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abstract: I explore the proposition that evolutionary biology is
currently in the midst of its greatest period of synthesis. This period,
which I call the Ongoing Synthesis, began in 1963 and continues at
the present time. I use analysis of citations, conduct, and content to
compare the Ongoing Synthesis to widely recognized periods of syn-
thesis in the nineteenth and twentieth centuries. To compare content,
I focus on phenotypic evolution and compare current efforts with
George Gaylord Simpson’s struggle to understand evolution in deep
geological time. The essence of current effort is captured by the
question, What is the best model for phenotypic evolution? Although
many investigators are actively engaged in answering this question,
I single out two examples of my own collaborative work for emphasis
here. These two studies share three important characteristics: diag-
nosis of evolutionary pattern using massive data sets, validation of
model parameter values using compilations of estimates (e.g., her-
itability, stabilizing selection, distance to an intermediate optimum),
and identification of evolutionary process using alternative models
of stochastic evolution. Our primary findings (discovery of the blun-
derbuss pattern and the result that rare bursts of evolution carry
lineages out of established adaptive zones) compare favorably with
important insights from the Modern Synthesis.

Keywords: adaptive radiation, adaptive zone, quantum evolution,
blunderbuss pattern, deep evolutionary time.

Introduction

When I set to work on this article, my mind was drawn
back to a conversation I had more than 50 years ago. I
was an undergraduate at the University of California at
Berkeley, working as a curatorial assistant at the Museum
of Vertebrate Zoology, when Ernst Mayr’s book on animal
speciation burst on the scene in 1963. Taking the ongoing
buzz about the book for granted, I asked Professor Seth
B. Benson, a senior curator of mammals, about the impact
of Mayr’s earlier book in 1942. Benson said that no one
in the museum was much surprised by Mayr’s conclusions;
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they mirrored contemporary understanding. Benson’s in-
souciance may not have been a widespread reaction. In-
deed, Mayr’s 1942 and 1963 books are now widely re-
garded as iconic examples of synthesis in evolutionary
biology. But looking beyond this particular incident, I
wonder whether periods of extraordinary synthesis are
generally experienced as ordinary science.

Are we now in the midst of one of the great synthetic
periods in evolutionary biology? To get an answer for this
essay, I compare two widely recognized periods of synthesis
(1930–1932 and 1937–1950) with the contemporary scene
in evolutionary biology. Citation statistics provide one ba-
sis for comparison. Another basis is provided by com-
paring George Gaylord Simpson’s (1944) synthesis with
current efforts to answer the question, What is the best
model for phenotypic evolution? To develop this com-
parison, I focus primarily on two examples of synthesis
from my own recent collaborative work. Both of these
comparisons support the contention that we are indeed
in the midst of a great synthetic period.

Synthesis in Evolutionary Biology: Then and Now

A modern synthetic period comparable to the great periods
of the past is sometimes portrayed as desirable or antic-
ipated but still out of reach rather than ongoing (Gould
1980; Pigliucci 2009). That anticipated synthesis is her-
alded because it would supplant outdated theory or at least
extend existing theory (Pigliucci and Müller 2010; Fu-
tuyma 2011). One might also suppose that periods of great
synthesis are times of harmony, during which all eyes are
focused on the same prize. My analysis of the record does
not support either position. Instead, I think the picture is
one of continual synthesis, sometimes interrupted by pe-
riods of inertia but consistently rife with dissension and
discord, and with synthesis accelerating at the present time.
This view is especially supported by an examination of
citation records over the past 150 years.

To quantify the impact of past and present synthetic
volumes in evolutionary biology, I compiled citation
counts for 59 influential synthetic books and articles (table
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Figure 1: Cumulative number of citations of 59 influential synthetic works in evolutionary biology plotted against year of publication.
Citation data were gathered using Google Scholar in June 2012. A list of the works and their citations is available in the online appendix.
The four red rectangles show the citation contribution (height of rectangle) and temporal span (width of rectangle) of four synthetic periods:
the Classic Period (Darwin and Wallace, 1859–1881), the Population Genetic Synthesis (Fisher, Wright, and Haldane, 1930–1932), the
Modern Synthesis (Dobzhansky, Goldschmidt, Mayr, Huxley, Simpson, Schmalhausen, and Stebbins, 1937–1950), and the Ongoing Synthesis
(31 authors publishing during the period 1963–2004). The Ongoing Synthesis accounts for more than half (55%) of the accumulated
citations (212,068) in the sample of 59 influential works.

A1, available online). I judged works to be synthetic if they
were integrative, book-length treatments that provided
broad coverage of an important topic in evolutionary bi-
ology and influential if they had accumulated at least 500
citations in Google Scholar as of June 4–5, 2012 (see table
A1 for additional details). The 59 works in table A1 rep-
resent a systematic sample rather than an exhaustive in-
ventory. Furthermore, several limitations should be kept
in mind when interpreting the graph derived from this
sample: (1) Because Google Scholar is a product of the
corporate world, the methods it uses to compile citations
cannot be scrutinized. (2) No corrections were made for
the number of years that have elapsed since publication
or for the ever-expanding population of scientists who cite
published articles. (3) Some important, meritorious works
are not included in the sample. For example, Futuyma
(1979) is inexplicably absent from Google Scholar’s com-
pilations. In other cases, I undoubtedly overlooked im-
portant works. Despite these limitations, a graphical anal-
ysis of citation provides a revealing supplement to the
usual historical methods of diagnosing periods of
synthesis.

Periods of evolutionary synthesis are recognizable as
surges in citations followed by lulls. In figure 1, the cu-

mulative number of citations of 59 influential synthetic
books is plotted against the year of publication. The long-
est-lasting lull (1890–1920) follows the publications of
Darwin and Wallace during the period 1859–1881. Long-
recognized synthetic periods occurred in 1930–1932 and
1937–1950. Both of these periods were followed by qui-
escent periods, 1932–1937 and 1950–1963. From the
standpoint of a surge in publications, the period 1963–
2004 could easily be classified as a synthetic period. When
we consider the source of the contemporary surge, we find
that it comes from the full range of topics and areas in
evolutionary biology and not just from a few areas widely
recognized as hot, such as genomics and evo-devo (see
appendix, available online). The diagnosis of an extraor-
dinary period is also strengthened by the realization that
the publications in the period 1963–2004 will continue to
accumulate citations and will probably do so at a faster
rate than publications in the earlier periods. In other
words, if we looked at this same graph (fig. 1) 50 years
from now, we would expect the far-right portion to have
increased considerably in elevation. Does this most recent
40-year interval also qualify as a period of synthesis on
the basis of what was accomplished? To answer that ques-
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tion, I will first consider the content of the two earlier
synthetic periods.

