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Ecological niche models can be a useful tool to identify candidate reintroduction sites for endangered
species but have been infrequently used for this purpose. In this paper, we (1) develop activity-specific
ecological niche models (nesting, roosting, and feeding) for the critically endangered California condor
(Gymnogyps californianus) to aid in reintroduction planning in California, Oregon, and Washington,
USA, (2) test the accuracy of these models using empirical data withheld from model development,
and (3) integrate model results with information on condor movement ecology and biology to produce
predictive maps of reintroduction site suitability. Our approach, which disentangles niche models into
activity-specific components, has applications for other species where it is routinely assumed (often
incorrectly) that individuals fulfill all requirements for life within a single environmental space. Ecolog-
ical niche models conformed to our understanding of California condor ecology, had good predictive per-
formance when tested with data withheld from model development, and aided in the identification of
several candidate reintroduction areas outside of the current distribution of the species. Our results
suggest there are large unoccupied regions of the California condor’s historical range that have retained
ecological features similar to currently occupied habitats, and thus could be considered for future rein-
troduction efforts. Combining our activity-specific ENMs with ground reconnaissance and information
on other threat factors that could not be directly incorporated into empirical ENMs will ultimately
improve our ability to select successful reintroduction sites for the California condor.

Published by Elsevier Ltd.
1. Introduction

The saga of saving the California condor (Gymnogyps californi-
anus) from the brink of extinction by combining vigorous field
efforts with aggressive captive breeding and releases is legendary
in the field of conservation biology (reviewed by Snyder and
Snyder, 2000). Yet, California condors are still one of the most crit-
ically endangered birds in the world, and are completely absent
from the northern half of their historical range. Furthermore, there
is no overall strategy for planning future reintroductions to recover
a viable metapopulation (Walters et al., 2010; D’Elia and Haig,
2013). Nonetheless, the condor recovery program has gathered
extensive data on condor nest biology (Snyder et al., 1986), move-
ment ecology (Meretsky and Snyder, 1992; Hunt et al., 2007) and
primary mortality factors (Rideout et al., 2012) via a scientific pro-
gram of inquiry into population declines, captive breeding, and the
subsequent release of California condors into a variety of environ-
ments, from the deserts of Arizona to the coast of California. These
efforts have increased the number of captive condors available for
release, and vastly improved our understanding of condor ecology
and the primary threats to their survival and recovery. Thus, there
is an expanded foundation upon which to develop a long-range
vision of condor recovery—a vision that embraces a more complete
assessment of available habitat over a wider area of the condor’s
historical range and identifies opportunities for additional recovery
areas and potential reintroduction sites (Walters et al., 2010).

Ecological niche models (ENMs) are a potentially powerful tool
for helping to identify additional recovery areas and reintroduction
sites (Martínez-Meyer et al., 2006; Osborne and Seddon, 2012) as
they provide a quantitative and spatially-explicit framework for
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describing the relationship between biological and physical prop-
erties of the landscape and a species’ ecological and geographic dis-
tribution (Guisan and Zimmermann, 2000). ENMs have a wide
range of applied uses in ecology including: understanding the eco-
logical requirements or biogeography of species, finding new spe-
cies or populations, identifying and prioritizing reintroduction
sites, conservation planning and reserve design, predicting species
invasions, predicting the effects of climate change or habitat loss,
and for integrating information on movement ecology and demog-
raphy to predict metapopulation dynamics in a spatially-explicit
framework (reviewed by Peterson, 2006; Franklin, 2009; Peterson
et al., 2011).

Despite their widespread use in ecology relatively few studies
have used ENMs to identify species’ reintroduction sites (reviewed
by Peterson et al., 2011; Osborne and Seddon, 2012). Martínez-
Meyer et al. (2006) introduced the idea of using ENMs to identify
and prioritize reintroduction sites for California condors, but pre-
sented their results as conceptual because they did not categorize
occurrence data by activity type and did not include environmental
covariates in their model that were likely to be important to con-
dor habitat selection. Categorizing occurrence data by activity type
and developing separate activity-specific ENMs is crucial for devel-
oping reliable spatial models for California condors because they
use different environments for different activities. This approach
is likely to provide increased predictive precision over pooling
occurrence data for any species that fulfills critical survival and
reproductive functions in divergent habitats.

