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ABSTRACT

Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here,

simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/168) and fine (1/1208)
spatial resolutions were evaluated against observed streamflows from 217 watersheds. In particular, the ad-

equacy of VIC simulations in groundwater- versus runoff-dominated watersheds using a range of flowmetrics

relevant for water supply and aquatic habitat was examined. These flow metrics were 1) total annual

streamflow; 2) total fall, winter, spring, and summer season streamflows; and 3) 5th, 25th, 50th, 75th, and 95th

flow percentiles. The effect of climate on model performance was also evaluated by comparing the observed

and simulated streamflow sensitivities to temperature and precipitation. Model performance was evaluated

using four quantitative statistics: nonparametric rank correlation r, normalized Nash–Sutcliffe efficiency

NNSE, root-mean-square error RMSE, and percent bias PBIAS. The VIC model captured the sensitivity of

streamflow for temperature better than for precipitation and was in poor agreement with the corresponding

temperature and precipitation sensitivities derived from observed streamflow. The model was able to capture

the hydrologic behavior of the study watersheds with reasonable accuracy. Both total streamflow and flow

percentiles, however, are subject to strong systematic model bias. For example, summer streamflows were

underpredicted (PBIAS 5 213%) in groundwater-dominated watersheds and overpredicted (PBIAS 5
48%) in runoff-dominated watersheds. Similarly, the 5th flow percentile was underpredicted (PBIAS 5
251%) in groundwater-dominated watersheds and overpredicted (PBIAS 5 19%) in runoff-dominated

watersheds. These results provide a foundation for improving model parameterization and calibration in

ungauged basins.

1. Introduction

Climate changes anticipated over the next few de-

cades pose challenges to resource managers seeking the

most effective strategies to adapt, maintain, and restore

rivers, watersheds, and aquatic ecosystems. Becausewater

resources are particularly sensitive to changes in cli-

mate, managers benefit from accurate analyses of his-

torical streamflows and predictions of future hydrologic

behavior. Accurate estimation of runoff, especially

during dry seasons, is extremely critical to plan for hy-

droelectric power generation (Hamlet et al. 2010), ag-

riculture and municipal water supply (Roy et al. 2012),

aquatic habitat (Battin et al. 2007), and water-based

recreation (Farley et al. 2011). Both empirical and nu-

merical models have been routinely used for predicting

future streamflows and improving understanding of hy-

drological functioning at varying spatial and temporal

scales. In large watershed– and regional-scale studies,

land surface models (LSMs) such as the catchment

model (Koster et al. 2000), Community Land Model
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(Oleson et al. 2010), Noah model (Ek et al. 2003),

Sacramento Soil Moisture Accounting Model (Burnash

et al. 1973), Unified Land Model (Livneh et al. 2011),

and Variable Infiltration Capacity (VIC) model (Liang

et al. 1994) are commonly used (Koster et al. 2010;

Nijssen et al. 2014; Vano et al. 2012; Wang et al. 2009;

Xia et al. 2012, 2014). In the U.S. Pacific Northwest

(PNW), the large-scale VIC model has been widely

employed to study regional-scale changes in snowpack

(Hamlet et al. 2005), water resources (Hamlet et al.

2007; Liu et al. 2013), droughts (Shukla andWood 2008),

and energy (Hamlet et al. 2010).

The VIC model, typically implemented at a spatial

resolution of 1/88 and 1/168, is calibrated and validated

using observed or naturalized streamflow from large

rivers (Hamlet et al. 2013; Matheussen et al. 2000). The

number of watersheds used for calibration and valida-

tion has been quite variable but is generally limited to

available gauged watersheds. One of the assumptions in

calibrating the model against observed streamflows in

large watersheds is that calibrated parameters are ap-

plicable to subwatersheds within the larger basins. This

assumption may not be valid, however, in regions and

basins with strong hydrogeological differences, thereby

introducing some degree of uncertainty into model

predictions at finer spatial scales. Conversely, improving

the topographic representation by increasing the model

spatial resolution or model calibration over small wa-

tersheds may be adversely affected by errors in the

meteorological driving data, resulting in a calibrated

model with compensating errors, that is, getting the right

answer for the wrong reasons. Examining the sources

and magnitudes of uncertainty at the small watershed

scale can help interpret and constrain predictions of

direction, magnitude, and timing of future streamflow

changes and thereby improve decision making.

Sources of hydrologic modeling uncertainty can be

classified as parametric (Beven and Binley 1992; Duan

et al. 2006) or structural (Butts et al. 2004; Refsgaard and

Knudsen 1996). Parametric uncertainties are associated

with the model input data and parameter values,

whereas structural uncertainties are associated with the

model formulation. Both parametric and structural un-

certainties can be minimized, but this may require dif-

ferent strategies for each type in terms of model

selection, forcing, calibration, and parameterization.

Identifying the major sources of uncertainties and dis-

tinguishing which of these are due to model forcing,

parameter estimation, and/or model structure is funda-

mental to minimizing uncertainties (Beven and Freer

2001; McMichael et al. 2006). Various techniques have

been developed [e.g., Generalized Likelihood Un-

certainty Estimation (GLUE), bootstrapping, Monte

Carlo based, Bayesian method, and machine learning]

and utilized for model uncertainty analysis (Beven 2011;

Shrestha 2010). These techniques can be implemented

within many different parameter spaces and model

structures (Butts et al. 2004; Clark and Vrugt 2006;

Gupta et al. 1998; Jin et al. 2010; Shen et al. 2012). De-

spite the scientific merits of exploring parameter space

and tradeoffs between various model structures, such an

approach will be computationally intensive at a regional

scale such as the PNW. In fact, for an LSM such as VIC,

full hydrologic calibration at a small scale is extremely

resource intensive (Oubeidillah et al. 2014), and model

calibration is often restricted to a subset of large basins

(Hamlet et al. 2013) or grid cells (Troy et al. 2008). Even

when high-performance supercomputing is available,

exhaustive calibrations and validations of LSMs have

to rely on assimilated (Oubeidillah et al. 2014) or nat-

uralized (Hamlet et al. 2013; Vano et al. 2012) stream-

flow time series because of the lack of unregulated

stream gauges. Given all of these limitations, it becomes

important to evaluate and assess whether any model

inherits systematic biases, whether these are more

prevalent in some landscapes than others, and whether

these biases can be reduced to improve model perfor-

mance. Any evaluation of bias should also address how

the choice of model (Vano et al. 2012), meteorological

data (Elsner et al. 2014), or even parameterization

scheme (Tague et al. 2013) affects model behavior.

Here, we examine the source of a range of parametric

and structural uncertainties associated with the VIC

model. We focus on parametric uncertainties associated

with the scale of model resolution, potential biases in

meteorological forcing variables, and structural uncer-

tainties introduced by how themodel handles watersheds

that are dominated by either runoff or groundwater flow

paths. We emphasize the latter because runoff- and

groundwater-dominated watersheds have been shown

to respond quite differently to climate change, and en-

suring adequate representation of watersheds with dif-

ferent runoff dynamics is vital for accurate streamflow

forecasting (Safeeq et al. 2013; Tague and Grant 2009;

Tague et al. 2008, 2013; Waibel et al. 2013). Thus, we

have two overarching questions: 1) Can we improve

model accuracy by increasing topographic representa-

tion and hence theoretically better capturing hillslope-

scale processes? and 2)Aremodel uncertainties consistent

across watersheds in a geologically heterogeneous land-

scape such as the PNW? In this study, we focus on theVIC

model because of its increasing use in water resource

assessment and planning in the Pacific Northwest.

