
Dispersal strength determines meta-community structure in a dendritic 
riverine network

Cañedo-Argüelles, M., Boersma, K. S., Bogan, M. T., Olden, J. D., Phillipsen, I., 
Schriever, T. A., & Lytle, D. A. (2015), Dispersal strength determines 
meta-community structure in a dendritic riverine network. Journal of 
Biogeography, 42(4), 778–790. doi: 10.1111/jbi.12457

10.1111/jbi.12457

John Wiley & Sons Ltd.

Accepted Manuscript

http://cdss.library.oregonstate.edu/sa-termsofuse

http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse


 1 

Original article. 1 
Word count (abstract, text and references): 7,697. 2 
Estimated number of journal pages required by figures and tables: 3. 3 
 4 

Title: Dispersal strength determines meta-community structure in a dendritic riverine 5 

network. 6 

 7 

Running header: meta-community structure in a fragmented riverine network 8 
 9 

Author names: Cañedo-Argüelles, M.
ab

, Boersma, K.S.
ac

., Bogan, M.T.
ad

, Olden, J.D
e
., 10 

Phillipsen, I.
a
, Schriever, T.A.

a
, Lytle, D.A.

a
. 11 

 12 

Author addresses: 13 

a Dept. of Integrative Biology, Oregon State Univ., 3029 Cordley Hall, Corvallis, OR 14 

97331-2914, USA 15 

b Grup de Recerca Freshwater Ecology and Management (FEM), Departament 16 

d’Ecologia, Facultat de Biologia, Universitat de Barcelona (UB), Diagonal 645, 08028 17 

Barcelona, Spain 18 

c Current address: Department of Biology, University of San Diego, 5998 Alcala Park, 19 

San Diego, CA 92110, USA 20 

d Current address: Department of Environmental Science, Policy and Management, 21 

University of California, Berkeley, CA 94720, USA 22 

e School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 23 

98105, USA 24 

 25 

Correspondence: Miguel Cañedo-Argüelles. FEM Research Group, University of 26 

Barcelona, Av. Diagonal 643, 08028, Barcelona. E-mail address: 27 

mcanedo.fem@gmail.com 28 

 29 

Abstract 30 

Aim 31 

Meta-community structure is a function of both local (site-specific) and regional 32 

(landscape-level) ecological factors, and the relative importance of each may be 33 

mediated by the dispersal ability of organisms. Here, we used aquatic invertebrate 34 

communities to investigate the relationship between local and regional factors in 35 

explaining distance decay relationships (DDRs) in fragmented dendritic stream 36 

networks. 37 

 38 

Location 39 

Dryland streams distributed within a 400 km
2
 section of the San Pedro River basin, 40 

southeastern Arizona, USA. 41 

 42 

Methods 43 
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We combined fine-scale local information (flow and habitat characteristics) with 44 

regional-scale information to explain DDR patterns in community composition of 45 

aquatic invertebrate species with a wide range of dispersal abilities. We used a novel 46 

application of a landscape resistance modeling approach (originally developed for 47 

landscape genetic studies) that simultaneously assessed the importance of local and 48 

regional ecological factors as well as dispersal ability of organisms. 49 

 50 

Results 51 

We found evidence that both local and regional factors influenced aquatic invertebrate 52 

DDRs in dryland stream networks, and the importance of each factor depended on the 53 

dispersal capacities of the organisms. Local and weak dispersers were more affected by 54 

site-specific factors, intermediate dispersers by landscape-level factors, and strong 55 

dispersers showed no discernable pattern. This resulted in a strongly hump-shaped 56 

relationship between dispersal ability and landscape-level factors, where only moderate 57 

dispersers showed evidence of DDRs. Unlike most other studies of dendritic networks, 58 

our results suggest that overland pathways, using perennial refugia as stepping-stones, 59 

might be the main dispersal route in fragmented stream networks. 60 

 61 

Main conclusions 62 

We suggest that using a combination of landscape and local distance measures can help 63 

to unravel meta-community patterns in dendritic systems. Our findings have important 64 

conservation implications, such as the need to manage river systems for organisms that 65 

span a wide variety of dispersal abilities and local ecological requirements. Our results 66 

also highlight the need to preserve perennial refugia in fragmented networks, since they 67 

may ensure the viability of aquatic meta-communities by facilitating dispersal. 68 

 69 

Keywords: aquatic invertebrates, dendritic networks, distance decay relationship, 70 
drought, dispersal, connectivity, landscape resistance, meta-community.  71 
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Introduction 72 

Studying patterns of biological diversity has been the foundation of numerous 73 

ecological pursuits over the past two centuries. Distance decay relationships (DDRs) – 74 

which describe the biogeographic phenomenon where taxonomic similarity between 75 

localities decreases or decays as the distance between them increases – have received 76 

considerable interest among ecologists (Nekola & White, 1999). Indeed, this ecological 77 

pattern is encapsulated in Tobler’s first law of geography, which states that ‘everything 78 

is related to everything else, but near things are more related than distant things’ 79 

(Tobler, 1970). DDRs have now been studied across a wide range of organisms and 80 

environments (reviewed in Soininen et al. 2007), but are still relatively understudied in 81 

riverine ecosystems (Thompson & Townsend 2006, Leprieur et al. 2009, Brown & 82 

Swan 2010, Bonada et al. 2012, Warfe et al. 2013). This is largely because streams and 83 

rivers are organized as complex dendritic networks rather than simple linear systems 84 

(Benda et al., 2004; Campbell Grant et al., 2007; Erős et al., 2012), thus necessitating 85 

the incorporation of network connectivity to explore the interactions among 86 

communities that are linked by dispersal (Fausch et al., 2002). 87 

 88 

The environmental phenomena that drive any particular DDR can be decomposed into 89 

local and regional factors. Local factors include site-specific attributes such as water 90 

chemistry and habitat structure that serve as filters, excluding some taxa and favoring 91 

others (Poff, 1997; Townsend et al., 1997). Regional factors include landscape-level 92 

features that facilitate or impede the movement of organisms across landscapes. These 93 

features may include the dendritic structure of stream networks (Fausch et al., 2002; 94 

