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ABSTRACT

Interleaving motions on a wide, baroclinic front are modeled using a second-moment closure to represent

unresolved fluxes by turbulence and salt fingering. A linear perturbation analysis reveals two broad classes of

unstable modes. First are scale-selective modes comparable with interleaving as observed in oceanic fronts.

These correspond well with observations in some respects but grow by a very different mechanism, which

ought to be easily distinguished in hydrographic profiles. The second mode type is the so-called ultraviolet

catastrophe, which is expected to lead to steppy profiles even in the absence of interleaving. Both modes are

driven by positive feedbacks between interleaving and the underlying small-scale mixing processes. Contrary

to expectations, use of the second-moment closure in place of earlier empirical mixing models does not lead to

improved agreement with observations.

1. Introduction

The original theory of thermohaline interleaving (Stern

1967) identified salt fingers as the driving mechanism.

This idea has become widely accepted, especially since

the observations of interleaving in Meddy Sharon (MS)

(Armi et al. 1989) were explained successfully by that

theory (Ruddick 1992). When baroclinicity is accounted

for, however, this mechanism becomes highly sensitive to

smoothing by mechanically driven turbulence (Zhurbas

et al. 1988; Kuzmina and Rodionov 1992; Zhurbas and Oh

2001). Zhurbas and Oh (2001) showed that typical levels of

ocean turbulence should damp the instability completely.

Smyth and Ruddick (2010) addressed this paradox by

showing that, when the turbulent Prandtl number is much

greater than unity (which is true when the Richardson

number is high), turbulence not only does not damp the

instability as rapidly but can in fact generate its own

distinct mode of interleaving instability. Unfortunately,

the oceanic implications of these findings remain uncer-

tain because of strong assumptions that underlie the

mixing model. Our intention here is to reduce that un-

certainty by testing the sensitivity of the Smyth and

Ruddick (2010) results to the assumptions made about

mixing. To this end, we repeat the stability analysis using

a very different parameterization based on the second-

moment closure for double-diffusive mixing recently devel-

oped by Canuto et al. (2010). Despite the extreme difference

in parameterizations, we find once again that turbulence

can drive the growth of interleaving instabilities.

The early interleaving theories (Stern 1967; Toole and

Georgi 1981; McDougall 1985) assumed that mixing

coefficients were constant in space and time. Walsh and

Ruddick (1995) allowed the saline diffusivity due to salt

fingering to vary with the density ratio Rr and found that

the effect on growth rates was potentially significant. A

more dramatic effect emerged when Walsh and Ruddick

(2000) allowed the flux ratio g to vary, as it does in the linear

theory of salt fingering. In addition to the usual scale-

selective interleaving mode, a new instability emerged.

The growth rate of the new mode was found to increase

monotonically with increasing wavenumber, therefore

showing no preferred length scale. Walsh and Ruddick

(2000) referred to this as ‘‘ultraviolet catastrophe’’ (UVC),

in analogy with the original theory of blackbody radiation

that grew without bound at short wavelengths. A similar

instability has since been invoked by Radko (2003) to

explain the formation of thermohaline staircases.

UVC had been seen previously in the work of Phillips

(1972), who found this behavior in a simple model of ho-

mogeneous, stratified turbulence. The essential assumption

was that eddy diffusivity decreased with increasing static

stability, so that well-mixed regions would become more

turbulent and vice versa, creating a positive feedback

loop. Because the process depends entirely on diffusion,
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its rate grows quadratically with increasing vertical

wavenumber. The aforementioned theories are all linear

and therefore become invalid as the disturbances grow

to finite amplitude. Posmentier (1977) used a numerical

solution of the nonlinear initial value problem to show

that the finite-amplitude result of the Phillips UVC was

a steplike profile of density.

Smyth and Ruddick (2010) investigated an extended

model of interleaving on a baroclinic front, in which a cross-

front density gradient was in thermal wind balance with an

alongfront current. Once again they found the potential for

UVC-type instabilities. They argued that, because only the

diffusive terms matter at sufficiently small scale, the other

effects that lead to interleaving are irrelevant. UVC can

appear on a barotropic front, on a baroclinic front, or in

simple homogeneous turbulence as found by Phillips,

because it depends only on vertical mixing processes.

All of the aforementioned theories used empirical

models for the vertical mixing coefficients. Effective dif-

fusivities representing turbulence and salt fingering were

assumed to be either constant or functions of a single

parameter: Rr for salt fingering and the Richardson

number Ri for turbulence. Moreover, the diffusivities

were assumed to simply add. Mixing due to turbulence

and salt fingering and the interactions between the two

processes are in fact much more complex than this (e.g.,

Wells et al. 2001; Kimura and Smyth 2007; Smyth and

Kimura 2011; Kimura et al. 2011). Recent advances in

second-moment closure modeling (Canuto et al. 2002, 2008,

2010; Kantha et al. 2011) now allow more sophisticated and

potentially more realistic parameterizations of these pro-

cesses. In particular, the recent works of the Canuto group

are the first to combine double-diffusive mixing processes

with shear-driven turbulence. We therefore have the

opportunity to explore interleaving instabilities for the

first time in the context of a second-moment closure.

UVC-type instabilities were found in linearized second-

order closure models of stratified turbulence such as the

Mellor–Yamada level-2.5 model (Mellor and Yamada

1982) by Burchard and Deleersnijder (2001) and

Deleersnijder et al. (2008), but in those studies the in-

stabilities were interpreted as shortcomings in the tur-

bulence models. An alternative view is that the UVC

modes represent physically real phenomena. This view is

supported by numerous observations of layered struc-

tures in the ocean (e.g., Gregg 1976; Schmitt et al. 1987).

Smyth and Ruddick (2010) found instabilities based on

flux convergence mechanisms similar to the Phillips UVC

mode but exhibiting a well-defined vertical scale com-

parable with observed interleaving. The oceanographic

significance of the new modes was unclear because of the

unjustified assumption that salt fingering and turbulent

diffusivities simply add. Here, we use a second-moment

closure model involving very different assumptions; in

particular, the additivity assumption is not made. We

find both UVC and scale-selective interleaving related to

the mode found by Smyth and Ruddick (2010). The latter

is driven, however, by a different mechanism.

Like most models of interleaving to date, our ap-

proach is based on linearized perturbation theory. This

choice complicates observational comparisons, because

the early growth phase it describes is rarely discernible

in the data. It represents an essential first step, though,

because it tells us the length and time scales that must be

resolved in any solution of the nonlinear initial value

problem. Also, the linearized equations facilitate iden-

tification of the feedbacks that drive growth, allowing us

to understand the instabilities mechanistically.

We begin in section 2 by developing the perturbation

theory based on equations of motion for the resolved

currents and buoyancy fields in combination with the k–�

equations for unresolved motions. A simplified theory for

the UVC modes is derived, and mechanisms of both

interleaving and UVC instabilities are described using

budgets for perturbation enstrophy and other relevant

measures of instability. In section 3, we show explicit re-

sults for parameter regimes based on oceanic observations

and compare with measured mode properties. Two mode

classes are discussed. The first is scale-selective modes

comparable with interleaving, though the physics is dif-

ferent, and the second is UVC. Our conclusions are sum-

marized in section 4.

2. Theory

The objective is to describe mixing in a baroclinic

frontal zone in the thermocline. Rather than employ

empirical models for the vertical mixing as has been

done before, we adapt a second-moment closure model

based on the k–� formalism (Umlauf and Burchard

2005). The mathematical model for interleaving on

a wide, turbulent, baroclinic front has been described

previously (e.g., Smyth 2008; Smyth and Ruddick 2010);

in section 2a, we give a brief review of the derivation

before introducing the new mixing model.

The initial flow consists of a front in which the cross-

front buoyancy gradient is in thermal wind balance with

the vertical shear of the alongfront current. Major flow

elements are imagined to exist in three ranges of phys-

ical scales. The largest scale represents the front. Next,

we seek instabilities that describe interleaving on vertical

scales of 10–100 m in accordance with observations

(e.g., Ruddick 1992). Finally, we have small-scale mixing

processes, a mixture of salt fingering and shear-driven

turbulence with length scales between a few millimeters

and a few meters. The latter motions are not resolved
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explicitly, but their effects are parameterized via effective

diffusivities. Linearization results in a set of six equations in

two independent variables: time and the vertical coordinate.

These are removed by assuming a normal mode form for

the solution, leaving an algebraic eigenvalue problem.

a. The basic equations

Space is measured by the Cartesian coordinates x, y,

and z and the corresponding unit vectors êx, êy, and êz,

denoting the cross-front, alongfront, and vertical di-

rections, respectively. Motions are taken to be small in

lateral scale compared with the width of the front and

hence with respect to the earth’s radius, so that both the

Coriolis parameter f and the background gradients of

buoyancy and velocity are constant in time and space.

The fluid is incompressible and Boussinesq. The buoy-

ancy is defined by b 5 2g(r 2 r0)/r0, where r is the density

with characteristic value r0 and g is the acceleration due to

gravity. The equation of state is assumed to be linear, so

that b is just the sum of thermal and saline contributions,

b 5 bT 1 bS, (1)

with positive bT being warm and positive bS being fresh.

The resulting equations of motion are

$ � v 5 0, (2)

Dv

Dt
5 2f êz 3 v 2 $p 1 bêz 1 n=2v 1

›

›z
Km

›v

›z

� �
,

(3)

DbT

Dt
5 kT=2bT 1

›

›z
KT

›bT

›z

� �
, and (4)

DbS

Dt
5 kS=2bS 1

›

›z
KS

›bS

›z

� �
, (5)

in which v is the velocity vector with components (u, y, w),

D

Dt
5

›

›t
1 v � $ (6)

is the material derivative, t is the time, and p is the pressure

scaled by r0. Molecular viscosity is n, and the thermal and

saline molecular diffusivities are kT and kS, respectively.

