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Abstract

This paper is part of an effort to examine the application of discontinuous
Galerkin (DG) methods to the numerical modeling of the general circulation of
the ocean. One step performed here is to develop an integral weak formulation of
the lateral pressure forcing that is suitable for usage with a DG method and with
a generalized vertical coordinate that includes level, terrain-fitted, isopycnic,
and hybrid coordinates as examples. This formulation is then tested, in special
cases, with analyses of dispersion relations and numerical stability and with
some computational experiments. These results suggest that the advantages
of DG methods may significantly outweigh their disadvantages, in the settings
tested here. This paper also outlines some other issues that need to be addressed
in future work.

Keywords: ocean modeling, multi-layer ocean models, shallow water
equations, well-balanced forcing, discontinuous Galerkin method

1. Introduction

The purpose of this paper is to derive and examine some properties of dis-
continuous Galerkin (DG) methods, as applied to the numerical modeling of
ocean circulation.

Operational ocean models have traditionally used finite difference and finite
volume methods on structured rectangular grids, although the idea of unstruc-
tured Voronoi grids is presently under development (Ringler et al. [26]). In
practice, structured rectangular grids have usually been used with staggered
arrangements of grid points known as the B-grid and the C-grid. Such grids
have an advantage of simplicity, but they can allow troublesome grid noise and
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can give inaccurate propagation of inertia-gravity waves and/or Rossby waves,
depending on the relation between the grid size and a length scale known the
Rossby radius. More extensive discussions of these grids are included in Sections
6.2 and 6.3 and, for example, in Griffies [14] and Higdon [18].

For the class of DG methods, some often-quoted advantages include applica-
bility to unstructured grids and the ability to attain high-order accuracy while
maintaining high locality (Cockburn and Shu [7]). Some disadvantages, related
to efficiency, include restrictive conditions on the maximum allowable time step
for numerical stability (Kubatko, et al. [21]) and the need to compute multiple
degrees of freedom for each dependent variable.

The present work is the first part of an effort to examine the applicability
of DG methods to ocean circulation modeling and to assess whether they have
a net advantage over the methods that are used currently. Due to the overall
complexity of this matter, the scope of the present paper is limited to the
following goals.

(1) Formulate the pressure forcing in the partial differential equations that
describe the conservation of momentum. Here, it is assumed that the vertical co-
ordinate is a generalized coordinate that includes level, terrain-fitted, isopycnic,
and hybrid coordinates as special cases. When a generalized vertical coordinate
is used, the pressure forcing is the sum of two terms, and in some circumstances
the terms can have similar magnitude but opposite signs, so that their sum can
be dominated by error. This representation can also be awkward for implement-
ing in a weak form that is required for a Galerkin numerical method. Here, we
go back to physical principles and derive, and then analyze, an integral weak
form of the pressure forcing that avoids these difficulties.

(2) Analyze the accuracy of this approach by developing dispersion relations
for the resulting DG spatial discretizations, and in particular compare the accu-
racy of such discretizations with finite difference approximations on the B-grid
and C-grid. This methodology is then extended to give stability analyses of
some time-stepping methods. In order to limit the complexity of the present
paper, these analyses assume a reduced-dimension setting in which all flow vari-
ables are independent of one horizontal spatial variable. In this setting, the
Coriolis parameter is nonzero and both components of velocity can be nonzero;
in effect, we consider flow in an infinite straight channel in a rotating refer-
ence frame. The complexity is limited further by assuming linearized flow in
a constant-density fluid. One conclusion is that the DG spatial discretizations
can be much more accurate than the B- and C-grids. In particular, the DG
formulation is not vulnerable to the problem of grid size versus Rossby radius
for inertia-gravity waves that was mentioned above.

(3) Test the preceding ideas in some numerical computations. In one test
problem described here, the higher spatial accuracy of the DG method can
more than compensate for the restrictive bound on the time step and the need
to compute multiple degrees of freedom. Another computation illustrates the
well-balanced nature of the pressure forcing formulated here, in the constant-
density case.

The DG method has been used extensively to solve the shallow water equa-
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tions, which describe a single-layer (homogeneous) hydrostatic fluid (e.g., Gi-
raldo and Warburton [12], Kubatko et al. [22], Nair et al. [25]). In addition,
Kärnä et al. [20] have recently developed a DG model of three-dimensional
coastal flows that uses a terrain-fitted vertical coordinate with a moving verti-
cal mesh. Nair et al. [24] have developed a dynamical core for three-dimensional
atmospheric circulation which uses a DG method on a cubed sphere for the hori-
zontal discretization and a Lagrangian coordinate for the vertical discretization.

The purpose of the present paper is to develop a framework for a general
vertical coordinate for ocean modeling and to perform the mathematical and
computational analyses that are described above. An outline of this paper is
the following.

In Section 2 we describe the equations for conservation of mass and mo-
mentum in terms of a generalized vertical coordinate, with two horizontal di-
mensions. In Section 3 we derive the weak forms of these equations for the
reduced-dimension setting described above, with no assumption of linearity or
constant density. This discussion emphasizes the formulation of the pressure
term. The Appendix at the end of the paper gives the corresponding results
for the general case of two horizontal orthogonal curvilinear coordinates on a
rotating spheroid, with a generalized vertical coordinate.

Section 4 summarizes the remaining issues that will be discussed in the
present paper, and it also gives an outline of other issues that are the subject
of continuing work.

Section 5 describes the special case of a hydrostatic fluid of constant density,
i.e., the shallow water equations. This discussion includes a detailed discussion
of the pressure term, including Lax-Friedrichs interpolation to obtain pressure
forcing at cell (element) edges, implementation with variable and discontinuous
bottom topography, and a proof that the pressure forcing is well-balanced in
this case.

Section 6 gives the analysis of numerical dispersion relations, and Section 7
gives analyses of some time-stepping methods. Some numerical computations
are described in Section 8. Section 9 gives a summary.

2. Governing equations

The paper by Higdon [18] contains a derivation of the partial differential
equations for conservation of mass, momentum, and tracers in a fluid that is
in motion relative to a rotating spheroid. In that derivation the horizontal
coordinates are arbitrary orthogonal curvilinear coordinates, and the vertical
coordinate is a generalized coordinate, in a sense discussed in Section 2.1 be-
low. Here we re-state the equations for conservation of mass and momentum.
Curvilinear coordinates are used in the Appendix, but elsewhere in this paper
the horizontal coordinates are taken to be rectangular Cartesian coordinates for
the sake of notational simplicity.

In [18] it is assumed that the depth of the fluid is much smaller than the
horizontal extent of the motions being studied. This shallow-water assumption
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implies that the fluid is very nearly in hydrostatic balance, i.e., vertical accel-
erations are small, and this condition will be assumed throughout the present
paper.

2.1. Vertical coordinate

The partial differential equations that describe three-dimensional oceanic
flows include a vertical coordinate, and in the numerical modeling of ocean
circulation several such coordinates are in use. These include the following.

(i) The elevation z. This choice is the most traditional.
(ii) A terrain-fitted coordinate σ. This quantity has constant values at the

top and bottom of the fluid, with a continuous transition between the top and
bottom, and it is well-suited for representing bottom topography.

(iii) An isopycnic coordinate, which is a quantity related to density. In the
interior of the ocean, away from boundary layers, such a quantity is nearly
constant along fluid trajectories. In this case, surfaces of constant vertical coor-
dinate are nearly material surfaces, so a vertical discretization divides the fluid
into water masses having distinct physical properties. This feature could be an
advantage for long-time integrations, such as in climate modeling.

(iv) A hybrid coordinate, which may use z near the upper boundary, σ in
near-shore regions, and an isopycnic coordinate in the ocean’s interior (Bleck
[6]).

Further discussions of these coordinates are given, for example, in [14] and
[19]. In the following, the vertical coordinate will be denoted by s and will be
regarded as a generalized vertical coordinate that could include any of the above
possibilities. It will be assumed that s is non-decreasing function of z, at each
horizontal location and time.

2.2. Conservation of mass

For a dependent variable in an equation for conservation of mass, it is com-
monplace to use the fluid density ρ. However, in the isopycnic case the density
is essentially an independent variable, so ρ would not be a suitable dependent
variable in that case.

For an alternative, let p(x, y, s, t) denote the pressure in the fluid at horizon-
tal position (x, y), vertical position s, and time t. For a mass variable, use the
nonnegative quantity

−∂p
∂s

= −ps = |ps|

(Bleck [6]). In the case where s = z, the hydrostatic condition implies −ps =
−pz = ρg, where g is the magnitude of the acceleration due to gravity. More gen-
erally, consider two coordinate surfaces defined by s = s0 and s = s1, where s0

and s1 are constants with s1 < s0. The size of −ps then indicates the amount of
mass between those surfaces; in particular,

∫ s0
s1
−ps(x, y, s, t) ds = p(x, y, s1, t)−

p(x, y, s0, t) = ∆p(x, y, t). In the case of a hydrostatic fluid, ∆p(x, y, t) is the
weight per unit horizontal area between the coordinate surfaces, or g times the
mass per unit horizontal area.
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The conservation of mass is described by the equation

∂

∂t

(
ps
)

+
∂

∂x

(
ups
)

+
∂

∂y

(
vps
)

+
∂

∂s

(
ṡps
)

= 0. (1)

Here, ṡ = Ds
Dt denotes the material derivative of s, i.e., the time derivative

of s following fluid parcels, and u(x, y, s, t) and v(x, y, s, t) are the x- and y-
components of fluid velocity, respectively. In the case where s = z, we have
ṡ = ż = Dz

Dt = w and −ps = −pz = ρg, so equation (1) becomes ρt + (ρu)x +
(ρv)y+(ρw)z = 0. In the case of an ideal isopycnic coordinate where ṡ = 0, there
is no exchange of fluid between coordinate layers, and equation (1) reduces to
a two-dimensional equation for conservation of mass within a coordinate layer.