In the period 1930–1932, Ronald A. Fisher’s, Sewall
Wright’s, and J. B. S. Haldane’s publications are a bouquet
that captured the blossoming of population genetic theory
that they cultivated in the 1920s (Provine 1971). Figure 1
shows the impact of just three publications by these au-
thors: Fisher (1930; 12,618 citations), Wright (1931; 5,493
citations), and Haldane (1932; 1,463 citations). Wright
(1931) is a major paper rather than a book, but it is an
important and timely summary of his views. These three
works differ dramatically in style, just as the authors dif-
fered stunningly in personality. Although they contributed
to this same synthetic period, members of this triumvirate
held contrasting views about evolutionary process (Prov-
ine 1971, 1985, 1986; Frank 2012). Indeed, adherents to
positions attributed to these authors continue to argue to
the present time (Coyne et al. 1997, 2000; Wade and Good-
night 1998; Goodnight and Wade 2000).

The period 1937–1950 is sometimes known as the Mod-
ern Synthesis, a moniker that seems increasingly outdated.
Figure 1 shows the impact of a major book by each of
seven authors during this period: Dobzhansky (1937; 4,591
citations), Goldschmidt (1940; 1,009 citations), Mayr
(1942; 4,380 citations), Huxley (1942; 1,891 citations),
Simpson (1944; 1,684 citations), Schmalhausen (1949; 841
citations), and Stebbins (1950; 3,506 citations). Synthesis
during this period is sometimes attributed more narrowly
to Dobzhansky, Mayr, Simpson, and Stebbins, all of whom
published books in a series edited by L. C. Dunn for Co-
lumbia University Press. Authors during this synthetic pe-
riod did not always see eye to eye. For example, Mayr
reports that he was so infuriated by Goldschmidt’s book
that he set to work on his own account of geographic
variation and speciation (Mayr 1942, 1997). Mayr chas-
tised Simpson for his brief treatment of speciation. Simp-
son responded that he did in fact devote considerable space
to speciation (Simpson 1984, p. xx). The Modern Synthesis
was far from harmonious.

Stepping back from the specifics of past synthetic pe-
riods, we see a continuous and accelerating graph of syn-
thetic activity in figure 1. What about synthesis in our
time? A striking feature of what I call the Ongoing Syn-
thesis is that it extends beyond much-heralded advances
in genomics (Losos et al. 2013) and covers the full range
of evolutionary subdisciplines, including phenotypic evo-
lution. Furthermore, many contemporary syntheses are
comparable in integration, novelty, and scope to works of
the Modern Synthesis. To continue comparing past and
present periods of synthesis, I now turn to a comparison
of Simpson’s synthesis, and in particular his account of
quantum evolution, with my own recent collaborative re-

search that bears on phenotypic evolution in deep evo-
lutionary time.

Simpson (1944) and the Ongoing Synthesis in
Evolutionary Quantitative Genetics

Simpson’s 1944 book, Tempo and Mode in Evolution, is
often cited as the first reconciliation of paleontology with
Mendelian genetics. Simpson’s own assessment was that
he alone among the contributors to the Modern Synthesis
steadfastly explored the time dimension and especially
deep evolutionary time. Simpson’s book strikes the mod-
ern eye as lacking in data tables, compilations, and graphs.
In this sense, his argument is much closer to Darwin’s
than to, say, Schluter’s (2000). Like Darwin, Simpson di-
gests case studies out of sight and presents us with distilled
principles. His use of theory is largely qualitative. He
sketches arguments of logic and consistency using pop-
ulation genetic theory, cast in terms of the short-term
dynamics of allelic fixation. To the modern reader, the
disconnection between theory and observation is jarring,
not only in Tempo and Mode in Evolution but in all the
books of the Modern Synthesis. The problem is that pop-
ulation genetics is used as a theoretical framework, but
nearly all observations in the 1930s and 1940s were in
terms of continuously distributed (quantitative) traits, not
in terms of allele frequencies. The disconnection was
solved several decades later, principally by R. Lande (1988),
who—building on the work of Pearson (1903), Dickerson
(1955), Falconer (1960), Kimura (1965), Robertson
(1966), and others—extended and used quantitative ge-
netic theory to tackle evolutionary problems. Although the
formal use of population genetic theory for continuously
distributed traits is in the future, Simpson’s theoretical
arguments are often presented in graphical models that
anticipate quantitative genetic models. The adaptive land-
scape concept is a case in point. Elsewhere I have elabo-
rated on Simpson’s role in adapting and applying Sewall
Wright’s adaptive landscape to the evolution of quanti-
tative traits (Arnold et al. 2001), so here I will illustrate
with just one key example.

Simpson’s (1944) use of the adaptive landscape concept
is explicit in his book and implicit in his vision of fre-
quency curves for a quantitative trait, evolving within and
transiting between adaptive zones (fig. 2). Simpson’s con-
cept of adaptive zones deserves some comment. By this
term, Simpson means the morphological space that is oc-
cupied by an evolving lineage (or lineages) and that char-
acterizes an ecological way of life. The connection of Simp-
son’s model to contemporary evolutionary quantitative
genetics becomes clear when we superimpose a modern
stabilizing selection function, a function that could ac-
count for the short-term stability of the frequency curves
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Figure 2: Simpson’s (1944) concept of quantum evolution. Evolu-
tion is portrayed as translations in the positions of morphological
traits, shown as (black) frequency curves. In Simpson’s view, most
evolution (phyletic evolution) occurred within adaptive zones (shown
with purple boundaries), but on rare occasions a trait distribution
made a rapid transition to a new adaptive zone (quantum evolution).
Contemporary models for both kinds of evolution employ an adap-
tive landscape or fitness function (shown in orange), with an opti-
mum that moves in morphological space and that is tracked by the
trait mean.

that Simpson graphs. The optimum of that function an-
ticipates the path of the evolving trait mean as it transits
to a new adaptive zone (fig. 2), as in Lande’s (1976) dis-
placed optimum model. Simpson called rapid and sub-
stantial evolution of this kind “quantum evolution” and
considered it his most controversial innovation in 1944.
He used horse evolution as a possible example of quantum
evolution, arguing that especially rapid and substantial
evolution occurred as the horses moved from a browsing
adaptive zone to a grazing adaptive zone. But Simpson
also argued that such quantum evolution was exceptional
and that most evolution occurred within adaptive zones.
Such “phyletic evolution” was characterized by extinction
and modest diversification within adaptive zones, as well
as by literal stasis.