However, the issue of deep-groundwater representation

is not limited to VIC alone. Explicit representation of

deep groundwater is not a part of any LSM and is
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approximated instead by extended soil profiles (Vano

et al. 2012).

The VIC model conceptualizes infiltration, surface,

and subsurface flow processes as occurring within a soil

layer that can be made up of two or more (typically

three) sublayers. The top soil layer relates to soil in-

filtration and surface runoff via the variable infiltration

curve whereas base flow processes are controlled pri-

marily by the lowest soil layer. The VIC model does not

explicitly mimic the movement of water into and out of

deep groundwater. Rather, the formulation of base flow

in VIC follows the conceptual ARNO rainfall–runoff

model (Todini 1996) that relates base flow as a function

of soil moisture in the lowest soil layer. The base flow

curve based on theARNOmodel is linear under low soil

moisture and becomes nonlinear toward saturation. This

results in a rapid base flow response in wet conditions

and a relatively slower response under dry conditions.

Movement of water into and out of shallow groundwater

can be fairly represented by increasing the bottom layer

soil depth, hence increasing the residence time, or al-

ternatively coupling with a groundwater flow model.

The first approach can reproduce groundwater dynamics

but requires site-specific calibration of bottom soil layer

depth and related drainage parameters—a difficult task

at the regional scale due to data limitations. On the

other hand, the use of coupled surface water ground-

water models is computationally inefficient and has

shown limited success (Jin and Sridhar 2010; Rosenberg

et al. 2013). As a result, capturing groundwater dy-

namics in areas with deep-groundwater-fed streams,

such as the Oregon High Cascades, remains a challenge.

Indeed, simulating climate change scenarios without

accounting for deep-groundwater influences may lead to

predictions of greater relative decline in summer

streamflow (Tague et al. 2008). Such biased predictions

of streamflow can potentially affect decisions and ad-

aptation plans for future water scenarios.

The role of streamflow contributions from deep

groundwater and the sensitivity of streamflow to pre-

cipitation and temperature under different geological

regimes have not yet been tested for the VIC model.

Some of the limitations of a regional-scale application of

the VIC model surfaced in an earlier study using 55

streamflow gauges across the PNW (Wenger et al. 2010).

However, the focus of this previous study was to evaluate

model performance in terms of ecologically relevant flow

metrics. In the present study, the objective is to quantify

modeling uncertainties in hydrologic predictions due to

both geological and climatic factors, with the goal of

improving predictions of streamflow in the PNW and

elsewhere. Specifically, we examined hydrological pre-

dictions using the VIC model in 217 watersheds located

across Oregon (OR) and Washington (WA) in the PNW

region of the United States. We explored uncertainties in

1) predicted total streamflow at annual and seasonal time

scales, 2) five percentiles calculated based on predicted

daily streamflows, and 3) predicted annual and seasonal

streamflow sensitivities to a change in temperature and

precipitation. Model performance evaluations at annual

and seasonal time scales are useful for water resource

assessment under climate change, whereas model evalu-

ations using daily flow metrics (Olden and Poff 2003;

Wenger et al. 2010) are useful for characterizing the en-

tire hydrograph and assessing uncertainties in future

ecological and in-stream flow requirements. Addition-

ally, temperature- and precipitation-based hydrologic

sensitivity metrics are useful for forecasting water re-

source vulnerability under climate change (Vano and

Lettenmaier 2014; Vano et al. 2012). Our findings over

a range of temporal scales help demonstrate under which

circumstances the VIC model can be applied with confi-

dence and point to future improvements for model pre-

dictions at the local/regional scale.

2. Methods

a. Data

1) OBSERVATIONS

We obtained daily streamflow time series from 217

unregulated watersheds from the U.S. Geologic Sur-

vey (UGSG; U.S. Geological Survey 2013) and the

OregonWater ResourcesDepartment (Water Resources

Department 2013; Fig. 1). These watersheds are part of

the USGS Hydro-Climatic Data Network (HCDN;

Slack et al. 1993) and recently updated Geospatial At-

tributes of Gages for Evaluating Streamflow (GAGES)

network (Falcone et al. 2010). Mean watershed eleva-

tion ranged from 106 to 2273mMSL. Drainage areas for

most (;75%) of the 217 watersheds were less than

500 km2 (Fig. 2a). All selected watersheds had a mini-

mum record length of 20 years of complete daily

streamflow during the span of water years (wy) from

1950 to 2006. Among the 217 watersheds used to eval-

uate themodel performance, 21% (n5 45) of the stream

gauges have daily streamflow that spanned the entire

57-yr period (1950–2006) and 68% (n 5 148) of the

stream gauges have more than 30 years of streamflow

record (Fig. 2b). The total number of stream gauges

during any given year varied between 121 and 189;

their spatial distribution was defined by data avail-

ability, with most of them located on the western side

of the Cascade Mountains. A majority (;70%) of the

watersheds are located between 500 and 1500m mean

elevation (Fig. 2c). The average precipitation ranges
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from ,1 to as much as 4.5m (Fig. 2d). The number of

watersheds classified as an early (flow timing ,150 or

before 17 February), intermediate (150# flow timing#

200), and late (flow timing .200 or after 18 April) hy-

drologic regimewere 92, 100, and 25, respectively (Fig. 2e).

Watersheds classified as an early, intermediate, and

late hydrologic regime represent rain, mixture of rain

and snow, and snow-dominated streams, respectively

(Wenger et al. 2010).

2) VIC MODELING

We used simulated streamflow from the VIC model

applied at 1/168 (;6 km 3 6 km) spatial resolution over

the period 1950–2006 from Hamlet et al. (2013). Daily

minimum and maximum temperatures, precipitation

data from the National Climatic Data Center and En-

vironment Canada, and wind speed data from reanalysis

products (Hamlet and Lettenmaier 2005; Kalnay et al.