The final terms of (3)–(5) represent parameterized

vertical mixing processes (horizontal mixing is neglected).

In previous studies, the associated mixing parameters

were taken to be constants or simple functions of back-

ground stratification and shear (e.g., Stern 1967; Toole

and Georgi 1981; McDougall 1985; Walsh and Ruddick

1995; May and Kelley 1997; Walsh and Ruddick 2000;

Smyth and Ruddick 2010). In the present work, unresolved

mixing is described using a stratified k–� model (e.g.,

Umlauf and Burchard 2005), where diffusivities have

the general form

Ka 5 2
k2

�
Sa. (7)

The subscript a stands for m, T, or S. The factor 2k2/� is

a diffusivity scale derived from the kinetic energy k9 and

kinetic energy dissipation rate � of the unresolved mo-

tions. This in itself is an important step, because pre-

vious mixing models (e.g., Smyth and Ruddick 2010)

were functions only of dimensionless parameters and

therefore needed an empirical diffusivity scale whose

value was unlikely to be universal. Dependence of the pa-

rameterized diffusivities on the mean shear and the thermal

and saline stratification is introduced via the structure

functions Sa(Ri, Rr, Gm) as defined by Canuto et al.

(2010, section 4.1).1 The gradient Richardson number is

Ri 5
›b/›z

(›u/›z)2
1 (›y/›z)2

, (8)

the buoyancy ratio is

R
r

52
›bT /›z

›bS/›z
, (9)

and the squared nondimensional time scale is

Gm 5 4(k2/�2)S2, (10)

where

S2 5
›ui

›xj

1
›uj

›xi

 !
›ui

›xj

, (11)

with i 5 1, 2, or 3 representing u, y, or w, respectively,

and j 5 1, 2, or 3 representing x, y, or z, respectively.

Summation over repeated indices is implied.

The evolution equations for k and � are

Dk

Dt
5

›

›z
Km

›k

›z

� �
1 Pm 1 Pb 2 � and (12)

D�

Dt
5

1

s�

›

›z
Km

›�

›z

� �
1
�

k
(c1Pm 1 c3Pb 2 c2�), (13)

where the production terms are Pm 5 KmS2 and Pb 5

2KT›bT/›z 2 KS›bS/›z and s� 5 1.3, c1 5 1.44, and

1 There should be no confusion between the structure function

Sa and the subscript S. For example, SS represents the salinity

structure function.
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c2 5 1.92 (e.g., Umlauf and Burchard 2005). The re-

maining ‘‘constant’’ c3 will be discussed in section 2c.

The model is now defined by (2)–(5), (12), and (13),

together with the auxiliary relations (1) and (7) and

closures for the structure functions Sa. For the pres-

ent study, we use the structure functions described by

Canuto et al. (2010). Note that the mixing model de-

scribes only the effects of local shear and stratifica-

tion; nonlocal effects such as the remote generation of

internal waves are not included.

b. Flow decomposition

We wish to test the stability of a wide baroclinic front

to perturbations having the form of planar intrusions.

Intrusions are assumed to tilt at a slope f across the

front but to have no variation in the alongfront (y) di-

rection. Intrusions with this orientation are generally the

most unstable because they are not decorrelated by the

alongfront shear (Smyth 2008). The buoyancy fields are

therefore given by

ba 5 Baxx 1 Bazz 1 b9
a

(x, z, t), (14)

in which a denotes either S or T. Throughout this paper,

the subscripts x, z, and t represent partial derivatives.

The background buoyancy gradients Bax and Baz are

constants. The prime denotes the perturbation. Simi-

larly, the alongfront velocity is

y 5 Vzz 1 y9(x, z, t), (15)

where the background velocity gradient Vz is a constant.

Flow in the x–z plane, being independent of y, is de-

scribed by a scalar vorticity

v9 5
›u9

›z
2

›w9

›x
. (16)

The turbulence quantities k and � describe a back-

ground state of stationary, homogeneous turbulence

plus a perturbation,

k 5 k 1 k9 and (17)

� 5 � 1 �9, (18)

where k and � are constants. It follows that the diffu-

sivities can be expanded in the same way,

Ka 5 Ka 1 K9a. (19)

We remind the reader that k, �, and Ka are statistical

quantities that represent mixing on small scales (centi-

meters to meters) but that themselves vary only on the

scales of interleaving (10–100 m) as represented by the

perturbations k9, �9, and K9a.

c. Equilibrium states

When all perturbations in (14)–(19) are neglected and

the remaining background states are substituted into

(2)–(5), the results describe the baroclinic front in steady

state. Geostrophic and hydrostatic balances combine to

give the thermal wind balance for the alongfront shear,

fVz 5 Bx 5 BTx 1 BSx. (20)

The vertical buoyancy gradients BTz and BSz are uniform,

and we assume further that the net stratification is stable,

Bz 5 BTz 1 BSz . 0: (21)

In this paper, we focus on the fingering-favorable case

BTz . 0; BSz , 0.

It is useful to define the background isohaline, iso-

thermal, and isopycnal slopes as fS 5 2BSx/BSz, fT 5

2BTx/BTz, and fr 5 2Bx/Bz, respectively. Previous

studies of the linearized interleaving problem (e.g., May

and Kelley 1997) have shown that layers with slope f

can be driven by baroclinicity when 0 , f , fr or fr ,

f , 0. Similarly, layers can be driven by salt fingering

when 0 , f , fS or fS , f , 0. We also define the

equilibrium Richardson number and buoyancy ratio,

Ri 5 B
z
/V2

z and R
r

5 2B
Tz

/B
Sz

. The model we describe

here applies to either the fingering-favorable case R
r

. 1

or the diffusive convection case R
r

, 1, though the

latter is beyond the scope of the present investigation.

For stationary, homogeneous turbulence (12) and (13)

become

Pm 1 Pb 2 � 5 0 and (22)

c1Pm 1 c3Pb 2 c2� 5 0: (23)

The structure functions Sa depend not only on Ri and Rr

but also on Gm. Substituting (7) and (10) in (22), we

obtain the nondimensional kinetic energy balance

Gm

2
(Sm 2 SrRi) 5 1, (24)

where Sr 5 (RrST 2 SS)/(Rr 2 1). Because the mean

state is assumed to be stationary, we can obtain Gm as

a root of a cubic as described in appendix B of Canuto

et al. (2010). The smallest positive root is chosen, be-

cause it is continuous with the unstratified solution.

The Canuto et al. (2010) structure functions (Fig. 1)

divide the Rr–Ri plane roughly into three regions. (The
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division is approximate because the extrema of the

structure functions lie on slightly different curves.) At

low Ri (region I), mixing is dominated by shear-driven

turbulence. Values are determined mainly by Ri and

decrease as Ri increases. All structure functions are

equal to 0.339 in the limit of strong shear, Ri / 0.

In region II, both salt fingering and turbulence are

important. The mass diffusivity Kr (or equivalently Sr) is

negative. All structure functions increase in magnitude

with increasing Ri. The increase is especially pronounced

in the case of momentum, where it persists to high Ri.

Though counterintuitive, these increases are not with-

out support. Recent laboratory experiments (Fernandes

and Krishnamurti 2010) and direct simulations (Kimura

et al. 2011; Smyth and Kimura 2011) have revealed that

weak shear damps finger fluxes, and the relaxation of

that damping effect as Ri increases leads to higher dif-

fusivities. Quantitative comparison is difficult because

the factor k2/� was not computed in those experiments.

At high Ri (region III), salt fingering dominates. All sca-

lar diffusivities approach zero as Ri increases, but the eddy

viscosity structure function Sm continues to increase up to

Ri ; 102. Moreover, Sm decreases only slowly at higher Ri

in contrast with the other structure functions. The domi-

nance of Sm at high Ri conflicts with predictions of linear

theory (Smyth and Kimura 2007) and recent direct simu-

lations (Kimura and Smyth 2007; Kimura et al. 2011; Smyth

and Kimura 2011) showing Km�KS in sheared salt fingers.

[This result was first predicted by Ruddick (1985) on the

basis of lateral molecular transports.] The difference may

exist because the closure model mimics the transition

from turbulence to (locally generated) internal waves,

in which momentum is transported but not heat or salt.

That effect would not be expected in the simulations.

The structure functions generally decrease with increasing

Rr. The exception is the saline structure function SS,

which decreases initially through region IIIa, reaches

a minimum when Rr is of order unity (depending on Ri),

and then increases in region IIIb.

In the perturbation theory developed below, putative

stationary states such as those shown by the circles and

asterisks are perturbed, causing fluctuations in Rr and Ri

FIG. 1. Structure functions for the Canuto et al. (2010) closure vs density ratio Rr and Richardson

number Ri: (a) mass, (b) heat, (c) salt, and (d) momentum. Dashed contours show negative values. Circles

and asterisks indicate the Richardson numbers for the MS (May and Kelley 2002) and Faroe Front

(Hallock 1985) cases, respectively (Table 1). Crosses indicate the maximum scaled growth rate in

Fig. 2. Black-on-white curves indicate ›Sa/›Ri 5 0. White-on-black curves show (a) Sr 5 0 and (b)–(d)

›Sa/›Rr 5 0. Roman numerals identify the main regions in which the derivatives with respect to Rr

and Ri are positive or negative.
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and hence in the structure functions. The signs of the

derivatives of the structure functions with respect to Rr

and Ri will prove to be crucial in determining stability.

Note that our two observed cases lie in opposite regimes

in terms of the signs of these derivatives with respect to

Ri. In section 2e, we will see how these derivatives in-

fluence the physics of UVC modes.

