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Abstract

Research relying on remotely sensed data on land use and deforestation has exploded in recent

years. While satellite-based measures have clear advantages in terms of coverage, the presence

of measurement error within these products is often overlooked. Here, we detail the econometric

implications of these errors when analyzing the determinants of binary measures of deforestation

or forest cover. We then discuss estimators that exploit knowledge of the remote sensing process

to obtain consistent estimates. Finally, we assess our estimators via simulation and an impact

evaluation of a conservation program in Mexico. We find that both geography and characteristics

of the raw data can lead to systematic under-reporting of deforestation. However, accounting for

these sources of error, which are common across many satellite-based metrics, can limit the bias

from misclassification.
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1 Introduction

Deforestation is a persistent challenge in low and middle income countries, where governments

struggle to balance the twin goals of poverty alleviation and greenhouse gas reduction (Sims and

Alix-Garcia, 2017). The IPCC calculates emissions from agriculture, forestry, and land use to be

just under one-quarter of total anthropogenic greenhouse gas emissions (IPCC, 2019). Further, de-

forestation is associated with mass extinction and the loss of watershed function and other essential

ecosystem services (e.g., Alston et al., 2013). As a result, indicators of forest cover and deforestation

are essential inputs for carbon accounting and the parameterization of climate, biodiversity, and

hydrological models (Hansen et al., 2010). Moreover, such data allow for investigations into the

behavioral and policy determinants of deforestation and land use more generally.

Historically, data on land use have been obtained from ground surveys. However, this has

changed over time. There are now over 2,000 satellites orbiting Earth. In combination with the

growth in computer processing power, this has driven an explosion in the availability of data on

land use – as well as other environmental attributes – derived from remote sensing methods. This

new type of information has been fully embraced by researchers, especially as ease of access has

improved. For example, the Global Forest Change data set detailed in Hansen et al. (2013) has

more than 7,900 citations, at least 34 of which are in economics journals.

Aside from ease of access, remotely sensed data on land use offers other advantages. First,

satellite data can offer global coverage. Second, whereas survey data suffers from many sources

of error, such as enumeration errors and response biases, these are necessarily eliminated through

satellite collection. That said, absence of familiar types of data error does not imply the absence

of all error. Errors in remotely sensed measurements are likely present. As many remotely sensed

measures of forest cover or deforestation are binary at their most disaggregate level, classification

errors are nonclassical in that they are negatively correlated with the truth (Black et al., 2000).

Binary outcomes are often used in land use change studies conducting the analysis at the unit of

the remote sensing product (the “pixel”) or across a random set of points in space (Andam et al.,

2008; Ferraro et al., 2013; Robalino and Pfaff, 2013; Robalino et al., 2017). Furthermore, continuous

measures of land use (e.g., percent forest cover or deforested) are typically obtained by aggregating
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binary data over a large area. If the underlying binary data suffers from nonclassical misclassification

error, then the aggregate, continuous measure will as well.1 Thus, using continuous measures of

forest cover or deforestation does not convert the problem to one of classical measurement error

(i.e., mean zero and idiosyncratic). Examples of analysis of land use change publications using

aggregations across binary measures include any paper using Hansen et al. (2013), such as Abman

and Lundberg (2020) and Salemi (2021). Other deforestation analyses recognize the censoring in

the land use change data and use estimators that recognize both the decision to deforest (binary)

and the amount deforested (continuous) (Alix-Garcia et al., 2012, 2013).

With this in mind, this paper contributes to our understanding of how to address measurement

error in satellite data by demonstrating the existence of misclassification in the data, extending

existing estimators to the satellite data context, and applying these estimators to the evaluation of

an existing forest conservation program. In Section 2.2 we use two satellite-based measures of forest

cover for Mexico near the same time period and based upon imagery from the same type of sensor

to document large differences across data sources. While we do not take a stance on which, if either,

of these data sources is accurate, it is crucial to know that both are reputable data sources and a

researcher investigating forest cover in Mexico could easily use either one without facing scrutiny.

The two binary measures for the presence of any forest diverge for roughly 18% of the sample.

Moreover, differences in the two measures are correlated with environmental (e.g., slope, elevation,

and biome) and sensor attributes.

In Section 3 we review the econometric implications of misclassification when assessing the

determinants of a remotely sensed binary measure of deforestation using several binary choice

estimators common in the land use literature. We then discuss alternative estimators, representing

extensions of the misclassification binary choice model proposed in Hausman et al. (1998). In

particular, we consider two extensions. First, we allow for the misclassification rates to depend

on covariates as in Lewbel (2000). Here, the covariates capture environmental attributes affecting

the accuracy of satellite classifications. Second, we use the scobit family of binary choice models,

which nests the logit model as a special case (Nagler, 1994).2 The scobit introduces an additional

1This issue does not arise, however, with continuous measures such as NDVI or EVI.
2New Stata commands, mclogit and mcre, are available at http://faculty.smu.edu/millimet/code.html.
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shape parameter into the link function. This additional flexibility has proven useful when the

outcome is of the rare-events type (Goleţ, 2014), which is often the case for deforestation. Finally,

we describe the process by which satellite data moves from sensors to usable data points, detailing

the various stages at which misclassification may be introduced. Understanding this process is vital

for specifying which covariates should be used to model the misclassification rates in the Hausman

et al. (1998) approach.

Finally, in Section 4 we investigate the practical performance of the estimators considered.

Specifically, we re-visit the impact of a program of payments for ecosystem services on deforestation

in Mexico over the period 2003-2015. The panel data we use here is different from the cross-

sectional data we use in Section 2.2. Now, we have only a single measure of deforestation to

examine. However, the same geographic correlates that affect measurement of the level of forest

coverage also affect detection of change in forest cover. Prior to analyzing the data, we undertake

a (limited) Monte Carlo study designed to mimic the panel data. The simulations lead to three

primary conclusions. First, ignoring misclassification introduces significant bias. Second, current

approaches in the literature designed to deal with misclassification are done in vain; the bias remains.

Third, our extensions of the Hausman et al. (1998) estimator perform quite well. In particular, the

misclassification logit model is preferred with non-rare events data. With rare events data, the

misclassification scobit is preferred. This is salient as deforestation is a rare event. Between 1990

and 2015, 219 million hectares of forest were lost (FAO, 2016); an annual rate of change of 0.13

percent. This implies that only 1.3 out of every 1,000 hectares will have observable forest change

in random samples used to examine annual deforestation behavior.

In our application, we also obtain three main findings. First, the satellite-based measure that we

use under-reports the true extent of deforestation. In our preferred specification, we find that 15% of

all instances of deforestation are missed, but that the false positive rate is essentially zero. Overall,

we find about 12% of the observed reports are misclassified. Topography and the availability of

images are important determinants of misclassification. Second, in light of the finding of no false

positives, we also consider the estimator proposed in Nguimkeu et al. (2019) for comparison. The

results are quite comparable; around 21% of the observed reports are estimated to be misclassified.

Third, ignoring misclassification can result in bias of the average marginal effects. In particular,
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our preferred estimator suggests that the conservation program we examine reduces the probability

of deforestation by 0.7 percentage points. In comparison, the estimator most frequently used by

researchers currently – what we refer to as the ad hoc fixed effects linear probability model –

produces an estimate that is attenuated by roughly one-third and not statistically different from

zero at conventional levels. The average marginal effects are also biased for the other covariates in

the model, especially those that are determinants of misclassification.

In sum, our analysis leads to several recommendations for researchers interested in using remotely

sensed data, particularly related to forest cover and deforestation. Most importantly, researchers

ought to engage with remote sensing scientists to understand how the data are constructed and

the nature of its limitations. Important topics of discussion should be how accuracy of the data

might change with geography or across time. It is likely that similar geographic, weather-related,

and technical sensor issues affect other remotely sensed outcomes, such as crop classifications or

vigor, population measures, and pollution metrics from optical sensors. In these cases, if outcomes

are binary, as in the example of deforestation or other land use classifications, estimators based

on Hausman et al. (1998), incorporating institutional knowledge on the sources of error, offer a

potential improvement over current practices, even in the case of rare events data.