Benda et al., 2004), the spatial arrangement of suitable habitat patches across the 95 

landscape (Campbell Grant et al., 2007; Erős et al., 2012; Phillipsen & Lytle, 2013), 96 

and the simple Euclidean distance between sites. Therefore, a full understanding of the 97 

ecological processes underlying DDR patterns in stream networks must account at least 98 

for three main factors: environmental filters, dispersal of organisms and network 99 

topology. 100 

 101 

Environmental harshness can influence the role of local and regional forces shaping 102 

biodiversity patterns (Brown et al., 2011; Heino, 2011). For example, unstable 103 

environments (e.g. aquatic habitats that experience severe, recurrent droughts) show a 104 

high degree of niche filtering, allowing only those species adapted to the local 105 

conditions to persist (Poff, 1997; Chase, 2007). Therefore, harsh environmental 106 

conditions may cause meta-communities to be structured by local factors (Urban, 2004) 107 

and DDRs may not meet the expectation of decreasing community similarity with 108 

increasing distance.  109 

 110 

Dispersal of aquatic-obligate riverine organisms is highly constrained by flow 111 

connectivity (Fausch et al., 2002; Hughes, 2007; Schick & Lindley, 2007). In contrast, 112 

aquatic organisms that can disperse overland, such as flying forms of adult aquatic 113 

insects, can move both along drainages and across drainage divides (Bilton et al., 2001; 114 

Petersen et al., 2004). Therefore, variability in dispersal mode and ability will determine 115 
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the extent to which local and regional factors structure assemblages of organisms 116 

(Bohonak & Jenkins, 2003; Cottenie & De Meester, 2004) and may be reflected in the 117 

shape of the DDR. For example, studies on aquatic invertebrate meta-communities in 118 

stream networks have reported that increasing dispersal strength results in a weakening 119 

of DDRs due to relaxation of dispersal limitation (Thompson & Townsend, 2006; 120 

Brown et al., 2011). Very high dispersal rates could cause the homogenization of 121 

communities, since organisms can disperse to all available habitats and only the 122 

strongest competitors will survive (Kneitel & Miller, 2003; Leibold et al., 2004). 123 

 124 

The network topology, or spatial structure of the river network, also has important 125 

implications for dispersal and resulting meta-community structure (Muneepeerakul et 126 

al., 2008; Auerbach & Poff, 2011). The use of within-network and overland dispersal 127 

pathways by aquatic organisms largely depends on the connectivity between the habitat 128 

branches, with the loss of connectivity constraining within-network dispersal (Fagan, 129 

2002). Therefore, within-network DDR should be weaker when populations are disjunct 130 

within the river network, as is the case with headwater specialist organisms.  131 

 132 

Although critical for understanding the potential mechanisms shaping DDRs (Brown et 133 

al., 2011), landscape resistance to the dispersal of organisms has been largely neglected 134 

in meta-community analyses (Moritz et al., 2013). Landscape resistance quantifies 135 

“distances” between communities that may yield more biologically informative DDRs 136 

than straight-line Euclidean distance, such as those associated with barriers to dispersal 137 

(e.g. high mountains or cliffs). To the present date, only Euclidean and network distance 138 

(i.e. the distance between sites along the riverine dendritic network) have been applied 139 

to stream networks, which fails to consider more realistic landscape variables in DDR 140 

analyses (McRae et al., 2008).  141 

 142 

In this study, we present a novel application of a landscape resistance modeling 143 

approach, originally developed for landscape genetic studies, to understand local and 144 

regional drivers of community structure. Dryland streams were used as a model system 145 

to test how environmental stability, dispersal capacity and network topology interact to 146 

structure aquatic meta-communities in dendritic networks. These streams experience 147 

frequent droughts and floods, which lead to strong niche filtering of stream organisms 148 

(Lytle, 2002; Lytle & Poff, 2004), with perennial habitats serving as refugia for species 149 

that need water during their entire life cycle to survive (Bogan & Lytle, 2011; Phillipsen 150 

& Lytle, 2013). Therefore, the high temporal and spatial variation in environmental 151 

conditions may disrupt expected longitudinal patterns of species’ replacement along the 152 

network (Bogan et al., 2013). In these systems DDRs are expected to be weak or non-153 

existent, with adjacent sites showing very different aquatic assemblages due to large 154 

among-site variation in environmental conditions (e.g. one site may flow year-round, 155 

while an adjacent site may flow only during rainy seasons). We focused on aquatic 156 

invertebrates because they possess a wide range of dispersal capacities (Bilton et al., 157 

2001; Bohonak & Jenkins, 2003) and are present over a wide range of environmental 158 
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conditions (Rosenberg & Resh, 1993; Merritt et al., 2008), as exemplified by the great 159 

diversity of biological traits that they exhibit (Statzner et al., 2004; Poff et al., 2006).  160 

 161 

The aim of our study was to use DDRs to investigate the relationship between local and 162 

regional factors in explaining aquatic meta-community structure in fragmented dendritic 163 

networks. Here we define fragmentation as the loss of surface water connectivity along 164 

the river network. During low precipitation periods (typically in late Spring and 165 

Summer) some dryland streams experience very low flow, with sections becoming 166 

disconnected pools separated from one another by dry stream reaches. We used fine-167 

scale local environmental variables and landscape resistance metrics to quantify the 168 

influence of local and regional drivers on DDRs for groups of species with different 169 

dispersal capacities. The following hypotheses were tested: 170 

 171 

H1: DDRs should be weak for very strong and very weak dispersers (at the ends of the 172 

dispersal gradient) because meta-communities of weak dispersers show little spatial 173 

structure and meta-communities of strong dispersers are homogenized by competition. 174 

We predicted that DDR would be strongest in species with moderate dispersal strength. 175 