2.3. Conservation of momentum

For the x- and y-components of momentum density, use the quantities u(−ps)
and v(−ps), where u, v, and −ps all depend on (x, y, s, t). The x-component of
the momentum equation is

∂

∂t

[
u(−ps)

]
+ Fu − f

(
v(−ps)

)
= −(gzs)

∂P

∂x
+ g

∂τu
∂s

. (2)

Here, f is the Coriolis parameter, zs = ∂z/∂s is the rate of change of elevation
with respect to the generalized vertical coordinate s, P (x, y, z, t) is the pressure
(discussed below),

Fu =
∂

∂x

[
u
(
u(−ps)

)]
+

∂

∂y

[
v
(
u(−ps)

)]
+

∂

∂s

[
ṡ
(
u(−ps)

)]
(3)

denotes the momentum advection terms, and τu is a shear stress of the form

τu = τwbu + ρAD
1

zs

∂u

∂s
,

where AD is a vertical viscosity coefficient and τwbu is the sum of the wind stress
at the top of the fluid and frictional stress along the bottom. Similarly, the
y-component of the momentum equation has the form

∂

∂t

[
v(−ps)

]
+ Fv + f

(
u(−ps)

)
= −(gzs)

∂P

∂y
+ g

∂τv
∂s

. (4)

In the momentum equations (2) and (4), horizontal viscosity has been ne-
glected. In a discontinuous Galerkin method, such a term can be represented
with a “local” DG method, in which the gradient of velocity is an auxiliary vari-
able (e.g., Dawson et al. [9]). This matter will not be included in the present
paper.
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2.4. An issue with the pressure term

In the above equations, the pressure P is expressed in terms of (x, y, z, t), so
∂P/∂x and ∂P/∂y represent derivatives with respect to x and y, respectively, for
a fixed elevation z. However, z is not necessarily the vertical coordinate, and the
pressure forcing needs to be expressed in terms of the coordinate that is actually
used. The quantities p(x, y, s, t) and P (x, y, z, t) are related by p(x, y, s, t) =
P
(
x, y, z(x, y, s, t), t

)
, where z(x, y, s, t) is the elevation associated with vertical

coordinate s. Then

∂p

∂x
(x, y, s, t)

=
∂P

∂x

(
x, y, z(x, y, s, t), t

)
+
∂P

∂z

(
x, y, z(x, y, s, t), t

)∂z
∂x

(x, y, s, t)

=
∂P

∂x
− ρg

∂z

∂x
,

so
∂P

∂x
=

∂p

∂x
+ ρg

∂z

∂x
. (5)

The quantity ∂p/∂x is a derivative for fixed s and thus represents a derivative
along an s-coordinate surface that could slant. However, the pressure forcing
requires a pressure gradient with respect to directions that are truly horizontal,
and the term ρg∂z/∂x provides the necessary correction to ∂p/∂x. Analogous
remarks apply to ∂P/∂y and ∂p/∂y.

Equation (5) includes a sum of terms that could have similar magnitudes but
opposite signs; for example, consider a sloping coordinate surface when the free
surface at the top of the fluid is level. When the derivatives in (5) are approxi-
mated numerically, the resulting approximation to (5) could then be dominated
by errors (Adcroft et al. [1], Griffies [14]). Similar remarks apply if the horizon-
tal pressure forcing is expressed in terms of the Montgomery potential, which
has been used in isopycnic and hybrid-coordinate ocean modeling (Bleck [6]).
The development of pressure forcing in Section 3.2 avoids this difficulty and, in
addition, uses a representation that is natural for a weak form that can be used
with a discontinuous Galerkin method.

3. Weak forms for a reduced-dimension case

Next we develop weak forms of the equations for conservation of momentum
and mass, with an emphasis on the pressure forcing terms in the momentum
equations. This is given for a simplified setting in the present section and for
the general case in the Appendix.

For the present case, assume that the fluid is confined to an infinite straight
channel aligned with the y-direction and that all of the velocity and mass vari-
ables are independent of y. This setting allows the possibility of nonzero flow
in the y-direction, so the problem is not entirely one-dimensional in the hor-
izontal directions. In particular, we assume that the Coriolis parameter f is
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nonzero and constant. In this configuration, the Coriolis effect is present, but
with the simplifying assumption that all quantities depend only on (x, s, t) in-
stead of (x, y, s, t). The horizontal dependence in this system is thus quasi-one-
dimensional. For notational simplicity, also assume ṡ = Ds/Dt = 0 so that the
vertical advection terms are not carried through the calculations; this choice
does not affect the formulas for the pressure forcing.

Let u(x, s, t) and v(x, s, t) denote the x- and y-components of fluid velocity,
and let p(x, s, t) = P

(
x, z(x, s, t), t

)
denote the pressure. In this case the x-

component of the momentum equation is

∂

∂t

[
u(−ps)

]
+

∂

∂x

[
u
(
u(−ps)

)]
− f

(
v(−ps)

)
= −gzs

∂P

∂x

(
x, z(x, s, t), t

)
+ g

∂τu
∂s

. (6)

The right side of equation (6) includes the function ∂P/∂x evaluated at
(x, z(x, s, t), t). This is not the derivative of a composite function, for which
the chain rule would apply; instead, the notation ∂P/∂x refers to a derivative
for fixed z, and this function is evaluated at the location (x, z(x, s, t), t). In the
development given below, we will not write this term in the form (5) described
earlier, but will instead proceed directly to an integral formulation.

The y-component of the momentum equation is an analogue of equation
(6), except that the pressure term is not present due to the assumption that
all quantities are independent of y. In the present case, the mass equation (1)
reduces to ∂

(
ps
)
/∂t+ ∂

(
ups
)
/∂x = 0.

For a discretization of the fluid domain, partition vertically with coordinate
surfaces defined by s = s0, s1, . . . , sR, with s0 > s1 > . . . > sR. Denote the
horizontal interval by a ≤ x ≤ b, and partition the interval [a, b] into grid cells
of the form Dj = [xj−1/2, xj+1/2] for 1 ≤ j ≤ J .

In order to develop weak forms of the governing equations that would be
suitable for usage in a Galerkin method, consider the volume of fluid associated
with grid cell Dj in the horizontal and layer r in the vertical; the latter is the
region between the coordinate surfaces s = sr−1 and s = sr. In terms of the
vertical coordinate s, the volume of fluid is

Ṽj,r = Dj × [sr, sr−1] = {(x, s) : x ∈ Dj , sr < s < sr−1};

in terms of the vertical coordinate z, this volume is

Vj,r(t) = {(x, z) : x ∈ Dj , zr(x, t) < z < zr−1(x, t)},

where zr(x, t) = z(x, sr, t) and zr−1(x, t) = z(x, sr−1, t) denote the elevations of
the lower and upper boundaries, respectively, of layer r.

3.1. Weak form of the u-momentum equation

For a weak form of the u-momentum equation (6) on grid cell Dj in layer r,
multiply (6) by an arbitrary smooth test function ψ and integrate on the region

7



Ṽj,r. For reasons associated with the pressure term, as described below, ψ is
assumed to depend only on x and not on the vertical coordinate s. This process
yields ∫

Dj

{
∂

∂t

(∫ sr−1

sr

u(−ps) ds
)

+
∂

∂x

(∫ sr−1

sr

uu(−ps) ds
)

− f

∫ sr−1

sr

v(−ps) ds
}

ψ(x) dx

= Πu(j, r, ψ) + g

∫
Dj

{
τu(x, sr−1, t)− τu(x, sr, t)

}
ψ(x) dx. (7)

Here, Πu(j, r, ψ) is the pressure term that is discussed below.
Let

∆pr(x, t) =

∫ sr−1

sr

(−ps) ds = p(x, sr, t)− p(x, sr−1, t)

denote the vertical pressure increment across layer r, i.e., g times the mass per
unit horizontal area in that layer. Also let

ur(x, t) =
1

∆pr

∫ sr−1

sr

u(−ps) ds

denote the mass-weighted vertical average of u in layer r. A mass-weighted verti-
cal average vr(x, t) of v is defined similarly. A calculation shows

∫ sr−1

sr
uu(−ps) ds =

ur(ur∆pr)+O(∆s)3; this term represents a lateral flux of the momentum density
ur∆pr by the velocity ur. If the error O(∆s)3 is deleted, and if an integration
by parts is performed on the flux term, then equation (7) can be written as∫

Dj

{
∂

∂t
(ur∆pr)− fvr∆pr

}
ψ(x) dx

+
[
ur(ur∆pr)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

ur(ur∆pr)ψ
′(x) dx

= Πu(j, r, ψ) + g

∫
Dj

{
(τu)r−1(x, t)− (τu)r(x, t)

}
ψ(x) dx. (8)

Here, (τu)r−1(x, t) = τu(x, sr−1, t) and (τu)r(x, t) = τu(x, sr, t) denote the shear
stresses at the top and bottom of layer r, respectively. Equation (8) is the weak
form of the u-momentum equation, for the reduced-dimension case considered
here.

