OSU TR 95-60-8 September 28, 1995

Steering Programs via Time Travel

J. W. Atwood, Jr., M. M. Burnett*, R. A. Walpole, E. M. Wilcox, and S Yang
Department of Computer Science, Oregon State University
Corvallis, Oregon 97331-3202 USA
Phone: +1-503-737-3273
E-mail: {atwoodj,burnett,walpolr,wilcoxer,yang} @research.cs.orst.edu

ABSTRACT

Despite years of research into human computer interaction
(HCI), the environments programmers must use for
problem-solving today—uwith separate modes and tools for
writing, compiling, testing, visualizing, and debugging—
derive their basic structure from historical accident, and take
little advantage of HCI research into the cognitive issues of
programming. Neglecting these issues is an impediment
to the programmers ability to produce reliable,
maintainable software. In this paper, we describe a system
in which programmers can modelessly steer as they
specify, visualize, explore, and alter the behavior of a
program while traveling through the program’s logical
time. This approach supports two often-neglected
cognitive principles that programmers need for problem-
solving.

KEYWORDS: Programming environments, Development
tools, Debugging, Psychology of programming, Visual
programming, Steering

INTRODUCTION

In the popular “Back to the Future” movies, a young man
named Marty travels backward and forward in time. When
Marty changes the past, he often gets immediate feedback
on the consequences of those changes (photos from the
present morph to reflect the changes). He also sees the
effects of those changes on other times as he continues to
travel through time. We sought to provide programmers
this kind of flexible environment for problem-solving,
with strong support for immediate visual feedback and
exploration.

Today’s programming environments are still designed
around implementation strategies. While cognitive issues
of programming have been studied and published by HCI
experts, they have not been incorporated into the design of
programming systems. As aresult, instead of event-driven
systems structured around the notion of “working with

programs’, programmers must work in highly modal
environments, memorizing results and repeating steps as
they switch among separate tools for editing, compiling,
testing, debugging, and visualizing. Although integrated
approaches improve on this to some degree, they still
integrate only a few of these modes. For example, syntax-
directed editors integrate part of compilation with editing;
visual debuggers integrate part of visualization with
debugging; interpreters integrate compiling with testing;
and integrated programming environments leave the
functionality separated but allow the mechanisms to be
invoked via menu selection and to access shared in-
formation. Even many of today’s visual programming
languages are highly modal, and retain much of this
functional separation.

This paper shows an approach to programming environ-
ments that follows the direction pointed out by part of
Thomas Green’'s research into cognitive dimensions [11,
12]. Cognitive dimensions are a set of terms describing
the structure of a programming language’ s components as
they relate to cognitive issues in programming. They
provide a framework for assessing the cognitive attributes
of a programming system and for understanding a
programming device's cognitive benefits and difficultiesto
programmers. Two of the dimensions, progressive
evaluation and viscosity, are of particular relevance in the
realm of problem tracking and solving.

Progressive evaluation is the ability for a programmer to
execute a portion of a program immediately, even before
the program is complete. In a study comparing the
comprehension differences in debugging between novice
and expert programmers [13], it was shown that evaluating
their progress frequently was essential for novice
programmers and that, while it was not essential for
experts, the experts actually use evaluation of partially-
completed programs even more frequently while debugging
than novices do. To maximize the availability of
progressive evaluation is thus to reduce the amount of
effort a programmer must go to in order to evaluate an
unfinished program.

*This work is supported in part by Hewlett-Packard
Corporation and by the National Science Foundation under
grant CCR-9308649 and a Y oung Investigator Award.

Viscosity is programmer effort required to make a change
to the program. As Green and Petre point out [12], studies
show that programmers iteratively create their programs,
making change after change throughout the entire process,
from specification though design to coding. If the
environment does not allow these changes to be easily
inserted, the programmer must exert considerable extra
effort devoted solely to the mechanics of change.
Minimizing viscosity will thus minimize this extra effort.

Our goal was to address these two cognitive issues,
maximizing both the availability and the quality of
progressive evaluation and feedback, and minimizing
viscosity. Our strategy for doing so is termed steering.