H2: Due to high network fragmentation in dryland streams (i.e. longitudinal flow 176 

disruption during long dry seasons), no significant DDR should be found when using 177 

network distance. We predicted that network distance would have low explanatory 178 

power due to high spatial and temporal stream fragmentation, while our approach that 179 

considers landscape resistance to dispersal would provide greater explanatory power. 180 

H3: Due to strong niche filtering (i.e. high environmental heterogeneity), DDRs 181 

associated with flow and environmental characteristics should be consistently stronger 182 

than DDRs associated with landscape resistance variables, regardless of the dispersal 183 

strength of the organisms. We predicted that DDRs associated with flow and 184 

environmental characteristics would be significant, regardless of species’ dispersal 185 

abilities.  186 

 187 

Methods 188 

Study site and field sampling  189 

We sampled aquatic invertebrates at 28 sites across seven dryland streams distributed 190 

within a 400 km
2
 section of the Upper San Pedro River basin, southeastern Arizona, 191 

USA (Figure 1; Schriever et al., in press). Streams in the area generally have perennial 192 

flow in montane headwaters, intermittent flow in upper alluvial fan reaches, ephemeral 193 

flow lower on alluvial fans, and then alternating perennial and intermittent reaches in 194 

valley rivers (Bogan et al., 2013). We distributed our sample sites among perennial, 195 

intermittent and ephemeral reaches (classification follows Levick et al., 2008), but used 196 

a continuous flow metric to quantify permanence (see below). Sites were sampled three 197 

times a year (March/April, August/September, and November/December) between 2009 198 

and 2011. The number of sites and samples collected differed among streams because 199 

not all sites had flow or all microhabitats during each sampling event. The study period 200 

spanned numerous dry seasons, several periods of ephemeral flows from summer 201 

monsoon rains, and one period of intermittent flows resulting from a wet winter. The 202 
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majority of the sampling occurred during the fall (Nov/Dec) and winter (Mar/Apr) 203 

seasons for a total of 144 site x sampling event combinations.   204 

 205 

Both riffle and pool microhabitats were sampled at each site, when present. For riffle 206 

samples we disturbed 0.33 m
2
 of stream substrate to a depth of 5 cm while capturing 207 

invertebrates immediately downstream with a D-net (500-µm mesh). Pool samples 208 

consisted of sweeping the entire pool area including water column, surface, and pool 209 

benthos with a D-net at an effort of 10 seconds for every 1 m
2
 of pool habitat (following 210 

Bogan & Lytle, 2007). Abundances from replicate microhabitat samples collected from 211 

the same site during the same sampling event (e.g. three riffles in November) were 212 

summed for each taxon and divided by the number of replicates to acquire relative 213 

abundances. Samples were preserved in 95% ethanol and invertebrates were identified 214 

in the laboratory to the finest taxonomic level practical, usually to genus or species for 215 

insects (including Chironomidae) and family or order for non-insects.  216 

 217 

During each visit, we measured water temperature, pH (Whatman pH Indicators, 218 

Whatman International, Maidstone, England) and conductivity (Milwaukee waterproof 219 

EC meter C65; Milwaukee Instruments, Rocky Mount, NC, U.S.A.), visually estimated 220 

canopy cover and benthic substrate on a percent cover scale (0 - 100%; substrate 221 

categories: silt, sand, gravel, cobble and bedrock). We measured the timing and duration 222 

of streamflow through the deployment of 15 electrical resistance sensors (Jaeger & 223 

Olden, 2012), each representing the hydrologic conditions at the nearest location of 224 

invertebrate sampling. The sensors logged the presence or absence of water in the 225 

stream channel at 15 minute intervals from April 2010 to December 2011. From the 226 

sensor data, we calculated four hydrologic metrics for each site: % flow permanence by 227 

year, mean % flow permanence by season (spring = March-June; monsoon = July-228 

September; fall = October – November; winter = December-April), mean duration 229 

(number of days) of zero flow periods (ZFP) each year, and total number of ZFP each 230 

year. For the two flow permanence metrics and duration of ZFP, we summed 15-minute 231 

time periods of both wet and dry conditions for the sampling period and for individual 232 

zero flow periods, converting the time unit to either days or years as appropriate for the 233 

final stream flow metric. We used an average of 2010 and 2011 flow data to estimate 234 

flow conditions for the November 2009 invertebrate sampling period (16 samples) that 235 

occurred prior to the deployment of sensors. Flow permanence is the percentage of time 236 

a given reach is wetted or flowing, while the duration of ZFP indicates how long (in 237 

days) a given reach is dry during each drying event. For example, a site with permanent 238 

stream flow would have a flow permanence of 100% and would receive a value of 0 for 239 

ZFP duration. While these metrics were all calculated from the flow sensor records, 240 

they were designed to characterize distinct components of the hydrologic regime that 241 

may influence aquatic invertebrate occurrence and abundance. 242 

 243 

Distance measures 244 

We used four regional distance metrics (Table 1, Fig. 2), two of which described to the 245 

physical distance between sites (geographic and network distance) and two of which 246 
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described the resistance of the landscape to dispersal (topography and perennial 247 

distance). Geographic distance is simply the straight-line Euclidian distance between 248 

two sites as determined from map coordinates. Network distance was generated via a 249 

least-cost path analysis in ArcGIS 9.3 (Environmental Systems Research Institute, 250 

Redlands, CA). For this variable, only one pathway connects each pair of sites, and this 251 

pathway is restricted to the stream network. Topography distance assumes that dispersal 252 

occurs along concave corridors such as streambeds, dry gullies, or low saddle points 253 

along mountain ridges. Flying and crawling insect adults are likely to follow these 254 

relatively cool and moist pathways to disperse from one wetted site to another (Bogan 255 