It would be convenient if c3 could be regarded, like c1

and c2, as a universal constant, but such is not the case;

indeed, not even the sign of c3 is universal. Burchard and

Baumert (1995) showed that, in the case of shear-driven

turbulence in stratified flow, c3 must be negative. In

convectively driven turbulence, on the other hand, it is

easily shown that c3 must be positive (for a recent re-

view, see Umlauf and Burchard 2005). In general, al-

though the buoyancy production term in the kinetic

energy equation can take either sign, we should expect

that the corresponding term in the dissipation equation

will always represent a source of dissipation. Therefore,

we must at this stage regard c3 as an unknown constant

to be determined. To assign a value to c3 for given

steady-state values Ri 5 Ri and Rr 5 Rr, we eliminate �

between (22) and (23) to obtain

c3 5 c2 1 (c2 2 c1)
Sm(Ri, R

r
)

S
r
(Ri, R

r
)

1

Ri
. (25)

This result generalizes Burchard and Baumert (1995) to

the case of compound stratification. Although any pair

of values for Ri, Rr can be substituted into (25), the re-

sult is meaningful only for pairs that represent equilib-

rium states in seawater. That condition can in principle

be expressed as a relation between Ri and Rr. For neg-

ative Rr, stratified turbulence is known to be in equilib-

rium at a Richardson number close to 1/4 (e.g., Rohr et al.

1988; Shih et al. 2000), but the introduction of double

diffusion alters the equilibrium Ri in ways that are as yet

unknown. We await further experiments (most likely di-

rect simulations of homogeneous turbulence with double

diffusion) that will allow us to refine this assumption. For

now, most of our attention will be on Ri–Rr pairs that

are estimated from observed mean flows and that may

therefore be assumed to be not far from equilibrium.

To evaluate the diffusivities via (7), we will need the

scale value 2k
2
/�, but the k–� equations do not specify k

and � separately; all we know is their ratio via (10). The

problem can be partially resolved by scaling. For ex-

ample, if we nondimensionalize using B21/2
z as the time

scale and the Ozmidov scale L
O

5 �1/2/B3/4
z as the length

scale, the results are independent of � (and incidentally

Bz). To compare with observations, though, we must

have values for the scales. Our approach will be to use

measured Bz but then to infer a value for � by fitting the

computed interleaving wavelength to observations and

ask whether the result is reasonable.

d. Solution for the perturbations

The perturbation equations are obtained by substitut-

ing the decompositions (section 2b) into the equations

of motion and making three simplifying assumptions.

First, we neglect products of perturbation quantities.

Second, we assume that all perturbation quantities are

uniform on planes parallel to the interleaving motions,

defined by y 5 constant and dz/dx 5 f. Finally, we as-

sume that f� 1, so that 1 1 f2 can be replaced by 1. The

result is

v9t 5 fs9 1 fg9 1 nv9zz 1 Kmv9zz, (26)

s9t 5 2f v9 2 Vzfv9 1 ns9zz 1 (Kms9 1 VzK9m)zz,

(27)

g9Tt 5 (fT 2 f)BTzv91 kTg9Tzz

1 (KTg9T 1 BTzK9T)zz, and (28)

g9St 5 (fS 2 f)BSzv9 1 kSg9Szz 1 (KSg9S1BSzK9S)zz,

(29)

where s9 5 ›y9/›z is the perturbation alongfront shear,

g9a 5 ›b9
a
/›z are vertical gradients of the perturbation

buoyancy components, and g9 5 g9
T

1 g9
S
.

In the above linearization, we assume that perturba-

tions are infinitesimal in the sense that, for example,

jg9Sj � jBSzj, to justify discarding products of perturba-

tions. Perturbation theory therefore represents only the

earliest phase of the life cycle of an instability.

In (27)–(29), the final pair of terms represents pa-

rameterized mixing. In each case, the first of these terms

describes a downgradient flux, as would exist if the dif-

fusivities were uniform. [In (26), this is the only param-

eterized mixing term.] The second term describes effects

due to the fluctuations of these parameterized diffusiv-

ities in space and time. In the Stern theory of fingering-

driven interleaving (e.g., Stern 1967; Toole and Georgi

1981; McDougall 1985; May and Kelley 1997), the thermal

and saline buoyancy fluxes are related by a proportionality

constant g. That theory is the special case of (26)–(29)

with K9m 5 K9
S

5 0 and KT 5 gKS/Rr.

In addition to (26)–(29), we now have the perturba-

tion k and � equations,

k9t 5 P9m 1 P9b 2 �9 1 Kmk9zz and (30)

�9t 5
�

k
(c1P9m 1 c3P9b 2 c2�9) 1

Km

s�
�9zz. (31)
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Perturbations to the production terms are given by

P9m 5 2KmVzs9 1 V2
z K9m and (32)

P9b 5 2KTg9T 2 BTzK9T 2 KSg9S 2 BSzK9S. (33)

Linearizing (7), we express the diffusivity perturba-

tions as

K9a 5 2
k

2

�
S9

a
1 2

2k

�
k9 2

k
2

�2
�9

 !
S

a
. (34)

As discussed above, the structure functions have the

form Sa(Ri, Rr, Gm). Following Canuto et al. (2010), we

approximate Gm by its equilibrium value, which sat-

isfies (24) and which is itself a function of Ri and Rr.

Accordingly, Sa 5 Sa(Ri, Rr) and perturbations are

expanded as

S9a

Sa

5 SRi
a

Ri9

Ri
1 S

R
r

a

R9
r

R
r

, (35)

where the constants SRi
a and S

R
r

a are defined as

SRi
a 5

Ri

Sa

›Sa

›Ri
; S

R
r

a 5
R

r

Sa

›Sa

›R
r

(36)

and the fluctuations in the density ratio and the Richardson

number are

Ri9

Ri
5

g9S 1 g9T
Bz

2 2
s9

Vz

and (37)

R9
r

R
r

5
g9T

BTz

2
g9S

BSz

. (38)

Note that (36) can be written in the equivalent form

SRi
a 5

Ri

Ka

›K
a

›Ri
; S

R
r

a 5
R

r

Ka

›Ka

›R
r

(39)

using (7). For the present application, the derivatives in

(36) are computed numerically to machine precision us-

ing fourth-order finite differences.

The perturbations are assumed to have the normal

mode form

fv9, s9, g9T , g9S, k9, �9g 5 eim(z2fx)1stfv̂, ŝ, ĝT , ĝS, k̂, �̂g,
(40)

where m is the vertical component of the wave vector

and f is the interleaving slope. Time dependence is ex-

pressed by s, the exponential growth rate. Real (com-

plex) s indicates stationary (oscillatory) instability. The

constants fv̂, . . .g are complex amplitudes. Combining

the perturbation Eqs. (26)–(29) with (30), (31), and the

relations (32)–(40), we arrive at a matrix eigenvalue

problem,

sv 5 Av. (41)

The eigenvector v is fv̂, ŝ, ĝT , ĝS, k̂, �̂gT and A is a 6 3 6,

real stability matrix whose elements are given explicitly

in the appendix. The interleaving instabilities of interest

here generally have real s, and the corresponding ei-

genvectors are chosen to be real.

e. Ultraviolet catastrophe

UVC modes are solutions of the eigenvalue problem

(41) having growth rates that are positive and pro-

portional to m2 in the limit m2 / ‘. To examine this

limit, we divide (41) by m2 and take 1/m2 / 0, effec-

tively eliminating all terms in the stability matrix

A (given in the appendix) that are not proportional

to m2. Three modes with negative definite growth

rates can be eliminated immediately, after which (41)

becomes

s0v 5 A0A1v, (42)

where s0 5 s/m2, v 5 fŝ, ĝT , ĝSg
T,

A0 5
2k

2

�

2Sm 0 0

0 2ST 0

0 0 2SS

2664
3775, and (43)

A1 5

2666666664

1 2 2SRi
m

Vz

Bz

SRi
m 1

Rr 2 1

Rr

S
R

r

m

 !
Vz

Bz

[SRi
m 2 (Rr 2 1)S

R
r

m ]

22
Bz

Vz

Rr

Rr 2 1
SRi

T 1 1
Rr

Rr 2 1
SRi

T 1 S
R

r

T

Rr

Rr 2 1
SRi

T 1 RrS
R

r

T

2
Bz

Vz

SRi
S

Rr 2 1
2

SRi
S

Rr 2 1
2

1

Rr

S
R

r

S 1 2
SRi

S

Rr 2 1
2 S

R
r

S

3777777775
. (44)
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Because A
0

is nonsingular, the condition for marginal

instability is

jjA1jj 5 0, (45)

where double bars indicate the determinant.

The Phillips mode (Phillips 1972; Posmentier 1977;

Ruddick et al. 1989) can be recovered from (45) by as-

suming that stratification is due entirely to salt, so that

Rr 5 0, SRi
T 5 0, and all derivatives with respect to Rr

vanish. The condition for UVC instability becomes

2SRi
m 2 SRi

S . 1: (46)

If we consider only the mixing of salinity, (46) becomes

SRi
S , 21; that is, diffusivity must decrease with in-

creasing Richardson number faster than Ri21.

Another possibility of interest is that only momentum

is mixed, in which case (46) requires that SRi
m . ½. This is

unlikely in pure turbulence but, when salt fingering is

included, SRi
m can in fact be positive (e.g., Fig. 1d, region

II), because increasing Ri relaxes the damping effect of

shear. We will see an example of this mechanism for

UVC creation in section 3.

The finger-driven UVC mode of Walsh and Ruddick

(2000) is obtained by assuming that Sm and SS are con-

stants and that ST depends only on Rr. This reduces (45)

to 1 1 S
R

r

T , 0. Following Walsh and Ruddick (2000),

we now define an effective flux ratio g such that ST 5

gSs/Rr. This g is analogous to the flux ratio for salt fin-

gering, but it also includes fluxes due to turbulence.