The term steering has not been used consistently in the
literature. Our use of the term comes from the scientific
visualization community, which describes steering as the
ability to receive a continuous visualization of data as the
program executes, the ability for the programmer to
interactively modify the visualization at any time, and the
ability to modify any aspect—not just input parameters—
of a program at any time and immediately see the effects
without restarting the computation [17].

Forms/3 supports steering through an extension to the
spreadsheet paradigm that includes an explicit notion of
time and time travel. Our approach to steering supports
problem-solving as a flexible, modeless process, removing
barriers among traditionally separated programming tasks.
For example:

* A programmer specifies program behavior (code) in the
same way that data is entered (as formulas of cells);
this is the same way that visualizations and all other
kinds of programming is specified.

» The programmer can use time travel to explore causes
and effects of a program’s behavior, using tools such
as high-level and low-level visualizations, and
examining program specifications at any time; the
environment keeps all output synchronized and
consistent.

« If the programmer aters the behavior of a program or
visualization, either at the current moment in time or
at some point in past history, the change is reflected
not only in the present and future computations but
also in all past computations.

» The programmer has tools such as visualizations and
animations to aid in understanding a program. Low
level visualizations are automatically produced
whenever a new shippet of program is entered.
Facilities for higher level visualizations and
animations are an integral part of the programming
language and environment.

These features allow the programmer to review the past to
understand behavior and find problems, attempt to fix the

OSU TR 95-60-8 September 28, 1995
problem, and immediately see if the changes solve the
problem or introduce any new problems.

RELATED WORK

Our ideas about steering were inspired in part by the work
on steering from the field of scientific visualization, as
described by the NSF Panel on Graphics, Image Processing
and Workstations [17] and surveyed in [5]. Researchersin
scientific visualization have achieved some steering
capabilities through command-driven interfaces or special-
purpose GUI visualization tools that are used in
combination with traditional programming languages such
as C, FORTRAN, and Smalltalk. In such tools, the
scientist instruments the application and adds visualization
and graphics routines to achieve the desired visual feedback
and steerability. Examples of these works include AVS
[26], Vista [25], VASE [14], and SCENE [27]. The
primary difference between scientific steering systems and
oursisthat our environment is aimed toward understanding
and correcting program behavior without requiring the
programmer to insert instrumentation, pre-plan how and
where steering can be done, or use different sets of
mechanisms for steering and for programming.

Highly interactive visual programming environments
provide some of the features of steering. The visual object-
oriented language Prograph [8], the visual dataflow
language VPL [15], the by-demonstration language KidSim
[9], and most spreadsheets are examples. Visibility of the
data in these environments is higher than in traditional
programming systems, and allows the programmer to spot
some kinds of programming errors as soon as they are
entered and to inspect values one at atime during program
execution. However, even in these environments, there is
little support for efficiently exploring previous states in a
program that has gone mysteriously awry.

Several debugging systems have supported a form of time
travel and visualization for the purposes of error detection.
PROVIDE [19] was a pioneering visual debugging and
visualization environment for asimplified C-like language.
PROVIDE supported a number of capabilities for
programmers to observe and control program execution and
to interactively create data visualizations. The Transparent
Prolog Machine [6] provides graphical visualizations of
Prolog queries that can be viewed at variable speeds forward
and (if viewed post-mortem) in reverse. ZStep 94 [16], a
visual debugger for a subset of Common Lisp, provides
support for time travel, for viewing how values and code
arerelated, and for live graphical stepping. Debuggers such
as these provide for visualization of program execution and
location of errors, but they do not address the issue of
viscosity, because program changes require a restart of the
entire computation.

Our incorporation of the high-level form of visualization
known as algorithm animation during problem-solving is
similar in philosophy to the Lens system [21] in that both
systems support algorithm animation as a problem-solving
technique for programmers. Other algorithm animation
systems such as Balsa [1], Zeus [2], Trip [18, 24], and

Animus [10] are oriented more toward instruction and do
not support algorithm animation for incremental problem-
solving.

