

Open Access Articles

Efficacy of Multivitamin/mineral Supplementation to Reduce Chronic Disease Risk: A Critical Review of the Evidence from Observational Studies and Randomized Controlled Trials

The Faculty of Oregon State University has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Angelo, G., Drake, V. J., & Frei, B. (2015). Efficacy of Multivitamin/mineral Supplementation to Reduce Chronic Disease Risk: A Critical Review of the Evidence from Observational Studies and Randomized Controlled Trials. Critical Reviews in Food Science and Nutrition, 55(14), 1968-1991. doi:10.1080/10408398.2014.912199
DOI	10.1080/10408398.2014.912199
Publisher	Taylor & Francis
Version	Accepted Manuscript
Terms of Use	http://cdss.library.oregonstate.edu/sa-termsofuse

Efficacy of multivitamin/mineral supplementation to reduce chronic disease risk: a critical review of the evidence from observational studies and randomized controlled trials

Giana Angelo, PhD, Linus Pauling Institute; Victoria J. Drake, PhD, Linus Pauling Institute; and Balz Frei, PhD, Linus Pauling Institute; Department of Biochemistry and Biophysics

Linus Pauling Institute, Oregon State University, Corvallis, OR

Address for correspondence:

Balz Frei, PhD

Director and Endowed Chair

Linus Pauling Institute

Oregon State University

307 Linus Pauling Science Center

Corvallis, OR 97331

(541) 737-5078

(541) 737-5077

balz.frei@oregonstate.edu

Disclosure Information:

Pfizer Consumer Healthcare has sponsored the writing of the manuscript and provided payment to a medical communications agency, Peloton Advantage, LLC, for editorial assistance. Reprints will not be available from the author. GA and VJD received an honorarium from Pfizer in connection with the development of this manuscript.

Running Head

Multivitamin/minerals and chronic disease risk

Keywords

Multivitamin/minerals; chronic disease risk; randomized controlled trials; prospective cohort studies; micronutrient inadequacies

Abbreviations used:

AI, adequate intake; AMD, age-related macular degeneration; AREDS, Age-Related Eye Disease Study; CHD, coronary heart disease; CI, confidence interval; COSM, Cohort of Swedish Men; CPS, Cancer Prevention Study; CTNS, Italian-American Clinical Trial of Nutritional Supplements and Age-Related Cataract; CVD, cardiovascular disease; DHST, delayed-type hypersensitivity skin test; DRIs, dietary reference intakes; DV, daily value; EAR, estimated average requirement; EPIC, European Prospective Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire; HPFS, Health Professionals' Follow-up Study; HR, hazard ratio; IU, international units; LAST, Lutein Antioxidant Supplementation Trial; MAVIS, Mineral and Vitamin Intervention Study; MI, myocardial infarction; MONMD, Multicenter Ophthalmic and Nutritional Age-Related Macular Degeneration study; MPOD, macular pigment optical density; MVM, multivitamin/mineral supplement; NE, niacin equivalent; NHEFS, National Health and Nutrition Examination Survey I Epidemiological Follow-up Study; NHS, Nurses' Health Study; NIH-AARP, National Institutes of Health-American Association of Retired Persons; OR, odds ratio; PHS, Physicians' Health Study; PSC, posterior subcapsular; RCTs, randomized controlled trials; RDA, recommended dietary allowance; RE, retinol equivalents; RR, relative risk; SD, standard deviation; SU.VI.MAX, Supplémentation en Vitamines et Minéraux Antioxydants study; UL, tolerable upper intake level; US, United States; VITAL, Vitamins and Lifestyle study.

1 ABSTRACT

2 We reviewed recent scientific evidence regarding the effects of MVM supplements on 3 risk of chronic diseases, including cancer, cardiovascular disease, and age-related eye 4 diseases. Data from both randomized controlled trials (RCTs) and observational, 5 prospective cohort studies were examined. The majority of scientific studies 6 investigating the use of MVM supplements in chronic disease risk reduction reported no 7 significant effect. However, the largest and longest RCT of MVM supplements 8 conducted to date, the Physicians' Health Study II (PHS II), found a modest and 9 significant reduction in total and epithelial cancer incidence in male physicians, 10 consistent with the Supplémentation en Vitamines et Minéraux Antioxydants 11 (SU.VI.MAX) trial. In addition, PHS II found a modest and significant reduction in the 12 incidence of nuclear cataract, in agreement with several other RCTs and observational, 13 prospective cohort studies. The effects of MVM use on other subtypes of cataract and 14 age-related macular degeneration remain unclear. Neither RCTs nor prospective cohort 15 studies are without their limitations. The placebo-controlled trial design of RCTs may be 16 inadequate for nutrient interventions, and residual confounding, measurement error, and 17 the possibility of reverse causality are inherent to any observational study. National 18 surveys show that micronutrient inadequacies are wide-spread in the U.S. and that 19 dietary supplements, of which MVMs are the most common type, effectively fill most of 20 these micronutrient gaps in both adults and children.

21

22 INTRODUCTION

23 In general, a multivitamin/mineral (MVM*) supplement is a dietary supplement that 24 contains about 100% of the recommended levels (1-3) of daily intake of most vitamins 25 and essential minerals (Table 1). However, there are no standardized definitions for 26 MVMs, and the composition of commercial MVM products varies widely, potentially 27 including such non-nutrient ingredients as herbals, phytochemicals, or hormones. No 28 MVM supplement contains the recommended levels of intake for calcium, magnesium, 29 potassium, and phosphorus since the resulting pill would be too bulky. 30 31 Use of dietary supplements has become increasingly common among adults in the 32 United States (4:5), with MVMs being the most popular type (6:7). According to the 33 NHANES 2007–2010, approximately one-third of adults in the US \geq 20 years of age take 34 an MVM supplement, with the main motivation being "to improve overall health" (6). 35 MVM use is more prevalent among women, older adults, non-Hispanic Whites, and 36 those with higher education, as well as those who report participating in physical activity 37 and those with a lower BMI (8:9). Overall, dietary supplement users are more likely to 38 have healthier diets (10-12) or rate their health as excellent or very good (6;9;13). On 39 the other hand, individuals with chronic illness seeking to prevent recurrence are also 40 frequent users of dietary supplements (8;14;15).

41

42 Despite MVM use being so prevalent, US national surveys indicate that select

43 micronutrient (vitamin and nutritionally essential minerals) inadequacies still exist. After

44 calculating total usual nutrient intake from all food sources and supplements, a

45 significant proportion of US adults ≥19 years of age still fall short of meeting the 46 estimated average requirement (EAR) (text box) for certain micronutrients, namely 47 vitamin D (68%), vitamin E (58%), vitamin A (37%), vitamin C (28%), calcium (36%), 48 and magnesium (48%) (16). The majority of US adults consume less than the Adequate 49 Intake (AI) (text box) for potassium and vitamin K (16). Additionally, many Americans 50 consume foods with many calories and few nutrients. Data from NHANES (1988–1994) 51 estimated that 27% of dietary calorie intake in the American diet is from energy-dense. 52 nutrient-poor foods (17). This survey also found that higher intakes of energy-dense. 53 nutrient-poor foods were associated with lower serum concentrations of several 54 micronutrients, including vitamin A, folate, vitamin B_{12} , vitamin C, and vitamin E (17). 55 According to the Dietary Guidelines for Americans (2010), Americans currently 56 consume too much sodium and too many calories from solid fats, added sugars, and 57 refined grains (18). This contributes to a situation where the over-consumption of high-58 calorie, nutrient-poor foods meets or exceeds energy requirements but fails in the 59 provision of essential vitamins and minerals.

60

Select micronutrient inadequacies are common in other industrialized nations (19-21), and multiple micronutrient deficiencies, especially iron, vitamin A, zinc, and iodine, are prevalent in the developing world, affecting an estimated 2 billion people (22;23). In addition, vitamin D inadequacy may affect as many as 1 billion people (24) and Bvitamin deficiencies are common in some populations (25). A situation of "hidden hunger" occurs when there is access to sufficient calories yet insufficient amounts of essential micronutrients (26). Hidden hunger is common in developing and 68 underdeveloped nations where there is a reliance on starchy food staples (26) and is 69 becoming more prevalent in developed nations where micronutrient inadequacies exist 70 in spite of an abundance and diversity of food (27). While effects of overt deficiencies 71 are well documented, less is known regarding the health effects of marginal or 72 subclinical micronutrient deficiencies, although some studies have reported links to 73 general fatigue (28), impaired immunity (29;30), and adverse effects on cognition (31). It 74 has also been proposed that during chronic micronutrient inadequacies, short-term 75 metabolic requirements take precedence over long-term needs (32), thus contributing to 76 cumulative damage and dysfunction that increase one's risk of age-related chronic 77 diseases (32;33).

78

79 Correcting marginal inadequacies through daily MVM supplementation might reduce 80 risk of chronic disease. However, epidemiological studies on the health effects of MVMs 81 have reported conflicting results, and an NIH State-of-the-Science Panel concluded 82 there was insufficient trial evidence to recommend either for or against the use of MVMs 83 in chronic disease prevention as of 2006 (8). A 2013 systematic review and meta-84 analysis from the U.S. Preventative Task Force reported that there was limited evidence 85 to support the use of vitamin and mineral supplements in the primary prevention of 86 cancer and cardiovascular disease (CVD) [Fortmann SP, et al. Ann Intern Med. 87 2013;159:824-34]. Notably, this analysis included only four RCTs and one cohort study 88 that assessed MVM use; the remaining 26 studies reviewed only assessed single or 89 paired vitamin or mineral supplements, which are not considered MVMs by most 90 standards. Here, we review scientific evidence regarding the effects of MVM

supplements on risk of various chronic diseases, including cancer, CVD, and age-92 related eye diseases, and some basic biological functions. Data from both randomized 93 controlled trials (RCTs) (34-51) and observational, prospective cohort studies (52-83) 94 are examined, and the limitations of each study type are discussed.

95

91

96 **REVIEW OF SCIENTIFIC EVIDENCE: CHRONIC DISEASE PREVENTION**

97 **Randomized controlled trials**

98 RCTs are studies in which participants are allocated by chance alone to receive or not 99 receive a clinical intervention (8). There is much variation in the composition of the MVM 100 formulations used in supplementation trials; some trials use commercially available 101 MVMs while others use specific multi-nutrient combinations that are considered 102 functionally related. Existing reviews and meta-analyses have defined an MVM as a 103 supplement that contains at least 3 vitamins and that may (5) or may not (7;84;85) 104 include minerals. For the purpose of this review, we define an MVM as a supplement 105 containing 3 or more vitamins and at least 1 mineral. We considered the same pool of 106 trials from the recent systematic literature search and meta-analysis by Macpherson, et 107 al. regarding the effect of MVM supplementation on mortality (85). Their search criteria 108 included a definition of MVM more inclusive than our own, thus ensuring coverage of 109 the pertinent literature (Table 2).

110

111 Cancer 112 The Physicians' Health Study II (PHS II) was a large-scale, randomized, double-blind, 113 placebo-controlled trial that tested the long-term effects of a common MVM supplement (Centrum[®] Silver: Pfizer Consumer Healthcare, Madison, NJ) in the prevention of 114 115 chronic disease in middle-aged and older male physicians (86). In the assessment of 116 MVM supplementation in cancer prevention, men who received a daily MVM had a 117 modest but statistically significant reduction in total cancer incidence after a mean of 118 11.2 years of treatment and follow-up compared to those taking placebo (34). Baseline 119 characteristics of the participants were evenly distributed between the MVM and 120 placebo groups, thus minimizing residual confounding factors and strengthening the 121 assessment of MVM treatment effects. While total cancer (excluding non-melanoma 122 skin cancer) was the primary cancer endpoint, secondary cancer endpoints included 123 other site-specific cancers and cancer mortality. Men who received the MVM also had a 124 reduction in epithelial cancer incidence, but no significant reductions in the incidence of 125 individual site-specific cancers (prostate, lung, colorectal, bladder) or cancer mortality 126 (34). The male physician participants enrolled in PHS II differ from the general 127 population in several important ways, namely that there were very few current smokers 128 (4% in PHS II vs. 19% in the US (87) and 22% worldwide (88)), the subjects were well 129 nourished, and a high fraction currently used aspirin (76%) (34). This limits the 130 relevance of the findings to the general population, younger men, women, and racial 131 and ethnic groups not represented in PHS II.

132

133 Residents of Linxian County, China, display very high rates of esophageal/gastric

134 cancers and exhibit subclinical deficiencies in several micronutrients (vitamin A, vitamin

135 E, riboflavin, and vitamin C) (89). This region was therefore chosen for 2 randomized 136 intervention trials testing the effect of micronutrient supplementation on rates of cancer 137 incidence and mortality. In the first trial, 29,584 residents of the Linxian general 138 population received 1 of 8 specific combinations of vitamins and minerals daily for 5.2 139 years (35). Only 1 multi-nutrient combination, vitamin E, beta-carotene, and selenium, 140 significantly reduced the rates of cancer incidence and mortality in this high-risk 141 population (35). In the second trial, 3,318 Linxian residents with cytological evidence of esophageal dysplasia received a commercial MVM supplement (Centrum[®], 2 tablets 142 daily) and beta-carotene (Solatene[®], Roche Laboratories, Nutley, NJ, 1 tablet daily) for 143 144 6 years (36). MVM supplementation had no significant effect on the rates of cancer 145 incidence or mortality in those with esophageal dysplasia (36). As mentioned, the 146 participants in the Linxian trials were at high risk for certain cancers and chronic 147 deficiencies in several micronutrients, which limits the generalizability of the study 148 results to the general population.

149

The Supplémentation en Vitamines et Minéraux Antioxydants (SU.VI.MAX) study was a randomized, placebo-controlled trial of the effects of a combination of antioxidant vitamins and minerals on the incidence of cancer and CVD in middle-aged French adults (37). After a mean of 7.5 years, daily supplementation with an antioxidant capsule significantly reduced total cancer incidence and all-cause mortality in men, but not in women (37). The authors noted that lower baseline beta-carotene status in the male participants of SU.VI.MAX might have contributed to the sex-specific efficacy.

