
IIFET 2010 Montpellier Proceedings 

 1 

OPTIMAL HARVESTING TIME IN AQUACULTURE ASSUMING NONLINEAR SIZE-

HETEROGENEOUS GROWTH
1
 

Marcelo E. Araneda, Universidad Marista de Mérida, Mexico,  

maraneda@marisa.edu.mx  

Juan M. Hernandez, Universidad de las Palmas de Gran Canaria, Spain, 

jhernandez@dmc.ulpgc.es 

Eucario Gasca-Leyva, Centro de Investigación y Estudios Avanzados del I.P.N., 

eucario@mda.cinvestav.mx 

ABSTRACT 

This study explores the optimal harvesting time in a size-heterogeneous population dynamics. The model 

includes the effect of population density in both the mortality rate and individual growth. An application 

to specific conditions of shrimp culture in Mexico is presented. The optimal harvesting rule is numerically 

found for different economic and productive scenarios. Parallel results are also obtained under the 

hypothesis of homogeneous population growth, which has been traditionally considered in the economic 

literature. In general, the discounted net revenue of the firm is underestimated if the size-heterogeneity 

phenomenon is not taken into account, while the calculated harvesting time shortens the predictions based 

on the homogeneous growth hypothesis. These results reveal that optimal management rules are 

significantly mistaken if the size-heterogeneity phenomenon is not taken into account. 
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INTRODUCTION  

Previous results on optimal management in aquaculture have been based on growth models which do not 

include size variability in their formulation. Instead of this, a homogeneous growth for all individuals is 

assumed [1-3]. The usefulness of these results in real practice has been questioned by several authors [4-

5]. Critics are mainly focused on the high uncertainty existing in this economic activity from both 

productive and market aspects. Size variability is a common phenomenon among individuals of the same 

cohort [6-8]. Thus, the consideration of heterogeneity in the economic analysis would extend the previous 

results and the derived management recommendation would be more proximate to the real situation. 

  

This paper aims to analyse the influence of size-heterogeneous population in the optimal management of 

fish culture. In particular, it centres on the optimal stopping or harvesting time of the culture (OHT). This 

problem has been extensively analysed in the literature, but mostly results are obtained with the (non 

realistic) assumption of homogeneous population. In this paper, a comparison of OHT obtained with both 

approaches (homogenous vs. heterogeneous population) is performed. The optimal harvesting time has 

already been calculated in [9] for the case of a simple linear size-heterogeneous model. This paper 

extends these results for a general non-linear model, that is, both growth and mortality are dependent on 

the total number of individuals. 

 

 

 

 

                                                 
1
 An extended version of the paper is submitted for publication in Natural Resource Modeling.  
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THE BIOLOGICAL MODELS 

 

The paper presents two models for representing fish growth. The first model assumes that all organisms 

present identical weight and growth pattern along the culture span. This condition ignores the existence of 

size variability
2
 in the same cage or pond

3
. Hence, the populations can be represented by one individual 

from the stocking to the harvesting time. This has been the most common way to model fish growth in 

aquaculture. Given the size of the representative at time t, x(t), growth is defined throughout the following 

differential equation,  

 0 0x g( x,N ), x( t ) x ,                                                          (1) 

where N( t )  indicates the total number of individuals at time t, and x0 is the stocking size. Thus, fish 

growth depends not only on the fish size, but also of the density in pond or cage. Some previous models 

have included this factor in fish growth [10]. In general a negative relationship among density and growth 

is expected. The dependence on size uses to be quadratic-shape, with two zeros in size x=0 and 

asymptotic size x ,  respectively. 

 

In general, the mortality rate of individuals, ( x,N ), is also dependent on the fish size and density. So, 

the total number of individuals evolves following the expression,  

0 0N ( N )N , N( t ) N ,                                                    (2) 

where 0N  is the number of individuals at time t=t0. The system (h)=(1) (2) defines the dynamic of fish 

size and the number of individuals jointly. It is called homogeneous case or system (h).  