STEERING

To show concretely how steering can be used to maximize
progressive evaluation and minimize viscosity, we
introduce the Forms/3 approach to steering by example.
A complete description of the language part of Forms/3 and
its evaluation model isgivenin [3].

Specifying a program

Following the spreadsheet paradigm, the programmer
creates cells and gives each cell aformula. For example, in
Figure 1, the programmer has placed some cells on the
screen and given them formulas to specify a program to
display a thermometer, toggling between Celsius and
Fahrenheit at the press of a button. As soon as she enters
a formula, it is immediately evaluated and the result
displayed, as in a spreadsheet. There is no compile phase,
no need to mouse (i.e., to click on or point at) individual
cells to see their values. Each addition or change to a
program is immediately reflected on the screen. The
immediate feedback as to whether her intentions were
accurately specified is the way Forms/3 provides
progressive evaluation. Important aspects of this
spreadsheet-like approach are that the feedback is
immediate, incremental, and automatic, imposing no effort
on the programmer. In Forms/3, however, unlike
spreadsheets, the source code (formulas) and accompanying
values can be shown together.

- Lebee
T | = Ty
=1 ¥ e
—d 5 bl [
o “ |) meber Tade] b’ |
s T - Bt i
b e e e ‘Coliw’)
- Lotes fowter foabe ()
E)
L
»
-
.
.
n Rt}
Ty -
resee
e Lot Pane oy
[N— | i R B
= .
&l»«uw—.w-m'u- LeRDew
s] Phes Tow
Bies Volee|
L

Figure 1: The thermometer application after the
programmer has finished specifying it. In the user’s
view, no formulas would be shown, and the clicked?
cell would be hidden (using formatting attributes).

Exploring and Time Travel
Now suppose that there is a bug. The button sometimes
works, but sometimes doesn’t: some mouse clicks don’'t
cause the Scale value to toggle. The programmer decides
to explore this strange behavior.

The formulas for Scale and the F<->C button are hidden
from end users, but the programmer can shift-click to
unhide the formulas. She examines the two formulas, and
sees that the Scale cell depends on a hidden cell, named

OSU TR 95-60-8 September 28, 1995
clicked?, and that both clicked? and the button reference an
eventReceptor, shown in Figure 2. The programmer
travels backward and forward through time using the slider
shown in Figure 3 to explore how the behavior of the
eventReceptor might be affecting the Scale cell. She looks
at the various cells on the eventReceptor form along with
the clicked? and Scale values and eventually notices that the
bug occurs whenever there is an unusual sequence of values
for the whatEvent? and whichButton? cells.

Parsmaters waand bn cnande o wew PvwrdPiarapd o

= ﬂ L Midown Wb pore - -
< e O [, APy— Viepuwdl]
ol»om

Dvant indormasion wiort oot Soppensed % Drandfecpt®
] . wO-6winT "onow
o r -t st burin| wedday® wheut

Taems whwmanw s wwe s e wrmatow o wth Tuaw® e apiee”
» T mowrs 9 Up or B st sow®
——

3 ° Puniinn of monnn sidivn b w's g

2 purlan p pesine
L) e
u Maae”
R Typs OF mome Bits 10 It
o [T

- vm Bhriede el ww
=R

Figure 2: A programmer has access to mouse and
keyboard events via this event receptor form. The
formula tab below eventsOfinterest indicates that this
is a parameter whose formula can be modified.

Current Time

Figure 3: The slider used for time travel in Forms/3.
Programmers can navigate using the stepper arrows,
dragging the time indicator triangle, or by clicking
directly at the desired point along the time slider.

Hmmm... aclick is defined in the formula of clicked? as
the whichButton? cell having leftUp and an earlier
leftDown, but the sequence of values she seesis leftDown,
None, leftUp, as shown in Figure 4. This sequence seems
to be where the clicks are being missed. When the
whichButton? value is None, the whatEvent? value is
motionNotify. Looking at the eventsOfinterest cell, the
programmer sees that an irrelevant event type—
motionNotify—is being attended to by this button,
separating leftDown, the first half of a click, from leftUp,
the other half. Here's the bug! It seems that the
programmer didn’t remove this event type from the default
eventsOfinterest specifications. She edits the formula of
eventsOfinterest to remove motionNotify.

