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Abstract. Ballast water discharges are a major source of species introductions into marine
and estuarine ecosystems. To mitigate the introduction of new invaders into these ecosystems,
many agencies are proposing standards that establish upper concentration limits for organisms
in ballast discharge. Ideally, ballast discharge standards will be biologically defensible and
adequately protective of the marine environment. We propose a new technique, the per capita
invasion probability (PCIP), for managers to quantitatively evaluate the relative risk of
different concentration-based ballast water discharge standards. PCIP represents the
likelihood that a single discharged organism will become established as a new nonindigenous
species. This value is calculated by dividing the total number of ballast water invaders per year
by the total number of organisms discharged from ballast. Analysis was done at the coast-wide
scale for the Atlantic, Gulf, and Pacific coasts, as well as the Great Lakes, to reduce
uncertainty due to secondary invasions between estuaries on a single coast. The PCIP metric is
then used to predict the rate of new ballast-associated invasions given various regulatory
scenarios. Depending upon the assumptions used in the risk analysis, this approach predicts
that approximately one new species will invade every 10–100 years with the International
Maritime Organization (IMO) discharge standard of ,10 organisms with body size .50 lm
per m3 of ballast. This approach resolves many of the limitations associated with other
methods of establishing ecologically sound discharge standards, and it allows policy makers to
use risk-based methodologies to establish biologically defensible discharge standards.

Key words: aquatic invaders; ballast water discharge; IMO standards; invasion probabilities; propagule
pressure.

INTRODUCTION

Aquatic invasions are a key factor causing environ-

mental stress on estuarine and marine ecosystems (Ruiz

et al. 1999, Occhipinti-Ambrogi and Savini 2003). The

primary source for these biological invasions is shipping

(Ruiz and Carlton 2003, Molnar et al. 2008). Of the

potential shipping vectors, ballast water is one of, if not

the, most important (Carlton 1996, Fofonoff et al.

2003). For example, since the opening of the St.

Lawrence Seaway in 1959, ballast water is the suspected

source for over 70% of the nonindigenous species found

in the Great Lakes (Holeck et al. 2004).

In response, agencies at the international, national,

and U.S. state level have sought to establish regulations

that limit the concentration of organisms in discharged

ballast water (Albert et al. 2013). The fundamental

assumption behind establishing organism-based ballast

water standards is that, all else being equal, invasion risk

decreases with decreasing propagule pressure (Lock-

wood et al. 2009, National Research Council 2011). This

assumption is supported by a wide body of evidence

showing that the establishment probability for non-

indigenous species (NIS) increases with propagule

pressure due to either a higher concentration of

organisms in an inoculation, and/or an increase in the

frequency of inoculations (Kolar and Lodge 2001,

Colautti et al. 2006, Simberloff 2009). However, deriving

discharge standards that are protective of the environ-

ment has been challenging (Lee et al. 2011, National

Research Council 2011), and the broad range in

proposed discharge standards (Albert et al. 2013) reflects

the complexity of this issue.

To address the need for practical approaches of

deriving discharge standards, we developed an empiri-
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cally based ‘‘per capita invasion probability’’ (PCIP)

metric that managers can use to derive environmental-

based standards. The PCIP is the likelihood that a

unique, nonindigenous organism discharged from bal-

last water will become established on a coast in a year.

Using a linear dose–response model, the PCIP is

calculated from the historical number of ballast-medi-

ated invasions on a coast per year, and the approximate

total number of organisms discharged annually on that

coast. We calculate historical PCIP values for the

Atlantic, Gulf, and Pacific Coasts, as well as the Great

Lakes. We then demonstrate how PCIP values can

estimate future invasion probabilities based on various

regulatory scenarios. In theory, this approach could be

used for any size class of organisms, however, analyses

for smaller size classes are currently limited by data

availability. For that reason, we focus on the .50-lm
size class of organisms.

Our primary objective was to ‘‘cut through’’ the

complexities of invasion biology to develop a method of

generating discharge standards that are protective of the

environment. The PCIP model is well suited for

generating concentration-based discharge standards

because it directly relates the risk of invasion to ballast

water organism concentrations. Furthermore, the data

inputs and assumptions are transparent and the data is

relatively easy to obtain. The PCIP model does make

several simplifying assumptions, and as with any model,

there is some uncertainty in regard to the input

parameters. To help ensure that the discharge standards

generated by the PCIP approach are adequately

protective, despite inherent uncertainty, safety factors

can be incorporated in the model. Furthermore, as we

gain a better understanding of invasion biology, the

PCIP model is flexible enough to accommodate im-

proved data and invasion models.