158 Cardiovascular disease

159 PHS II also evaluated the effect of MVM supplementation on major cardiovascular 160 events, with primary endpoints including nonfatal myocardial infarction (MI), nonfatal 161 stroke, and CVD mortality (38). Daily MVM supplementation for a mean of 11.2 years 162 had no significant effect on major cardiovascular events in the male physician 163 participants of PHS II (38). Similarly, the SU.VI.MAX trial reported no effect of daily 164 MVM supplementation for a mean of 7.5 years on ischemic CVD incidence or all-cause 165 mortality in either men or women (37). A small trial performed in patients with lower limb 166 atherosclerosis also reported no significant effect of a combined antioxidant supplement 167 on lower limb disease or the occurrence of cardiovascular events after 2 years of daily 168 supplementation (39).

169

The consistent lack of effect of MVM supplementation on CVD risk may be related, in
part, to the widespread use of aspirin, statins, and antihypertensive drugs for the
primary and secondary prevention of CVD. For example, 77.4% of male physicians in
PHS II used aspirin, and 42.0% and 35.4% had a medical history of hypertension or
hypercholesterolemia, respectively (38). Drug-nutrient interactions may be a
confounding factor in RCTs but have been little studied thus far.

176

177 Age-related eye diseases

178 Here, age-related eye diseases include cataract and age-related macular degeneration

179 (AMD). Two RCTs assessed the effect of MVM supplementation specifically on the

180 development of age-related cataract, also referred to as lens opacities. The Italian-

181 American Clinical Trial of Nutritional Supplements and Age-Related Cataract (CTNS) 182 evaluated the effect of a commercial MVM supplement (Centrum[®]) on age-related lens 183 opacities in 1,020 men and women (mean age 68±5 years) with early (N=710) or no 184 (N=310) cataract (40). After an average of 9 years of daily supplementation, "any" lens 185 event (increased nuclear, cortical, or posterior subcapsular [PSC] cataract opacity 186 grades) was significantly less common with MVM supplementation compared with 187 placebo (40). However, closer examination of the specific types of lens events revealed 188 a significant decrease in the progression or development of nuclear opacities and a 189 significant increase in the development or progression of PSC cataract opacities in the 190 supplement group (40).

191

192 Upon completion of the Linxian cancer trials, an eye examination was included in order 193 to assess if the 2 MVM interventions also affected the risk of developing age-related 194 nuclear, cortical, and PSC cataracts (41). In 2,141 participants from the Linxian Dysplasia Trial, where subjects received 2 MVM (Centrum[®]) tablets plus beta-carotene 195 196 daily for 6.0 years, there was a 36% reduction in the prevalence of nuclear cataract with 197 MVM supplementation in those aged 65–74 years (41). In 3,249 individuals from the 198 Linxian general population trial, a 44% reduction in the prevalence of nuclear cataract 199 was observed only with niacin/riboflavin supplementation in those aged 65–74 years. 200 Similar to the CTNS trial, however, niacin/riboflavin supplementation also had a 201 negative effect on PSC cataracts (41).

202

203 The RCTs that have assessed the effects of MVM supplementation on AMD have each 204 enrolled subjects with pre-existing eye diseases (42-46;90). The initial Age-Related Eye 205 Disease Study (AREDS) evaluated the effect of supplementation with high doses of zinc 206 and select antioxidants (in various combinations) on the progression of AMD (90) and 207 development of cataract (43) in individuals with evidence of age-related eye disease in 208 at least 1 eye. Treatment with zinc alone or in combination with antioxidants reduced 209 the risk of progression to advanced AMD in high-risk category 3 and 4 participants only 210 (90); notably, 80% of US adults over 70 years of age fall into low-risk categories 1 and 2 211 (91). The AREDS formulation had no effect on the development of cataract (43). In 212 AREDS2, the supplement formulation was altered to reflect new information on the dose 213 and types of nutrients most beneficial to eye health (42). The addition of lutein and 214 zeaxanthin, the only 2 antioxidants localized to the retina (92), and omega-3 fatty acids 215 docosahexaenoic acid and eicosapentaenoic acid were administered in conjunction with 216 the original AREDS supplement in a complex randomization scheme; for some 217 participants, the AREDS supplement was altered such that beta-carotene was omitted 218 and the dose of zinc lowered, given the potential adverse effects of these nutrients in 219 certain individuals (42). No significant reductions in the progression to advanced AMD 220 occurred with any combination or formulation of the AREDS2 supplement (42). 221 Subgroup analysis revealed a beneficial effect of lutein and zeaxanthin supplementation 222 only in those reporting low dietary intake of these carotenoids (42). 223

224 Three other RCTs measured changes in visual function as their index of AMD

225 progression. In the Lutein Antioxidant Supplementation Trial (LAST), men with atrophic

226 AMD who received lutein alone or in combination with a "broad-spectrum" antioxidant 227 supplement for 1 year demonstrated improved visual function compared with those 228 receiving placebo (45). Patients with advanced, dry AMD who received a "broad-229 spectrum" MVM supplement for 1.5 years in the Multicenter Ophthalmic and Nutritional 230 Age-Related Macular Degeneration (MONMD) study maintained visual acuity, but also 231 experienced increased cortical opacification (44). Finally, there was no significant effect 232 of 9 months of MVM supplementation on contrast sensitivity score, a measure of visual 233 function, in a small study of 25 subjects (mean age 69.2±7.8 years) with age-related 234 maculopathy (46).

235

PHS II evaluated the effect of a daily MVM supplement (Centrum[®] Silver) on both 236 237 cataract and AMD incidence in 14,641 healthy, middle-aged male physicians in the 238 United States (93). After 11.2 years of follow-up, there was a significant 9% lower risk of 239 total cataract and a 13% lower risk of "any" nuclear sclerosis (nuclear cataract) in the 240 MVM compared to the placebo group. No significant effect of MVM supplementation 241 was found on the incidence of cortical or PSC cataract. On the other hand, there was a 242 significant 38% increased risk of total AMD in the oldest age group (≥70 years) of men 243 randomized to MVM supplementation.

244

245 Limitations

While RCTs are considered the "gold standard" for determining the clinical efficacy of a
given intervention, there are unique limitations inherent to nutrient supplementation
trials. For one, there can never be a nutrient-free state in study volunteers, thus the

249 "placebo" group in micronutrient supplementation trials is not a true placebo or "non-250 exposed" group. Consequently, treatment exposure is blunted between the groups, 251 potentially contributing to a null effect (33). Secondly, study participants may not 252 represent the general population. For example, those who were willing and eligible to 253 participate in the first Physicians' Health Study (PHS I) had healthier lifestyle traits, 254 lesser history of disease, and lower relative risks of mortality compared with unwilling 255 and ineligible participants (94). Thirdly, the development and progression of chronic 256 disease occur over decades, thus the timing and duration of the nutrient intervention 257 with respect to chronic disease etiology are difficult to determine. And finally, there is 258 much heterogeneity in trial designs, in which vastly different MVM formulations are 259 administered and study participants with very different baseline characteristics are 260 recruited; this adds to the challenge of comparing outcomes from the existing body of 261 evidence.

262

263 **Observational studies**

An observational study is one in which no experimental intervention or treatment is applied, and participants are simply observed over time. Several large, long-term, observational, prospective cohort studies have been conducted that examined the association between MVM intake and the development of chronic disease. We considered prospective studies included in recent reviews of MVM use and the risk of cancer, CVD, and age-related eye diseases (95;96); more recent prospective cohort studies were obtained via a PubMed search (**Table 3**).

271

272 **Cancer**

The majority of prospective cohort studies demonstrated no association between MVM use and risk of cancer incidence or mortality (52;55-57;59;60;64;66;67;70;71;73-75). In some instances, a statistically significant association between MVM use and cancer risk in specific populations has been noted in both beneficial (65;72) and harmful (53;54;58;61;68;69) directions.

278

279 Among specific cancers studied, a negative effect of MVM use on prostate cancer has 280 been demonstrated in several instances. In the NIH-American Association of Retired 281 Persons Diet and Health Study, after a mean follow-up of 5 years, regular MVM use 282 was not associated with prostate cancer risk, while excessive MVM use (greater than 7 283 times per week) was associated with an increased risk of aggressive and fatal prostate 284 cancer compared to never users (62). In an updated analysis of data from the Cancer 285 Prevention Study II, regular use of MVMs (≥15 times/month) was associated with an 286 increased risk of death from prostate cancer compared with non-users; this increased 287 risk was confined to men who regularly used MVMs alone (relative risk [RR]: 1.15; 95% 288 confidence interval [CI]: 1.05–1.26) and limited to the early years of follow-up (RR: 1.41; 289 95% CI: 1.03–1.92) (63). The reasons behind the variable associations between MVM 290 use and prostate cancer endpoints are unclear. It is cautioned that confounding by 291 stage of disease might be present and that MVM use occurring before or after the 292 establishment of prostate cancer might have differential effects on disease outcomes 293 (62;63;69). Notably, there was no effect of MVM supplementation on prostate cancer

incidence in PHS II, where prostate cancer comprised more than half of all confirmedcancer cases (34).

296

297 Because use of dietary supplements is an inconsistent behavior, some prospective 298 cohort studies have collected supplement use data at several time points in order to 299 glean more information about the associations between patterns of MVM use and 300 disease risk. In the European Prospective Investigation into Cancer and Nutrition 301 (EPIC)-Heidelberg study, regular MVM use was not associated with mortality from any 302 cause, but MVM use initiated during follow-up was associated with an increased risk of 303 mortality from cancer and all causes (52). After excluding cancer cases that occurred 304 between baseline and the third follow-up, the negative association between MVM use 305 and mortality became insignificant, suggesting a "sick user effect" or reverse causality, a 306 phenomenon in which people tend to start taking MVMs after a diagnosis of disease has 307 been made. In the Japan Public Health Center-based Prospective Study, only 4.1% of 308 men and 5.8% of women continued to use vitamin supplements from the first to the 309 second surveys, a period spanning approximately 5 years (54). At the end of the study, 310 there was no association between any pattern of supplement use and risk of cancer or 311 CVD in men. In women, however, past and recent supplement use was associated with 312 a higher risk of cancer. These 2 patterns of use in women were also associated with 313 higher BMI, greater likelihood of smoking, and higher use of certain medications, 314 suggesting that the negative association may be partially explained by unhealthy 315 characteristics that accompany the decision to use a dietary supplement (54).

316

317 Cardiovascular disease

318 Most observational, prospective cohort studies assessing supplement use at multiple

- 319 time points have found no association with CVD incidence or mortality. In particular,
- 320 multivitamin or MVM use was not associated with MI (59;76), stroke (59), venous
- thromboembolism (59), or mortality from coronary heart disease (CHD) (73;76) or CVD
- 322 (52;55;60). However, long-term follow-up in the Nurses' Health Study found women who
- 323 took multiple vitamins had a 24% lower risk for CHD, defined by nonfatal MI or fatal
- 324 CHD, and this inverse association was stronger in women taking at least 4 multivitamin
- 325 supplements weekly for at least 5 years (77).
- 326

327 Age-related eye diseases

328 A 2007 review summarized the results from both clinical trials and observational, 329 prospective cohort studies that investigated the relationship between dietary 330 supplements and age-related eye diseases, including cataract and AMD (96). With one 331 exception (82), prospective cohort studies that specifically assessed multivitamins 332 showed no association between multivitamin use and the risk of cataract or AMD. In the 333 Beaver Dam Eye Study, only those who self-reported use of a multivitamin for more 334 than 10 years had a decreased risk of nuclear and cortical cataracts, but not of PSC 335 cataracts (82). A prospective cohort analysis from the AREDS study (97) showed that participants who elected to supplement with an MVM (Centrum[®]) throughout the trial 336 337 had a lower risk of progression of "any" lens opacity and nuclear opacity; no association 338 was found between elective MVM supplementation and cortical or PSC opacities. Since 339 2007, two population-based prospective cohort studies reported that MVM use was not

340 associated with the risk of cataract in men (98) or with cataract extraction in women

341 (81). Observational evidence indicates that other nutrients from foods, particularly lutein,

342 zeaxanthin, and omega-3 fatty acids, may be most important for AMD (96).

343

344 Limitations

345 Observational, prospective cohort studies, which reveal associations between a given 346 behavior and the subsequent development of disease, are subject to several important 347 limitations that must be considered when interpreting results. First, accurately 348 measuring MVM use and compliance over many years is difficult. There are wide 349 variations in MVM supplement composition, dose, and duration of use. Furthermore, 350 MVM use is an inconsistent behavior, and it is likely that study participants alter their 351 patterns of use over the long time period between study enrollment, when information 352 on MVM use is collected, and the development of chronic disease many years later. 353 Some investigators attempt to overcome this limitation by collecting MVM use data at 354 additional time points during follow-up. Even with multiple data points, however, the 355 assessment of MVM use comes from very general questions that rely on accurate recall 356 by study participants. Secondly, MVM use is broadly associated with health-conscious 357 behaviors as well as with poor health (8;54). Thus, MVM use (or lack thereof) may be 358 associated with other unmeasured behaviors that contribute to the study outcome, an 359 epidemiological phenomenon known as residual confounding. Finally, individuals may 360 initiate MVM use when symptoms or diagnosis of chronic disease occurs (14;15;99). In 361 this case, the health status of the individual, rather than the MVM supplement by itself, 362 influences the development of disease (i.e., reverse causality).

364 REVIEW OF SCIENTIFIC EVIDENCE: SUPPORTING NORMAL BIOLOGICAL 365 FUNCTIONS

366 Immune function

367 Two RCTs reported that daily MVM supplementation for 1 year had no effect on the risk 368 of infection in community-dwelling older adults (49;50). In another trial, 1 year of daily 369 supplementation with a commercial MVM (Theragran M[®], Bristol-Myers Squibb, New 370 York, NY) increased serum and plasma concentrations of certain micronutrients (vitamin 371 C, beta-carotene, folate, vitamin B₆, and alpha-tocopherol) and improved delayed-type 372 hypersensitivity skin test (DHST) response compared with those taking placebo (51).

