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ABSTRACT: Monthly total precipitation and mean temperature climate surfaces, gridded to 30-arcseconds (≈1 km at the
equator) and available for all global land areas, are presented. These datasets are generated with a Delta downscaling
method, using the 30-arcsecond WorldClim climatologies to scale monthly anomaly grids. For monthly mean temperature,
the anomalies are constructed from both the Climate Research Unit (CRU) and Willmott & Matsuura (W&M) 0.5 degree
time-series datasets, whereas for monthly precipitation Global Precipitation Climatology Centre (GPCC) data are also used.
The 0.5 degree anomalies are then interpolated to the 30-arcsecond resolution. Use of piecewise cubic Hermite interpolating
polynomials (PCHIP) to interpolate the anomaly grids results in more physically representative Delta downscaled surfaces,
compared to bilinear and cubic spline interpolation. The Delta downscaled products are compared to Global Historical
Climatology Network (GHCN) station records for six test regions distributed globally. In this analysis, the Delta grids
produced using the W&M time-series dataset perform better than grids produced using GPCC or CRU. Using Oregon,
USA as a test region, the Delta downscaled datasets are compared to the Parameter-elevation Regressions on Independent
Slopes Model (PRISM) datasets. For monthly precipitation, PRISM performs better than each of the three Delta downscaled
datasets, but for mean temperature both Delta downscaled datasets outperform PRISM. Through computing the Pearson
product–moment correlation coefficient between GHCN station delineated errors in the WorldClim climatologies and the
Delta downscaled W&M data, it is shown that performance of the Delta grids corresponds strongly to performance of the
reference climatologies. Therefore, future improvement of the 30-arcsecond Delta grids described in this article is strongly
tied to advances in the high-resolution climatological data for all global land surfaces. The Delta downscaled datasets
discussed herein are open-source and freely distributed at http://www.globalclimatedata.org.
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1. Introduction

Mean monthly temperature and total monthly precipita-
tion data are commonly used in hydrologic and agricul-
tural studies (Döll et al., 2003; Renard and Freimund,
1994). In North America, several high-spatial resolution
(i.e. on the order of 30-arcseconds) monthly datasets
exist, such as Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) (Daly et al., 2002),
Daymet (Thornton et al., 1997), and ClimateWNA (Wang
et al., 2012). In contrast, for many other regions of the
world the highest resolution monthly precipitation and
mean temperature datasets currently available have a spa-
tial resolution of 10-arcminutes (approximately 18.5 km
at the equator) (Hijmans et al., 2005b), which is 20
times coarser than the Delta downscaled grids presented
in this paper. The theoretical temporal coverage of the
Delta downscaled datasets presented is from 1900 to
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sity, 204 Rogers Hall, Corvallis, OR 97331-6001, USA. E-mail:
mosiert@onid.orst.edu

2010; however, in practice grids for the first half of the
twentieth century should be used with caution because the
reference climatologies utilized in the datasets’ construc-
tion are for 1950–2000. In addition to this significant
temporal coverage, the Delta downscaled monthly pre-
cipitation and mean temperature datasets presented herein
are gridded to a spatial resolution of 30-arcseconds for
all global land surfaces, are open source, and are freely
available (at http://www.globalclimatedata.org).

The present datasets are produced from available
gridded meteorological data using a Delta downscaling
method. The Delta method, as implemented herein,
requires a lower resolution monthly times-series and a
high-resolution climatology as inputs, where the latter
input must contain a physically representative, fine-
scale distribution of the meteorological variable over the
landscape. The purpose of using the Delta downscaling
method, as compared to direct interpolation of low-
spatial resolution sources to a higher spatial resolution,
is that the Delta downscaling process incorporates high-
resolution orographic effects, which are not represented
in the low-resolution input grids. In this study, two Delta
downscaled datasets are produced for monthly mean
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temperature, where one uses the 0.5 degree Climate
Research Unit (CRU) (New et al., 2000; Mitchell and
Jones, 2005; Harris et al., 2013) time-series and the other
uses the analogous Willmott & Matsuura (W&M) product
(Matsuura and Willmott, 2012a, 2012b) as the low-
resolution time-series input. For monthly precipitation
CRU, W&M, and the Global Precipitation Climatology
Centre’s (GPCC) 0.5 degree Full Data Product (Becker
et al., 2013) are used. GPCC is only available for
precipitation but is included because it is well regarded
(Fekete et al., 2004). In all instances, the WorldClim
30-arcsecond climatologies (Hijmans et al., 2005b) are
used as the high-resolution reference needed for the Delta
downscaling method.

This implementation of the Delta downscaling method
relies entirely on gridded input data. The advantage of
using gridded sources instead of beginning from spatially
discrete station records is that the gridded approach
leverages the work that groups (such as CRU and W&M)
have done to collect station records from multiple sources
and process the data. This is significant because many
sources of station records have copyrights on their data
(Becker et al., 2013) and the raw records sometimes
contain errors such as incorrect units or spatial position
(Hijmans et al., 2005b). While utilizing gridded products
does forfeit a degree of control in the downscaling
process compared to starting with station records, the
decision should be viewed as a tradeoff and likely results
in a greater number of station records being incorporated
into the presently discussed downscaled products.

There are many sources of 0.5 degree monthly pre-
cipitation and mean temperature grids. CRU, W&M, and
GPCC are used here because of their global coverage and
long temporal ranges, which span almost the entire period
from 1900 to the present. For a high-resolution clima-
tology dataset, WorldClim appears to be the only source
with a spatial resolution of 30-arcseconds that is available
for all global land surfaces. Unlike many other clima-
tologies, WorldClim is a 51-year climate normal, using
input data for the period 1950–2000. The next highest
resolution climatologies available for all global land sur-
faces are constructed by New et al. (2002) and have a
spatial resolution of 10-arcminutes. As noted by Daly
et al. (2008) WorldClim has deficiencies relative to the
PRISM climatologies; most notably, WorldClim appears
to overestimate leeward precipitation and underestimate
windward precipitation. However, given that PRISM is
not available for the majority of the world, WorldClim
is, in many regions, the only dataset of 30-arcsecond cli-
matologies.

The quality of the Delta downscaled data is assessed by
comparing it to Global Historical Climatology Network
(GHCN) station records (Lawrimore et al., 2011; Peter-
son and Vose, 1997) for six test regions distributed around
the world. GHCN is produced by the National Oceanic
and Atmospheric Administration, through the US Depart-
ment of Commerce, and provides a consolidated set of
available global weather station time-series data. Vari-
ous statistics, including mean absolute error (MAE) and

weighted mean absolute percent error (WMAPE) are cal-
culated between GHCN records and the corresponding
Delta downscaled grid values. As a benchmark of relative
quality, the same statistics are also calculated between
gridded PRISM data (Daly et al., 2002, 2008) and GHCN
records for stations within the state of Oregon, USA.
PRISM is chosen for comparative purposes because these
grids are the ‘official spatial climate data sets of the U.S.
Department of Agriculture’ (Daly et al., 2008), are well
regarded (Adam et al., 2006; Cosgrove et al., 2003), and
have a similar resolution to the Delta downscaled data
discussed herein.