METHODS

Empirical PCIP invasion model

To predict the potential rate of invasion from ballast

water, it is necessary to first estimate the per capita

invasion probability (PCIP). The PCIP is the probability

that an individual organism in ballast discharge will

become established as a new nonindigenous species on a

coast (new invading species/organisms discharged). As a

starting point, we calculate PCIP using a linear dose–

response relationship (Fig. 1) in which the number of

invaders is predicted to increase proportionally with the

number of organisms discharged in ballast water:

PCIP ¼ Nh

Oh

ð1Þ

where Nh is the historical annual invasion rate of ballast-

associated invaders for a coast (new invading species per

year), and Oh is the total number of historic organisms

discharged into all ports on a coast annually (organisms

per year). For example, if one new nonindigenous

species became established on a coast in which a total

of a million individual organisms were discharged in a

year, the per capita invasion probability would equal

10�6.

The historical number of organisms discharged (Oh) is

defined as

Oh ¼
Xn

1

Di 3 Ci ð2Þ

where n is the total number of ships discharging foreign

ballast water into ports on a coast annually, Di is the

volume in cubic meters being discharged by ship i, and

Ci is the concentration of organisms in the ballast water

being discharged (organisms/m3) by ship i.

The PCIP metric can be used to predict the annual

invasion rate of ballast-associated invaders for a coast

(where Np is defined as the number of new invading

species/year):

Np ¼ PCIP 3 Op ð3Þ

given the predicted total number of organisms in ballast

water discharged into ports on a coast (Op, organisms/

year) under different regulatory scenarios.

Estimates of historical invasion rates (Nh)

The total numbers of invaders (Nh) were obtained

from the Smithsonian Institution invasive species data-

base (database available online).5 To be included in the

analyses, each species had to be considered established

and potentially introduced via ballast water. The

number of invaders is based on nonindigenous inverte-

FIG. 1. The per capita invasion probability (PCIP) empiri-
cal model assumes a linear relationship between the number of
invasions and the total number of organisms discharged into a
geographic region. Zero organisms discharged results in zero
invasions (solid circle), and the open circle is calculated from
historical invasion rates and the total organisms discharged into
all ports on a coast annually.

5 invasions.si.edu/nemesis/
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brates and macroalgae .50 lm; fishes and vascular

plants were not included. Because of the poor resolution

between native vs. nonindigenous phytoplankton species

in coastal waters (Carlton 2009), no attempt was made

to estimate the number of invaders in the 10–50 lm size

class.

We focus on invasions that occurred prior to the

enactment of ballast water exchange (BWE). For the

contiguous United States Pacific, Atlantic, and Gulf

Coasts, we used the total number of invaders reported

from 1982 to 2007 (Table 1). Even though mandatory

BWE for United States coasts was enacted in 2004

(Albert et al. 2013), we believe the 25-year span through

2007 helps mitigate effects of the lag between an actual

invasion event and when a species is first discovered

(e.g., Costello and Solow 2003). A longer time period

also helps smooth short term variation in invasion rates

as well as variation in monitoring efforts. The majority

of the Atlantic, Gulf, and Pacific invaders and their

vectors are listed in Appendix A of Ruiz et al. (2000).

For the Great Lakes, we used the 1965 to 1990 time

period to maintain a consistent 25-year time span prior

to the implementation of mandatory ballast water

exchange in 1993.

Estimates of foreign ballast water discharge rates (Di)

Historic foreign ballast discharge volumes (coastal

water that was carried through waters outside the U.S.

and Canadian exclusive economic zones, Di) were used

to calculate the approximate total number of organisms

(Oh) discharged on a coast annually. All reported

foreign ballast discharge events for a coast were

obtained from the Smithsonian Institution ballast water

database (National Ballast Information Clearinghouse;

data available online).6 Average yearly foreign discharge

volumes (Di) were calculated for the contiguous

Atlantic, Gulf, and Pacific coasts (Table 1) from

discharge records for all ships discharging foreign ballast

in ports on the respective coasts from 2005 to 2007.

