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ABSTRACT

The Inverse Ocean Modeling (IOM) system constructs and runs weak-constraint, four-dimensional varia-
tional data assimilation (W4DVAR) for any dynamical model and any observing array. The dynamics and
the observing algorithms may be nonlinear but must be functionally smooth. The user need only provide the
model and the observing algorithms, together with an interpolation scheme that relates the model numerics
to the observer’s coordinates. All other model-dependent elements of the Inverse Ocean Modeling assim-
ilation algorithm (see both Chua and Bennett), including adjoint generators and Monte Carlo estimates of
posteriors, have been derived and coded as templates in Parametric FORTRAN (Erwig et al.). This
language has been developed for the IOM but has wider application in scientific programming. Guided by
the Parametric FORTRAN templates, and by model information entered via a graphical user interface
(GUI), the IOM generates conventional FORTRAN code for each of the many algorithm elements,
customized to the user’s model. The IOM also runs the various W4DVAR assimilations, which are moni-
tored by the GUI. The system is supported by a Web site that includes interactive tutorials for the
assimilation algorithm.

1. Introduction

Variational assimilation of real observations into
numerical models has emerged as an essential activity
in meteorology and oceanography. Early studies in-
clude Talagrand and Courtier (1987), Courtier and Ta-
lagrand (1987), Bennett and McIntosh (1982), and
McIntosh and Bennett (1984); recent texts are Tala-
grand (2008), Lewis et al. (2006), and Bennett (1992,

2002). Major meteorological activities include the
weak-constraint, four-dimensional variational data as-
similation (W4DVAR) atmospheric operational analy-
ses at the European Centre for Medium Range
Weather Forecasting (ECMWF; see http://www.ecmwf.
int/products/forecasts/guide/The_four_dimensional_
data_ assimilation_4DVAR.html) and at the U.S. Na-
val Research Laboratory (NAVDAS–AR; Xu et al.
2006). A major oceanographic assimilation activity is
the Estimating the Circulation and Climate of the
Ocean (ECCO) oceanic research analysis at the Scripps
Institution of Oceanography (http://ecco.ucsd.edu/).
These variational analyses are, in effect, constrained
least squares regressions. The minimized value of the
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least squares estimator is in fact the conventional sig-
nificance test statistic for the hypothesized means and
covariances (the priors) for the errors in a model, along
with its initial conditions, boundary conditions, and the
data (see, e.g., Bennett et al. 1998, 2000, 2006).

While the value of variational assimilation is widely
acknowledged, its widespread adoption has been ham-
pered by the need to develop great amounts of software
beyond that involved in a conventional forward model.
The mostly commonly cited labor is the development
and coding of the so-called adjoint model, but many
other algorithmic elements must also be developed,
coded, and intricately linked.

The Inverse Ocean Modeling (IOM) system mini-
mizes the effort required for W4DVAR. The IOM
minimization algorithm is an iterated implementation
of the “indirect representer method” (Bennett and
Thorburn 1992; Egbert et al. 1994) or “dual-adjoint
method” (Amodei 1995). For detailed presentations of
the algorithm, see Courtier (1997), Chua and Bennett
(2001), or Bennett (2002).

Development of the IOM system has been guided by
experiences gained while implementing the IOM algo-
rithm for a variety of contemporary ocean models:

(i) Advanced Circulation Model (ADCIRC; see
http://www.nd.edu/˜adcirc/), a finite-element shal-
low-water model, presently used operationally for
storm surge forecasting by the U.S. Navy Oceano-
graphic Office (NAVO), the U.S. Army Corps of
Engineers, and the U.S. Federal Emergency Man-
agement Authority (FEMA);

(ii) Primitive Equation Z-Coordinate Model (PEZ),
an efficient coding of the free-surface Bryan and
Cox model, used for inverse modeling of ENSO
phenomena (after Bennett et al. 2006) and for har-
monically analyzed internal tides over the Hawai-
ian Ocean Ridge (Zaron and Egbert 2006);

(iii) Regional Ocean Modeling System (ROMS; see
http://www.myroms.org/), a general purpose com-
munity model in widespread use; and

(iv) Spectral Element Ocean Model (SEOM; see http://
marine.rutgers.edu/po/index.php?model�seom), a
shallow-water model with advanced numerics.

These codes and their numerics might be described as
either “legacy” (ADCIRC), “classic” (PEZ), “mature”
(ROMS), or “prototypical” (SEOM). Each presented
unique problems to the IOM, and so the flexibility of
the latter has been well established. A companion pa-
per (Muccino et al. 2008) describes experiences using
the IOM with the models (i)–(iv) above.

The user operates the IOM via a graphical user in-
terface (GUI). An extensive IOM user manual (Ben-

nett et al. 2007) is available at the IOM Web site (http://
iom.asu.edu), illustrating the software protocols and
Network Common Data Format, Input/Output
(NetCDF I/O) conventions using several simple ocean
models. The user need not know the IOM template
language (Parametric FORTRAN; Erwig and Fu 2004;
Erwig et al. 2006, 2007), in which key components of
the IOM have been written. However, there are a few
simple Parametric FORTRAN commands that greatly
empower the user. Inserting these commands, with
user-selected parameters, into the FORTRAN 90 code
for the ocean model or the observing sensor converts
those codes to Parametric FORTRAN. The com-
piler for Parametric FORTRAN then generates the
FORTRAN 90 code for either the tangent linearization
or the adjoint, as required.

The contents of this introductory description of the
IOM are as follows:

• The IOM minimization algorithm reviews the state of
data assimilation methodology, updating the discus-
sion in Chua and Bennett (2001).

• The IOM algorithm—a sketch outlines the math in
the barest of terms, for a trivial model. Flow charts in
later sections support this brief summary. References
are provided for the reader seeking further details.

• What the user must provide is a list in the broadest of
terms. It will be seen that IOM advancements have
massively reduced the effort required by the user,
especially for the development of the auxiliary mod-
els (tangent linear and adjoint) and the preparation
of community data [Argo, Global Drifter Program,
National Centers for Environmental Prediction
(NCEP) Global SST Analysis, Jason-1, and Tropical
Atmosphere Ocean/Triangle Trans-Ocean Buoy Net-
work (TAO/TRITON)].

• What the IOM will do for the user emphasizes auto-
matic code generation, the management of computa-
tions, and the preparation of data.