Our analysis also points to several avenues in need of future research. First, we do not consider

solutions that might exploit the presence of two error-laden binary (or continuous) measures. While

such data may give rise to other estimation methods (e.g., Schennach and Hu, 2013), multiple land

use measures are typically unavailable to the researcher. This is the case in our application as well.

Second, we do not consider estimators that might exploit the spatial nature of the data to overcome

misclassification. Third, we do not consider nonclassical measurement error in continuous, remotely

sensed measures of forest cover or change.3 Finally, while we can speculate, we cannot say how

readily our insights generalize to analysis of other remotely sensed phenomena such as nighttime

lights, pollution, urbanization rates, population measures, etc.

Despite leaving these issues for future research, our current study contributes to two important

literatures. First, we add to the now large number of papers using satellite-based measures of

3The binary choice models we consider that address misclassification exploit nonlinearity of the link function
for identification. Because such nonlinearity is absent in regression models with continuous outcomes, additional
information (such as exclusion restrictions) are likely needed to obtain consistent estimates.
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various concepts to explore economic and other research questions. Moreover, while there are

at least two reviews focusing on the use of these measures in economics generally (Donaldson

and Storeygard, 2016; Jain, 2020), we are among a few papers to document potential sources of

mismeasurement as well as investigate possible solutions. Gibson et al. (2021) and Gibson (2020)

are two exceptions. Both papers examine nighttime lights data. Torchiana et al. (2020) is a

third exception, and examines land use outcomes. The authors applies a hidden Markov model to

correct the underlying data prior to estimation in the case where the data is measuring transitions.

Finally, Fowlie et al. (2019) highlight the importance of prediction error in satellite-based air-quality

estimates, and Michler et al. (2022) show that intentional spatial displacement of household survey

observations does not affect estimation of agricultural productivity as a function of satellite based

weather measures. Second, while there is a long and rich literature on overcoming measurement

error in regression models, ours is the first paper to consider an extended version of the estimator

in Hausman et al. (1998) and Lewbel (2000), as well as Nguimkeu et al. (2019), that allows the

misclassification rates to depend on covariates applied to satellite data. We are also the first to

propose combining misclassification with a scobit model to address misclassification in rare events

data.

2 Misclassification in remotely sensed data

2.1 Inside the black box

Understanding the sources of misclassification in remotely sensed land use data requires one to

understand how the data, which could be static (e.g., forest cover) or dynamic (e.g., deforestation),

are obtained. To begin, each satellite has different technical specifications, including sensor type

(e.g., optical, thermal, or radar), frequency of reporting, and spatial resolution (Union of Concerned

Scientists, 2020). While many of the steps that we describe here generalize to other types of tech-

nology, we focus on optical sensors which are frequently used to produce data on forest cover and

land use change. Optical sensors measure reflected energy, and come to the analyst as measure-

ments of different “spectral bands” arranged in a grid (Kennedy et al., 2009). For optically-derived
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information, the process for classifying these images into usable data entails (i) accessing images

from their storage place in an archive, (ii) pre-processing the images so that they can be entered

into an image-classification system (manual, automated, or a hybrid), and (iii) setting rules for

translating the spatial and temporal trends in the images into static or dynamic numerical data.

This assembly-line of tasks creates three broad categories of potential errors: errors due to

technical limitations of the sensors themselves, those introduced in the pre-processing of images,

and errors in the algorithms used to translate reflectancies into usable data. Technical limitations

can induce obvious challenges. For example, the image might originate from a satellite with a spatial

resolution of one kilometer (100 hectares), while the behavior of interest may operate at a scale of

one hectare or less. Another example of a technical limitation arises with the “scan line error” of the

Landsat 7 satellite (see Figure A1 in Appendix A). This error leaves swaths of the imagery blank.

The missing swaths are then imputed by either mosaicking (stitching together) multiple images

from different time periods or directly imputing the missing imagery using predictions based on

available data. These sources of error are arguably random conditional on the true measure of the

outcome of interest.

However, in addition to technical limitations, the raw images are frequently distorted due to

solar, atmospheric, or topographic features (Young et al., 2017). These distortions are ameliorated

by pre-processing of the raw images. While these corrections are necessary, they are not infallible

(Kennedy et al., 2009). Another source of distortion error arises from the timing of images which

may be affected by reduced visibility due to cloud cover. Such disruptions in timing may cause,

say, instances of deforestation to appear in the data with a lag.

After collecting and pre-processing the raw images, these (now processed) images are translated

into numerical data, such as the presence of forest, using an algorithm. There are numerous ways

to conduct this translation. For smaller areas, classification by visual inspection is often possible.

For larger areas, machine learning methods based on pixel-by-pixel approaches and others, known

as “object-based” approaches, that use broader spatial dimensions are typically employed (Li et al.,

2014). The former are currently more common, and these methods can be divided into two further

groups: supervised and unsupervised. Supervised classification involves using information from

representative sites where information on the ground is known, and then leveraging this information
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to establish decision rules for classification of associated pixels. Unsupervised classification divides

remote sensing images into classes based on clustering of image values, without substantial use of

secondary data sources. Both of these approaches classify each pixel with a single value. Other

methods recognize potential heterogeneity within pixels and classify each pixel based on proportions

across multiple categories. Newer object-based classifiers segment images into objects (groups of

pixels), and these segments provide the unit of classification. Recent approaches also exploit the

geographic information of adjacent pixels (e.g., textural analysis) to aid with classification (Li

et al., 2014). This process can be used to measure both the state of land cover on the ground as

well as changes. For example, classification strategies to uncover deforestation exploit temporal

discontinuities in reflectancy values across images to illuminate changes in the state of events on

the ground. Regardless, these sources of error likely depend on the true land use measure as well

as the quality of the raw images, which depend on cloud cover and topographic features.

As should be clear, the processes of translating initial images into usable data are complex,

involve much uncertainty, and are largely algorithmic. As such, accuracy is not assured and can

vary across algorithms, as well as across space and time for a given algorithm, depending upon the

underlying characteristics of the objects being classified.

2.2 Example: misclassification in forest cover data

This section uses two different, remotely sensed cross-sectional data sets on forest cover in Mexico

to demonstrate the presence of misclassification error.4 The two data sets give rise to two measures

of forest cover based on similar imagery taken at nearly the same time. However, the two measures

are derived from different pre-processing and classification techniques. Importantly, our aim is not

to establish which is more accurate, nor to understand where along the assembly line of the data

production any differences may materialize. Our objective is to show that – despite both datasets

being publicly available and reasonable resources for empirical researchers – the two data sources

are classifying the same landscape in demonstrably different ways. Moreover, differences between

4Note, this is not the data we use in the application in Section 4 as it is not a panel and it contains information on
forest cover rather than deforestation. Our interest here is to use these two cross-sectional measures of forest cover
to illustrate the presence of misclassification in satellite data and its correlation with features of the environment.
In our application, we only have a single data source. As such, we do not consider econometrics solutions to the
misclassification problem that require two measures.
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the data sources correlate with environmental and sensor attributes.

The first data source is the Land Use and Vegetation, Series V (henceforth, GOM).5 It is part

of a series of land cover maps that has been produced periodically by the Mexican government

since 1985. The GOM product that we use exploits 2011 images from the Landsat 5 satellite

(Government of Mexico, 2014). The Landsat satellites have a resolution of 30 meters. The GOM

data classifies forest by type using supervised classification supported by ground-truthing in the

field. The data come in what is called “vector” form, which is a series of polygons defined as

homogeneous classes rather than data on individually interpretable pixels. There are 59 land use

classes in the original data. For our purposes, we reclassify these land use categories into a binary

indicator for forest or non-forest. Although the underlying images have a 30 meter resolution, the

minimum mappable unit for the analysis (the smallest size that determines whether a feature is

captured) is 50 hectares. This dataset has been used in a number of studies of land use change in

Mexico, including Aguilar-Tomasini et al. (2020) and Lorenzen et al. (2021).