These dates were chosen because they occur after the

implementation of mandatory ballast water reporting

(Albert et al. 2013) and represent the most complete

discharge records available. Prior to 2005, ballast water

discharge records were voluntary and incomplete. For

each discharge event, the data included the type of

vessel, whether the last port of call (LPOC) was foreign

or domestic, the volume of water discharged and

whether the water in the tank being discharged was

foreign or domestic. Because foreign ballast was

recorded on a per tank basis it was possible to account

for foreign ships that initially entered one port but did

not discharge their ballast until they visited another

port. This allowed us to identify ballast as foreign even if

the LPOC was domestic. For the Great Lakes, the

National Biological Invasion Shipping Study (Reid and

Carlton 1997) reported a total annual foreign ballast

water discharge of 1 395 461 metric tons (Mg) in 1991.

Estimates of organism concentrations in ballast

discharge (Ci)

Based on four independent studies in which ballast

water was sampled using net sizes from 50 lm to 80 lm,

average organism concentrations in untreated ballast

water ranged from 1004 to 6020 organisms per cubic

meter (Table 2). To estimate the total number of

organisms discharged on each coast, we used the

distribution of organism concentrations (Ci) reported

by Minton et al. (2005). Of the studies, these data were

the most extensive (N ¼ 354 ships) and were collected

from international ships docking at U.S. ports, which is

regionally consistent with the data in our analyses.

Although the Minton data were collected with an 80-lm
net, net size does not appear to be the primary source of

variation in organism concentration among studies

TABLE 1. Average annual historical number of invaders (Nh), average annual foreign ballast discharge volumes (Dh), total number
of organisms discharged annually (Oh), and per capita invasion probabilities (PCIP) for the Atlantic, Gulf, and Pacific Coasts
and the Great Lakes of the United States.

Mean per year No. organisms discharged per year PCIP

Coast
No

invaders
Foreign
BW (m3)

No. ships
discharging
foreign BW

Estimates
using lower

0.025 quantile

Estimates
using
median

From lower
0.025 quantile

estimates

From
median
estimates

Atlantic Coast 1.6 7 407 832 4287 3.2 3 1010 3.5 3 1010 5.0 3 10�11 4.5 3 10�11

Gulf Coast 0.72 19 605 340 3940 8.8 3 1010 9.3 3 1010 8.2 3 10�12 7.7 3 10�12

Pacific Coast 2.68 14 788 369 1999 6.6 3 1010 7.0 3 1010 4.1 3 10�11 3.8 3 10�11

Great Lakes, macrofauna 0.44 1 395 461 unknown NA 6.5 3 109� NA 6.8 3 10�11�

Notes: The number of coastal invasions is the average annual number of nonindigenous invertebrates and macroalgae .50 lm
first reported from 1982 to 2007 that were possibly introduced via ballast water (BW) and are considered established. The total
number of invaders includes marine, brackish, and freshwater species. The average annual foreign ballast discharges for a coast and
average number of ships discharging annually from 2005 to 2007 and include marine, brackish, and freshwater ports on a coast. Per
capita invasion probabilities for each coast are calculated using the lower quantile (0.025) and median (0.5) of probable organisms
discharged into the coast. The number of invaders for the Great Lakes is given for macrofauna for the period 1965 to 1990, while
the ballast water discharge volume is for 1991. NA stands for not applicable.

� Based on mean IMO organism concentration.
� PCIP metric calculated using mean IMO organism concentration.

6 http://invasions.si.edu/nbic/search.html
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(Table 2). Thus these data appear to provide a

reasonable estimate of the range of organism concen-

trations discharged by international ships docking at

United States ports.

Estimates of total number of organisms discharged

on a coast annually (Oh)

The distribution of organism concentrations (Minton

et al. 2005) was highly skewed, with a large proportion

of ships having relatively low organism concentrations

and a long tail of ships with very high organism

concentrations. To quantify the probable range in the

total number of organisms discharged (Oh) we devel-

oped a randomization algorithm using the R statistical

package (R Development Core Team 2008). The

algorithm randomly assigned each ship discharging

foreign ballast on a coast between January 2005 and

December 2007 a concentration of organisms, selected

from the distribution of values reported by Minton et al.

(2005: Fig. 2a). The randomly selected concentration

(Ci) was then multiplied by the volume of foreign ballast

discharged by that particular ship (Di). The total

organisms discharged (Ci 3 Di) from all the ships for a

coast were then summed and divided by three (to

account for the three years of discharge data) to find the

average number of organisms that were discharged on a

coast annually (Oh). This procedure was repeated 10 000

times to estimate the range of the total number of

organisms discharged on a coast annually from which

the lower (0.025) and median quantile values were

determined (Table 1, Fig. 2).