Jime

Figure 4: A sketch (not a screen shot) of the
sequence of values in time for cells on the
eventReceptor form. The programmer travels through
time by manipulating the time slider.

Altering Behavior Redefines History

Does the change the programmer just made actually fix the
bug? To find out, the programmer explores the now-
redefined history via time travel. It is possible for the
program'’s history to be redefined according to this change
because cells' histories are defined solely by their formulas.
This is another way progressive evaluation is used—as
soon as a change is made, all affected histories are
automatically redefined and all affected onscreen values are
automatically re-computed and redisplayed. Thisalowsthe
programmer to explore the program, reviewing how values
changed, and determining whether the values changed as
expected. In the example, the programmer sees that the
clicks are now all recognized, and the bug is fixed.

The viscosity level of this approach is lower than modal
approaches. With the ability to time travel, the
programmer is spared the usual effort of mode switching:
re-running the program repeatedly, instrumenting the
program with breakpoints or diagnostic statements, and re-
compiling. Furthermore, the programmer’s context is pre-
served and the programmer can even re-create a previous
context by traveling backward in time.

Re-creating a bug

Now suppose that the programmer who experiences the
buggy behavior is not the program’s author and doesn’t
have access to the source code. Thus, if she wants the
problem fixed, she must seek help from the technical
support programmer at the company that created the
program. The first task of the technical support
programmer will be to re-create the buggy behavior.
Unfortunately, often a bug proves elusive; it happens only
sporadically under a poorly understood combination of
events, and cannot be demonstrated at will. When this
situation arises, it adds difficulty to the process of finding
and fixing bugs.

In the Forms/3 environment, any situation can easily be re-
created. This is possible because most values are defined
declaratively, and can therefore be recalculated to produce
exactly the same history. For the only non-declarative
values—user events—Forms/3 has a mechanism to save

OSU TR 95-60-8 September 28, 1995
the relevant mouse and keyboard events to afile. These
events are located in one place in the environment, the
System form. The programmer reporting the bug would
save the System form’s values to a disk, and send the data
to the technical support programmer. He in turn could then
re-create the bug by loading the saved System form into his
environment. Loading the saved System form restores the
complete context, because the events are restored and all
other values can be recomputed. He can then explore the
program using the same approach described in the previous
section. Thus, he does not have to use trial and error in an
attempt to re-create sequences that led to bugs, but rather
can explore them systematically.

Visualization and Animation

Consider another scenario where the first programmer
decides to investigate the bug, but wants to see the
behavior better by creating a visualization. She thinks for
a moment about how such a picture would look, and
decides that a good representation would be a line graph
with a buttonDown event as a line down, and a buttonUp
event as a line going up, and mouse motion as a jagged
line. She begins creating cells and formulas, and soon has
the visualization shown in Figure 5. This allows her to
seein agraphic way why the clicks are being missed.

Figure 5: A visualization of mouse events.

A critical part of a programmer’sjob is understanding the
program under scrutiny. A programmer can be easily
overwhelmed by the low-level complexity of a program and
not see the big picture. Green and Petre point out “The
mental representation of a program is at a higher level than
pure code... Spohrer and Soloway [23] report that... [for
novice programmers] ‘many bugs arise as a result of plan
composition problems—difficulties in putting the pieces of
aprogram together.’*

Forms/3 has several mechanisms to aid the programmer in
comprehending the program. The first derives from the
spreadsheet paradigm on which the language is based. A
formula's current value is displayed when the formula is
entered. Secondly, abstract data types have a default
appearance, which is defined in the formula of a cell called
an image cell. The programmer can alter this formula and
thus specify the appearance of an abstract data type as
desired. For example, an employee record could show the
name in one application, and the pay grade, work site, and
number of years of service in another application, as shown
in Figure 6. By including aspects of the components of a

data type in the image formula, the appearance of the data
will help communicate its current state.

