefly described, taking into account modification
(4). Given the root mean square wave height H,,,; and direc-
tion of the incoming waves 6 in deep water, these parameters
at the offshore boundary of our domain (6.1 m depth) are
determined using Snell’s law and conservation of wave
energy. At any depth, the wave number magnitude x =
(k* + )"/ is found by inverting the dispersion relation:

w? = gk tanh[kA] (A1)
where, recall, w=2n/T, is the peak wave frequency.
Given the conditions at the offshore boundary, (4) is inte-
grated numerically in the direction toward coast using the
fourth-order Runge-Kutta method:

Ok Ol(k,w,h)
5= o (A2)
where functional dependency of / on &, w, and 4 is defined
by (A1l). The magnitude of the phase velocity is

w
C=—. A3
- (A3)
[54] The magnitude of the group velocity is
w 2kh
C =5 (1 + mh 2;111) (a4)
and its components are
CY =c, 5,
" 7 (A5)
V) —
Y =G

[s5] To obtain the wave energy E(x,y), the corresponding
equation is integrated (from the offshore boundary, using
the Runge-Kutta method):

a(Ecg>) a(Ecy)

=— A6
Ox + dy e (A6)
where the dissipation function is
—5/2
3ﬁpr3 Hsl, Hrms :
— 2VIPST Tms )y |1 A7
T T e, 2 T\ (A7)
pgH}
E= 78”’” . (A8)

[s6] As in Slinn et al. [2000], B=1.2 and v=0.43. The
components of the radiation stress tensor are

E(2C, ,. 2C,
= (22 s
S, Z(C cos“f + C

C,
Sy :E?gCOSQSinO
E [2C, . 2C,
Syy = E (Tgsmze +Tg — 1)
where
/
sinf = —.
K

k
cosf =—,
K

[57] Finally, the forcing of the momentum equations (2)
and (3) is computed as

fX(xvy) = - ! |:8SM 8S’(y:|7

ph| dx  dy
1 [0S, asyy}

(A10)
fr(x,y) = ~oh { T v
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