The second data source is the University of Maryland’s Global Land Cover and Deforestation

data set (henceforth, the Hansen data) (Hansen et al., 2013). We use Hansen’s binary classification

for forest or non-forest from 2010, which is based upon Landsat 7 imagery. This data is available in

“raster” form (in contrast to the vector above), which means that the information comes in a grid

of 30 meter pixels, rather than as polygons. A pixel is classified as forested when its canopy cover

measure exceeds 50%, a common cutoff.6 The Hansen data classifies pixels using supervised classi-

fication supported by higher resolution imagery as well as previous tree cover layers derived from

both Landsat and lower resolution imagery (Hansen et al., 2013). As mentioned in the introduction,

this dataset is widely exploited by researchers.

In light of this, the GOM and Hansen measures may differ due to the reclassification of the GOM

product and the differences in scale across the two datasets. In addition, there are small differences

between Landsat 5 and Landsat 7 (there is no existing Landsat 6). Both have the same spatial

5The data are publicly available (Government of Mexico, 2014). See http://www.conabio.gob.mx/informaci

on/metadata/gis/usv250s5ugw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no for
the dataset and https://www.inegi.org.mx/contenidos/temas/mapas/usosuelo/metadatos/guia_interusosu

elov.pdf for documentation.
6It is not uncommon to use canopy cover cutoffs as low as 10% to define forest cover and the Hansen data offers

a number of possible cutoff points.
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resolution (30 m) and image size (approximately 170 x 183 km), but Landsat 7 has an additional

spectral band (U.S. Geological Service, 2021). Finally, differences between the two data sources

may be attributable to the different time periods: 2010 versus 2011. However, it seems unlikely

that this final difference is much of a factor since the GOM data (from 2011) report significantly

more forest cover than the Hansen data (from 2010) and it is unlikely that new forest growth over

such a short time span could explain the differences.

To compare the two datasets, we extract the information within a 5 x 5 km grid laid across the

contiguous land area of Mexico.7 This aggregation yields the proportion of forest cover within each

(5 x 5 km) cell. We then generate binary indicators of any forest cover, defined using a threshold of

50 ha (0.10 of a cell) for both datasets (based on the minimum threshold for the GOM data). Finally,

we measure several attributes of each cell, such as elevation, slope, and forest type. To examine the

role of satellite image availability in driving differences in classification, we also include counts of

the number of Landsat 5 and Landsat 7 images with less than 25 percent cloud cover available in

2010 and 2011. A greater number of cloud-free images increases the amount of information available

to the remote sensor, and is likely to improve the accuracy of final classifications. Figure B1 in

Appendix B shows the distribution of these images across Mexico in 2010.

We provide a brief description of our analysis in the interest of brevity. Complete results

are provided in Appendix B. Tables B1 and B2 report summary statistics and cross-tabulations,

respectively. The Hansen data reports a lower fraction of cells with any forest coverage; the difference

is about 15 percentage points. However, the disagreements are not uni-directional. While the two

data sources agree 78% of the time, the Hansen data detects some level of forest while the GOM

data does not in about 4% of cells. The reverse occurs in 18% of the cells.8

Finally, we assess the relationship between the differences in the two data sources and geographic

7We engage in this aggregation because it makes the dataset more manageable, and because some aggregation
choice had to be made to make the vector (GOM) dataset comparable to the raster (Hansen) dataset. The process
of aggregating across space is both necessary and common in the use of satellite imagery; the terrestrial area of the
earth requires around 400 billion Landsat pixels to cover it (NASA, 2021). Furthermore, the classification of a single
pixel into a given land cover is, in fact, a mini process of aggregation, where land use categories are determined by
different spectral thresholds.

8Figure B2 shows how the proportion of cells where there is disagreement in classification changes as we apply
different cutoff levels to each dataset. The lowest level of classification disagreement occurs with a cutoff of one for
both datasets. Divergence is also low when cutoffs for both datasets are quite low (zero for Hansen and less than 0.20
for GOM). In general, divergence is larger with medium-sized cutoffs and smaller on the ends of the distribution.
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characteristics. Table B3 reports the standardized beta coefficients from regressions of the absolute

value of the divergences, as well as the sum of the two measures, on environmental attributes of

the cell and the availability of cloud-free images using a variety of symmetric cutoffs for forest.

Thus, the coefficients may be interpreted as the effect of a one standard deviation increase in

each covariate on the absolute difference in misclassification errors and combined signal in the two

measures, respectively.9

The results confirm that the absolute differences are correlated, both statistically and econom-

ically, with almost all of the covariates. In particular, the differences between data sources are

pronounced where the topography is extreme, as measured with high elevation and slope. It is also

the case that the coefficients on the different forest biomes are all positive relative to the omitted

category, grasslands and agriculture. The beta coefficients are particularly large for the pine-oak

and dry tropical biomes. This is consistent with misclassification that enters during pre-processing

– tropical areas tend to have more clouds – and through the classification algorithms used to define

forest cover – dry tropical forest tends to be harder to observe during certain seasons because it

loses leaves. The disagreements between the two datasets are decreasing in the minimum number

of cloud-free images available for either Landsat 7 in 2010 (the basis of the Hansen classification)

and Landsat 5 in 2011 (the basis of the GOM data). This suggests that greater image availability

may improve agreement between the two datasets. The interaction between image availability and

slope is positive, suggesting for the same number of images, higher slope is associated with greater

differences in classification. For the 0.10 (50 ha) forest threshold cutoff, at the mean value of slope

in the data (8.8), the positive effect of slope on disagreement across the two datasets overwhelms

the palliative effect of greater image availability.10 The results also confirm that the sum of the two

outcomes is positively related to the forest biomes – indicating greater forest signal in those areas.

The number of cloud-free scenes is negatively correlated with the signal, which may be due to either

the broad scale spatial effects mentioned above or the fact that there is more forest in tropical areas

9In the absence of sufficiently strong positive covariance between the measurement errors, the reliability ratio of
the sum of the two measures will exceed the reliability ratio for either single measure.

10We observe that as we increase the threshold towards one, geographic characteristics (slope, elevation) become
more important relative to image availability in predicting differences in classification. The effect of ecosystem type
on the sum of the indicators is larger for low thresholds, and the impact of image availability is highest for mid-level
cutoffs and generally negatively affected by its interaction with slope.
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that tend to be cloudy. The interaction between scenes and slope tends to reduce the signal.

3 Empirical methodology

Having established the sources and existence of misclassification error, we now demonstrate

how this error affects estimation, and propose a solution. This section first clarifies the data-

generating process and appropriate estimators in the absence of misclassification, then shows how

misclassification affects the coefficients of interest, and ends by proposing a solution.

3.1 Setup

Our objective is to assess the determinants of a binary measure of deforestation using panel data

derived from remotely sensed data. Let y∗it denote the true outcome for location i at time t, where

y∗it ∈ {0, 1}. The data-generating process (DGP) for y∗ is given by

Pr(y∗it = 1|xit, ωi) = F (xitβ + ωi), (1)

where xit is a vector of correctly measured, exogenous covariates, ωi is a location-specific fixed

effect (FE), and F (·) is the link function. If F (·) is the identity link function, then (1) is a linear

probability model (LPM). If F (·) is the standard normal CDF or the logistic CDF, then (1) is the

usual probit or logit model, respectively.