The PCIP metric can be derived from different

quantiles of estimated total organisms discharged in

ballast water (Fig. 2). Although the median value is the

most intuitive, it may underestimate the invasibility of

species (i.e., a lower PCIP metric), resulting in less

protective standards. When possible, we recommend

using the lower (0.025) quantile, which is an estimate of

the lowest likely number of total organisms discharged

into a system, and will result in a higher, but still

realistic, estimate of the PCIP. Ultimately this will

generate more stringent standards and reduce the

possibility of underestimating the risk of invasion.

Because we did not have individual ship records for

the Great Lakes during 1991, the mean ballast water

organism concentration from the IMO baseline study

(4640 organisms/m3; MEPC 2003) was used to calculate

the PCIP metric for the Great Lakes.

Spatial scale of analyses

Our original approach was to calculate the PCIP

metric for 17 individual ports (Reusser et al. 2011).

However, there was considerable range in PCIP metrics

across ports that we suspect was due to a suite of

nonexclusive factors (Reusser et al. 2011; also see

National Research Council 2011). For example, smaller

ports tended to have more invaders than expected given

the amount of foreign ballast discharged, possibly due to

secondary invasions (Simkanin et al. 2009) from larger

TABLE 2. Summary of published ballast water sampling data and organism concentrations in untreated and not-exchanged ballast
water.

Source
No. ships
sampled

Concentration
(no. organisms/m3)

Net size
(lm) Details

S. Gollasch, personal communication 101 1004 55 mostly container ships; long voyages; minimal
discharge; European destinations

Gollasch and David (2010) 1� 1718 50 NA
MEPC (2003)� 429 4640 55–80 all types of ships; global destinations; variable

voyage durations
Minton et al. (2005) 354 4768 80 bulkers and tankers; large discharges; U.S.

destinations; long voyages
David et al. (2007) 15 6020 50 bulkers, containers, and tankers; short voyages;

Mediterranean source and destination

Note: All samples were taken at discharge.
� One ship, 2 test runs 3 3 discrete samples¼ 6 sample average.
� Data are not independent of other studies listed.

FIG. 2. Histogram of total organisms discharged annually
on the Pacific Coast based on 10 000 iterations of the
randomization algorithm for organism concentrations among
the 5998 ships discharging foreign ballast over three years from
2005–2007. The vertical line indicates the lower 0.025 quantile
that was used to estimate the number of organisms discharged
into all ports on a coast annually.
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ports such as the San Francisco Estuary, or introduc-

tions through vectors other than ballast discharge. Due

to the potential for secondary invasions and the

uncertainty in estimates derived from any single port,

we believe the best strategy for developing discharge

standards is to use PCIP metrics derived from the

aggregated data for a particular coast. The aggregated

data also appears to reduce other sources of variation

given the reasonably small range in PCIP values among

coastal regions and the Great Lakes (Table 1).

Generating organism-based discharge standards (Cs)

Ballast discharge standards can be generated for a

coast by calculating an organism concentration in

ballast water (Cs) that would result in a managerially

defined acceptable invasion risk, presented as the

predicted number of new invaders per year (Np). The

calculation is based on the projected annual total ballast

water discharge volume (D), the PCIP values estimated

using historical data (Table 1), and a safety factor:

Cs ¼
Np

D 3 PCIP 3 safety factor
: ð4Þ

There are several sources of uncertainty that could result

in underestimating the risk of introducing new invaders

through ballast discharges (Table 3). When establishing

discharge standards, regulatory agencies might consider

applying a safety factor to account for these uncertain-

ties. When a safety factor of 1 is used in Eq. 4, no

additional margin of safety is incorporated into the

standard. Safety factors .1 will result in more stringent

discharge standards. Table 3 and the discussion contain

more information on utilizing safety factors to mitigate

some of the uncertainties associated with the PCIP

metric.

RESULTS

Coastal patterns of invasion risk

The PCIP metrics are based on the aggregation of

data for all ports along contiguous coasts. The PCIP

values among the four coastal regions ranged from 7.73

10�12 to 6.8 3 10�11 (based on a comparison of median

values). The differences among the Pacific, Atlantic, and

Great Lakes ranged from ,20% to about 80% (Table 1).