& Boersma, 2012; Phillipsen & Lytle, 2013). Perennial distance assumes that isolated 256 

perennial freshwater habitats act as stepping-stones for dispersal among communities in 257 

fragmented dendritic networks. For example, in arid landscapes perennial habitats are 258 

known to be critical for the survival of certain aquatic species when rivers cease to flow 259 

during droughts (Chester & Robson, 2011).  260 

 261 

We generated the four regional distance measures from landscape data layers obtained 262 

from the Arizona State Land Department (www.land.state.az.us). Data layers used in 263 

our analyses included a digital elevation model (DEM; 10 m resolution), the stream 264 

network of the region (from the National Hydrology Dataset), and a map of perennial 265 

stream habitats. The latter was constructed using data for the San Pedro River watershed 266 

from the Nature Conservancy (www.azconservation.org) combined with observations 267 

from field studies in the region (e.g. Bogan & Lytle, 2007; Bogan et al., 2013). We used 268 

ArcGIS 9.3 to generate new data layers and to calculate the distance (km) between all 269 

pairs of sites. The distances related to landscape resistance (topography and perennial 270 

distances) were generated from the GIS data layers in the form of pixelated maps (i.e. 271 

rasters). Each raster map was used as input for the program CIRCUITSCAPE (McRae, 272 

2006). CIRCUITSCAPE calculates the resistance of the landscape to dispersal between 273 

each pair of sites (analogous to electrical resistance in a circuit diagram), allowing for 274 

multiple pathways between sites. This pairwise resistance is a summation of the 275 

resistances of individual pixels in the input map. Pixels with high input values are 276 

hypothesized to offer high resistance to movement, and vice versa. Thus, pairwise 277 

resistances from CIRCUITSCAPE model the structural connectivity of communities, 278 

based on the landscape/habitat feature represented by the input map. We used the 279 

original values of the map pixels to assign resistance values to the raster maps. Using 280 

the original pixel values is more conservative than assigning relative costs of landscape 281 

features based on expert opinion (a practice that some have questioned; Spear et al. 282 

2010). Before running the CIRCUITSCAPE analysis, we transformed the original 283 

values of the maps so that they were all on the same scale (1 for lowest resistance, 10 284 

000 for highest resistance; results were qualitatively similar for different values of 285 

highest resistance). We performed a separate CIRCUITSCAPE analysis for both 286 

topography and perennial distances, generating their two independent data sets of all 287 

pairwise resistance distances as output. See Phillipsen & Lytle (2013) for an example of 288 

CIRCUITSCAPE output in a population evolution context and how this relates to the 289 

underlying distance metrics.  290 
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 291 

In addition to the four regional distance measures, two local ecological distance 292 

measures were calculated: habitat distance and flow regime distance. Habitat distance 293 

was calculated as the dissimilarity between the multivariate centroids of each pair of 294 

sites based on their environmental characteristics, including canopy cover, conductivity, 295 

pH, and % of bedrock, cobble, gravel, sand and fines. Flow regime distance was 296 

calculated as the dissimilarity between the multivariate centroids of each pair of sites 297 

from a composite of flow metrics: % flow permanence in year of sample, % flow 298 

permanence by season, duration of zero flow periods each year (mean) and total number 299 

of zero flow periods each year. All variables were normalized (mean = 0; SD = 1) 300 

before analysis. 301 

 302 

Statistical analyses 303 

Prior to analyses, we placed each of the 225 aquatic invertebrate taxa into one of four 304 

categories: weak, local, moderate and strong dispersers (Appendix S1). Weak dispersers 305 

(17 taxa) are aquatic obligates that spend nearly all of their life cycle within the stream 306 

(e.g. Abedus herberti). Local dispersers (142 taxa) have flying adult stages but can only 307 

travel short distances due to their short life cycles and/or weak flying musculature (e.g. 308 

Hydrobaenus sp.). Moderate dispersers (64 taxa) have flying adult stages that can travel 309 

long distances but cannot cover the entire geographic range of our study (e.g. Enochrus 310 

aridus). Strong dispersers (10 taxa) are powerful fliers that can travel between any of 311 

the sites in our studied geographic range (e.g. Lethocerus medius). These categories 312 

were derived from a trait database specific to the study region built from over 80 313 

publications from primary literature, existing databases and expert judgment (Schriever 314 

et al., in press). Abundance data were log (x+1) transformed and then used to calculate 315 

the Chao dissimilarity index among all pairs of sites (using the function vegdist in the 316 

vegan package: Minchin et al., 2013). The Chao index was the most appropriate 317 

dissimilarity index to use because each dispersal ability group had a different number of 318 

taxa; it is intended to account for the effect of unseen shared species and thus reduce 319 

sample-size bias (Chao et al., 2005). Habitat distance, flow regime distance and the four 320 

landscape distances (Table 1) were used as independent explanatory variables of Chao’s 321 

index for each group of species (weak, local, moderate and strong dispersers). Spearman 322 

correlation tests were performed between all pairs of the explanatory variables. For 323 

those variables showing strong correlation (i.e. Spearman’s rho > 0.5 and p-value < 324 

0.01), we used partial Mantel tests (mantel function in vegan package) to compare 325 

community data to the explanatory variable of interest while controlling for the 326 

correlated variable (Legendre & Legendre, 2012). The differences in the relationship 327 

between community dissimilarity and each of the distance metrics (geographic, 328 

network, topography, perennial, flow regime, and habitat distances) across dispersal 329 

classes was tested through an analysis of covariance (ANCOVA; Legendre & Legendre, 330 

2012) with Chao dissimilarity as the dependent variable, each driver as a covariate, and 331 

the dispersal class as the grouping factor. 332 

 333 
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We fitted linear models to each distance metric, and performed F-tests to assess model 334 

performance. Models were tested for linearity using the diagnostics plots for 335 

generalized linear models (Appendix S2). We used the glm.diag.plots function in R, 336 

which makes a plot of jackknife deviance residuals against linear predictor, normal 337 

scores plots of standardized deviance residuals, plot of approximate Cook statistics 338 

against leverage/(1-leverage), and case plot of Cook statistic. After validating the 339 

models we used an information-theoretic approach to compare the contribution of 340 

different explanatory variables that best described differences in invertebrate 341 

community composition. We derived the log-likelihood for each model and calculated 342 