1996) were gridded at 1/168 spatial resolution from Elsner

et al. (2010), based on the techniques developed by

Maurer et al. (2002) and Hamlet and Lettenmaier

(2005). The model was calibrated and validated on

a monthly time step utilizing streamflow data from 11

major watersheds within the Columbia River basin,

following the approach of Yapo et al. (1998). The Nash–

Sutcliffe efficiency NSE for 11 major watersheds ranged

between 0.74 and 0.89 during calibration periods and

0.68 and 0.93 during validation periods. The calibrated

model parameters were further validated at 80 stream-

flow gauging stations in the Columbia River basin where

NSE ranged from,0 to over 0.9. Further description of

the model calibration and validation procedure can be

found in Hamlet et al. (2013). In addition to VIC mod-

eling at 1/168, we also utilized simulated streamflow from

the most recent VIC implementation in the Columbia

River basin at a fine spatial resolution (1/1208, or about
800m 3 800m) over the period 1950–2006. This
1/1208-resolution model was built primarily to better

capture finescale snow dynamics by providing more re-

alistic radiative forcing at local scales. However, climate,

soil, and vegetation forcing variables for 1/1208 model

implementation were resampled from those developed

at 1/168.
The VICmodel simulates infiltration, runoff, and base

flow processes based on empirically derived relation-

ships that characterize the average gridcell condition

(Liang et al. 1994). To contrast simulated streamflow

with observed values, we estimated simulated watershed

streamflow by adding the daily runoff and base flow

values from the entire VIC grid cells, both whole and

FIG. 1. Stream gauge locations (triangles) for 217 study watersheds with drainage boundaries

(red lines) and shaded elevation map. Watersheds were divided into groups based on quartiles

and shaded from light gray (KQ1
) to black (KQ4

): 0.810 # KQ1
, 0.941, 0.941 # KQ2

, 0.950,

0.950 # KQ3
, 0.963, and 0.963 # KQ4

, 0.989.
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partial cells based on area weighting, within each wa-

tershed boundary. No channel routing algorithm was

employed in this analysis, and we assumed that all the

runoff exits the watershed on the same day. This as-

sumption is not an issue for comparisons of annual and

seasonal streamflow but could be problematic for flow

percentiles based on daily flows. However, since the

majority (n 5 158) of the selected watersheds are small

(,500 km2; Fig. 2a), the influence of channel routing on

model performance is likely to be small compared with

other modeling uncertainties.

b. Model evaluation metrics

To explore seasonal and annual biases in model per-

formance, observed and simulated daily streamflow data

were converted into time series of seasonal and annual

time scales on a water-year (October–September) basis.

Seasons were defined as fall [October–December

FIG. 2. Distribution of watersheds by (a) drainage area, (b) length of streamflow record, (c) mean elevation, (d) mean

precipitation, (e) flow timing, and (f) recession constant.
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(OND)], winter [January–March (JFM)], spring [April–

June (AMJ)], and summer [July–September (JAS)].

Hereafter, the total streamflows are referred to as Qwy

for water year andQOND,QJFM,QAMJ, andQJAS for the

fall, winter, spring, and summer seasons, respectively. In

addition, five streamflow percentiles were used to

characterize the modeling uncertainty in matching the

overall hydrologic regime of the watersheds. Both low

and moderately low streamflows were characterized by

the annual 5th (Q5) and 25th (Q25) percentiles, re-

spectively. Similarly, the high and moderately high

streamflowswere characterized by the 75th (Q75) and 95th

(Q95) percentiles, respectively. Annual 50th percentile

values were used to characterize mean streamflow.

Uncertainties associated with the VIC-simulated

streamflow were assessed by comparing the concurrent

observed and simulated streamflows using four quanti-

tative statistics for model performance: the non-

parametric rank correlation coefficient r, the NSE, the

root-mean-square error RMSE, and the percent bias

PBIAS. The rank correlation is a nonparametric mea-

sure that shows the model’s ability to reproduce the

observed temporal patterns of interannual variability in

streamflow. We used rank correlation instead of the

Pearson product-moment correlation to specifically fo-

cus on evaluating the model performance in capturing

interannual variability rather than the strength of the

linear relationship between observed and simulated

streamflow. Typically, values of Pearson correlation

greater than 0.7 or a coefficient of determination greater

than 0.5 are considered acceptable (Moriasi et al. 2007).

Following this, we used a threshold of r greater than 0.7

as an acceptable model performance. The NSE is

a measure of overall goodness of fit between observed

and simulated data, with NSE 5 1 being the optimal

value (1:1 relationship). Since the value of NSE ranges

between2‘ and 1.0, we rescaled it between 0 and 1 and

refer to it hereafter as the normalized NSE or NNSE

(Nossent and Bauwens 2012). While the optimal value

of NNSE remains 1, a value of 0.5 corresponds with

a 0 value for the NSE. Model performance is considered

satisfactory when NSE (NNSE) is greater than 0.5 (0.67)

(Moriasi et al. 2007). We also used RMSE and PBIAS to

quantify the magnitude of model error. RMSE provides

the overall error, and PBIAS measures the average

tendency of the simulated data to be larger (positive

PBIAS) or smaller (negative PBIAS) than their ob-

served counterparts (Gupta et al. 1999). The RMSE can

be decomposed into its systematic component RMSEs

and unsystematic component RMSEu using a linear re-

gression (Willmott et al. 1985). Also known as the linear

bias, RMSEs is a measure of discrepancy between sim-

ulated and observed data caused by poor calibration,

forcing errors, and/or unaccounted for processes in the

model. The discrepancy between simulated and ob-

served data caused by random processes is measured by

RMSEu. When the ratio of RMSEs to RMSEu is greater

than one, the RMSE is largely composed of systematic

bias, which can potentially be removed through cali-

bration. However, a ratio of RMSEs to RMSEu less than

one indicates that the RMSE is largely composed of

unsystematic or random bias, and further improvement

in model performance will require model and forcing

refinement. Optimal values of RMSE and PBIAS are

zero, indicating accurate model prediction. Model per-

formance is considered satisfactory when PBIAS is

within 625% (Moriasi et al. 2007).

c. Impact of climate variability on model
performance

We assess the impact of climate variability on model

performance by comparing the simulated and observed

streamflow sensitivities to precipitation and tempera-

ture. Following Sankarasubramanian et al. (2001), we

defined the precipitation sensitivity of streamflow SP as

the percent change in total streamflow Qt over annual

and seasonal time t divided by the percentage change in

annual precipitation P:

SP 5median

2
4Qt 2Q

P2P

 
P

Q

!35 , (1)

where Q is the long-term sample mean of streamflow

total over a period t and P is the long-term sample mean

of average annual precipitation. Similarly, temperature

sensitivity of streamflow ST (% 8C21) was defined as the

percent change in totalQt over a period t per unit change

in average mean daily temperature Tavg between Octo-

ber and June (8C). We omit the summer months from

the temperature sensitivity analysis to specifically focus

on evaluating the model performance during the snow

accumulation and melt period, a particularly critical set

of processes influencing model performance in this re-

gion. Much of the snowfall (.90%) in this region occurs

between October and May (Knowles et al. 2006). Al-

though over 50% of the snowpack melts by the end of

April, the total snowmelt period can extend until late

spring at some locations (results not shown). The tem-

perature sensitivity of streamflow ST is given by

ST 5median

2
4 Qt 2Q

Tavg2T

 
100

Q

!35 , (2)

where T is the long-term sample mean of Tavg. Both SP
and ST were calculated using observed and simulated
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Qwy, QOND, QJFM, QAMJ, and QJAS. In the past, this

sensitivity approach has been used at the annual time

scale (Patil and Stieglitz 2012; Safeeq and Fares 2012;

Vano et al. 2012). Comparing the additional seasonal-

scale sensitivities with respect to change in annual pre-

cipitation and October–June temperature provides

insight into how accurately the model represents the

seasonal carryover of above (snow) and below (ground-

water) land surface storage. Additionally, the metrics SP
and ST can be used as a measure of model performance,

irrespective of structural and parametric uncertainties, in

characterizing streamflow under climate change.

d. Impact of deep groundwater on model
performance

We used the hydrograph recession constant K as

a metric for evaluating the relative contribution of deep

groundwater to streamflow. This metric effectively dis-

tinguishes the relative contribution of shallow versus

deep groundwater (Safeeq et al. 2013). Following Vogel

and Kroll (1992), an automated recession algorithm was

employed to search all 10-days-or-longer recession

segments from the historical record of daily stream-

flow. The peak and end of each recession segment was

defined as the point when the 3-day moving average

of streamflow began to recede and rise, respectively.