The Ongoing Synthesis in evolutionary quantitative ge-
netics presents a vivid contrast with methodologies em-
ployed by Simpson and his colleagues during the Modern
Synthesis. In the first place, quantitative genetics provides
a theoretical framework with direct connections to data.
Most traits involved in adaptation have continuous dis-
tributions and are affected by many genes. The frequency
distributions of those traits are directly observable, unlike
the frequencies of the many genes that contribute to phe-

notypic variation. Secondly, the key concepts in evolu-
tionary quantitative genetics are rendered in statistical
terms, with the consequence that they can be estimated
in natural populations. Furthermore, key parameters of
inheritance (e.g., heritability, h2), selection (e.g., selection
differentials and gradients), and population size (Ne) have
been estimated in scores of populations of many dozens
of taxa, especially over the past 30 years. Thirdly, those
same key parameters play important roles in a flourishing
family of models that can be used to characterize the sta-
tistical properties of an entire neutral or adaptive radiation.
A useful property of these models is that maximum like-
lihood and related techniques can be used to compare the
fits of models with alternative properties and to estimate
the value of key parameters. Finally, huge data sets are
increasingly available and are being used to test alternative
models of phenotypic evolution. These data sets charac-
terize the evolution of phenotypic traits such as body size
in literally hundreds or thousands of lineages. For all of
these reasons, evolutionary quantitative genetics provides
a theoretical framework for achieving a new and more
powerful synthesis than was possible in the period 1937–
1950.

Two Examples of the Ongoing Synthesis

To summarize my argument to this point, in contemporary
synthetic studies, we have a more useful conceptual frame-
work, more powerful models and better ways of testing
them, and much more data. Of course, these ingredients
do not guarantee a better synthesis, but in fact we have
good evidence that they are indeed having this anticipated
effect. By way of illustration, I now take up the issue of
how my colleagues and I have explored and tested Simp-
son’s concept of quantum evolution. I will summarize just
two studies (Estes and Arnold 2007 and Uyeda et al. 2011),
but these are representative of a much larger contemporary
effort with broader goals.

Analysis of the Gingerich Data

In Estes and Arnold (2007), we self-consciously applied
five principles. In the process, we departed from a couple
of unfortunate positions that had become entrenched in
the literature. For example, instead of using generic models
of process (e.g., unparameterized Ornstein-Uhlenbeck and
Brownian motion models), we used models that were pa-
rameterized in terms of effective population size, inheri-
tance, and selection. This improvement allowed us to test
models at critical junctures by asking whether a model fit
required parameter values that were biologically unreal-
istic. Second, we departed from the tradition of focusing
on evolutionary rates. Let x be the amount of phenotypic
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Figure 3: Distributions of key parameters of inheritance and selec-
tion as compiled from literature surveys over the past few decades
(n is the number of estimates in each case). Top, Estimates of her-
itability for morphological traits (n p 580; Mousseau and Roff 1987;
D. Roff, personal communication). Middle, Strength of stabilizing
and disruptive selection, estimated as the width parameter (q2) of a
Gaussian fitness function (n p 355). Positive values indicate down-
ward curvature (stabilizing selection); negative values indicate up-
ward curvature (disruptive selection; Kingsolver et al. 2001; Estes and
Arnold 2007). Bottom, Distance from the trait mean to the optimum
of the adaptive landscape in studies with stabilizing selection, mea-
sured in units of (n p 197; Kingsolver et al. 2001; Estes and�P
Arnold 2007).

divergence during a time interval of length y. Much of the
literature prior to Estes and Arnold (2007), graphed and
analyzed evolutionary rates (x/y) as a function of time (y).
This parameterization is fraught with a long-familiar ratio
problem (Klauber 1939; Atchley 1978; Packard and Board-
man 1988). In particular, the ratio is inevitably correlated
with both x and y. One escapes from this problem by
graphing and analyzing divergence (x) as a function of
time (y).

Another aspect of our approach was to make use of
published compilations of key parameters. Two examples
are illustrated in figure 3. The heritability compilation re-
veals abundant genetic variation in most populations, es-
pecially for morphological traits, with a modal value of
about 0.4. Calculations of a measure of stabilizing selec-
tion, q2, and distance from the trait mean, , to an inter-z̄
mediate optimum, v, are based on the data compiled by
Kingsolver et al. (2001) and are described by Estes and
Arnold (2007). Furthermore, a standardized measure of
directional selection, b, shows a negative exponential dis-
tribution, with a modal value close to zero (Kingsolver et
al. 2001; Kingsolver and Diamond 2011). In other words,
most traits in most populations experience very weak di-
rectional selection, but occasionally strong values are re-
corded. Compilations of measures of stabilizing and dis-
ruptive selection reveal a pattern that is not completely
understood. The distribution is unimodal, with the mode
straddling the boundary between stabilizing and disruptive
selection (Kingsolver et al. 2001; Stinchcombe et al. 2008;
Kingsolver and Diamond 2011). If we focus on just the
cases of stabilizing selection, the vision that emerges is one
of trait means close to their optima, with small departures
common and larger departures increasingly rare. We will
want to keep these results in mind when we test models
of evolutionary process that employ these same measures
of inheritance and selection. When we conduct those tests
and enter the dimension of deep evolutionary time, we
do not want to abandon the insights we have gained from
decades of microevolutionary study.

Our understanding of the connection between evolu-
tionary process and pattern is being revolutionized by the
use of stochastic models of evolutionary process. These
models are central to the discussion that follows, so we
need to understand them in some detail. Joseph Felsen-
stein, Russell Lande, and Michael Lynch are responsible
for most of the nongeneric, parameterized models of phe-
notypic evolution that are used in Estes and Arnold (2007).
That is to say, the models are parameterized using the
measures of inheritance, selection, and population size that
we just reviewed. The essence of these models can be
grasped by imagining a set of replicate populations, all
derived from the same ancestral population with a par-
ticular trait mean (call it zero) at generation zero. We
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Figure 4: Simulations of trait means evolving by genetic drift. In all
cases, the trait mean is zero at the starting point, heritability is 0.4,
and effective population size is 100. A, A single simulation run rep-
resenting the evolution of a single lineage. B, One hundred simulation
runs, representing the evolution of 100 replicate lineages. The 99%
confidence limits for the trait mean as a function of time are shown
with thick blue lines.

specify a set of stochastic rules for the evolution of that
trait mean and suppose that all of the independent rep-
licate lineages derived from the common ancestor obey
those same rules. With the right specification, we can char-
acterize the distribution of lineage means at any point in
the future! The case of genetic drift supplies a concrete,
simple example that is easy to follow. According to this
model, the trait mean at a particular generation is the sum
of two parts, the mean in the preceding generation and a
deviation due to parental sampling. In other words,

2¯ ¯z(t) p z(t � 1) � N(0, j ), (1)

where and are, respectively, the trait means in¯ ¯z(t) z(t � 1)
generations t and t � 1. The second term on the right
denotes a draw from a normal distribution with a mean
of zero and a variance of j2 p G/Ne, where G is the additive
genetic variance of the trait (h2 p G/P) and Ne is effective
population size (Lande 1976). The fact that the variance
due to parental sampling is G/Ne is not a mystery. Suppose
we take samples of size Ne from a population in which
the genetic distribution of trait values is normal with a
mean of zero and variance of G. The samples represent
populations instantaneously derived from the ancestral
population, and the variance among them will be G/Ne.
Furthermore, and this is our key point, at any generation
in the future, t, the population means will be normally
distributed with a mean of zero and a variance of tG/Ne

(Lande 1976). Results of this kind are the statistical equiv-
alent of “replaying the tape of evolution,” to use Stephen
Jay Gould’s (1989) metaphor. Of course, this statistical
statement of future generations is much more powerful
than the metaphor because we can use it as a foundation
for testing our model with data.