Within the Oregon test region, use of three separate
anomaly interpolation schemes in the Delta downscaling
method are compared. Through this, the piecewise cubic
Hermite interpolating polynomials (PCHIP) scheme
is found to be the anomaly interpolation scheme that
results in the most physically representative downscaled
grids. This version of the Delta downscaling method
is then applied for all six test regions and each of
the low-resolution time-series inputs. The statistical
correspondence between the GHCN station records
and Delta downscaled grids are aggregated over all
stations and time-series elements for each test region,
and presented herein. This assesses how closely the
Delta downscaled grids represent meteorological values
at known station locations. As WorldClim is the only
source of high-resolution climatologies, it is also impor-
tant to assess the propagation of error from WorldClim
to the Delta downscaled grids. This is done by mapping
station delineated WMAPE values for the Pakistan test
region and calculating the Pearson correlation coefficient
between station WMAPE values for WorldClim and
the Delta downscaled W&M data [labelled herein
as ‘Delta(W&M)’]. Together, the analysis presented
assesses variations of the Delta downscaling method,
choice of input time-series dataset, and the effect of the
high-resolution reference climatology on the physical
representation of the downscaled data.

2. Input data

2.1. 30-Arcsecond climatological normals

Accounting for orographic effects on precipitation
and mean temperature is particularly important at the
30-arcsecond resolution because many grid cells do
not contain a meteorological station. In addition, the
location of stations tends to be biased towards population
centres and arable land, which are primarily located
in valleys (Hutchinson and Bischof, 1983). Owing
to these meteorological sampling realities, if station
records were directly interpolated to a 30-arcsecond grid
without utilizing additional parameters (e.g. elevation) as
independent variables, the resulting climatologies would
inherently be overly smooth and biased towards values
in the local valleys.

WorldClim is produced using available station data
as input to the anusplin 4.3 package (Hutchinson,

 2013 Royal Meteorological Society Int. J. Climatol. 34: 2175–2188 (2014)



30-ARCSECOND GLOBAL CLIMATE SURFACES 2177

2004). The anusplin thin plate smoothing spline
algorithm incorporates elevation, longitude, and latitude
as independent variables in the process of fitting a
climate surface through station records. The parameters
related to orographic effects on climate are not limited
to those used in anusplin. PRISM, e.g. includes in its
regression algorithm aspect, slope, coastal proximity,
and ‘orographic effectiveness’ (Daly et al., 2008).
Thus, it is expected that the PRISM climatologies
represent the spatial inhomogeneity of precipitation
better than WorldClim, especially in mountainous areas
where aspect and slope become more significant. An
advantage of WorldClim compared to PRISM, though,
is that WorldClim is freely available for all global land
surfaces.

Uncertainty is inherent in any procedure where meteo-
rological values are being interpolated to locations with-
out station records. This uncertainty is difficult to quantity
precisely because there are no station records. There-
fore, in the application of interpolating station records,
most measures of uncertainty may better be classified
as measures of sensitivity. The two methods presented
by WorldClim to assess their products are (1) a pro-
cedure called data-partitioning where half the data are
used in the interpolation scheme and compared to the
remaining half of the data, and (2) a cross-validation
technique. For most regions, the data-partitioning pro-
cedure yields a mean uncertainty of less than 2◦C
for mean temperature and 50 mm for total precipitation
(Hijmans et al., 2005b). In cross-validation, individual
stations are removed in turn, the anusplin package is
run on the remaining data, and the interpolated data at the
removed station’s location is compared to that station’s
observed value. Mean cross-validation errors are signifi-
cantly lower for most regions of the world, with an upper
magnitude of 0.4◦C for mean temperature and 10 mm for
total precipitation. The lower errors found using cross-
validation compared to data-partitioning simply reflect
the increased amount of information used to produce the
climate surfaces in the cross-validation method. While
both the cross-validation and data-partitioning errors are
presented as absolute uncertainty, normalized uncertainty
would be more illuminating, especially for precipitation,
as normal precipitation and temperature regimes vary
widely by global region.

2.2. 0.5 Degree historical monthly datasets

A wide variety of acceptable low-resolution monthly
datasets exist which could be used as input to a down-
scaling method. For instance, Voisin et al. (2010) utilize
remotely sensed data from the Tropical Rainfall Mea-
surement Mission (TRMM) to produce high-resolution
precipitation grids. TRMM has geographic coverage
between 50◦ South and North, which excludes most of
Canada or Russia and was launched in 1997. The short
duration of the dataset reduces its utility as an indicator

of long-term trends. There is also an ongoing discus-
sion of TRMM’s accuracy (Stampoulis and Anagnos-
tou, 2012) and how to transform the TRMM data prod-
ucts to improve their physical representation (Condom
et al., 2011). Of particular note, Condom et al. (2011)
summarize a finding by multiple groups that TRMM
underestimates precipitation for mountainous regions.
Due to TRMM’s limited geographic and temporal cov-
erage, and to avoid the extra computational steps that
would be required to transform it, TRMM data are not
used in this study.

Reanalysis models, such as ERA (Dee et al., 2011) and
National Centers for Environmental Prediction (NCEP)
(Kanamitsu et al., 2002), are other possible choices as
low-resolution input data. These datasets are derived
from physically based climate models, which gener-
ally produce multi-layered output for a host of param-
eters at daily or subdaily time steps. Each reanalysis
product has its own strengths and weaknesses, and the
quality is generally improving (Sheffield et al., 2004).
NCEP has a temporal coverage of 1948 through the
present, but is only gridded to a spatial resolution of
2.5 degrees, which is a common resolution for prod-
ucts derived from General Circulation Models (GCM),
but is coarser than other available sources. Additionally,
the real strength of reanalysis products is for applica-
tions within atmospheric studies where forcing data are
needed for multiple layers or studies that require derived
variables.

Presently, the CRU and W&M 0.5 degree global
datasets are used as low-resolution time-series inputs to
the Delta downscaling process for both monthly pre-
cipitation and mean temperature, and GPCC is utilized
as an additional time-series input for monthly precipita-
tion. These three datasets are ranked among those that
represent ‘our current “state-of-the-art” understanding of
global precipitation distribution’ (Fekete et al., 2004).
The extensive temporal coverages of the CRU, W&M,
and GPCC data are also useful because it allows them to
be used to evaluate long-term trends.