373

374 Cognitive function

375 The Mineral and Vitamin Intervention Study (MAVIS) tested possible effects of MVM 376 supplementation on cognitive function in 910 older adults (median age 72 years) who 377 received daily MVM tablet or placebo for 1 year (47). Supplementation had no overall 378 effect on short-term memory (digit span forward test) or executive functioning (verbal 379 fluency test) in the total sample of older adults. Subgroup analysis revealed a mild 380 beneficial effect on verbal fluency scores in 2 subgroups: (1) those 75 years and older, 381 and (2) those at increased risk for micronutrient deficiency as assessed by 382 questionnaire (47). In another RCT, 220 healthy, older women (median age 63 years) 383 received an MVM or placebo capsule daily for 6 months (48). MVM supplementation

resulted in higher serum concentrations of all vitamins, yet had no effect on cognitiveperformance compared with placebo (48).

386

387 A sub-study within PHS II evaluated the effect of long-term daily supplementation with a

388 commercial MVM (Centrum[®] Silver) on cognitive function in older (<u>></u> 65 years) male

389 physicians [Grodstein, 2013]. Up to four repeated cognitive assessments were

390 completed by telephone interview in 5,947 participants over a mean of 8.5 years of

391 follow-up. No differences in mean cognitive change over time or mean level of cognition

392 were observed between the MVM and placebo groups.

393

394 Meeting nutrient requirements

395 Recommended levels of nutrient intake are defined by using specific scientific criteria 396 for nutrient adequacy (**text box**). While the specific criterion varies for each

397 micronutrient, examples of adequate nutritional states include normal growth,

398 maintenance of normal levels of nutrients in plasma, and other aspects of general

health and well-being (100). National surveys indicate that a considerable percentage of

400 US adults and children consume inadequate levels of vitamins and nutritionally

401 essential minerals from food sources alone (16). Use of dietary supplements, of which

402 MVMs are the most common type, can make a significant contribution to daily

403 micronutrient intakes, effectively reducing the prevalence of inadequate intakes in all

404 vitamins and minerals examined in representative populations of adults, children, and

seniors from the US and Canada (5;16;101-104). For example, according to the Dietary

406 Guidelines for Americans (2010), vitamin D, calcium, and potassium are among several

"nutrients of concern" within the US population (18). Use of dietary supplements further
reduced the percentage of the total population with usual intakes below the EAR for
vitamin D (93% to 70%), calcium (49% to 38%), vitamin C (37% to 25%), vitamin E
(91% to 60%), and magnesium (55% to 45%) (16).

- 411
- 412 Safety

413 Notably, documented cases of nutrient toxicity are generally caused by

414 supplementation, not by food (105). Thus, while dietary supplements reduce the

415 percentage of the population consuming less than the EAR for all micronutrients, they

also contribute to excess intake for some vitamins and minerals (103;104). Given the

417 high prevalence of MVM use in the US population, there is concern that individuals may

418 exceed the Tolerable Upper Intake Level (UL) for certain micronutrients (**text box**)

419 (8;100;106). A recent national survey tallying nutrient intake from all sources (natural,

420 enriched or fortified, and supplements) indicated that the percentage of US adults ≥19

421 years of age exceeding the UL is low for most nutrients and was highest for niacin

422 (8.5%) followed by zinc (3.3%), calcium (3.2%), and folate (2.6%) (16). Similarly, in

423 Europe, the risk of excessive intakes was low for the majority of nutrients, with possible

424 exceptions being vitamin A, zinc, iodine, copper, and magnesium (107). However,

425 dietary supplement use contributed to total micronutrient intakes above the UL for a

426 sizeable proportion of US children and adolescents (2–18 years old) for zinc (24%),

427 niacin (16%), vitamin A (15%), and folate (15%) (16). Although dosages of

428 micronutrients included in most commercial MVMs are close to 100% of the

429 recommended dietary allowance (RDA), dietary supplements contribute significantly to

total nutrient intakes and one must pay attention to their contribution to total dailynutrient exposure.

432

433 CONCLUSIONS

The majority of scientific studies investigating the use of MVM supplements in the
reduction of the risk of chronic disease report no significant effect (**Tables 2 and 3**). In
select populations, both beneficial and adverse outcomes have been documented.
Closer examination of study participant characteristics as well as constraints of the
existing methodology offers explanations for these variable outcomes.

439

440 Much emphasis is placed on PHS II for its strong study design and data set, spanning 441 over 10 years of controlled supplementation with a commercial MVM. There was a 442 modest reduction in total and nuclear cataract, as well as total and epithelial cancer 443 incidence observed in the male physician participants of PHS II, consistent with, e.g., 444 the CTNS with respect to cataract and the SU.VI.MAX trial for total cancer incidence. 445 While these results are meaningful, caution must be used when extrapolating the results 446 from PHS II and other RCTs to the general population. Study participants often have 447 unique characteristics that likely influence the effect of an MVM in the experimental 448 population (e.g., gender, disease history or status, baseline nutritional status). In 449 addition, the overall effect of MVM supplementation on age-related eye diseases 450 remains unclear given the potentially opposing effects on nuclear and PSC cataract subtypes. With respect to AMD, PHS II found an increased risk of total AMD incidence 451

in the oldest age group (≥70 years) with MVM supplementation; the effect of MVM
supplementation on AMD progression is unclear based on currently available data. For
trial data on cardiovascular diseases addressed in this review, there was a consistent
lack of an effect of daily MVM supplementation, which could be due, in part, to the
confounding effect of the polypharmacy often used in CVD prevention.

457

458 Overall, observational, prospective cohort studies demonstrate no association between 459 MVM use and the risk of chronic disease. In fact, there are several instances where 460 MVM use is associated with an increased risk of specific cancers and age-related eye 461 diseases. The negative associations detected in observational study subanalyses may 462 be due to inherent methodological limitations regarding patterns of MVM use and the 463 inability to control for this variable with the existing methodology. Supplement use might 464 accompany a healthy lifestyle or a newly diagnosed disease, both of which 465 independently affect disease etiology yet cannot always be accounted for in the final 466 analysis.

467

The development of chronic disease has been described as a long-latency deficiency disease (33) or the result of accumulated cellular damage due to chronic micronutrient insufficiency (32). Consistent with these hypotheses, MVM supplementation appears to benefit individuals who are most at risk for nutritional deficiencies. In those studies where nutrient status was assessed, MVM supplementation helped maintain adequacy in older adults, offsetting some age-related declines in immune and cognitive function. Moreover, dietary supplements contributed significantly to daily micronutrient intakes,

- 475 reducing the prevalence of inadequacy for all vitamins and minerals examined in476 nationally representative populations in the US and Canada.
- 477

478 Recommendation

The current dietary pattern of Western populations is energy dense and nutrient poor, itself a risk factor for the development of chronic disease (18). Although it is possible to meet the RDA of all essential vitamins and minerals through diet alone by choosing nutrient-dense foods in the proper proportions (18;108), national surveys reveal that certain micronutrients are consistently under-consumed in the typical Western diet

484 (18;102) or are difficult to obtain from food sources alone (i.e., vitamin D).

485

486 The primary indication for an MVM is to supplement a diet lacking adequate amounts of 487 certain micronutrients in order to maintain normal cell and tissue function, metabolism, 488 growth, and development; additionally, there is the potential to reduce risk of some 489 chronic diseases with minimal risk of harm [Frei, Ann Intern Med. In press]. For some 490 people, an MVM thus represents an effective, safe, and affordable means of filling 491 micronutrient gaps. That said, one first needs to know a gap exists. While national 492 survey estimates are informative, dietary assessment is the only way to identify one's 493 actual nutrient intake, revealing potential inadequacies or excesses. Should one decide 494 to supplement with an MVM, it is also important to consider other personal issues in the 495 decision-making process, such as life stage, disease status, risk factors, and lifestyle.

496 *AI, adequate intake: AMD, age-related macular degeneration: AREDS, Age-Related 497 Eye Disease Study; CHD, coronary heart disease; CI, confidence interval; COSM, 498 Cohort of Swedish Men: CPS, Cancer Prevention Study: CTNS, Italian-American 499 Clinical Trial of Nutritional Supplements and Age-Related Cataract; CVD, cardiovascular 500 disease; DHST, delayed-type hypersensitivity skin test; DRIs, dietary reference intakes; 501 DV, daily value; EAR, estimated average requirement; EPIC, European Prospective 502 Investigation into Cancer and Nutrition: FFQ, food frequency questionnaire; HPFS, 503 Health Professionals' Follow-up Study: HR, hazard ratio; IU, international units: LAST, 504 Lutein Antioxidant Supplementation Trial; MAVIS, Mineral and Vitamin Intervention 505 Study; MI, myocardial infarction; MONMD, Multicenter Ophthalmic and Nutritional Age-506 Related Macular Degeneration study; MPOD, macular pigment optical density; MVM, 507 multivitamin/mineral supplement; NE, niacin equivalent; NHEFS, National Health and 508 Nutrition Examination Survey I Epidemiological Follow-up Study; NHS, Nurses' Health 509 Study; NIH-AARP, National Institutes of Health-American Association of Retired 510 Persons; OR, odds ratio; PHS, Physicians' Health Study; PSC, posterior subcapsular; 511 RCTs, randomized controlled trials; RDA, recommended dietary allowance; RE, retinol 512 equivalents; RR, relative risk; SD, standard deviation; SU.VI.MAX, Supplémentation en 513 Vitamines et Minéraux Antioxydants study; UL, tolerable upper intake level; US, United 514 States; VITAL, Vitamins and Lifestyle study.

- 515
- 516
- 517 518
- 519
- 520
- 521

522 Acknowledgments

- 523
- 524 GA, VJD, and BF designed the research for this review article, conducted the literature
- research, analyzed the data, and wrote the paper. GA had primary responsibility for final
- 526 content. All authors read and approved the final manuscript. Editorial support was
- 527 provided by Diane Sloan, PharmD, of Peloton Advantage, LLC and was funded by
- 528 Pfizer.

REFERENCES

1. Food and Drug Administration. Guidance for industry: a food labeling guide (14. appendix F: calculate the percent daily value for the appropriate nutrients). Food and Drug Administration 2013. Internet:

http://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm 064928.htm (accessed December 6, 2013).

2. National Academy of Sciences, Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes: Recommended Dietary Allowances and Adequate Intakes for Vitamins and Elements. U S Department of Agriculture 2010. Internet: http://fnic.nal.usda.gov/dietary-guidance/dietary-reference-intakes/dri-tables (accessed December 6, 2013).

3. Pfizer Consumer Healthcare. What's Inside Centrum? Centrum website 2013. Internet: http://www.centrum.com/whats-inside/products (accessed December 6, 2013).

Briefel RR, Johnson CL. Secular trends in dietary intake in the United States. Annu Rev Nutr 2004;24:401 31.

5. Bailey RL, Gahche JJ, Lentino CV, Dwyer JT, Engel JS, Thomas PR, Betz JM, Sempos CT, Picciano MF. Dietary supplement use in the United States, 2003-2006. J Nutr 2011;141:261-6. 6. Bailey RL, Gahche JJ, Miller PE, Thomas PR, Dwyer JT. Why US adults use dietary supplements. JAMA Intern Med 2013;173:355-61.

7. Gahche J, Bailey R, Burt V, Hughes J, Yetley E, Dwyer J, Picciano MF, McDowell M, Sempos C. Dietary supplement use among U.S. adults has increased since NHANES III (1988-1994). NCHS Data Brief 2011;1-8.

8. National Institutes of Health State-of-the-science conference statement: multivitamin/mineral supplements and chronic disease prevention. Ann Intern Med 2006;145:364-71.

9. Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano MF. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999-2000. Am J Epidemiol 2004;160:339-49.

10. Foote JA, Murphy SP, Wilkens LR, Hankin JH, Henderson BE, Kolonel LN. Factors associated with dietary supplement use among healthy adults of five ethnicities: the Multiethnic Cohort Study. Am J Epidemiol 2003;157:888-97.

11. Rock CL. Multivitamin-multimineral supplements: who uses them? Am J Clin Nutr 2007;85:277S-9S.

12. Li K, Kaaks R, Linseisen J, Rohrmann S. Consistency of vitamin and/or mineral supplement use and demographic, lifestyle and health-status predictors: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr 2010;104:1058-64.

13. Sullivan KM, Ford ES, Azrak MF, Mokdad AH. Multivitamin use in pregnant and nonpregnant women: results from the Behavioral Risk Factor Surveillance System. Public Health Rep 2009;124:384-90.

14. Bender MM, Levy AS, Schucker RE, Yetley EA. Trends in prevalence and magnitude of vitamin and mineral supplement usage and correlation with health status. J Am Diet Assoc 1992;92:1096-101.

15. Patterson RE, Neuhouser ML, Hedderson MM, Schwartz SM, Standish LJ, Bowen DJ. Changes in diet, physical activity, and supplement use among adults diagnosed with cancer. J Am Diet Assoc 2003;103:323-8.

16. Fulgoni VL, III, Keast DR, Bailey RL, Dwyer J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J Nutr 2011;141:1847-54.

17. Kant AK. Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988-1994. Am J Clin Nutr 2000;72:929-36.

18. Dietary guidelines for Americans, 2010. U S Department of Agriculture, US Department of Health and Human Services 2010. Internet: **www.dietaryguidelines.gov** (accessed December 6, 2013).

19. Elmadfa I, Freisling H. Nutritional status in Europe: methods and results. Nutr Rev 2009;67 Suppl 1:S130-S134.

20. Taylor JP, Maclellan DL, van TL, Sweet L. Widespread micronutrient inadequacies among adults in prince edward island. Can J Diet Pract Res 2007;68:23-9.

21. Whatham A, Bartlett H, Eperjesi F, Blumenthal C, Allen J, Suttle C, Gaskin K. Vitamin and mineral deficiencies in the developed world and their effect on the eye and vision. Ophthalmic Physiol Opt 2008;28:1-12.