In this paper we build on the conceptual approach presented in
Martínez-Meyer et al. (2006) and develop functional models for
identifying candidate reintroduction areas for California condors
through: (1) producing and testing the accuracy of activity-specific
(i.e., nesting, roosting, and feeding) ENMs using environmental
covariates that are linked to condor biology; (2) projecting ENMs
throughout most of the recent historical range of the species to
identify areas that are ecologically suitable but unoccupied; and
(3) integrating activity-specific models with information from
movement ecology studies and condor biology to identify areas
that are predicted to be ecologically suitable but unoccupied.
Model results can help focus field surveys to further evaluate
release site suitability and may identify potential recovery areas
for the California condor in unoccupied areas of its historical range
that have not yet been fully considered.
2. Materials and methods

2.1. Study area

Our study area included California, Oregon, and Washington,
USA (Fig. 1). Within the study area the current range of the Califor-
nia condor is limited to southern and central California where
three captive release programs are in operation. Condors were
extirpated from the northern half of their historical range, which
once extended to British Columbia, Canada, early in the twentieth
century (D’Elia and Haig, 2013).
2.2. Ecological niche models

Many algorithms are available for constructing ENMs (Guisan
and Zimmermann, 2000; Elith and Graham, 2009; Elith and
Leathwick, 2009). We used MAXENT, a maximum entropy-based
machine learning computer program that estimates the probability
distribution of a species’ occurrence based on a given set of envi-
ronmental constraints (Phillips et al., 2006). We selected MAXENT
because it does not require absence data, it allows for categorical
and continuous environmental data, and because it is in a class
of models known as generative models that outperform discrimi-
native methods when modeling with presence-only data (Elith
et al., 2006, 2011; Phillips and Dukík, 2008). MAXENT models
can be conservatively interpreted as a relative index of environ-
mental suitability or relative density, where higher index values
depict better conditions for the species (Phillips et al., 2006).

Despite their relatively good performance and ease of use, crit-
ics of presence-only ENMs warn against numerous pitfalls, includ-
ing: use of questionable occurrence data (Lozier et al., 2009);
overfitting models by failing to implement species-specific tuning
(Anderson and Gonzalez, 2011; Warren and Seifert, 2011); ignor-
ing spatial dependency in model evaluation (Veloz, 2009); misin-
terpreting outputs as occurrence probability, failure to consider
sampling bias or detection probabilities in data acquisition, and
misinterpretation of model evaluation statistics (Yackulic et al.,
2013). We attempted to navigate these pitfalls through (1) screen-
ing of occurrence data, (2) using model selection procedures, (3)
evaluating the impact of spatial dependency on model perfor-
mance, (4) interpreting outputs as a relative measure of suitable
habitat rather than occurrence probabilities, (5) adjusting for sam-
pling bias in model development, and (6) using and interpreting
multiple model evaluation statistics.

2.2.1. Condor occurrence data
Presence-only niche models require species’ occurrence loca-

tions. Because condors use different habitats for nesting, roosting,
and feeding (Koford, 1953), we partitioned condor occurrence data
into these three activities and generated separate occurrence data-
sets for each activity (Fig. 1). Activity-specific occurrence data
spanning the time period from 1960–2011 were obtained from a
variety of reliable sources (see Appendix A). All occurrence data
were filtered to remove duplicate records and occurrence locations
with a positional precision of <1 km.

2.2.2. Environmental covariates
To develop ENMs, we considered 13 predictor variables (i.e.,

covariates) related to soaring conditions and climate, terrain, land-
scape productivity, vegetation characteristics, and human distur-
bance (Table 1; see Appendix B). We selected covariates based on
published information on species-habitat associations (Koford,
1953; Snyder et al., 1986; Meretsky and Snyder, 1992), species-
habitat models developed for other vultures (e.g., Donázar et al.,
1993; Poirazidis et al., 2004; García-Ripollés et al., 2005;
Gavashelishvili and McGrady, 2006; Mateo-Tomás and Olea,
2010; Rivers et al., 2014), and the availability of GIS data at the
appropriate spatial scale spanning the entire study area (i.e., Cali-
fornia, Oregon, and Washington). Although covariates related to
vegetation characteristics and human disturbance were temporally
mismatched with some of the older condor occurrence data, the
general patterns of land use and vegetation types in the southern
California and Sierra Nevada mountains have remained relatively
constant over the last few decades (e.g., Raumann and Soulard,
2007; Soulard et al., 2007). Therefore, we assumed this potential
source of error was unlikely to significantly affect model results.

2.2.3. Background data
MAXENT requires that the user specify the background (i.e.,

area available for the species to select), against which covariates
at the occurrence points will be compared (Phillips et al., 2006;
Phillips, 2007; Elith et al., 2011). Ten-thousand random points
within 180 km of California condor nests (farthest documented
movement by a nesting condor away from a nest (Meretsky and
Snyder, 1992)) were generated to serve as background data. Islands
off the coast of California were excluded from the background sam-
ple as condors are not known to travel across the ocean to these
areas.