Akaike’s information criterion (AIC; Akaike, 1973; Burnham & Anderson, 2002) to 343 

rank the models from lowest to highest AIC. We only compared single variable models 344 

and the combination of local environmental distance metrics (flow regime and habitat) 345 

and landscape distance metrics (geographic, topography, perennial and network 346 

distances), since our aim was to compare the importance of local versus regional filters 347 

for aquatic invertebrate meta-communities across a gradient of dispersal strength. 348 

Information for the rest of the models is shown in Appendix S3. Once the models were 349 

ranked, additional information-theoretic metrics were calculated. The difference 350 

between the AIC of a particular model and the AIC of the estimated best-fitting model 351 

(i.e. the model with the lowest AIC) is ΔAIC. We also calculated Akaike weights, the 352 

probability that the model is actually the best-fitting of the candidate models. The sum 353 

of Akaike weights across the models is 1.0. When the weight of the model with the 354 

lowest AIC is not close to 1.0, there is evidence for model selection uncertainty. We 355 

accounted for the non-independence of our data (represented by pairwise distances 356 

among sites) by using an R-squared approach for fixed effects in a linear mixed model 357 

to adjust for the inflation of sample size (Edwards et al., 2008). Since both the AIC and 358 

mixed model approaches yielded similar results, we only report the adjusted R-squares 359 

for fixed effects in the Supplementary Material. The selection of AIC over adjusted R-360 

squares was based on the limited use of adjusted R-square values in model building, due 361 

to the lack of diagnostic and selection tools for linear mixed models (Edwards et al., 362 

2008). All analyses were conducted in R version 3.0.2 (R Core Team, 2013) and 363 

significance was assigned at P <0.05. Bonferroni correction was used to adjust p-values 364 

for multiple comparisons. 365 

 366 
Results 367 
The six distance metrics displayed weak pairwise correlations. Only geographic, 368 

topography and perennial distance were significantly correlated (Fig. 3). Habitat and 369 

flow regime distances significantly explained community dissimilarity, regardless of the 370 

species’ dispersal abilities (Table 2). Geographic, topography and perennial distances 371 

significantly explained community dissimilarity for all dispersal groups except for the 372 

weak dispersers, and had a higher explanatory power for strong dispersers (Table 2). 373 

Network distance was not a significant predictor for any dispersal group. Associations 374 

between community dissimilarity and the explanatory variables varied considerably 375 

among the four dispersal groups (Fig. 4). The relationship between community 376 
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dissimilarity and the six distance metrics differed across the dispersal categories for all 377 

but one metric (network distance; Table 3). 378 
 379 

Partial Mantel tests revealed that: (1) geographic distance was significantly correlated 380 

with the composition of strong dispersing taxa after controlling for topography, (2) 381 

topography was significantly correlated with the composition of moderate dispersers 382 

while accounting for geographic distance and (3) topography and perennial distance 383 

correlated with the composition of moderate dispersers while controlling for each other 384 

(Table 4). Of all the models, local drivers (habitat distance plus flow regime distance) 385 

demonstrated the strongest relationships (i.e. lowest AIC for single variable models) 386 

with the composition of weak, local and strong dispersers, while regional drivers 387 

(geographic, topography, perennial and network distances) best-explained moderate 388 

dispersers (Table 5).  389 

 390 

Discussion 391 

We used distance decay relationships to examine the importance of local and regional 392 

drivers of aquatic invertebrate meta-community structure in dryland streams. DDRs 393 

have been used to examine the interaction of processes operating at local and regional 394 

scales for a wide range of organisms and ecosystems (Cottenie, 2005; Soininen et al., 395 

2007), including stream networks (Thompson & Townsend, 2006; Leprieur et al., 2009; 396 

Brown & Swan, 2010; Warfe et al., 2013). However, past studies have largely not 397 

explored the relative roles of local- and regional-scale landscape drivers within 398 

connected networks. The only published study that used DDRs to address the effect of 399 

hydrological connectivity on stream meta-communities showed, rather 400 

counterintuitively, that the loss of connectivity enhanced DDR in a variety of organisms 401 

(Warfe et al., 2013). However, environmental conditions in that study were not 402 

independent of geographic distance; therefore dispersal limitation and niche partitioning 403 

both played a role in shaping assemblage structure. Our results suggest that 404 

fragmentation impacts DDRs by altering the viable dispersal pathways, with organisms 405 

dispersing overland instead of using the stream network. As we hypothesized, meta-406 

community structure was determined by three main factors: niche filtering due to local 407 

among-habitat differences, dispersal ability of the species and landscape resistance 408 

(geographic distance, topography and availability of perennial refugia). 409 

 410 

Niche filtering due to among-habitat differences  411 

We hypothesized that high environmental heterogeneity would generate significant 412 

environmental DDRs for all dispersal categories. Indeed, we found that the local filters 413 

of habitat and flow regime had a stronger effect on community dissimilarity than 414 

regional filters across all dispersal classes, except for moderate dispersers. At 415 

intermediate levels of dispersal, organisms might be able to survive harsh 416 

environmental conditions such as floods and droughts by escaping and finding refugia 417 