22. The State of Food Insecurity in the World 2004. Rome, Italy: Food and Agriculture Organization of the United Nations, 2004.

23. Muller O, Krawinkel M. Malnutrition and health in developing countries. CMAJ 2005;173:279-86.

24. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266-81.

25. Ramakrishnan U. Prevalence of micronutrient malnutrition worldwide. Nutr Rev 2002;60:S46-S52.

26. Burchi F, Fanzo J, Frison E. The role of food and nutrition system approaches in tackling hidden hunger. Int J Environ Res Public Health 2011;8:358-73.

27. Cole CR. Preventing hidden hunger in children using micronutrient supplementation. J Pediatr 2012;161:777-8.

28. Huskisson E, Maggini S, Ruf M. The role of vitamins and minerals in energy metabolism and well-being. J Int Med Res 2007;35:277-89.

29. Bhaskaram P. Immunobiology of mild micronutrient deficiencies. Br J Nutr 2001;85 Suppl 2:S75-S80.

30. Ibs K-H, Rink L. Zinc. In: Hughes DA, Darlington LG, Bendich A, eds. Diet and Human Immune Function. Totowa, NJ: Humana Press Inc. 2004:241-59.

31. Kennedy DO, Haskell CF. Vitamins and cognition: what is the evidence? Drugs 2011;71:1957-71.

32. Ames BN. Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proc Natl Acad Sci U S A 2006;103:17589-94.

33. Heaney RP. Nutrients, endpoints, and the problem of proof. J Nutr 2008;138:1591-5.

34. Gaziano JM, Sesso HD, Christen WG, Bubes V, Smith JP, MacFadyen J, Schvartz M, Manson JE, Glynn RJ, Buring JE. Multivitamins in the prevention of cancer in men. The Physicians' Health Study II Randomized Controlled Trial. JAMA 2012;308:1871-80.

35. Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, Li GY et al. Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst 1993;85:1483-92.

36. Li JY, Taylor PR, Li B, Dawsey S, Wang GQ, Ershow AG, Guo W, Liu SF, Yang CS, Shen Q et al. Nutrition intervention trials in Linxian, China: multiple vitamin/mineral supplementation, cancer incidence, and disease-specific mortality among adults with esophageal dysplasia. J Natl Cancer Inst 1993;85:1492-8.

37. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, Roussel AM, Favier A, Briancon S. The SU.VI.MAX Study: a randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 2004;164:2335-42.

38. Sesso HD, Christen WG, Bubes V, Smith JP, MacFadyen J, Schvartz M, Manson JE, Glynn RJ, Buring JE, Gaziano JM. Multivitamins in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. JAMA 2012;308:1751-60.

39. Leng GC, Lee AJ, Fowkes FG, Horrobin D, Jepson RG, Lowe GD, Rumley A, Skinner ER, Mowat BF. Randomized controlled trial of antioxidants in intermittent claudication. Vasc Med 1997;2:279-85.

40. Maraini G, Sperduto RD, Ferris F, Clemons TE, Rosmini F, Ferrigno L. A randomized, double-masked, placebo-controlled clinical trial of multivitamin supplementation for age-related lens opacities. Clinical trial of nutritional supplements and age-related cataract report no. 3. Ophthalmology 2008;115:599-607.

41. Sperduto RD, Hu TS, Milton RC, Zhao JL, Everett DF, Cheng QF, Blot WJ, Bing L, Taylor PR, Li JY et al. The Linxian cataract studies. Two nutrition intervention trials. Arch Ophthalmol 1993;111:1246-53.

42. Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for agerelated macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013;309:2005-15.

43. AREDS. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol 2001;119:1439-52.

44. Richer S. Multicenter ophthalmic and nutritional age-related macular degeneration study--part 2: antioxidant intervention and conclusions. J Am Optom Assoc 1996;67:30-49.

45. Richer S, Stiles W, Statkute L, Pulido J, Frankowski J, Rudy D, Pei K, Tsipursky M, Nyland J. Doublemasked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic agerelated macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 2004;75:216-30.

46. Bartlett HE, Eperjesi F. Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in agerelated macular disease: a randomized controlled trial. Eur J Clin Nutr 2007;61:1121-7.

47. McNeill G, Avenell A, Campbell MK, Cook JA, Hannaford PC, Kilonzo MM, Milne AC, Ramsay CR, Seymour DG, Stephen AI et al. Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: a randomised controlled trial. Nutr J 2007;6:10.

48. Wolters M, Hickstein M, Flintermann A, Tewes U, Hahn A. Cognitive performance in relation to vitamin status in healthy elderly German women-the effect of 6-month multivitamin supplementation. Prev Med 2005;41:253-9.

49. Avenell A, Campbell MK, Cook JA, Hannaford PC, Kilonzo MM, McNeill G, Milne AC, Ramsay CR, Seymour DG, Stephen AI et al. Effect of multivitamin and multimineral supplements on morbidity from infections in older people (MAVIS trial): pragmatic, randomised, double blind, placebo controlled trial. BMJ 2005;331:324-9.

50. Graat JM, Schouten EG, Kok FJ. Effect of daily vitamin E and multivitamin-mineral supplementation on acute respiratory tract infections in elderly persons: a randomized controlled trial. JAMA 2002;288:715-21.

51. Bogden JD, Bendich A, Kemp FW, Bruening KS, Shurnick JH, Denny T, Baker H, Louria DB. Daily micronutrient supplements enhance delayed-hypersensitivity skin test responses in older people. Am J Clin Nutr 1994;60:437-47.

52. Li K, Kaaks R, Linseisen J, Rohrmann S. Vitamin/mineral supplementation and cancer, cardiovascular, and all-cause mortality in a German prospective cohort (EPIC-Heidelberg). Eur J Nutr 2012;51:407-13.

53. Zhang W, Shu XO, Li H, Yang G, Cai H, Ji BT, Gao J, Gao YT, Zheng W, Xiang YB. Vitamin intake and liver cancer risk: a report from two cohort studies in China. J Natl Cancer Inst 2012;104:1173-81.

54. Hara A, Sasazuki S, Inoue M, Shimazu T, Iwasaki M, Sawada N, Yamaji T, Ishihara J, Iso H, Tsugane S. Use of vitamin supplements and risk of total cancer and cardiovascular disease among the Japanese general population: a population-based survey. BMC Public Health 2011;11:540.

55. Park SY, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Multivitamin use and the risk of mortality and cancer incidence: the multiethnic cohort study. Am J Epidemiol 2011;173:906-14.

56. Hotaling JM, Wright JL, Pocobelli G, Bhatti P, Porter MP, White E. Long-term use of supplemental vitamins and minerals does not reduce the risk of urothelial cell carcinoma of the bladder in the VITamins And Lifestyle study. J Urol 2011;185:1210-5.

57. Mursu J, Robien K, Harnack LJ, Park K, Jacobs DR, Jr. Dietary supplements and mortality rate in older women: the Iowa Women's Health Study. Arch Intern Med 2011;171:1625-33.

58. Larsson SC, Akesson A, Bergkvist L, Wolk A. Multivitamin use and breast cancer incidence in a prospective cohort of Swedish women. Am J Clin Nutr 2010;91:1268-72.
59. Neuhouser ML, Wassertheil-Smoller S, Thomson C, Aragaki A, Anderson GL, Manson JE, Patterson RE, Rohan TE, Van HL, Shikany JM et al. Multivitamin use and risk of cancer and cardiovascular disease in the Women's Health Initiative cohorts. Arch Intern Med 2009;169:294-304.

60. Pocobelli G, Peters U, Kristal AR, White E. Use of supplements of multivitamins, vitamin C, and vitamin E in relation to mortality. Am J Epidemiol 2009;170:472-83.

61. Messerer M, Hakansson N, Wolk A, Akesson A. Dietary supplement use and mortality in a cohort of Swedish men. Br J Nutr 2008;99:626-31.

62. Lawson KA, Wright ME, Subar A, Mouw T, Hollenbeck A, Schatzkin A, Leitzmann MF. Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study. J Natl Cancer Inst 2007;99:754-64.

63. Stevens VL, McCullough ML, Diver WR, Rodriguez C, Jacobs EJ, Thun MJ, Calle EE. Use of multivitamins and prostate cancer mortality in a large cohort of US men. Cancer Causes Control 2005;16:643-50.

64. Zhang SM, Moore SC, Lin J, Cook NR, Manson JE, Lee IM, Buring JE. Folate, vitamin B6, multivitamin supplements, and colorectal cancer risk in women. Am J Epidemiol 2006;163:108-15.

65. Fuchs CS, Willett WC, Colditz GA, Hunter DJ, Stampfer MJ, Speizer FE, Giovannucci EL. The influence of folate and multivitamin use on the familial risk of colon cancer in women. Cancer Epidemiol Biomarkers Prev 2002;11:227-34.

66. Jacobs EJ, Connell CJ, McCullough ML, Chao A, Jonas CR, Rodriguez C, Calle EE, Thun MJ. Vitamin C, vitamin E, and multivitamin supplement use and stomach cancer mortality in the Cancer Prevention Study II cohort. Cancer Epidemiol Biomarkers Prev 2002;11:35-41.

67. Wu K, Willett WC, Chan JM, Fuchs CS, Colditz GA, Rimm EB, Giovannucci EL. A prospective study on supplemental vitamin e intake and risk of colon cancer in women and men. Cancer Epidemiol Biomarkers Prev 2002;11:1298-304.

68. Zhang SM, Giovannucci EL, Hunter DJ, Rimm EB, Ascherio A, Colditz GA, Speizer FE, Willett WC. Vitamin supplement use and the risk of non-Hodgkin's lymphoma among women and men. Am J Epidemiol 2001;153:1056-63.

69. Watkins ML, Erickson JD, Thun MJ, Mulinare J, Heath CW, Jr. Multivitamin use and mortality in a large prospective study. Am J Epidemiol 2000;152:149-62.

70. Michaud DS, Spiegelman D, Clinton SK, Rimm EB, Willett WC, Giovannucci E. Prospective study of dietary supplements, macronutrients, micronutrients, and risk of bladder cancer in US men. Am J Epidemiol 2000;152:1145-53.

71. Zhang S, Hunter DJ, Forman MR, Rosner BA, Speizer FE, Colditz GA, Manson JE, Hankinson SE, Willett WC. Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. J Natl Cancer Inst 1999;91:547-56.

72. Giovannucci E, Stampfer MJ, Colditz GA, Hunter DJ, Fuchs C, Rosner BA, Speizer FE, Willett WC. Multivitamin use, folate, and colon cancer in women in the Nurses' Health Study. Ann Intern Med 1998;129:517-24.

73. Losonczy KG, Harris TB, Havlik RJ. Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: the Established Populations for Epidemiologic Studies of the Elderly. Am J Clin Nutr 1996;64:190-6.

74. Hunter DJ, Manson JE, Colditz GA, Stampfer MJ, Rosner B, Hennekens CH, Speizer FE, Willett WC. A prospective study of the intake of vitamins C, E, and A and the risk of breast cancer. N Engl J Med 1993;329:234-40.

75. Kim I, Williamson DF, Byers T, Koplan JP. Vitamin and mineral supplement use and mortality in a US cohort. Am J Public Health 1993;83:546-50.

76. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993;328:1444-9.

77. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz GA, Manson JE, Hennekens C, Stampfer MJ. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998;279:359-64.

78. Rautiainen S, Akesson A, Levitan EB, Morgenstern R, Mittleman MA, Wolk A. Multivitamin use and the risk of myocardial infarction: a population-based cohort of Swedish women. Am J Clin Nutr 2010;92:1251-6.

79. Iso H, Kubota Y. Nutrition and disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev 2007;8 Suppl:35-80.

80. Muntwyler J, Hennekens CH, Manson JE, Buring JE, Gaziano JM. Vitamin supplement use in a low-risk population of US male physicians and subsequent cardiovascular mortality. Arch Intern Med 2002;162:1472-6.

81. Rautiainen S, Lindblad BE, Morgenstern R, Wolk A. Vitamin C supplements and the risk of age-related cataract: a population-based prospective cohort study in women. Am J Clin Nutr 2010;91:487-93.

82. Mares-Perlman JA, Lyle BJ, Klein R, Fisher AI, Brady WE, VandenLangenberg GM, Trabulsi JN, Palta M. Vitamin supplement use and incident cataracts in a population-based study. Arch Ophthalmol 2000;118:1556-63.

83. Christen WG, Ajani UA, Glynn RJ, Manson JE, Schaumberg DA, Chew EC, Buring JE, Hennekens CH. Prospective cohort study of antioxidant vitamin supplement use and the risk of age-related maculopathy. Am J Epidemiol 1999;149:476-84.

84. Huang HY, Caballero B, Chang S, Alberg AJ, Semba RD, Schneyer C, Wilson RF, Cheng TY, Prokopowicz G, Barnes GJ et al. Multivitamin/Mineral supplements and prevention of chronic disease: executive summary. Am J Clin Nutr 2007;85:265S-8S.

85. Macpherson H, Pipingas A, Pase MP. Multivitamin-multimineral supplementation and mortality: a metaanalysis of randomized controlled trials. Am J Clin Nutr 2013;97:437-44.

86. Christen WG, Gaziano JM, Hennekens CH. Design of Physicians' Health Study II--a randomized trial of beta-carotene, vitamins E and C, and multivitamins, in prevention of cancer, cardiovascular disease, and eye disease, and review of results of completed trials. Ann Epidemiol 2000;10:125-34.

87. Schiller JS, Lucas JW, Ward BW, Peregoy JA. Summary health statistics for U.S. adults: National Health Interview Survey, 2010. Vital Health Stat 10 2012;1-207.

88. Naurath N, Jones JM. Smoking rates around the world - how do Americans compare? Gallup Poll 2007. Internet: www.gallup.com/poll/28432/smoking-rates-around-world-how-americans-compare.aspx.?version=print (accessed December 6, 2013).