Fig. 1. Study area (left) and California condor nest (black crosses), roost (red circles) and feeding (blue triangles) occurrence data used in model development and evaluation.
The gray zone is the area from which background data were selected for ecological niche model development, and which encompasses the current range of the species in
southern California.
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We assumed no bias in survey effort for nests or roosts as
researchers have conducted extensive searches for these activity
locations since the 1960s (Sibley, 1969; Snyder et al., 1986). Bias
in survey effort for feeding locations led us to develop a separate
set of background points for the feeding ENM. These points were
selected from the same spatial extent as the nesting and roosting
background sample, but approximated the frequency distribution
of distance of feeding locations to roads (74.6% of points were
within 1 km of a road, 19.7% were within 1–2 km, 5.2% were within
2–3 km, and 0.5% were >3 km from a road). Matching the sampling
bias in our occurrence data and background data provides a better
measure of the difference between the distribution of occurrences
and that of the background and should therefore provide better
predictive performance (Phillips et al., 2009).
2.2.4. Correlated environmental covariates
We assessed multicollinearity among covariates by calculating

univariate pair-wise Spearman correlation coefficients (rs) based
on values of each variable at condor occurrence points. If two
covariates had rs > 0.70, we retained only one of the pair to aid in
interpretation of model results. Thermal height and thermal
updraft velocity were the only pair of covariates that exceeded this
rs value. We removed thermal height from further consideration
and retained thermal updraft velocity.
2.2.5. Spatial scale
Condors select habitats at a variety of spatial scales, from

coarse-grained selection of mountain ranges to fine-grained selec-
tion of a particular nest cliff or cave (Stoms et al., 1993). The accu-
racy of the available occurrence data and resolution of some of the
environmental predictor variables led us to construct our models
with a resolution of 1 km2, summarizing mean values of some
covariates within 10 km of each cell using focal statistics in ArcGIS
(see Table 1). These spatial scales matched the intent of our
research, which was to identify candidate release areas to include
in follow-up ground surveys where finer-scale habitat features
could be assessed.
2.2.6. Model settings and model selection
MAXENT (version 3.3.3a) was run with a convergence threshold

of 10�5 and a maximum of 5000 iterations. We implemented boot-
strap resampling with 20 replicates, holding out 25% of the sam-
ples for testing in each run of the model. MAXENT is in a school
of models known as algorithmic models which treat the true model
as an unknown, potentially complex, reality that is difficult or
impossible to truly estimate (Warren and Seifert, 2011). As such,
MAXENT models may be vulnerable to overfitting and may not
perform well without implementing appropriate measures to limit
their complexity (Phillips et al., 2006; Dudík et al., 2007). To limit
model complexity and avoid overfitting, we used an information



Table 1
Covariates used to develop California condor nesting, roosting, and feeding ecological niche models.

Covariate Description Data source

Soaring conditions and climate
Thermal updraft velocitya Annual mean velocity of rising air (m/s) Regional Atmospheric Soaring Prediction Maps

(http://www.drjack.info/RASP/index.html)
Thermal heighta Annual mean thermal height (m) Regional Atmospheric Soaring Prediction Maps

(http://www.drjack.info/RASP/index.html)
Wind speed Horizontal wind power class at 50 m above the ground (category) National Renewable Energy Lab High Resolution Wind

Resources Data (http://www.nrel.gov/rredc/wind_resource.
html)

Winter severity Mean minimum winter temperature (�C � 100) PRISM Climate Data
(http://www.prism.oregonstate.edu)

Terrain
Cliffs Maximum slope within a 1 km2 neighborhood (degrees) National Atlas (http://nationalatlas.gov)
Terrain ruggednessa Ratio of 3-dimensional surface area to planar surface area (see Jenness,

2004)
National Atlas processed with Jenness (2004)

Landscape productivity
Landscape productivitya Average Maximum Normalized Difference Vegetation Index (maxNDVI) USGS Remote Sensing Phenology Data

(http://phenology.cr.usgs.gov)
2006–2010

Distance to water Euclidean distance to the nearest freshwater (stream river, lake, or
reservoir)

National Atlas (http://nationalatlas.gov)

Vegetation characteristics
Canopy cover Median canopy cover (%) National Land Cover Database 2006

(http://www.mrlc.gov/index.php)
Canopy height Majority mean height (category) LANDFIRE 2001 (http://landfire.cr.usgs.gov)
Land cover type Majority land cover type (category) National Land Cover Database 2006

(http://www.mrlc.gov/index.php)