Substituting and using the definition (36), we obtain

dg/dRr , 0 as the condition for UVC instability. This is

equivalent to (34) of Walsh and Ruddick (2000). In the

absence of turbulence, this becomes the Radko (2003)

mechanism for staircase formation.

The general solution of (42) for the Canuto et al.

(2010) model is shown in Fig. 2. We plot s0 scaled by

k
2
/� for a range of oceanically relevant Ri and Rr. The

UVC mode is present whenever Ri exceeds a critical

value that depends on Rr but is close to unity for the

range of Rr where salt fingering is observed. The UVC is

strongest, in the sense that the growth rate increases

most rapidly with wavenumber, when Rr 5 6.6 and Ri 5

6.0. The two observed examples (circle and asterisk in

Fig. 2) both lie well within the UVC region, and we will

see that both parameter sets yield UVC modes.

f. Diagnostic budgets

Besides computing the properties of unstable modes,

we wish to understand the physical processes that drive

them. The relevant processes will be quantified using

budget equations for several perturbation quantities. In

section 3, these budgets will be used in the development

of intuitively simple conceptual models for the main

feedbacks that drive instability in two observed exam-

ples, Meddy Sharon and the Faroe Front. Although the

budgets given in this section are comprehensive, the most

detailed descriptions are reserved for the terms that are

most important in those examples.

1) ENSTROPHY

In the classical theory of thermohaline interleaving,

the instability can be seen as beginning with the second

term on the right-hand side of (26). Here, the buoyancy

perturbation g9, acting at an angle arctanf, drives vor-

ticity v9. A direct effect of this vorticity is seen in the

first term on the right-hand side of (27), where the

interleaving motions drive a Coriolis acceleration in

the alongfront direction, generating the alongfront

shear perturbation s9. Interleaving also advects the

alongfront velocity gradient, as shown by the second term

on the right-hand side of (27). Both v9 and s9 are acted on

by various mixing processes. These are generally ex-

pected to smooth the vorticity perturbations, but they can

sometimes do the reverse. All of these processes will now

be quantified in a budget for the perturbation enstrophy

v92 1 s92. The budget has two parts,

v9v9t 5 fv9g9 1 f v9s9 1 (n 1 Km)v9v9zz and (47)

s9s9t 5 2fs9v9 2 Vzfs9v9 1 (n 1 Km)s9s9zz

1 Vzs9K9mzz. (48)

FIG. 2. UVC growth rates for the Canuto et al. (2010) model,

obtained as solutions of (42). Equation (45) is satisfied above

the thick curve. Shading indicates the growth rate scaled by

the wavenumber and the diffusivity scale, (s/m2)�/k
2
. The circle

and asterisk indicate MS and Faroe Front parameter values

(Table 1).
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To use this budget in physical space, we would in-

tegrate over one wavelength. The equivalent normal

mode form is

srjv̂j
2

5 f(v̂*ĝ)r 1 f (v̂*ŝ)r 2 m2(n 1 Km)jv̂j2 and

(49)

srjŝj
2

5 2f (ŝ*v̂)r 2 Vzf(ŝ*v̂)r 2 m2(n 1 Km)jŝj2

2 m2Vz(ŝ*K̂m)r , (50)

where asterisks represent complex conjugates, and the

subscript r indicates the real part. The final (underlined)

term of (50) represents fluctuations in the eddy viscosity

and is expanded using (34) and (35),

K̂m

Km

5 D̂ 1 SRi
m

cRi

Ri
1 S

R
r

m

R̂
r

R
r

. (51)

The first term on the right-hand side represents the

relative perturbation of the diffusivity scale D 5 2k2/�,

D̂ 5 2
k̂

k
2
�̂

�
, (52)

and the second and third terms contain the relative

perturbations of Ri and Rr,

cRi

Ri
5

ĝS 1 ĝT

Bz

2 2
ŝ

Vz

and (53)

R̂
r

R
r

5
ĝT

BTz

2
ĝS

BSz

. (54)

After substituting (51) into the underlined term of (50)

and adding (49), we have the perturbation enstrophy

budget,

sr(jv̂j2 1 jŝj2) 5 vBuoy 1 vCor 1 vK

1 sAdv 1 sCor 1 sK

1 sK9D 1 sK9Ri 1 sK9R
r

. (55)

The first line represents factors governing v9,

d vBuoy 5 f(v̂*ĝ)r, creation (or destruction) of enstro-

phy by buoyancy;
d vCor 5 f (v̂*ŝ)r, effect of the Coriolis rotation of s9; and
d v

K
52m2(n 1 K

m
)jv̂j2, destruction by molecular and

mean eddy viscosity.

Terms on the second line affect s9 independently of eddy

viscosity fluctuations,

d s
Adv

52V
z
f(ŝ*v̂)

r
, advection of the thermal wind

shear by interleaving motions.
d s

Cor
5 2f (ŝ*v̂)

r
52v

Cor
, the Coriolis rotation of v9

(note that the Coriolis terms vCor and sCor cancel, but

their values are of interest, so we keep them separate);

and
d sK 52m2(n 1 Km)jŝj2, destruction by molecular and

background turbulent viscosity.

The effects of eddy viscosity fluctuations on s9 [under-

lined term in (50)] are described on the third line,

d sK9D 52m2VzKm(ŝ*D̂)r, effect of viscosity fluctua-

tions due to fluctuations in the turbulent diffusivity

scale D;
d sK9Ri 52m2VzKmSRi

m [ŝ*(cRi/Ri)]r, effect of viscosity

fluctuations due to fluctuations in the Richardson

number, where individual contributions from ŝ, ĝ
T

,

and ĝ
S

are obtained by substituting from (53); and
d s

K9Rr
52m2V

z
K

m
S

R
r

m (ŝ*R̂
r
/R

r
)

r
, effect of viscosity

fluctuations due to fluctuations in the buoyancy ratio,

where individual contributions from ĝT and ĝS are

recovered by substituting from (54).

2) NET BUOYANCY GRADIENT

Because buoyancy gradient perturbations are expected

to be the main driver of interleaving, it will be helpful to

see how those perturbations arise. An equation for the

net buoyancy gradient perturbation g9 5 g9
T

1 g9
S

is ob-

tained by adding (28) and (29),

g9t 5 (f
r

2 f)Bzv91 kTg9Tzz 1 kSg9Szz 1 KTg9Tzz

1 KSg9Szz 1 BTzK9Tzz 1 BSzK9Szz. (56)

Placing this in normal mode form, multiplying by ĝ*, and

taking the real part gives the buoyancy gradient variance

budget

srjĝj
2

5 (f
r

2 f)Bz(ĝ*v̂)r 2 m2[kT(ĝ*ĝT)r

1 kS(ĝ*ĝS)r] 2 m2[KT(ĝ*ĝT)r 1 KS(ĝ*ĝS)r]

2 m2[BTz(ĝ*K̂T )r 1 BSz(ĝ*K̂S)r]. (57)

The third line contains terms describing the effects of

diffusivity fluctuations. We substitute for K̂T and K̂S us-

ing equations analogous to (51),

K̂
a

K
a

5 D̂ 1 SRi
a

cRi

Ri
1 S

R
r

a

R̂
r

R
r

, (58)

where the subscript a can stand for either T or S. The

result is
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srjĝj
2

5 gAdv 1 gMol 1 gK 1 gK9D 1 gK9Ri 1 gK9Rr
.

(59)

The first three terms are independent of diffusivity

fluctuations:

d gAdv 5 (f
r

2 f)Bz(ĝ*v̂)r is the along-intrusion advec-

tion of the mean buoyancy profile. Substituting from

the previous definition, (ĝ*v̂)r 5 vBuoy/f, this can be

rewritten as gAdv 5 vBuoyBz(fr 2 f)/f. Therefore, if

gAdv is to produce buoyancy variance in the proper

phase relationship with vorticity to drive enstrophy

growth, the tilt must lie within the baroclinic wedge,

f(fr 2 f) . 0. This result can be interpreted as a

condition for interleaving to draw upon the potential

energy of the density field. When Ri , 1, this term

produces interleaving in the form of slantwise convec-

tion (McIntyre 1970; May and Kelley 1997).
d gMol 52m2[kT(ĝ*ĝT)r 1 kS(ĝ*ĝS)r] represents molec-

ular effects. This term can drive interleaving on labo-

ratory scales (Ruddick and Kerr 2003) but is negligible

in the present context.
d gK 52m2[KT(ĝ*ĝT)r 1 KS(ĝ*ĝS)r] represents mixing

by perturbations acting on the mean diffusivities. This

term can be written as

gK 52m2KS

rTSg/R
r

2 1

rTS 2 1
jĝj2. (60)

Here, we have used the definitions r
TS

5 2ĝ
T

/ĝ
S

for

the amplitude ratio,

g 52
KTBTz

KSBSz

(61)

for the mean buoyancy flux ratio, and the relation

K
r

5
R

r
KT 2 KS

R
r

2 1
(62)

for the mass diffusivity. Written in the form (60), gK is

negative (i.e., it tends to damp the instability) when

g 5 R
r
, as is true for stratified turbulence in the limit

of high Reynolds number. The term is positive (pro-

moting growth) in two distinct parameter regimes. If

R
r
/g . 1, consistent with mixing by salt fingers, growth

requires that 1 , rTS , R
r
/g, so thermal buoyancy

perturbations must dominate. Conversely, if R
r
/g , 1,

as is true both in diffusive convection (Turner 1965)

and differential diffusion (Gargett 2003; Hebert 1999;

Smyth et al. 2005), the amplitude ratio is limited to the

range R
r
/g , r

TS
, 1: that is, salinity dominates.