3.2. The pressure term Πu(j, r, ψ)

The pressure term Πu(j, r, ψ) in equation (8) is obtained by multiplying the
pressure term on the right side of equation (6) by the test function ψ and then
integrating over the region Ṽj,r in (x, s) space. Some calculations yield

Πu(j, r, ψ) = −
∫
Dj

[∫ sr−1

sr

∂P

∂x

(
x, z(x, s, t), t

)
gzs ds

]
ψ(x) dx
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= −g
∫
Dj

[∫ zr−1(x,t)

zr(x,t)

∂P

∂x
(x, z, t) dz

]
ψ(x) dx

= −g
∫
Vj,r(t)

∂P

∂x
(x, z, t) ψ(x) dz dx

= −g
∫
Vj,r(t)

(
∂

∂x
,
∂

∂z

)
·
(
P, 0

)
ψ(x) dz dx

= −g
∫
∂Vj,r(t)

(
P, 0

)
· n ψ(x) dS

+ g

∫
Vj,r(t)

(
P, 0

)
·
(
∂

∂x
,
∂

∂z

)
ψ(x) dz dx. (9)

In the first line, the function ∂P/∂x is evaluated at (x, z(x, s, t), t), and the next
line is obtained by a change of variable in the integral over s. In the last line,
∂Vj,r(t) denotes the boundary of the region Vj,r(t) in (x, z) space, and n is the
outward unit normal vector along ∂Vj,r(t).

If the test function ψ were to depend on both x and s, then the factor ψ(x, s)
would be placed inside the inner integral in the first line of (9). Changing to an
integration with respect to z, which appears in the second line, would require
that s be determined as a function of z over that interval. This would introduce
additional complexity to the algorithm, especially in the case of an isopycnic or
hybrid vertical coordinate. On the other hand, if the vertical coordinate is z or
the terrain-fitted coordinate σ, which has a relatively simple relation to z, then
this step might be more feasible and could lead to higher-order discretizations
in the vertical dimension. However, this possibility will not be pursued in the
present paper.

In the last line of equation (9), an integral of P with respect to z is contained
in the boundary terms for the left and right boundaries and also in the integral
on the interior of Vj,r(t). For the sake of subsequent formulas, denote the vertical
integral of the horizontal pressure forcing over layer r by

Hr(x, t) = g

∫ zr−1(x,t)

zr(x,t)

P (x, z, t) dz (10)

=

∫ pr(x,t)

pr−1(x,t)

αp dp, (11)

where α = 1/ρ is the specific volume (volume per unit mass). The form in (10)
is motivated directly by the structure of the last line in (9). In equation (11),
pr−1(x, t) and pr(x, t) denote the pressures at the top and bottom of layer r,
i.e., pr(x, t) = P (x, zr(x, t), t) = p(x, sr, t). The derivation of (11) from (10)
uses the hydrostatic condition dP/dz = −ρg = −g/α.

On the left and right boundaries of the region ∂Vj,r(t), the unit normal
vectors are n = (−1, 0) and n = (1, 0), respectively. On the graph of a function
φ, the upward unit normal vector at horizontal position x is (−φ′(x), 1)/((φ′)2 +

9



1)1/2, and the element of arclength is ((φ′)2 + 1)1/2dx. The representation of
Πu(j, r, ψ) in equation (9) can then be written as

Πu(j, r, ψ) = −
[
Hr(x, t) ψ(x)

]x=xj+1/2

x=xj−1/2

+

∫
Dj

Hr(x, t) ψ
′(x) dx

+ g

∫
Dj

{
pr−1(x, t)

∂zr−1

∂x
− pr(x, t)

∂zr
∂x

}
ψ(x) dx. (12)

In Section 2.4 it was noted that the expression (5) for pressure forcing in-
cludes a sum of terms that could have opposite signs, and when the derivatives
in those terms are approximated numerically the sum could be dominated by
errors. In the representation (12) for Πu(j, r, ψ), the boundary terms at xj±1/2

also involve a subtraction of terms that could be nearly equal. However, the rep-
resentation (11) of Hr(x, t) can be evaluated exactly (up to roundoff error) for
a fluid of constant density and for a stack of layers of constant densities. More
generally, the evaluation of (11) could require a highly-accurate quadrature in-
volving an equation of state that relates pressure and density; however, such
a computation would be completely local in the horizontal dimension, unlike
higher-order difference approximations to derivatives.

3.3. Pointwise form and alternate derivation

An alternative to the preceding derivation is to integrate with respect to s
over layer r to obtain an equation that is pointwise in x, and then multiply by a
test function and integrate by parts. This approach requires fundamentally that
the test function ψ depend only on x and not on s, whereas, in principle, the
preceding approach could be extended to use ψ(x, s) and obtain higher-order
approximations in the vertical direction.

If the continuous u-momentum equation (6) is integrated over the interval
sr < s < sr−1, the result is

∂

∂t
(ur∆pr) +

∂

∂x

[
ur (ur∆pr)

]
− fvr∆pr

= −g
∫ sr−1

sr

∂P

∂x

(
x, z(x, s, t), t

)
zs ds

+ g
[
(τu)r−1(x, t)− (τu)r(x, t)

]
, (13)

with an error term O(∆s)3 deleted. Now express the integral on the right side
as an integral over z and compare with the representation of Hr(x, t) in (10) to
calculate

∂Hr

∂x
= g

∫ zr−1(x,t)

zr(x,t)

∂P

∂x
dz

+ gP (x, zr−1(x, t), t)
∂zr−1

∂x
− gP (x, zr(x, t), t)

∂zr
∂x

. (14)
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Equation (13) can then be written as

∂

∂t
(ur∆pr) +

∂

∂x

[
ur (ur∆pr)

]
− fvr∆pr

= − ∂Hr

∂x
+ g

[
pr−1(x, t)

∂zr−1

∂x
− pr(x, t)

∂zr
∂x

]
+ g

[
(τu)r−1(x, t)− (τu)r(x, t)

]
. (15)

This is a pointwise form of the u-momentum equation, and from this form the
weak form in (8) and (12) can be derived. The preceding derivation resembles
some calculations used by Adcroft et al. [1] during a finite-volume development
that addresses some problems related to the effects of compressibility on the
horizontal pressure forcing.

3.4. The mass and v-momentum equations

For the reduced-dimension case considered in the present section, the mass
equation (1) is ∂

(
ps
)
/∂t + ∂

(
ups
)
/∂x = 0. The vertically-integrated pointwise

form of this equation is

∂

∂t
(∆pr) +

∂

∂x
(ur∆pr) = 0, (16)

and the weak form is∫
Dj

∂

∂t
(∆pr)ψ(x) dx +

[
ur(∆pr)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

ur(∆pr)ψ
′(x) dx = 0. (17)

The weak form of the v-momentum equation is an analogue of the u-momentum
equation (8), except that there is no pressure term, and it can be written as∫

Dj

{
∂

∂t
(vr∆pr) + fur∆pr

}
ψ(x) dx

+
[
ur(vr∆pr)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

ur(vr∆pr)ψ
′(x) dx

= g

∫
Dj

{
(τv)r−1(x, t)− (τv)r(x, t)

}
ψ(x) dx. (18)

4. Plan of analysis

Numerous issues need to be addressed in order to incorporate the preceding
ideas about pressure forcing into a working DG algorithm for three-dimensional
ocean modeling, and, more generally, to assess DG methods for possible usage
in this area.
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4.1. Present paper

The remainder of the present paper begins an analysis of these issues. In
order to limit complexity and length, the remaining discussion (except for the
Appendix) is restricted to the special case of a hydrostatic fluid of constant den-
sity in the reduced-dimension setting described above, in which the horizontal
dependence is quasi-one-dimensional. This discussion includes the following.

(1) Representation of the pressure forcing at the edges of grid cells, where
the dependent variables may be discontinuous.

(2) Implementation of the pressure forcing with variable and possibly dis-
continuous bottom topography.

(3) Verification that this formulation of the pressure forcing is well-balanced.
(4) For the linearized case, analysis of numerical dispersion relations and

comparison to some classical staggered finite-difference grids. Due to the as-
sumption of linearity and the restriction on the spatial dependence, this analysis
is restricted to inertia-gravity waves.

(5) For the linearized case, analysis of stability of some time-stepping meth-
ods.

(6) Numerical experiments that illustrate the preceding points.

4.2. Continuing work

Some other issues are beyond the scope of one paper and are the subject of
continuing work. These include the following.

(i) Extend the analysis, implementation, and testing from the constant-
density case mentioned above to a stratified and hydrostatic fluid having variable
density.

(ii) Evaluate the choice and implementation of different vertical coordinates.
(iii) Extend the analysis, implementation, and testing to two horizontal di-

mensions, and use numerical experiments that include Rossby waves and more
realistic configurations. The following discussion of the reduced-dimension case
includes algorithms that are applied at endpoints of one-dimensional grid cells
(i.e., intervals). For the case of two horizontal dimensions, it may suffice to
apply these ideas pointwise at each point on a cell edge and then integrate over
the edge.

5. The case of constant density: the shallow water equations

In Section 2 it was assumed that the depth of the fluid is much smaller
than the horizontal length scales of the motions being studied, and thus the
fluid is hydrostatic. For the sake of limiting the complexity of the analysis in
the remainder of this paper, now also assume that the density of the fluid is
constant. Together, these assumptions lead to the shallow water equations (Gill
[11]).

The shallow water equations are of interest in their own right, such as, for
example, in modeling storm surges (Dawson et al. [9]) and the propagation of
tsunamis (LeVeque et al. [23]). These equations are also of interest in the more
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general case of three-dimensional modeling. In the case of an isopycnic coordi-
nate, a vertically-discrete three-dimensional model can be regarded as a stack of
two-dimensional shallow water models, with various means for communicating
between layers. In addition, for three-dimensional ocean circulation modeling
it is common practice to split the fast and slow dynamics into separate sub-
problems, with the fast motions being modeled by a vertically-integrated two-
dimensional system that closely resembles the shallow water equations (Higdon
[18]).