The Gulf Coast is somewhat distinct with a PCIP value

about an order of magnitude smaller than the other

areas.

Example: Generating organism based discharge standards

To demonstrate the use of Eq. 4, we calculate a

discharge standard predicted to reduce ballast mediated

invasion rates on the U.S. Pacific Coast to an arbitrarily

TABLE 3. Assumptions and potential sources of error for the per capita invasion probability approach to setting ballast water
discharge standards.

Assumption
Effect on estimate of per capita

invasion probability
Effect on discharge

standard Mitigation approaches

Linear dose–response between
number of invaders and total
number of organisms
discharged in ballast water

May overestimate invasion
probability for many sexual
species due to rarefaction and
Allee effects at reduced
concentrations; potentially
under estimates for asexual
and parthenogenic species.

Protective against most
sexual invaders; possibly
under-protective for
asexual and
parthenogenic species.

Use safety factor .1.

Samples using 80-lm net size
provide reasonable estimation
of organism concentrations
found in ballast water

Underestimates the number of
organisms greater than 50 lm
in the minimum dimension
and will overestimate PCIP.

More protective against
invaders.

Use median or upper quantile to
estimate total number of
introduced organisms when
calculating PCIP.

All invaders introduced via
foreign ballast water

Overestimates PCIP. Erroneously makes
discharge standard less
stringent.

Coastal-scale analysis reduces
probable effect of polyvectic
invaders.

The number of invaders is
accurate

Likely underestimates PCIP
given probability that many
invaders have not been
identified.

Erroneously makes
discharge standard less
stringent.

Use safety factor .1. Safety
factor of 2 would correct for
a 50% underestimate of
invaders.

Annual volume of discharge
between 2005�2007 is
comparable to annual
discharge between 1982�2004,
(i.e. years of invasion data)

Underestimates PCIP if annual
discharge volume was less
between 1982�2004.

Erroneously makes
discharge standard less
stringent.

Use safety factor .1. Safety
factor of 2 would imply that
half as much ballast water
was discharged on average in
earlier years.

Voyages between 1982�2004
took the same amount of time
as between 2005�2007

Overestimates the number of
organisms that could have
survived in ballast water in
vessels between 1982�2004;
underestimates PCIP.

Erroneously makes
discharge standard less
stringent.

Use safety factor .1. Safety
factor of 2 would imply that
half as many organisms
survived earlier voyages.

No change in invasibility of
waterbodies on a coast over
time or change in the invasion
potential of new invaders

Either increases or decreases
PCIP depending upon type
and magnitude of
environmental changes.

Protective or under
protective depending
upon the type and
magnitude of changes.

Use lower bound estimates for
input values and/or safety
factor to account for changes
in environment.
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selected 1 new invader every 1000 years. To achieve this

goal, Pacific Coast managers could choose between the
more protective PCIP value of 4.1 3 10�11 and the less
protective PCIP value of 3.8 3 10�11. In addition,

managers can input an expected discharge volume for a
year, depending on general trends in shipping traffic.

For a more conservative standard, a safety factor can
also be included. For our example, we opted to use the
more protective PCIP value of 4.1 3 10�11, the current

average annual ballast water discharged on the Pacific
Coast of 15 million cubic meters, and no safety factor.
These choices result in a discharge standard of 1.63

organisms/m3 ballast discharge:

Cs ¼ ð1 3 10�3 invaders=yrÞ=
ð½15 3 106 m3 ballast water=yr�
3½4:1 3 10�11 invaders=organism�3 1Þ

¼ 1:63 organisms=m
3:

To demonstrate how this metric can be used to explore
different management options, we generated a ‘‘risk
diagram’’ based on ballast water discharge volumes

between 0 and 30 million cubic meters and organism
concentrations between 0.0001 and 1000 using the

conservative PCIP value of 4.1 3 10�11 and no safety
factor (Fig. 3). Using these values, the predicted
invasion rate for the proposed IMO standard of ,10

organisms .than 50 lm/m3 of ballast will be approx-
imately one new species invasion every 10 to 100 years

(Fig. 3) depending on the total amount of ballast water
discharged per year. The risk diagram also indicates that
an increase in the amount of ballast water discharged

will require a reduction in the organism concentration
standard to avoid an increase in the invasion rate over

time. Similar risk diagrams can be generated for less
conservative PCIP values with and without safety
factors using Eq. 4.