We can use equation (1) to simulate a single lineage
evolving by drift. The drifting mean undergoes a kind of
random walk known as Brownian motion (fig. 4A). In this
example, we have standardized within-population phe-
notypic variance at 1. Consequently, genetic variance
equals heritability, which in this example is set at a con-
stant, empirically established modal value of 0.4. For pur-
poses of illustration, Ne is set at an unrealistically low value
of 100. Simulation also allows us to portray the random
walks of replicate lineages evolving by drift (fig. 4B). Be-
cause the lineage means are normally distributed at any
given generation in this and in many other models, we
can easily solve for and graph the 99% confidence limits
for the model, shown here in blue. Everything we need to
know about the model’s predictions is encapsulated in
those confidence limits. For example, if we graph data on
these same axes, we can do a quick visual model fit by
overlaying the confidence limits on that data plot. See Estes
and Arnold (2007) for examples.

Huge data sets that provide a statistical picture of the
actual evolution of phenotypic traits have been compiled
and made available over the past couple of decades. Philip
Gingerich was one of the first to appreciate the importance
of such compilations (Gingerich 1983, 1993, 2001). Al-
though I will refer to the Gingerich data, much of the data
on a microevolutionary timescale was assembled by An-
drew Hendry and Michael Kinnison. Gingerich began
compiling data from paleontological time series in the
1980s and combined his data with Hendry and Kinnison’s
in Gingerich (2001), which may be consulted for details.
Gingerich graciously made the data set available to us so
that we could back-calculate divergence values from rates.
The features of standardization in the Gingerich data mean
that we can combine data from diverse studies in a mean-
ingful way. The resulting, bulked picture of divergence tells
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Figure 5: Gingerich (2001) data based on time series, showing trait
divergence as a function of time. Divergence is measured in units of
within-population phenotypic standard deviation, , and elapsed�P
time is measured in generations and graphed on a log scale. The
99% confidence ellipse for the bivariate mean is defined with a thin
gray line. The purple lines show divergence values of on either�6 P
side of zero divergence. A, Data from microevolutionary (yellow)
and fossil (green) studies show similar patterns. B, Models commonly
failed to fit the data because of underprediction (no points predicted
inside the small red quadrilaterals) or blowout (many points pre-
dicted inside the large red rectangles).

us what is often observed and what is virtually never ob-
served in phenotypic evolution.

The Gingerich (2001) data are derived from time series
in which a trait mean has been followed through time.
The data are taken from 44 sources and consist of 2,639
values for change in trait mean over intervals ranging from
1 to 10 million generations. Some of the data are drawn
from microevolutionary studies in which natural popu-
lations of living organisms have been sampled at two or
more points in time, but most of the data represent studies
of fossils, in which taxa have been sampled at different
strata at the same site. The traits comprising the data are
mainly size measurements representing the dimensions
and shapes of shells and teeth, and some counts of various
morphological structures. All of the trait means are stan-
dardized to a common scale of within-population, phe-
notypic standard deviation, . A great many animal taxa�P
are represented, ranging from foraminiferans to ceratopsid
dinosaurs.

Consider a single hypothetical data point, drawn from
a particular time series (a set of estimated trait means,
each separated by an estimated interval of elapsed time).
Suppose the mean body size at generation 0 is 100 mm
and at generation 100 is 150 mm. If the average within-
population standard deviation in body size is 10 mm, then
divergence is 150 mm � 100 mm p 50 mm, or . The�5 P
divergence interval is 100 p 102 generations. In a graphical
display of this and similar data points, we will plot di-
vergence ( ) as a function of interval (102 generations).�5 P
In the plots that follow, we add points, each time anchoring
each point as if both divergence and time began at the
origin. Note that divergence, as we have scaled it, is equiv-
alent to a Felsenstein (1985) contrast, but our contrasts
are not independent because some pairs of points share
the measurement error associated with a common mean.

A plot of all the data reveals that stasis is the modal
value for divergence, regardless of timescale (fig. 5A). No-
tice that the divergence values are clustered about zero in
both the microevolutionary and fossil data sets. The
strength of the clustering about zero divergence can be
appreciated by focusing on the 99% confidence ellipse.
The good fit of this very slightly positively inclined, narrow
ellipse illustrates the remarkable fact that the overall re-
gression of divergence on time is barely different from
zero. In other words, the overall trend in the data is stasis,
no change in mean, regardless of timescale. Furthermore,
the fossil time series data appear to continue the trend of
the microevolutionary time series data, a result that argues
for continuity of process. The outer boundaries of this
ellipse lie at about on either side of the divergence�6 P
mean, which is close to zero. I have shown these bound-
aries in purple, because they will serve as a useful reference
point in later plots. These boundaries harken back to

Simpson’s concept of adaptive zones (fig. 2). Indeed, we
can consider the purple boundaries in figure 5 as an es-
timate of the maximum value of width of adaptive zones.

Even though Estes and Arnold (2007) used a simple
graphical approach in fitting models to the Gingerich data,
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Figure 6: In Lande’s (1976) displaced optimum model, an evolving trait mean tracks the movement of an intermediate optimum, v. A,
The optimum is displaced some distance from its initial position in a single generation. In this example, the distance is . B, The trait�5 P
mean rapidly evolves to a new position that approximates the new position of the optimum. The 99% confidence limits for the trait mean
are shown as a function of time. Heritability is 0.4, and effective population size is 500. C, Lineage means evolving in response to optima
that were displaced by differing amounts, all in the range of �6 to �6 , at generation 1. Heritability and effective population size are as�P
in B.

most models failed this screening test in spectacular fash-
ion. The graphical screening procedure consisted of graph-
ing the 95% confidence limits (CLs) for a particular model
onto the 99% confidence ellipse for the data (Estes and
Arnold 2007; fig. 6). In computing examples of the 95%
CLs for each model, we used the entire range of possible
values for key parameters (e.g., h2 p 0.0001–0.9, q2 p
3–50, Ne p 10–100,000). Values outside these ranges are

improbable and may be biologically unrealistic. The mod-
els themselves represented the full range of explanation
that has been offered for neutral and adaptive radiation
over the past 35 years (Hansen and Martins 1996; Arnold
et al. 2001). The upshot of implementing our procedure
is that when a model spectacularly failed to account for
the Gingerich data, it had been dealt a devastating blow.