5.1. A representation of the shallow water equations

We first develop a representation of the shallow water equations which is
an analogue of the formulations developed in Section 3. It that setting, it was
assumed that the horizontal dependence is quasi-one-dimensional, in the sense of
flow in an infinite straight channel in a rotating reference frame. For the present
case of constant density, a vertical coordinate is not needed as an independent
variable, so in this case the overall system is quasi-one-dimensional.

To apply the derivations from Section 3 to the present case of constant
density, regard the top and bottom of the fluid domain as coordinate surfaces,
which would be the case for a σ-coordinate representation. Vertical integration
between those two surfaces then gives equations that describe the entire fluid.

Instead of using the notation ∆pr to refer to the mass variable, let pb(x, t)
denote the difference between the pressure at the bottom of the fluid and the at-
mospheric pressure p0 at the top of the fluid. The quantity pb(x, t) is the weight
of the water column per unit horizontal area, i.e., g times the mass per unit hor-
izontal area, and p0 + pb(x, t) is the total bottom pressure. Also let u(x, t) and
v(x, t) denote the x- and y-components of fluid velocity, respectively. According
to the analysis in Section 3.1, these would be mass-weighted vertical averages
over the water column. However, it can be shown (e.g., [19]) that the horizontal
components of fluid velocity are actually independent of vertical position if this
is the case at some initial time, for the present case of a hydrostatic fluid of
constant density.

In this notation, the pointwise form (15) of the u-component of the momen-
tum equation can be expressed as

∂

∂t
(pbu) +

∂

∂x

[
u (pbu)

]
− fpbv

= −∂H
∂x

+ g

[
p0
∂ztop
∂x

− (p0 + pb(x, t))
∂zbot
∂x

]
+ g

[
(τu)wind(x, t)− (τu)bot(x, t)

]
. (19)

Here, pbu equals g times the u-component of momentum per unit horizontal
area, zbot(x) is the elevation of the bottom topography, ztop(x, t) = zbot(x) +
pb(x, t)/(ρg) is the elevation of the free surface at the top of the fluid, (τu)wind(x, t)
denotes wind stress at the top of the fluid, (τu)bot(x, t) denotes frictional stress
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along the bottom of the fluid, and

H(x, t) = g

∫ ztop(x,t)

zbot(x)

P (x, z, t) dz

=

∫ p0+pb(x,t)

p0

αp dp

=
α

2

[(
p0 + pb(x, t)

)2 − p2
0

]
(20)

is the vertically-integrated horizontal pressure forcing. The corresponding weak
form (8) of the u-momentum equation is∫

Dj

{
∂

∂t
(pbu)− fpbv

}
ψ(x) dx

+
[
u(pbu)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

u(pbu)ψ′(x) dx

= Πu(j, ψ) + g

∫
Dj

{
(τu)wind(x, t)− (τu)bot(x, t)

}
ψ(x) dx, (21)

where

Πu(j, ψ) = −
[
H(x, t) ψ(x)

]x=xj+1/2

x=xj−1/2

+

∫
Dj

H(x, t) ψ′(x) dx

+ g

∫
Dj

{
p0
∂ztop
∂x

− (p0 + pb(x, t))
∂zbot
∂x

}
ψ(x) dx. (22)

If the atmospheric pressure p0 is constant, then ∂P/∂x = ∂/∂x(P−p0). The
preceding derivations can then be performed with P − p0 replacing P , and the
final results are the same, with p− p0 replacing p. The effect on the formulas in
(19), (20), and (22) is to set p0 = 0. From now on, it will be assumed that the
atmospheric pressure p0 is constant; without further loss of generality, p0 can
then be deleted from the representation of the pressure forcing. Note that this
step does not state that the atmospheric pressure is actually zero; instead, it
says that this pressure does not affect the preceding representations of the lateral
pressure forcing within the fluid, and one can use p0 = 0 in those formulas.

The v-component of the momentum equation is analogous to the u-component,
except that the pressure term is absent in the case considered here. The point-
wise form of this component is

∂

∂t
(pbv) +

∂

∂x

[
u (pbv)

]
+ fpbu = g

[
(τv)

wind(x, t)− (τv)
bot(x, t)

]
, (23)

and the weak form is∫
Dj

{
∂

∂t
(pbv) + fpbu

}
ψ(x) dx
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+
[
u(pbv)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

u(pbv)ψ′(x) dx

= g

∫
Dj

{
(τv)

wind(x, t)− (τv)
bot(x, t)

}
ψ(x) dx. (24)

The equation for conservation of mass is

∂pb
∂t

+
∂

∂x
(pbu) = 0, (25)

and the corresponding weak form is∫
Dj

∂pb
∂t

ψ(x) dx +
[
(pbu)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

(pbu)ψ′(x) dx = 0. (26)

5.2. Comparison with previous representations of the shallow water equations
and pressure forcing

The preceding representation of the shallow water equations is not the stan-
dard one that is found in many references. This is ultimately a result of (i)
using pressure in Sections 2 and 3 to define a mass variable, which results from
the usage of an arbitrary vertical coordinate in that discussion, and (ii) the de-
cision in Section 3 to represent the pressure forcing with a horizontal gradient of
pressure within the fluid and then multiply by a test function and integrate by
parts. In the present subsection we derive the standard representation, for the
quasi-one-dimensional case, partly for later usage and partly in order to com-
pare to the more standard representation of the pressure forcing for the shallow
water equations.

First, let h(x, t) = ztop(x, t) − zbot(x) = pb(x, t)/(ρg) = αpb(x, t)/g denote
the linear thickness of the fluid layer. Then h is the volume of the water column
per unit horizontal area, and the relation h = pb/(ρg) implies that the mass
equation (25) is equivalent to

ht + (hu)x = 0. (27)

In the pointwise form (19) of the u-momentum equation, the term −∂H/∂x
can be expressed as a derivative of the integral representation in the first line of
(20). The derivative of that expression produces terms that involve the deriva-
tives of the limits of integration, and these terms cancel the terms in (19) that
involve ztop and zbot. Equation (19) then implies

∂

∂t
(pbu) +

∂

∂x

[
u (pbu)

]
− fpbv

= −g
∫ ztop(x,t)

zbot(x)

∂P

∂x
(x, z, t) dz, (28)
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where in this case the wind stress and bottom stress terms are deleted for
notational simplicity. The hydrostatic assumption can be expressed as ∂P/∂z =
−ρg, so P (x, z, t) = ρg(ztop(x, t) − z), and thus the right side of equation (28)
equals

−g
∫ ztop(x,t)

zbot(x)

ρg
∂ztop
∂x

(x, t) dz = −gρg
(
ztop(x, t)− zbot(x)

)∂ztop
∂x

= −gpb
∂ztop
∂x

.

Substitute this result into equation (28) and use the relation pb(x, t) = ρgh(x, t)
to obtain

∂

∂t
(hu) +

∂

∂x

[
u (hu)

]
− fhv = − gh∂ztop

∂x
. (29)

As suggested by equation (27), the thickness h of the fluid layer can serve as
the mass variable in the system. The extra variable ztop can be eliminated by
using the relation ztop(x, t) = zbot(x) + h(x, t) to obtain

∂

∂t
(hu) +

∂

∂x

[
u (hu) +

1

2
gh2

]
− fhv = − gh∂zbot

∂x
. (30)

The right side of equation (30) is a source term that arises from variations
in the elevation of the bottom topography. A numerical discretization of this
term should be chosen so that it does not produce spurious forcing due to errors
in the discretization. For this purpose, a criterion that is widely used is that a
numerical method should be well-balanced. That is, in a region where the free
surface is level, the computed pressure forcing should be zero, regardless of the
nature of the bottom topography. This problem has been the subject of a great
deal of recent research; see, for example, Le Veque et al. [23] and Xing et al.
[28] and the papers referenced therein.

The alternative developed in the present paper is to proceed directly from the
continuous momentum equation (6), in which the pressure forcing is expressed
with a gradient within the fluid in a direction that is truly horizontal, regardless
of the nature of the generalized vertical coordinate s. The first step is to use
an integral over a fluid volume defined by a grid cell in the horizontal and
a coordinate layer in the vertical. (In the special case of the constant-density
shallow water equations, the “coordinate layer” is the entire water column.) The
resulting representation of pressure forcing is natural for usage in a discontinuous
Galerkin numerical method, and it also leads naturally to well-balanced forcing,
provided that the pressures at cell edges are defined appropriately. The latter
points are addressed in Sections 5.3 and 5.4.

5.3. Numerical implementation of pressure in a discontinuous Galerkin method;
Lax-Friedrichs interpolation

A discontinuous Galerkin method is based on the weak forms of the govern-
ing equations and is developed as follows. For each grid cell, choose a basis for
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the space of polynomials of a specified degree. Express each of the dependent
variables as a linear combination of these basis functions, with coefficients (de-
grees of freedom) that depend on t. In the weak form, let the test function ψ
be each of the basis functions, and thereby produce a system of ordinary differ-
ential equations for the degrees of freedom for each of the dependent variables.
This process is discussed in greater detail in Sections 6.1 and 8.1.