Figure 6: An example of programming the
appearance of data to enhance progressive
evaluation.

Thirdly, Forms/3 allows algorithm animation, the ability
to animate the abstract operations of a program [7]. For
example, the programmer may wish to highlight the
“move” portion of a selection sort so each element steps
across the screen to its new location. In the initial,
unaugmented program, the elements simply appear in their
new positions. To specify an animation, the programmer
uses a built-in form to define intermediate positions,
outside both the input and output, through which the
elements travel. The animation is shown in Figure 7.

Figure 7: A sort animation shows the elements of the
unsorted group being moved one at a time to the
sorted group.

Such a mechanism can be important in programming be-
cause animation can aid in understanding the program. In
Formg/3, animations are done entirely within the language
via animation primitive operators. The programmer need
not learn a separate language or tool. The language's
evaluation engine guarantees that an animation remainsin
sync with the program, even when logical time is moved
backward. Animations can be run backward, and steered
just like any other Forms/3 program. Also, the animation
is programmed in a non-invasive manner using references
to the program to be animated. The original program is

OSU TR 95-60-8 September 28, 1995
unaltered, so there is no danger of inadvertently modifying
the original agorithm.

By making animation and program visualization an integral
part of the programming language, mode switching is re-
moved. Thisis another example of low viscosity because
the programmer can change the algorithm animation at any
time without the effort of switching to a different tool and
rebuilding context. The programming environment can’t
eliminate the hard work of designing a visualization or an-
imation, but can lessen the effort required by providing a
low-viscosity environment with easy access to visualiza-
tion and animation operators.

WHAT MAKES THIS APPROACH WORK

Forms/3's approach to steering rests upon its support for
time travel. The three features that are particularly impor-
tant to making time travel work are the way logical timeis
used to synchronize values and define history, the unified
approach to events and values, and the strategies used for
the implementation’s efficiency.

Logical Time

Forms/3's concept of time is based on a notion of logical
time. In Forms/3, logical time is viewed as a dimension,
and each value in the environment has a fixed, permanent
position along that dimension’s axis. Thus, a cell does not
have a single value, but rather a sequence of values posi-
tioned along that axis. Even a constant such as a text
string is formally defined as a one-element sequence first
defined at logical time 1, although the programmer uses
such constants in the conventional way.

Each sequence’ svalue is defined to start at the first moment
in logical time at which al its components’ values are
defined, and to expire at the earliest time its components’
values expire. For example, if X=Y+Z, then X’s first
value starts at the first position in logical time at which
both Y and Z have values defined, and expires as soon as
either Y or Z's first value expires. Through this global
notion of relationships in time, all values in the
environment are automatically synchronized, and any
moment in time can be constructed, reconstructed, and
redefined in a straightforward manner. Because a value
might not expire for a long time, sequences may be
sparse—there is no repetition of the same value over and
over in a sequence just to reflect the fact that a value has
not expired. For example, if Y’'s formula is the constant
“3", then Y’s first value is defined at time 1 and never
expires (because it has no dependencies).

As this shows, logical time is about the progression of se-
guences, not about how fast the clock on the wall is tick-
ing. Thus, logical time progresses much more slowly than
clock-on-the-wall time. For example, a user event
advances time forward 1 step, even though many values
change on the ER form (refer back to Figure 2). A button
click moves time forward 2 logical time steps (no matter
how much time elapses between the button press and the
button release, and no matter how many cells change as a
result of the click), because aclick isnot alow level event,

but is synthesized (in the formula of the clicked? cell) from
a seguence of two events, leftDown and leftUp.

Events as Values

If the handling of user events had to be programmed
through event loops and polling devices, asis true in most
programming languages, then key features in our support
of steering, such as automatic synchronization among re-
lated values and events as the programmer travels through
time, would be lost. However, in Forms/3, the same for-
mula-based programming style is used for event handling
as for value-based computations. Events are reported in
cells, and other cells' formulas can refer to them. Low-
level polling is not needed because of the spreadsheet-like
evaluator, which makes sure that all the formulas that refer
to events (or any other value) are kept up-to-date when new
data arrives. The programmer simply specifies via formu-
las what, if anything, is to be done when events arrive.