The beginning of recession (inflection point) was

identified following the method of Arnold et al. (1995).

To minimize the effects of snowmelt, recession seg-

ments were excluded between the onset of the

snowmelt-derived streamflow pulse and 15 August.

Days of snowmelt pulse onset were determined fol-

lowing the method of Cayan et al. (2001), with mean

flow calculated for calendar days 9–248. Similar to

Vogel and Kroll (1992), spurious observations were

avoided by only accepting the pairs of receding

streamflow (Qt, Qt21) when Qt . 0.7Qt21. The re-

cession constant K can be given by

K5 exp

�
2exp

�
1

m
�
m

t51

fln(Qt21 2Qt)

2 ln[0:5(Qt 1Qt11)]g
��

, (3)

wherem is the total number of pairs of consecutive daily

streamflow Qt21 and Qt at each site. The K parameter

ranges between 0 and 1, representing the lowest and

highest possible groundwater contribution, respectively.

Watersheds were divided into four groups based on

quartiles: 0.810 # KQ1
, 0.941, 0.941 # KQ2

, 0.950,

0.950#KQ3
, 0.963, and 0.963#KQ4

, 0.989. Quartile

technique was used for grouping over other commonly

used techniques (i.e., k-means clustering) for simplic-

ity and in an effort to keep the sample size consistent

betweenK groups. The distribution of watersheds byK

between the 217 watersheds is shown in Fig. 2f.

A summary of watershed characteristics and hydro-

logic conditions across all study watersheds and under

different K regimes is presented in Table 1. The KQ4

watersheds have higher drainage areas, base flow indices,

and mean watershed elevations; lower annual pre-

cipitation; and colder temperatures (Tavg) as compared to

KQ1
, KQ2

, and KQ3
. As a result of slower hydrograph re-

cession (i.e., higher groundwater contribution), the low

flow (Q5 andQ25) increases and high flow (Q75 andQ95)

diminishes between watershed groupsKQ1
andKQ4

. The

centroid of timing is nearly onemonth earlier inKQ1
and

KQ2
watersheds as compared to KQ4

. The model evalu-

ation metrics under different K regimes were compared

using Kruskal–Wallis one-way analysis of variance

(ANOVA) on ranks. If the ANOVA revealed statisti-

cally significant differences (p, 0.05), a post hocDunn’s

multiple comparison test was used to determine whichK

regimes were different at a significance level of 0.05.

e. Impact of meteorological forcing

Since meteorological data for the VIC model are

generated through spatial interpolation of irregularly

spaced point measurements, this interpolation adds

a potential source of uncertainty, especially at higher

elevations where point measurements are scarce. To

attempt to quantify this uncertainty, we compared the

VIC meteorological forcing data (i.e., precipitation and

temperature) and simulated snow water equivalent

(SWE) against independent observations from the

Natural Resources Conservation Service (NRCS) Snow

Telemetry (SNOTEL) sites. Although comparing grid-

ded data with point measurements can be somewhat

misleading, it nonetheless provides useful information

about the potential errors in meteorological driving data

(and particularly precipitation data) at small scales.

Daily precipitation, maximum and minimum tempera-

tures, and SWE data were downloaded from 148 sites

(70 in OR and 78 in WA). We also added data from

three [Climatic Station at Watershed 2 (CS2MET),

Primary Meteorological Station (PRIMET), and Hi-15

Meteorological Station (H15MET)] additional meteo-

rological sites at the H.J. Andrews Experimental Forest.

Many of these sites only extend from 1978 to present and

do not have concurrent meteorological records. Hence,

we have only included the sites with at least 10 years of

data. This criterion resulted in 109 stations with daily

precipitation, 34 stations with maximum temperature,

31 stations with minimum temperature, and 106 stations

with daily SWE data.
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3. Results

a. Total streamflow and flow percentiles

The VIC model performed well in capturing the in-

terannual variability in observed annual and seasonal

total streamflow, as measured by rank correlation co-

efficients (i.e., r; Fig. 3a). The median value of r from

217 individual watersheds was the highest for the annual

time scale and diminished as seasons progressed from

fall to summer (Table 2). Additionally, the interquartile

range of r from individual watersheds was smallest for

Qwy and relatively large for QJFM and QJAS, showing

greater variability in model performance between wa-

tersheds in the latter two cases. The percentage of wa-

tersheds with r . 0.7 decreased from 96% to 73% for

Qwy andQJAS, respectively. This indicates that in 27%of

the watersheds, interannual variability in QJAS was not

satisfactorily captured by the model. The model per-

formed better for high-flow percentiles as compared to

low flows (Fig. 3b): the median value of r ranged from

0.92 for Q50 to 0.67 for Q5 (Table 2). The interquartile

range was small for Q50 and increased toward the more

extreme flows, increasing more for low- than high-flow

percentiles (Fig. 3b). For example, the model performed

poorly (r # 0.7) in 29% of watersheds for Q25 and in

54% of watersheds for Q5, whereas only 4% of water-

sheds had similarly low correlations for Q50, 7% for

Q75, and 14% for Q95. This indicates that the model

consistently performed better in predicting the in-

terannual variability in mean and high flows across all

selected watersheds but underperformed in predicting

low flows.

Rank correlations are useful for evaluating model

sensitivities in terms of interannual variability but do not

provide information on absolute model biases. In con-

trast, NNSE along with RMSE and PBIAS provide

overall goodness of fit between observed and simulated

hydrographs. The percentage of total watersheds with

NNSE below 0.67 ranged from 50% for Qwy to 90% for

QJAS, indicating strong disagreement between modeled

and observed flows in a large number of watersheds.

Similarly, strong disagreements between modeled and

observed low-flow percentiles were also found (Table 2).

The NNSE was below the 0.67 threshold in 93% of

watersheds for Q25 and in 95% of watersheds for Q5,

whereas only 51% of watersheds had similarly low

NNSE for Q50, 55% for Q75, and 65% for Q95. As

compared to r, the NNSE values were lower for both

total flow and flow percentiles, indicating a systematic

absolute model bias. This was confirmed from the

FIG. 3. Model performance metrics (r, NNSE, RMSE, and PBIAS) for predicting (a) total streamflow and (b) flow percentiles at 1/168
spatial resolution. The line inside the box represents the median value, the box itself represents the interquartile range (IQR; 25th–75th

percentile range), and the whiskers are the lowest and highest values that are within 1.5(IQR) of the 25th and 75th percentiles. The

Kruskal–Wallis rank sum statisticH and corresponding probability value of the test p are shown at the top. Model performances denoted

with same letters are not significantly different (Kruskal–Wallis and post hoc Dunn’s test, p , 0.05).
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proportionally higher RMSEs values as compared to

RMSEu (Table 2). Although, the median RMSE was

large for Qwy (206.7mm) and Q95 (2.5mm), the corre-

sponding PBIAS was small. The median absolute

PBIAS was very good (,6%) for all total streamflows

and flow percentiles except for Q5 (PBIAS 5 226%).