Human disturbance
Road densitya km of road/km2 Data Basin (http://databasin.org/datasets)
Human population

densitya
humans/km2 2010 Census Data

(http://www.census.gov/geo/maps-data/)

a Covariate calculated using mean values within a 10 km radius moving window of each 1 km2 cell.
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theoretic approach (Akaike, 1974; Burnham and Anderson, 2002)
to select the best of a series of models with different levels of com-
plexity (i.e., varying levels of MAXENT’s regularization parameter
(b = 1, 5, 10, and 15) and the types of environmental features, using
ENMTools (Warren et al., 2010; Warren and Seifert, 2011). Regular-
ization acts as a penalty function in MAXENT where increasing val-
ues of b reduces the number of parameters entered into the model
(Phillips et al., 2006). In addition to varying the regularization
parameter, we varied the complexity of the models by using two
different sets of environmental features: (1) autofeatures, which
allows models to fit up to five continuous environmental features
(linear, quadradic, product, threshold, and hinge) and categorical
features, with the more complex features only available when
sample sizes are large enough (Phillips and Dukík, 2008); and, (2)
manually limiting the model to categorical, linear, and quadratic
features, which constrained MAXENT to simpler models at larger
sample sizes (Phillips et al., 2006). A total of eight models (each
with 20 replicates) of varying levels of complexity were run for
each activity type. The ENM for each activity type with the lowest
median AICc was selected as the most parsimonious model that
best fit the data (see Appendix C). We used AICc in an attempt to
balance the need to predict specific model fit to the training data
against the generality that enables reliable prediction outside of
areas where the model was trained (Elith and Leathwick, 2009;
Merow et al., 2014).

2.2.7. Projecting models
A model trained on occurrence data and environmental covari-

ates in one geographic location can be projected across geographic
space by applying it to those same environmental covariates in
another area or over a broader geographic distribution (Phillips
and Dukík, 2008). Because we sought to project the models outside
of the area used to train the model we implemented ‘clamping’, a
method in MAXENT that ensures the response curves do not get
extrapolated beyond the values observed at presence locations
(i.e., the response curves are clamped, or fixed, at the maximum
or minimum observed values; Elith et al., 2010). We also imple-
mented a multivariate environmental similarity surface analysis
to evaluate where novel environmental conditions existed in the
projection layer (Elith et al., 2011). Novel conditions were defined
as those with at least one covariate beyond the range of values
encountered in the occurrence or background data (see Elith
et al., 2011). Implementing clamping and excluding novel environ-
ments from projections allowed us to transfer the model in geo-
graphic space while not extrapolating beyond the environmental
space where the species has been observed (see Peterson et al.,
2011).

2.2.8. Niche similarity
The degree of similarity among the activity-specific ENMs was

calculated using Warren et al.’s (2010) similarity statistic (I) in
ENMTools, where a value of 0 indicates no overlap in suitability
and 1 indicates complete overlap in suitability. We then tested
the hypothesis that activity-specific niches were identical to one
another using pairwise niche identity tests in ENMTools (see
Warren et al., 2010). Pairwise identity tests pool occurrence data
for each pair of activity-specific niches, randomize the identity of
the occurrence data, and extract two new samples of equal size
to the original samples for each model replicate. These new sam-
ples are then used to generate a pair of ENMs in MAXENT for each
replicate model, and ENMTools uses predicted suitability scores
from these ENMs to obtain a distribution of overlap scores between
activity-specific niches drawn from a shared distribution (Warren
et al., 2010). Twenty-five replicates were run for each pair of activ-
ities and z-scores were calculated to test whether activity-specific
niches were statistically different from one another (P 6 0.05). We
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also generated maps of niche similarity and calculated pairwise
percentages of niche intersection (Appendix D). Percent niche
intersection was calculated as: x/((area of niche1 + area of niche2)
� x), where x is the area of niche intersection.

2.3. Model evaluation

ENM performance can be evaluated with a number of statistics
and it is often instructive to assess model performance using more
than a single metric because each quantifies a different aspect of
predictive performance (Elith and Graham, 2009; Elith and
Leathwick, 2009). Accordingly, we assessed model performance
using several different metrics: Gain (Phillips, 2005), Overall Accu-
racy, Sensitivity, Specificity, Kappa (j) and Area Under the Receiver
Operating Characteristic Curve (AUC) (Fielding and Bell, 1997) (see
Appendix E for details). In addition to evaluators based on pres-
ences and pseudoabsences, we calculated the continuous Boyce
index Bcont(0.1), an evaluator based only on the presence data, and
plotted predicted/expected curves for each ENM using the proce-
dures developed by Boyce et al. (2002) and refined by Hirzel
et al. (2006) (see Appendix E for details).