The remaining terms [second line of (59)] describe the

effects of fluctuations in the eddy diffusivity, which act

on the mean buoyancy gradients to cause convergences

and divergences in the buoyancy fluxes:

d gK9D 52m2(KTBTz 1 KSBSz)(ĝ*D̂)r is the effect of

diffusivity perturbations due to changes in the turbulent

diffusivity scale D. Note that the first factor in paren-

theses is equal to K
r
B

z
, which is generally negative in

double-diffusive cases.
d gK9Ri 5 2m2(K

T
B

Tz
SRi

T 1 K
S
B

Sz
SRi

S )(ĝ*cRi/Ri)
r

repre-

sents diffusivity perturbations due to changes in Ri.

Using (39), this term can also be written as gK9Ri 5

2m2Bz›K
r
/›Ri(ĝ*cRi/Ri)r. The term in cRi propor-

tional to ĝ [see (53)] makes a positive definite contri-

bution if ›Kr /›Ri , 0, which is the case at low and

moderate Ri (regions I and II in Fig. 1a).
d gK9Rr

5 2m2(K
T

B
Tz

S
R

r

T 1 K
S
B

Sz
S

R
r

S )(ĝ*R̂
r
/R

r
)

r
rep-

resents effects of fluctuations in Rr.

3) COMPONENT BUOYANCY GRADIENTS

The individual buoyancy components gT and gs have

variance budgets with the same form as (59), but the

definitions are simpler:

d ga
Adv 5 (f

a
2 f)B

az
(ĝ

a
*v̂)

r
. As above, we can write this

as ga
Adv 5 va

BuoyB
az(f

a
2 f)/f. Here, va

Buoy 5 f(v̂*ĝ
a
)r

is the part of the buoyancy driving due to the a

component.
d ga

Mol 52m2k
a
(ĝ

a
*ĝ

a
)r is negative definite and usually

small.
d ga

K 52m2K
a
(ĝ

a
*ĝ

a
)

r
represents mixing by perturba-

tions acting on the mean diffusivities and is negative

definite because K
a

. 0.
d ga

K9D 52m2K
a
B

az(ĝ
a
*D̂)r.

d ga
K9Ri 52m2K

a
B

azSRi
a (ĝ

a
*cRi/Ri)r. For the case a 5 T,

the term proportional to ĝT [see (53)] makes a posi-

tive definite contribution if ›KT/›Ri , 0. This is true

in regions I and III, but not in region II, where

the Faroe Front case lies (Fig. 1b). There, however,

›KS/›Ri . 0 (Fig. 1c), so that for a 5 S the term

proportional to ĝ
S

makes a positive definite contri-

bution to ga
K9Ri.

d ga
K9R r

5 2m2K
a
B

azS
R

r
a (ĝ

a
*R̂

r
/R

r
)r 5 2m2B

az›K
a
/

›R
r
(ĝ

a
*R̂

r
)r, where the second equality follows from

(39). For the case a 5 T, the term proportional to ĝT

[see (54)] makes a positive definite contribution if

›KT /›Rr , 0, which is true throughout Fig. 1b. For

a 5 S, the contribution from the term proportional

to ĝ
S

is positive definite if ›KS/›Rr . 0. This is true in

region IIIb of Fig. 1c, which includes Meddy Sharon

(circle).
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4) DIFFUSIVITY SCALE

The final budget that we will find useful describes fluc-

tuations in the turbulent diffusivity scale,

D9 5 2
k9

k
2
�9

�
. (63)

Combining (30) and (31), we obtain the evolution

equation

kD9t 5 2k9t 2
k

�
�9t 5 (2 2 c1)P9m 1 (2 2 c3)P9b

2 (2 2 c2)�9 1 Kmk 2
k9zz

k
2

1

s�

�9zz

�

� �
. (64)

Finally, we expand the production terms using (32) and

(33) and the structure functions using (35); convert to

normal mode form; multiply by the conjugate; and take

the real part,

ksrjD̂j
2

5 DPm 1 DPb 1 D� 1 DK 1 DK9D

1 DK9Ri 1 DK9R
r

, (65)

where

d DPm 5 2(2 2 c1)VzKm(D̂*ŝ)r is shear production from

shear fluctuations working against the mean eddy

viscosity;
d D

Pb
5 2(2 2 c

3
)[K

T
(D̂*ĝ

T
)

r
1 K

S
(D̂*ĝ

S
)

r
] is buoy-

ancy production from buoyancy fluctuations working

against the mean diffusivities (the net effect on D9

depends on the sign of 2 2 c3: if c3 , 2, the effect on k2

dominates; if c3 . 2, the effect on � dominates);
d D� 52(2 2 c2)(D̂*�̂)r is dissipation;
d D

K
5 2m2K

m
kf2[(D̂*k̂)r /k] 2 (1/s

�
)[(D̂*�̂)r /�]g is a

viscous term that is close to being negative definite

and would be so if s� were equal to one (we use s� 5

1.3);
d DK9D 5 (2 2 c2)�jD̂j2 is a self-interaction term that is

positive definite because c2 , 2. Despite this, the k–�

model is inherently stable because of D� and DK,
d DK9Ri 5 [(2 2 c1)KmV 2

z SRi
m 2 (2 2 c3)(KT BTzSRi

T 1

K
S
B

Sz
SRi

S )](D̂*cRi)
r

is the effect of Ri-generated dif-

fusivity fluctuations on the total (shear plus buoy-

ancy) production of D9; and
d DK9Rr

5 [(2 2 c1)KmV2
z S

R
r

m 2 (2 2 c3)(KTBTzS
R

r

T 1

KSBSzS
R

r

S )](D̂*R̂
r
)r is the effect of Rr-generated vis-

cous fluctuations on the total production of D9.

For graphical presentation, each term on the right-hand

side of each of the budgets is divided by the left-hand

side, so that the terms sum to unity.

3. Instabilities of oceanic fronts

Here we compare the predictions of the perturbation

theory described above with the observed parameters of

finite-amplitude interleaving across baroclinic oceanic

fronts. As input, the theory requires values for the non-

dimensional environmental parameters Rr, fs, and fr,

and f/N (note that Ri 5 f 2/Bzf2
r). Meddy Sharon was

surveyed in detail (Armi et al. 1989) over a 2-yr period,

and the needed parameter values have been summarized

conveniently by May and Kelley (2002). Those values

are listed in the second column of Table 1. The Faroe

Front is much more baroclinic than Meddy Sharon. Five

transects across the front were reported by Hallock

(1985). Reported data included sections of temperature

and density for two individual transects as well as the

average of all five, and the needed environmental pa-

rameters can therefore be estimated. Here we focus on

transect 2 (third column of Table 1) (for further details,

see Smyth and Ruddick 2010). Measurable interleaving

parameters that we can hope to predict using linear

theory include

d the vertical scale of interleaving l 5 2p/m;
d the amplitude ratio rTS 5 2ĝT /ĝS; and
d the interleaving slope f.

Note that rTS is just the ratio of thermal to saline fluc-

tuation amplitudes expressed in buoyancy units.

Results from linear theory are presented first in non-

dimensional form as described in section 2c. For com-

parison with observations, we dimensionalize these

results using the observed N but not the observed �. Be-

cause � is often not well constrained by the observations,

particularly not the locally generated part that we model

here, we instead identify the value of � needed to match

the observed vertical wavelength and compare that value

with whatever information is available. In each case, our

objective is to develop a simple description of the main

feedbacks that drive instability. These simple models are

justified quantitatively in terms of the budgets described

in section 2f.

We begin with a control case in which the diffusivities

are assumed to be uniform. This is consistent with pre-

vious studies, although the values of the diffusivities are

computed using the new model. We then allow the dif-

fusivities to vary in accordance with the full closure

model.

a. Meddy Sharon with uniform diffusivities

We begin with results from the control case in which

diffusivities are computed using the Canuto et al.

(2010) model, but these diffusivities are assumed not

to fluctuate in response to the instability; that is, we set
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K9m 5 K9T 5 K9S 5 0. We also neglect molecular terms. In

this case, Eqs. (30) and (31) for k9 and �9 decouple from the

system, leaving a highly simplified, 4 3 4 stability matrix,

A 5

2m2Km f f f

2(fVz 1 f ) 2m2Km 0 0

(fT 2 f)BTz 0 2m2KT 0

(fS 2 f)BSz 0 0 2m2KS

0BBBB@
1CCCCA.

(66)

This is equivalent to the model used in previous studies

of baroclinic interleaving (Zhurbas et al. 1988; Kuzmina

and Rodionov 1992; Kuzmina and Zhurbas 2000; May

and Kelley 1997; Zhurbas and Oh 2001), with one im-

portant exception. The underlined element expresses

the contribution of salinity perturbations to the growth

of temperature perturbations. In the classical theory, this

term would be nonzero, reflecting Stern’s (1967) hypoth-

esis that the heat flux due to salt fingering is proportional

to the corresponding salt flux. Here, we refrain from

treating salt fingering and turbulence as separate phe-

nomena and instead use a gradient diffusion formalism to

express the net mixing. As a result, the heat flux due to salt

fingering is combined with that due to turbulence via the

diffusivity KT .

Results for the MS case (Ruddick 1992) are shown

in Fig. 3. There is a well-defined growth rate maximum

with slope 0.0069. This value is within the isohaline wedge

f(fS 2 f) . 0, consistent with salt fingering, but outside

the isopycnal wedge f(fr 2 f) . 0, inconsistent with

baroclinic forcing. The observed slope is well within the

range of observations (Table 1, bottom row).