89. Li B, Taylor PR, Li JY, Dawsey SM, Wang W, Tangrea JA, Liu BQ, Ershow AG, Zheng SF, Fraumeni JF, Jr. et al. Linxian nutrition intervention trials. Design, methods, participant characteristics, and compliance. Ann Epidemiol 1993;3:577-85.

90. AREDS. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001;119:1417-36.

91. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1992;99:933-43.

92. Bone RA, Landrum JT, Tarsis SL. Preliminary identification of the human macular pigment. Vision Res 1985;25:1531-5.

93. Christen WG, Glynn RJ, Manson JE, MacFadyen J, Bubes V, Schvartz M, Buring JE, Sesso HD, Gaziano JM. A multivitamin supplement and cataract and age-related macular degeneration in a randomized trial of male

physicians. Ophthalmology 2013 Nov 20. pii: S0161-6420(13)00883-X. doi: 10.1016/j.ophtha.2013.09.038. [Epub ahead of print]

94. Sesso HD, Gaziano JM, VanDenburgh M, Hennekens CH, Glynn RJ, Buring JE. Comparison of baseline characteristics and mortality experience of participants and nonparticipants in a randomized clinical trial: the Physicians' Health Study. Control Clin Trials 2002;23:686-702.

95. Prentice RL. Clinical trials and observational studies to assess the chronic disease benefits and risks of multivitamin-multimineral supplements. Am J Clin Nutr 2007;85:308S-13S.

96. Seddon JM. Multivitamin-multimineral supplements and eye disease: age-related macular degeneration and cataract. Am J Clin Nutr 2007;85:304S-7S.

97. Milton RC, Sperduto RD, Clemons TE, Ferris FL, III. Centrum use and progression of age-related cataract in the Age-Related Eye Disease Study: a propensity score approach. AREDS report No. 21. Ophthalmology 2006;113:1264-70.

98. Zheng Selin J, Rautiainen S, Lindblad BE, Morgenstern R, Wolk A. High-dose supplements of vitamins C and E, low-dose multivitamins, and the risk of age-related cataract: a population-based prospective cohort study of men. Am J Epidemiol 2013;177:548-55.

99. Kwan ML, Greenlee H, Lee VS, Castillo A, Gunderson EP, Habel LA, Kushi LH, Sweeney C, Tam EK, Caan BJ. Multivitamin use and breast cancer outcomes in women with early-stage breast cancer: the Life After Cancer Epidemiology study. Breast Cancer Res Treat 2011;130:195-205.

100. Otten JJ, Hellwig JP, Meyers LD. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press, 2006.

101. Bailey RL, Fulgoni VL, III, Keast DR, Lentino CV, Dwyer JT. Do dietary supplements improve micronutrient sufficiency in children and adolescents? J Pediatr 2012;161:837-42.

102. Bailey RL, Fulgoni VL, III, Keast DR, Dwyer JT. Examination of vitamin intakes among US adults by dietary supplement use. J Acad Nutr Diet 2012;112:657-63.

103. Sebastian RS, Cleveland LE, Goldman JD, Moshfegh AJ. Older adults who use vitamin/mineral supplements differ from nonusers in nutrient intake adequacy and dietary attitudes. J Am Diet Assoc 2007;107:1322-32.

104. Shakur YA, Tarasuk V, Corey P, O'Connor DL. A comparison of micronutrient inadequacy and risk of high micronutrient intakes among vitamin and mineral supplement users and nonusers in Canada. J Nutr 2012;142:534-40.

105. Hunt JR. Position of the American Dietetic Association: vitamin and mineral supplementation. J Am Diet Assoc 1996;96:73-7.

106. Mulholland CA, Benford DJ. What is known about the safety of multivitamin-multimineral supplements for the generally healthy population? Theoretical basis for harm. Am J Clin Nutr 2007;85:318S-22S.

107. Flynn A, Hirvonen T, Mensink GB, Ocke MC, Serra-Majem L, Stos K, Szponar L, Tetens I, Turrini A, Fletcher R et al. Intake of selected nutrients from foods, from fortification and from supplements in various European countries. Food Nutr Res 2009;53.

108. Choosemyplate.gov. Choosemyplate gov 2013. Internet: http://www.choosemyplate.gov/ (accessed December 6, 2013).

Grodstein F, O'Brien J, Kang JH, et. al. Long-term multivitamin supplementation and cognitive function in men. A randomized trial. Ann Intern Med. 2013;159:806-14.

Fortmann SP, Burda BU, Senger CA, Lin JS, and Whitlock EP. Vitamin and Mineral Supplements in the Primary Prevention of Cardiovascular Disease and Cancer: An Updated Systematic Evidence Review fo the U.S. Preventive Services Task Force. Ann Intern Med. 2013;159:824-34.

Frei B, Ames BN, Blumberg JB, and Willett WC. Letter to the Editor re: Enough is Enough: Stop wasting money on vitamin and mineral supplements:. Ann Intern Med. 2014; in press.

Table 1. Comparison between the daily values,¹ dietary reference intakes for adults, and a representative commercially available MVM supplement

Micronutrient	DV (1)	RDA or AI for	RDA or AI for	Centrum [®] Adults	Centrum [®]
		adult males	adult females	(under 50 years)	Adults (under 50
		(amount/day)	(amount/day) (2)	(amount/serving) (3)	years) (% DV) (3)
		(2)			
Biotin	300 mcg	30 mcg	30 mcg	30 mcg	10
Folate	400 mcg	400 mcg ²	400 mcg ²	400 mcg (folic acid)	100
Niacin	20 mg	16 mg ³	14 mg ³	20 mg	100
Pantothenic acid	10 mg	5 mg	5 mg	10 mg	100
Riboflavin	1.7 mg	1.3 mg	1.1 mg	1.7 mg	100
Thiamin	1.5 mg	1.2 mg	1.1 mg	1.5 mg	100
Vitamin A	5,000 IU	3,000 IU ⁴	2,333 IU ⁴	3,500 IU (29% as beta-	70

				carotene)	
Vitamin B ₆	2 mg	1.3–1.7 mg	1.3–1.5 mg	2 mg	100
Vitamin B ₁₂	6 mcg	2.4 mcg ⁵	2.4 mcg^5	6 mcg	100
Vitamin C	60 mg	90 mg	75 mg	60 mg	100
Vitamin D	400 IU	600–800 IU	600–800 IU	400 IU	100
Vitamin E	30 IU	22.5–33 IU ⁶	22.5–33 IU ⁶	30 IU	100
Vitamin K	80 mcg	120 mcg	90 mcg	25 mcg	31
Calcium	1,000 mg	1,000–1,200	1,000–1,200 mg	200 mg	20
		mg			
Chloride	3,400 mg	1,800–2.300	1,800–2,300 mg	72 mg	2
		mg			
Chromium	120 mcg	30–35 mcg	20–25 mcg	35 mcg	29
Copper	2 mg	900 mcg	900 mcg	0.5 mg	25
lodine	150 mcg	150 mcg	150 mcg	150 mcg	100
Iron	18 mg	8 mg	8–18 mg	18 mg	100
Magnesium	400 mg	400–420 mg	310–320 mg	50 mg	13

Manganese	2 mg	2.3 mg	1.8 mg	2.3 mg	115
Molybdenum	75 mcg	45 mcg	45 mcg	45 mcg	60
Phosphorus	1,000 mg	700 mg	700 mg	20 mg	2
Potassium	3,500 mg	4,700 mg	4,700 mg	80 mg	2
Selenium	70 mcg	55 mcg	55 mcg	55 mcg	79
Zinc	15 mg	11 mg	8 mg	11 mg	73
Choline	Not	550 mg	425 mg	—	_
	established				
Boron	Not	_	_	75 mcg	Not established
	established				
Nickel	Not	_	_	5 mcg	Not established
	established				
Silicon	Not	_	_	2 mg	Not established
	established				
Tin	Not	_	_	10 mcg	Not established
	established				

Vanadium	Not	 _	10 mcg	Not established
	established			

¹Established by the United States Food and Drug Administration, the daily value (DV) is meant to inform consumers on the nutrient content of a food product. The DV itself is a nutrient reference value based on a caloric intake of 2,000 calories/day for adults and children 4 or more years of age. The %DV (the ratio between the amount of nutrient per serving of food and the DV for the given nutrient) reflects the nutrient content of the food product.

²Dietary folate equivalents.

³Niacin equivalent (NE): 1 mg NE=60 mg tryptophan=1 mg niacin.

⁴Retinol activity equivalents.

⁵Intake for adults >50 years of age should be from supplements or fortified foods due to the age-related increase in foodbound malabsorption.

⁶22.5 IU of natural-source of alpha tocopherol (d-alpha-tocopherol); 33 IU of synthetic alpha-tocopherol (dl-alpha-tocopherol).

AI, adequate intake; DV, daily value; IU, international units; MVM, multivitamin/mineral supplement; RDA, recommended dietary allowance.

Table 2. Randomized controlled trials

				Cancer			
Reference	Trial name	Participants	Treatment	Formulation ¹	Mean	Primary	Key outcomes
					follow-	endpoints	
					up		
Gaziano,	PHS II	14,641 US	Daily MVM	Vitamin A 5,000	11.2 y	Total cancer	Daily MVM
2012 (34)		male	(Centrum [®]	IU, vitamin C 60		(excluding non-	reduced the
		physicians,	Silver, Pfizer	mg, vitamin D		melanoma skin	risk of total
		mean (SD)	Consumer	400 IU, vitamin		cancer)	cancer by 8%
		age 64.3 (9.2)	Healthcare,	E 45 IU, vitamin			(HR: 0.92; 95%
		у	Madison,	K 10 mcg,			CI: 0.86–0.998;
			NJ) or	thiamin 1.5 mg,			<i>P</i> =0.04)
			placebo	riboflavin 1.7			
				mg, niacin 20			
				mg, vitamin B ₆			
				3 mg, folic acid			

400 mcg,
vitamin B ₁₂ 25
mcg, biotin 30
mcg,
pantothenic
acid 10 mg,
calcium 200
mg, iron 4 mg,
phosphorus 48
mg, iodine 150
mcg,
magnesium 100
mg, zinc 15 mg,
selenium 20
mcg, copper 2
mg, manganese

				3.5 mg.			
				chromium 120			
				chronnum 130			
				mcg,			
				molybdenum			
				160 mcg,			
				chloride 72.6			
				mg, potassium			
				80 mg, boron			
				150 mcg, nickel			
				5 mcg,			
				vanadium 10			
				mcg, silicon 2			
				mg			
Blot, 1993	Linxian	29,584	1 of 8	(A) retinol 5,000	5.25 y	Total mortality;	9% reduction in
(35)	Cancer	Chinese men	nutrient	IU and zinc 22.5		cancer incidence	total mortality
	Prevention	& women,	combos: AB,	g; (B) riboflavin		and mortality	only with beta-

Trial	aged 40–69 y	AC, AD, BC,	3.2 g and niacin	carotene,
		BD, CD,	40 mg; (C)	selenium, and
		ABCD, or	ascorbic acid	alpha-
		placebo	120 mg and	tocopherol
			molybdenum 30	supplementation
			mcg; (D) beta-	(RR: 0.91; 95%
			carotene 15 mg,	CI: 0.84–0.99;
			selenium 50	<i>P</i> =0.03);
			mcg, and alpha-	13% reduction
			tocopherol 30	in cancer
			mg	mortality only
				with beta-
				carotene,
				selenium, and
				alpha-
				tocopherol

supplementation

(RR: 0.87; 95%

CI: 0.75–1.00)

Li, 1993	Linxian	3,318 Chinese	Daily MVM	Beta-carotene	6.0 y	Esophageal/gastric	No significant
(36)	Dysplasia	adults, aged	(2 x	15 mg, vitamin		cardia cancer	effect
	Study	40–69 y	Centrum®	A 10,000 IU,		incidence and	
		(median 54 y),	tablets and 1	vitamin E 60 IU,		mortality	
		with cytological	x beta-	vitamin C 180			
		evidence of	carotene	mg, folic acid			
		esophageal	capsule) or	800 mcg,			
		dysplasia	placebo	vitamin B ₁ 5			
				mg, vitamin B ₂			
				5.2 mg,			
				niacinamide 40			
				mg, vitamin B ₆			
				6 mg, vitamin			

B ₁₂ 18 mcg,
vitamin D 800
IU, biotin 90
mcg,
pantothenic
acid 20 mg,
calcium 324
mg, phosphorus
250 mg, iodine
300 mcg, iron
54 mg,
magnesium 200
mg, copper 6
mg, manganese
15 mg,
potassium 15.4

				mg, chloride 14			
				mg, chromium			
				30 mcg,			
				molybdenum 30			
				mcg, selenium			
				50 mcg, zinc 45			
				mg			
Hercberg,	SU.VI.MAX	12,741 French	Daily	Ascorbic acid	7.5 y	Cancer incidence;	Antioxidant
2004 (37)		adults, women	antioxidant	120 mg, vitamin		ischemic CVD	supplementation
		aged 35–60 y	capsule or	E 30 mg, beta-		incidence; all-	reduced total
		and men aged	placebo	carotene 6 mg,		cause mortality	cancer
		45–60 y: 7,713		selenium 100		(secondary)	incidence (RR:
		women, mean		mcg (selenium-			0.69; 95% CI:
		(SD) age 46.6		enriched yeast),			0.53–0.91) and
		(6.6) y; 5,028		zinc gluconate			all-cause
		men, mean		20 mg			mortality (RR:

		(SD) age 51.3					0.63; 95% CI:
		(4.7) y					0.42–0.93) in
							men but not in
							women
				CVD			
Sesso,	PHS II	14,641 US	Daily MVM	Vitamin A 5,000	11.2 y	Composite	No significant
2012 (38)		male	(Centrum [®]	IU, vitamin C 60		endpoint of major	effect on any
		physicians;	Silver) or	mg, vitamin D		CV events:	endpoint
		mean (SD)	placebo	400 IU, vitamin		nonfatal MI,	
		age 64.3 (9.2)		E 45 IU, vitamin		nonfatal stroke,	
		У		K 10 mcg,		CVD mortality	
				thiamin 1.5 mg,			
				riboflavin 1.7			
				mg, niacin 20			
				mg, vitamin B_6			
				3 mg, folic acid			