A few comments are warranted. First, location FEs are easily accommodated in the LPM by

mean-differencing. We refer to this estimator hereafter as FE-LPM. However, the remaining models

are estimated via Maximum Likelihood (ML). In this case, FEs lead to the well-known incidental

parameters problem (Lancaster, 2000).11 A common solution is to assume a correlated random

effects (CRE) structure. The CRE structure directly models the dependence between the FEs and

11For the logit model, using the conditional likelihood function, where the conditioning is done on the
∑

t yit,
circumvents the incidental parameters problem. Nonetheless, it is not an ideal solution since the marginal effects
cannot be computed without additional assumptions on the FEs.

11



the location-specific covariates. Specifically, we assume

E[ωi|xi] = xiγ, (2)

where xi is a vector of location-specific covariates across all time periods and xi is a vector of

location-specific means of the covariates. In error form, we have

ωi = xiγ + ηi, (3)

where ηi is now a location-specific random effect. Substitution of (3) into (1) yields

Pr(y∗it = 1|xit, ωi) = F (xitβ + xiγ + ηi), (4)

which can be estimated using random effects binary choice models or traditional binary choice

models with robust standard errors. Hereafter, we refer to estimators adopting this strategy as

CRE estimators.

Second, it is well-known that the usual binary choice models perform very poorly when there

are proportionately few occurrences of ones (or, conversely, zeros) in the data (King and Zeng,

2001). Such outcomes are referred to as rare events. It is quite possible that this may be a fair

characterization of deforestation data in many applications. As mentioned above, the global average

deforestation rate between 1990 and 2015 implies that only 1.3 out of every 1,000 hectares will have

observable forest change in a random sample of forest. Brazil, a critical country for forest-based

climate mitigation and biodiversity conservation, lost tree cover at a rate of 0.63% in 2020 (3.29MHa

of forest). The Democratic Republic of Congo has one of the highest deforestation rates in the world,

at 0.66% in 2020 (WRI, 2022). Applications that examine annual deforestation in these settings

can expect to find only 6 or 7 out of every thousand pixels experiencing deforestation. Naturally,

the rarity of these events decreases with the level of spatial or temporal aggregation, although in

settings where deforestation events are highly clustered, observed deforestation might be still be

rare even across larger spatial units of aggregation. In the application that we examine in Section 4,

for example, 20 percent of the polygons register deforestation at any time during the sample years.
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However, within the 32 states in the sample, this percentage ranges from 0.9 to 30 percent.

While several alternatives for modeling rare events data have been proposed in contexts outside

of deforestation, we focus here on the scobit model (Nagler, 1994). In the scobit model, the link

function is given by

F (·) = 1− 1

[1 + exp(xitβ + ωi)]
α , (5)

where α is an unknown shape parameter. The scobit model corresponds to the logit model when

α = 1. The scobit model may potentially perform better with rare events data because the link

function is no longer symmetric when α 6= 1. For example, Goleţ (2014) finds that the scobit

performs very well when modeling rare corporate bankruptcies.

3.2 Misclassification

When y∗ is not observed by the researcher, but rather a misclassified version, y, then all of the

preceding estimators will be inconsistent. To see this in the FE-LPM, we introduce the following

measurement error equation

yit = y∗it + µit, (6)

where µit ∈ {−1, 0, 1} is the measurement error. Since µit can only take on the values of 0 or −1 if

y∗it = 1, and can only take on the values of 0 or 1 if y∗it = 0, then it must be that Cov(y∗it, µit) < 0.

Since the measurement error is negatively correlated with the truth, it is also negatively correlated

with the determinants of the truth. Consequently, all covariates become endogenous and the FE-

LPM estimates will be biased and inconsistent unless β = 0.

Moreover, this problem does not vanish if one aggregates misclassified binary data into a con-

tinuous outcome. In Appendix C we demonstrate that this is the case, although we also show

that aggregation will dampen the negative covariance between the classification errors and the true

outcome. However, the reduction in this covariance is a function of the number of units over which

aggregation occurs, leading to heterogeneity in the extent of covariation across aggregated units of

different sizes. This type of variation across units often occurs in the analysis of deforestation when

data are aggregated to producer parcels or administrative units.
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Misclassification also leads to inconsistent estimates in the ML models. To see this, we introduce

the following misclassification probabilities

Pr(yit = 1|y∗it = 0, zit) = G0(zitθ0) (7)

Pr(yit = 0|y∗it = 1, zit) = G1(zitθ1), (8)

where G0(·) and G1(·) are two new link functions, zit are correctly observed covariates, and θ0 and

θ1 are corresponding vectors of unknown parameters. Equations (7) and (8) reflect the probabilities

of false positives and false negatives occurring in the data, respectively. In Hausman et al. (1998),

G0(·) and G1(·) are each assumed to be a scalar parameter. Thus, in their model, the probability

of misclassification depends only on the true value, y∗it. Here, we allow for covariates to also affect

the misclassification probabilities as in Lewbel (2000).

Combining (1), (3), (7), and (8), the probability of a one or zero occurring in the observed data

is given by

Pr(yit = 1|xit, zit, µi) = G0(zitθ0) + [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi) (9)

Pr(yit = 0|xit, zit, µi) = 1−G0(zitθ0)− [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi). (10)

These probabilities form the basis of the log-likelihood function, given by

ln L =
∑
i

∑
t

{yit ln {G0(zitθ0) + [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi)} (11)

+ (1− yit) ln {1−G0(zitθ0)− [1−G0(zitθ0)−G1(zitθ1)]F (xitβ + xiγ + ηi)}}.

Maximizing (11) will yield consistent estimates of the model parameters assuming the full DGP is

correctly specified. In contrast, as shown in Hausman et al. (1998), a näıve ML model that ignores

misclassification yields inconsistent estimates. While aggregation may possibly reduce the effects of

classification errors depending on how the covariates are aggregated (see Appendix C), aggregation

of the binary outcome to one that is continuous precludes the use of the estimator in Hausman

et al. (1998) as a solution.
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In our implementation of the ML estimators, we allow for the link function, F (·), to correspond

to the scobit family. When α equals one, we refer to the model as the Misclassification CRE (MC-

CRE) Logit; when α is less than one, we refer to the model as the MC-CRE Scobit. However, in all

cases we use the standard normal CDF for the link functions in the misclassification probabilities,

G0(·) and G1(·).

We also consider an additional set of estimators for comparison. Researchers aware of the fact

that variables in zit affect the accuracy of satellite data often choose to simply incorporate these

in the model as traditional covariates. Thus, we also consider a FE-LPM and traditional logit and

scobit models where the set of covariates is augmented to include zit. We refer to these as ad hoc

estimators. The Ad Hoc FE-LPM is given by

yit = xitβ + zitθ + ωi + εit (12)

and the Ad Hoc CRE Logit and Ad Hoc CRE Scobit models are based on the following probabilities

Pr(yit = 1|xit, zit, µi) = F (xitβ + zitθ + xiγ0 + ziγ1 + ηi). (13)

Some final comments are necessary. First, identifying the separate effects of covariates on the

determinants of y∗ and the misclassification probabilities relies on the nonlinearity of the link

functions in (9) and (10). As such, if x and z have covariates in common, identification may

be tenuous. Lewbel (2000) proves that the model is semiparametrically identified if x contains a

continuous covariate with large support not included in z. The discussion in Section 2 suggests

interactions between image availability and topography as potential candidates to include in z.