The W&M and CRU data are comparable in many
respects and differ primarily due to the precise list of
station records and the interpolation schemes used. The
version of the CRU data used herein is CRU TS3.10
which unlike the CRU TS2.10 dataset (Mitchell and
Jones, 2005) is not explicitly homogenized by CRU;
although, the station data may have been homoge-
nized by the individual meteorological organizations pro-
viding it (Harris et al., 2013). The W&M data used
for precipitation and mean temperature are versions
3.02 and 3.01, respectively (Matsuura and Willmott,
2012a, 2012b).

Each of these input datasets draws on its own compiled
set of station data, which are then interpolated to grids
using a methodology specific to the group. Owing to
this, the number of stations contributing information to
an interpolated cell varies between region and dataset.
An example is provided in Figure 1, which shows
the average number of stations from the CRU TS3.10
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Figure 1. Average number of stations influencing the precipitation value for each cell in the CRU TS3.10 dataset from 1951 to 2000. The colour
gradient saturation value is 50, although the largest number of contributing stations for a single cell is 605.

dataset influencing each interpolated cell for the years
1951–2000. From Figure 1, it is apparent that there are
significant disparities in station densities between regions.
For instance, USA and Europe have relatively high-
station densities compared to most of Asia and South
America. The trends in regional station densities seen
in Figure 1 are qualitatively similar amongst the input
datasets used herein (W&M: Matsuura and Willmott,
2012a, 2012b; GPCC: Becker et al., 2013; WorldClim:
Hijmans et al., 2005b); however, the number of stations
and the networks of station data utilized by each group
differ, in some places significantly, as seen through
figures included in the preceding dataset citations.

The methodologies used by the CRU and W&M
groups to produce their 0.5 degree grids are similar to
the Delta method employed herein, except that their
methods are designed to extrapolate grids from discrete
station data. CRU and W&M first produce 0.5 degree
gridded climatologies from all available station records.
Each group then calculates anomaly values at cells where
station data are available for the specific time-series
element being produced. These partially empty anomaly
grids are then filled using an interpolation technique
specific to the group. Whereas the CRU dataset is
created using triangulated linear interpolation for this
step (Harris et al., 2013), W&M use inverse-weighting
and triangular-decomposition interpolation schemes
on a two-dimensional spherical surface (Willmott and
Robeson, 1995).

GPCC Full Data version 6 (Becker et al., 2013)
is used as a third time-series input for producing
Delta downscaled precipitation grids. GPCC utilizes
the SPHEREMAP method developed by Willmott et al.
(1985) to interpolate the available station data onto a
grid. An apparent strength of GPCC is that their database
includes significantly more stations than either CRU or
GHCN (Becker et al., 2013).

3. Methods

3.1. Delta downscaling procedure

The Delta downscaling method is used with the data
inputs described in Section 2 to produce 30-arcsecond
monthly precipitation and mean temperature grids.
Figure 2 uses transects at a fixed latitude through
Oregon, USA to illustrate the components and steps
of the Delta downscaling process for temperature,
using the W&M 0.5 degree time-series and WorldClim
30-arcsecond climatology datasets. The first step
(Figure 2(a)), is to construct a 0.5 degree climatology
for each month from the 0.5 degree time-series dataset.
The low-resolution climatology is produced using the
years from 1950 to 2000 because this is the range used
by WorldClim to construct their climatology data. A
0.5 degree anomaly (blue line of Figure 2(b)) is then
calculated. For temperature, the anomaly is the differ-
ence between the time-series element and corresponding
low-resolution climatology whereas for precipitation,
the anomaly is the ratio of the time-series element to
climatology. The anomaly is then interpolated to the
30-arcsecond WorldClim grid (red line of Figure 2(b)).
The final step of the Delta method (Figure 2(c)), is
to transform the high-resolution anomaly back to an
absolute surface through scaling it by the WorldClim
climatology for the corresponding month. This transfor-
mation undoes the creation of the anomaly, and therefore
addition is used for temperature, whereas multiplication
is used for precipitation.

The step of interpolating the anomaly grid from the
original to the high-resolution coordinates, illustrated in
Figure 2(b), can be carried out using many interpola-
tion methods. In this study, bilinear interpolation, cubic
spline interpolation, and PCHIP are compared. Bilinear
interpolation fits a linear function over each interval on
the original grid, first in one dimension, then in the other.

 2013 Royal Meteorological Society Int. J. Climatol. 34: 2175–2188 (2014)
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Figure 2. Transects highlighting the Delta downscaling method at latitude of 44.25◦ North, passing through the state of Oregon, USA.
(a) Low-resolution time-series element and associated climatology. (b) Interpolating the anomaly. (c) Scaling high-resolution reference

climatology.

The cubic spline interpolation scheme is Matlab’s interp2
function (MATLAB, 2011), which fits a ‘natural’ spline
(i.e. one without a tension parameter) to each interval.
The two-dimensional PCHIP function is an extension
of the one dimensional form from Fritsch and Carlson
(1980), using the method discussed in Press et al. (1992)
to extend the scheme into two dimensions.

Bilinear interpolation does not allow under- or
overshooting (i.e. the interpolated surface cannot have
values outside the original range), but is only first order
accurate. Cubic spline and PCHIP are both third-order
accurate, but cubic spline interpolation allows under-
and overshooting, whereas PCHIP constrains the inter-
polated surface to the original range. In this context,
under-shooting can lead to undesirable artefacts such
as negative precipitation anomalies, which necessarily
produce negative precipitation surfaces and are therefore
not physically representative.

It is also important to mention that while the overarch-
ing structure of the Delta downscaling method imple-
mented here is similar to those presented in sources
such as Hayhoe (2010) and Fowler et al. (2007), spe-
cific components of the methods are distinct because the
applications are different. In both Hayhoe and Fowler’s
studies, the anomaly grids (also referred to as change
factors) are calculated as the difference between past
and future GCM climatologies. The anomalies are then
used scale station observations, resulting in a downscaled

dataset that simulates altered future conditions (Hayhoe,
2010). In this study, anomaly grids are calculated as the
difference between a historical 0.5 degree time-series cli-
mate grid and a corresponding gridded climatology con-
structed from the same 0.5 degree time-series dataset.
These anomaly grids are then scaled by a historical
30-arcsecond climatology containing orographic effects,
which results in a downscaled historical time-series
dataset that includes high-resolution climatic effects.

A relevant point Fowler raises about the Delta method,
though, is that the method assumes ‘the spatial pattern of
climate will remain constant’ (Fowler et al., 2007), where
climate in this instance is referring to a meteorological
variable and not a multi-year climate average. In the
current study, this translates to the assumption that the
WorldClim climatologies represent high-resolution oro-
graphic meteorological effects equally well for all points
in time. As all years of data produced using the Delta
method rely on the same WorldClim climatology to trans-
mit short-scale orographic effects, there may be instances
where this assumption is weak. For example, if regional
circulation changes, this may affect the orientation of the
windward and leeward sides of a topographic feature.