400 mcg,
vitamin B ₁₂ 25
mcg, biotin 30
mcg,
pantothenic
acid 10 mg,
calcium 200
mg, iron 4 mg,
phosphorus 48
mg, iodine 150
mcg,
magnesium 100
mg, zinc 15 mg,
selenium 20
mcg, copper 2
mg, manganese

				3.5 mg,			
				chromium 130			
				mcg,			
				molybdenum			
				160 mcg,			
				chloride 72.6			
				mg, potassium			
				80 mg, boron			
				150 mcg, nickel			
				5 mcg,			
				vanadium 10			
				mcg, silicon 2			
				mg			
Hercberg,	SU.VI.MAX	12,741 French	Daily	Ascorbic acid	7.5 y	Cancer incidence;	No significant
2004 (37)		adults, women	antioxidant	120 mg, vitamin		ischemic CVD	effect on CVD
		aged 35–60 y	capsule or	E 30 mg, beta-		incidence; all-	incidence

	and men aged	placebo	carotene 6 mg,	cause mortality	
	45–60 y: 7,713		selenium 100		
	women, mean		mcg (selenium-		
	age (SD) 46.6		enriched yeast),		
	(6.6) y; 5,028		zinc gluconate		
	men, mean		20 mg		
	age (SD) 51.3				
	(4.7) y				
Leng,	120 patients	Antioxidant	Beta-carotene 3 2 y	Cholesterol,	No significant
1997 (39)	with lower limb	supplement	mg, vitamin C	lipoproteins,	effect on any
	atherosclerosis	or placebo	100 mg,	hemostatic, and	endpoint
	/intermittent		pyridoxine	rheological factors;	
	claudication		hydrochloride	ankle/brachial	
			25 mg, zinc 100	pressure index;	
			mg,	lower limb	
			nicotinamide 10	function; incidence	

				mg, sodium		of CV events; CV	
				selenite 1 mg		mortality	
			Age-rela	ated eye diseases			
Christen,	PHS II	14,641 US	Daily MVM	Vitamin A 5,000	11.2 y	Incident cataract	Significant
2013 (93)		male	(Centrum [®]	IU, vitamin C 60		(total, cortical,	reduction of
		physicians,	Silver) or	mg, vitamin D		PSC, and "any"	total cataract
		aged <u>≥</u> 50	placebo	400 IU, vitamin		nuclear sclerosis);	incidence (HR:
		years		E 45 IU, vitamin		visually significant	0.91; 95% CI:
				K 10 mcg,		AMD, total AMD,	0.83–0.99);
				thiamin 1.5 mg,		and advanced	Significant
				riboflavin 1.7		AMD	reduction of
				mg, niacin 20			"any" nuclear
				mg, vitamin B_6			sclerosis
				3 mg, folic acid			incidence (HR:
				400 mcg,			0.87; 95% CI:
				vitamin B ₁₂ 25			0.79–0.96); No

mcg, biotin 30	significant
mcg,	effect on
pantothenic	cortical or PSC
acid 10 mg,	cataract
calcium 200	incidence;
mg, iron 4 mg,	Significant
phosphorus 48	increase in total
mg, iodine 150	AMD (HR: 1.22;
mcg,	95% CI: 1.03–
magnesium 100	1.44); No
mg, zinc 15 mg,	significant
selenium 20	effect on
mcg, copper 2	visually
mg, manganese	significant or
3.5 mg,	advanced AMD
chromium 130	

				mcg,			
				molybdenum			
				160 mcg,			
				chloride 72.6			
				mg, potassium			
				80 mg, boron			
				150 mcg, nickel			
				5 mcg,			
				vanadium 10			
				mcg, silicon 2			
				mg			
Maraini,	CTNS	1,020 Italian	Daily MVM	Vitamin A 5,000	9 y	Nuclear, cortical,	"Total lens
2008 (40)		adults, mean	(Centrum [®])	IU, vitamin E 30		or PSC cataract	events" were
		age (SD) 68	or placebo	IU, vitamin C 60		opacity grades;	less common
		(5) y, with		mg, folic acid		cataract surgery	in participants
		early (n=710)		400 mcg,			who took

or no (n=310)	vitamin B ₁ 1.5	the MVM
cataract	mg, vitamin B ₂	formulation, but
	1.7 mg,	treatment had
	niacinamide 20	opposite
	mg, vitamin B ₆	effects on the
	2 mg, vitamin	development or
	B ₁₂ 6 mcg,	progression of
	vitamin D 400	nuclear
	IU, biotin 30	(decreased) and
	mcg,	PSC cataract
	pantothenic	(increased)
	acid 10 mg,	opacities
	calcium 162	
	mg, phosphorus	
	125 mg, iodine	
	150 mcg, iron	

				19 mg			
				ro my,			
				magnesium 100			
				mg, copper 2			
				mg, zinc 15 mg,			
				manganese 2.5			
				mg, selenium			
				25 mcg,			
				chromium 25			
				mcg, vitamin K			
				25 mcg,			
				molybdenum 25			
				mcg, chloride			
				36.3 mg,			
				potassium 40			
				mg			
Sperduto,	Linxian	2,141 from the	Daily M∨M	Beta-carotene	6.0 y	Prevalence of	MVM

1993 (41)	Eye Study	Linxian	(2 x	15 mg, vitamin	nuclear, cortical,	supplementation
		Dysplasia trial,	Centrum®	A 10,000 IU,	and PSC cataract	resulted in a
		mean age 59 y	tablets and 1	vitamin E 60 IU,		36% reduction
			x beta-	vitamin C 180		in the
			carotene	mg, folic acid		prevalence of
			capsule) or	800 mcg,		nuclear cataract
			placebo	vitamin B ₁ 4.5		in those aged
				mg, vitamin B_2		65–74 y
				5.2 mg,		
				niacinamide 40		
				mg, vitamin B ₆		
				6 mg, vitamin		
				B ₁₂ 18 mcg,		
				vitamin D 800		
				IU, biotin 90		
				mcg,		

pantothenic
acid 20 mg,
calcium 324
mg, phosphorus
250 mg, iodine
300 mcg, iron
54 mg,
magnesium 200
mg, copper 6
mg, manganese
15 mg,
potassium 15
mg, chloride 14
mg, chromium
30 mcg,
molybdenum 30

				mcg, selenium			
				50 mcg, zinc 45			
				mg			
Sperduto,	Linxian	3,249 from the	1 of 8	(A) retinol 5,000	6.0 y	Prevalence of	A 44%
1993 (41)	Eye Study	Linxian	nutrient	IU and zinc 22		nuclear, cortical,	reduction in
		general	combos: AB,	mg; (B)		and PSC cataract	prevalence of
		population	AC, AD, BC,	riboflavin 3 g			nuclear cataract
		trial, mean age	BD, CD,	and niacin 40			in those aged
		56–57 y	ABCD, or	mg; (C)			65–74 y with
			placebo	ascorbic acid			niacin/riboflavin
				120 mg and			supplementation
				molybdenum 30			only; a
				mcg; (D) beta-			deleterious
				carotene 15 mg,			effect of
				selenium 50			niacin/riboflavin
				mcg, and alpha-			supplementation

				tocopherol 30			on PSC cataract
				mg			in those aged
							65–74 y
AREDS	AREDS2	4,203 men &	1 of 4	(1) "placebo"	4.9 y	Progression to	No significant
study		women, aged	AREDS1	consisting of 1		advanced AMD;	effect of any
group,		50-85 y, at	formulations	of 4 possible		visual acuity	combination or
2013 (42)		high-risk for	in	AREDS1			formulation
		progression to	conjunction	formulations: 1.			
		advanced	with (1)	Original, 2.			
		AMD	lutein and	Without beta-			
			zeaxanthin,	carotene, 3.			
			(2) omega-3	With less zinc			
			fatty acids,	(25 mg), 4.			
			or (3) lutein,	Without beta-			
			zeaxanthin,	carotene and			
			and omega-	with less zinc,			

3 fatty acids	s (2) lutein (10
	mg) and
	zeaxanthin (2
	mg) plus
	AREDS
	placebo, (3)
	DHA (350 mg)
	and EPA (650
	mg) plus
	AREDS
	placebo, and (4)
	lutein,
	zeaxanthin,
	DHA, and EPA
	plus AREDS
	placebo

AREDS	AREDS1	4,629 men and	Daily tablet	(1) antioxidants:	6.3 y	Progression to	Zinc alone or in
study	Report No.	women, aged	(3 possible	vitamin C (500		advanced AMD;	combination
group,	9	55-80 y, with	treatments)	mg), vitamin E		visual acuity	with
2001 (43)		vision issues	or placebo;	(400 IU), and			antioxidants
		or AMD in at	66% of	beta-carotene			reduced the
		least 1 eye	participants	(15 mg), (2)			progression to
			also elected	minerals: zinc			advanced AMD
			to take a	(80 mg) and			in high-risk
			daily MVM	copper (2 mg),			participants only
			(Centrum [®])	or (3)			
				antioxidants			
				plus zinc			
Richer,	MONMD	71 patients	Twice daily	Beta-carotene	1.5 y	Visual acuity,	Supplement
1996 (44)		with advanced,	"broad	20,000 IU,		contrast sensitivity,	group
		dry AMD	spectrum"	vitamin E 200		and lens	maintained
			antioxidant	IU, vitamin C		opacification	visual acuity but

capsule	750 mg, citrus	also had
(OcuGuard [®] ;	bioflavonoid	increased
Twinlab,	complex 125	cortical
New York,	mg, quercetin	opacification
NY) or	50 mg, bilberry	
placebo	extract 5 mg,	
	rutin 50 mg,	
	zinc picolinate	
	12.5 mg,	
	selenium 50	
	mcg, taurine	
	100 mg, n-	
	acetyl cysteine	
	100 mg, l-	
	glutathione 5	
	mg, vitamin B ₂	

				25 mg,			
				chromium 100			
				mcg			
Richer,	LAST	90 male	(1) lutein	Lutein 10 mg,	1 y	MPOD; measures	Improved visual
2004 (45)		patients with	alone, (2)	vitamin A 2,500		of visual function	function with
		AMD	lutein plus	IU, beta-		(visual acuity,	lutein alone or
			"broad-	carotene 15,000		contrast sensitivity)	lutein plus MVM
			spectrum"	IU, vitamin C			compared with
			supplement	1,500 mg,			placebo
			(OcuPower [®] ,	vitamin D 400			
			Vitacost,	IU, vitamin E			
			Lexington,	500 IU, vitamin			
			NC), or (3)	B ₁ 50 mg,			
			placebo	vitamin B ₂ 10			
				mg, vitamin B ₃			
				70 mg, vitamin			
B ₅ 50 mg,							

vitamin B ₆ 50							
mg, vitamin B ₁₂							
500 mcg, folic							
acid 800 mcg,							
biotin 300 mcg,							
calcium 500							
mg, magnesium							
300 mg, iodine							
75 mcg, zinc 25							
mg, copper 1							
mg, manganese							
2 mg, selenium							
200 mcg,							
chromium 200							
mcg,							

molybdenum 75
mcg, lycopene
600 mcg,
bilberry extract
160 mg, alpha-
lipoic acid 150
mg, N-acetyl
cysteine 200
mg, quercetin
100 mg, rutin
100 mg, citrus
bioflavonoids
250 mg, plant
enzymes 50
mg, black
pepper extract 5

				mg, malic acid			
				325 mg, taurine			
				900 mg, L-			
				glycine 100 mg,			
				L-glutathione 10			
				mg, boron 2 mg			
Bartlett,		20 adults;	Lutein	Lutein 6 mg,	9 mos	Contrast sensitivity	No significant
2007 (46)		mean (SD)	combined	retinol 750 mcg,		score	effect
		age 69.2 (7.8)	with	vitamin C 250			
		y with age-	antioxidant	mg, vitamin E			
		related	vitamins and	34 mg, zinc 10			
		maculopathy	minerals or	mg, copper 0.5			
			placebo	mg			
			Cogr	nitive function			
McNeill,	MAVIS	910	Daily MVM	Vitamin A 800	12	Immediate	No effect on
2007 (47)		community-	tablet or	mcg, vitamin C	mos	memory (digit span	immediate

dwelling	placebo	60 mg, vitamin	forward test);	memory;
Scottish		D 5 mcg,	executive	beneficial
adults, aged		vitamin E 10	functioning (verbal	effect of
≥65 y; median		mg, thiamin 1.4	fluency test)	supplementation
age 72 y		mg, riboflavin		on executive
		1.6 mg, niacin		functioning in
		18 mg,		subgroup
		pantothenic		analysis: (1)
		acid 6 mg,		those ≥75 y; (2)
		pyridoxine 2		those at
		mg, vitamin B ₁₂		increased risk
		1 mcg, folic acid		for micronutrient
		200 mcg, iron		deficiency
		14 mg, iodine		
		150 mcg,		
		copper 0.75 mg,		

			zinc 15 mg,			
			manganese 1			
			mg			
Wolters,	220 women,	Daily MVM	Vitamin C 150	6 mos	Cognitive	No effect on
2005 (48)	aged 60–91 y;	(Nobilin [®]	mg, magnesium		performance	cognitive
	median age 63	Q10,	50 mg, vitamin		(Symbol Search	performance
	у	Medicom	E 36 mg, niacin		subtest of the	
		Pharma	34 mg,		Wechsler Adult	
		GmbH,	pantothenic		Intelligence Scale-	
		Baierbrunn,	acid 16 mg,		Revised III, the	
		Germany) or	beta-carotene 9		Kurztest	
		placebo	mg, pyridoxine		Allgemeine	
		capsules	3.4 mg,		Intelligenz, and the	
			riboflavin 3.2		pattern-recognition	
			mg, thiamine		subtest of the	
			2.4 mg, folic		Berliner	

				acid 400 mcg,		Amnesietest)	
				biotin 200 mcg,			
				selenium 60			
				mcg, cobalamin			
				9 mcg			
Grodstein,	PHS II	5,947 US male	Daily MVM	Vitamin A 5,000	8.5 y	Cognitive	No effect on
2013		physicians,	(Centrum [®]	IU, vitamin C 60		assessments by	mean cognitive
		aged <u>></u> 65 y	Silver) or	mg, vitamin D		telephone	change over
			placebo	400 IU, vitamin		interview;	time or mean
				E 45 IU, vitamin		composite score	level of
				K 10 mcg,		average of 5 tests	cognition
				thiamin 1.5 mg,		of global cognition,	
				riboflavin 1.7		verbal memory,	
				mg, niacin 20		and category	
				mg, vitamin B ₆		fluency	
				3 mg, folic acid			