The vertical scale is 152LO, where LO is the previously

defined Ozmidov scale. This matches the observed value

25 m if we set the mean dissipation rate associated with

local mixing to 5.4 3 10210 W kg21. This is a factor of 4

smaller than the observational estimate by Oakey (1988),

2 3 1029 W kg21. The difference is reasonable, given

that the observed value almost certainly includes a con-

tribution from remotely generated internal waves (which

are not represented in the k–� model). Alternatively, we

can use the Oakey estimate as our �, in which case the

predicted vertical scale is 50 m.

The temperature–salinity amplitude ratio is 2.63, in-

dicating that temperature fluctuations are larger (in

buoyancy units) than salinity fluctuations. This value is

consistent with observations. The maximum growth rate,

dimensionalized with the measured buoyancy frequency,

is 5.6 3 1027 s21. This is roughly consistent with the result

obtained by Smyth and Ruddick (2010) using the empir-

ical mixing parameterizations. There it was argued that

the growth rate is relatively small because interleaving had

already reduced the mean gradients by the time the ob-

servations were made.

We look now at the mechanics of the interleaving mode

from the constant-diffusivity model. Enstrophy (Fig. 4a)

is created in the form of across-front motions driven by

buoyancy perturbations. The latter are dominated by

temperature (as shown by the annotations T and S), con-

sistent with the fact that rTS . 1. The ratio of alongfront

to across-front motion is ŝ/v̂ 522:5, indicating a strong

effect of Coriolis rotation. Most of the enstrophy is de-

stroyed via dissipation (vK and sK), but a small remainder

is stored in the growing perturbation.

The net buoyancy perturbations (Fig. 4b) are created

by the mixing term gK [see discussion in section 2f, es-

pecially (60)]. It is not possible to differentiate explicitly

between contributions due to salt fingering and turbu-

lence in this model, but the fact that this term is positive

for modes with rTS . 1 is consistent with salt fingering, as

TABLE 1. Observed parameter values from the lower flank of

MS (May and Kelley 2002; Ruddick 1992) and the Faroe Front

(Hallock 1985), transect 2.

Parameter MS Faroe Front

Ri 61.8 2.86

Rr 1.9 2.9

103 3 fs 27 19.0

103 3 fr 3.6 17.2

f/N 0.0283 0.0291

Bz (s22) 7.4 3 1026 2 3 1025

l (m) 25 65 25–100

rTS 2 61 1.8 6 0.5

103 3 s 5.7 62.5 Unknown

FIG. 3. Nondimensional growth rate vs wavelength–Ozmidov

scale and slope for the MS parameters and the constant-diffusivity

model. The upper (dotted) and lower (dashed) lines indicate the

isohaline and isopycnal slopes, respectively, and the white filled

circle indicates the fastest-growing interleaving mode.
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is the fact that the modeled structure functions give

a flux ratio g 5 0.52. The buoyancy advection term is

negative because the tilt angle lies outside the baroclinic

wedge (Fig. 3).

b. Meddy Sharon with the full mixing model

We now recompute the Meddy Sharon case using the

full mixing model in which turbulent diffusivities are

allowed to fluctuate. The growth rate (Fig. 5) shows

a local maximum consistent with interleaving as in the

constant-diffusivity case. There are two differences,

however. First, for l/LO . O(102) and at sufficiently

steep interleaving slopes, the stationary mode bifurcates

to become a complex conjugate pair of oscillatory

modes. The stationary mode found at lower slopes ex-

hibits the highest growth rate and is therefore of primary

interest. Second, small wavelengths (left side of Fig. 5)

are dominated by the UVC. In this subsection, we dis-

cuss the interleaving mode and the UVC in turn.

1) THE INTERLEAVING MODE

Toward the center of Fig. 5 is a local maximum in the

growth rate. This mode has the basic geometry of in-

terleaving, with a well-defined vertical scale. The tilt

angle is easily compared with observations. It is between

the isopycnal and isohaline slopes as observed and has

the numerical value 0.011, somewhat steeper than the

observed range 0.0032–0.0082. The growth rate, dimen-

sionalized using the measured N 5 2.72 3 1023 s21, is

8.2 3 1026 s21, which gives an e-folding time of 1.4 days.

Given that interleaving was observed a matter of a few

months after the Meddy’s creation, this growth rate

is more than sufficient to account for the observations.

To match the observed vertical length scale of 25 m,

we must dimensionalize using a background dissipation

7.12 3 10210 m3 s23, slightly larger than that needed

with the constant-coefficient model (section 3a) but still

less than the Oakey (1988) estimate as expected.

An intriguing discrepancy with observations appears

when we compute the ratio of the thermal to saline

buoyancy fluctuation amplitudes rTS. This ratio is easily

computed from observed salinity and temperature pro-

files. In Meddy Sharon, the ratio was observed to be

2 61. In the present model, we find rTS 5 0.29. This is not

only well outside the range of observations, but it sug-

gests a very different physical mechanism, because the

buoyancy fluctuations that drive the computed inter-

leaving mode are dominated by salinity rather than

temperature.

One possible explanation is that this is an amplitude

effect. Nonlinear simulations (Walsh and Ruddick 1998;

Mueller et al. 2007) show that the mixing mechanism

acting between layers varies over time as the original

buoyancy stratification is amplified and reversed on al-

ternating layer boundaries. If a flow begins in a pure salt

fingering regime, it will eventually develop regions of

diffusive convection, which promotes rTS , 1 [Turner

1965; also section 2f(2) above]. For the mechanism dis-

cussed here, the implication is the opposite: layers that

start with rTS , 1 might transition to a state with rTS . 1,

as observed in MS, as the mixing mechanisms evolve.

Another possibility is that our mixing model is deficient,

possibly because the observed values of Ri and Rr do not

represent an equilibrium state of the k–� equations or

because the Canuto et al. (2010) structure functions are

not accurate for this parameter regime.

FIG. 4. Budget terms for the MS parameter values, computed

using the constant-diffusivity model (66): (a) enstrophy and (b)

buoyancy gradient variance. Locations of the annotations T and S

indicate thermal and saline contributions to vBuoy.

FIG. 5. Nondimensional growth rate vs wavelength–Ozmidov

scale and slope for the MS parameters and the full model. Solid

(dashed) contours indicate growth rates of stationary (oscillatory)

modes. The upper (dotted) and lower (dashed) lines indicate the

isohaline and isopycnal slopes, respectively. White filled circles

indicate the UVC mode (left edge at f 5 0) and the fastest-growing

interleaving mode (local maximum).
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To assess the generality of this instability and its de-

pendence on the underlying closure model, we now seek

to understand its mechanism. Our approach is to first

identify the dominant processes contributing to insta-

bility growth and then use that information to extract

a simplified model of the mechanism.

As in the constant-diffusivity model, interleaving mo-

tions v9 are accelerated by buoyancy fluctuations and

then rotated toward the alongfront direction by the

Coriolis effect, generating alongfront shear fluctuations

(Fig. 6a; cf. Fig. 4a). However, the origin of the buoyancy

fluctuations is clearly different (Fig. 6b). The term gK that

created these fluctuations previously is now negative,

a result of the fact that rTS is now ,1 (see discussion in

section 2f). This shows that, in contrast to the constant-

diffusivity case, the mean diffusivities associated with

salt fingering actually work against the growth of this

instability. Instead, this work is done by fluctuations in the

diffusivities. Buoyancy gradient fluctuations are created

by a mix of three terms associated with scalar diffusivity

fluctuations, gK9D, gK9Ri, and gK9Rr
. We now discuss these

terms in order of size.

d The largest contribution comes via fluctuations in Rr,

which are driven almost entirely by saline buoyancy.

This does not tell us the mechanism of instability,

however, unless we also know the origin of the saline

buoyancy. That turns out (Fig. 6d) to be generated

primarily by fluctuations in Ri driven by the along-

front shear perturbations noted above. We now have

a positive feedback loop: from net buoyancy to inter-

leaving vorticity (vBuoy), via Coriolis to alongfront shear

(vCor / sCor), via Ri and its effect on saline diffusivity

to saline buoyancy (gS
K9Ri; shear part), and finally via Rr

back to net buoyancy (gK9Rr
; salinity part).

d The second-largest contribution to net buoyancy

comes more directly via fluctuations in Ri. Because

these are driven mainly by the alongfront shear (gS
K9Ri,

shear part), we have a second positive feedback loop.
d Finally, net buoyancy is created in part by the term

gK9D. Through this term, fluctuations in the diffusivity

scale 2k2/� affect the mass diffusivity, driving conver-

gences and divergences in the mass flux. The fluctua-

tions in diffusivity scale are once again the result of

the alongfront shear, now acting not through Ri but

through the shear production terms in the k–� equa-

tions (Dpm in Fig. 6c).

In summary, the three positive contributors to the net

buoyancy gradient variance can all be understood as

originating with the alongfront shear perturbation. Be-

cause that shear perturbation is itself generated by the

FIG. 6. Budget terms for the MS parameter values,

computed using the full model (41) for the interleaving

mode (central filled circle in Fig. 5): (a) enstrophy, (b)

buoyancy gradient variance, (c) k–� diffusivity scale,

and (d) saline buoyancy gradient variance. Locations

of the annotations s, T, and S indicate shear, thermal,

and saline contributions to selected terms.
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net buoyancy gradient (via the Coriolis effect acting on

v9), each process generates a positive feedback loop.

A simpler (though less complete) picture can be con-

ceived if we note that buoyancy fluctuations that drive

interleaving are dominantly saline, and therefore focus

only on their origin. Saline buoyancy fluctuations are

driven primarily by s9 via Ri (Fig. 6d, shear contribution

to gS
K9Ri). That simpler picture is illustrated schematically

in Fig. 7 and explained in the accompanying caption.