Examination for plausibility of model results is especially
important when extrapolating in geographic or environmental
space (Elith et al., 2010). Therefore, in addition to measures of
model performance, we examined other outputs produced by
MAXENT, including jackknife plots, variable importance, response
curves, and suitability maps to ensure they were producing results
that were plausible given our understanding of condor habitat
selection (see Rivers et al., 2014) and the recent historical distribu-
tion of the species.

2.3.1. Spatial autocorrelation
The evaluation statistics we calculated assume spatial indepen-

dence of samples (Fielding and Bell, 1997). When occurrence data
are spatially dependent, randomly partitioning the data into test
and training data may result in an overly optimistic assessment
of model accuracy because of the proximity of training sites to test
sites and spatial autocorrelation in the environment (Veloz, 2009).
To examine spatial autocorrelation in model results, we calculated
Moran’s Index (I) coefficients for model residuals at multiple lag
distances (10–200 km at 10 km intervals) for each activity-specific
niche model, developed correlograms, and tested for significance
(P 6 0.05) (Legendre and Fortin, 1989; see Appendix F). Calcula-
tions were performed in ArcMap 10.0 using the Incremental Spatial
Autocorrelation Tool. Occurrence data were then thinned by
removing all points within 5 km of one another and the analyses
were rerun to examine the change in model evaluation statistics.
We chose 5 km for data thinning because this approximated the
maximum distance we could thin the data to produce models
where the number of parameters did not exceed the number of
occurrence points. We did not attempt to incorporate spatial
dependency into final model predictions, as doing so is not recom-
mended when making predictions outside the area used to train
the model (Dormann et al., 2007); rather, thinned models were
used only to evaluate the effect of spatial dependency on model
performance.

2.4. Identifying candidate reintroduction areas

We assumed that condor reintroductions would be more suc-
cessful in areas predicted to have the highest suitability of nesting,
roosting, and foraging habitats that were proximal to one another
and were relatively expansive. To determine these areas we calcu-
lated a measure of relative suitability for establishing a reintroduc-
tion site using the following procedure:
1. Nesting, roosting, and feeding ENMs were transformed to bin-
ary rasters using a threshold value that maximized j.

2. Using these three binary maps to mask the logistic rasters, we
calculated the sum of the logistic raster values within a 50 km
radius of each cell using focal statistics in ArcGIS. We used
50 km as this was the distance to which condors typically
restrict their movements from nests (Meretsky and Snyder,
1992).

3. Outputs from these three rasters were then added together
using the raster calculator and the output grid was scaled from
0 to 1 using the following calculation:

Grid value ¼ ðx�min xÞ=ðmax x�min xÞ

where x is the sum of nesting, roosting, and feeding logistic values
within 50 km of each cell, and min x and max x represent the min-
imum and maximum value of x observed in the study area.

3. Results

For each of the three condor activities, we developed models
that had excellent accuracy at predicting test data and were good
at discriminating between used and available sites (Table 2). Mod-
els were well calibrated, with the predicted-to-expected ratio of
evaluation points increasing as habitat suitability scores increased
(Appendix G). Test gain (a measure of model performance on data
withheld for testing; see Appendix E) was similar to training gain
(a measure of model performance on data used to train the model)
in all three models (Table 2), suggesting that the models were not
overfit to the training data.

According to our models, approximately 11%, 14%, and 23% of
the currently-occupied range of the condor in southern California
(approximated by the background area) is comprised of suitable
nesting, roosting, and feeding habitat, respectively. Models pre-
dicted nesting, roosting, and feeding habitat in 8%, 7%, and 14% of
the entire study area, respectively. Of the total area modeled by
each activity-specific niche, the currently occupied range con-
tained only 27% of the modeled nesting habitat, 36% of modeled
roosting habitat, and 34% of modeled feeding habitat within the
study area (Appendix D).

Activity-specific ENM residuals had significant spatial autocor-
relation (see Appendix F). Thinning data by removing points within
5 km of one another reduced spatial autocorrelation (see Appendix
F). Thinned models retained high predictive performance, despite
severe reduction in sample size (Table 2). Bcont(0.1) was sensitive
to reductions in sample size (Table 2) due to the lack of sufficient
data to adequately evaluate a large number of categories, but P/E
curves retained relatively good form in thinned models (Appendix
G).

All activity-specific niche models (Fig. 2) were statistically dif-
ferent from one another. Nest and roost ENM predictions had the
highest similarity of the ENMs (I = 0.85, z = �3.73, P < 0.001). Roost
and feeding ENMs had similarity statistic I = 0.70 (z = 8.48,
P < 0.001), whereas the nest and feeding ENMs were the least sim-
ilar of the models (I = 0.54, z = �23.04, P < 0.001). Pairwise percent
overlap of the ENMs showed 46% overlap for nest and roost ENMs,
20% overlap for roost and feeding ENMs, and 16% overlap for nest
and feeding ENMs (Appendix D).