Models failed in three distinct ways when Estes and
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Table 1: Failure of models tested by Estes and Arnold (2007) to fit the Gingerich (2001) data due to
underprediction, blowout, and unrealistic parameter values

Model Underprediction Blowout
Unrealistic parameter

values

Genetic drift (Brownian motion) Yes Yes Small h2, large Ne

Stationary optimum Yes No Large q2, large Ne

Fluctuating optimum (Brownian motion)a Yes Yes Large 2jv

Fluctuating optimum (white noise) Yes No Large 2jv

Steadily moving optimum (with white noise) Yes Yes Small k
Peak shift (drift between two optima) Yes No Small Ne

Displaced optimum No No None

Note: Failure to fit the data is denoted with a “Yes.” In the model with a steadily moving optimum, k is the deterministic,

per-generation change in the position of the optimum, v. In models with a fluctuating optimum, the position of that

optimum varies, all or in part, because of departures represented by draws from a normal distribution with zero mean

and a variance of .2jv

a Estes and Arnold (2007) gave an erroneous expression for the variance among lineage means for this model, which

nevertheless provides a reasonable approximation on long timescales. See Hansen et al. (2008) for the correct expression.

Arnold (2007) confronted them with data (table 1). In the
first way (underprediction), the model fails to predict ob-
served levels of divergence at short timescales (i.e., fails to
account for the data inside the small red quadrilaterals in
fig. 5B). For example, with realistic values of heritability
and effective population size, models of genetic drift fail
to predict enough divergence on short timescales. In the
second, more common mode of failure (blowout), the
model predicts too much divergence on long timescales
(i.e., predicts an abundance of data inside the large red
rectangles in fig. 5B). Again, genetic drift suffers from this
problem. In the third kind of failure, the model does pre-
dict data inside the purple boundaries, but only if we
invoke unrealistic values for key parameters. For example,
peak shift models (in which the trait mean shifts between
two adaptive peaks) require unrealistically small values for
effective population size (!250), while a fluctuating op-
timum model with a single peak that moves by Brownian
motion requires a value for stabilizing selection that is
several orders of magnitude weaker than values commonly
observed in nature.

When representatives of the entire family of existing
stochastic process models confronted the Gingerich data,
only a single model showed some promise of accounting
for the data (table 1). Most of the models we tested failed
to predict the Gingerich data for two or more of the three
reasons just discussed. In nearly all cases, failure was dra-
matic rather than subtle. The basic problem for the models
is that the data fall within a relatively narrow band of
values (bounded by the purple lines in fig. 5), and most
models blow out of those boundaries. In most cases, un-
realistic parameter values had to be invoked to constrain
blowout, but in some models blowout occurred under all
combinations of parameter values (table 1). One model,
however, the displaced optimum model proposed by

Lande (1976), could account for the data if just one of its
parameters were varied. As we shall see when we assemble
more data (Uyeda et al. 2011), the assertion that only the
displaced optimum model can account for the data is a
bit of an overstatement! In light of that additional data,
we will need to resurrect the models with fluctuating op-
tima (Brownian motion and white noise). Nevertheless,
with only the Gingerich data in front of us, the displaced
optimum model is the one that deserves our attention.

In Lande’s (1976) displaced optimum model, the po-
sition of an intermediate optimum suddenly shifts to a
new position in a single generation and thereafter resides
at that position (fig. 6A). This model of peak movement
represents a relatively sudden in situ change in environ-
mental conditions or migration into a new environment.
In the simulation shown in figure 6B, the lineage mean
tracked the displaced optimum, a process that required
about 100 generations. Thereafter, the mean fluctuated
about the optimum in drift-stabilizing selection balance.
The blue lines show the 99% confidence limits for the
model.

By invoking displacements of the optimum that range
from �6 to �6 within-population phenotypic standard
deviations, we account for the full range of divergence
within the purple boundaries but do not go outside them
(fig. 6C). This success, however, has been achieved in the
face of some obvious simplifications that are biologically
unrealistic. First, we have contrived the sample of dis-
placements to achieve the desired result. Second, all of the
displacements occur in the first generation, and none hap-
pen thereafter. Recognizing these restrictions, we can easily
imagine a model that relaxes them. For example, the dis-
placements might occur at random according to some
stochastic process (e.g., a Poisson process). Furthermore,
the magnitude of the displacement once it occurs might
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be drawn from some probability distribution (e.g., a nor-
mal distribution centered about zero). We will explore
both of these avenues of improvement in the next section.
Before we leave the displaced optimum model, we should
recognize one additional problem with its candidacy as an
explanatory model; it cannot easily account for phyloge-
netic resemblance between sister taxa (Hansen 2012).

Analysis of the Uyeda Data

To continue our comparison of Simpson’s (1944) synthesis
with contemporary efforts, I now turn to the study by
Uyeda et al. (2011). I will first discuss the data and then
the models, before drawing conclusions from the model
fits. Our first goal in this study was to improve the data
set in a couple of ways. First, we restricted the focus to
size-related traits so that we might realistically strive for
a homogeneous process. Second, we more than doubled
the amount of the data. Most of the increase in sample
size was achieved by adding data on body size from time-
calibrated evolutionary trees. Early in our collaboration,
Hansen noted that although the Gingerich data support
an overall model of stasis, comparative studies often show
that sister taxa have similar body sizes. Such resemblance
between sister taxa rapidly decays under a model of sta-
bilizing selection (Hansen and Martins 1996), so either
stabilizing selection is only part of the story or something
is missing from the Gingerich data. With this apparent
contradiction in mind, we decided to add tree-based data
to our study. The upshot is a data set unprecedented both
in size (over 8,000 divergence values from 206 studies)
and temporal span (divergence intervals range from 1 year
to more than 300 million years). Third, we focused pri-
marily on vertebrates, again in the spirit of improving the
prospects for a data set that might be modeled with a
single, homogeneous process. For simplicity, I shall refer
to these data as the Uyeda data even though they build
on the Gingerich data set and were compiled as part of
collaboration.

Why, in the plots that follow, do we use different axis
scales than the ones employed by Estes and Arnold (2007)?
In the first place, by adding tree-based data, we greatly
expanded the magnitude of divergence that we observed.
To accommodate this expansion, we used a log scale that
is equivalent to the proportional change in body size. Us-
ing our previous hypothetical data point (100 mm at gen-
eration 0, 150 mm at generation 100), the proportional
change in body size is (150 � 100)/100 p 0.5, or a 50%
increase in body size. The second change occurs on the
X-axis. Before, we measured time in generations, now we
measure it in years. Although the same patterns are evident
on both timescales, the pattern appears blurred on the
generational scale, perhaps because of error in the esti-

mates of generation time (see Uyeda et al. 2011 for com-
parison plots).