3.2. Downscaled grid evaluation

A common measure of uncertainty in climate surface
assessment is cross-validation. WorldClim and W&M
distribute maps of the cross-validation error, which they
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calculate by systematically withholding a station from
the dataset, running the data processing and interpolation
algorithms, and calculating the difference between values
at the station location for the datasets with the station
included and withheld. Cross-validation is a good mea-
sure of sensitivity in the downscaled dataset to density
and distribution of input stations; however, it requires
spatially discrete station data. The input data sources
(e.g. CRU and WorldClim) do not release the station
records used to produce their grids, primarily to respect
copyrights on the station data as discussed in Becker
et al. (2013). Cross-validation is therefore not applicable
because it is not possible to systematically withhold
individual stations. As outlined in Section 1, there are
multiple benefits to using gridded products in the current
study, which, the authors believe, outweigh the disad-
vantage of not being able to perform cross-validation.

The Delta downscaled data are instead assessed by
treating GHCN station data as observed values and
comparing them to the corresponding downscaled grid’s
value for the cell that the GHCN station is within. This
method does not independently verify the accuracy of the
downscaled grids because all of the gridded input datasets
utilized in this work contain GHCN station records as
one of their input sources. GHCN is, though, the largest
freely available collection of station records with a global
spatial distribution. It should be understood, therefore,
that utilizing GHCN data to assess the current Delta
grids is the most practical option and is a measure of
the Delta downscaling method’s ability to retain and
reproduce observed precipitation and temperature values;
this assessment is valuable for understanding the Delta
downscaled grids.

Comparison of 30-arcsecond Delta downscaled data at
all global GHCN locations would be impractical (due
to computational time), therefore the southwest portion
of the Yukon Territory in Canada, Altai Republic of

Russia, Germany, Oregon in the USA, Pakistan, and
central Argentina are used as test regions (Figure 3).
Comparison of Delta downscaled data to GHCN station
records within each of these regions assesses how well the
grids produced herein correspond to known values. This
enables assessment of sensitivity to anomaly interpolation
method, time-series input, and WorldClim climatologies,
and ensures that the final product performs well.

GHCN monthly precipitation and mean temperature
station data, in adjusted or non-adjusted form, are avail-
able for almost all global land surfaces. The GHCN
adjustment process removes apparent shifts in the mea-
surements that are unrelated to “true climatic variations,”
as described in detail by Menne and Williams (2009)
and Enloe (2012). As Figure 3 shows, adjusted temper-
ature data (version 3) are available for the entire globe,
whereas adjusted precipitation data are mainly available
for northern latitude regions (North America, Northern
Europe, and parts of Asia). In assessing the Delta down-
scaled temperature grids, the adjusted GHCN records are
always used. With precipitation, adjusted data are used
when present; where partially available, analysis of pre-
cipitation based upon both adjusted and non-adjusted data
are provided.

The earliest temperature record in the GHCN records
is from 1701 (Peterson and Vose, 1997), but in this study
the Delta downscaled data are compared for all months
of the years beginning with 1981 and continuing through
2009. The range 1981–2009 is chosen because it is long
enough to capture a significant degree of inter-annual
variability and corresponds to a procured set of PRISM
data. Comparison is made between the PRISM and
Delta downscaled grids for the Oregon, USA test region,
producing an instructive benchmark of relative quality for
the high-resolution time-series datasets. The PRISM data
are available at a resolution of 1.25-arcminutes, which
is 2.5 times coarser than the Delta downscaled data;

Figure 3. Global Historical Climatology Network (GHCN) station distribution and Delta data test regions (delineated with red boxes); ‘Adj’ refers
to adjusted GHCN station records and ‘Non’ to non-adjusted GHCN records. The top-most layer is stations with adjusted precipitation (pre)
records because these are the scarcest, followed by adjusted mean temperature (tmn), and with non-adjusted precipitation as the bottom-most

layer. Due to the layering, many of the ‘Tmn Adj’ and ‘Pre Non’ locations are not visible.
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Table 1. Reported statistics, where P refers to the predicted
value, O to the observed value, and n is the number of elements.

Statistic Definition

Bias 1
n

n∑
i=1

(Pi − Oi )

Mean absolute error (MAE) 1
n

n∑
i=1

|Pi − Oi |

Root mean square error (RMSE)

√√√√√
n∑

i=1

(Pi −Oi )
2

n

Mean absolute % error (MAPE) 1
n

n∑
i=1

∣∣∣∣
Pi − Oi

Oi

∣∣∣∣ × 100%

Weighted MAPE (WMAPE)

n∑
i=1

|Oi |×
∣∣∣ Pi −Oi

Oi

∣∣∣

n∑
j=1

∣∣Oj

∣∣
× 100%

Nash–Sutcliffe efficiency (NSE) 1 −

n∑
i=1

(Oi − Pi )
2

n∑
j=1

(
Oj − O

)2

neither dataset is resampled though, to preserve their
intended structures. A visual comparison is also carried
out between PRISM and Delta downscaled time-series
transects, allowing for a qualitative assessment of their
respective meteorological parameter representations.

For the Oregon, USA test region, the Delta downscaled
data are also compared to 30-arcsecond grids which are
directly interpolated from the 0.5 degree W&M data
[labelled ‘DI(W&M)’]. PCHIP interpolation is used to
produce the DI(W&M) grids because of the advantages
of PCHIP relative to bilinear or cubic spline interpolation
outlined in Section 3.1. It is expected that the directly
interpolated grids will perform worse than their down-
scaled equivalents because direct interpolation ignores
all fine-scale topographic influences on precipitation and
temperature. Still, it is an instructive exercise to quantify
how much increased value is added through utilization of
the Delta downscaling process.

3.3. Statistical formulations

Six statistics, defined mathematically in Table 1, are used
to compare the performance of Delta downscaled grids
relative to GHCN station records for each of the six test
regions; three of the statistics are percent statistics and
three are dimensional statistics. Five of the statistics are
reported for precipitation whereas only the dimensional
statistics are applicable for temperature due to the
arbitrarily defined zero point in most temperature scales.

The first dimensional statistic reported is bias, which
simply quantifies the net average difference between the
modelled and observed variable. MAE is similar to bias
except that MAE is the mean of the absolute errors. Also
reported is the root mean square error (RMSE), which
is a measure of deviation within the set. Reviews on
the usefulness of RMSE as a metric are mixed, with
Willmott et al. (2009) stating that RMSE’s interpretation
is conflated because its value is affected by both the mean
in the error and the variability. The essential argument is
that RMSE is affected by the distribution of errors within
the set, the size of the set, and the average error, while the
MAE is directly a measure of average model performance
(Willmott and Matsuura, 2005). Nonetheless, RMSE is a
common statistic across a number of disparate fields and
is useful to those who are familiar with it.