• The IOM Web site is the user’s first contact with the
IOM, and so a moderate level of detail is included
here.

• The Summary comments on the broader advantages
of rationalizing the development of software for oce-
anic and atmospheric analysis, and the power of mod-
ern information technology to that end.

2. The IOM minimization algorithm

a. Preamble

The minimization algorithm for the Inverse Ocean
Modeling system is the iterated, indirect representer
algorithm. The system of Euler–Lagrange (EL) equa-
tions for extrema of a penalty functional is solved in
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two stages. The first is a Picard iteration that yields a
sequence of linear systems of Euler–Lagrange equa-
tions (Bennett and Thorburn 1992). The second is an
indirect solution of each linear system (Egbert et al.
1994; Amodei 1995). The complete details of the algo-
rithm may be found in Chua and Bennett (2001) and
Bennett (2002). A mathematical “sketch” is provided in
section 3 below. The choice of algorithm is reviewed
and justified here in light of the latest experience in
data assimilation.

The IOM is modular: it accepts any functionally
smooth model and any functionally smooth measure-
ment functional (the mathematical transformation that
extracts a single number from an ocean state). This
modularity presents many mathematical and software
engineering challenges. Consequently, the IOM was de-
signed to support only one formulation of the data as-
similation problem, namely, W4DVAR. All of the con-
straints including the data, the initial values of the
ocean state, the boundary values of the state, the ex-
ternally imposed stresses, and the dynamical equations
themselves are imposed only weakly. That is, the ocean
state estimate is only a weighted, least squares best fit
to any constraint. Each weight is chosen inversely to the
hypothesized error covariance for the constraint. It may
be noted that in the so-called strong-constraint formu-
lation, the numerically approximated dynamics are sat-
isfied exactly. Of course, the strong formulation is a
special case for the IOM, in which the dynamics are
given arbitrarily large weights (vanishingly small dy-
namical error variances). The IOM minimizes the
weighted least squares fit or “cost” or “penalty” func-
tional by the iterated, indirect representer algorithm.
The IOM also makes available several key indicators of
sensitivities.

The W4DVAR scheme is an example of a fixed-
interval smoother defined by a penalty functional.
Again, the IOM minimizes the penalty functional in
two stages. The first stage (the “outer iteration”) ad-
dresses any nonlinearity in the dynamics or the mea-
surement functionals by replacing the original penalty
with a sequence of penalties. Each penalty in the se-
quence is quadratic in the ocean state. The replacement
is typically achieved by a tangent linearization of the
model dynamics and the measurement functionals as
necessary, or more generally by any user-selected lin-
earizing Picard iteration. For a recent example, see
Muccino and Luo (2005). The second stage of the IOM
algorithm finds the unique solution of the linear Euler–
Lagrange problem for the minimum of a quadratic pen-
alty. The linear solution exploits an analysis in terms of
the M representers, where M is the number of obser-
vations, but unlike the original “direct representer” so-

lution, the IOM solution does not require that all the
representers be calculated explicitly. Rather, the solu-
tion is found indirectly (the “inner iteration”) with ap-
propriate accuracy (�1%) and with far less computa-
tion (KM/100 model integrations). The IOM also pro-
vides offline Monte Carlo or ensemble estimates of
posterior error statistics.

The choice of minimization algorithm is a secondary
consideration, relative to the scientific formulation of
the penalty and the scientific interpretation of the re-
sult. Yet, choosing an inefficient algorithm can enforce
scientifically unsatisfactory compromises in both for-
mulation and interpretation. We have repeatedly heard
it stated that “there is no one best choice of data as-
similation method.” Fortunately, this statement has not
entirely suppressed careful investigations of method.
Recent investigations include Ngodock et al. (2006) and
Zaron (2006).

b. Data assimilation

It now seems widely agreed that this imprecise term
refers to the estimation of the state of the atmosphere
or ocean during some time epoch, using dynamics and
observations as constraints. The dynamics need not
constitute a complete forecast model, and not every
state variable need be observed. It is necessary that the
choice for every control variable be penalized in some
sense (e.g., Bennett and Miller 1991).

There are two major motivations for data assimila-
tion. The first motivation is initializing real dynamical
forecasts, possibly including the tuning of dynamical
parameters. The resulting ocean state estimate is of in-
trinsic scientific interest, but only so long as it is cred-
ible. The second motivation is, therefore, the scientific
testing of dynamical models together with the associ-
ated statistical hypotheses concerning errors. Success in
the second undertaking builds confidence in the first.
Quantitative assessments of the efficiency of the ob-
serving system can be extracted from most data assim-
ilation methods, but the credibility of these assessments
also depends upon the validity of the underlying error
hypotheses.

c. Weak constraints

The IOM allows all constraints to be weak: errors are
admitted in all information or, expressed another way,
the state estimate is allowed to leave residuals in each
constraint. The IOM assumes that the errors are jointly
normally distributed. Thus it requires that only the first
and second moments of the error fields be hypoth-
esized. It is a disturbing reflection upon our knowledge
of atmospheric and oceanic physics that we all find even

1610 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 25



the rough estimation of errors in subgrid-scale param-
eterizations so difficult.1 Error statistics for observa-
tions are much better known and are as a rule very
much smaller, in relative terms.2 The number of com-
putational degrees of freedom in W4DVAR for a real-
istic model can be huge (�109). The effective number is
far less if it is hypothesized that the error fields are
widely correlated. In general, however, the number of
computational degrees of freedom far exceeds the num-
ber of observations (�106).