In figure 7, we add data to the plot in the order: mi-
croevolutionary, fossil, and, finally, tree-based. Notice that
the pattern merges smoothly as the data types are added,
again suggesting homogeneity of pattern and perhaps of
process. However, with the addition of fossil time series
data in this plot (fig. 7B), we see an inkling that at long
timescales the pattern is a different one from that seen in
the microevolutionary data. In particular, we see an abun-
dance of fossil data in which divergence exceeds a 100%
change in body size. Adding in the tree-based data (fig.
7C), we see many more examples in which divergence in
body size exceeds 200%. Two kinds of tree-based data
points are shown in blue. Note that when data (contrasts)
are drawn from a tree, they have no sign. For the purposes
of merging the tree-based data with the microevolutionary
and fossil data (which have signs), we assigned signs at
random to the tree-based contrasts. The larger blue circles
show values of divergence that are averaged about a node
on a tree. The smaller blue circles show divergence values
for individual pairs of divergence values on a tree.

We can gain perspective on the pattern before us if we
ask for the position of the purple boundary lines that we
drew on the Gingerich data (fig. 5). The equivalent bound-
aries for this divergence scale, also shown in purple, are
�65% change in body size (fig. 7C). In other words, the
vast majority of size evolution in vertebrates appears to
be limited to a �65% change in body size, regardless of
timescale. Divergence in body size greater than 100% is
common only on timescales greater than 1 million years.

Another perspective on the data is gained by comparing
the pattern to the barrel of a blunderbuss, a muzzle-load-
ing firearm with a flared barrel opening that was used in
the seventeenth and eighteenth centuries. On a timescale
of less than 1 million years, size divergence is restricted
to a narrow range that resembles the slender base of the
barrel. On longer timescales, divergence values flare out
much like the flared end of the barrel. Because these di-
vergence values are well outside the purple lines denoting
bounded evolution, it is tempting to view them as ex-
amples of Simpson’s quantum evolution. Indeed, the ex-
ample of size divergence from Epihippus to modern horses
(fig. 7) strengthens this view. More generally, How can we
account for the blunderbuss pattern? This question will
be our main concern in the sections that follow.

The revelation that very substantial divergence can oc-
cur on very long timescales (i.e., the flared end of the
blunderbuss) makes us take another look at some of the
models we discarded in the Estes and Arnold (2007) study.
In particular, Brownian motion models are capable of pro-
ducing the blunderbuss pattern (fig. 6A, 6C of Estes and
Arnold 2007). These models are of two types: Brownian
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Figure 7: Uyeda et al. (2011) data drawn from time series and time-
calibrated trees, showing trait divergence as a function of time and
revealing a blunderbuss pattern. Divergence is measured as propor-
tional change in the mean and graphed on a log scale. Elapsed time
is measured in years and graphed on a log scale. A, Microevolutionary
data only. B, Microevolutionary and fossil data. C, Combined plot
of the microevolutionary, fossil, and tree-based data, revealing the
blunderbuss pattern. The larger blue circles show values of divergence
that are averaged about a node on a tree. The smaller blue circles
show divergence values for individual pairs of divergence values on
a tree. Fossil data points representing trait divergence during the
quantum evolution of horses are outlined in black and superimposed
on the tree-based data. The two purple lines denote �65% change
in size-related traits, equivalent on these axes to the purple lines
shown in figure 5.

motion of a trait mean (fig. 4) and Brownian motion of
an intermediate optimum. Furthermore, white noise mo-
tion of the optimum could account for the long, slender
base of the blunderbuss barrel, even though the end of
the barrel would not flare dramatically as in the blunder-
buss (fig. 6B of Estes and Arnold 2007). In other words,
the new information about pattern, supplied by the tree-
based data, causes us to resuscitate two models prema-
turely pronounced dead by Estes and Arnold (2007),
Brownian motion and white noise motion of the optimum,
as well as to explore relaxed versions of the displaced op-
timum model. We need a strategy to efficiently explore all
of these model candidates.

While the model comparisons of Estes and Arnold
(2007) do not account for the flared end of the blunder-
buss, their conclusions about the long barrel of the blun-
derbuss remain valid. With that perspective in mind, the
Uyeda et al. collaborators decided to focus on models that
might account for the flared end of the blunderbuss and
to let a surrogate, place-keeping process account for the
long, slender base of the barrel. We used white noise fluc-
tuation of the lineage mean about trait optimum as that
surrogate process. This process is simpler than the drift
process we simulated in figure 4. Under a white noise
process, the value of the trait mean of each generation is
simply a draw from a normal distribution with zero mean
and a variance of , whereas under drift the deviation of2jP

the mean from its value in the preceding generation is
normally distributed; that is, is dropped from thez̄(t � 1)
right side of equation (1). We employed a white noise
process in full knowledge of the fact that tracking an op-
timum that fluctuates across the full width of the central
band of data will inevitably place an evolving lineage in
hazardous demographic territory. As the distance from the
trait mean to the optimum increases, mean fitness in the
population declines and the risk extinction increases. The
compensating advantage of a white noise model is that it
requires a single variance term, and it can be easily com-
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Figure 8: Simulations of the single- (A) and multiple-burst (B) models showing evolving trait means as a function of time. The position
of the intermediate optimum, v, is shown in orange; the position of the evolving trait mean is shown in black. In these simplified models,
the trait mean shows white noise fluctuation about the optimum and instantaneously tracks any movement of the optimum ( ,2j p 5P

, l p 0.005). Purple lines are as in figure 5.2j p 37D

bined with more complicated models that might account
for the flared end of the barrel. In particular, we used
white noise (WN) alone, as well as WN combined with
Brownian motion and WN combined with two descen-
dants of the displaced optimum model (the single- and
multiple-burst models), which we will now describe. These
two models also harken back to a predecessor model,
which was not evaluated by Estes and Arnold (2007). In
that Hansen (1997) model, a stabilizing selection optimum
maintains a long-term position but also experiences rare
shifts in position.

Two key features of the single-burst model are illustrated
in figure 8A. The first key feature is that the optimum can
move away from its initial position at zero in a single
burst. The timing of this single burst is dictated by a Pois-
son process. The simulations illustrated in figure 8 used
an artificially large value of the Poisson parameter l so
that bursts happen in just a few hundred generations. Once
that single burst occurs, the optimum retains its new po-
sition ever after. The second key feature of the model is
that magnitude of the burst (the displacement of the op-

timum) is a draw from a normal distribution with a mean
of zero and a variance of . For example, in figure 8A2jD

we see that the single burst occurs at about generation 20
and amounts to a displacement of about away from�8 P
the starting position. A displacement of this magnitude
carries the long-term lineage mean outside the ��6 P
boundary lines shown in purple. If we parameterize the
model so that is smaller, single bursts will fall within2jD

the limits of the adaptive zone so that we have a model
for within-adaptive zone, phyletic evolution.