Second, in the scobit model, identification of the shape parameter, α, along with the misclassifi-

cation probabilities can be difficult, resulting in challenges with convergence. Intuitively, this arises

because θ0, θ1, and α all make use of the same variation for identification. To see this, consider

a particular observation with a high value of the index, xitβ0 + xiγ0, for a given set of parameter

values β0 and γ0, but the observed yit is zero. In this case, the estimates of θ1 can adjust to suggest

a higher probability that this observation is misclassified or α can adjust such that the value of
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the index is associated with a lower probability of observing an outcome of one. In the logit model

allowing for misclassification, this identification concern does not arise since the shape of the link

function, F (·), is fixed. To circumvent this issue, we treat α as unidentified and conduct a grid

search by setting α = 0.20, 0.25, ..., 0.95.12 The log-likelihood function can then be used as a model

selection tool to choose the value of α (from the set contained in the grid search) that best fits the

data.13

Third, we follow Papke and Wooldridge (2008) and estimate the Ad Hoc and MC-CRE Logit

and Scobit models using the traditional logit and scobit probabilities (i.e., ignoring the presence of

the random effect, η). However, the standard errors are clustered at the unit level (or higher).

Finally, as the true functional forms for F (·), G0(·), and G1(·) are unknown, it is possible that

an Ad Hoc version of the model is, in fact, correctly specified. For instance, it is possible that the

true functional forms for Pr(y∗it = 1|xit, µi) and the misclassifications rates lead to (13) with F (·)

as the logistic CDF being the correct model. Moreover, in such a case, if x and z do not overlap,

it is possible to assess whether the covariates are statistically significant determinants of y∗ and

misclassification, respectively. However, it would not be possible to estimate Pr(y∗it = 1|xit, µi),

Pr(yit = 1|y∗it = 0, zit), or Pr(yit = 0|y∗it = 1, zit). Nor would the researcher have any method to

assess whether this is the case. Nonetheless, it is important to recognize this possibility.

4 Application

4.1 Description

This section applies our promised misclassification correction to an evaluation of a program

of payments for environmental services in Mexico. Payment for environmental services (PES)

– defined as any voluntary agreement between a buyer and a seller in which the seller receives

12This procedure is similar to Altonji et al. (2005). There, the authors wish to estimate a probit model with an
endogenous binary covariate using a bivariate probit model. Lacking an exclusion restriction in the model for the
endogenous covariate, the authors note that the model is still identified due to the non-linearity of the bivariate normal
CDF. Nonetheless, the authors treat the correlation coefficient between the errors as an unindentified parameter and
conduct a grid search over different values.

13For practitioners wishing to apply this model, we also recommend using from the misclassification-corrected logit
model as initial values in a more parsimonious model and then building up to the final specification.
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payment for providing some environmental service such as conservation of the forest cover on the

seller’s land – have been implemented in countries ranging from the United States to Uganda to

encourage environmentally-friendly behaviors on forest and farmland. In low and middle income

countries, they have become a popular way to support Reducing Emissions from Deforestation and

Degradation (REDD) commitments to climate change mitigation (Jack et al., 2008).

Mexico has a relatively long history of PES policies, and previous analyses have shown the pro-

grams to be in deterring deforestation, although with significant variation across time and space.14

Here, we assess the effect of Mexico’s Payments for Hydrological Services program between 2003 and

2015. This program is part of a broader national system of PES that is run by Mexico’s National

Forestry Commission (CONAFOR, for its Spanish acronym). The program compensates landown-

ers who maintain intact forest cover on their properties with the goal of reducing deforestation.

Contracts are to either individual or common-property landowners and last five years. Payments

to landowners are conditional on maintaining land cover and completing conservation activities.

Until recently, participants were able to apply and receive payments multiple times. The program

is monitored by a combination of remote sensing and field verification activities.

To evaluate the program, we use administrative information on properties that submitted ap-

plications to the program. The unit of analysis is a parcel (polygon) within a property. The reason

for this is that applicants may apply and enroll multiple times to the program. In order to avoid

double-counting, the analysis polygons were created by dividing applicant parcels into smaller units

that preserve their unique application histories. For example, if a landowner submitted a parcel in

2010 and was rejected, and the following year submitted an imperfectly overlapping parcel that was

accepted, these two applications would generate three non-overlapping polygons: one polygon with

an indicator for rejected in 2010, another that has an indicator for being rejected in 2010 and then

accepted in 2011, and a final polygon coded as accepted in 2011. Figure E1 shows a visual represen-

tation of these units within various communities with repeated applications. We limit polygons to

those between 10 ha and the maximum allowable parcel size for each application cohort (between

2,000 and 6,000 ha, depending upon the year). The lower bound is meant to eliminate “slivers” of

overlap between polygons and the upper bound to get rid of potential errors in the polygon bound-

14See Alix-Garcia et al. (2019) for discussion of program history and of program impacts.
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aries. All of the properties in our analysis are from “ejidos”, which is a Mexican tenure system

where land is managed by groups of people. We consider the ejido the unit of decision-making.

Each ejido has multiple polygons.

For each polygon we calculate a number of covariates that are associated with forest cover

change. These include elevation, slope, distance to nearest road, baseline forest cover in 2000, area

of the polygon, and whether or not the polygon is located in a majority indigenous municipality.

While previous evaluations of this program have used a more complicated set of covariates and

different identification strategies (Alix-Garcia et al., 2012, 2015, 2019), our purpose is to illustrate

how our proposed accounting for misclassification affects the estimates.

The deforestation and baseline forest area measures come from Hansen et al. (2013), version 1.2

(accessed in 2016). Importantly, the annual forest cover loss does not come from a difference in

levels of measured forest, but rather from a separate time-series analysis that detects disturbances

in the pixels deemed to have forest cover in 2000. This data is the only available source with annual

variation in deforestation during our period of study; alternative estimators exploiting multiple

misclassified measures would not be applicable. We define the true outcome, y∗it, an indicator equal

to one if any deforestation occurred on polygon i in year t and zero otherwise. The observed

outcome, yit, is a binary indicator if any deforestation is recorded within the polygon in a given

time period. This particular dataset registers the most recent deforestation event that occurred

in the data. Because it does not track forest regrowth on an annual basis, pixels cannot become

deforested and then forested. Because we are aggregating deforestation up to the polygon level,

however, our data can register repeated deforestation events.

It has been shown that the accuracy of the deforestation data varies across countries and ecosys-

tem types. For example, assessments by the CONAFOR remote sensing team suggest that the

Hansen product offers better results for pine forests than for dry tropical ecosystems. The data

are likely to understate loss of natural forest because it may classify plantations and agroforestry

crops as forested areas, and it may also fail to capture selective logging or very small areas of de-

forestation. In a comparison between locally calibrated measures of deforestation and the Hansen

measures of deforestation in Madagascar, the Hansen data captured only 64% of deforestation due

to slash and burn agriculture (Burivalova et al., 2015). Mitchard et al. (2015) compare deforestation
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rates measured using 5 m satellite imagery to the Hansen data and find that while classification was

reasonably accurate in Brazil, omitting between 16 and 18% of probable deforestation, it missed

80% of the deforestation events in Ghana. Using our misclassification terminology, these studies

suggest a high presence of false negatives in the data.

The Payments for Hydrological Services program is not randomly assigned. Rather, determi-

nation of beneficiary status requires several steps. First, applications are limited to geographic

“eligible zones” determined by CONAFOR. Any applications coming from outside of eligible zones

are automatically rejected. Applications from within eligible zones are evaluated according to a

variety of criteria. Although the number of criteria have increased over time, variables used in

the decision process throughout the program’s history include measures of environmental quality

(forest type and location in particular water-scarce areas), opportunity cost (deforestation risk as

determined by geographic factors), and social criteria (location in marginalized or indigenous mu-

nicipalities) (Sims et al., 2014; Alix-Garcia et al., 2019). The data contain all applicants, including

those that did not end up receiving payments from the program. We refer to successful applicants

as program beneficiaries and unsuccessful applicants as non-beneficiaries.