 

The second model relaxes the hypothesis of homogeneous growth. So, at any time different sizes are 

presented in the culture and therefore a representative fish can not be gathered. It is assumed that the total 

number of individuals at the initial time t=t0, follows a (probabilistic) density function in the interval of 

possible sizes, 0( x ), x [0, ]. Following the size-structured model presented in [11], the number of 

individuals at time t with size x, N(t,x), follows the non-linear PDE,  

t 0x

0 0 0

N ( t,x ) g( x,N )N( t,x ) ( N )N( t,x ), 0 x , t t

N( t ,x ) N ( x ),

N( t ,0 ) 0.

                     (3) 

 

The latter equation indicates that there is not reproduction or replacement of individuals along the culture. 

So, the mortality rate is identical to the homogeneous case and every individual follows the same growth 

pattern described in equation (1), with  

0

N( t ) N( t ,x )dx.  

 

The system (H)=(1) (3) is an extension of system (h) by assuming an initial distribution size N(t0,x). 

From this initial distribution, every individual follows an identical growing pattern. In fact, equation (2) is 

obtained by integrating equation (3) with respect size x. This second model is called the heterogeneous 

case or system (H). 

 

                                                 
2
 The term “size” and “weight” will be considered as synonymous in the paper.  

3
 For notational convenience, the text would refer to fish culture, although the model can be translated directly to 

other cases. 
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Existence and uniqueness results of solutions for system (H) have been stated by [12] in a broader 

context. The numerical solution has recently appeared in [13]. The necessary analytic conditions over 

functions in the models above are identical to the most restrictive ones in these papers.  

 

 

OPTIMAL HARVESTING TIME ASSUMING SIZE-HETEROGENEITY 

 

Optimal management is dependent on the structure of revenues and costs in the farm. In theses models, a 

positive relationship between fish price and size is assumed, that is, higher sizes are more valued by the 

market. Function p( x )  represents price per gram of a fish with size x. Additionally, farms incur in 

operation cost per individual during the culture span. This cost includes feeding and energy costs, which 

are dependent on fish size and density in the cage. It is represented by C( x,N ).  

 

For simplicity, a single culture cycle is considered. The evaluation of the economic conditions depends 

also on the chosen model. In the homogeneous case, the accumulated costs are given by  
t

r

h

0

C ( t ) e C( x( ,N( ))N( )d ,  

where parameter r represents the discount rate in the economy. Therefore, the farmer problem is to find 

the harvesting time t when the present value of the net revenue by harvesting all the biomass is maximal, 

that is,  
t

rt r

t>0
0

Max  p( x( t ))x( t )N( t )e e C( x( ),N( ))N( )d . 

 

The first order condition for the solution of the problem above is obtained by differentiating the 

expression on the right hand side and equating to zero. After some calculation and simplifications, the 

optimal harvesting time t=t
h
 satisfies necessarily the equation, 

h h h h h h h

h h h h h

p ( x( t ))g( x( t ),N( t ))x( t ) p( x( t ))g( x( t ),N( t ))

r ( N( t )) p( x( t ))x( t ) C( x( t ),N( t )),
                           (4) 

which is a simple extension of the results presented in [1]. The left-hand side of the expression represents 

the marginal revenue obtained by leaving one day more the individual fish growing in the cage, while the 

second-hand side represents the marginal cost.  

 

For the heterogeneous case, the accumulated operational cost a time t is given by the formula,  
t

r

H

0 0

C ( t ) e C( x( ),N( ))N( ,x )dx d , 

and the revenue at time t is given by,  

rt

H

0

R ( t ) e p( x )xN( t ,x )dx.  

 

Identically, the farmer problem is to find the harvesting time t
H
 when the net revenue 

H HR ( t ) C ( t )  is maximal. Applying the first order condition to  and using equation (3), the 

following equation is obtained, 

H H H

t

0 0

p( x )xN ( t ,x )dx rp( x )x C( x,N( t )) N( t ,x )dx 0             (4) 
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Using a similar procedure followed in [9], we obtain 

H H H H

0

p ( x )x p( x ) g( x,N( t )) r ( N( t )) p( x )x C( x,N( t )) N( t ,x )dx 0.    (5) 

 