400 mcg,
vitamin B ₁₂ 25
mcg, biotin 30
mcg,
pantothenic
acid 10 mg,
calcium 200
mg, iron 4 mg,
phosphorus 48
mg, iodine 150
mcg,
magnesium 100
mg, zinc 15 mg,
selenium 20
mcg, copper 2
mg, manganese

				3.5 mg,			
				chromium 130			
				mcg,			
				molybdenum			
				160 mcg,			
				chloride 72.6			
				mg, potassium			
				80 mg, boron			
				150 mcg, nickel			
				5 mcg,			
				vanadium 10			
				mcg, silicon 2			
				mg			
			Immu	une function			
Avenell,	MAVIS	910	Daily MVM	Vitamin A 800	1 y	Self-reported	No effect on
2005 (49)		community-	tablet or	mcg, vitamin C		infection, quality of	any outcomes

dwelling	placebo	60 mg, vitamin	life, and primary	measured
Scottish		D 5 mcg,	care visits for	
adults, aged		vitamin E 10	infection	
≥65 y; median		mg, thiamin 1.4		
age 72 y		mg, riboflavin		
		1.6 mg, niacin		
		18 mg,		
		pantothenic		
		acid 6 mg,		
		pyridoxine 2		
		mg, vitamin B ₁₂		
		1 mcg, folic acid		
		200 mcg, iron		
		14 mg, iodine		
		150 mcg,		
		copper 0.75 mg,		

			zinc 15 mg,			
			manganese 1			
			mg			
Graat,	652	Daily MVM	Retinol 600	15	Incidence and	No effect on
2002 (50)	community-	(2 capsules	mcg, beta-	mos	severity of acute	any outcomes
	dwelling adults	per day),	carotene 1.2		respiratory tract	measured
	aged ≥60 y	vitamin E	mg, ascorbic		infections	
		200 mg,	acid 60 mg,			
		both, or	vitamin E 10			
		placebo	mg,			
			cholecalciferol 5			
			mcg, vitamin K			
			30 mcg, thiamin			
			1.4 mg,			
			riboflavin 1.6			
			mg, niacin 18			

mg, pantothenic
acid 6 mg,
pyridoxine 2.0
mg, biotin 150
mcg, folic acid
200 mcg,
cyanocobalamin
1 mcg, zinc 10
mg, selenium
25 mcg, iron 4.0
mg, magnesium
30 mg, copper
1.0 mg, iodine
100 mcg,
calcium 74 mg,
phosphorus 49

			mg, manganese		
			1.0 mg,		
			chromium 25		
			mcg,		
			molybdenum 25		
			mcg, silicium 2		
			mcg		
Bogden,	56 healthy	Daily	Vitamin A 1000 1 y	Serum	Improved
1994 (51)	adults aged	micronutrient	mcg, beta-	concentrations 9	DHST
	59–85 y	supplement	carotene 0.75	micronutrients;	responses in
		(Theragran	mg, vitamin C	DHST response to	supplement
		M) or	90 mg, vitamin	7 recall antigens	group
		placebo	E 20 mg,		
			vitamin D 10		
			mcg, thiamine 3		
			mg, riboflavin		

3.4 mg, niacin
30 mg, vitamin
B ₆ 3 mg,
vitamin B ₁₂ 9
mcg, folic acid
0.40 mg,
pantothenic
acid 10 mg,
biotin 35 mcg,
zinc 15 mg,
iodine 150 mcg,
iron 27 mg,
copper 2 mg,
selenium 10
mcg,
manganese 5

mg, chromium
15 mcg,
molybdenum 15
mcg,
magnesium 100
mg, calcium 40
mg, phosphorus
31 mg

¹Total daily amounts noted in parentheses, accounting for trials that administered more than 1 pill per day. AMD, age-related macular degeneration; AREDS, Age-Related Eye Disease Study; CI, confidence interval; CTNS, Italian-American Clinical Trial of Nutritional Supplements and Age-Related Cataract; CVD, cardiovascular disease; DHST, delayed-type hypersensitivity skin test; HR, hazard ratio; IU, international units; LAST, Lutein Antioxidant Supplementation Trial; MAVIS, Mineral and Vitamin Intervention Study; MI, myocardial infarction; MONMD, Multicenter Ophthalmic and Nutritional Age-Related Macular Degeneration study; MPOD, macular pigment optical density; MVM, multivitamin/mineral supplement; PHS II, Physicians' Health Study II; PSC, posterior subcapsular; RE, retinol equivalents; RR, relative risk; SD, standard deviation; SU.VI.MAX, Supplémentation en Vitamines et Minéraux Antioxydants study; US, United States.

Table 3. Observational studies

			Cancer			
Reference	Study name	Participants	Assessment of	Mean	Primary	Key outcomes
		(age at	MVM use	follow-up	endpoints	
		enrollment)				
Li, 2012 (52)	EPIC-	23,943 men and	In-person	11 y	Mortality from all-	No association
	Heidelberg	women aged	interview at		causes, cancer,	between regular
		35–64 у	baseline: (1) Did		and CVD	MVM use and
			you regularly take			any endpoint
			any medications			
			or vitamin/mineral			
			supplements in			
			the last 4 weeks?"			
			and (2) If yes,			
			what was the			
			brand name?			

			Also, a self-			
			administered FFQ			
			at baseline, 2nd,			
			and 3rd follow-up			
			visits: subject			
			asked if he/she			
			took any			
			vitamin/mineral			
			supplements ≥4			
			weeks in the last			
			12 months.			
Zhang, 2012	Shanghai	72,486 women	In-person	10.9 y	Incidence of liver	No association
(53)	Women's	(aged 40–70 y)	interviews on	(women);	cancer	between MVM
	Health Study;	and 60,351 men	dietary habits,	5.5 y		use and liver
	Shanghai	(aged 40–74 y)	including use of	(men)		cancer in
	Men's Health		supplements (if			women;

	Study		subject used a			increased risk
			multivitamin ≥3			of liver cancer in
			times/week			men with a
			continuously for			history of
			>2 months), at			disease
			baseline and first			
			follow-up (2–3 y			
			post-baseline)			
Hara, 2011	The Japan	62,629 men and	Self-reported use	7-11 y	Risk of cancer and	No association
(54)	Public Health	women from the	of vitamin		CVD	between any
	Center-Based	Japanese	supplements at 2			pattern of
	Prospective	general	time points (never,			multivitamin
	Study	population	past, recent,			supplement use
		(aged 40–69 y)	consistent); in			and risk of
			survey I, asked			cancer in men;
			the frequency and			increased risk

			turn ou line ou un vou vill			of opportunith
			type; in survey II,			of cancer with
			brand names were			past (HR: 1.17;
			requested			95% CI: 1.02–
						1.33) and recent
						(HR: 1.24; 95%
						CI: 1.01–1.52)
						use of
						multivitamins in
						women
Park, 2011	Multiethnic	182,099 US	Self-administered	11 y	Mortality from all-	No association
(55)	Cohort Study	adults from 5	questionnaire at		causes, cancer, or	between
		ethnic groups	baseline and 5-		CVD; incidence of	supplement use
		(aged 45–75 y)	year follow-up;		cancer, overall and	and any
			subject asked if		at major sites	endpoint
			he/she had used			
			multivitamins			

			(with/without			
			minerals) and 7			
			single			
			vitamin/mineral			
			supplements at			
			least weekly			
			during the			
			previous year;			
			also asked about			
			frequency and			
			duration (at			
			baseline only) for			
			each supplement			
			used			
Hotaling,	VITAL	77,050 US men	Self-administered	6 у	Incidence of	No association
2011 (56)		and women	questionnaire on		urothelial cancer	between

		(aged 50-76 y)	supplement use,			multivitamin use
			including			and urothelial
			questions on			cancer risk
			brand, duration,			
			and frequency of			
			multivitamin use			
Mursu, 2011	Iowa Women's	38,772 US	Self-administered	19 y	Total mortality,	No association
(57)	Health Study	postmenopausal	questionnaire on		cancer mortality,	between
		women (aged	multivitamin use at		CVD mortality	multivitamin use
		55–69 y)	baseline and at			and cancer
			11- and 18-year			mortality
			follow-up			
Larsson,	Swedish	35,329 women	Self-administered	9.5 y	Incidence of breast	Multivitamin use
2010 (58)	Mammography	(aged 49–83 y)	questionnaire at		cancer	was associated
	Cohort		baseline			with increased
						risk of breast

						cancer (HR:
						1.19; 95% CI:
						1.03–1.37)
Neuhouser,	Women's	161,808 US	In-person clinic	8 y	(1) Incidence of	No association
2009 (59)	Health	postmenopausal	visits to collect		cancer (breast,	between MVM
	Initiative	women (aged	detailed		colon/rectum,	use and any
		50–79 y)	information on		endometrium,	endpoint
			multivitamin		kidney, bladder,	
			supplement use		stomach, ovary,	
			(designate		lung), (2) incidence	
			multivitamin,		of CVD (MI, stroke,	
			MVM, or stress		venous	
			supplement);		thromboembolism),	
			subjects brought		and (3) total	
			supplement		mortality	
			bottles to baseline			

			and follow up			
			visits (annually or			
			every 3 years);			
			questioned on			
			frequency			
			(pills/week) and			
			duration (months			
			and years) of use			
Pocobelli,	VITAL	77,673 US men	Self-administered	5 y	Total mortality,	No association
2009 (60)		and women	questionnaire at		CVD mortality, and	between MVM
		(aged 50–76 y)	baseline; ever use		cancer mortality	use and cancer
			of supplements			mortality
			was defined as			
			use of at least			
			once/week for 1			
			year during the			

			10-year period			
			before baseline;			
			"multivitamin"			
			defined as a			
			supplement			
			containing at least			
			10 vitamins and/or			
			minerals			
Messerer,	COSM	38,994 Swedish	Self-administered	7.7 y for	Mortality from all-	No association
2008 (61)		men (aged 45–	questionnaire at	all-cause	causes, cancer,	between MVM
		79 y)	baseline; asked	mortality;	and CVD	use and any
			regarding regular,	5.9 y for		endpoint;
			occasional, or no	cancer		use of any
			use of dietary	and CVD		supplement was
			supplements;	mortality		associated with
			further specified			increased risk

			type used			of concor
			type used			or cancer
			(multivitamin,			mortality in
			vitamin C, vitamin			current smokers
			E, and fish oil)			(HR: 1.46; 95%
						CI: 1.06–1.99)
Lawson,	NIH-AARP	295,344 US	Self-administered	5 y	Risk of prostate	No association
2007 (62)	Diet and	men (aged 50–	questionnaire at		cancer	between regular
	Health Study	71 y)	baseline			MVM use and
						risk of prostate
						cancer;
						excessive MVM
						use (>7
						times/week)
						associated with
						increased risk
						of advanced

						and fatal
						prostate cancer
						compared with
						never users
Stevens,	CPS II	475,726 men	Self-administered	18 y	Risk of prostate	Regular use of
2005 (63)		(aged 47–70 y)	questionnaire on		cancer mortality	MVMs alone
			supplement use at			(≥15
			enrollment; (1)			times/month)
			asked about			was associated
			duration and			with an
			frequency of			increased risk
			current use of 4			of death from
			vitamin			prostate cancer
			supplements			compared with
			(multivitamins,			non-users (RR:
			vitamins A, C, and			1.15; 95% CI:

			E) and (2) asked			1.05–1.26)
			about the number			
			of times in last			
			month and the			
			number of years			
			each supplement			
			was used			
Zhang, 2006	Women's	37,916 female	Self-administered	10.1 y	Risk of colorectal	No association
(64)	Health Study	US health	questionnaire at		cancer	between MVM
		professionals	baseline, including			use and
		(≥45 y)	questions on MVM			colorectal
			supplement use			cancer risk
Fuchs, 2002	NHS	88,758 female	Self-administered	16 y	Risk of colon	No association
(65)		US registered	FFQ in 1980		cancer	between MVM
		nurses (mean				use and risk of
		age 47 y)				colon cancer in

						women without
						a familial history
						of disease;
						MVM use for >5
						y was
						associated with
						a decreased
						risk of colon
						cancer in
						women with a
						family history of
						disease
Jacobs,	CPS II	1,045,923 US	Self-administered	16 y	Mortality from	No association
2002 (66)		adults	questionnaire at		stomach cancer	between MVM
			baseline			use and
						stomach cancer

						mortality
Wu, 2002	NHS & HPFS	87,998 women	Mailed FFQ at	Presented	Risk of colon	No association
(67)		from NHS and	baseline; follow-up	as total-	cancer	between MVM
		47,344 men	questionnaires	person y		use and risk of
		from HPFS	mailed every 2	for each		colon cancer
			years for NHS and	level of		
			every other year	vitamin E		
			for HPFS; asked	intake		
			about current use			
			and dosage of any			
			supplement, and			
			the brand and			
			type of MVM			
Zhang, 2001	NHS & HPFS	88,410 women	Self-administered	16 y	Risk of non-	Regular use of
(68)		(aged 30–55 y)	FFQ at baseline	(women);	Hodgkin's	MVM (>6/week
		& 47,336 men		10 y	lymphoma	for >10 y) was

|--|

		(aged 40–75 y)		(men)		associated with
						an increased
						risk of non-
						Hodgkin's
						lymphoma in
						women but not
						in men
Watkins,	CPS II	1,063,023 US	Self-administered	7 y	Risk of mortality	MVM use was
2000 (69)		adults (≥30 y)	questionnaire on		from cancer, CVD,	associated with
			MVM use at		and all-causes	increased risk
			baseline; separate			of cancer
			questions on the			mortality in male
			use of MVMs,			smokers (HR:
			vitamins A, E, and			1.13; 95% CI:
			C, and 11 other			1.05–1.23)
			medications			