The importance of environmental covariates differed among
condor activities (Fig. 3; Table 3). The importance of each covariate
is calculated by MAXENT during model training by tracking
improvement in model fit with incremental changes in coefficient
values during model optimization (Phillips, 2005). These incre-
mental improvements are summed and normalized to calculate
the percent contribution of each environmental covariate for each
model run. Terrain features contributed most among covariates in



Table 2
Model characteristics and measures of predictive accuracy for California condor ecological niche models.

Measures Models with all data Spatially-thinned models

Nesting Roosting Feeding Nesting Roosting Feeding

Model characteristics
Training data (n) 75 107 187 27 40 53
Test data (n) 24 35 94 8 13 17
Logistic threshold 0.04 0.13 0.15 0.09 0.13 0.28

Accuracy measures
Overall accuracy 0.93 0.94 0.83 0.93 0.93 0.86
Sensitivity 0.98 0.97 0.90 0.97 0.95 0.84
Specificity 0.88 0.91 0.77 0.89 0.91 0.88
Cohen’s Kappa (j) 0.86 0.88 0.67 0.86 0.86 0.72
Boyce Indexcont(0.1) 0.88 0.92 0.95 0.55 0.68 0.59
Test AUC 0.98 0.95 0.91 0.98 0.93 0.90
Training gain 2.84 2.02 1.56 2.62 1.77 1.57
Test gain 2.87 1.98 1.56 2.82 1.75 1.38

Fig. 2. California condor (a) nesting, (b) roosting, and (c) feeding ecological niche models. Warmer colors represent areas identified by the models as having higher relative
suitability. Black areas represent areas with environmental conditions not encountered during model training.

J. D’Elia et al. / Biological Conservation 184 (2015) 90–99 95
predicting condor nesting and roosting habitat, while landscape
productivity and vegetation characteristics had the largest contri-
bution to the feeding model (Fig. 3; Table 3).

Our reintroduction model aligned well with the current and
recent historic distribution of California condors in southern
California (Fig. 4). Outside of southern California, our model pre-
dicts that northwestern California and southern Oregon and the
Hell’s Canyon region have the most expansive areas of modeled
nesting, roosting, and feeding habitat that are proximal (Fig. 4).

4. Discussion

Selection of appropriate release sites is a key element of
reintroduction science (Seddon et al., 2007) and is fundamental
to a successful reintroduction project (Griffith et al., 1989), espe-
cially with species such as the California condor that have slow
reproductive cycles and expensive breeding and rearing costs. For
these species, decisions on release sites have substantial and last-
ing ecological, financial, and regulatory implications (Snyder et al.,
1996). Our results suggest that ENMs can be useful in reintroduc-
tion planning as >70% of predicted nesting habitat for the California
condor and >60% of predicted roosting and feeding habitat is out-
side of the species’ current range within the study area (Figs. 2
and 4).

Our ENMs for the California condor make sense ecologically.
Condors are known to nest in cliffs in remote areas (Koford,
1953; Snyder et al., 1986; Meretsky and Snyder, 1992) and our nest
models predicted suitable habitat in areas containing cliffs and low
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Fig. 3. Average percent contribution of covariate categories for California condor
nesting, roosting, and feeding models.

Table 3
Average percent contribution of covariates for California condor ecological niche
models.

Covariate Nesting Roosting Feeding

Soaring conditions and climate
Thermal updraft velocity 1 4 3
Wind speed 1 2 2
Winter severity 13 4 3

Terrain
Cliffs 52 37 18
Terrain ruggedness 2 4 1

Landscape productivity
Landscape productivity 5 7 28
Distance to water 7 3 7

Vegetation characteristics
Canopy cover 4 20 3
Canopy height 4 4 7
Land cover type 3 5 23

Human disturbance
Road density 8 10 2
Human population density 1 1 4

Hell’s Canyon 
Region 

Southwest Oregon/
Northwest California 

100
Kilometers

Fig. 4. California condor reintroduction suitability map. Warmer colors indicate
areas of higher relative suitability for establishing a reintroduction site. Gray areas
are outside of predicted nesting, roosting, and feeding habitat. Black areas represent
areas with environmental conditions not encountered during model training. White
boxes represent current release sites.
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road density. Condors typically roost in trees in mountainous areas
and our roost ENM predicted suitable roosting habitat in areas
with steep slopes and trees. Feeding condors are typically found
in mountain foothills or at coastal sites where steep mountains
meet the ocean, where primary productivity is high, and ungulates
or marine mammals are concentrated (Snyder and Snyder, 2000).
Similarly, our feeding ENM predicted suitable habitat in areas with
moderate to steep slopes in areas that had high primary
productivity.