We can now understand why the new interleaving

mode is salt dominated (i.e., rTS , 1). One could imag-

ine the process depicted in Fig. 7, but with temperature

taking the place of salinity. The process would still

generate positive feedback, but only if the tilt angle

were reversed (contrary to the observations), because

the turbulent thermal buoyancy flux is directed down-

ward in contrast to the saline buoyancy flux (Fig. 7d).

This is essentially the turbulence-generated interleaving

mechanism described in section 6f of Smyth and Ruddick

(2010), although much lower Ri was required to gen-

erate it in that case. The present model does not gen-

erate the thermally driven mode because, for a given

(absolute) tilt, the flux convergences and divergences

would be weaker, because ›KT/›Ri is less than ›KS/›Ri

by a factor of 3 for these parameter values. A given

change in Ri therefore results in a larger increase in KS

than in KT. This difference is compensated partly, but

not entirely, by the fact that BTz is larger (in absolute

value) than its saline counterpart by a factor of Rr 5

1.9. In the empirical model of Smyth and Ruddick

(2010), only the turbulent component of mixing de-

pends on Ri. For this component ›KT/›Ri 5 ›KS/›Ri,

and the factor Rr therefore allows the thermally driven

mode to dominate.

2) THE ULTRAVIOLET MODE

Growth rates in the UVC regime (left side of Fig. 5)

are nearly independent of the tilt angle. This indicates

that the horizontal buoyancy gradients that drive both

thermohaline and baroclinic interleaving are irrelevant

to the UVC mode in the limit jmj/ ‘.

The enstrophy budget (Fig. 8a) reveals significant mo-

tions only in the alongfront direction. Unlike interleaving,

these motions are driven not by buoyancy but by conver-

gences and divergences in the vertical flux of alongfront

momentum due to fluctuations in the effective viscos-

ity Km. The latter are due mainly to fluctuations in the

Richardson number (labeled sK9Ri in Fig. 8a), which are

in turn due mainly to thermal buoyancy fluctuations. (Note

that thermal buoyancy plays an opposite role with respect

to Rr dependence: it overwhelms the positive contribution

of saline buoyancy such that the net Rr fluctuation is out

of phase with the alongfront shear and therefore has a

damping effect.) Thermally induced fluctuations in Ri

affect turbulent diffusivities in two ways, through the Ri

dependence of the structure function and through the

turbulent diffusivity scale k2/�, as we will explain below.

The thermal buoyancy fluctuations are themselves

driven by a Phillips–Posmentier mechanism (Figs. 8b,

9a). Thermal fluctuations in the Richardson number

cause corresponding fluctuations in the thermal diffusivity,

which then act against the background thermal gradient to

FIG. 7. Simplified mechanics of a turbulence-driven interleaving

mode using MS parameter values. (a) Cross-front interleaving

motions are driven by saline buoyancy perturbations, and (b) they

are then rotated to the alongfront direction by the Coriolis accel-

eration (Northern Hemisphere is assumed) forming fluctuations in

the alongfront current shown by the circular arrows. (c) These lead

to fluctuations in the alongfront shear, raising and lowering Ri and

thereby altering the saline eddy diffusivity. (d) The upward saline

buoyancy flux therefore converges and diverges, and the resulting

saline buoyancy perturbations reinforce the original perturbations

that drive the interleaving motions in (a). We emphasize that this

description represents not a chronological sequence of events but

rather a conceptually logical ordering of simultaneous processes.

FIG. 8. Budget terms for the MS parameter values, computed

using the full model (41) for the UVC mode (filled circle at the left

in Fig. 5): (a) enstrophy and (b) thermal buoyancy gradient vari-

ance. Locations of the annotations s, T, and S indicate shear,

thermal, and saline contributions to selected terms.
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reinforce the original fluctuations. This is possible in the

Meddy Sharon case because ›ST/›Ri , 0 (Fig. 1b, circle),

as discussed in section 2f.

A smaller positive contribution to enstrophy comes

from fluctuations in the turbulent viscosity scale 2k2/�

(labeled sK9
m

D in Fig. 8a). Like the alongfront motions,

these originate from the thermally driven fluctuations in

Ri (Fig. 8c). The latter act through the shear and buoy-

ancy production terms to alter k, �, and therefore 2k2/�.

Figure 9a summarizes these processes in schematic

form. The fluctuating alongfront shear s9 also has a small

effect on Ri, but that effect is the wrong sign for growth

(Figs. 8a, 9b) because it counters the thermally driven Ri

perturbation that drives the instability. The currents

associated with this UVC mode are therefore an es-

sentially passive side effect of the Phillips instability.

This UVC mode works with temperature because

temperature is stably stratified, and therefore the thermal

buoyancy flux is downward. If one substitutes ‘‘fresh’’ and

‘‘salty’’ for ‘‘warm’’ and ‘‘cool’’ in Fig. 9a, one finds that

the process does not work; the feedback is negative.

c. The Faroe Front

The Faroe Front case differs from Meddy Sharon mainly

in that baroclinicity is much stronger, as is reflected in the

low Richardson number Ri 5 2.86. Once again we see

UVC at small scales (Fig. 10, left side). The local growth

rate maximum that describes interleaving is within both

thermohaline and baroclinic wedges. The dimensional

growth rate is large: sr 5 3.82 3 1025 s21, equivalent to an

e-folding time of only 7.3 h. The observational range for

the wavelength is 25–100 m. A fastest-growing mode with

wavelength of 25 m is obtained by selecting � 5 1.9 3

1029 W kg21. The maximum wavelength of 100 m re-

quires � 5 3.1 3 1028 W kg21. This range of dissipation

values is typical of deep ocean observations (Moum and

Rippeth 2008). To our knowledge, there are at this time

no microstructure observations from the Faroe Front with

which to compare directly. The predicted tilt angle is

0.013, and again we have no measurements to compare

with. The thermal–saline amplitude ratio rTS is 0.15. As

with the Meddy Sharon case, this appears to be at vari-

ance with observations: Smyth and Ruddick (2010) inferred

a value 1.8 60.5 from the measurements of Hallock (1985).

As in the Meddy Sharon case, interleaving motions

are driven mainly by the buoyancy term (Fig. 11a). An

interesting difference, though, is that the sign of the

Coriolis term vCor is reversed: the interleaving motions

gain enstrophy from the alongfront shear perturbations.

The latter must therefore have some other source. We

set that question aside for the moment and consider the

main source of interleaving, the buoyancy perturbation.

Net buoyancy is created by two processes of similar

strength (Fig. 11b).

d The larger is the advection of the background gradi-

ent, labeled gAdv. This is consistent with baroclinic

FIG. 9. Mechanics of a UVC mode. (a) Temperature fluctuations

are driven by the Phillips mechanism. Initial fluctuations alter the

Richardson number, which in turn alters the thermal diffusivity.

This causes convergences and divergences in the vertical heat flux,

which reinforce the original perturbation. The Ri fluctuations alter

KT in two ways: via the structure function Sm and via the diffusivity

scale k2/�. (b) The Ri fluctuations have the same effect on the eddy

viscosity Km, causing fluctuations in the shear. These feedback

negatively on the original Ri fluctuation.

FIG. 10. Nondimensional growth rate vs wavelength–Ozmidov

scale and slope for the Faroe Front and the full model. Solid

(dashed) contours indicate real (complex) growth rate. The upper

(dotted) and lower (dashed) lines indicate the isohaline and iso-

pycnal slopes, respectively, and the white filled circle indicates the

fastest-growing interleaving mode.
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driving, as indicated by the fact that the tilt angle lies

within the baroclinic wedge (Fig. 10).
d The second process involves fluctuations in the tur-

bulent diffusivity scale k2/�. These are driven by

salinity fluctuations (Fig. 11d) acting with the mean

saline diffusivity via the buoyancy production term

(Fig. 11c). This is opposite to the Meddy Sharon

interleaving mode, in which diffusivity-scale pertur-

bations were generated by shear perturbations via the

shear production term.

Because the first of these is well known (May and Kelley

1997), we focus on the second. The process is illustrated

in Figs. 12a–c. Positive saline buoyancy gradient per-

turbations correspond to enhanced stable stratification.

They therefore act through the buoyancy production

terms to decrease both k and �. In this case, however, the

effect on � is stronger, to the extent that the ratio k2/� is

increased. This strong effect of stable stratification on �

results from the fact that c3 . 2, where c3 is calculated

using (25). That constant is unusually large in this case

because Ri is unusually small, Ri 5 2.86, but still large

enough that the net buoyancy flux is dominated by salt

fingering. The second term in (25) is therefore relatively

large and is positive because Sr , 0 (Fig. 1d). In response

to a reviewer’s query, we note that a simplified model

in which fluctuations in k2/� are suppressed does not

deliver this interleaving instability; only the UVC is

found. In contrast, the interleaving mode found in the

MS case [section 3b(1)] changes only slightly when k2/�

is fixed, as one might expect from the fact that the k2/�

budget terms are small (cf. Figs. 6d, 11d).

As noted above, the alongfront shear perturbation

does not result from Coriolis turning of interleaving

motions as in previous examples. Instead, it is an effect

of the fluctuations in k2/�, which causes convergences

and divergences in the vertical flux of alongfront velocity

(term labeled sK9D in Fig. 11a). These are aligned so that,

when rotated by the Coriolis acceleration, they reinforce

the across-front interleaving motions (terms labeled sCor

and vCor) as shown schematically in Fig. 12d.

As in the Meddy Sharon case, the UVC mode (Fig. 13)

is essentially a thermally driven Phillips instability, with

alongfront shear created passively. A significant differ-

ence, though, is that temperature perturbations are

created not via Ri but instead via Rr. The term gT
K9Ri that

quantifies the Ri effect is now negative because the de-

rivative ›KT/›Ri is positive (Fig. 1b).