In the present subsection we discuss the implementation of the pressure
term Πu(j, ψ) in (22). In each grid cell and for each time t, the mass vari-
able pb(x, t) is represented with a polynomial in x, with different polynomi-
als being used in different cells. The vertically-integrated horizontal pressure
forcing H(x, t) in (20) is then a polynomial in x in each cell, for each t. As
part of the configuration of the problem, assume that the bottom topography
zbot(x) is represented with a polynomial in each cell; the free-surface elevation
ztop(x, t) = zbot(x) + pb(x, t)/(ρg) is then also a polynomial. In the integrals on
the cell Dj that appear in (22), the integrands are polynomials, so the integrals
can be computed essentially exactly, assuming a sufficient number of quadrature
points.

There remains the matter of defining suitable values of H(x, t) when x is a
cell edge, for the sake of the boundary terms in (22). At a cell edge xj−1/2, pb
may be discontinuous. Thus the left and right limits of H(x, t) as x → xj−1/2

may be unequal, so there is some ambiguity about a value of H(xj−1/2, t). To

express the problem in physical terms, if the right limit H(x+
j−1/2, t) is used

in the pressure forcing in cell Dj and the left limit H(x−j−1/2, t) is used in cell

Dj−1, then the force exerted by cell Dj on cell Dj−1 would not equal the force
exerted by cell Dj−1 on cell Dj . That is, the numerical method would not
satisfy Newton’s third law of motion.

The preceding is the same basic difficulty that is encountered when one
defines mass and momentum fluxes at cell edges for finite volume and discontin-
uous Galerkin methods. In fact, in the formula for Πu(j, ψ) in (22), the quantity
H(x, t) plays the structural role of a flux, and H could be regarded as a flux of
momentum due to pressure forcing.

In order to define an edge value of H(xj−1/2, t) that is suitable for usage in
(22), we will use a Lax-Friedrichs interpolation of the left and right limits of
H(x, t). This choice is motivated by the solution of a Riemann problem for the
linearized shallow water equations, as described below, in Section 5.6.

Before this interpolation is described, we address a technical point that arises
if one allows the elevation zbot of the bottom topography to be discontinuous
across cell edges. At cell edge xj−1/2, let

zj−1/2 = max
{
zbot(x

−
j−1/2), zbot(x

+
j−1/2)

}
(31)

denote the greater of the elevations on either side of that edge. At locations
above zj−1/2, the fluid masses in cells Dj−1 and Dj are in contact with each
other, and the vertically-integrated horizontal pressure forcing over that range
of elevations should be interpolated between the two cells. However, if zbot is
discontinuous at xj−1/2, then the deeper of the two cells is also in contact with a
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solid vertical wall that represents the transition in bottom topography between
the two elevations at cell edge xj−1/2. That portion of the pressure forcing will
be represented separately.

The usage of the elevation zj−1/2 in the following discussions resembles some
procedures used, for example, by Higdon [17] and Xing et al. [28], to compute
mass and momentum fluxes at cell edges.

Denote the left and right limits of the pressures at edge xj−1/2 at elevation
zj−1/2 by

(pb)
−
j−1/2(t) = pb(x

−
j−1/2)− ρg

(
zj−1/2 − zbot(x−j−1/2)

)
(pb)

+
j−1/2(t) = pb(x

+
j−1/2)− ρg

(
zj−1/2 − zbot(x+

j−1/2)
)
. (32)

(Strictly speaking, the actual pressures in the fluid are equal to these values plus
the atmospheric pressure p0. However, as noted after equation (22), one can use
p0 = 0 in the formulas for the pressure forcing, and the representations in (32)
will be used solely for that purpose.) In (32), the terms involving ρg = g/α are
hydrostatic adjustments to the bottom values pb(x

±
j−1/2). If zbot is discontinuous

at xj−1/2, then one of those adjustments is zero; if zbot is continuous at xj−1/2,
then both of those adjustments are zero.

Now define corresponding values of the vertically-integrated horizontal pres-
sure forcing, over the range where the two fluid masses are in contact, by

H±j−1/2(t) =

∫ (pb)±
j−1/2

(t)

0

αp dp. (33)

If the elevation of the free surface at the top of the fluid is continuous at xj−1/2,

then H−j−1/2(t) = H+
j−1/2(t); otherwise, these two quantities are unequal. The

case of inequality can arise even if the bottom topography is continuous, so one
therefore needs to interpolate between the two states represented in (33). The
Lax-Friedrichs interpolation, as motivated in Section 5.6, is

HLF
j−1/2(t) =

1

2

[
H−j−1/2(t) + H+

j−1/2(t)
]

+
c

2

[
(pbu)−j−1/2(t) − (pbu)+

j−1/2(t)
]
. (34)

Here, the terms

(pbu)±j−1/2(t) = (pb)
±
j−1/2(t) u(x±j−1/2, t) (35)

represent the one-sided limits of the momentum density (times g) at the cell
edge, for the portion of the fluid that lies above the edge elevation zj−1/2; the
interpolation in (34) concerns only that portion of the fluid. The quantity c in
(34) is a representative value of the speed of gravity waves in the nondispersive
limit, which we will take here to be

√
ghj−1/2 (see Section 5.5), where hj−1/2

is the depth of the bottom topography as implied by (31), i.e., hj−1/2 is the
equilibrium elevation of the free surface minus zj−1/2.
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The quantity HLF
j−1/2(t) in (34) represents a common value for the vertically-

integrated horizontal pressure forcing exerted by the fluid in cell Dj−1 on the
fluid in cell Dj , and vice-versa, over the vertical range on which these fluid
masses are in direct contact. However, if the bottom topography is discontinuous
at xj−1/2, then the deeper of the two cells also exerts a force on a vertical wall
at xj−1/2, and thus the wall exerts a force on the fluid in that cell. This effect
should also be included in the pressure term.

To that end, let

(
Htopog
j−1/2

)±
(t) =

∫ pb(x±
j−1/2

,t)

(pb)±
j−1/2

(t)

αp dp. (36)

The lower limit (pb)
±
j−1/2(t) is defined in (32) and represents a pressure at the

edge elevation zj−1/2. The upper limit pb(x
±
j−1/2, t) is a one-sided limit of the

pressure at the bottom of the fluid within a cell. If the bottom topography is

discontinuous at xj−1/2, then one of the terms
(
Htopog
j−1/2

)−
(t) and

(
Htopog
j−1/2

)+
(t)

is positive and the other is zero; if the bottom topography is continuous at
xj−1/2 then both terms are zero.

For the values of H(x, t) that appear in the boundary terms in the pressure
term Πu(j, ψ) in (22), one can then use

HLF
j−1/2(t) +

(
Htopog
j−1/2

)+

(t) (37)

at edge xj−1/2 and

HLF
j+1/2(t) +

(
Htopog
j+1/2

)−
(t) (38)

at edge xj+1/2. In each of these formulas, the first term represents the force
exerted on the fluid in cell Dj by the fluid in a neighboring cell, and the second
represents the force exerted by a vertical wall along the bottom topography (if
any).

5.4. Well-balanced forcing

A useful check on a numerical representation of pressure forcing is to verify
whether the forcing is “well-balanced” in the following sense. Suppose that,
in a neighborhood of cell Dj , the elevation of the free surface is constant and
the fluid velocity is constant. This circumstance could be found in the global
rest state for which the entire system is at rest, or it could be found in a local
steady state with varying activity elsewhere. The numerical representation of
the pressure forcing for cell Dj should then be zero, at least up to roundoff error
and errors in numerical quadrature. (Also see Section 5.2.)

Theorem 1. The pressure forcing term Πu(j, ψ) in (22) is well-balanced, in
the sense described above.
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Proof. Assume that, in a neighborhood of cell Dj , the elevation of the free
surface is constant. In that case, the limits of integration (pb)

−
j−1/2(t) and

(pb)
+
j−1/2(t) in (33) are the same, and thus H−j−1/2(t) = H+

j−1/2(t). If, in addi-

tion, u is constant in a neighborhood ofDj , then the Lax-Friedrichs interpolation
in (34) reduces to

HLF
j−1/2(t) = H−j−1/2(t) = H+

j−1/2(t). (39)

(In physical terms, the numerical representation HLF
j−1/2(t) of the pressure force

exerted between the fluid masses in cells Dj−1 and Dj , over the vertical range
where the masses are in direct contact, is equal to the representations that are
obtained within each cell.)

In the representation (22) of Πu(j, ψ), the value of H(x, t) that is used in
the boundary term at xj−1/2 is given by the sum in (37). In the present cir-
cumstances, this sum equals

lim
x→x+

j−1/2

H(x, t) = lim
x→x+

j−1/2

∫ pb(x,t)

0

αp dp, (40)

i.e., the limit of H(x, t) as x→ xj−1/2 from within cell Dj . Similarly, the value
of H(x, t) that is used in the boundary term at xj+1/2 is given by the sum in
(38), and this equals the limit of H(x, t) as x→ xj+1/2 from within cell Dj .

A comparison with Section 3.2 reveals that the representation of Πu(j, ψ)
in (22) is obtained by integrating −gψ(x)∂P/∂x over the entire water column
on cell Dj . Denote this region of fluid by Vj . In a numerical implementation,
this representation is modified by using interpolated values of H(x, t) at the cell
edges xj±1/2. However, in the present case, those interpolated values are the
one-sided limits of the interior values of H(x, t). Thus

Πu(j, ψ) = −g
∫
Vj

∂P

∂x
(x, z, t) ψ(x) dz dx. (41)

But ∂P/∂x = 0 in the present case, since the free surface is level, so Πu(j, ψ) = 0.
The pressure forcing in (22) is thus well-balanced. This completes the proof.

Section 8.3 describes a numerical experiment that illustrates this well-balancing
in the presence of discontinuous and sloping bottom topography.