The details are as follows. Event-handling is done by in-
stances of an abstract data type called an eventReceptor,
shown earlier in Figure 2. The programmer places the de-
sired specifications of event-handling on a copy of the
eventReceptor form. The specifications include which
events are to be recognized by this eventReceptor and
which area of the screen is active for this eventReceptor.
The environment automatically adds event information into
the value sequences for cells on that form, such as the
whatEvent? cell. For example, the keyboard event of
pressing a“q” causes valuesto be defined (at a new logica
time) for the cells on the eventReceptor form handling
keyboard events for the active area of the screen.

This unified approach to events and values allows the same
mechanism that supports value-related programming to
fully support event-related programming, and thus the time
travel supported for ordinary sequences of values works
equally as well on event sequences. This use of a single
mechanism, when combined with the approach to logical
time described in the previous section, allows automatic
synchronization of user events with the values they affect,
facilitating debugging by allowing the determination of
exactly just what events led to the values currently dis-
played by the program.

Time Travel and Efficiency

A disadvantage to some other systems that allow review of
past program states is inefficiency, both space and time. If
our approach were time-inefficient, it would be an espe-
cialy significant problem, because our direct-manipulation
approach to time travel demands a responsive environment.
However, our approach is tunable; it can be optimized for
time or space efficiency, or a balance of the two.

We first consider space efficiency. Most other systems that
support review of a program’s history require extensive
amounts of space to do so because all prior values must be
stored. However, in our environment, the sequence of a
cell’s values may be stored in part, in total, or not at all—
the number actually stored is simply an optimization
parameter. This is possible because Forms/3 (like other

OSU TR 95-60-8 September 28, 1995
spreadsheet-oriented systems) is a declarative environment,
and all of a cell’s sequence (history) is completely defined
via its formula, making the storage of the actual values
superfluous. The only information in addition to a cell’s
formula that absolutely must be stored are user events
(mouse clicks, etc.). This formula-based approach means
that the history of a program is much more compact than
imperative systems, as was described in the section on re-
creating a bug after-the-fact.

But, although the memory required to store the historiesis
small, saving portions of them can increase execution
speed. When a programmer is traveling through time, she
may be forcing the program to re-display values many
times, generating many duplicate computations. Our
approach allows trading off as much space as desired to
reduce the number of computations by using the well-
known techniques of lazy evaluation and lazy memoization.
It also adds a new technique called lazy marking [4] to
efficiently ensure that all values on the screen are
automatically kept up-to-date as the program progresses
through time.

Lazy marking's improvement to the time efficiency of the
environment is that way it “marks’ values with expiration
times. By employing a lazy, incremental approach to
marking, it is able to mark a value with a conservative
view of its expiration time as soon as the value is
computed. When the next value in the same sequence is
computed, the first value' s expiration time can be revised if
it was too conservative. Thisincremental approach avoids
traversal of dependency information except that needed to
produce the value itself, keeping the cost below other
approaches commonly used to keep displayed values up-to-
date in most circumstances.

CURRENT STATUS

We have implemented the approach to steering in our
research prototype, which runs on Sun and Hewlett-Packard
color workstations using Lucid Common Lisp and the
Garnet user interface development system [20].

Forms/3 has been evolving since 1991, and some of its
features have been present in the implementation for quite
sometime. However, the implementation has included full
time-travel support of steering for only a short time.
Because of this fact, so far we can report only one
empirical study that relates to the effectiveness of the
approach. In that study, we evaluated the effectiveness of
Forms/3's spreadsheet-oriented style of programming
through the use of formulas. The study showed that, when
applied to matrix-oriented programming problems, this
style allows programmers to construct programs more
reliably than when they use traditional languages [22]. We
are now in the second stage of a new empirical study in
which we are evaluating how our support for progressive
evaluation affects a programmer’ s ability to find and correct
bugs.