(Velasco & Millan, 1998; Lytle, 1999), but at the same time they might not be able to 418 

reach all the available habitats, preventing meta-community homogenization via mass 419 

effects (Kneitel & Miller, 2003; Leibold et al., 2004). The significant influence of local 420 
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filters on meta-community patterns was not surprising given the high temporal and 421 

spatial variation in environmental conditions in the study region. Highly variable 422 

seasonal and interannual precipitation patterns and various geomorphic settings (e.g. 423 

bedrock canyons, alluvial fans) interact to create a patchy stream landscape. In these 424 

dryland streams, perennial reaches are adjacent to intermittent reaches, and intermittent 425 

reaches with seasonal flow in a wet year can be completely dry during the same period 426 

in a dry year (Jaeger & Olden, 2012, Bogan et al., 2013). The amount of water and how 427 

it is distributed within the year (i.e. frequency and timing of droughts and floods) have 428 

important consequences for water quality and habitat variables (e.g. canopy cover, river 429 

substratum). Accordingly, these local habitat filters should be extremely strong in 430 

dryland streams. Our results validate previous studies that linked these patchy 431 

environmental conditions to disruptions in the longitudinal patterns of stream 432 

invertebrate communities in the region (Bogan et al., 2013). They are also in agreement 433 

with a recent study from northwestern Australia, which found that flow and channel 434 

width best explained invertebrate meta-community patterns across a range of perennial 435 

and intermittent streams (Warfe et al., 2013). Moreover, the importance of niche 436 

filtering in structuring meta-communities has been demonstrated for a variety of 437 

ecosystems (Soininen et al., 2007), including ponds (Urban, 2004; Chase, 2007) and 438 

streams (Thompson & Townsend, 2006; Brown & Swan, 2010). Since the loss of 439 

connectivity among stream reaches results from high flow heterogeneity (leading to 440 

high environmental heterogeneity), niche filtering can be expected to be strong in 441 

fragmented stream networks. 442 

 443 

Dispersal ability 444 

Aquatic invertebrates are known to have very different dispersal capacities, ranging 445 

from a few meters to thousands of kilometers (Kovats et al., 1996; Bilton et al., 2001; 446 

McCauley, 2006). Given that meta-community structure is highly dependent on 447 

geographic scale (Brown et al., 2011; Maloney & Munguia, 2011; Nekola & McGill, 448 

2014), differences in dispersal can be expected to affect DDRs (Nekola & White 1999). 449 

Increasing dispersal ability is expected to enhance community similarity among sites 450 

and reduce beta diversity among habitat patches (Shurin et al., 2009). Recent studies on 451 

invertebrate meta-communities in stream networks have provided evidence for this 452 

pattern, with DDR being weakened by increasing dispersal strength (Thompson & 453 

Townsend, 2006; Brown & Swan, 2010; Bonada et al. 2012). However, we found a 454 

more complex unimodal pattern, with DDR peaking at intermediate dispersal strength 455 

for different measures of landscape resistance. This pattern might result from 456 

assemblages of weak dispersers showing no spatial structure due to dispersal limitation 457 

while assemblages of strong dispersers are more homogeneous across the landscape due 458 

to the absence of dispersal restrictions (Kneitel & Miller, 2003; Leibold et al., 2004). 459 

Figure 5 illustrates this pattern by showing the explanatory power of local (habitat and 460 

flow distances) and landscape (geographic distance, topography and availability of 461 

perennial refugia) filters along the dispersal strength gradient.  462 

 463 
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Our results could be influenced by the lower flow connectivity and environmental 464 

stability in our dryland study system when compared to more mesic stream systems. In 465 

low connectivity systems, weak dispersers are highly isolated, leading to species 466 

distributions ruled by ecological drift and niche filtering (Hu et al., 2006). Therefore, in 467 

these fragmented systems, low connectivity coupled with differing environmental 468 

conditions can lead to adjacent sites having very different assemblages of weak 469 

dispersal species. Previous investigations on the flightless aquatic obligate Abedus 470 

herberti within our study area reported strong population genetic structure, with 471 

populations within the same stream drainage (less than 5 km apart) showing significant 472 

genetic differentiation (Finn et al., 2007; Phillipsen & Lytle, 2013). This same pattern 473 

has been observed for the blackfly Prosimulium neomacropyga in isolated alpine 474 

headwater streams (Finn & Poff, 2011). On the other side of the spectrum, extremely 475 

strong dispersers can break down geographic barriers, occurring in all suitable habitats 476 

(Townsend et al., 2003; McCauley, 2006; Thompson & Townsend, 2006; Brown & 477 

Swan, 2010; Bonada et al. 2012). This would explain the decrease in the explanatory 478 

power of landscape variables over meta-community structure at the upper end of the 479 

dispersal strength gradient in the present study (Fig. 5). We suggest that regional drivers 480 

should be important predictors of meta-community structure up to a certain dispersal 481 

distance threshold, beyond which dispersal is strong enough to break the limitation 482 

imposed by geographical barriers.  483 

 484 

Distance among sites  485 

Network distance did not significantly affect community dissimilarity for any of the 486 

four dispersal groups, as we hypothesized. This contradicts the general rule of aquatic 487 

invertebrates using the stream network as the main ‘highway’ for dispersal (Petersen et 488 

al., 2004). While evidence supporting the ideas of the stream channel as the primary 489 

dispersal route and restricted overland dispersal between catchments continue to 490 

accumulate in the literature (Hughes, 2007; Brown & Swan, 2010; Rouquette et al., 491 

2013), previous investigations within our study area suggest that dryland streams might 492 

be exceptions to this rule. Many aquatic invertebrate species in our study region 493 

disperse laterally from stream corridors in search of other wetted habitats (Bogan & 494 

Boersma, 2012). Additionally, Bogan et al., (2013) reported an interruption of the river 495 

continuum, where invertebrate communities in distant headwater and lowland perennial 496 

streams were more similar to one another than to those in intervening intermittent 497 

reaches.  Furthermore, Phillipsen & Lytle (2013) found no significant relation between 498 

network distance and population genetic structure of Abedus herberti. Instead, they 499 

found that topography best explained genetic structure and suggested that overland 500 

dispersal resulted from flood-escape behavior (Lytle, 1999; Lytle et al., 2008), where 501 

individuals crawl from streams during floods and accidentally end up in adjacent 502 

drainages.  503 

 504 

We found significant (but generally weak) DDRs for perennial habitat distance in all 505 

cases and for topography distance in all cases except weak dispersers. This supports the 506 

hypothesis of overland dispersal (flight and crawling) being the main dispersal pathway 507 
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for aquatic invertebrates in highly fragmented stream networks, such as those inhabiting 508 

dryland regions. Similarly, Campbell Grant et al. (2010) found evidence of high 509 