5.5. Linearization

Here we derive linearized forms of the equations for momentum and mass
given in (19)–(26). This is done partly for the analysis of dispersion relations
and stability in Sections 6 and 7 and partly for the motivation for Lax-Friedrichs
interpolation of H given in Section 5.6.

Assume that the bottom of the fluid domain is level and that the flow is a
small perturbation of the rest state for which the free surface is level and the
velocity is zero. Also assume that the wind stress and bottom stress are zero.
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In the formulas for the pressure forcing, neglect the atmospheric pressure (i.e.,
let p0 = 0 in those formulas), as justified after equation (22). Let p̃b denote
the constant value of the weight of the water column per unit horizontal area
in the rest state; if the atmospheric pressure were zero, then p̃b would be the
equilibrium value of bottom pressure. Let pb(x, t) denote the perturbation in
bottom pressure, so that p̃b+pb(x, t) denotes the weight of the water column per
unit horizontal area in a general non-equilibrium state. That is, in the present
discussion the quantity p̃b + pb will take the place of the symbol “pb” in the
preceding discussions.

Also assume that the perturbation pb and the velocity components u and v
are small, in the sense that products of “small” quantities can be neglected in
the governing equations. With this approximation, the pointwise form (19) of
the u-component of the momentum equation simplifies to

p̃b
∂u

∂t
− fp̃bv = −∂H

∂x
, (42)

and the vertically-integrated horizontal pressure forcing (20) becomes

H(x, t) =

∫ p̃b+pb(x,t)

0

αp dp =
α

2

[
(p̃b)

2 + 2p̃bpb + p2
b

]
≈ 1

2
α(p̃b)

2 + (αp̃b)pb.

Let c2 = αp̃b = gh̃, where h̃ is the thickness of the fluid layer at the rest state,
and c > 0. As seen in Section 5.6, c is the speed of propagation of gravity waves
in the case f = 0. The linearization of H is then

H(x, t) =
1

2
c2p̃b + c2pb, (43)

and the linearized u-momentum equation (42) can be written as

∂

∂t

(
u

c

)
− f

(
v

c

)
= −c ∂

∂x

(
pb
p̃b

)
.

Now let U(x, t) = u(x, t)/c and V (x, t) = v(x, t)/c denote non-dimensional
components of velocity, and let η(x, t) = pb(x, t)/p̃b denote the perturbation
in bottom pressure relative to p̃b. Due to the hydrostatic condition and the
assumption of constant density, η(x, t) is also the perturbation in the elevation
of the free surface relative to the mean depth. The linearized u-momentum
equation can then be expressed as

Ut − fV = −cηx. (44)

Similarly, the v-component of the momentum equation is

Vt + fU = 0, (45)
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in the quasi-one-dimensional configuration presently considered here. The lin-
earization of the mass equation (25) is

∂pb
∂t

+ p̃b
∂u

∂x
= 0,

or
ηt + cUx = 0. (46)

The weak form of the linearized u-momentum equation (44) is∫
Dj

{
∂U

∂t
− fV

}
ψ(x) dx

= −
[
cη(x, t)ψ(x)

]x=xj+1/2

x=xj−1/2

+

∫
Dj

cη(x, t)ψ′(x) dx, (47)

the weak form of the linearized v-momentum equation (45) is∫
Dj

{
∂V

∂t
+ fU

}
ψ(x) dx = 0, (48)

and the weak form of the linearized mass equation (46) is∫
Dj

∂η

∂t
ψ(x) dx+

[
cU(x, t)ψ(x)

]x=xj+1/2

x=xj−1/2

−
∫
Dj

cU(x, t)ψ′(x) dx = 0. (49)

5.6. Riemann problem and motivation for Lax-Friedrichs interpolation

Section 5.3 describes the problem of determining values of H, and fluxes
in general, at cell edges where the solution may be discontinuous. A standard
approach to this problem is to solve a Riemann problem with piecewise constant
initial data defined by the left and right limits of the solution at that edge; the
solution of this problem then produces values of the dependent variables at
the edge that could be used in a numerical method. This can be regarded
as a kind of “intelligent interpolation” that uses the dynamics of the partial
differential equation to interpolate between left and right states, as opposed to
simple averaging.

Here, consider the case of the one-dimensional linearized shallow water equa-
tions with f = 0. In this case, equations (44) and (46) have the forms Ut+cηx =
0 and ηt + cUx = 0, respectively. Addition and subtraction yield the equations

(U + η)t + c(U + η)x = 0 and (U − η)t − c(U − η)x = 0.

The quantities w1 = (U + η)/2 and w2 = (U − η)/2 thus propagate with char-
acteristic velocities c and −c, respectively, so c is the speed of the gravity waves
that are propagated in this system. Now consider the Riemann problem for U
and η with initial data U(x, t0) = UL and η(x, t0) = ηL for x < xj−1/2 and
U(x, t0) = UR and η(x, t0) = ηR for x > xj−1/2. Convert these initial states to
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initial data for w1 and w2, solve for w1 and w2, and use the relations U = w1+w2

and η = w1 − w2 to obtain

U(xj−1/2, t) =
1

2

(
UL + UR

)
+

1

2

(
ηL − ηR

)
η(xj−1/2, t) =

1

2

(
ηL + ηR

)
+

1

2

(
UL − UR

)
. (50)

In equations (44) and (46) the quantities cη and cU , respectively, play the
role of fluxes. When the above expressions for η and U are multiplied by c,
the results are Lax-Friedrichs fluxes; that is, in each case use the average of the
flux values on either side of the edge, plus c/2 times a diffusive difference of the
dependent variable being computed.

The linearization of the vertically-integrated horizontal pressure forcing H
is given in equation (43), and its Lax-Friedrichs interpolation at cell edge xj−1/2

is

HLF (xj−1/2, t) =
1

2
c2p̃b + c2p̃bη(xj−1/2, t)

=
1

2
c2p̃b +

1

2
c2p̃b

(
η(x−j−1/2, t) + η(x+

j−1/2, t)
)

+
1

2
c2p̃b

(
U(x−j−1/2, t)− U(x+

j−1/2, t)
)

=
1

2

[
H(x−j−1/2, t) +H(x+

j−1/2, t)
]

+
c

2

[
p̃bu(x−j−1/2, t)− p̃bu(x+

j−1/2, t)
]
. (51)

This derivation uses the relations pb = p̃bη and u = cU . The expression (51)
provides motivation for the interpolation formula (34) stated earlier.

6. Analysis of numerical dispersion relations

In this section we develop a discontinuous Galerkin representation of the
system (47)–(49) of linearized weak forms of the shallow water equations and
then give an analysis of numerical dispersion relations for this system.

General analyses of dispersion relations for DG methods have been given
previously (Ainsworth [2], Bernard et al. [5], Guo et al. [15]). One purpose
of the present analysis is to provide a check on the accuracy resulting from the
representation of pressure forcing developed earlier, including the usage of Lax-
Friedrichs interpolation. This analysis also includes a comparison with finite
difference approximations on the classical B- and C-grids that are often used in
ocean modeling. The formulation developed here will then be used in Section 7
to analyze the stability of time-stepping methods.

6.1. Discontinuous Galerkin formulation

In Section 3 it was assumed that the spatial interval [a, b] is partitioned
into grid cells of the form Dj = [xj−1/2, xj+1/2] for 1 ≤ j ≤ J . For each
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j, let xj denote the center of cell Dj , and for notational simplicity assume
that the grid cells have equal length ∆x. Then the endpoints of cell Dj are
xj±1/2 = xj ±∆x/2.

6.1.1. Basis functions

For any positive integer N , let PN (Dj) denote the space of all polynomials
of degree N or less on cell Dj . In order to develop a basis of PN (Dj), let Pm be
the Legendre polynomial of degree m ≥ 0 on the reference interval [−1, 1], and
assume that Pm is normalized so that Pm(1) = 1. Then Pm(−1) = (−1)m for all
m ≥ 0, since Pm is an even function if m is even and is an odd function if m is

odd. The Legendre polynomials satisfy the orthogonality condition
∫ 1

−1
PmPn =

2/(2m+ 1) if m = n and
∫ 1

−1
PmPn = 0 otherwise.

Now let

ψ(j)
m (x) = Pm

(
2

∆x
(x− xj)

)
(52)

for xj−1/2 < x < xj+1/2 and 0 ≤ m ≤ N . The set
{
ψ

(j)
0 , ψ

(j)
1 , . . . , ψ

(j)
N

}
is

a (modal) basis of the space PN (Dj). Also, ψ
(j)
m (xj+1/2) = 1, ψ

(j)
m (xj−1/2) =

(−1)m, and ∫
Dj

ψ(j)
m ψ(j)

n =

{
∆x

2m+1 if m = n

0 if m 6= n.
(53)

The following property will also be used later.

Remark 1. Let

Bmn =

∫
Dj

dψ
(j)
m

dx
ψ(j)
n (x) dx. (54)

Then Bmn = 0 if m ≤ n and Bmn = 1− (−1)m+n if m > n.

Proof. A change of variable shows Bmn =
∫ 1

−1
P ′m(ξ)Pn(ξ) dξ. If m ≤ n,

then P ′m has degree strictly less than n. But Pn is orthogonal on [−1, 1] to all
polynomials of degree less than n, so Bmn = 0 in this case. On the other hand,
if m > n then

Bmn =
[
Pm(ξ)Pn(ξ)

]ξ=1

ξ=−1
−
∫ 1

−1

PmP
′
n.