Although median PBIAS was satisfactory in the ma-

jority of cases, the range was quite variable and, in some

cases, absolute PBIAS was larger than 25% (Fig. 3b).

Thepercentage ofwatershedswith absolutePBIAS. 25%

in predicting total flow increased from 23% forQwy to 66%

for QJAS. Similarly, the percentage of watersheds with ab-

solute PBIAS . 25% in predicting flow percentiles in-

creased from 23% forQ50 to 82% for Q5.

Increasing model spatial resolution from 1/168 to 1/1208
alone resulted in no improvement inmodel performance

(Fig. S1 in the supplemental material). This can be pri-

marily attributed to the fact that both simulations were

driven by the same vegetation and soil parameteriza-

tion. Additionally, effects of improved small-scale snow

dynamic and evaporation as a result of more realistic

radiative forcing at 1/1208 scale as compared to 1/168 may

not be apparent at the watershed scale. Based on the

Wilcoxon rank-sum test, which is a nonparametric

method to test if the two population distributions are the

same, the effect of model resolution was only significant

(p, 0.05) for PBIAS inQwy,QAMJ,Q5,Q50, andQ75. As

compared to the 1/168 representation, the 1/1208-resolution

interquartile range in flow percentiles shifted toward

more positive PBIAS. In the case ofQ5, there was a 50%

reduction in median PBIAS under 1/1208 simulations

(median PBIAS 5 213%) as compared to 1/168 (median

PBIAS 5 225%). A similar change was also observed

for Qwy and QAMJ. For example, the median PBIAS in

QAMJ increased from an underestimation (23%) to an

overestimation (11%) under 1/168 and 1/1208 spatial reso-
lution, respectively (Table 2). Although some differ-

ences in the model performance were statistically

significant, there was no clear or substantial improve-

ment from the finer-resolution simulation. Therefore,

we only present the 1/168 VIC modeling compared to the

observed values unless otherwise noted.

b. Precipitation and temperature sensitivities

The comparisons of average observed and simulated

precipitation sensitivity (i.e., SP) across the 217 water-

sheds showed consistently low correspondence, with

only 18% of the variance in SP explained by the model

(Fig. 4a). The median sensitivity of observed streamflow

to precipitation (i.e., SP) across all 217 watersheds

ranged from 0.87 in spring to 1.42 in fall (Table 1). In

other words, an increase of annual precipitation by 1%

resulted in a 1.42% increase in QOND. In comparison to

observed SP, the median SP derived from simulated

streamflow ranged from 0.90 during spring to 1.44 in fall.

On a regional scale, the simulated median SP across the

TABLE 2. Median values of the model performance statistics at 1/168 and 1/1208 spatial resolution in predicting total streamflow and flow

percentiles from 217watersheds acrossORandWA.The significant differences (Wilcoxon rank-sum test, p, 0.05) between 1/168 and 1/1208
are marked with an asterisk.

Streamflow r NNSE RMSE (mm) RMSEs (mm) RMSEu (mm) RMSEs/RMSEu PBIAS (%)

1/168
Qwy 0.92 0.66 206.67 142.99 105.77 1.70 20.55*

QOND 0.90 0.64 105.30 72.29 51.73 1.70 1.38

QJFM 0.87 0.67 99.18 60.32 67.30 1.16 5.17

QAMJ 0.84 0.59 75.74 55.58 45.13 1.38 22.98*

QJAS 0.80 0.34 32.79 26.08 15.12 2.47 3.01

Q5 0.67 0.14 0.20 0.19 0.05 4.91 225.92

Q25 0.77 0.32 0.33 0.25 0.12 2.54 25.26

Q50 0.92 0.66 0.57 0.39 0.29 1.71 20.55*

Q75 0.88 0.62 0.92 0.65 0.54 1.52 5.14*

Q95 0.84 0.58 2.38 1.69 1.24 1.64 24.85

1/208
Qwy 0.92 0.65 221.51 157.62 105.19 1.83 3.01*

QOND 0.90 0.62 109.81 77.09 49.99 1.80 24.03

QJFM 0.86 0.65 106.54 62.28 70.31 1.16 1.83

QAMJ 0.85 0.56 82.25 56.59 48.89 1.46 11.14*

QJAS 0.82 0.32 35.44 29.04 14.76 2.39 11.71

Q5 0.70 0.18 0.20 0.20 0.06 3.70 213.89

Q25 0.79 0.28 0.36 0.30 0.12 2.42 3.16

Q50 0.92 0.65 0.61 0.43 0.29 1.83 3.01*

Q75 0.88 0.59 1.01 0.76 0.57 1.64 12.88*

Q95 0.84 0.55 2.45 1.75 1.30 1.72 22.32
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217 watersheds were comparable to the observed SP in

all seasons and water years (Table 1). However, at the

individual watershed level, the model largely under-

predicts SP, particularly inwatershedswith observed SP.
2.0 (Fig. 4a). This disagreement between observed and

simulated SP was within 625% in the majority (50%–

76%) of watersheds for annual, fall, and winter

streamflows. In the spring and summer, only 43% and

26% of the watersheds had results within a625% error

between simulated and observed SP. These results in-

dicate that model performance in capturing SP was even

lower for summer as compared to other seasons. Al-

though the model performed less well for precipitation

(Fig. 4), uncertainties about themagnitude and direction

of future precipitation changes (Mote and Salathé 2010)
make this aspect less critical in the PNW, but it may be

a factor when modeling other regions.

Future changes in temperature are more certain in

this region, and model performance in capturing ST was

improved as compared to SP across all time scales as

inferred by the higher coefficient of regression between

observed and simulated ST (Fig. 4b). However, overall

model performance in simulating ST was unsatisfactory,

with only 33%–45% of the variance in observed ST ex-

plained by the VIC model. The model largely under-

predicted ST in 50%–60% watersheds and overpredicted

in 25%–28% watersheds by at least 25% across all sea-

sons. The median sensitivity of observed streamflow to

temperature ST across all watersheds ranged from 28.19

(% 8C21) during winter to 20.34 (% 8C21) in spring

(Table 1). The negative ST value indicates a decline in

streamflow with increasing Tavg. An increase in Tavg by

18C will result in as much as nearly an 8% decline in

QJFM and 0.34% decline in QAMJ. On the annual time

scale, an increase in Tavg by 18C will result in a 2.6%

decline in observedQwy and a 2.2% decline in simulated

Qwy. Although there was no major difference in model

performance across the seasons and water year in sim-

ulating ST based on NNSE and RMSE values (Fig. 4b),

the median simulated ST for QOND was significantly

higher (Table 1).