In the literature, an assimilation scheme is often de-
scribed as a “strong-constraint” scheme if no errors are
admitted in the dynamics. The remaining control vari-
ables include the residuals in the observations them-
selves, in the initial fields, in any lateral boundary data,
in the dynamical parameters and, for ocean models, in
the surface fluxes. If the observations lie in a time in-
terval that is considerably shorter than the evolution
time scales of the dynamics or the surface fluxes, then
the dynamical residuals are less important than the ini-
tial residuals. That is, the difference between weak- and
strong-constraint assimilation is indistinct. On the other
hand, it has been compellingly remarked that modify-
ing the synoptic-scale initial analysis could hardly com-
pensate for subsequent errors in a convective adjust-
ment scheme (R. Elsberry 2001, personal communica-
tion).

d. Four dimensions

This glamorous-sounding terminology does not indi-
cate the entry of advanced physics into meteorology
and oceanography; rather, it indicates the very unglam-
orous and complicating fact that errors in observations,
dynamics, surface fluxes, initial conditions, and lateral
boundary data, as badly as these errors are known,
show significant correlation in time. Accordingly the
estimator or penalty functional for these errors should
integrate over time as well as space. The resulting esti-
mate of the instantaneous state will be influenced not
only by synoptic observations, but also by observations
before and after that instant.

e. Selection of minimization algorithm

Assuming the penalty functional for the assimilation
problem has been soundly formulated (in this case

defining a fixed-interval smoothing problem with all
controls penalized), it remains to minimize that penalty.
There are all-purpose methods such as simulated an-
nealing, which require only that the penalty be
bounded from below. These methods come into their
own for highly nonlinear or nonsmooth problems of
relatively small size. Relying upon “brute force”
searches, the methods exploit virtually no information
about the structure of the minimization problem, and
so are not competitive for major data assimilation.

Fortunately, it may be assumed without great loss of
generality that for data assimilation,

(i) the penalty is quadratic in the residuals, and
(ii) the penalty is smooth in state space, having a clas-

sically well-defined gradient and also a classically
well-defined Hessian form.

If the dynamics or the measurement functional are non-
linear, then the penalty is not quadratic with respect to
the state. However, as a consequence of the assumed
smoothness of the penalty, there are tangent lineariza-
tions of the constraints that render the penalty qua-
dratic. Moreover, if the penalty is smooth then the gra-
dient may be efficiently constructed, using the opera-
tors that are adjoint to the linearized dynamics and
measurement functionals. The adjointness is defined
with respect to the quadratic penalty. From the control-
theoretic perspective, smoothness enables the calculus
of variations.

Four minimization algorithms are briefly described
below, two of which use gradient information.

1) TRACKING ALGORITHMS

The smoothing problem, that is, the solution of the
Euler–Lagrange equations for the minimum of the pen-
alty, may be found using the Reich–Tung–Streibel
(RTS) algorithm (e.g., Gelb 1974; Bennett 1992;
Wunsch 1996). It is first necessary to linearize the prob-
lem with an outer iteration. The dynamics must then be
augmented, so that each scalar component of the tem-
porally colored system noise (temporally correlated dy-
namical error) is a new state variable. The new variable
is forced to obey Langevin dynamics having a relax-
ation time equal to the decorrelation time. The Lan-
gevin dynamics are forced by temporally white noise.
The RTS algorithm has two stages. The first is the com-
putation of the Kalman filter, including the “forward”
propagation of the filter error covariance matrix. Next,
this evolving matrix must be inverted at the end of the
smoothing interval, and then the inverse matrix must be
propagated backward to the beginning of the interval.
The RTS algorithm has been applied to plane quasi-
geostrophic dynamics at moderate resolution (Bennett

1 It seems prudent in general to estimate that the magnitude of
the error is comparable to the magnitude of the flux being pa-
rameterized, that is, the parameterization error is 100%.

2 It is usually dynamically consistent to low-pass filter the ob-
servations prior to assimilation; such filtering can reduce error
variance considerably, and should be done.
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and Budgell 1989), but is not feasible even today for
major assimilation with full dynamics. The computa-
tions may be greatly reduced by computing the covari-
ances at far less resolution than the state (e.g., Fuku-
mori and Malanotte-Rizzoli 1995), but such economies
apply equally well to all other candidate methods men-
tioned here. The Kalman filter by itself is unsatisfactory
as a partial solution to the smoothing problem, not sim-
ply because it is significantly suboptimal until the final
instant and provides no estimate of the dynamical er-
ror, but because of the emergence of bizarre spatial
structures near the observing sites.3 These structures
are consequences of the sequential nature of the Kal-
man Filter, and the nonlinear dependence of the pos-
terior error covariance matrix on the prior covariance
matrix at each assimilation step (Bennett and Budgell
1987; Bennett 1992, 2002). A single fixed–interval
smoother, covering the same time interval as the filter,
has no such bizarre structure (Bennett 2002). However,
fixed-interval smoothers run the same risk when ap-
plied cyclically to operational forecasting. As is the case
at each assimilation time in the Kalman filter algorithm,
the posterior error covariance matrix at the end of a
cycle or smoothing interval becomes the prior error
covariance matrix at the beginning of the next cycle
(Bennett 2002).

2) ENSEMBLE ESTIMATION

The first two moments of the error fields must be
specified for any least squares estimation method.
Given this information, it is straightforward to combine
a pseudorandom number generator and a square root
filter in order to synthesize samples of the error popu-
lation. A forward integration of the original linear or
nonlinear model, forced by the pseudorandom syn-
thetic error field, yields a sample of the random state.
Sample moments of the synthesized states yield statis-
tics such as the “measured” values of the Kalman filter
error covariance matrix, or the complete set of repre-
senters.4 It is thus feasible to construct approximate
filters (Evensen 1994) and approximate smoothers
(Bennett 1992). Especially worthy of note are (i) the
recent text by Evensen (2006) with accompanying
modular software for ensemble Kalman filtering, and
(ii) the Data Assimilation Research Test Bed (DART),
which is freely available modular software also for en-
semble Kalman filtering (http://www.image.ucar.edu/

DAReS/DART/). The issue of course is the number of
samples needed for stable estimates of the state.5 Tests
with baroclinic models, in which the representer esti-
mate is computed using samples and also variational
methods (i.e., by solving the Euler–Lagrange equations,
which are in fact equations for second moments), make
clear that many hundreds of samples are needed for
even a rough approximation to the state (Bennett
2002). It is elementary statistical theory for normal dis-
tributions (e.g., Brunk 1965, p. 232) that the relative
standard deviation in a sample estimate of a second
moment is approximately �2/K, where K is the num-
ber of independent samples. It is almost always the case
in practice that at most one hundred samples are syn-
thesized, thus the population is underexplored. This can
be immediately investigated, without making model in-
tegrations, by comparing sample moments of the syn-
thesized error fields to the hypothesized moments. The
sample variance is typically much smaller than the hy-
pothesized or population variance.

The great attraction of Kalman filters, RTS
smoothers, and ensemble estimation schemes is that
they do not need gradient information, and so do not
require adjoint operators. Yet we know of no national
weather service that is using either a Kalman filter or an
ensemble method for operational data assimilation,
rather than synoptic optimal interpolation as described
for example by Daley (1991).