The obvious point that an evolving lineage can expe-
rience multiple bursts is illustrated in figure 8B. In the
illustrated implementation of a multiple-burst model, five
bursts occurred, and two of those, at about generations
500 and 750, carried the lineage mean outside the purple
boundary lines. As in the single-burst model, the timing
of bursts is dictated by a Poisson process, and the mag-
nitudes of the bursts are draws from a normal distribution
with zero mean. To determine the best choice of param-
eters for the Poisson process and the normal distribution
in each type of model, we used maximum likelihood.
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Figure 9: Graphical comparison of the best-fit versions of the multiple-burst, single-burst, and Brownian motion models. Silhouettes of
the data points are shown in gray (same data shown in fig. 7C, except that pairwise tree data are not included). The blue lines show the
99% confidence limits corresponding to the parameters fit by maximum likelihood. Divergence is measured as the difference between the
means of log-transformed size, standardized by dimensionality.

The fits of the four models to the Uyeda data are il-
lustrated in figure 9 and compared in table 2. For each
model, we can characterize the expected distribution of
data at any given point in time. The first three models
yield relatively simple normal distributions, but in the
fourth, the distribution is more complicated. Using those
expressions, we can calculate the likelihood of the data for
any given choice of parameter values. For each model, we
proceed by finding the choice of parameter values that
maximizes the likelihood of the data. In the middle column
of table 2, we show the maximum likelihood estimates for
the white noise parameter, expressed as a standard devi-
ation. Notice that for all three of the combined models,
the estimates of this white noise standard deviation are
very similar, a point that we will revisit shortly. The column
on the far right shows the Akaike Information Criterion
(AIC) values, which represent best fits for each model,
corrected for differences in numbers of parameters. The
asterisk on the AIC label reminds us that we have treated
the data points as independent observations in calculating
AIC (i.e., we have ignored the covariance structure of the
data), so our conclusions in comparing the models are
necessarily tentative. The pattern of these best fits are also
illuminating (fig. 9). The blue lines in figure 9 show the
95% CLs for the three best-fitting models. Although the
best-fit CLs for the white noise model are not shown, they
are easily visualized as two parallel lines, slightly further
apart than the three sets of lines describing the blunderbuss
barrel in figure 9 but without the flaring on the far right.
We see from the AIC column (table 2) that the white noise–
only model appears to fare appreciably worse than the
other models. The AIC also suggests that the multiple-
burst model fits best, followed by single-burst and then
by Brownian motion. This order seems to be contradicted

by the plots of best CLs. In particular, the Brownian mo-
tion fit appears to be as good as the multiple-burst fit.
The Brownian motion model predicts a normal distri-
bution of data at any given point in time, but a close
examination of the data reveals a nonnormal overabun-
dance of divergence data near the zero point, especially at
the far-right end of the plot. The single- and multiple-
burst models do a better job of accounting for this aspect
of the data distribution, and those better jobs are reflected
in their AIC scores.

At this point, I would like to retract a conclusion that
I reached with Suzanne Estes in Estes and Arnold (2007).
In that paper, we concluded that both versions of the
Brownian motion model could be discarded because both
models predicted more and greater values of divergence
on long timescales than we observed in the Gingerich data.
On that basis, we argued that Felsenstein’s (1985) inde-
pendent contrasts foundation for comparative studies,
which relies on a Brownian motion model of evolution,
might be built on sand. However, comparative studies sup-
ply the very values of large divergence that Brownian mo-
tion predicts. Consequently, Felsenstein (1985) is correct
in arguing that Brownian motion might be a good ap-
proximation to phenotypic evolution. We must, however,
add a caveat. Brownian motion of the adaptive peak may
be a good approximation, but Brownian motion of the
trait mean about a stationary peak (i.e., genetic drift) is
not. We can reach this conclusion by asking how large
effective population size must be to account for the blun-
derbuss of CLs shown in figure 9 on the far right. The
answer is hundreds of millions of individuals, if heritability
takes the empirically observed modal value of 0.4. The
problem for the genetic drift version of Brownian motion
is that unrealistically large population size is required to
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Table 2: Comparison of model fits to the Uyeda et al. (2011) data

Model
ML estimate of white
noise parameter, jP AIC*

White noise only .20 �2,941
Brownian motion � white noise .11 �7,878
Single-burst � white noise .10 �9,018
Multiple-burst � white noise .10 �9,143

Note: The maximum likelihood (ML) estimates for the white noise parameter

are expressed as a standard deviation. The test statistic (AIC*) does not account

for the covariance structure of the data. The asterisk indicates that we have treated

the data points as independent observations in calculating Akaike Information

Criterion (AIC; i.e., we have ignored the covariance structure of the data), so our

conclusions in comparing the models are necessarily tentative.

stop the lineage from drifting outside the bounds of the
slender barrel of the blunderbuss and delaying substantial
divergence until tens or hundreds of millions of years have
elapsed.

What can we infer about quantum evolution from the
maximum likelihood estimates of parameters for the best-
fitting multiple-burst model? Consider first the normal
distribution of white noise deviations from zero on the Y-
axis, the initial position of the optimum (fig. 10). The best
estimate of the standard deviation of this distribution
(shown with a dashed line at the upper left) is about 0.10
(table 2). In contrast, the best-fit normal distribution of
burst sizes (shown with a solid line) has a standard de-
viation of 0.27, about three times larger (right-hand panel
in fig. 10). Turning finally to the best-fit distribution of
burst waiting times (bottom panel in fig. 10), we see that
on a log scale the distribution is skewed toward “short”
waiting times, but the mean time is 25 million years and
bursts are very uncommon in intervals shorter than 1
million years. In other words, evolutionary bursts that
might carry a lineage out of an adaptive zone are very
rare. Furthermore, the large divergence values observed in
some fossil time series and more commonly in compar-
ative data would require a succession of several to many
bursts.

Landis et al. (2013) have described a model that com-
bines Brownian motion with evolutionary bursts. One can
interpret this model as Brownian motion of an optimum
that also experiences rare bursts of movement, described
by a Poisson process. Fitting this model to tree-based pri-
mate data on brain size revealed a million-year waiting
time for bursts, similar to the waiting time described by
Uyeda et al. (2011).

Conclusions and Perspectives

What Is the Best Model for Phenotypic Evolution?

In this section, I summarize and discuss essential results
while maintaining my focus on connections to key con-

cepts pioneered by G. L. Simpson (adaptive zones, phyletic
evolution, quantum evolution). In the process, I neglect
many worthy and contentious topics. The issue of how
stabilizing selection might be maintained on a geological
timescale, for example, is discussed at length by Estes and
Arnold (2007).

Micro- and meso-evolution (Simpson’s phyletic evo-
lution) are bounded so that diversification occurs within
adaptive zones that have distinct limits or bounds.
Bounded diversification can be visualized as the long barrel
of a blunderbuss. The bounds define a region of trait di-
vergence only 6 standard deviations on either side of the
long-range trait mean. For size-related traits, this region
represents change of less than 65% in trait mean. Re-
markably, most evolution occurs within these boundaries
on all timescales.