DISCUSSION

In order to estimate invasion probabilities for various

regulatory scenarios, we first generated per capita
invasion probabilities (PCIP) for the Pacific, Atlantic,

and Gulf Coasts, as well as the Great Lakes based on
historical invasion rates and estimates of the total
number of organisms discharged in ballast. Overall,

the variance in PCIP values among the regions was
small. Thus, even when comparing across four different

regions with different ballast discharge volumes and
donor regions, the calculation of the PCIP parameter
was fairly robust and the potential uncertainty in this

input variable appears relatively small. The largest
outlier was the Gulf Coast with a PCIP value

approximately one order of magnitude smaller than
the other regions, suggesting the Gulf had fewer
invaders than predicted given the volume of ballast

discharge. The variance in PCIP among the regions
indicates either regional differences in invasion proba-
bility or uncertainty in the input parameters among the

regions. We believe the PCIP metric for the Pacific Coast

is the most reliable because of the extensive effort in

documenting invaders on the Pacific Coast and the less

complicated invasion history compared to the North

Atlantic (See Chapman et al. [2008] for example with

Littorina littorea). However, the variance in PCIP values

among the regions is one factor that could be considered

when developing a biologically meaningful safety factor

(Table 3).

The PCIP metric calculated for the U.S. Pacific coast

was used to predict the number of invasions of

organisms larger than 50 lm given various ballast

discharge standards. Given a discharge standard of 1

organism/m3 of ballast discharge, a PCIP value of 4.13

10�11, an estimated annual discharge volume of 15

million cubic meters, and no safety factor (Fig. 3), the

predicted invasion rate is 1 organism every 1000 years.

This is approximately 10-fold lower than the proposed

IMO standard. This value does not incorporate a safety

factor, but it is calculated using the more conservative

PCIP value based on the lower 0.025 quantile to

estimate the total organisms discharged historically.

Uncertainty and assumptions

There are two sources of error associated with the

PCIP metric: (1) the uncertainty generated from the

model assumptions and (2) the uncertainty associated

with the specific input values. Of these, the greatest source

of uncertainty is the assumption of a linear dose–response

between the number of organisms discharged and the

number of successful invasions. Although we assume a

linear relationship, when the PCIP metric was analyzed at

the individual port scale, the data did not suggest a linear

dose–response relationship (National Research Council

2011, Reusser et al. 2011). Even at the coastal scale, the

data does not reflect a linear relationship between

organisms discharged and invasion rates. So, while a

linear dose–response model is unlikely to capture the full

biological complexities associated with invasions, we

contend that the more important question in terms of

generating standards is whether it is protective. Given the

low organism concentrations associated with the pro-

posed standards, a linear model is likely to be protective

regarding the establishment of sexual species due to Allee

effects (Fig. 4). Allee effects occur in rarefied populations

because population growth rates may be depressed by

several, potentially interacting, mechanisms (i.e., mate

limitation, increased predation, genetic inbreeding, and/

or increased dispersal) (Drake 2004, Gascoigne and

Lipcius 2004, Leung et al. 2004, Choi and Kimmerer

2008, Kramer et al. 2009). Allee effects have also been

observed in parthenogenic species (e.g., Gertzen et al.

2011). However, because a single parthenogenic organism

can become established (e.g., Gertzen et al. 2011), the

linear dose–response may not be protective and standards

derived from the PCIP model may underestimate the risk

associated with parthenogenic and asexual species. The

linear dose–response model may also be protective
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because rarefaction will reduce the number of non-

indigenous species being discharged as the total number

of organisms in the ballast water declines (Fig. 5),

resulting in a reduction in colonization pressure (Lock-

wood et al. 2009). Such reductions in the total number of

potential invaders reduce the risk of invasion by both

sexual and asexual/parthenogenic species.