c. Impact of deep groundwater on model
performance

1) TOTAL STREAMFLOW AND FLOW PERCENTILES

Performance metrics among KQ1
, KQ2

, KQ3
, and KQ4

watersheds revealed differences in model performance

in different geological terrains (Fig. 5). In 80% of pos-

sible cases, the Kruskal–Wallis and post hoc Dunn’s

multiple comparison test showed statistically significant

differences in model performance metrics for total

streamflow and flow percentiles between two or more

watershed groups (Table S1 in the supplemental mate-

rial). The model performance in capturing interannual

variability in QOND and QJFM based on r was signifi-

cantly lower (p , 0.05) in KQ4
as compared to KQ1

wa-

tersheds. However, the opposite was true for QAMJ,

where the model performed significantly (p , 0.05)

better in KQ4
as compared to KQ1

watersheds. In terms

of flow percentiles, the difference in r was only signifi-

cant betweenKQ1
and KQ2

watersheds forQ25,Q50, and

Q75, where the model performed better in the latter

case. ForQ5 the model performed significantly better in

KQ2
as compared to KQ1

, KQ3
, and KQ4

. The NNSE in

KQ1
was significantly lower (p, 0.05) forQOND andQwy

as compared toKQ2
andKQ3

, respectively. Similarly, the

NNSE in KQ4
was significantly lower for QOND and

QJFM as compared to KQ2
and KQ3

, respectively. The

model performed poorly in KQ1
as compared KQ3

wa-

tersheds for Q25, Q50, and Q95. The RMSE was signifi-

cantly lower for KQ4
as compared to KQ1

or KQ2
during

Qwy, QOND, andQJFM, which is not surprising given the

overall lower flow during these seasons in KQ4
water-

sheds (Table 1). Similarly, the RMSE values for Q50,

Q75, and Q95 in KQ1
were significantly higher as com-

pared to KQ4
watersheds. However, despite overall

higher QAMJ and QJAS in KQ4
watersheds (Table 1),

there was no statistical difference in RMSE values

during these seasons among the different groups of

watersheds. This was unexpected given that deep

groundwater, which was not explicitly modeled by VIC,

exerts a greater influence on QAMJ and QJAS as com-

pared to streamflow in other seasons. Considering the

model limitation, the RMSE values in QAMJ and QJAS

for KQ4
were expected to be higher than the KQ1

wa-

tersheds. However, although not statistically significant,

the corresponding RMSE values in KQ1
and KQ4

are

slightly higher as compared to KQ2
and KQ3

watersheds.

This pattern seems to be consistent in terms of r and

NNSE as well with the model performing better overall

inKQ2
andKQ3

as compared toKQ1
andKQ4

watersheds.

The effect of deep groundwater in simulatingQJAS and

extreme flow percentiles (i.e.,Q5,Q25, andQ95) was most

evident in terms of PBIAS. The model significantly (p ,
0.05) overpredicted (median PBIAS5 48%)QJAS inKQ1

and underpredicted (median PBIAS 5 213%) in KQ4

watersheds. Similarly, Q5 was significantly overpredicted

(median PBIAS 5 19%) in KQ1
and underpredicted

(median PBIAS5251%) inKQ4
watersheds (Fig. 5). In

contrast, Q95 was significantly underpredicted (median

PBIAS 5 217%) in KQ1
and overpredicted (median

PBIAS 11%) in KQ4
watersheds. These results indicate

that the model performance was significantly influenced

by the absence/presence of groundwater and that

base flow recedes quickly in groundwater-dominated
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FIG. 4. Model performance at the 1/168 spatial resolution in predicting annual and seasonal streamflow sensitivity to

(a) annual precipitation SP and (b) October–June temperature ST. The corresponding box plots show the difference

between simulated and observed Sp in (a) and ST in (b) for different watersheds grouped based onK values. The line

inside the box represents the median value, the box itself represents the IQR, the whiskers are the lowest and highest

values that are within 1.5(IQR) of the 25th and 75th percentiles, and the dots represent 5th and 95th percentiles. The

Kruskal–Wallis rank sum statistic (i.e.,H) and corresponding probability value of the test (p) are shown with the box

plots along with the significant (Kruskal–Wallis and post hoc Dunn’s test, p , 0.05) K groups.
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watersheds and slowly in runoff-dominated watersheds.

Although the magnitude of error (both RMSE and

PBIAS) was comparable among the different groups of

watersheds, a systematic shift in the direction of error

(over- or underestimation) based on groundwater in-

fluence could be problematic.

The spatial pattern among the watersheds with

PBIAS , 225% in QJAS and Q5 was consistent with

FIG. 4. (Continued)

DECEMBER 2014 SAFEEQ ET AL . 2513



geological terrains in the PNW (Fig. 6). Most of the

watersheds with PBIAS , 225% had high K values and

were located along the Cascades. This was not surprising

given the fact that most of these watersheds are sourced

from theHighCascades. However, there were watersheds

on theOlympic Peninsula inWAand around theWallowa

Mountains in ORwith PBIAS,225%. These places did

not have deep-groundwater systems as in the Cascades,

but they sustained relatively higher summer base flows,

presumably because of late-melting snowpacks.

2) PRECIPITATION AND TEMPERATURE

SENSITIVITIES

Comparisons of observed and simulated SP showed

sharp differences in model performance between dif-

ferent groups of watersheds based on K (Fig. 4). The

error in SP, calculated as the difference between simu-

lated and observed SP, was significantly different (p ,
0.05) for QOND and QJAS in KQ4

(groundwater domi-

nated) as compared to KQ1
(runoff dominated) water-

sheds. The model significantly overpredicted SP for

QOND andQJAS inKQ4
as compared to KQ1

. We did not

see any significant influence of deep groundwater on

model performance in terms of ST (Fig. 4b). This

indicates that model performance was not influenced by

the presence/absence of groundwater in terms of tem-

perature sensitivity of streamflow. However, SP during

fall and summer season streamflow was strongly in-

fluence by the presence/absence of groundwater.

d. Uncertainty in model meteorological forcing

Comparing gridded (1/168 resolution) meteorological

forcing and simulated SWE to point measurements at

SNOTEL sites revealed that gridded precipitation

compared reasonably well with measurements at sea-

sonal and annual time scales, with average r and NNSE

values larger than 0.67, except during spring (Table 3).

Although average RMSE values ranged between 39mm

during summer and 209mm on the annual time scale,

average PBIAS remained ,2%. The gridded pre-

cipitation values were slightly higher than measured

values during fall, spring, and summer and lower during

winter. The average RMSE for annual and seasonal

precipitation (Table 3) was comparable to those values

for total streamflow (Table 2). However, the PBIAS

in precipitation and total streamflow at the seasonal

time scale did not agree. For example, the model over-

predicted winter flows despite negative PBIAS in winter

FIG. 5. Effect of deep groundwater (K) on model performance at the 1/168 spatial resolution in predicting (a) total streamflow and

(b) flow percentiles. The line inside the box represents themedian value, the box itself represents the IQR, and the whiskers are the lowest

and highest values that are within 1.5(IQR) of the 25th and 75th percentiles. Model performances are significantly different between

different groups of K (Kruskal–Wallis and post hoc Dunn’s test, p , 0.05) unless denoted with p values (note that complete ranges of

PBIAS values are shown in Fig. S2 in the supplemental material).
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FIG. 6. Spatial variability in predicting (top) summer streamflow (i.e.,QJAS) and (bottom) 5th

flow percentile (i.e., Q5) at
1/168 spatial resolution. Recession constant K is indicated by gray

shading at 5th field hydrologic unit code scale; K data are from Safeeq et al. (2014).
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precipitation, while the opposite (underprediction) was

true for the spring season. This was not surprising given

the seasonal carryover of precipitation in the form of

groundwater and SWE. As opposed to RMSE in

streamflow (Table 2), the RMSE in precipitation was

equally composed of both systematic and unsystematic

components (Table 3). The comparisons of gridded

and measured maximum and minimum temperatures

showed strong bias with NNSE values less than 0.67 and

RMSE ranging between 1.78 and 2.78C (Table 3). As

opposed to precipitation, RMSE in temperatures were

mostly systematic.