MAPE uses an absolute error normalized by the
observed value to form a percentage. The MAPE normal-
ization factor causes errors in smaller observed values to
be reflected more heavily than similar magnitude errors in
larger observed values. A method of correcting for this is
to form the WMAPE, which is constructed from MAPE
by replacing the averaging factor (1/n) with weighting
factors (|Oi | in the numerator and

∑ |Oj | in the denom-
inator). The formulation of WMAPE provided in Table 1
highlights the weighting factor in the definition, although
for computational purposes the WMAPE formula can be
simplified.

MAPE and WMAPE are equivalent in the special case
when all observed values are equal and all associated
errors are also equal. WMAPE will be similar to or
larger than MAPE when errors occur for the wettest
precipitation measurements or more extreme temperature
regimes; WMAPE will be smaller than MAPE if the con-
verse is true or if the errors are equal but the observations
vary. An advantage of MAPE and WMAPE over non-
normalized variants, such as MAE, is that they are more
consistent across regions with different climate regimes.

The Nash–Sutcliffe efficiency (NSE), like RMSE, is
a squared statistic, but with more common application
within hydrology. The NSE’s range is negative infinity
to positive one, where a value of zero indicates that the
mean of the observed data is as good as a predictor
of the modelled values. NSE values less than zero
indicate the modelled predictions are a worse fit than
the mean observed value and an NSE of one indicates
an exact fit. Legates and McCabe (1999) and Willmott
et al. (2011) note that because the NSE is a squared
metric, it is more sensitive to a fewer number of extreme
errors than to small, consistent errors. Additionally, the
effect of the denominator is to bias the NSE towards
values closer to one in situations where variations in
the observed parameter (i.e. the

∑ (
Oi − O

)2
factor)

are large compared to when the observed parameter is
relatively static.
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Figure 4. Delta downscaled products for July 1996 at latitude of 42.25◦,
comparing use of bilinear, spline, and PCHIP interpolation as described

in Section 3.1.

4. Results

Results are primarily summarized as tables of statis-
tics between the Delta downscaled grids and GHCN
station records, aggregated over all station locations
and all time steps for the period of years beginning
with 1981 and extending through 2009. Delta(W&M)
is used to denote 30-arcsecond Delta downscaled data
produced using W&M as the low-resolution time-series
whereas Delta(CRU) and Delta(GPCC) refer to the
analogous products produced using CRU and GPCC,
respectively.

Section 4.1 presents the performance of the Delta
downscaled data produced using the three anomaly inter-
polation methods described in Section 3.1 and PRISM
data for the Oregon, USA test region. Sections 4.2 and
4.3 then present the main results which are the qual-
ity of the Delta(W&M), Delta(CRU), and Delta(GPCC)
monthly precipitation and mean temperature grids for the
six globally-distributed test regions.

4.1. Anomaly interpolation method for Oregon

It is first necessary to establish which of the anomaly
interpolation methods discussed in Section 3.1 produces
the most accurate downscaled surfaces. Figure 4 shows
transects of Delta downscaled temperature grids for July
1996, passing through Oregon, using bilinear, cubic
spline, and PCHIP interpolation. Tables 2 and 3 compare
the associated aggregated GHCN metrics for Oregon
precipitation and mean temperature data produced using

Table 3. Analogous to Table 2 except for mean temperature
grids instead of precipitation and 46 GHCN stations.

Product Interp Bias (◦C) MAE (◦C) RMSE (◦C)

PRISM N/A −0.187 0.747 1.402
DI(W&M) PCHIP −0.974 1.358 1.682
Delta(W&M) PCHIP −0.175 0.611 0.783

Bilinear −0.179 0.616 0.787
Spline −0.175 0.612 0.792

the Delta downscaling method, direct interpolation, and
PRISM data. It is evident in both Tables 2 and 3 that the
Delta downscaling method is not particularly sensitive
to bilinear, cubic spline, or PCHIP interpolation. For the
majority of statistics though, the Delta downscaled data
produced using PCHIP interpolation perform slightly
better than those produced using either bilinear or cubic
spline interpolation. Therefore, for the remainder of
the paper, the Delta downscaled data presented and
discussed are produced using PCHIP interpolation.

For both precipitation and mean temperature,
direct interpolation performs worse than each of the
Delta(W&M) and PRISM datasets, which is expected
per the discussion in Section 3.2. It is also evident in
Table 3 that the Delta(W&M) mean temperature datasets
outperform the PRISM data, which is an unexpected
result. In the case of precipitation, though, the PRISM
data perform better than the Delta(W&M) data.

4.2. 30-Arcsecond monthly precipitation surfaces

Table 4 provides aggregated statistics for each of the six
test regions delineated in Figure 3 for the Delta(W&M),
Delta(CRU), and Delta(GPCC) precipitation grids.
GHCN adjusted precipitation records (as defined in
Section 3.2) are available for the entire area of all test
regions except Pakistan and Argentina. For the Pakistan
test region, both adjusted and non-adjusted statistics
are given because adjusted GHCN records are only
available for a northern band of the region whereas
for Argentina only non-adjusted GHCN records are
available.

The Delta(W&M) precipitation dataset outperforms
both the Delta(CRU) and Delta(GPCC) datasets on
aggregated statistics for every region except Germany,
where Delta(CRU) performs better than either of the
others. Assessing inter-regional performance within the

Table 2. Correspondence between high-resolution precipitation grids and GHCN station records for PRISM data, directly
interpolated W&M data, and Delta downscaled W&M data produced with PCHIP, bilinear, and cubic spline anomaly interpolation
for the Oregon, USA test region. Statistics are aggregated over available GHCN records between the years 1981 and 2009 for

38 stations. The Interp column denotes the anomaly interpolation method used, as described in Section 3.1.

Product Interp MAE (mm) RMSE (mm) MAPE (%) WMAPE (%) NSE

PRISM N/A 5.305 12.906 14.072 8.552 0.972
DI(W&M) PCHIP 10.295 19.007 36.101 16.597 0.939
Delta(W&M) PCHIP 8.212 15.576 30.786 13.151 0.959

Bilinear 8.535 15.887 33.118 13.662 0.957
Spline 8.429 15.962 32.523 13.483 0.957
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Table 4. Aggregated statistics between the Delta downscaled monthly precipitation grids and GHCN station records for all data
available in the range of years 1981–2009, inclusive. Only Delta statistics relative to adjusted (ADJ) GHCN records are given if
adjusted data exists for the entire region. For Pakistan, there is partial adjusted coverage and for Argentina there is no adjusted

coverage.