By using past invasion rates to predict future rates,

fundamental assumptions of this approach are that

neither the invasion potential of new invaders nor the

invasibility of the environments on a given coast will

change in the future. If the best colonizers tend to invade

first, then the PCIPs derived from historical data would

over predict the number of new invaders for a given

number of total organisms discharged. However, the

apparent increase in the rate of invasions in a number of

aquatic ecosystems (e.g., Cohen and Carlton 1998,

Holeck et al. 2004) contradicts the theory that new

invaders are less virile. The exact cause of the increase in

invasion rates is not known; however, the increasing

volume of annual foreign ballast water discharge

coupled with faster ships has been shown to be a factor

(Carlton and Geller 1993, Ruiz et al. 1997). Changes in

the invasibility of aquatic ecosystems are difficult to

predict. In particular, the consequence of climate change

on invasion is a ‘‘wild card’’ for any approach to setting

discharge standards. Shifts in temperature can have a

direct effect on reproduction and development as well as

cascading indirect effects, including shifts in food quality

and/or availability, increase/decrease in predator pop-

ulations, and/or shifts in habitat suitability that could

increase or decrease the probability of successful

invasions. In addition, human activities such as land

use changes in a watershed and/or port expansion could

also change the invasibility of a particular system, but

FIG. 5. This figure shows how the number of species in
ballast discharge may decline from an observed baseline (BL) as
the concentration of organisms is reduced by increasingly
stringent ballast water management programs. These values are
calculated by applying rarefaction methods (see Appendix) to
data from Cordell et al. (2009), which describe the density of
zooplankton taxa in the ballast tanks of 141 domestic ships
arriving at ports in Puget Sound, Washington, USA. The BL is
the actual number of taxa observed in the 141 tanks.

FIG. 4. For a single species, a reduction in the total number
of organisms discharged in ballast water will result in a lower
probability of establishment due to more pronounced Allee
effects (based on equations from Leung et al. [2004]).

FIG. 3. Risk diagram for the predicted number of invaders
per year for the U.S. Pacific Coast. Calculations are based on a
PCIP of 4.08 3 10�11 and no safety factor. The current annual
ballast water discharge volume for the Pacific Coast is
approximately 15 3 106 m3. Abbreviations are: IMO, Interna-
tional Maritime Organization; NIS, nonindigineous species.
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would have much less impact on invasion across an

entire coast.
There is also some uncertainty in each of the three

parameters used to calculate the PCIP metric. In terms

of the historic number of invaders, Carlton (2009)
identified 12 sources of error leading to invader under-

estimation including unknown, unreported, misclassi-
fied, and rare invaders. In some parts of the world, such

as Denmark, South Africa, and Chile where no
invasions prior to mid-19th century are recognized, the

number of known invaders could be underestimated by

as much as 5 to 10 times (Carlton 2009). For California,
Cohen (in Falkner et al. 2006) suggested that unrecog-

nized invaders could increase estimates of the invasion
rate by 50–100%. A recent analysis of California

invaders lists 457 cryptogenic species vs. 358 non-
indigenous species (California Department of Fish and

Game 2009); the California invasion rate would more

than double if all these cryptogenic species were actually
nonindigenous (data available online).7 While some of

these cryptogenic species are likely unrecognized native
sibling species (e.g., Knowlton 1993), the high number of

cryptogenic species suggests that the reported number of
invaders may underestimate actual numbers by 50–100%

within the United States.

Another source of uncertainty in the number of
historic invaders is that many coastal nonindigenous

species can potentially invade through multiple vectors,
such as both ballast water and hull fouling (e.g.,

Fofonoff et al. 2003). Inclusion of these ‘‘polyvectic’’

invaders (Ruiz and Carlton 2003) potentially inflates the
ballast-associated invasion rate, resulting in an artifi-

cially high PCIP metric. Thus, our inclusion of all
potential ballast water invaders is a protective assump-

tion.

Organism concentrations in untreated ballast water
appear to vary about sixfold based on the available

studies (Table 2). Several phenomena could be driving
this broad range, including the source of the ballast

water, type of vessel, and length of voyage (age of water;
S. Gollasch, personal communication; G. M. Ruiz,

unpublished data). Presumably this range would increase

with additional studies, however by aggregating the data
over all the ships discharging on a coast, the actual value

should approach the Minton and MEPC values, which
are based on the greatest total number of ships sampled.

The final input parameter, the volume of foreign ballast
water discharged, is well documented in the United

States by the National Ballast Information Clearing-

house, and errors are likely to be minimal (see footnote
6).

Model limitations

One limitation of the current model is that while
aggregating the data by regions allows the generation of

national, or coastal, standards, it does not resolve the

problem of ballast discharge standards for intracoastal

shipping where secondary invasions have the potential

to be a significant factor (Cordell et al. 2009, Lawrence

and Cordell 2010). To understand the role of secondary

invasions better, studies of individual invasion patterns

along the coast among estuaries are needed as well as

regular surveys for nonindigenous species in smaller

ports and estuaries with no foreign ballast input.