4. Conclusions

Existing theories of double diffusion at fronts have

revealed both realistic interleaving instabilities and

FIG. 11. Budget terms for the Faroe Front param-

eter values, computed using the full model (41) for the

interleaving mode (central filled circle in Fig. 10): (a)

enstrophy, (b) buoyancy gradient variance, (c) k–�

diffusivity scale, and (d) saline buoyancy gradient

variance. Locations of the annotations s, T, and S

indicate shear, thermal, and saline contributions to

selected terms.
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UVC. Here, the empirical mixing models of previous

studies are replaced by a state-of-the-art second-

moment closure model. The main outcome is that the

closure model delivers both interleaving and UVC

modes, consistent with the previous results. The mecha-

nism driving the interleaving modes, however, is quite

different.

Several areas of uncertainty are worth noting. First,

we must keep in mind the limited relevance of linear

theory in comparisons with observational data. In de-

riving (29), for example, we assume that jg9Sj � jBSzj.
In the Meddy Sharon case, the opposite inequality is

true; the fluctuations are sufficient to reverse the

background gradient (Armi et al. 1989). This is typical

in observed interleaving (Hallock 1985; Grundlingh

1985). Linear theory can excel at predicting finite-

amplitude behavior (e.g. salt finger flux ratios; Schmitt

1994; Smyth and Kimura 2007), but it could also do

poorly if applied to a system where the mechanism

changes at large amplitude. This may be one of the

latter cases; Walsh and Ruddick (1998) and Mueller

et al. (2007) have shown how the mixing mechanisms

that drive interleaving change radically in the nonlinear

regime.

Second, although the second-moment model allows us

to explore the sensitivity of turbulence effects on in-

terleaving to reasonable assumptions about the nature

of the turbulence, it remains open to further develop-

ment. The � equation (13) has not previously been tested

in the presence of double diffusion. The results are

sensitive to the value of c3, which is particularly un-

certain. The Canuto et al. (2010) model for the struc-

ture functions has been tested with respect to stratified

turbulence, but it could evolve as the influence of

double diffusion becomes better understood. Finally,

we have yet to find a satisfactory way to incorporate

mixing due to the breaking of remotely generated in-

ternal waves.

With these caveats in mind, we offer the following

conclusions:

1) Despite the vastly different approach taken to pa-

rameterizing unresolved fluxes, the k–� model with

the Canuto et al. (2010) structure functions confirms

the Smyth and Ruddick (2010) finding that mechan-

ical turbulence can drive interleaving on a baroclinic

front. Like the empirically based parameterization

used by Smyth and Ruddick, the k–� model delivers

both scale-selective interleaving modes and UVC

modes. To capture these processes, inclusion of the

effect of the instability upon the parameterized diffu-

sivities is essential.

2) When the k–� model is applied to the Meddy Sharon

case, interleaving growth rates and tilt angles are

realistic, and the observed vertical scale can be repro-

duced with a reasonable assumption about the back-

ground dissipation rate �. These modes are driven by

a feedback loop involving salinity; across-front vortic-

ity; and Coriolis-driven alongfront shear, a mechanism

that works only if salinity (not temperature) is the

dominant perturbation. This last property is contrary

to Smyth and Ruddick (2010) and also to observa-

tions of finite-amplitude interleaving, which show a

dominant temperature signal. This discrepancy with

FIG. 12. Interleaving via fluctuations in the effective diffusiv-

ities Ks and Km based on the Faroe Front parameter values. (a)

Increased static stability between the fresh upper layer and the

salty middle layer (b) damps � more than k2, increasing k2/� and

hence Ks and vice versa between the middle salty and lower fresh

layers. (c) The resulting convergences and divergences in the

saline buoyancy flux reinforce the salinity perturbations. (d)

Changes in k2/� also lead to changes in the eddy viscosity Km

and hence in the alongfront shear. The resulting currents are ac-

celerated by planetary rotation to reinforce the original in-

terleaving flow.

FIG. 13. Budget terms for the Faroe Front parameter values,

computed using the full model (41) for the UVC mode (filled

circle at the left in Fig. 10): (a) enstrophy and (b) thermal buoy-

ancy gradient variance. Locations of the annotations s, T, and

S indicate shear, thermal, and saline contributions to selected

terms.
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observations could be an amplitude effect, or it could

signal a need for further development of the second-

moment closure model in the salt fingering regime.

3) The UVC mode is the Phillips–Posmentier mecha-

nism (Phillips 1972; Posmentier 1977) operating on

the thermal buoyancy. Alongfront current fluctua-

tions are created as a passive byproduct of the UVC

instability.

4) As in the Meddy Sharon case, the Faroe Front calcu-

lations compare reasonably well with observations,

except that the intrusions are salinity driven. Because

Ri is lower, derivatives of the structure functions with

respect to Ri have sign opposite to the Meddy Sharon

case (Fig. 1), and the driving mechanism is therefore

different. Baroclinic forcing is supplemented by con-

vergences and divergences in the turbulent salt flux

driven by fluctuations in the turbulent diffusivity

scale k2/�.

5) The UVC mode is also present in the Faroe Front case

and is once again a thermally driven Phillips instabil-

ity, but the feedback loop works via fluctuations in Rr

rather than Ri, again because of the different signs of

the derivatives of the structure functions with respect

to Ri.

This work represents a step beyond thinking of tur-

bulence and double diffusion as separate and inde-

pendent processes whose diffusivities simply add. The

new instability processes are intriguing, though their

relevance for the ocean is difficult to assess at present,

because observations of frontal interleaving in its early

stages are not yet available. Simulations including non-

linear effects [as were done by Walsh and Ruddick

(1998) and Mueller et al. (2007) using empirical mixing

schemes] will produce results more directly comparable

with existing observations.

Current observations represent only a small sam-

pling of the parameter range where interleaving is

possible. Recent theoretical work (including the pres-

ent paper) has shown that interleaving can be gener-

ated in myriad ways beyond the original salt fingering

mechanism and that the properties of such interleav-

ing may vary widely. This expands the range of what

Shcherbina et al. (2009) have called active interleaving

mechanisms and may cause some interleaving regimes

that have previously been considered passive to be

reinterpreted. We hope that these possibilities will in-

spire future observations of mixing processes in fronts.
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APPENDIX

The Stability Matrix

The elements of the stability matrix are computed

as follows: Expansions for the parameterized diffusivity

perturbations are obtained by substituting (35)–(38)

into (34),

K9
a

K
a

5 F
ass9 1 F

aTg9T 1 F
asg9S 1 F

akk9 1 F
aò�9,

(A1)

where

F
as 522

SRi
a

Vz

; F
aT 5

SRi
a

Bz

1
S

R
r

a

BTz

; F
aS 5

SRi
a

Bz

2
S

R
r

a

BSz

;

F
ak 5

2

k
; F

aE 5 2
1

�
.

The stability matrix is expressed in the mnemonic form

A 5

A
vv

A
vs A

vT A
vS A

vk A
v�

Asv
Ass AsT AsS Ask As�

ATv
ATs ATT ATS ATk AT�

ASv
ASs AST ASS ASk AS�

Akv
Aks AkT AkS Akk Ak�

A�v A�s A�T A�S A�k A��

0BBBBBBB@

1CCCCCCCA
and its elements are given by

A
vv

5 2m2(n 1 Km); A
vs 5 f ; A

vT 5 A
vS 5 f;

A
vk 5 A

vE 5 0;

A
vs 52fVz 2 f ; Ass 5 2m2KmVzFms 2 m2(n 1 Km);

AsT 5 2m2KmVzFmT ; AsS 5 2m2KmVzFmS;

Ask 5 2m2KmVzFmk; As� 5 2m2KmVzFm�;

ATv
5 (fT 2 f)BTz; ATs 5 2m2KTBTzFTs;

ATT 5 2m2KTBTzFTT 2 m2(kT 1 KT);

ATS 5 2m2KTBTzFTS; ATk 5 2m2KTBTzFTk;

AT� 5 2m2KTBTzFT�; ASv
5 (fS 2 f)BSz;

ASs 5 2m2KSBSzFSs; AST 5 2m2KSBSzFST ;
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ASS 5 2m2KSBSzFSS 2 m2(kS 1 KS);

ASk 5 2m2KSBSzFSk; AS� 5 2m2KSBSzFS�;

A
vk 5 0;

Aks 5 2KmVz 1 KmV2
z Fms 2 KTBTzFTs 2 KSBSzFSs;

AkT 5 2KT 1 KmV2
z FmT 2 KTBTzFTT 2 KSBSzFST ;

AkS 5 2KS 1 KmV2
z FmS 2 KTBTzFTS 2 KSBSzFSS;

Akk 5 2m2Km 1 KmV2
z Fmk 2 KTBTzFTk 2 KSBSzFSk;

Ak� 5 21 1 KmV2
z Fm� 2 KTBTzFT� 2 KSBSzFS�;

A�v 5 0;

A�s 5 �k21(2c1KmVz 1 c1KmV2
z Fms 2 c3KT BTzFTs

2 c3KSBSzFSs);

A�T 5 �k21(2c3KT 1 c1KmV2
z FmT 2 c3KTBTzFTT

2 c3KSBSzFST);

A�S 5 �k21(2c3KS 1 c1KmV2
z FmS 2 c3KTBTzFTS

2 c3KSBSzFSS);

A�k 5 �k21(c1KmV2
z Fmk 2 c3KTBTzFTk

2 c3KSBSzFSk); and

A�� 5 2m2Kms21
� 1 �k21(c1KmV2

z Fm� 2 c3KTBTzFT�

2 c3KSBSzFS� 2 c2).
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