CONCLUSION

We have presented an environment supporting problem
solving for programmers through an extension of the
spreadsheet paradigm. Forms/3 provides steering via time
travel to maximize progressive evaluation and minimize
viscosity in programming.

Progressive evaluation provides immediate feedback about
the impact of each code fragment, large or small, as soon
as each new fragment is entered. Programmers can explore
aprogram ad hoc—there are no breakpoints, no re-compila-
tions with debugging options, and no switching from
“running” to using a specialized debugger. This kind of
progressive evaluation through time travel can be done on
demand, simply by manipulating the time slider bar.

Programmers can make changes to the program at any
time. Doing so automatically adjusts the past, present, and
future, which programmers can explore to seeif the change
had the desired effects. This flexible ability to alter a pro-
gram at any point results in low viscosity and context
preservation, because it eliminates the traditional multiple
mode-switching and context rebuilding required to serialy
make changes, compile them, test them, and debug them.
Low-level visualizations are automatically provided by the
environment, and programmers can modify them and add
high-level visualizations if desired, without switching to
another mode or tool. The visualizations are automatically
synchronized with the rest of the program, and can be ex-
plored and altered along with the rest of the program be-
cause there is no distinction between steering visualizations
and steering programs.

The Forms/3 programming environment dissolves the
traditional demarcations of programming tools to give the
programmer a productive problem-solving, task-oriented
development environment. Rather than attempting to glue
yesterday’ s approaches together with interactive trappings,
we believe it is time to start afresh, creating new
approaches to programming that are designed around HCI
principles.

ACKNOWLEDGMENTS

We thank Jonathan Cadiz, Paul Carlson, Herkimer
Gottfried, Judith Hays, and Pieter van Zee for their help
with the implementation and testing of our environment.

REFERENCES

1. Brown, M. Perspectives on Algorithm Animation. Proc.
CHI'88: Human Factors in Computing Systems,
Washington, DC, (May 15-19, 1988), 33-38.

2. Brown, M. and Nagork, M. Algorithm Animation Using
3D Interactive Graphics. UIST’93, Proc. ACM
Symposium on User Interface Software and Technology,
Atlanta, Georgia, (Nov. 3-5, 1993), 93-100.

3. Burnett, M. and Ambler, A. Interactive Visual Data
Abstraction in a Declarative Visual Programming
Language. J. Vis. Lang. Computing, (Mar. 1994), 29-60.

10.

11.

12.

13.

14.

15.

16.

OU TR 95-60-8 September 28, 1995
Burnett, M. and Atwood, J. Lazy Marking: A Lazier
Implementation of Functional 1/0 for Graphical User
Interfaces. Technical Report 94-60-9, Oregon State
University, Department of Computer Science, Dec. 1994.

Burnett, M., Hossli, R., Pulliam, T., VanVoorst, B., and
Yang, X. Toward Visual Programming Languages for
Steering in Scientific Visualization: a Taxonomy. |[EEE
Computational Science and Engineering 1(4), (Winter
1994), 44-62.

Brayshaw, M. and Eisenstadt, M.. A Practical Graphical
Tracer for Prolog. Int. J. of Man-Machine Studies, 35(5),
(1991), 597-631.

Carlson, P. and Burnett, M. A Seamless Integration of
Algorithm Animation into a Visual Programming
Language with One-Way Constraints. Proc. International
Workshop on Constraints for Graphics and Visualization,
Cassis, France, (Sept.1995).

Cox, P. T., Giles, F. R., and Pietrzykowski, T. Prograph,
in Visual Object-Oriented Programming: Concepts and
Environments, (M. Burnett, A. Goldberg, T. Lewis, eds.),
Prentice-Hall/Manning Publications, 1995.

Cypher, A. and Smith, D. KidSim: End User Programming
of Simulations, Proc. CHI'95: Human Factors in
Computing Systems, Denver, CO, (May 7-11, 1995), 27-
34.

Duisberg, R. A., Animated Graphical Interfaces using
Temporal Constraints, Proc. CHI’86: Human Factors in
Computing Systems, Boston, MA, (April 13-17, 1986),
131-136.