The integral is zero, since P ′n has degree less than m, so Bmn = 1−(−1)m(−1)n.
This completes the proof.

In the system (47)–(49) the dependent variables are the nondimensional
velocity components U and V and the relative perturbation η in bottom pressure
(or free-surface elevation). Represent the polynomial approximations to U , V ,
and η in terms of the basis functions by

U(x, t) =

N∑
n=0

U (j)
n (t) ψ(j)

n (x)
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V (x, t) =

N∑
n=0

V (j)
n (t) ψ(j)

n (x) (55)

η(x, t) =

N∑
n=0

η(j)
n (t) ψ(j)

n (x)

for all x ∈ Dj , for all t. (With a slight abuse of notation, the approximations

to U ,V ,η are also denoted by U ,V ,η.) The time-dependent coefficients U
(j)
n (t),

V
(j)
n (t), and η

(j)
n (t) will be referred to as “degrees of freedom” for U , V , and η,

respectively.

6.1.2. Ordinary differential equations for the degrees of freedom

Insert the representations (55) into the weak form (47) of the linearized u-
momentum equation, and let the test function ψ in (47) be the basis function

ψ
(j)
m for 0 ≤ m ≤ N . The result is

N∑
n=0

(∫
Dj

ψ(j)
m ψ(j)

n

)
dU

(j)
n

dt
− f

N∑
n=0

(∫
Dj

ψ(j)
m ψ(j)

n

)
V (j)
n (t)

= − c
[
η∗ψ(j)

m (x)
]x=xj+1/2

x=xj−1/2

+ c

N∑
n=0

(∫
Dj

dψ
(j)
m

dx
ψ(j)
n

)
η(j)
n (t). (56)

Here, η∗ refers to values of η at cell edges, as specified below. The orthogonality
relation (53) and the definition of Bmn in (54) imply

∆x

2m+ 1

(
dU

(j)
m

dt
− fV (j)

m (t)

)

= − c
[
η∗ψ(j)

m (x)
]x=xj+1/2

x=xj−1/2

+ c

N∑
n=0

Bmnη
(j)
n (t). (57)

Let ∆t be a time increment, such as what might be used in a time-stepping
method, and let ν = c∆t/∆x be the corresponding Courant number. Then

(∆t)
dU

(j)
m

dt
= (f∆t) V (j)

m (t) − ν(2m+ 1)
[
η∗j+1/2(t)− (−1)mη∗j−1/2(t)

]
+ ν(2m+ 1)

N∑
n=0

Bmnη
(j)
n (t) (58)

for 0 ≤ m ≤ N . The coefficients f∆t and ν(2m + 1) are dimensionless. The

form of the boundary terms in (58) follows from the relations ψ
(j)
m (xj+1/2) = 1

and ψ
(j)
m (xj−1/2) = (−1)m.

In the linearized weak form (47) the quantity cη(x, t) plays the same role as
does H(x, t) in the general weak form (21)–(22). (Also compare to the lineariza-
tion of H(x, t) given in (43).) In keeping with the discussion in Sections 5.3 and
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5.6, Lax-Friedrichs interpolation will be used here to determine the values of η∗

at the cell edges. A comparison with (50) yields

η∗j−1/2(t) =
1

2

(
η(x−j−1/2, t) + η(x+

j−1/2, t)
)

+
1

2

(
U(x−j−1/2, t)− U(x+

j−1/2, t)
)
. (59)

In this representation, the left limit uses data from cell Dj−1 and the right limit
uses data from cell Dj . The representations of η and U in (55) yield

η∗j−1/2(t) =
1

2

N∑
n=0

(
η(j−1)
n (t) ψ(j−1)

n (xj−1/2) + η(j)
n (t) ψ(j)

n (xj−1/2)
)

+
1

2

N∑
n=0

(
U (j−1)
n (t) ψ(j−1)

n (xj−1/2)− U (j)
n (t) ψ(j)

n (xj−1/2)
)

=
1

2

N∑
n=0

(
η(j−1)
n (t) + (−1)nη(j)

n (t)
)

+
1

2

N∑
n=0

(
U (j−1)
n (t)− (−1)nU (j)

n (t)
)
. (60)

The DG implementation of the linearized u-momentum equation (47) is then
given by the ordinary differential equations in (58), with η∗ defined in (60).

The weak form (49) of the linearized mass equation has the same structure
as the weak form (47) of the linearized u-momentum equation, with the roles
of η and U reversed and the term fV deleted. If the Lax-Friedrichs flux is used
to approximate the mass flux at cell edges, then the DG implementation of the
mass equation is obtained by modifying (58) to yield

(∆t)
dη

(j)
m

dt
= −ν(2m+ 1)

[
U∗j+1/2(t)− (−1)mU∗j−1/2(t)

]
+ ν(2m+ 1)

N∑
n=0

BmnU
(j)
n (t) (61)

for 0 ≤ m ≤ N , where the edge value U∗j−1/2(t) is obtained by interchanging

the roles of U and η in (60).
The v-momentum equation (48) is analogous to the u-momentum equation

(47), except that a pressure term is not present in the case considered here. Its
DG implementation is

(∆t)
dV

(j)
m

dt
= − (f∆t) U (j)

m (t) (62)

for 0 ≤ m ≤ N .
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6.1.3. Fourier representation

The DG representation of the momentum and mass equations consists of
the system (58), (61), (62), with the unknowns consisting of the degrees of

freedom U
(j)
m , V

(j)
m , η

(j)
m for 0 ≤ m ≤ N and 1 ≤ j ≤ J . In order to make an

analysis of this system tractable, assume that for fixed t the degrees of freedom
have Fourier representations with respect to the spatial index j, or equivalently,
with respect to position xj . The actual DG approximations to U , V , and η
are piecewise polynomials in x, for each t, and these are not assumed to have
Fourier representations. Instead, the degrees of freedom are assumed to have
such representations, and modal solutions for these degrees of freedom will be
developed and analyzed.

Instead of inserting general Fourier superpositions into the system (58), (61),
(62), we will simplify notation somewhat by inserting simple oscillatory solutions

U (j)
m (t) = Ûm(k, t)eikxj

V (j)
m (t) = V̂m(k, t)eikxj (63)

η(j)
m (t) = η̂m(k, t)eikxj

into that system. The Fourier transform of the u-momentum equation (58) is
then

(∆t)
∂Ûm
∂t

(k, t) = (f∆t)V̂m(k, t)

− ν(2m+ 1)
[
eik∆x − (−1)m

]
η̂∗(k, t) (64)

+ ν(2m+ 1)

N∑
n=0

Bmnη̂n(k, t),

for 0 ≤ m ≤ N , where, from (60),

η̂∗(k, t) =
1

2

N∑
n=0

(
e−ik∆x + (−1)n

)
η̂n(k, t)

+
1

2

N∑
n=0

(
e−ik∆x − (−1)n

)
Ûn(k, t). (65)

Now insert (65) into (64) to produce

(∆t)
∂Ûm
∂t

(k, t) = (f∆t)V̂m(k, t)

+ ν(2m+ 1)

N∑
n=0

[
Bmn +

1

2

(
(−1)m − eik∆x

)(
e−ik∆x + (−1)n

)]
η̂n(k, t)

+ ν(2m+ 1)

N∑
n=0

1

2

(
(−1)m − eik∆x

)(
e−ik∆x − (−1)n

)
Ûn(k, t) (66)
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for 0 ≤ m ≤ N .
The Fourier transform of the mass equation (61) is obtained by interchanging

the roles of Û and η̂ in (66) and deleting the term involving f . The Fourier
transform of the v-momentum equation (62) is

(∆t)
∂V̂m
∂t

(k, t) = −(f∆t)Ûm(k, t). (67)

The Fourier transform of the entire system can be written in matrix-vector
form as follows. Define a column vector q(k, t) by

q(k, t) =
(
Û0, . . . , ÛN , V̂0, . . . , V̂N , η̂0, . . . , η̂N

)T
, (68)

where all quantities on the right side depend on (k, t). Then

∂q

∂t
=

(
1

∆t

)
Aq, (69)

where

A(k∆x, f∆t) =

 E (f∆t)I F
−(f∆t)I 0 0

F 0 E

 . (70)

Here, I is the (N +1)× (N +1) identity matrix, 0 denotes the (N +1)× (N +1)
matrix of zeros, and E and F are nonsymmetric (N+1)×(N+1) matrices whose
entries are implied by (66). The entries in the matrix A are dimensionless.

Solutions of the system (69) can be constructed with eigenvalues and eigen-
vectors of the matrix A in (70). Let λ be an eigenvalue of A with corresponding
eigenvector z; since A is dimensionless, λ is also dimensionless. Denote λ by
λ = (Reλ) − iω∆t, where ω is real and has units of 1/time. Let tn be a given
time, such as a time level that is encountered with time-stepping method. A
corresponding solution of the system (69) is then

q(k, t) = exp

[
λ

∆t
(t− tn)

]
z = exp

[
(Reλ)

(
t− tn

∆t

)
− iω(t− tn)

]
z, (71)

and the solution at time tn + ∆t is

q(k, tn + ∆t) = eλz = eReλe−iω∆tz. (72)

A comparison with the form (63) of oscillatory (in x) solutions shows that ω is a
frequency corresponding to spatial wavenumber k. Plots of the (dimensionless)
imaginary part ω∆t of λ versus the dimensionless wavenumber k∆x can be used
to illustrate phase velocity and group velocity of wave motions. Plots of the
quantity eReλ versus k∆x illustrate growth and/or decay over a time increment
∆t and thus can be used to assess stability and numerical dissipation.
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6.2. Exact solution and staggered finite-difference grids

For purposes of comparison, the present subsection states the dispersion
relations for oscillatory wave solutions of the exact system (44)–(46) and of
second-order finite difference approximations on the B-grid and the C-grid. The
labeling and classification of these and some other finite difference grids are due
to Arakawa and Lamb [3], and the wave propagation properties of these grids
have long been established ([3], Dukowicz [10]). The dispersion relations for the
B- and C-grids for the present context are included here in order to make the
discussion more self-contained.