The average r between observed and simulated SWE

was higher than the acceptable threshold of 0.7 for good

model performance in terms of r (Table 3). However,

average NNSE values were all below the 0.6 threshold

for good model performance in terms of NNSE at all

four time scales, indicating large absolute bias. The

model underpredicted the average SWE during fall and

winter and overpredicted average SWE during spring.

Since most of the SNOTEL sites used in this study are

located at elevations above the average elevation ofKQ3

(90%) and KQ4
(66%), it was not possible to disentangle

the role of bias in SWE to streamflow between runoff-

and groundwater-dominated watersheds. However,

large underpredictions ofQJAS in groundwater-dominated

watersheds (Fig. 5), despite an overprediction of spring

SWE and higher gridded spring and summer precip-

itation as compared to those measured at SNOTEL sites

(Table 3), provide confirmation of the importance of

considering groundwater contributions when simulating

streamflow.

4. Discussion

Our analysis of VIC model performance, comparing

time series of total streamflow and flow percentiles of

observed and simulated streamflow, revealed both

strengths and weaknesses in the model that are impor-

tant to understand for successful model applications.

The model performed reasonably well in capturing in-

terannual variability in observed streamflow (as reflec-

ted by relatively high r), which gives confidence in using

themodel to estimate and simulate hydrologic trends for

climate change assessments (Hamlet et al. 2007; Hidalgo

et al. 2009). However, performance was poorer in pre-

dicting the magnitude and interannual variability in

observed low flows (i.e., Q5 and Q25) and total summer

streamflow (i.e., QJAS). This poorer performance could

be problematic, given the importance of summer flows

for aquatic organisms (Arismendi et al. 2013; Beer and

Anderson 2013) and municipal water supply (Barnett

et al. 2005). Although routing was not explicitly included

in streamflow simulation, we explored the possible ef-

fect of routing onmodel performance (Fig. 3).We found

that in large watersheds (drainage area .500 km2),

where lack of routing was expected to affect model

performance the most, both low flow (Q5) and peak flow

(Q95) were better predicted than in small watersheds

(drainage area ,500 km2). The effect of routing was

evident on Q25, where the model performance (median

PBIAS 5 12%) deteriorated in large watersheds as

compared to small watersheds (median PBIAS527%).

However, since the majority of our studied watersheds

were ,500 km2 (Fig. 2a), the effect of routing on model

performance for our study sites is expected to be mini-

mal. We also found no improvement in model perfor-

mance for low-flow metrics (Q5 and Q25) as a result of

site-specific calibration and validation. However, the

peak flows (Q95) in calibrated watersheds were better

predicted. This indicates that reducing the model

TABLE 3. Summary of the performance statistics showing the

agreement between 1/168 spatial resolution gridded precipitations,

max and min temperatures, and model-simulated SWE with those

measured from SNOTEL sites across OR and WA.

Performance

statistics wy Fall Winter Spring Summer

Precipitation (n 5 109)

r 0.86 0.88 0.83 0.73 0.77

NNSE 0.68 0.75 0.69 0.61 0.70

RMSE (mm) 208.51 100.80 106.43 63.07 38.61

RMSEs (mm) 151.44 65.48 68.84 38.45 26.99

RMSEu (mm) 130.59 71.73 75.41 47.25 26.67

RMSEs/RMSEu 1.22 0.96 1.00 0.88 1.05

PBIAS (%) 20.33 0.70 21.57 0.78 0.23

Max temp (n 5 34)

r 0.63 0.66 0.70 0.81 0.77

NNSE 0.12 0.26 0.32 0.21 0.16

RMSE (8C) 1.87 2.36 2.04 2.50 2.67

RMSEs (8C) 1.81 2.19 1.75 2.41 2.58

RMSEu (8C) 0.39 0.73 0.83 0.55 0.56

RMSEs/RMSEu 4.78 3.13 2.36 4.84 5.42

PBIAS (%) 14.57 38.11 40.56 15.35 10.55

Min temp (n 5 31)

r 0.62 0.56 0.64 0.75 0.56

NNSE 0.10 0.33 0.35 0.22 0.13

RMSE (8C) 1.66 1.86 1.76 2.14 2.49

RMSEs (8C) 1.61 1.71 1.55 2.08 2.40

RMSEu (8C) 0.34 0.65 0.73 0.42 0.56

RMSEs/RMSEu 4.91 2.68 2.26 4.73 4.35

PBIAS (%) 13.94 257.71 40.59 289.07 223.79

SWE (n 5 106)

r 0.71 0.72 0.71 0.71 —

NNSE 0.21 0.22 0.25 0.04 —

RMSE (mm) 142.25 70.40 267.15 233.40 —

RMSEs (mm) 131.75 66.53 246.55 216.14 —

RMSEu (mm) 38.16 17.37 79.71 60.14 —

RMSEs/RMSEu 6.06 4.83 5.10 121.13 —

PBIAS (%) 235.18 243.30 237.95 36.92 —
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uncertainty from low flows will require a different

strategy for model calibration. Not only was VIC cali-

brated at the monthly time scale, the NSE, which was

used to calibrate the VIC model, is biased toward the

peak-flow portion of the hydrograph rather than the

low-flow portion.

The strong disagreement between observed and sim-

ulated sensitivities to changes in both precipitation and

temperature does not necessarily imply poor model

performance. As shown by Elsner et al. (2014), the

choice of gridded meteorological dataset can influence

the streamflow sensitivity to changes in climate. In this

study, observed sensitivities were calculated using grid-

ded precipitation and temperature data. However,

small-scale variability in precipitation and temperature

may not be accurately captured in these datasets, lead-

ing to biased estimates of observed sensitivities (SP and

ST). This alone could cause substantial disagreement

between observed and simulated sensitivities, more so

for precipitation than temperature. Thus, higher un-

certainties in precipitation as compared to temperature

sensitivities are not surprising (Fig. 4). Although quan-

tifying the error associated with observed sensitivities is

challenging in the absence of a landscape-level-

independent record of precipitation and temperature

variability, it would be interesting to look at how the

choice of gridded meteorological data affects observed

SP and ST.

The model showed strong systematic bias in both

runoff- and groundwater-dominated watersheds, espe-

cially total summer streamflow and low-flow percentile.

Although the magnitudes of RMSE in runoff- and

groundwater-dominated watersheds are comparable

for both Q5 and QJAS, the difference in PBIAS was

statistically significant. Most importantly, the contrast-

ing (positive and negative) PBIAS error in the pre-

diction of Q5 and QJAS highlights the varying level of

uncertainty in model predictions between runoff- and

groundwater-dominated watersheds. In groundwater-

dominated watersheds, PBIAS in Q5 and QJAS shows

an overall underestimation as opposed to an over-

estimation in runoff-dominated watersheds. In general,

the model tends to perform better in intermediate (i.e.,

KQ2
and KQ3

) across all model performance metrics.