This condition is the extension of equation (4) by assuming heterogeneous sizes in the culture. To find t
H
, 

it is necessary to previously integrate equation (3). A more direct condition can be obtained by 

simplifying equation (5). Let us call x(t;t0,x0) or characteristic curve in (t0,x0), the solution of the growth 

equation (2)
4
. Making the change of variable x=x(t;t0,x0), dx= x(t;t0,x0)/ x0 dx0 in equation (5) and 

applying the general solution of (3) and Lemmas in [9], it gives,  

H H H H H

0 0 0 0 0 0 0 0

0

H H H

0 0 0 0

H H

0 0 0 0 0

[ p ( x( t ;t ,x ))x( t ;t ,x ) p( x( t ;t ,x )) g( x( t ;t ,x ),N( t ))

r ( N( t )) p( x( t ;t ,x ))x( t ;t ,x )

C( x( t ;t ,x ),N( t ))] ( x )dx 0.

                (6) 

 

The optimal harvesting time t
H
 can therefore calculated from the characteristic curves and the total 

number of individuals, that is, from the solution of system (h), and the initial distribution of the 

individuals, 0( x ), x [0, ].  

 

EMPIRICAL APPLICATION 

 

The models estimation 

The models were calibrated to represent the situation of shrimp farming in freshwater in Mexico. Initially, 

the growth function (1) was estimated from the data. Several traditional expressions were tested, as von 

Bertalannfy’s and Gompertz’s, lightly modified to include the density effect. The best statistical results 

were obtained with the function 
2

1 2a ( Ln( N A )) a

0 3g( x,N ) a e x a xLn( x ),                                                  (7) 

where a0, a1, a2 and a3 are convenient parameters and A is the total culture area (A=40.132 m
2
). Table 1 

presents the statistical results of the model. All the parameters are significant and with the expected sign.  

 

Table 1: Parameters, standard error (SE) and p-value 

for the estimation of growth model (7) with 

experimental data. 

Parameter Value SE p-value 

a0 0.055793 0.012266 6.66E-06 

a1 0.029512 0.007359 6.91E-05 

α2 0.598851 0.131886 6.91E-06 

a3 0.003076 0.001525 0.044256 

 

 

The estimated mortality rate was exclusively dependent on the total number of individuals, that is, 

1b

0( N ) 1/ A b Ln( N / A) ,  with b0 and b1 parameters. Thus, size does not affect the individual 

mortality rate. Table 2 presents the parameter estimation of equation (2). 

                                                 
4
 In fact, the characteristic curve also depends on 0N .  We omitted this argument for simplicity.  
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Table 2: Parameters, standard error (SE) and p-value 

for the estimation of mortality rate with experimental 

data. 

Parameter Value SE p-value 

b0 -0.990044 0.003591 0.000000 

b1 -0.007771 0.002196 0.000436 

  

The size-structured system (H) assumes that exclusively the initial distribution 0( x ),  the mortality rate 

and the total number of individuals determines the future distribution of sizes along time. The weight of 

some individuals does not influence on mortality or other sizes’ growth. This is quite a strong assumption. 

To check its reliability, the relationship among the Coefficient of Variation (CV(t)) of fish sizes and the 

growth rate is tested. Given x( t )  the mean size of individuals at time t, CV(t) is defined by the quotient 

between the standard deviation of sizes at time t, x ( t ), and the mean size, that is, 

xCV( t ) ( t ) / x( t ).  If the growth pattern of individuals in the tank follows the linear version of 

equation (3), the “relative size variation will change in proportion to the relative change in the per unit 

size growth rate” [15]. In mathematical terms, this assertion means,  

0 0 0

CV( t ) g( x ) / x

CV( t ) g( x ) / x
.                                                    (8) 

 

The equation (8) was proof by [14] if the mortality rate is zero. The extension for the more general non-

linear mortality rate in (3) is also true, but the relationship is not assured if the growth function is density-

dependent. Nevertheless, equation (8) will be used to have and indication of the empirical data fitness to a 

size-structured model. Both sides of the equation can be estimated from the data and, in case of adopting 

statistically similar values in the culture period, the size-structured model (3) with linear g can be 

accepted. The non-linear version was tested by validation. 