3) STATE SPACE SEARCHES

This method is conceptually simple and very popular.
It is expedited by the widespread availability of codes
for preconditioned conjugate gradient searches. In-
deed, the method is so popular that four-dimensional
data assimilation with state space searches and strong
dynamical constraints is usually referred to as
“4DVAR” or the adjoint method. See especially Tala-
grand and Courtier (1987) and Courtier and Talagrand
(1987). Note the specific selections of formulation
(strong constraints), and of methodology (gradient
search in state space). As with any search method, the
dimension of the search space is critical, as is the con-
ditioning of the Hessian form. The dimension, N, of the
state space is huge in real problems. Inefficient precon-
ditioning is usual, leading to stalling of the search far
from the minimum (Zaron 2006). Such stalling can be
overcome by exploiting second-order derivative infor-
mation, as may be found in the Hessian for the full

3 This phenomenon of “lock on” bedevils engineers’ tracking
calculations in general.

4 It may be remarked in passing that these two structures are
identical in size.

5 Fewer are needed for satisfactory approximations to posterior
diagnostics, so long as these diagnostics do not influence subse-
quent state estimates.
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penalty or a partial penalty (Le Dimet et al. 1997;
Zaron 2006). Exploiting the Hessian is very difficult
and computationally intensive, but has proved to be
remarkably effective for some simplified yet still inter-
esting problems. The minimum penalty, which may be
directly computed for these linear problems using rep-
resenters, is actually attained by the second-order or
quasi-Newtonian search (Zaron 2006). Nevertheless,
such an extremely complex search is much more costly
than the direct representer algorithm, and so is not at all
competitive (Zaron 2006) with the indirect representer
algorithm. Indeed, the last mentioned is sufficiently
economical to allow sufficiently many outer iterations,
should the inversion problem be nonlinear.

State space searches have largely been restricted to
strong-constraint assimilation. That is, the number of
control variables is actually the dimension of the initial
state plus, in some instances, that of time-dependent
ocean surface fluxes, or of lateral boundary conditions,
or the number of uncertain dynamical parameters such
as eddy viscosities. In any case, the dimension is far
smaller than that of the time-dependent state or “tra-
jectory.” Principal examples of strong-constraint data
assimilation by state space searches are the ECMWF
4DVAR system (see http://www.ecmwf.int/newsevents/
training/) for the initialization of global numerical
weather prediction, and the ECCO 4DVAR system
(see http://www.ecco-group.org/) for the analysis of
general circulation of the global ocean.

A difficulty with state space searches is the apparent
need to invert the hypothesized error covariance ma-
trices. Such inversions are unfeasible in general, even
for strong-constraint assimilations if they are of realistic
size. The remedy is to redefine or “prewhiten” the error
fields by scaling with the square root matrices (Courtier
1997). The covariance matrices for the prewhitened
fields are then diagonal. The optimal estimates of the
unscaled errors are recovered from the optimal esti-
mates of the prewhitened errors, by multiplication with
the square root matrices. Such multiplications are com-
putationally intensive but feasible; indeed, the IOM
performs similar tasks. It would be simpler to assume
diagonal matrices in the first place, that is, spatially
uncorrelated initial errors (strong-constraint assimila-
tion) and spatiotemporally uncorrelated dynamical er-
rors (weak-constraint assimilation). The matrix inver-
sions would then of course be trivial, but the resulting
optimal estimates of errors would in general be unac-
ceptably finely structured near observing sites (e.g., Za-
hel 1991). The mathematics of this unphysical fine
structure is well understood (Wahba and Wendelberger
1980; Bennett and McIntosh 1982).

4) DATA SPACE SEARCHES

The Sherman–Morrison–Woodbury algorithm (Dun-
can 1944; Riedel 1991) establishes that the least squares
estimation of N correlated real scalars, given the values
of M linear combinations of the scalars with M � N, is
reducible to solving an M � M linear system. That is,
the best fit lies in an M-dimensional subspace of the
N-dimensional state space. The M � M system matrix
need not be known explicitly; it suffices (see section 3
and the appendix) to be able to calculate the action of
the matrix on any vector of length M. The calculation
enables a gradient search within the subspace. The con-
dition number of the matrix determines the search ef-
ficiency, and assuming a larger error variance in the M
“observations” improves the stability of the matrix.6

Preconditioning the search in the subspace is a vastly
smaller task than preconditioning the state space
search.

The representer algorithm is an instance of the Sher-
man–Morrison–Woodbury algorithm. The M � N
structure appearing in the former consists of the M rep-
resenters of length N; these may be calculated using the
Euler–Lagrange equations. The columns of the M � M
matrix (the “representer matrix”) are the values of the
M linear functionals, or measurements, of the repre-
senters. The IOM provides a suite of preconditioners
for the search in the data subspace.

By implementing the search in the data subspace, the
indirect representer algorithm (Egbert et al. 1994) or
dual-adjoint algorithm (Amodei 1995) precludes the
need to calculate all the M representers. The resulting
gains in efficiency are enormous (e.g., Bennett et al.
1996, 1997). Bennett et al. (2006) report needing only
30 search steps (each of one backward integration, one
space–time convolution, and one forward model inte-
gration) for N � 108, M � 2000, while Xu et al. (2005)
and Rosmond and Xu (2006) report needing only 50
steps for N � 4 � 106, M � 4 � 105.

It must also be stressed that even a direct application
of the Sherman–Morrison–Woodbury algorithm has no
need for the inversion of an N � N matrix, where N is
the dimension of the state space. Indeed, that is the
benefit of the algorithm.

The Sherman–Morrison–Woodbury algorithm and
its elaborations exploit linearity. They may be applied
to least squares estimation problems having nonlinear
constraints, by the formal application of a Picard itera-

6 However, the observational error variance should not be kept
artificially large, by failing to filter the observations for variability
owing to dynamical processes not included in the ocean model.
Moreover, assimilating severely aliased data can never be justi-
fied.
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tion scheme such as tangent linearization (Bennett
2002). Bennett et al. (2006) make 4–6 such outer itera-
tions, for a total of 120–180 inner iterations or data
space search steps. There are, as a rule, no convergence
proofs for the outer iterations applied to realistic for-
ward dynamics and adjoint dynamics. Such proofs would
also establish the elusive classical well posedness of the
forward equations of fluid dynamics in space. There are,
however, empirically successful accelerators for conver-
gence of the outer iterations (Ngodock et al. 2000).