Additionally, further studies of the role of intracoastal

shipping and ballast discharges are needed to help

elucidate their role in spreading invaders into ports with

and without minimal foreign ballast water discharges.

Another limitation is that, while the approach can be

applied to organisms smaller than 50 lm, there is more

uncertainty about the historical invasion rates for

smaller organisms and the total number of those

organisms being discharged.

The PCIP value for macrofauna for the Great Lakes

fell into the range observed for the three coastal regions

(Table 1). However, less complete data were available

for ballast discharge volumes and organism concen-

trations in the Great Lakes, and we consider these

calculations a preliminary analysis.

The use of safety factors

Given the complexities and uncertainties plaguing all

approaches to generating ballast water standards (Na-

tional Research Council 2011, Lee et al. 2013), we

encourage the incorporation of a safety factor in

calculations of ballast discharge standards (Table 3).

Safety factors have been utilized in other fields such as

engineering to calculate the structural capacity of

bridges beyond the expected load to compensate for

uncertainties. Likewise, a safety factor used in calculat-

ing a ballast water discharge standard would help

compensate for uncertainties in estimates of invasion

probabilities. And, if we accept the premise of Ricciardi

et al. 2011, that invasions are natural disasters to be

avoided, the inclusion of a safety factor makes logical

sense. Higher safety factors provide a greater margin of

safety and will result in more stringent discharge

standards. For example, using the same assumptions

as above, a safety factor of 10 would result in a

discharge standard of 0.016 organisms/m3 and a safety

factor of 20 would result in a discharge standard of

0.008 organisms/m3.

We describe several issues to consider when deriving a

safety factor (Table 3); however, we suggest using a

single safety factor rather than multiplying a string of

individual safety factors for each potential source of

uncertainty, which quickly results in unrealistic values

(see Chapman et al. 1998). Safety factors on the order of

5- to 20-fold have been proposed when calculating the

potential risk to endangered and threatened species from

exposure to pesticides (U.S. EPA 2004). A similar range

appears appropriate for PCIP models based on the

potential for underestimating the historical number of

7 http://ceic.resources.ca.gov/catalog/FishAndGameBIOS/
AquaticNonnativeOrganismDatabaseCANODds503.html
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invaders by about 2- (U.S. Pacific Coast) to 10- (poorly

studied areas) fold as well as the 6–10-fold range in
PCIP values among regions. For cases where there is an

environmental mismatch indicating the risk of invasion
is lower (i.e., water from the South Pacific being

discharged into the Arctic) a lower safety factor could
be utilized.

CONCLUSIONS

The per capita invasion probability approach cuts

through the ‘‘Gordian Knot’’ of uncertainties associated
with predicting ballast water invasions (see National

Research Council 2011, Lee et al. 2013) in order to
arrive at environmentally based ballast discharge stan-

dards. Risk diagrams (Fig. 3) can be generated from this
approach to illustrate how the likelihood of invasion

relates to organism concentrations and ballast water
discharge volumes, which allow risk managers to assess

the risk with different discharge standards and safety
factors. As with all approaches, a number of assump-

tions are made (Table 3). It was not our goal to develop
or suggest specific discharge standards. Our strategy was

to develop an approach that allows risk managers to
develop discharge standards with different risk levels
based on different sets of assumptions. Specifically, the

following inputs can be set: (1) acceptable invasion risk
as measured by an invasion rate; (2) ballast water

discharge volume; (3) use of PCIPs based on median
ballast water organism concentration or lower quantile

values; and (4) magnitude of the safety factor. Fig. 3
shows how the predicted invasion rate changes with a

broad spectrum of organism concentrations and ballast
water discharge volumes based on the lower PCIP value

for the Pacific coast. Risk managers can generate similar
diagrams for the median PCIP value and/or different

coasts to evaluate the differences in predicted invasion
rates based on different PCIP values.

Overall, this method of generating ballast water
discharge standards appears to resolve many of the

limitations associated with other approaches. The
uncertainty around the parameters going into the per

capita invasion probability model is relatively small.
Additionally, the PCIP model does not have to be
parameterized for each species or type of species as with

population modeling approaches. Finally, the data
going into the per capita probability approach are

readily understandable by managers and the public,
which is beneficial in gaining acceptance for any ballast

water discharge standard.
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Appendix

Detailed description of the method used to estimate species rarefaction in ballast water (Ecological Archives A023-016-A1).
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