 

However, the size-structured model does not fit the data from the beginning of the culture. A period of 

cohort accommodation period from the stocking date is assumed, that is, a period of time where 

individuals start to interact, establish hierarchies and show different growing rates. From that time, an 

identical growing pattern for all the individuals is observed. Results are presented in Table 3 for the 

different treatments. As can be observed, the accommodation period varies with the treatments, but the 

corresponding initial mean size falls between 2.14 and 2.55g. The determination coefficient R
2
 was higher 

than 80%. These results suggest that a cohort accommodation period is presented until the mean size 

reaches values lightly over 2g.  

 

Table 3: Mean size ( 0x ) and accommodation 

period ( ot ).  

0N / A  R² 0x  ot  

90 0.869 2.21 35 

130 0.833 2.14 42 

180 0.866 2.50 70 

230 0.913 2.55 77 

280 0.897 2.43 84 

330 0.904 2.38 84 
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The estimated initial time t0 is positively dependent on the initial density. The higher the initial number of 

individuals in the tank, the longer the accommodation period is. The sizes distribution at this time 

represents the initial distribution 0( x ), x [0, ], in system (H). A beta function was chosen to 

describe the density distribution for all the treatments, that is,  
1 1

0 0
0 10 0

0 0 01 0 1 0 1 0

0 0 0 0 0 0

x x x x1 ( )
( x ) 1 , x x x ,

x x ( ) ( ) x x x x
 

and zero in the rest of values x. (·) is the gamma function,  and  are the beta function parameters and 
0

0x  and 
1

0x  are the minimum and maximum size at the initial time t0.  

 

Before analysing the economic implications of the size-heterogeneity, a simulation of systems (h) and (H) 

is presented. Figure 1 shows the size distributions after 200 days of culture for three different initial 

densities. The vertical line represents the size obtained with system (h). As can be observed, the higher 

densities reach lower sizes for the same culture period and also show higher variability.  

 
Figure 1. Size distribution after 400 days of culture for three different initial densities. The vertical line 

indicates the size reached in the homogeneous case.  

 

Economic results  

A re-circulation system for the intensive culture of shrimp in fresh water was assumed. In this systems, 

two main sources of costs are considered: a) Global harvesting cost, cG, which is the sum of the 

harvesting cost (ch), commercialization (cc) and miscellanea (cmi) per individual; b) operational cost 

C( x,N ),which are divided into fixed, maintenance, feeding and energy cost per individual. The global 

harvesting cost is constant and included in the price function, while the operational cost follows the 

expression  

F m f e p aC( x,N ) c N c x c f ( x,N ) c E ( x,N ) E ( x,N ) , 

where cF represents the individual’s fixed cost, cm is the cost per gram of maintaining an x-size organism 

in the closed system of production (cost related to feeding management, replacements and registers of 

water quality, biometrics and equipment control), cf is the feeding cost per gram and ce is the unitary cost 

of energy. Function f ( x,N )  represents the amount of food supplied to an organism of size x, which also 
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depends on culture density. Functions pE ( x,N )  and aE ( x,N )  are the necessary pumping and aeration 

energy per individual of size x, respectively. These three functions were determined from specialized 

literature (see the extended version for details). The cost parameter estimations are shown in Table 4, 

together with some of the economic parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find the optimal harvesting time of a single culture, the structure of prices is also needed. A growing 

relationship between price per g. and size was estimated by means of a logistic function. So,  

3

1

d x

2

d
p( x ) ,

1 d e
 

where d1 represents the maximum price, d2 and d3 are function parameters. Prices information for 

different sizes of full shrimp from August to September 2008 was gathered to estimate the price function.  

 

The optimal harvesting time for a single shrimp culture cycle in intensive re-circulation systems with 

fresh water was calculated. The two models above (homogeneous and heterogeneous case) were used 

independently, but assuming identical technical and economic conditions. The algorithm to solve 

equations (4) and (6) were implemented in MATLAB©. The time and size step was fixed in 1 day and 

0.01 grams, respectively. The numerical solution of the non-linear size-structured model (3) was obtained 

by implementing the algorithm proposed in [4]. 

  

The results for the six densities tested in the experiment are presented in Table 5. The optimal harvesting 

time decreases for higher densities. The growth decrease derived from higher densities makes more 

profitable to shorten the harvest time. However, the harvesting time modifies if the size-heterogeneity is 

taken into account. The direction of the change depends on the stocking density. The harvesting time for 

the heterogeneous case is lower for low stocking densities, but lightly above the case of homogeneous 

growth for large stocking densities. In the latter culture strategy, the variability of sizes leads to leave the 

culture some days still growing in order to take advantage of revenue obtained with the higher sizes of the 

culture.  