The full development of the IOM minimization algo-
rithm may be found in Chua and Bennett (2001), and
the reader must be referred there for further detail. The
next section offers a brief sketch of the IOM algorithm.

3. The IOM algorithm—A sketch

As stated in the previous section, the IOM algorithm
is the indirect representer algorithm (Egbert et al.
1994), or dual-adjoint algorithm (Amodei 1995; Court-
ier 1997), applied iteratively to nonlinear dynamics and
observing systems. The algorithm is now well known to
meteorologists either as an “observation space search”
or, less clearly, as a “physical space search.” Indeed, it
is nearly three decades since representers were bril-
liantly exploited for synoptic optimal interpolation (to-
day’s 3DVAR) by Wahba and Wendelberger (1980).
The mathematics for dynamically constrained repre-
senters have now been given in detail in many places
(e.g., Courtier 1997 or Bennett 2002). The details are
extensive for even a shallow-water model; in view of the
limited space available here, only the following sketch
can be offered.

Consider as an “ocean model” the ordinary differen-
tial equation (ODE)

d

dt
u�t� � F �t� �1�

over the “domain” 0 � t � T, subject to u(0) � I, where
F(t) is a specified function and I is a specified constant.
There is a unique solution u � uF(t) over the domain.
Now introduce M measurements of the “real ocean
state” u(t): d1, d2, . . . , dM, taken at times tm, 1 � m �

M, where 0 � tm � T. In general, the unique solution of
the ODE does not agree with the data, that is, uF(tm) �
dm for some m. It must be assumed that there are errors
in the forcing F(t), in the initial value I, and in the data
d1, . . . , dM. A simple, weighted least squares estimator
for the errors is

J	u
 � VF
�1 �

0

T �du

dt
� F�2

dt � VI
�1�u�0� � I�2

� Vd
�1 


m�1

M

�u�tm� � dm�2, �2�

where the specified constants VF, VI, Vd are error vari-
ances. Then J[û] is least if û(t) and the auxiliary variable
�(t) together satisfy the Euler–Lagrange equations

dû

dt
� F � VF�, �3�

�
d�

dt
� Vd

�1 

m�1

M

�dm � û�tm����t � tm�, �4�

subject to �(T) � 0 and û(0) � I � VI�(0). Equation
(4) is the “adjoint” of Eq. (3) and �(t) is the weighted
residual or adjoint variable. Clearly, û and � are linear
combinations of the responses of the coupled system
(3), (4) to the individual delta function impulses in (4);
that is, they are linear combinations of representer
functions and their adjoint variables, respectively. The
M impulse coefficients V�1

d (dm � û(tm)), (m � 1, . . . ,
M) appearing on the right-hand side of (4) constitute
the “coupling vector.” Owing to the presence of the
û(tm) (the M unknown measurements of û(t)), the cou-
pling vector is unknown and Eq. (4) cannot be inte-
grated backward from t � T before integrating (3) for-
ward from t � 0. Rather, the EL equations form a
two-point boundary value problem in the time interval
0 � t � T. This highly complicated implicit problem is
resolvable, that is, the solution can be calculated in a
finite number of explicit steps. It has been shown (e.g.,
Bennett 2002) that the components of the unknown
coupling vector satisfy an M � M system of linear equa-
tions, having a coefficient matrix (the representer ma-
trix) that depends linearly upon the specified error vari-
ances VF, VI, Vd. It also depends upon the dynamics
(just d/dt here), the domain (just 0 � t � T here), and
the observational array (just the measurement times tm
here). The details may be found in the appendix. Once
the linear system is solved for the coupling vector, the
adjoint variable � may be found with one backward
integration, and then the optimal estimate û(t), (0 � t �
T) follows with one forward integration. Explicit con-
struction of the symmetric, positive-definite repre-
senter matrix requires M pairs of integrations, which
may be carried out simultaneously given M processors
(Bennett and Baugh 1992). The final pair of integra-
tions is a standard “open loop control” (e.g., Wunsch
1996).

Alternatively (Egbert et al. 1994; Amodei 1995), the
coupling vector may be found iteratively without ex-
plicit construction of the representer matrix. It suffices
to know a search direction in the M-dimensional data
subspace. The direction is given by the action of the
matrix upon an arbitrary M-component vector; the ac-
tion may be computed with one pair of integrations.
The details may also be found in the appendix. An
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accurate approximation to the coupling vector is usu-
ally obtained with about M/100 integration pairs. The
indirect algorithm is no more than an iterative applica-
tion of open loop control (Wunsch 1996).

Note that the search for the best-fitting continuous
function of time û(t) over 0 � t � T has been exactly
reduced to a search for the M real components of the
coupling vector. This massive first preconditioning of
the search in function space or state space has been
affected by restricting the search to an M-dimensional
subspace of observable degrees of freedom, the “data
subspace.” A vast and unobservable null subspace has
been suppressed (Wahba and Wendelberger 1980;
Bennett 1985, 1992). The state u(t) is unobservable if
u(tm) � 0, for 1 � m � M. The search in the data
subspace may be further preconditioned by explicit
construction of economical approximations to the rep-
resenter matrix. The IOM includes the infrastructure
for controlling this so-called inner iteration in the data
subspace. It also includes a suite of preconditioners; the
user makes a selection via the GUI. The overall pre-
conditioning of this fitting algorithm is unequalled by
any other feasible approach (Zaron 2006). Finally, The
IOM calculates the leading eigenvectors of the repre-
senter matrix indirectly, using the Lanczos Connection
(Golub and Van Loan 1989, p. 522). These eigenvectors
determine the most stably observable states. That is,
they yield a quantitative assessment of the efficiency of
the observing array or system.

In realistic inverse models, point measurements may
be replaced with spatial or temporal averages. Also, the
constant variances VI, VF may be replaced with inho-
mogeneous covariances over space or space–time, re-
spectively, according to our prior assumptions about
the errors in the forward ocean model. Thus, products
with the adjoint variable � must be replaced with (fast)
convolutions over space and space–time. As discussed
in section 4, the IOM includes fast convolvers for cer-
tain commonplace correlations. The IOM can estimate,
if so required, all posterior error covariances for all
quantities with adequate accuracy using offline Monte
Carlo methods.