overland dispersal rates in newly metamorphosed juveniles of stream salamanders and 510 

suggested that the salamanders followed that dispersal strategy to increase population 511 

persistence across isolated headwater streams. 512 

 513 

Conclusion 514 

Our DDR analyses suggests that in highly heterogeneous stream networks, where 515 

environmental conditions vary greatly across space and time, local factors (i.e. niche 516 

filtering) may swamp regional influences (i.e. landscape filters) on aquatic invertebrate 517 

meta-community structure. However, this interaction between local and regional factors 518 

is dependent on a species’ dispersal capacity, which determines their ability to colonize 519 

suitable habitats. Using a combination of landscape and local distance measures, we 520 

found evidence that local and weak dispersers were affected by local-scale factors, 521 

intermediate dispersers were affected by landscape-level factors, and strong dispersers 522 

showed no discernable pattern. This resulted in a hump-shaped relationship between 523 

dispersal ability and landscape-level factors, where only moderate dispersers showed 524 

significant DDRs. Stream corridors may not be a primary dispersal pathway in these 525 

networks, where frequent drought and flood disturbances generate habitat patches with 526 

low connectivity. Overland pathways, using perennial refugia as stepping-stones, might 527 

be the main dispersal route for aquatic invertebrates in these dryland stream networks 528 

(Phillipsen & Lytle, 2013).  529 

 530 

Our DDR approach has the potential to generate timely management insights, such as 531 

the importance of preserving perennial habitat patches in fragmented river networks. 532 

Meta-communities of weak dispersal species are highly disconnected in dryland stream 533 

networks. Since most of these species depend on perennial water sources for their 534 

survival (Bogan & Lytle, 2011; Hermoso et al., 2013), intensifying droughts may have 535 

effects at both meta-population and meta-community levels. Our results suggest that 536 

perennial habitat patches may facilitate dispersal of aquatic invertebrates and thereby 537 

may ensure the long-term viability of populations. Conserving perennial habitats is of 538 

vital importance in dryland streams, and it will become increasingly important in basins 539 

experiencing flow reduction due to warmer temperatures and increased anthropogenic 540 

water use (Marshall et al., 2010). Given the different responses of invertebrate meta-541 

communities to our various geographic and environmental distance measures, we 542 

encourage future investigations to incorporate multiple regionally relevant measures of 543 

landscape resistance into their studies. Further research is needed to better understand 544 

how environmental stability affects the balance between local and regional factors 545 

structuring meta-community patterns in dendritic networks, including work at different 546 

spatial scales and degrees of fragmentation. 547 
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 771 
Appendix S3: sum of residuals, likelihood ratios and AIC values for all combinations of explanatory 772 
variables (habitat, flow regime, geographic, topography, perennial and network) for each dispersal group 773 
(weak, local, moderate and strong). 774 
 775 
BIOSKETCHES 776 
Miguel Cañedo-Argüelles is an aquatic ecologist, interested in the response of aquatic 777 
ecosystems to disturbance and how aquatic organisms are connected through the 778 
landscape.  779 
 780 
Author contributions (in alphabetical order) 781 
Designed research (MC, DL, IP), performed research (DL, MB, JO, KB), analyzed data 782 

(MC, IP), wrote the paper (all authors). 783 

 784 
Editor: Ladle, Richard. 785 
 786 
TABLES 787 
Table 1: Details of the four regional distance metrics used in this study. 788 

Distance metric Explanation Hypothesized relationship to species flow 

Geographic 

distance  

Straight-line distance between sites in 

two-dimensional space. 

Dispersal increases when the geographic 

distance between a pair of sites decreases. 

Topography 

Pairwise resistances between sites 

based on low resistance of map pixels 

with concave topography and high 

resistance of pixels with convex 

topography. 

Dispersal is highest in areas with strongly 

concave topography. Dispersal is lowest 

across areas with strongly convex 

topography.  
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Perennial 

Pairwise resistances between sites 

based on low resistance of map pixels 

in patches of perennial freshwater 

habitats and high resistance of pixels 

in the matrix between these patches. 

Dispersal increases in the presence of 

perennial freshwater habitats. 

 Network distance 

(stream network) 

Pairwise least-cost paths between 

sites that strictly follow the 

stream/river network. Only one path 

exists between any pair of sites. 

Dispersal occurs only within the 

stream/river network. 

 789 

 790 
Table 2: Adjusted R-square, F statistic and p-value for each combination of aquatic invertebrate dispersal 791 
category (weak, local, moderate, and strong) and explanatory environmental (habitat distance and flow 792 
regime distance) and spatial (geographic, topography, perennial and network distance) variables. 793 
Bonferroni correction was used to adjust p-values for multiple comparisons. Significant relationships 794 
(p<0.05) are shown in bold.  795 
Explanatory 
variable 

Weak Local Moderate Strong 

 

Adj 

R2 
F p-value 

Adj 

R2 
F p-value 

Adj 

R2 
F p-value 

Adj 

R2 
F p-value 

Habitat 0.13 51.1 <0.01 0.36 195.1 <0.01 0.08 33.3 <0.01 0.15 61.1 <0.01 

Flow regime 0.09 37.2 <0.01 0.25 119.8 <0.01 0.08 29.6 <0.01 0.11 46.4 <0.01 

Geographic distance 0 2.4 0.120 0.03 10.5 0.001 0.07 29.1 <0.01 0.09 37.7 <0.01 

Topography 0 0 0.964 0.06 25.3 <0.01 0.24 109.2 <0.01 0.02 9.6 0.002 

Perennial 0.02 8 0.005 0.1 40.9 <0.01 0.27 129.3 <0.01 0.01 5.6 0.019 

Network distance 0 1.7 0.195 0 0.6 0.457 0 0.1 0.788 0 0.5 0.481 

 796 
Table 3: Results of the ANCOVA analyses with Chao dissimilarity value as the dependent variable, each 797 
distance metric as a covariate, and the aquatic invertebrate dispersal category (weak, local, moderate, and 798 
strong) as the grouping factor. Significant relationships (p<0.05) are shown in bold. 799 