 

Table 4. Economic parameters 

Parameter Description Magnitude Value Source 

cf Feeding cost us$ g
-1

 0.00073 Local 

Market 

ce Energy cost us$ kw-hr
-1

 0.05 Local 

Market 

cm Maintenance cost us$ g
-1

 0.0000010 Calibration 

cF Fixed cost us$ shrimp
-1

 0.0000545 Calibration 

ch Haversting cost us$ g
-1

 0.0002 Local 

Market 

cc Commercialization cost us$ g
-1

 0.00015 Local 

Market 

cmi Miscellanea cost us$ g
-1

 0.00010 Local 

Market 

R Annual discount rate  0.08 Assumption 

d1 Maximum price us$ g-1 0.0009 Local 

Market 

d2 Price parameter  0.3 Calibration 

d3 Price parameter  3.438 Calibration 
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Table 5: Optimal harvesting time for six different initial 

densities of shrimp culture in Mexico.  

 
Homogeneous 

case 

Heterogeneous 

case 
 

N / A  
ht  

hx  
Ht  

H H

min maxx x  %Utility 

90 339 17.74 322 
 16.79-

18.22 
3.92 

130 319 15.42 300 14.43-15.87 5.89 

180 309 13.70 297 11.48-14.51 5.44 

230 303 12.50 292 11.57-13.19 6.27 

280 300 11.64 303 10.40-12.98 -1.73 

330 298 10.97 300 9.70-11.96 -1.83 

 

The last column of Table 5 presents the percentage gap between the discounted utility estimated by 

assuming the homogeneous case and the heterogeneous case, respectively. To calculate the net revenue 

for the heterogeneous case, system (h) was considered for the accommodation period, that is, from t=0 to 

t=t0, being t0 the initial time indicated in Table 3, and from that time, system (H) was used. The results 

indicate that the net revenue of the firm is generally underestimated if the homogeneous growth 

hypothesis is adopted. These results show the relevance of the size-heterogeneity in the optimal 

management of aquaculture farms.   

 

 

CONCLUSIONS 

 

This paper presents an estimation of the optimal harvesting time in aquaculture management by including 

the size-heterogeneity phenomenon in the calculations. A nonlinear size-structured model was built for 

this objective, where both the growth and the mortality rate depend on size and the total number of 

individuals. A necessary condition for the optimal harvesting time was obtained, which is an extension of 

other previous results based on a linear size-structured model.  

 

A traditional (assuming size-homogeneity) and a size-structured model were adjusted to experimental 

data of shrimp culture in re-circulation systems in Mexico for six levels of culture density. The 

estimations show that the size-structured model fits the data from a certain time after the beginning of the 

culture, when the mean size surpasses a determined threshold, similar to any of the density levels. From 

this mean size, the nonlinear size-structured model is a good approximation of data.  

 

The results with the empirical example show that the optimal harvesting time present decreasing values 

with respect to density. In general, the discounted net revenue of the firm is underestimated if the size-

heterogeneity phenomenon is not taken into account, while the calculated harvesting time shortens the 

predictions based on the homogeneous growth hypothesis. This should not necessary be the case for other 

species, culture or economic conditions. Nevertheless, the empirical example illustrates that optimal 

management in intensive aquaculture farms could be significantly mistaken if a non-realistic 

homogeneous growth hypothesis is assumed.  

 

In general, the market assigns different value to the same species according to its size, which determines 

several groups or classes. The size-structured model proposed here allows estimating the amount of the 

different classes in one culture cycle. By using this type of bioeconomic models, managers could design a 

segmentation strategy to allocate the product in the market. This is not possible by using the traditional 

models assuming size homogeneity.      
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The research presented in the paper could be extended in several aspects related with animal husbandry 

management. Particularly, selective harvesting (e.g. larger sizes of a same cohort) during the culture span 

is a common practice in the industry which has not been extensively analysed in the literature. Some 

recent results in the theory of optimal control for size-structured models could be used to solve the 

problem in the same framework presented in this paper. However, the numerical solution is still to appear.  
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