We wish to emphasize that the IOM not only pro-
vides a dynamically constrained estimate of ocean state,
it also provides an objective test of the hypothesized
error statistics (exemplified here by VF, etc). Indeed,
the quantity J[û], which is the minimal value of the
weighted least squares estimator defined in Eq. (2), is
the test statistic for the hypothesis, and is in fact the
standard random variable �2

M if the hypothesis is cor-
rect.

As a final remark, note that the above sketch makes
no distinction between errors in the “ocean dynamics”

d/dt and in the specified forcing F(t). These errors may
be distinguished by the introduction of additional state
variables (Jacobs and Ngodock 2003), but the addi-
tional effort is only justifiable if the user is confident
that the two kinds of error have different statistics.

The preceding sketch of the IOM algorithm is inten-
tionally simple, and all modelers will realize that much
detail is involved if the model is realistic. The code
generating capability of the IOM absolutely minimizes
the coding that must be carried out by a user, over and
above the user’s forward model, while the IOM GUI
prompts the user for all the scientific and computa-
tional information required for the user’s choice of par-
tial or complete inversion. The user may choose, in the
simplest extreme, just a forward integration and com-
parison with the user-supplied data, or in the other ex-
treme an inversion with all diagnostic and posterior sta-
tistics.

4. What the user must provide

The following is a brief description of the prepara-
tions that an IOM user must make:

1) The IOM is not a black box. The user must have a
complete command of the scientific principles in-
volved in formulating a quadratic penalty functional
for the estimation of ocean state. The estimator is
maximum likelihood for the errors in the ocean dy-
namics, the external forcings, and the observations.
The errors are assumed to be jointly normally dis-
tributed. The user must also be completely familiar
with the mathematics of oceanic and atmospheric
state estimation in general, and the IOM algorithm
in particular. The articles by Courtier (1997) and
Chua and Bennett (2001) outline the scientific and
mathematical concepts; pedagogical presentations
may be found in the graduate text by Bennett (2002)
and in the interactive online instruction facility on
the IOM Web site (http://iom.asu.edu). The IOM
includes a suite of tutorial models.

2) The user must of course provide an ocean model. In
our experience, these consist of a run script that
starts an executable. The latter is compiled source
code that drives a subroutine, which in turn ad-
vances the ocean state by one time step. The driver
calls the subroutine for a desired number of time
steps. The driver also effects input and output, usu-
ally in the NetCDF format required by the IOM.
The user of the IOM must modify this driver to
include a flag that selects the forcing, initial condi-
tions, and boundary conditions according to the
stage of the IOM algorithm. Examples of modified
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drivers may be found in the IOM user manual (Ben-
nett et al. 2007). An essential feature of the IOM is
that the user does not have to reorder the model’s
independent and dependent variables (i.e., the order
of the loops over the grids, e.g.); the IOM imposes
no protocol for loop ordering. The IOM GUI
prompts the user to provide the details of the mod-
el’s numerical structure (such as the loop ordering),
and the IOM then automatically generates a suite of
inversion tools that conform to that numerical struc-
ture.

3) The user must provide a subroutine that interpolates
the ocean state variables, from the finite-difference
grid or basis functions of the model, to the longi-
tude, latitude, and depth of an arbitrary point in the
ocean at an arbitrary time. It is invariably the case
that the ocean modeler has already developed just
such an interpolation routine, for display and analy-
sis of model output and for comparison with ocean
observations.

4) If the ocean model is nonlinear, then the user must
also provide a tangent-linear (TL) model for a finite-
amplitude ocean state u that differs by an infinitesi-
mal �u from a reference state uref: u � uref � �u.
Such a TL is illustrated by u2 → u2

ref � 2uref�u. That
is, only terms linear in the infinitesimal perturbation
field are retained. The Parametric FORTRAN com-
piler included with the IOM can act as an automatic
TL generator (Erwig and Fu 2004; Erwig et al. 2006;
Fu 2006), provided there is neither “wetting” nor
“drying” (such as in an intertidal zone). The user
may employ the compiler, offline from the IOM, to
convert the single time-step subroutine to its TL
equivalent. The user need only insert a few very
simple Parametric FORTRAN commands into the
user’s FORTRAN 90 subroutine, thereby convert-
ing the code to Parametric FORTRAN. The com-
piler for Parametric FORTRAN then generates the
FORTRAN 90 subroutine for the TL of the original
subroutine. The user must “wrap” the generated TL
subroutine in a driver, and introduce a flag as dis-
cussed above. The driver employs virtually the same
NetCDF I/O as does the original ocean model. De-
tails may be found in the IOM user manual (Bennett
et al. 2007).

It may be noted that the compiler finds the de-
rivatives of common smooth functions (rational,
trigonometric, exponential, hyperbolic, etc.) in a
lookup table. This table is readily extended to less
common smooth functions (inverse trig, error,
gamma, etc.), as required.

5) If the ocean model is nonlinear, then the user must
also provide a tangent-linear representer model for

an infinitesimal ocean state that is a perturbation
about a reference state. That is, u2 → 2uref�u. This
model is known as the tangent-linear model to prac-
titioners of incremental 4DVAR (e.g., Courtier 1997).
Alternatively, the IOM’s Parametric FORTRAN
compiler can generate the required subroutine. The
code for the representer model needs no flags: it
does occur at several stages in the IOM algorithm,
but always with the same functionality.

6) The user must provide the adjoint of the TL of the
forward model. The representer model has the same
adjoint as the TL of the forward model. The Para-
metric FORTRAN compiler can also generate most
of the one-step adjoint subroutine, following the
line-by-line approach of Giering and Kaminski
(1998). The adjoints of space-loop interiors for fi-
nite-difference models are correct to machine pre-
cision, but the user may need to correct the adjoint
code at the boundaries. These corrections require a
sound understanding of adjoint principles, but the
IOM does eliminate the potentially massive and te-
dious effort to construct the adjoints of the loop
interiors. The “manually generated” line-by-line ad-
joint code for the relevant subroutine in ROMS, and
in the Naval Research Laboratory Coastal Ocean
Model (NCOM; Barron et al. 2006), has been suc-
cesfully regenerated using Parametric FORTRAN
together with mild corrections (H. Ngodock 2007,
personal communication).