Low-res source Region Type # stns MAE (mm) RMSE (mm) MAPE (%) WMAPE (%) NSE

Willmott and Matsuura Canada ADJ 13 4.447 6.291 26.652 16.566 0.914
Russia ADJ 11 7.997 14.351 37.197 21.402 0.822
Germany ADJ 9 8.572 11.911 14.220 11.187 0.919
Oregon ADJ 38 8.212 15.576 30.786 13.151 0.959
Pakistan ADJ 17 5.620 11.893 36.247 19.695 0.921

NON 97 7.549 18.551 41.964 18.016 0.946
Argentina NON 14 6.624 14.206 48.103 19.178 0.901

CRU Canada ADJ 13 10.179 14.667 92.884 37.649 0.535
Russia ADJ 11 10.024 16.558 66.807 26.672 0.763
Germany ADJ 9 6.009 10.953 8.570 7.842 0.932
Oregon ADJ 38 13.094 23.612 70.731 21.108 0.906
Pakistan ADJ 17 8.467 16.866 85.496 28.757 0.840

NON 97 12.171 28.378 105.265 27.408 0.874
Argentina NON 14 9.451 20.435 110.570 27.361 0.794

GPCC Canada ADJ 13 6.102 8.905 38.552 22.839 0.829
Russia ADJ 11 9.286 15.999 44.238 25.018 0.779
Germany ADJ 9 12.130 16.828 19.910 15.833 0.839
Oregon ADJ 38 11.491 20.390 45.528 18.525 0.930
Pakistan ADJ 17 7.553 14.875 50.838 26.989 0.876

NON 97 13.299 39.532 72.382 33.109 0.753
Argentina NON 14 8.455 18.125 52.232 24.479 0.838

Table 5. Aggregated statistics between the Delta downscaled monthly mean temperature grids and GHCN station records for all
data points available in the range of years 1981–2009, inclusive.

Low-res source Region #stns Bias (◦C) MAE (◦C) RMSE (◦C)

Willmott and Matsuura Canada 17 −0.142 0.557 0.815
Russia 4 −0.214 0.553 0.814
Germany 62 −0.130 0.642 1.423
Oregon 46 −0.175 0.611 0.783
Pakistan 57 −0.097 0.588 0.873
Argentina 10 −0.521 0.950 1.555

CRU Canada 17 −0.075 0.693 1.075
Russia 4 −0.198 0.502 0.704
Germany 62 −0.003 0.661 1.457
Oregon 46 −0.105 0.659 0.849
Pakistan 57 −0.049 0.613 0.919
Argentina 10 −0.536 0.975 1.575

Delta(W&M) dataset requires identifying which metric
best reflects a given project’s needs. For example, if
regional performance within the Delta(W&M) precipi-
tation dataset is ranked by WMAPE, the Germany test
region has the lowest value (11%) and the Russia region
the highest (21%); whereas under inspection of the NSE
the Oregon, USA region has the best value (0.959)
although the Russia region’s is still the worst (0.822).

4.3. 30-Arcsecond monthly mean temperature surfaces

With version 3 of the GHCN station records, adjusted
temperature data are available for all regions of the
world. Table 5 provides a comparison of the aggregated
statistics for each of the six test regions. For monthly
mean temperature performance between Delta(W&M)

and Delta(CRU) as well as between regions is similar rel-
ative to performance of the analogous precipitation data.
For MAE, Delta(CRU) only outperforms Delta(W&M) in
the Russian test region. Within the Delta(W&M) dataset,
the MAE is almost twice as large for Argentina as for
Canada, Russia, or Pakistan, but is still <1◦C.

5. Discussion

The three possible sources of error in the Delta down-
scaled data are the Delta procedure, the low-resolution
time-series dataset, and high-resolution reference clima-
tologies. Section 4.1 of the results finds that error incurred
through the Delta method is reduced slightly by using
PCHIP for interpolating the anomaly grids, which does
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Figure 5. PRISM, Delta(W&M), Delta(CRU), and Delta(GPCC) (GPCC for precipitation only) transects for November 1998, at latitude of
42.25◦, passing through Oregon, USA. The Delta data are produced using the method described in Section 3.1 and have a spatial resolution of

30-arcseconds, whereas the PRISM data are gridded at 1.25-arcminutes. (a) Monthly mean temperature. (b) Monthly total precipitation.

not require further exploration. Section 5.1 of the dis-
cussion compares Delta downscaled grid performance
relative to PRISM for the Oregon, USA test region,
exploring performance differences between Delta grids
created using the 0.5 degree W&M, CRU, and GPCC
datasets. Assessment of the Delta grid statistics rela-
tive to PRISM generally validates the Delta method and
establishes a benchmark of performance. Lastly, impact
of the 30-arcsecond WorldClim climatologies on Delta
downscaled grids is examined by first computing World-
Clim statistics relative to GHCN station records, then
calculating the correlation between the station delineated
WorldClim WMAPEs and corresponding Delta(W&M)
WMAPEs.

5.1. Delta and PRISM performance for Oregon

Assessing the performance of PRISM grids in the Oregon
test region is useful as a benchmark for the Delta
downscaled data in other regions. Example transects of
all high-resolution time-series products are provided in
Figure 5. It is readily apparent that while the values of the
Delta(W&M), Delta(CRU), and Delta(GPCC) datasets
vary substantially, the shapes of the distributions are
very similar. It should be recognized based upon the
description of the Delta downscaling method in Section
3.1 that this is a property of the Delta downscaling
method and that the quickly varying spatial structure
results from the spatial distribution of the WorldClim
dataset.

5.1.1. Monthly mean temperature for Oregon

Table 6 summarizes the aggregated statistics for
Delta(W&M), Delta(CRU), and PRISM in the Oregon,
USA test region. For RMSE, the Delta downscaled
mean temperature data perform almost twice as well
as PRISM. The precise reason for the Delta datasets’
superior representation of monthly mean temperature
is unknown. It could simply be related to differences
in input data or could result from PRISM’s choice of
independent variables used to distribute and grid their
temperature input data.

Table 6. Aggregated statistics between high-resolution time-
series mean temperature grids [PRISM, Delta(W&M), and
Delta(CRU)] and GHCN records for the Oregon, USA test
region. Forty-six GHCN stations are used in formulating these

aggregated statistics.

Metric PRISM Delta(W&M) Delta(CRU)

Bias (◦C) −0.187 −0.175 −0.105
MAE (◦C) 0.747 0.611 0.659
RMSE (◦C) 1.402 0.783 0.849

Delta(W&M) performs better than Delta(CRU) for
MAE and RMSE, although Delta(CRU) has a slightly
lower bias. The difference in bias is evident in Figure 5a,
which shows the Delta(CRU) temperatures to be consis-
tently warmer than those in the Delta(W&M) dataset. As
the two Delta datasets are identical except for the input
time-series, this difference in bias necessarily results
from differences in the W&M and CRU datasets.