What is the explanation for this bounded evolution?
Although the existence of bounds on a geological timescale
seems unequivocal, the process that produces and main-
tains evolutionary bounds is a topic of current debate. The
bounded evolution revealed by the slender barrel of the
blunderbuss should not be confused with stasis. The limits
of that slender barrel lie �6 within-population standard
deviations, or a �65% change in body size, on either side
of literal stasis. Within those bounds, individual species
can appreciably evolve. Indeed, though circumscribed,
those bounds are wide enough to accommodate the dif-
ferentiation of many (most?) vertebrate genera and fam-
ilies. For this reason, the barrel of the blunderbuss is com-
parable to an adaptive zone in Simpson’s (1944) sense,
that is, bounds within which considerable but constrained
phyletic evolution can take place. In other words, the barrel
of the blunderbuss is not a narrow band of literal or even
modest stasis. For this reason, many processes and hy-
potheses that have been put forth to explain long-term
stasis do not provide a satisfactory explanation for our
slender barrel. Take, for example, the idea that gene flow
and complex geographic structure within species prevents
range-wide incorporation of novel excursions in average
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Figure 10: Maximum likelihood estimates of parameters for the best-fitting multiple-burst model. A, Plot of the Uyeda et al. (2011) data,
as in figure 7. Gaussian curves representing the white noise distribution (mean p 0 , standard deviation p 0.096) and the burst size
distribution (mean p 0 , standard deviation p 0.272); these standard deviation values are for the vertical scale shown in figure 9; other
conventions are as in figure 7. C, Burst timing distribution, showing the waiting times between bursts (1/l) obtained by bootstrapping
over studies (2,000 replicates). The vertical red dashed lines show the position of the average waiting time on the actual and simulated data
plots.

phenotype (Futuyma 1987; Eldredge et al. 2005). Hybrid-
ization might tend to pull the range-wide species mean
back toward a central value, but it cannot explain why
independently evolving species and genera remain inside
the slender barrel. In other words, complex geographic
structure might help explain stasis within species but does
not help us account for long-maintained adaptive zones.
The explanation is likely to lie in the realm of community
ecology (Futuyma 2010), far outside the domain of genetic
constraints and population structure.

Rare bursts of evolution can carry trait means into new
adaptive zones, beyond the bounds of normal phyletic
evolution. These rare events can be modeled as draws of
adaptive peak movement from a statistical distribution
with a mean of zero. Most evolutionary bursts are modest
in magnitude and do not carry a lineage outside its adap-
tive zone. Irrespective of magnitude, bursts are rare with
an average waiting time of 25 million years. Despite this
rarity, on timescales of 100 million years or more, bursts
are increasingly inevitable. A succession of these stochastic
but inevitable bursts can carry a lineage far beyond the

boundaries of its original adaptive zone (Simpson’s quan-
tum evolution). The flared end of the blunderbuss reflects
the accumulation of these rare bursts of evolution.

It is tempting but misleading to equate the multiple-
burst and related models with punctuated equilibrium
(Eldredge and Gould 1972). The problem with punctuated
equilibrium is that it is an idea that has different impli-
cations to different people. It is not a well-defined model.
Consequently, punctuated equilibrium does not provide a
useful touchstone for current modeling efforts. Pennell et
al. (2013) have highlighted this problem by pointing out
that punctuated equilibrium conflates four separate ques-
tions: whether evolution is gradual or pulsed, whether evo-
lution is concentrated at speciation or within lineages,
whether change at speciation is adaptive or neutral, and
whether species selection shapes among-lineage diversity.
To make matters worse, some of these issues appear un-
answerable. In light of these problems, Pennell et al. (2013)
conclude that punctuated equilibrium has outlived its use-
fulness. I agree.

We will need additional studies on additional kinds of
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traits and other kinds of organisms to determine whether
the blunderbuss pattern, documented for size-related traits
in vertebrates, is a general pattern. One interpretation of
evolutionary bursts is that they coincide with the invasion
of new adaptive zones, but other interpretations are pos-
sible and need to be tested.

Some General Lessons about Synthesis
in Evolutionary Biology

Synthesis is not something that we should anxiously await.
Synthesis has been an ongoing activity since 1963 and
appears to be accelerating.

We should not expect harmony during periods of syn-
thesis. During long-recognized periods of great synthesis
in evolutionary biology (e.g., 1930–1932, 1937–1950), par-
ticipants often disagreed, sometimes strenuously, about
minor and major topics. Likewise, in our own time, dis-
sension and discord are all about us.

To synthesize, we need diverse perspectives and bridges
between them. Uyeda et al. (2011), for example, discovered
the blunderbuss pattern by combining data from three
types of studies (microevolutionary, paleontological, and
comparative).

My colleagues and I pioneered a new approach for eval-
uating and testing stochastic models of evolution by break-
ing with tradition and plotting the data so that they com-
municated directly with the models. The general point is
that theory needs to be tested with the best available data.
We also need to use the most powerful versions of theory
as we strive to move beyond metaphors.

Are we in the midst of one of the great synthetic periods
in evolutionary biology? I have argued that we are in such
a period because of an extraordinary ongoing surge in
citations of works that span the full range of topics in our
field. We should not be distracted by the attention lavished
on a few hot areas. The Ongoing Synthesis is broad and
diverse.

The Ongoing Synthesis is comparable in its breadth and
integration to earlier periods of synthesis. I have argued
that two recent studies in which I participated extend
Simpson’s (1944) synthesis in a significant way and are
emblematic of a new synthetic wave. In particular, the use
of large data sets to test alternative models of evolutionary
process is moving us toward new and powerful generali-
zations about phenotypic evolution. Examples of this new
approach include historical tests for alternative selection
regimes (Butler and King 2004; Hansen et al. 2008), in-
ferring rates of clade diversification on phylogenetic trees
(Alfaro et al. 2009; Meredith et al. 2011; Stadler 2011),
and tests for alternative models of trait evolution, along
the lines of the ones described here (Hunt 2007; Harmon
et al. 2010).
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Editor: Judith L. Bronstein

“It is not in one alone of these groups that we find associated together, in a natural morphological combination, giants and dwarfs,
although only in one do we find the contrast in the present age of our globe. It is the family of Physeteridæ (the sperm-whales) which
furnishes us with the contrast in living forms; only giants are now living to represent the Balænidæ (the right-whales), and Balænopteridæ
(the fin-back whales), but in the miocene age, a species of a fin-back whale lived that when adult was not even as large as the new born
young of the fin-backs now living.” From “The Sperm Whales, Giant and Pygmy” by Theodore Gill (The American Naturalist, 1871, 4:725–
743).
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