The one-step adjoint subroutine, however it is ob-
tained, must be “wrapped” in a driver but again no
flagging is needed.

The IOM’s adjoint generator is in continuous de-
velopment. Examples may be found in the IOM user
manual, demonstrating the automatic generation of
the adjoints of time loops as well as space loops. A
second adjoint generator is under development; un-
like the line-by-line adjoint of Giering and Kaminski
(1998), it generates code that resembles computa-
tional fluid dynamics.

7) If the user hypothesizes that the initial errors are
multivariate, that is, they are jointly covarying (e.g.,
are geostrophically balanced), then the user must
provide subroutines for the initial multivariate co-
variance operators. In this case, the IOM GUI
prompts the user to provide the system paths to the
codes for these initial operators, and then imple-
ments the codes in the IOM algorithm. The user
must hypothesize that the dynamical errors are uni-
variate, but these errors may be autocovarying in
space or time or both. The IOM can automatically
provide, if requested, fast convolutions for bell-
shaped correlations [exp(�x2/X2)] for all spatial er-
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ror dependencies, and fast convolutions for Mar-
kovian correlations [exp(� | t | /s)] for all temporal er-
ror dependencies. The GUI prompts the user for the
parameters (variances, and decorrelation scales X, s,
etc.) in all these various convolutions.

8) The user must of course provide some ocean data.
The IOM requires these to be in the form of single,
ordered file of real numbers. If these data (which
may be of mixed type: velocity, salinity, continu-
ously varying climate indices, etc.) have been down-
loaded from one or more of the Web sites for many
of the “great ocean observing programs” (Argo,
Global Drifter Program, NCEP Global SST Analy-
sis, Jason-1, TAO/TRITON), the user merely in-
forms the IOM Data Ingest System (IDIS). This
subsystem supplies and applies the appropriate soft-
ware filters, which convert the many Web sites’ for-
mats to the IOM NetCDF format. Then IDIS
merges the many downloads into a single IOM file.

9) Finally, the user must provide separate executables
that encode the mathematical description of the
ocean observing sensor of interest. In the simplest
case, the sensor is no more than that for a single,
scalar, ocean state variable at a single point in space
(expressed as a longitude, a latitude, and a depth),
and the sensor being active at just a single time.
More complex linear sensors involve integrals over
spatial or temporal domains, and may involve linear
combinations of state variables. In mathematical
terminology, the description is the kernel of a linear
functional. Anticipating that the user is likely to be
interested in data from the “great programs,” IDIS
contains the various kernels for each of the above-
named observing systems. If the user introduces a
sensor for which the mathematical description is
nonlinear, the two required tangent linearizations
may be automatically generated using the Paramet-
ric FORTRAN compiler. If the ocean model em-
ploys thermodynamic coordinates, then all moored
subsurface observations are nonlinear. If the ocean
model is Eulerian, then all Lagrangian observations
are nonlinear. For examples and discussions, see the
IOM user manual.

5. What the IOM will do for the user

Given that the user must for now provide the adjoint
model, or at least “tweak” the adjoint generated by the
IOM, the user might well wonder what more needs to
be done in order to carry out W4DVAR. In fact, a
massive amount of software infrastructure is needed.
Some idea of the scope and complexity is illustrated by
the flow chart in Fig. 1, for the IOM applied to a quasi-
geostrophic model (Bennett 2002).

1) The infrastructure must accept the forward, TL,
representer, and adjoint models, plus the param-
eters for the hypothesized error covariances, plus
the observations and their associated kernels, and
then compute a W4DVAR analysis with the full set
of diagnostics. The IOM provides the entire model-
independent infrastructure, and automatically gen-
erates a vast amount of model-dependent software,
from the Parametric FORTRAN templates and
from the parameters entered into the GUI by the
user.

2) For example, the IOM combines the user-supplied,
model-dependent interpolation scheme and a user-
supplied, observing sensor–dependent kernel into
a tool that extracts the analogous measurement
from the model representation of the ocean state.
The mathematics of this “cleavage plane” between
the model and the observations is hardly profound,
but is of critical importance to the modularity of
the IOM. There is an extensive discussion in the
IOM user manual, for finite-difference models and
basis-function models, with both simple and com-
plex sensors.

3) The IOM automatically generates the “comb” for
the observing array. The comb is a linear combi-
nation of discrete operators acting on discrete unit-
impulse functions [see the right-hand side of Eq.
(4) for the continuous analog]; it may be regarded
as the adjoint of the observing system, since the
comb forces the adjoint model at several stages of
the IOM. Great care is needed here, in order to
maintain consistency with the user’s numerical ap-
proximation to the penalty functional or estimator.
At issue are the volume elements and time ele-
ments of integration, or their spectral equivalents,
which the user may or may not choose to include in
the estimator. It is critical that the comb be consis-
tent, so that the minimal value of the estimator is in
fact the test statistic for the hypothesis test that is
made when estimating ocean state. The scaling of
the estimator is discussed in detail in the IOM user
manual.

4) As already mentioned, the IOM generates univar-
iate covariance operators consistent with the nu-
merical structure of the user’s model.

5) Also, IDIS makes virtually effortless the introduc-
tion of observations from the great ocean observ-
ing programs.

6) The IOM includes the entire model-independent
infrastructure for effecting the data space search
that is fundamental to the IOM or dual-adjoint al-
gorithm. The inner loop that affects this search is
illustrated in Fig. 2.
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The user merely makes a selection, via the GUI,
from a suite of preconditioners.

7) Once the user has chosen a partial or full
W4DVAR analysis, the IOM prompts the user for
all the required information, which consists of
paths to files and values of parameters. The IOM
then generates an Extensible Markup Language
(XML) formatted input file for the master Perl
script that runs the stages of the IOM algorithm. It
should be noted that each stage is coded as a sepa-
rate executable rather than a subroutine call. The
IOM creates a logfile for each experiment. The

user has access to the run script and to all the au-
tomatically generated FORTRAN 90 codes,
should they be of interest.