Michaud,	HPFS	47,909 men	Self-administered	12 y	Risk of bladder	No association
2000 (70)		(aged 40–75 y)	FFQ at 2 time		cancer	between MVM
			points			use and risk of
						bladder cancer
Zhang, 1999	NHS	77,925 women	Self-administered	14 y	Risk of breast	No association
(71)		(aged 33–60 y)	FFQ in 1980		cancer	between MVM
						use and risk of
						breast cancer in
						either pre- or
						postmenopausal
						women
Giovannucci,	NHS	88,756 women	Self-administered	14 y	Risk of colon	Reduced risk
1998 (72)		(aged 34–59 y	questionnaire at		cancer	of colon cancer
		in 1980)	baseline (1980)			only after >15 y
			and biennially			of multivitamin
			(1980–1992);			use (RR: 0.25;

	askeu about type,			95% CI: 0.13–
	brand, and how			0.51)
	many years of use			
11,178 US	Use of MVM	6 y	Risk of mortality	No association
elderly men and	supplements		from cancer, CHD,	between MVM
women (>65 y)	obtained from in-		and all causes	use and
	person interviews			mortality from
	at enrollment and			any cause
	every 3 years; first			
	follow-up visit at			
	year 3 was used			
	as baseline;			
	respondents were			
	asked whether			
	they had taken			
	any medicines or			
	11,178 US elderly men and women (>65 y)	brand, and how many years of use Use of MVM supplements botained from in- person interviews at enrollment and every 3 years; first follow-up visit at year 3 was used as baseline; respondents were asked whether they had taken any medicines or	brand, and how many years of use Use of MVM 6 y supplements women (>65 y) obtained from in- person interviews at enrollment and every 3 years; first follow-up visit at year 3 was used as baseline; respondents were asked whether they had taken any medicines or	brand, and how many years of use 11,178 US Use of MVM 6 y Risk of mortality elderly men and supplements from cancer, CHD, women (>65 y) obtained from in- person interviews at enrollment and every 3 years; first follow-up visit at year 3 was used as baseline; respondents were asked whether they had taken any medicines or

			drugs not			
			prescribed by a			
			doctor in the past			
			2 weeks;			
			respondents were			
			told to include			
			vitamins among			
			these drugs at 2 of			
			4 study sites			
Hunter, 1993	NHS	89,494 women	Self-administered	8 y	Risk of breast	No association
(74)		(aged 34–59 y)	FFQ in 1980		cancer	between MVM
						use and risk of
						breast cancer
Kim, 1993	NHEFS	10,758 US	Questionnaire at	13 y	Risk of mortality	No association
(75)		adults (mean	baseline: "Are you		from cancer and all	between MVM
		age 50.2 y)	taking vitamins or		causes	use and

			minerals?"			mortality from
			(regularly,			any cause
			irregularly, or			
			none)			
			CVD			
Stampfer,	NHS	87,245 US	Multivitamin use	Up to 8 y	Nonfatal MI and	No association
1993 (76)		women (34–59	assessed at		fatal CHD	with major CHD
		у)	baseline and		presented together	in the basic
			every 2 years		as major CHD	multivariate
			thereafter: regular			model
			use of			
			multivitamins and,			
			if so, type and			
			brand			
Rimm, 1998	NHS	80,082 US	Questionnaire at	14 y	Nonfatal MI and	Reduced risk
(77)		women (aged	baseline and		fatal CHD	of CHD in

		30 <u>55</u> v	AVARY 2 VAARS: USA		presented together	women who
		30–33 y)	every 2 years, use		presented together	women who
			of multiple vitamin		as CHD risk	reportedly took
			supplements, type			at least 4
			and brand, usual			multiple vitamin
			number			supplements
			taken/week, and			weekly for at
			years of past use			least 5 y (HR:
						0.71; 95% CI:
						0.56–0.90)
Rautiainen,	Swedish	33,932 Swedish	Baseline	10.2 y	Incident MI	Reduced risk
2010 (78)	Mammography	women (48–83	questionnaire			for women with
	Cohort	y); 31,670 CVD-	assessing MV use			no history of
		free and 2,262	with or without			CVD vs. no
		with history of	minerals			supplement use
		CVD at baseline				(HR: 0.73; 95%
						CI: 0.57–0.93)

						and the
						association was
						stronger in
						those using
						multivitamins for
						at least 5 y;
						no association
						in those with a
						history of CVD
Watkins,	CPS II	1,063,023 US	Self-administered	7у	Ischemic heart	No association
2000 (69)		men and	questionnaire at		disease and stroke	with stroke
		women (aged	baseline		mortality, cancer	mortality in men
		>30 y)			mortality	or women;
						no association
						with ischemic
						heart disease in
men and						

women with no						
history at						
baseline, but a						
7% and a 6%						
lower risk of						
ischemic heart						
disease found,						
respectively, for						
men and						
women with a						
history of the						
disease; no						
associations						
found when						
duration or						

						frequency of
						multivitamin
						supplementation
						was examined
Pocobelli,	VITAL	77,673 US men	Self-administered	5 y	Total mortality,	Frequent
2009 (60)		and women	questionnaire at		CVD mortality,	multivitamin use
		(aged 50–76 y)	baseline; ever use		cancer mortality	(6–7 d/week
			of supplements			over the 10- y
			defined as use at			period) was
			least once/week			associated with
			for 1 year during			a lower risk of
			the 10-year period			CVD mortality
			before baseline;			(HR: 0.84; 95%
			"multivitamin"			CI: 0.70–0.99;
			defined as a			<i>P</i> =0.019);
			supplement			stronger

			containing at least		association in
			10 vitamins and/or		those with no
			minerals		history of CVD
					at baseline (HR:
					0.78; 95% CI:
					0.62–0.98;
					<i>P</i> =0.012); and
					not significant in
					those with a
					history of CVD
					at baseline
lso, 2007	Japan	Japanese adults	Multivitamin use	All-cause mortality	Reduced risk
(79)	Collaborative	aged 40–79 y		and disease-	of mortality from
	Cohort Study	who completed		specific mortality,	cerebrovascular
	for Evaluation	a self-		including ischemic	disease in
	of Cancer	administered		heart disease and	women (HR:

		questionnaire			cerebrovascular	0.77; 95% CI:
					disease	0.60–0.99)
Losonczy,	Established	11,178 US	Use of MVM	6 y	All-cause mortality,	No association
1996 (73)	Populations	elderly men and	supplements		CHD mortality,	with CHD
	for	women (aged	obtained from in-		cancer mortality	mortality
	Epidemiologic	>65 y)	person interviews			
	Studies of the		at enrollment and			
	Elderly		every 3 years; first			
			follow-up visit at			
			year 3 was used			
			as baseline;			
			respondents were			
			asked whether			
			they had taken			
			any medicines or			
			drugs not			

			prescribed by a			
			doctor in the past			
			2 weeks;			
			respondents were			
			told to include			
			vitamins among			
			these drugs at 2 of			
			4 study sites			
Muntwyler,	PHS I	83,639 US male	Questionnaire at	5.5 y	CHD mortality and	No association
2002 (80)		physicians	baseline: current		total CVD mortality	with any
		(aged 40–84 y)	use of multivitamin			endpoint
			supplements,			
			number of years of			
			vitamin			
			supplementation,			
			brand used,			

			number of pills			
			taken/week			
Li, 2012 (52)	EPIC-	23,943 men	In-person	11 y	Mortality from all-	No association
	Heidelberg	(aged 40–64 y)	interview ("Did you		causes, cancer,	between regular
		and women	regularly take any		and CVD	MVM use at
		(aged 35–64 y)	medications or			baseline and
			vitamin/mineral			any endpoint;
			supplements in			MVM use
			the last 4			initiated during
			weeks?") and self-			follow-up
			administered FFQ			associated with
			(vitamin/mineral			increased risk
			supplements ≥4			of all-cause
			weeks in last 12			mortality (HR:
			months?) at			1.58; 95% CI:
			baseline; self-			1.17–2.14)

r						
			administered			
			FFQs at 2nd and			
			3rd follow-up			
Mursu, 2011	Iowa Women's	38,772 US	Self-administered	19 y	Total mortality,	No association
(57)	Health Study	postmenopausal	questionnaire at		cancer mortality,	between
		women (aged	baseline and at 2		CVD mortality	multivitamin use
		55–69 y)	points (year 11			and CVD
			and 18 of follow-			mortality
			up)			
Messerer,	COSM	38,994 Swedish	Self-administered	7.7 y	Mortality from all	No association
2008 (61)		men (aged 45–	questionnaire at		causes, cancer	between
		79 y)	baseline; for		mortality, and CVD	multivitamin use
			supplements,		mortality	and CVD
			subjects asked			mortality; sub-
			about regular,			analysis
			occasional, or no			revealed a

			use; study			reduced risk of
			provided mean			use of any
			content of a			supplement and
			multivitamin,			CVD mortality in
			containing 7			men reporting
			vitamins; no			inadequate diets
			mention of			(assessed by
			minerals			Recommended
						Food Score;
						HR: 0.72; 95%
						CI: 0.57–0.91)
		Ag	ge-related eye disea	ises		
Rautiainen,	Swedish	24,593 women	Self-administered	8.2 y	Cases of cataract	No association
2010 (81)	Mammography	(aged 49–83 y)	questionnaire at		extraction surgery	between MVM
	Cohort		baseline: (1)			use and
			asked about			cataract

			regular,			extraction
			occasional, or			
			non-use of dietary			
			supplements; (2) if			
			yes, asked about			
			duration of use			
Milton, 2006	AREDS cohort	4,590 men and	66% (3,037) of	6.3 y	Progression of	Centrum [®] use
(97)		women with	participants		"any" lens opacity	was associated
		complete	elected to take a		or type-specific	with a
		covariate data,	daily MVM		(nuclear, cortical,	reduction in the
		aged 55–80 y,	(Centrum [®])		or PSC) opacity	progression of
		with vision				"any" lens
		issues or AMD				opacity (OR:
		in at least 1 eye				0.84; 95% CI:
						0.72–0.98) and
						nuclear opacity

						(OR: 0.75; 95%
						CI: 0.61–0.91)
Mares-	Beaver Dam	3,089 subjects	In-person	5 y	Incidence of	Reported use of
Perlman,	Eye Study	(aged 43–86 y)	interviews at final		nuclear, cortical,	multivitamin
2000 (82)			follow-up visit		and PSC cataract	supplements for
						>10 y
						associated with
						a reduced risk
						of nuclear (OR:
						0.6; 95% CI:
						0.4–0.9) and
						cortical (OR:
						0.4; 95% CI:
						0.2–0.8) but not
						PSC (OR: 0.9;
						95% CI: 0.5–

11	18
----	----

						1.9) cataracts
Christen,	PHS I	21,120 male US	Questionnaire at	12.5	Risk of AMD	No association
1999 (83)		physicians	baseline: (1)	person-y		between MVM
		(aged 40–84 y)	asked about			use and AMD
			supplement use			
			(never, past only,			
			or current); (2)			
			asked number of y			
			taken (if current)			

AMD, age-related macular degeneration; AREDS, Age-Related Eye Disease Study; CHD, coronary heart disease; CI, confidence interval; COSM, Cohort of Swedish Men; CPS, Cancer Prevention Study; CVD, cardiovascular disease; EPIC, European Prospective Investigation into Cancer and Nutrition; FFQ, food frequency questionnaire; HPFS, Health Professionals' Follow-up Study; HR, hazard ratio; MI, myocardial infarction; MVM, multivitamin/mineral supplement; NHEFS, National Health and Nutrition Examination Survey I Epidemiological Follow-up Study; NHS, Nurses' Health Study; NIH-AARP, National Institutes of Health-American Association of Retired Persons; OR, odds ratio; PHS I, Physicians' Health Study I; PSC, posterior subcapsular; RR, relative risk; US, United States; VITAL, Vitamins and Lifestyle study.

Text box

Governments of individual nations often set recommendations to assess adequacy of nutrient intake and for dietary planning. Jointly, the US and Canadian governments support the Dietary Reference Intakes (DRIs), which include micronutrient intake recommendations for healthy individuals when sufficient scientific evidence exists and are designed to prevent deficiency disease and reduce the risk of chronic disease. The DRIs are comprised of 4 reference values that can be used to assess the adequacy of diets in individuals and populations (100):

Estimated Average Requirement (EAR). The average daily nutrient intake level that is estimated to meet the requirements of half of the healthy individuals in a particular life stage and gender group. The EAR is defined by using specific scientific criteria for nutrient adequacy and serves as the primary reference point for assessing the adequacy of nutrient intakes of groups. It is not meant to be used as a goal for daily intake by individuals.

Recommended Dietary Allowance (RDA). The average daily dietary nutrient intake level that is sufficient to meet the nutrient requirements of nearly all (97%–98%) healthy individuals in a particular life stage and gender group. The RDA is mathematically derived from the EAR and is used to guide daily intake by individuals. Because the RDA exceeds the requirements of nearly all members of the group, intakes below the RDA cannot be assessed as being inadequate. Adequate Intake (AI). The recommended average daily intake level based on observed or experimentally determined approximations or estimates of nutrient intake by a group (or groups) of apparently healthy people who are assumed to be maintaining an adequate nutritional state. The AI is used when an RDA cannot be determined, indicating that more research is needed to determine with some degree of certainty the requirements for a specific nutrient.

Tolerable Upper Intake Level (UL). The highest average daily nutrient intake level that is likely to pose no risk of adverse health effects to almost all individuals in the general population. As intake increases above the UL, the potential risk of adverse effects may increase.