Our final sample is a balanced panel of 12,272 polygons from 2001–2014, for a total sample size

of 171,808. Of these, 6,259 polygons are beneficiaries in at least one year; 29,667 observations in

the sample are beneficiaries. Table 2 displays the summary statistics. Over the sample period,

18.2% (20.7%) of polygon-year observations in the non-beneficiary (beneficiary) sub-sample are

classified in the Hansen data as experiencing some deforestation. We code this as deforestation

being equal to 1.15 Note that this variable is not equivalent to the rate of deforestation across

forests, since polygons have varying sizes. Importantly, the geographic attributes of polygons are

correlated with beneficiary status. In particular, beneficiaries tend to be at slightly lower elevation,

higher slope, closer to roads and cities, with higher baseline forest cover, and in municipalities with

greater indigenous presence. In addition, beneficiaries are often located in Landsat footprints with

more cloud-free scenes from Landsat 7 sensors. Thus, even if beneficiary status is not directed

correlated with misclassification in the Hansen data, it is likely correlated with other covariates

15We note that the scobit estimator can be sensitive to which outcome is assigned the non-zero value. Here, we
follow the literature on rare events and assign the less frequent outcome to the non-zero value (e.g., Goleţ, 2014).
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that are associated with misclassification.

4.2 Monte Carlo study

Before turning to the analysis of the actual data, we first undertake a (limited) Monte Carlo

study intended to assess the performance of the estimators discussed in Section 3. The design of

the simulation closely follows the basic structure of the panel data just discussed. In the interest

of brevity, we focus our discussion on the average marginal effect (AME) of a binary treatment,

although misclassification affects all of the coefficient estimates.

4.2.1 Design

Data are simulated from variants of the following DGP:

y∗it = Bernoulli(pit), i = 1, ..., N ; t = 1, ..., T

pit =
exp(β0 + β1x1it + β2x2it + β3dit + ωi)

1 + exp(β0 + β1x1it + β2x2it + β3dit + ωi)

x1it
iid∼ 0.01 · χ2(25)

x2it
iid∼ χ2(45)

zit
iid∼ Poisson(9)

dit = I (−8− 0.1x1it + 0.05x2it + 0.1zit + 0.5ωi + uit > 0)

uit, ωi
iid∼ N(0, 5)

Pr(yit = 1|y∗it = 0, zit) = Φ (θ0 − 0.10zit)

Pr(yit = 0|y∗it = 1, zit) = Φ (θ1 + 0.15zit)

where I (·) is the indicator function taking a value of one if the argument is true and zero otherwise.

Here, y∗it and yit are the true and misclassified binary outcomes, respectively, x1it and x2it are

exogenous continuous covariates, dit is an exogenous binary covariate, ωi is a unit-specific unobserved

effect, and Φ (·) is the standard normal CDF.

To conform to our application, the distributions of the exogenous continuous covariates, x1it

and x2it, align closely with two covariates in the real data: the slope of the land and distance
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to the nearest road (divided by 100), respectively. The binary covariate, dit, corresponds to the

treatment variable in that the proportion of treated is roughly 20%. Finally, the distribution of

the determinant of misclassification, zit, closely mirrors the distribution of the number of cloud-free

scenes.

In all designs, we set β1 = −3, β2 = −0.1, β3 = −2, the number of cross-sectional units, N , is

2,000 and the number of time periods, T , is 15.16 The following parameters are varied:

β0 ∈ {3.5, 0,−3.5}

θ0 ∈ {−1.5,−0.5}

θ1 ∈ {−2.5,−1.3}

The parameter β0 affects the proportion of ones in the true data. The three values of β0 map to

Pr (y∗it = 1) being approximately 0.34, 0.14, and 0.04, respectively. The parameter θ0 governs the

false positive rate in the observed data. In our application, we believe false positives are rare. Thus,

the two parameter values correspond to false positive rates of roughly 0.01 and 0.09, respectively.

Finally, the parameter θ1 determines the false negative rate in the observed data. In our application,

we believe false negatives to be quite common. Thus, the two parameter values correspond to false

negative rates of approximately 0.15 and 0.50, respectively.

Our objective is to estimate the average of the observation-specific marginal effects of x1it, x2it,

and dit. We report the bias and the root mean squared error (RMSE) for the AMEs based on 200

replications of each set of parameters. We consider seven estimators as described in Table 1.

The True CRE Logit (Estimator 1) applies the correct specification, assuming the CRE approx-

imation to the true FEs is reasonable, to the true data. This serves as the benchmark since this is

the best one can do in the absence of misclassification.17 Second, the MC-CRE Logit (Estimator 6)

is the correct specification, assuming the CRE approximation to the true FEs is reasonable, in the

presence of misclassification. Third, although the MC-CRE Scobit (Estimator 7) is never the cor-

rect model, we evaluate it as an option since it may perform better when the outcome is of the rare

16In our application, T is 15 and N is about 20,000. Here, we set N to 2,000 to expedite the computations.
17Alternatively, one could estimate a fixed effects logit using the correctly measured data. However, computation

of the AMEs is then not straightforward since the fixed effects are conditioned out of the likelihood function.
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events type. Moreover, when estimating the MC Scobit, we conduct a grid search over the shape

parameter, α, and use the estimates from the model corresponding to the highest log-likelihood

function as discussed in Section 3.

4.2.2 Monte Carlo results

In the interest of brevity, the results are relegated to Appendix D. Moreover, we focus our

discussion on the estimation of the AME of the binary covariate, d, as this aligns with our application

where the parameter of interest is the AME of the binary PES treatment. Results for the other

parameters are generally similar. Tables D1 - D3 report the bias and RMSE (both multiplied by

100) of each of the estimators considered across our 12 DGPs. Figure D1 plots the RMSE of the

each estimator relative to the True CRE Logit for the treatment effect. Figures D2 and D3 do so

for x1 and x2, respectively.

The simulations lead to four general takeaways. First, as expected, all estimators ignoring mis-

classification – CRE Logit, Ad Hoc CRE Logit, FE-LPM and Ad Hoc FE-LPM – do poorly across

the majority of the DGPs. For example, with a high proportion of ones and a high degree of

misclassification, the relative RMSE of all four estimators exceeds 12, meaning that it is 12 times

larger than the RMSE of the benchmark case (see Figure D1). However, the relative performance

of these estimators depends on the proportion of ones in the data, as well as the severity of the mis-

classification. When the proportion of ones is relatively high, the LPM estimators always dominate

the CRE Logit estimators. However, as the outcome becomes more rare, the relative performance

is much more variable.

Second, the ad hoc approach of adding covariates related to misclassification does not improve

the performance of the CRE Logit and FE-LPM. More often, the addition of these covariates

increases the bias (in absolute value), particularly when the false negative rate is high. The RMSE

of the Ad Hoc FE-LPM is smaller than that of the FE-LPM in only five of 12 DGPs. The RMSE

of the Ad Hoc CRE Logit is smaller than that of the CRE Logit in only one of 12 DGPs. Thus,

despite it being commonplace to control for environmental variables thought to affect the reliability

of remotely sensed outcomes, this is not a cure for the misclassification induced.

Third, the bias of the estimators ignoring misclassification is sometimes positive and sometimes
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negative; the sign even occasionally varies across the LPM and CRE Logit estimators for the same

DGP. This implies that misclassification (as modeled here) does not necessarily lead to attenuation

bias. This is consistent with the conclusions in Hausman et al. (1998).

Finally, the estimators that account for misclassification have much smaller bias and RMSE

overall. In particular, when the proportion of ones and the false negative rate are high, the MC-

CRE Scobit and MC-CRE Logit perform similarly, as well as produce RMSEs that are close to the

benchmark and much smaller than the RMSE of the remaining estimators. As the proportion of

ones falls, the MC-CRE Scobit tends to outperform the MC-CRE Logit. However, the performance

of each estimator worsens. Moreover, while some of the estimators ignoring misclassification perform

well when the outcome is of the rare-events type, their performance is highly volatile as the extent

and type of misclassification varies.