This is somewhat contrary to the findings of Wenger

et al. (2010), who showed diminishing model perfor-

mance with increasing groundwater contribution.

However, considering the fact that the model neither

accurately captures the groundwater dynamics nor is

capable of producing zero (or near zero) flows, corre-

sponding under- and overestimation of low-flow per-

centiles and total summer streamflow are not surprising.

In either extreme case where streams either gain water

from inflow of groundwater (e.g., KQ4
watersheds) or

lose water by outflow to groundwater (e.g., KQ1
water-

sheds), base flow recession was not accurately captured

by the model. Under these circumstances, increasing the

model resolution alone may theoretically provide better

topographic representation of the landscape but not

necessarily improve model performance. On the other

hand, coupling a groundwater model to VIC is not

a feasible option because of both huge computational

resources and time requirements and because of the

extensive amount of data needed for groundwater pa-

rameterization. Most of these data are typically not

available at a regional scale. Also, as pointed out by

Wenger et al. (2010), these finescale biases become less

important at the larger scale when extreme hydro-

geological systems (i.e., KQ1
and KQ4

) mix with inter-

mediate systems (i.e., KQ2
and KQ3

).

Although comparisons of meteorological data forcing

and simulated SWE at SNOTEL sites apparently show

large discrepancies, these results should be interpreted

with caution. This comparison relies on point measure-

ments of precipitation, temperature, and SWE from

SNOTEL sites against corresponding mean values

generated by the model over a ;6-km grid. Point mea-

surements are typically made under open tree canopies,

whereas average SWE from a ;6-km grid not only ig-

nores local topographic effects but also includes the ef-

fect of existing vegetation over the entire grid cell. SWE

values derived from SNOTEL sites have been shown to

be as much as 200% higher when compared with mean

SWE over a 1-, 4-, and 16-km2 grid (Molotch and Bales

2005). Hence, a large underestimation of SWE by the

model was not surprising and could be entirely due to

the sampling nature of the snow datasets. Comparing

VIC-simulated SWE with those derived from remote

sensing [e.g., spatially distributed SWE derived from

Moderate Resolution Imaging Spectroradiometer

(MODIS) imagery] could provide a better measure of

model performance in capturing snow dynamics.

These findings on model performance have broad

implications for using large-scale LSMs in landscape-

level planning as well as future model improvement. As

mentioned earlier, geological differences among the

watershed as inferred by K along with errors in meteo-

rological forcing can significantly affect model perfor-

mance. However, the relative contribution of structural

(lack of groundwater) and parametric (meteorological

forcing) error is still unclear. Because of the nature of

the landscape where geology, snow, and elevation all are

geographically correlated, it was difficult to disentangle

their individual effects on model performance. For ex-

ample, summer-flow and low-flow percentiles were un-

derpredicted in groundwater-dominated watersheds
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and overpredicted in runoff-dominated watersheds. But

in this region, groundwater-dominated watersheds are

typically located at high elevations, where meteorolog-

ical forcings are also uncertain and presumably under-

reported. The meteorological forcing data for VIC were

interpolated based on Cooperative Observer Program

(COOP) stations that are predominantly located at

lower elevations. Under these circumstances, it would

be unfair to call the error in groundwater-dominated

watersheds entirely structural. Most likely it was a result

of both structural and parametric, and more research is

needed to quantify the individual impact.

Finally, since most of the model error is systematic

(RMSEs/RMSEu . 1), a more rigorous site-specific

calibration may help improve model performance. At

a regional scale where climate and geology varies

significantly, a geologically (Tague et al. 2013) or

landscape-based (Patil et al. 2013) model parameteri-

zation, as opposed to transferring the calibrated model

parameters based on spatial proximity and physical

similarity (Oudin et al. 2008), could help reduce the

uncertainty due to presence/absence of groundwater.

Additionally, relying on only streamflow for model

calibration in regions such as PNW, where shapes of the

hydrographs largely depend on the water stored in the

form of SWE and groundwater, may be problematic.

Availability of remotely sensed datasets such as MODIS-

based evapotranspiration and snow cover and Gravity

Recovery and Climate Experiment (GRACE)-based

terrestrial water storage provide opportunities for multi-

criteria parameter estimation (Livneh and Lettenmaier

2012). Site-specific calibration can also compensate for

the uncertainty in meteorological forcing (Elsner et al.

2014). Although, as pointed out by Elsner et al. (2014),

uncertainties in meteorological forcing could still be

challenging in forecasting the effects of climate change.

Uncertainties in gridded meteorological data (Elsner

et al. 2014) can be minimized by utilizing the measure-

ments from SNOTEL sites. The SNOTEL sites are

typically located at higher elevations than the currently

used COOP stations for gridded meteorological VIC

forcing data (Hamlet and Lettenmaier 2005).

5. Summary and conclusions

This study provides an assessment of the large-scale

Variable Infiltration Capacity (VIC) model for pre-

dicting hydrologic regimes of small watersheds in the

Pacific Northwest. Since large-scale hydrologic models

of this type are typically not calibrated for small water-

sheds, knowing the uncertainties and their relationship

to topographic, geologic, and climatic controls is quite

valuable.Model performance and associated uncertainties

were assessed by comparing VIC-simulated and ob-

served streamflows from 217watersheds in terms of total

flow at annual and season time scales and flow percen-

tiles. In addition to streamflow, we also compared the

model meteorological forcing with independent obser-

vations from 109 stations with daily and monthly pre-

cipitation, maximum and minimum temperatures, and

SWE data. The effect of deep groundwater on model

performance was assessed by grouping watersheds

based on the streamflow recession constantK, following

Safeeq et al. (2013).

Overall, the model was able to capture the hydrologic

behavior of these watersheds with reasonable accuracy

as measured by the Spearman rank correlation. Both

total streamflow and flow percentiles, however, are

subject to strong systematic model error. Although the

magnitude of relative bias (i.e., PBIAS) between

groundwater- and runoff-dominated watersheds are

comparable, summer streamflow and lower-percentile

flows in runoff-dominated watersheds are predominantly

overestimated and consistently underestimated in

groundwater-dominated watersheds. The model per-

formed poorly in capturing the sensitivity of streamflow

to changes in both temperature and precipitation across

all seasons. Our findings also suggest strong disagree-

ments between gridded and observed meteorological

forcing and simulated and observed SWE, which could

be contributing to model bias. Since groundwater- and

snow-dominated watersheds overlap geographically,

disentangling the individual impact on model bias was

challenging. However, since most of the model bias was

systematic, a careful site-specific or geologically driven

model calibration using not only streamflow but also

SWEwould be expected to improve model performance.

Predicting changes in future streamflow under climate

change at the regional scale is essential for planning and

developing mitigation strategies. The VIC and other

LSMs help scientists and resource managers answer

‘‘what if’’ questions in a quantitative manner based on

future climate and land use changes as projected by

global climate models. This study highlights some of the

uncertainties in model-simulated streamflow and how it

may vary under different hydrogeological terrains and

time scales. Our results also provide a basis for de-

veloping model calibration and parameterization strat-

egies for future modeling work in this region that might

better account for landscape differences in terms of

groundwater contribution.
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