To date, most distribution and habitat models for vultures have
not disentangled specific activities at occurrence points (e.g.,
Donázar et al., 1993; Hirzel and Arlettaz, 2003; Martínez-Meyer
et al., 2006; Rivers et al., 2014); or, they have examined only a
single activity type (e.g., nest sites; see Poirazidis et al., 2004;
García-Ripollés et al., 2005; Gavashelishvili and McGrady, 2006;
Mateo-Tomás and Olea, 2010), despite recognition that separating
activity types can be useful for highly mobile species that use
distinct environments for specific activities (Guisan and Thuiller,
2005; Martínez-Meyer et al., 2006). We found that separating
niche models for the California condor into activity types was
informative, as condors use different habitats for nesting, roosting
and feeding (Figs. 2 and 3; Table 3; Appendix D). Therefore, our
activity-specific models offer a more precise depiction of the con-
dor’s use of ecological niche space than models with pooled occur-
rence data and provided a more refined view of the interspersion
and juxtaposition of various condor habitats in geographic space.
This information is essential when selecting a reintroduction site
for a species that requires different, but proximal, ecosystems to
survive and reproduce.

In addition to being useful in identifying potential release areas,
this increased model precision will be useful in: (1) identifying
activity-specific threats (e.g., identifying areas where exposure to
toxins, such as lead (Finkelstein et al., 2012) or anticoagulant
rodenticides (Thomas et al., 2011), may be high) and areas to pri-
oritize threat reduction measures; (2) targeting non-lead ammuni-
tion education programs, or identifying areas to dispose of
uncontaminated carcasses where they might provide an additional
food resource (see Mateo-Tomás and Olea, 2010); (3) identifying
areas to survey for historical nest sites (Snyder and Snyder,
2000); or, (4) developing models of habitat connectivity and meta-
population persistence over time. Future niche modeling efforts for
other highly vagile species should consider activities separately,
especially when those activities occur in different environments.
Activity-specific niche modeling also may be useful for less mobile
species if a species is using different environments for discrete
activities that are essential for the species’ survival and reproduc-
tion, and occurrence data and environmental data relevant to that
species are available at a spatial resolution sufficient to associate
these discrete activities with particular environments.

As with all biological models, we recommend caution in inter-
preting our results, as variability in natural systems, errors in data
used to develop the model, and uncertainty in model structure and
scale can increase the uncertainty of model results (Pauly and
Christensen, 2006). Our modeling effort has taken steps to reduce
this uncertainty by testing our models against data withheld from
model development, averaging multiple model runs, incorporating
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multiple spatial scales based on the species’ biology, and using
model selection to find the most parsimonious model that best
fit the data. The relatively good predictive performance of our
models—even when models were significantly thinned to reduce
spatial dependency of the training and test data—and their
alignment with our knowledge of condor ecology and historical
distribution suggests that, despite the uncertainties inherent in
predictive modeling, they should be useful for prioritizing ground
reconnaissance surveys for California condor reintroduction sites.

Our models could not directly incorporate the primary threat to
California condor survival and recovery—lead poisoning from spent
ammunition (Finkelstein et al., 2012). Because lead poisoning is
currently preventing the establishment of self-sustaining condor
populations at all existing release sites (Walters et al., 2010), con-
sideration of voluntary or regulatory measures to reduce or remove
this threat will be important when weighing whether future rein-
troduction efforts are likely to substantively contribute to recovery
of a viable condor metapopulation.

4.1. Areas for further research

A key assumption of ENMs is that the species is at equilibrium
with their environment (Elith and Leathwick, 2009). This assump-
tion was violated by our condor dataset which spanned a period of
population collapse and then reestablishment through reintroduc-
tions. Despite this lack of equilibrium, correlative models currently
remain one of the only methods of forecasting distributions (Elith
and Leathwick, 2009) and tests of presence-only ENMs for other
recovering species that were not at equilibrium with their environ-
ment have shown that ENMs can produce useful results despite the
violation in this assumption (e.g., Cianfrani et al., 2010). In addi-
tion, condors are highly mobile and retained the ability to select
habitats throughout their recent geographic range (i.e., the back-
ground area) during the time when occurrence data were collected.
Whether or not our models will retain strong predictive perfor-
mance across geographic space when projecting outside of the cur-
rent range is an open question. It is encouraging that predictions
generally align with our understanding of condor habitat selection
and their historical distribution (D’Elia and Haig, 2013). Predictive
accuracy of California condor models when projected in geographic
space could be tested with data from populations outside of our
study area (e.g., in Arizona and Utah), which could inform how
robust our models are to violating the assumption of equilibrium.