In sum, our simulation results confirm the ability of the MC-CRE Logit and MC-CRE Scobit

to address misclassification, even in the case of rare events. Moreover, while the two estimators

perform similarly in non-rare events data, the MC-CRE Scobit performs better in the case of

rare events. Thus, our (admittedly limited) simulation exercise suggests that researchers rely on

the MC-CRE Scobit. Furthermore, while there are a few instances where the estimators ignoring

misclassification perform nearly as well as the estimators addressing misclassification, the vastly

inferior performance in the majority of DGPs considered here suggests that researchers should not

rely on them in practice.

4.3 Application results

With the guidance offered by the Monte Carlo study, we now turn to the results from our

application. Covariates included in x are those listed in Table 2, as well as a binary indicator

for beneficiary status and year dummies. Covariates included in z are the number of cloud-free

images and the interactions between the number of cloud-free images and slope as well as area of

the polygon. We consider two sets of location-specific fixed effects in the estimation. To begin, we

use ejido fixed effects, since the ejido is the managerial unit of interest for the land that applied to

the program. Ejidos can contain groups of polygons. As the variables in Table 2 are all measured
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at the polygon level, use of ejido fixed effects allows some cross-sectional variation to be used in

the estimation. However, inclusion of the binary indicator if a polygon ever received PES is meant

to address selection into program. Alternatively, we use polygon fixed effects. While this controls

for greater unobserved determinants of selection into treatment, it removes much of the variation

in the data. All of the covariates in x with the exception of beneficiary status are time invariant

within a polygon. Thus, treatment status, mean treatment status over time within a polygon, and

a cubic time trend are the only covariates included in x in the polygon fixed effect specifications.18

For these reasons, we prefer the ejido fixed effect specifications. In all cases, standard errors are

clustered at the ejido level.

4.3.1 Ignoring misclassification

Tables 3 and 4 show the results from the estimators that ignore misclassification using ejido and

polygon fixed effects, respectively. Two findings stand out. First, for both levels of fixed effects,

the FE-LPM and Ad Hoc FE-LPM point estimates on the treatment effect for program beneficiary

are the smallest in magnitude and not statistically significant. The treatment effect is the largest

for the CRE Logit. All point estimates suggest that beneficiary status decreases the probability

of deforestation, although the estimates for the polygon fixed effects tend not to be statistically

different from zero. Thus, ignoring misclassification, we find evidence of a beneficial impact of PES

on deforestation, particularly when not using a LPM.

Second, the estimated effects of the remaining covariates in the ejido fixed effects estimation

are qualitatively similar across the various estimators. The value of the skewness parameter that

maximizes the Scobit log-likelihood is small, at 0.20.

4.3.2 Incorporating misclassification

Tables 5 and 6 display results from the models that account for misclassification, based on (9) and

(10), and include estimates of the proportion of false positives (G0) and false negatives (G1). The

covariates included in x are identical to the CRE Logit and Scobit models in Table 3. The covariates

18We replace year dummies with a cubic time trend in the polygon fixed effects specification as the models failed
to converge otherwise.
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included in z are the number of cloud-free images (odd-numbered columns) or the number of cloud-

free images and its interaction with the polygon area and average slope (even-numbered columns

and column 5). In all cases, a likelihood ratio test rejects the restrictions in the more parsimonious

specifications (odd-numbered columns) at the p < 0.01 level. Comparing the maximized value

of the log likelihood functions indicates that the MC-CRE Logit in column 2 in Tables 5 and 6

fits the data best; however, the MC-CRE Scobit in column 4 in Table 6 achieves nearly identical

performance as α is close to one. Thus, the MC-CRE Logit, allowing for the misclassification rate

to depend on the number of cloud-free images and its interaction with topography, is the preferred

estimator in this application.

To start, we briefly analyze the estimated false positive and negative rates. In terms of false

positives, the estimated sample average probability is 0.7% according to our preferred ejido MC-

CRE Logit in column 2 in Table 5. In contrast, the estimated sample average probability of a false

negative is 14.7%. In light of the minimal evidence of false positives in the data, in the remainder

of the specifications we constrain the false positive rate to zero to aid identification. The ejido MC-

CRE Scobit models, while achieving a worse fit (as measured by the log-likelihood value), produce

slightly larger estimates of the false negative rate in Table 5. In the specifications including the full

set of covariates in the misclassification probabilities, the estimated sample average false negative

rate ranges from 14.7% to 22.8%. Table 6 shows that the inclusion of polygon FE models produces

a higher estimated false negative rate of roughly 32.1% in the specifications including the full set of

misclassification covariates. Thus, there is substantial evidence of under-reporting of deforestation

in the satellite data.

Figure 1 provides further evidence by plotting the density and cumulative density of the observation-

specific estimates of false negative probabilities, Φ(zitθ̂1), from the various specifications including

the full set of misclassification covariates. With ejido fixed effects, we see that between 20 and 60%

of the sample has an estimated false negative rate exceeding 20%, depending on estimator, with the

MC-CRE Logit being at the lower end (see Panel (a)). With polygon fixed effects, the estimated

false the negative rates are essentially identical across the MC-CRE Logit and MC-CRE Scobit

models. For the Logit and Scobit, the median estimated false negative rate exceeds 40% (see Panel

(b)).
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The estimated AMEs of beneficiary status are generally negative and statistically different from

zero across all models. Broadly speaking, the effects indicate a decrease in the polygon-level prob-

ability of deforestation of one percentage point. The treatment effects estimated using ejido fixed

effects and reported in Table 5 are smaller in magnitude and with lower significance levels than

those estimated using polygon fixed effects and reported in Table 6. Comparing our preferred

estimator, MC-CRE Logit, to the most commonly used estimator in practice, Ad Hoc FE-LPM, in-

dicates attenuation bias in both cases when misclassification is ignored. The problem is more severe

with polygon fixed effects than with ejido level effects: while the ejido MC-CRE Logit treatment

effects are about 40% higher, the polygon MC-CRE Logit estimates are more than three times the

magnitude of those from the corresponding Ad Hoc FE-LPM.

Failure to account for misclassification results in attenuation bias of the AMEs for several other

covariates in the model as well. In particular, comparing the MC-CRE Logit (column 2 in Table

5) to the CRE Logit (column 3 in Table 3), we find the magnitude of the AME is smaller for

slope, larger for distance to road, and smaller for being in a majority indigenous municipality. Also

notable is that the AME of average slope varies between the odd- and the even-numbered columns.

This occurs because the even-numbered columns allow the probability of a false negative to depend

on average slope (and polygon area). Thus, failure to account for the effect of topography on

misclassification alters the AME of topography on deforestation. Figure E2 shows the interquartile

range of the estimates on the included covariates, and highlights the considerable differences in the

point estimates of topographic variables in the misclassification-corrected estimators relative to the

standard ones.

Finally, the observed proportion of outcomes equal to one in the data is 19%. Combining

this proportion with the estimates of the false negative rate in column 2 suggests that the true

proportion of outcomes equal to one is roughly 22%. This is in line with the accuracy studies

mentioned previously. From the simulation results in Section 4.2, this suggests that the MC-CRE

Logit and the MC-CRE Scobit should perform well if the model is otherwise correctly specified.

In sum, our analysis finds evidence of a beneficial effect of PES on deforestation in Mexico,

with the effect being reasonably large in magnitude for the majority of the sample (a decline in the

polygon level probability of deforestation of about 1 percentage point). In addition, the analysis
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confirms the need to address misclassification in remotely sensed, binary measures of deforestation.

In this particular case, AMEs from customary models used by researchers are attenuated for the

treatment variable and biased for a number of included covariates. The models addressing mis-

classification also fit the data better, and the estimated levels of false positives and false negatives

are generally consistent with accuracy assessments of the Hansen data on deforestation in other

countries.