8) The IOM can provide syntheses of pseudorandom
vectors, and pseudorandom fields over space and
time, having means and covariances prescribed by
the user. At present, the spatial covariances must
be bell shaped and the temporal covariances must
be Markovian for computational efficiency, and
the user merely prescribes parameters via the GUI.
These pseudorandom vectors and fields are used
by the IOM for Monte Carlo estimates of any pos-

FIG. 1. Flowchart for the IOM algorithm, applied to a quasigeostrophic model (after Bennett 2002). The notation is as follows: �, u,
� are, respectively, the streamfunction, velocity, and total vorticity; d is the M vector of data; L is the M vector of linear measurement
functionals; F is the prior for the forcing in the vorticity equation; CZZ, etc. are the prior or hypothesized covariances for the error Z
in the vorticity equation, etc.; C�� is the prior for the measurement error covariance; J is a penalty, n is the outer iteration index, and
the hat symbol denotes the optimal value. The hatched area indicates the data space search (see Fig. 2).
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teriors requested by the user, and of other diagnos-
tics needed in the assessment of observing systems
or arrays.

9) The IOM can verify adjoint symmetry and perform
other algorithmic consistency checks.

10) The IOM can compute sensitivities for linear (or
tangent linearized) models and linear (or tangent
linearized) quantifiers of ocean state, with respect
to dynamical, initial, or boundary perturbations.

6. The IOM Web site

An IOM Web site has been developed (available on-
line at http://iom.asu.edu). The site has two main pur-
poses. The first is to facilitate communication among
the IOM community, including distribution of the IOM
software and documentation. The second is to provide
user-friendly, interactive instructional material with
more detail than is feasible in a journal paper or text.

a. Facilitation of communication

The IOM Web site has several features to facilitate
communication between researchers. The latest version

of the software can be downloaded, along with a tech-
nical document that details full testing of the IOM with
simple one- and two-dimensional models, as well as
various IOM technical documents such as the user
manual. The Parametric FORTRAN compiler can also
be downloaded, along with its own user manual. Also
maintained on the site is a full list of references related
to the project (both the algorithmic and application ori-
ented papers). This list can be updated by all IOM
researchers and viewed by anyone who accesses the
site. There is also a repository for written material re-
lated to the IOM. Material can be posted securely so
that only IOM researchers can access it, or may be
made available to the general public. In addition, sev-
eral discussion boards have been implemented.

b. Instructional content

The instructional content is based on the develop-
ment from Bennett (2002), but is not simply a restate-
ment of that material. While the material assumes that
the user has access to that text as a reference, the site is
intended to provide details omitted from the book be-

FIG. 2. The inner loop in the IOM algorithm that effects the data space search, after Bennett
(2002). The background for the integrations is the last outer iterate ûn�1 for the optimal
velocity field; � denotes the impulses that, in linear combinations, force the adjoint equation;
P is the unknown representer matrix stabilized by addition of the known measurement error
covariance matrix C��; b(k)

n is the kth inner iterate for the sought-after nth coupling vector. The
user chooses a preconditioner Pc, via the GUI. Finally, � 2

M is the chi-squared random variable
with M degrees of freedom. If the hypothesized error covariances are correct, then the ex-
pected value of Ĵ is � 2

M .
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cause of space restrictions, solutions to some of the
exercises, and additional detailed development for dis-
crete, multidimensional, and nonlinear extensions of
the theory. Throughout the instructional material, there
are opportunities for interaction with the material. For
example, the user can see an animation of adjoint rep-
resenters and representers (with or without space and/
or time convolutions). In addition, the user can effort-
lessly toggle between the continuous and discrete equa-
tion developments, and therefore see their similarities
and their differences. Two models serve to illustrate
key concepts of the assimilation exercise, each model
being examined in both continuous and discrete form:

1) one-dimensional, linear advection equation, and
2) one-dimensional, nonlinear Korteweg–de Vries

equation.

7. Summary

The IOM exploits a natural modularization of the
W4DVAR algorithm into components that depend
only upon models, components that depend only upon
observing systems, and components (such as algebraic
system solvers) that depend upon neither. Automatic
generation of customized code saves the user from a
very heavy burden of mathematical derivation and cod-
ing. Indeed, the creation of program templates in Para-
metric FORTRAN enables the precise standardization
of algorithms for W4DVAR by inverse theorists, and
also the precise standardization of observing algorithms
by instrument builders. The user retains the complete
freedom (and now has the time) to vary the model, as
the IOM can build a new W4DVAR system for a re-
vised model or a new observing system for the cost only
of entering the modified information.

New users of the IOM should be encouraged. The
IOM will evolve in response to users’ experiences. The
system design, in terms of separate executables, antici-
pates a more advanced design as a framework such as
the Earth System Modeling Framework (http://www.
esmf.ucar.edu/).
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APPENDIX

The Representer Solution

The unique solution of Eqs. (3) and (4) in section 3 is
given explicitly by

û�t� � uF�t� � 

m�1

M

�mrm�t�, �A1�

where the “first guess” or “prior” solution uF satisfies
the forward model (1); that is,

d

dt
uF�t� � F �t�, �A2�

over the domain 0 � t � T, subject to uF(0) � I. The M
representers rm and their adjoints �m satisfy

�
d�m

dt
� Vd

�1��t � tm�, �A3�

subject to �m(T) � 0, and

drm

dt
� VF�m, �A4�

subject to rm(0) � VI�m(0). Note that each �m may be
found independently of finding the corresponding rm.
The M representer coefficients �m satisfy the M � M
linear system



m�1

M

�Rnm � Vd�nm��m � dn � uF�tn�, �A5�

where �nm denotes the components of the unit matrix,
and the symmetric positive-definite representer matrix
component Rnm is given by Rnm � rn(tm) � rm(tn) (see,
e.g., Bennett 2002). It is easily shown that the coupling
V�1

d (dm � û(tm)) in (2) is in fact just �m. In compact
notation, the linear system is

�R � Vd I�� � d � uF , �A6�

which is the extremal condition for the quadratic pen-
alty

J 	b
 �
1
2

bT�R � Vd I�	b
 � bT�d � uF�. �A7�

Thus � may be found by searching for the minimum of
J[b]. It suffices to know (R � Vd I)b for any b. To this
end, replace the coupling vector V�1

d (d � û) in (4) with
b; solve (4) for � and insert the solution into (3); solve
(3) for u, with F and I set to zero; finally evaluate the
solution of (3) at each tm, 1 � m � M. The result is the
required new search direction, in the data subspace, for
the coupling vector. The search is accelerated (precon-
ditioned) with an inverse of an approximation to R. The
IOM provides a suite of user-selectable precondition-
ers.
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