 

F statistic p-value 

Habitat 5.11 <0.01 

Flow regime 2.69 0.045 

Geographic 

distance 12.41 <0.01 

Topography 13.44 <0.01 

Perennial 9.82 <0.01 

Network distance 0.23 0.873 

 800 
 801 
Table 4: Partial Mantel test results among those distance metrics that showed strong correlation (Fig. 3). 802 
GEO = geographic distance; TOP = topography; PRN = perennial distance; * = 0.01< p < 0.05; ** = p < 803 
0.01; ns = not significant. 804 

Comparison 
Control 

matrix 
r p 

Weak dispersers vs GEO TOP -0.12 ns 

Local dispersers vs GEO TOP -0.02 ns 

Moderate dispersers vs GEO TOP -0.11 ns 

Strong dispersers vs GEO TOP 0.28 ** 
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Weak dispersers vs TOP GEO 0.08 ns 

Local dispersers vs TOP GEO 0.2 ns 

Moderate dispersers vs TOP GEO 0.43 ** 

Strong dispersers vs TOP GEO -0.09 ns 

    Weak dispersers vs PRN TOP 0.19 ns 

Local dispersers vs PRN TOP 0.22 ns 

Moderate dispersers vs PRN TOP 0.33 ** 

Strong dispersers vs PRN TOP 0.04 ns 

    Weak dispersers vs TOP PRN -0.11 ns 

Local dispersers vs TOP PRN 0.09 ns 

Moderate dispersers vs TOP PRN 0.26 * 

Strong dispersers vs TOP PRN 0.11 ns 

 805 
Table 5: ΔAIC (Akaike’s information criterion) and weight for single variable models and the 806 
combinations (in italics) of habitat distance and flow regime distance (local distance metrics) and 807 
geographic, topography, perennial and network distance (regional distance metrics). The lower the AIC, 808 
the higher the explanatory power of the model for each of the four dispersal categories (weak, local, 809 
moderate and strong). Lowest AIC of single variables and combinations of variables for each dispersal 810 
category are marked in bold. 811 

 

Weak Local Moderate Strong 

 

ΔAIC Weight ΔAIC Weight ΔAIC Weight ΔAIC Weight 

Habitat  15 <0.001 60 <0.001 98 <0.001 20 <0.001 

Flow regime 27 <0.001 112 <0.001 102 <0.001 32 <0.001 

Geographic 

distance 
60 <0.001 205 <0.001 102 <0.001 40 <0.001 

Topography 63 <0.001 191 <0.001 35 <0.001 67 <0.001 

Perennial 55 <0.001 177 <0.001 20 <0.001 71 <0.001 

Network distance 61 <0.001 215 <0.001 130 <0.001 76 <0.001 

Local drivers 0 1 0 1 86 <0.001 0 1 

Regional drivers 53 <0.001 179 <0.001 0 1 37 <0.001 

 812 
  813 
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FIGURE CAPTIONS 814 
Figure 1 Map of sampling localities for stream invertebrates in southeastern Arizona (USA). Inset map 815 
shows the location of the study area. Continuous blue line = perennial streams. Short-dashed green line = 816 
intermittent streams. Long-dashed red line = ephemeral streams. Black circles represent sampling 817 
localities. The map is based on a DEM (digital elevation model) at 10 m resolution. 818 

 819 
 820 
Figure 2: Hypothetical scenarios of species dispersal among sites in dryland streams based on each of the 821 
four regional distance metrics. In each scenario, the locations of three hypothetical communities are 822 
shown as white circles in a generic mountain landscape. Streams are depicted by dotted lines and thick 823 
black lines with arrowheads represent bi-directional species flow between pairs of communities. The 824 
paths of species dispersal in each scenario are determined by the hypothesized resistance to dispersal 825 
associated with the given landscape variable. In the Topography scenario, for example, the underlying 826 
hypothesis is that dispersal is easiest in areas with strongly concave topography. Thus, gene flow is 827 
expected to be highest through areas with concave topography (shown as grey polygons in the figure). 828 
See the Table 1 for more detail on each of the regional distance metrics. 829 

 830 
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Figure 3: Pairwise correlations among all local and landscape distance metrics calculated between 28 831 
sites across seven dryland streams distributed within a 400 km

2
 section of the Upper San Pedro River 832 

basin, southeastern Arizona, USA. HAB = habitat distance; GEO = geographic distance; TOP = 833 
topography; FLO = flow regime distance; NTW = network distance; PRN = perennial distance. Blue 834 
color indicates a positive correlation, while red color indicates a negative correlation. The intensity of the 835 
color indicates the strength of the correlation. Spearman’s rho are shown inside each box. * = 0.01 < p-836 
value < 0.05; ** = 0.001 < p-value < 0.01; *** = p-value < 0.001. 837 

 838 
 839 
Figure 4: Distance decay relationships for each dispersal group of stream invertebrates sampled at 28 840 
sites across seven dryland streams distributed within a 400 km

2
 section of the Upper San Pedro River 841 

basin, southeastern Arizona, USA. WEAK = weak dispersers; LOCAL = local dispersers; MODERATE 842 
= moderate dispersers; STRONG = strong dispersers. 843 

 844 
 845 
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Figure 5: Explanatory power of three different groups of distance metrics over stream invertebrates’ 846 
community dissimilarity among 28 sites across seven dryland streams distributed within a 400 km

2
 847 

section of the Upper San Pedro River basin, southeastern Arizona, USA. Groups of distances: a) habitat 848 
& flow distances; b) geographic, topography & perennial distances; and c) network distance. Group a 849 
represents local environmental filters and group b represents regional landscape filters. The network 850 
distance is shown separately as having a very low power to predict community dissimilarity. The 851 
explanatory power is plotted against different categories of dispersal strength of stream invertebrates: 852 
weak, local, moderate and strong (see methods section for a description of each category).  853 

 854 
 855 
 856 