4.3.3 Incorporating misclassification via partial observability probit model

The apparent absence of false positives allows us to explore one further avenue for estimation

in the presence of misclassification. Nguimkeu et al. (2019) show that a binary choice model with

misclassification can be consistently estimated under the assumption of no false positives using the

partial observability probit model developed in Poirier (1980).

The setup is quite similar to our approach. As in (1), true deforestation status is given by

y∗it = I(xitβ + ωi + εit > 0), (14)

where εit is the error term. An incident of true deforestation is reported in the data if qit = 1. Thus,

q is one in the absence of a false negative. Consistent with (8), it is determined by

qit = I(zitθ̃1 + κit > 0), (15)

where κit is the error term and θ̃1 = −θ1. In the absence of false positives, observed deforestation,

yit is given by

yit = y∗it · qit = I(xitβ + ωi + εit > 0, zitθ̃1 + ωit > 0) (16)

Under the assumption of no false positives and the error terms following a bivariate normal distri-

bution with zero means and unit variances, the determinants of both y∗ and q can be consistently

estimated despite only y being observed using the partial observability bivariate probit model in

Poirier (1980).

The results are displayed in column 5 in Tables 5 and 6. These show similar magnitudes and
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significance levels to our preferred estimates based on the MC-CRE Logit. The estimated false

negative rates are displayed in Figure 1. Here, we see higher (lower) estimated false negative rates

from the partial observability model with ejido (polygon) fixed effects.

5 Conclusion

The opportunities for researchers to exploit remotely sensed data to gain new insights are seem-

ingly infinite. In the case of deforestation, these insights are critically important. Changes in

land use have far-reaching effects on climate change, biodiversity, and other environmental services.

Slowing deforestation requires effective policy interventions. Remotely sensed data allows for em-

pirical evaluation of such interventions by bringing previously unavailable data into the hands of

researchers. However, to ensure the evaluations from which such insights are derived are credible

requires researchers to properly understand this data source. New satellites with ever-greater res-

olution and different types of sensors are launched every year, and remote sensing scientists are

constantly developing new algorithms to improve the accuracy of the final data products. Yet,

with each new technology and translation, new sources of error will undoubtedly arise alongside

the possibility to uncover previously unseen dynamics. To fully harness the potential of this infor-

mation, researchers must engage in conversations across disciplinary boundaries to understand the

construction of the data, and avoid the usage of näıve statistical models that fail to account for the

nonclassical measurement error that may contaminate the data.

In this paper we have provided evidence of the extent and nature of mismeasurement in com-

monly used, remotely sensed data on forest cover. Although our focus has been on forest cover

and deforestation, some lessons are generalizable. Sensor function, ecological attributes, and topo-

graphic features that lead to nonclassical measurement errors in data on forest cover can generate

the same systematic errors when measuring other phenomena such as nighttime lights, urban de-

velopment, air pollution, and more. Moreover, in remotely sensed, binary measures these errors

must be nonclassical. Our simulation study reveals that this bias can be significant and need not

necessarily lead to attenuation.

We have also demonstrated the feasibility and performance, both via simulation and through
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an application, of several estimators when analyzing the determinants of a remotely sensed, binary

outcome such as deforestation. In our application, failure to address misclassification in the analysis

of deforestation in Mexico leads to attenuation bias. Once misclassification is addressed, we find

that PES significantly slows deforestation.

While we believe the methods provided here offer a significant advancement over current re-

search practices, much work remains to be done. One such opportunity is presented by the recently

released global dataset measuring moist tropical forests (Vancutsem et al., 2021), which expands the

landscape of publicly available remote sensing measures for forests and will allow for comparisons

across multiple measures for both deforestation and afforestation. Allowing for greater flexibility

in the functional forms, via semiparametric approaches or allowing the link functions for the mis-

classification rates to be asymmetric, may prove fruitful. Most importantly, future work is needed

to better understand the nature of measurement error across different types of remotely sensed

data, as well as develop a wider array of remedies. Such remedies might exploit multiple measures

containing error, or spatial correlation in measurement error or the phenomena of interest. Future

research is also needed to develop useful econometric tools when the remotely sensed outcome is

continuous.
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Aguilar-Tomasini, Maŕıa Alejandra, Tania Escalante, and Michelle Farfán. 2020. Effectiveness of

natural protected areas for preventing land use and land cover changes of the transmexican

volcanic belt, mexico. Regional Environmental Change 20 (3): 1–9.

Alix-Garcia, Jennifer, Craig McIntosh, Katharine RE Sims, and Jarrod R Welch. 2013. The eco-

logical footprint of poverty alleviation: evidence from mexico’s oportunidades program. Review

of Economics and Statistics 95 (2): 417–435.

29



Alix-Garcia, Jennifer M., Elizabeth N. Shapiro, and Katharine R. E. Sims. 2012. Forest conservation

and slippage: Evidence from Mexico’s National Payments for Ecosystem Services program. Land

Economics 88 (4): 613–638.

Alix-Garcia, Jennifer M, Katharine RE Sims, Victor Hugo Orozco-Olvera, Laura Costica, Jorge

David Fernandez Medina, Sofia Romo-Monroy, and Stefano Pagiola. 2019. Can environmen-

tal cash transfers reduce deforestation and improve social outcomes? A regression discontinuity

analysis of Mexico’s national program (2011–2014). The World Bank.

Alix-Garcia, Jennifer M, Katharine RE Sims, and Patricia Yañez-Pagans. 2015. Only one tree
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Figure 1: Distribution of estimated false negative rates from logit, scobit, and partial observability
probit models
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Table 1: Estimators explored in the Monte Carlo study

Estimator Dep. var Covars. FE ME
1 True CRE Logit y∗it x1it, x2it, dit x1i·, x2i·, di· –
2 CRE Logit yit x1it, x2it, dit x1i·, x2i·, di· –
3 Ad Hoc CRE Logit yit x1it, x2it, dit, zit x1i·, x2i·, di·, zi· –
4 FE-LPM yit x1it, x2it, dit unit FEs –
5 Ad Hoc FE-LPM yit x1it, x2it, dit, zit unit FEs –
6 MC-CRE Logit yit x1it, x2it, dit x1i·, x2i·, di· Φ (z̃itθ0),

Φ (z̃itθ1)
7 MC-CRE Scobit yit x1it, x2it, dit x1i·, x2i·, di· Φ (z̃itθ0),

Φ (z̃itθ1)

The Column FE indicates how location specific effects are accommodated within the model, the
column ME the structure of the misclassification correct, and the column α the assumptions of
the shape parameter in the log likelihood function. x1i·, x2i·, di·, zi· are the unit-specific averages
of the covariates. Φ (z̃itθ0) is the probability of a false positive and Φ (z̃itθ1) of a false negative,
where z̃it includes a constant and zit.
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Table 2: Summary statistics

(1) (2) (3)
Non-beneficiary land Beneficiary land Norm diff

Dependent Variable
Deforestation (1 = yes) 0.182 0.207 0.044

Covariates, x
Ever received PES (1 = yes) 0.446 1.000 1.115
Average Elevation (mt) 1528.927 1459.642 -0.049
Average Slope (degree) 15.445 15.349 -0.008
Distance to any road (meters) 4370.923 4020.060 -0.059
Distance to city with > 5,000 people 29.247 27.627 -0.057
Area of Tiny polygon 398.438 350.378 -0.066
Percent forest cover, 2000 0.641 0.723 0.180
Percent of majority indigenous 0.275 0.322 0.074

Covariates, z
Cloud-free Landsat 7 images 8.788 9.440 0.121

Observations 142,141 29,667 171,808

The sample is divided into those parcels of land that were beneficiaries of a PES payment and those that ap-
plied but were rejected. Columns (1) and (2) show means for each group for the years a parcel fell into those
categories and column (3) the normalized difference in means.
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