5.1.2. Monthly precipitation for Oregon

Table 7 summarizes the statistical performance between
high-resolution precipitation grids and GHCN station
records for the Oregon, USA test region. The dispar-
ity between PRISM, Delta(W&M), Delta(CRU), and
Delta(GPCC) is greater for precipitation than mean tem-
perature. Of note, the ratio between MAPE and WMAPE
varies significantly by dataset. For example, the ratio of
MAPE to WMAPE for Delta(CRU) is 3.4 compared to
1.6 for PRISM. As mentioned in Section 3.3, this sug-
gests that the PRISM errors tend to be larger for wet-
ter months rather than drier ones whereas the errors in
Delta(CRU) are relatively more even between wet and
dry months.

Better performance by PRISM is expected because
the PRISM algorithm accounts for aspect and slope,
among other variables, whereas the anusplin package
used to construct WorldClim only accounts for elevation,
longitude, and latitude as independent variables. The
stark contrast between Delta(W&M), Delta(CRU), and
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Table 7. Aggregated statistics between high-resolution time-
series precipitation grids [PRISM, Delta(W&M), Delta(CRU),
and Delta(GPCC)] and GHCN records for the Oregon, USA
test region. Thirty-eight GHCN stations are used in formulating

these aggregated statistics.

Metric PRISM Delta
(W&M)

Delta
(CRU)

Delta
(GPCC)

MAE (mm) 5.305 8.212 13.093 11.491
MAPE (%) 14.072 30.786 70.731 45.528
WMAPE (%) 8.553 13.238 21.108 18.525
RMSE (mm) 12.906 15.576 23.612 20.390
NSE (unitless) 0.972 0.959 0.906 0.930
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Figure 6. Monthly WMAPE for PRISM, Delta(W&M), Delta(CRU),
and Delta(GPCC) precipitation grids in the Oregon, USA test region,
using all GHCN station records for the years 1981–2009, inclusive.

Delta(GPCC) is not expected though, especially because
Oregon has the highest precipitation gauge density of all
six regions.

Figure 6 compares monthly WMAPE values aggre-
gated over all stations for the years 1981 through 2009.
It is evident that the Delta downscaled products’ largest
WMAPE values occur from June through September,
which are the driest months in Oregon, USA. Review-
ing the WMAPE formula in Table 1, greater WMAPE
values for the Delta data during these months indicate
that the size of the errors may remain constant whereas
the sum of the observed values for the month (i.e. the
WMAPE’s denominator) decreases. The difference in
monthly WMAPE values between the Delta downscaled
datasets highlights that choice of low-resolution dataset
in the Delta downscaling procedure significantly affects
the quality of the resulting dataset.

Although the summer errors in Oregon are significantly
higher than the winter errors, the effect of these errors on
a hydrological model may be less significant. Leibowitz
et al. (2011) and McCabe and Clark (2005) show that
precipitation in many regions of Oregon is an order of
magnitude greater for January than it is for July. Thus,
summer runoff is largely driven by winter precipitation
and spring–summer temperatures (Serreze et al., 1999;
Leibowitz et al., 2011).

Table 8. Aggregated statistics between WorldClim precipita-
tion grids and GHCN records for the Pakistan test region.
GHCN stations with non-adjusted (Non) records are distributed
throughout the region whereas those with adjusted data (Adj)
are only in the northern portion of the region, as shown in

Figure 3.

Metric Adj Non

# Stns 14 41
MAE (mm) 4.862 5.059
RMSE (mm) 10.349 13.705
MAPE (%) 41.230 26.118
WMAPE (%) 19.624 13.000
NSE 0.883 0.954

Table 9. Aggregated statistics between WorldClim mean tem-
perature grids and the 40 GHCN stations with adjusted records

within the Pakistan test region.

Bias (◦C) MAE (◦C) RMSE (◦C)

−0.115 0.662 0.969

5.2. Evaluation of WorldClim for Pakistan

Pakistan is chosen as the region to evaluate WorldClim
because it straddles the boundary where adjusted GHCN
precipitation records exist and because it is a region
of the world where WorldClim is the only source of
30-arcsecond climatologies. Section 5.2.1 establishes the
aggregated degree of correspondence between WorldClim
and GHCN records for the region. It is then shown
in Section 5.2.2 that the station delineated WMAPE
values between WorldClim and Delta(W&M) grids for
the region are strongly correlated.

5.2.1. WorldClim correspondence to GHCN

Tables 8 and 9 provide aggregated statistics highlight-
ing the similarity between the WorldClim 30-arcsecond
reference climatologies and the GHCN station records
for the Pakistan region. The statistical formulas are the
same as those used to assess the Delta time-series grids
(Sections 4.2 and 4.3), but the methodology for calcu-
lating the statistics is different because the WorldClim
grids are climatologies instead of time-series. In calcu-
lating the statistics, a given GHCN station is only used
if it has data for at least 75% of the time steps used
to produce the corresponding WorldClim climatology. If
this requirement is met for a given month of a station’s
records, the month’s records are averaged over the years
between 1950 and 2000, inclusive. Statistics are then cal-
culated between this spatially discrete GHCN climatology
and the relevant WorldClim climatology. The initial num-
ber of non-adjusted GHCN stations in the Pakistan region
is 97, which is reduced to 41 through the 75% time-step
threshold criteria.

In the case of non-adjusted GHCN precipitation
records, WorldClim performs slightly better than the
Delta(W&M) dataset (see Tables 8 and 4, respectively).
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In contrast, when compared to the adjusted GHCN
records, Delta(W&M) and WorldClim perform similarly
for both precipitation (see Tables 4 and 8, respectively)
and mean temperature (see Tables 5 and 9, respectively).
The fact that the aggregated errors for WorldClim and
the Delta grids are generally similar begs the question
of whether the discrepancies between WorldClim and
GHCN are directly correlated to the differences between
the Delta grids and GHCN data, which is discussed in
Section 5.2.2.

5.2.2. Correlation of WMAPE between WorldClim and
Delta(W&M)

The distribution of station delineated WMAPE values for
WorldClim and Delta(W&M) in the Pakistan region are
shown in Figure 7. The stations included for WorldClim
WMAPEs (Figure 7a) are those meeting the 75% criteria
described in Section 5.2.1. In the map of WMAPE
distribution for Delta(W&M) (Figure 7b) all stations
with records for the period 1981–2009 are included, as
these are the time-series elements reported in Section 4.2.
The WMAPE bins used in these maps are not uniform,
proceeding in increments of 8 up to 32%, with a large
fifth bin extending between 32 and 145%. This scheme is
chosen because the majority of station WMAPE values
are less than 32%, with a few extreme values of up to
145%.