Traditional niche models based on all occurrences throughout
the annual cycle cannot reflect the dramatic seasonal shifts in
space use sometimes observed in wildlife populations (e.g.,
Peterson et al., 2005). Our activity-specific habitat models did not
consider temporal variation in habitat use that some have sug-
gested occurs in California condors (Meretsky and Snyder, 1992;
Johnson et al., 2010). Developing seasonal habitat models (e.g.,
Edrén et al., 2010; Rivers et al., 2014) may be useful to delineate
areas used intermittently or more intensely during certain times
of the year. Projecting season-specific models to new regions might
also help identify areas with seasonal opportunities or limitations
that are not apparent in time-invariant niche models.

Rivers et al. (2014) found that, along the central California coast,
coastal habitats were especially important, probably as a result of
the availability of marine mammal carcasses and the availability of
consistent onshore winds that facilitate soaring flight. We contem-
plated developing a separate activity-specific niche model for
coastal feeding given obvious differences in inland versus coastal
feeding environments. However, we chose not to given the limited
area within which coastal foraging currently occurs (<30 km
stretch of coastline). As condors expand their range and additional
coastal feeding occurrence data become available, separating
coastal foraging occurrences from inland foraging occurrences
could improve the predictive performance of our feeding model.
Those planning reintroduction efforts should consider that coastal
feeding sites are underrepresented in our feeding model and that
coastal covariates were not included, meaning that there are likely
areas of coastline that are suitable for condor feeding, but which
are not modeled as suitable.

Overlaying additional threat factors, or factors that associate
positively with condor habitat use that could not be directly incor-
porated into empirical ENMs, is likely to provide information crit-
ical to selecting a successful reintroduction site. Factors that could
further inform release-site selection include: (1) logistical consid-
erations, (2) land ownership patterns and land conservation status,
(3) low-flying aircraft flight routes, (4) wind turbines, (5) distribu-
tion of large trees that could provide additional nesting habitat, (6)
distribution and density of food, (7) the degree to which threats
have been eliminated or abated (e.g., lead ammunition), and (8)
heterospecific competition and density of nest predators. Failure
to consider these factors could result in selecting suboptimal or
even unsuitable release sites. We recommend future analyses con-
sider combining our ENM models with the factors above, and
explicitly account for relative suitability (see Appendix G), relative
importance of each ENM, and uncertainty in model predictions
using a spatially explicit conservation prioritization framework
such as Marxan (Ball et al., 2009) or Zonation (Moilanen et al.,
2005); or using a Bayesian network approach (e.g., Laws and
Kesler, 2012).
5. Conclusions

Our modeling results suggest that California condors currently
occupy <30% of modeled nesting habitat, and <40% of modeled
roosting and feeding habitat within the study area, implying that
there may be significant opportunities for further reintroductions
(Fig. 4). Reintroduction projects typically assume that the last place
a species was observed is the best place for a reintroduction, but
this is not always true (e.g., White et al., 2012). Our results suggest
that at least two geographic regions in the unoccupied northern
portion of the historical range of the condor have retained environ-
mental conditions that, in the absence of additional threats not
included in our models, appear to be conducive to condor nesting,
roosting, and feeding.

Modeling species with ranges that are in flux, including species
being considered for reintroduction, is a delicate art (Elith et al.,
2010). Our analyses suggest that ENMs can be useful for reintro-
duction planning as long as care is taken to incorporate important
aspects of a species’ ecology. Outputs from our models can be inte-
grated with movement data (see Nathan et al., 2008) to configure
future individual-based models, analyze metapopulation viability
and population connectivity, and identify areas of potential conflict
between development and habitat conservation. Our approach,
which separately models specific activities, has applications for
other species and reintroduction programs where it is routinely
assumed (often incorrectly) that individuals fulfill all their needs
for survival and reproduction within a single environmental space.

ENMs developed for reintroduction planning are subject to
change based on the availability of new information. As new rein-
troduction sites for condors are established, models can be rigor-
ously tested and updated with new data gained from these
release efforts (e.g., Cianfrani et al., 2010; Cook et al., 2010;
Rinnhofer et al., 2012). Ultimately, accumulation of new data
across a number of release sites will increase our ability to identify
remaining areas of unoccupied but suitable habitat and develop
area-specific models to tease apart differences in the use of envi-
ronmental space across geographic regions (Bamford et al., 2009).
Such an approach will facilitate a more complete picture of
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California condor space use and will contribute to designing a stra-
tegic and effective rangewide recovery strategy.
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