Green, T. Describing information artifacts with cognitive
dimensions and structure maps, in People and Computers
VI, (D. Diaper and N. Hammond, eds.), Cambridge
University Press, 1991.

Green, T. and Petre, M. Usability Analysis of Visual
Programming Environments: a ‘Cognitive Dimensions’
Framework, Technical Report, MRC Applied Psychology
Unit, 1995.

Gugerty, L. and Olson, G. M., Comprehension
Differences in Debugging by Skilled and Novice
Programmers. In Empirical Studies of Programmers, (E.
Soloway and S. lyengar, eds.), Ablex, Norwood, NJ,
1986.

Haber, R., Bliss, B., Jablonowski, D., and Jog, C. A
Distributed Environment for Run-Time Visualization and
Application Steering in Computational Mechanics.
Symposium on High-Performance Computing for Flight
Vehicles, Washington, DC, (Dec. 7-9, 1992).

Lau-Kee, D., Billyard, A., Faichney, R., Kozato, Y., Otto,
P., Smith, M., and Wilkinson, I. VPL: An Active,
Declarative Visual Programming System. 1991 IEEE
Workshop on Visual Languages, Kobe, Japan, (Aug.
1991), 40-46.

Lieberman, H. and Fry, C. Bridging the Gulf Between
Code and Behavior in Programming. Proc. CHI'95:

17.

18.

19.

20.

21.

22.

Human Factors in Computing Systems, Denver, CO, (May
7-11, 1995), 480-486.

McCormick, B. H., DeFanti, T. A., and Brown, M. D.
eds., Visualization in Scientific Computing, Computer
Graphics 21(6), (Nov. 1987).

Miyashita, K., Matsuoka, S., Takahashi, S., and
Yonezawa, A. Declarative Programming of Graphical
Interfaces by Visual Examples, Proceedings of the ACM
Symposium on User Interface Software and Technology,
Monterey, CA, (Nov. 15-18, 1992), 107-116.

Moher, T., PROVIDE: A Process Visualization and
Debugging Environment, |IEEE Transactions on Software
Engineering. 14(6), (June 1988).

Myers, B. et al. Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces, Computer,
(Nov. 1990), 71-85.

Mukherjea, S. and Stasko, J. Applying Algorithm
Animation Techniques for Program Tracing, Debugging,
and Understanding. Proc. 15th Int. Conf. on Software
Eng. (May 17-21, 1993), 456-465.

Pandey, R. and Burnett, M. Is It Easier to Write Matrix
Manipulation Programs Visually or Textually? An

23.

24.

25.

26.

27.

OU TR 95-60-8 September 28, 1995
Empirical Study. 1993 IEEE Symp. on Visual Languages,
Bergen , Norway, (Aug. 24-27, 1993), 344-351.

Spohrer, J. C. and Soloway, E., Novice Mistakes: Are the
Folk Wisdoms Correct? In Studying the Novice
Programmer, (E. Soloway and J. C. Spohrer, eds.),
Erlbaum, Hillsdale, NJ, 1989.

Takahashi, S., Miyashita, K., Matsuoka, S., and
Yonezawa, A. A Framework for Constructing Animations
via Declarative Mapping Rules. 1994 |[EEE Symposium
on Visual Languages, St. Louis, MO, (Oct. 4-7, 1994),
352-357.

Tuchman, A., Jablonowski, D., and Cybenko, G. Run-
time Visualization of Program Data, Proceedings of
Visualization ‘91, San Diego, CA, (Oct. 22-25, 1991).

Upson, C., Faulhaver, T., Kamins, D., Laidlaw, D.,
Schlegel, D., Vroom, J., Gurwitz, R., and Van Dam, A.
The Application Visualization System: A Computational
Environment for Scientific Visualization. IEEE Computer
Graphics and Applications, 9(7), (July 1989), 30-42.

Walther, S. and Peskin, R. Object-oriented Visualization
of Scientific Data. Journal of Visual Languages and
Computing (March 1991), 43-56.