WMAPEs in the 32–145% range are present for both
the adjusted and non-adjusted GHCN station records
and for both the WorldClim and Delta(W&M) datasets.
The majority of these large WMAPEs occur in northern
Pakistan where the terrain is very mountainous and
partially glaciated. There are also a few large WMAPE
values at station locations away from the Himalayas in
relatively topographically homogeneous areas. Although
the origin of these outlying WMAPEs is not known,
two plausible explanations are that they are artefacts
of the WorldClim data cleaning and adjustment process
or that they are related to the version of GHCN data
used by WorldClim. The paper describing WorldClim
was published in 2005 and states that version 2 of the
GHCN data are used. The current GHCN temperature
dataset is version 3.2 although version 2 is still current
for precipitation. As the aggregated statistical differences
between WorldClim and adjusted GHCN data are similar
for both precipitation and mean temperature, it seems that
the version of GHCN data used does not entirely explain
the difference between the two datasets. Regardless of
which explanation accounts for the differences between
the WorldClim and GHCN climatologies, the two datasets
have a similar spatial distribution, especially for stations
with WMAPE values of 32–145% (Figure 7(a) compared
to Figure 7(b)).

The hypothesis that there is a strong correspondence
between magnitude of station WMAPEs in the World-
Clim and Delta(W&M) datasets is confirmed by calculat-
ing the Pearson product–moment correlation coefficient
(often referred to as the r value) (Lee Rodgers and Nice-
wander, 1988), between station WMAPEs present in both

datasets. The r value is defined as

r =

n∑
i

(
Xi − X

) (
Yi − Y

)

√√√√
n∑
j

(
Xj − X

)2
n∑
k

(
Yk − Y

)2

, (1)

where n is the total number of elements being compared,
the two ordered sets are denoted by X and Y , and the
range of r is −1 to 1. All station delineated WMAPE
values in Figure 7(a) are compared to WMAPEs in
Figure 7(b), in cases where the station IDs match. The
resulting r value is 0.939, suggesting that, at least for
the Pakistan region, the spatial distribution of WMAPE
values present in the WorldClim climatologies are passed
on the Delta(W&M) data.

Evidence of a correlation between WorldClim and
the resulting Delta downscaled grids does not determine
whether it is desirable or undesirable for WorldClim to
deviate from GHCN records at specific station locations.
It does confirm, though, that the climate distributions
present in the high-resolution reference climatologies are
transferred to the Delta downscaled dataset. For regions
such as North America where there are multiple sources
of high-resolution climatologies, it is valuable to ensure
a physically accurate climatology is used. For other
regions, where WorldClim is the only option, it should
at least be noted that the effects present in WorldClim,
both good and bad, will significantly impact the resulting
Delta downscaled grids.

From inspecting the figures of station distribution and
cross-validation errors for WorldClim in Hijmans et al.
(2005b), it is evident that there is not an obvious rela-
tionship between station density and dataset performance.
The reason is that other factors such as elevation, aspect,
and proximity to a large body of water also affect local
climate (Daly et al., 2008). Therefore, while maps of rel-
ative station density (such as Figure 1) may help inform
a dataset user, other metrics such as cross-validation of
the dataset are also worth considering. Maps of cross-
validation are available for WorldClim and the gridded
time-series datasets utilized as inputs herein, but are
not produced for the resulting Delta data because cross-
validation is primarily applicable when gridded data are
being derived from station data.

6. Conclusion

The 30-arcsecond Delta(W&M), Delta(CRU), and
Delta(GPCC) monthly precipitation and mean tem-
perature datasets presented here are open source and
available for all global land surfaces, with a usable
temporal resolution extending back to at least 1950.
Considering the set of six test regions, the Delta(W&M)
dataset outperforms both Delta(CRU) and Delta(GPCC)
in most cases. For the case of temperature, both Delta
downscaled datasets perform well for all regions, with
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(a) (b)

Figure 7. Station delineated WMAPE for precipitation in the Pakistan test region. (a) WorldClim WMAPE at GHCN stations for which at least
75% of the time-series records used in WorldClim are present. (b) Delta(W&M) WMAPE at all stations where any GHCN records are present.
Glacier outlines are from GLIMS (Armstrong et al., 2012; Raup et al., 2007) and the Digital Elevation Model (DEM) is from the WorldClim

data portal (Hijmans et al., 2005a).

MAE values less than 0.7◦C for all regions except
Argentina. The regional statistics validate the Delta
downscaling method as a tool for increasing the spatial
resolution of gridded meteorological data while main-
taining the desirable features of both the low-resolution
time-series and high-resolution reference climatology
inputs. In addition to considering the performance of
the Delta grids relative to GHCN station data, users
should also be aware of the relative station density
and physiographic heterogeneities within their region of
interest.

Improvements to the Delta method are of course pos-
sible and do impact the resulting data’s performance.
For example, using Oregon, USA as a test region it is
shown that interpolating the anomaly grid with PCHIP
results in better performance than using either bilinear
or cubic spline interpolation. All of the Delta down-
scaling variations, though, are shown to be superior to
directly interpolating the 0.5 degree resolution time-series
data to the 30-arcsecond grid. For mean monthly temper-
ature, both the Delta(W&M) and Delta(CRU) datasets
are shown to perform slightly better than PRISM when
compared to GHCN station records. In the case of precip-
itation, Delta(W&M) performs significantly better than
Delta(CRU) and Delta(GPCC) but worse than PRISM.

The spatial distribution of WMAPE values for the
WorldClim grids corresponds strongly to WMAPE values
for the resulting Delta(W&M) grids in Pakistan. World-
Clim is the only dataset of 30-arcsecond climatologies
available for all global land surfaces; yet, the World-
Clim climatologies are purported by Daly et al. (2008)
to inaccurately represent windward and leeward precip-
itation. Thus, a significant limitation to improving the
Delta downscaled precipitation data performance may
be the availability of a more physical representative set
of 30-arcsecond reference climatologies. Without World-
Clim though, the Delta downscaled datasets discussed
herein would not be possible for much of the Earth’s

land area. If another set of 30-arcsecond global clima-
tologies becomes available, it will be straightforward to
incorporate the new (or updated) climatologies into the
Delta downscaling tool described herein.

Existence of a single source of 30-arcsecond pre-
cipitation and mean temperature grids is a signifi-
cant addition to the research community because it
allows groups to focus more resources on uses of the
data rather than on producing the data themselves.
The programme and inputs to create the Delta down-
scaled datasets described herein are freely available at
http://www.globalclimatedata.org. The authors’ hope is
that as improvements to the dataset become possible, they
will be implemented and the work will continue to be
freely distributed; however, the Delta(W&M) dataset is
already a strong resource for parties whose work requires
high-spatial resolution monthly precipitation and mean
temperature data.
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