In analogy to the oscillatory solutions (63) of the DG approximation, insert
solutions

U(x, t) = Û(k, t)eikx

V (x, t) = V̂ (k, t)eikx (73)

η(x, t) = η̂(k, t)eikx

into (44)–(46) to produce

∂

∂t

 Û

V̂
η̂

 =

 0 f −ikc
−f 0 0
−ikc 0 0

 Û

V̂
η̂

 . (74)

A calculation shows that the 3× 3 coefficient matrix has eigenvalues λ = −iω,
where

ω = 0 or ω2 = c2k2 + f2. (75)

A comparison with (73) shows that the exact system (44)–(46) has oscillatory
wave solutions eikx−iωtz, where z is a 3 × 1 vector. For such waves, the phase
velocity (velocity of single, pure sinusoidal waves) is ω/k, and the group velocity
(velocity of wave packets) is dω/dk. The nonzero values of ω in (75) correspond
to inertia-gravity waves, and the case ω = 0 is a stationary mode that would
transform into a Rossby mode if the Coriolis parameter f were variable. The
equations in (75) constitute the “dispersion relation” for the system (44)–(46).

For purposes of comparison to numerical methods, let ∆x denote a grid
spacing (or cell length), and write the dispersion relation in (75) for nonzero ω
as (

ω

f

)2

= R2(k∆x)2 + 1, (76)

where ω/f is a nondimensional frequency and

R =
c

(f∆x)
=
c/f

∆x
. (77)

The quantity c/f is the Rossby radius associated with speed c, so R is the ratio
of the Rossby radius to the grid size.

In order to define the B- and C-grids on a general two-dimensional region,
assume that the spatial domain is partitioned into rectangular grid cells with
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mass variables defined at the centers of those cells. In the case of the B-grid, the
components of horizontal velocity are defined at the corners of the mass cells.
With the C-grid, the normal components of velocity are defined at the centers of
the cell edges, i.e., U is defined at the centers of the edges corresponding to min-
imal and maximal x, and V is defined at the centers of the edges corresponding
to minimal and maximal y.

For the quasi-one-dimensional setting considered here, assume that the mass
variable η is defined at points xj having integer indices. For the B-grid, U and
V are then defined at points xj±1/2 having half-integer indices. In the case of
the C-grid, U is defined at points of the form xj±1/2, and V is defined at the
same points as η. For each grid, the spatial derivatives in the system (44)–(46)
are approximated with centered second-order finite differences that are natural
for the grid in question. The Coriolis terms require values of V at U -points
and values of U at V -points, and on the C-grid these values are obtained with
simple averages. On a B-grid with two horizontal dimensions, a pressure term
−cηx (see (44)) is implemented with an average in y of a difference in x; in the
quasi-one-dimensional case considered here, such averaging has no effect since
all quantities are independent of y.

Some calculations, analogous to those given above, show that the dispersion
relation for the B-grid is

ω = 0 or

(
ω

f

)2

= R2

(
2 sin

k∆x

2

)2

+ 1, (78)

and the dispersion relation for the C-grid is

ω = 0 or

(
ω

f

)2

= R2

(
2 sin

k∆x

2

)2

+

(
cos

k∆x

2

)2

. (79)

for |k∆x| ≤ π. The cosine term in (79) arises from the spatial averaging that
is required to implement the Coriolis term on the C-grid. In (78) and (79) it
is assumed that there is no discretization with respect to t, i.e., the effects of
numerical time-stepping methods are not included here.

6.3. Remarks about Rossby radius and the B- and C-grids

The dispersion relations (76), (78), and (79) express the nondimensional
frequency ω/f in terms of the nondimensional wavenumber k∆x, and in those
relations the only free parameter is the ratio R of the Rossby radius c/f to the
grid size ∆x.

For a rotating spheroid, the Coriolis parameter is f = 2Ω sin θ, where Ω
is the angular rate of rotation and θ is the latitude; for the mid-latitudes of
the earth, f ≈ 10−4 sec−1. For the constant-density shallow water equations
presently considered here, the gravity wave speed (if f were zero) is c =

√
gh,

where h is the thickness of the fluid layer. For a generic mid-ocean depth of 4000
meters, c ≈ 200 m/sec, and the Rossby radius is then c/f ≈ 2000 kilometers.
This is far greater than any possible grid size, so R� 1 in this case.
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However, the variable-density ocean also admits a multitude of internal
modes. For the case of linearized flow in a region with a flat bottom, sep-
aration of variables reveals an infinite sequence of internal modes, with the
vertical dependence given by an eigenfunction and with the time and horizontal
dependences modeled by the linearized shallow water equations. This is de-
rived, for example, by Higdon [18]. The value of c for the fastest internal mode
is typically on the order of one to two meters per second, and the other speeds
are smaller, with the sequence of speeds tending to zero. In a vertically-discrete
three-dimensional model, the number of internal modes is equal to the number
of vertical coordinate surfaces, e.g., layer interfaces for an isopycnic model.

If c = 2 m/sec and f = 10−4 sec−1, then the Rossby radius is 20 kilometers;
the Rossby radius for slower modes is then smaller. The grid sizes for ocean
circulation models can be on the order of kilometers or tens of kilometers or
perhaps more, depending on the application, so it would be worthwhile to use
a numerical method that performs well for all of the regimes R > 1, R ≈ 1, and
R < 1.

Analyses of the shallow water equations in two horizontal dimensions have
indicated that when R > 1, the C-grid is generally better than the B-grid
for propagating inertia-gravity waves; when R < 1, the situation is reversed
(Arakawa and Lamb [3]). Inertia-gravity waves participate, for example, in
adjustment processes in which a change in forcing leads to a shift in the mean
state of the system. The B-grid has been judged to be somewhat better for
propagating vorticity-driven Rossby waves (Dukowicz [10]), although this can
depend on the location in wavenumber space. Rossby waves are involved in the
development of large-scale current systems (Gill [11]).

This variation of performance of the B- and C-grids has been one motivation
for the present exploration of discontinuous Galerkin methods as an alternate
method of spatial discretization for ocean modeling.

6.4. Comparison of DG approximations with the B- and C-grids

We now use the ideas developed in Sections 6.1.3 and 6.2 to compare the
accuracy of DG approximations to the accuracy of the B- and C-grids. The
present analysis is restricted to the quasi-one-dimensional setting, due to the
relative complexity of DG methods. Here, the shallow water equations are
studied partly for their own sake and partly as a proxy for representing the
dynamics of internal modes.

This comparison is based on plots of the nondimensional frequency ω/f
versus the nondimensional wavenumber k∆x. For the DG system (69), the
imaginary parts −ω∆t of the eigenvalues of the matrix A in (70) will be divided
by the nondimensional Coriolis parameter f∆t. Equivalently, A is divided by
f∆t, and a comparison with (66) and (70) shows that the resulting matrix
depends only on k∆x and the parameter ν/f∆t = (c∆t/∆x)/(f∆t) = R. This
is the same parameter seen in the dispersion relation (76) for the exact system
and the dispersion relations (78)–(79) for the B- and C-grids.

Equation (72) indicates that any growth or decay in the solution over a time
increment ∆t is given by the factor eReλ. If the normalized imaginary part
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(ω∆t)/f∆t) is plotted, then it is natural to use the same normalization for the
real part and plot eReλ/(f∆t); the resulting plots then indicate the amount of
growth or decay over a time interval of length ∆t = 1/f .

Figure 1 shows plots of the dispersion relations (78) and (79) for the B-
grid and C-grid, respectively, for the case R = 2. The horizontal coordinate
is restricted to the range 0 ≤ k∆x ≤ π, as the case k∆x = π corresponds
to waves of length 2∆x, which are the shortest waves that can be seen on a
grid with spacing ∆x. The vertical range is restricted to ω/f ≥ 0, as the
case ω/f < 0 is simply a reflection. In each frame, the dashed curve shows
the positive root of the exact dispersion relation (76) for inertia-gravity waves.
The solid curve and solid line illustrate the inertia-gravity mode and stationary
mode, respectively, in the difference approximations. The near-agreement of
the dashed and solid curves for k∆x near 0 illustrates the consistency of the
finite difference approximations. However, for larger k∆x the finite difference
approximations show substantial error in the phase velocity ω/k and group
velocity dω/dk.
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Figure 1: Dispersion relations for centered second-order finite difference approximations on
the B-grid and C-grid, for the case R = 2. Here, R is the ratio of the Rossby radius c/f to
the grid spacing ∆x. In each frame, the dashed curve shows the inertia-gravity mode in the
exact solution, and the solid curve and solid line show the dispersion relation for the finite
difference approximation. It is assumed here that there is no discretization with respect to
time.

Figure 2 shows plots of the dispersion relations for the B- and C-grids for
the case R = 1/2. In this case, the group velocity for the inertia-gravity mode
on the C-grid is dω/dk = 0, and no energy can be propagated. This conclusion
assumes that there is no discretization with respect to time. In a plot for the C-
grid in the case R = 1/4 (not shown here), ω/f is actually a decreasing function
of k∆x for 0 ≤ k∆x ≤ π, so the group velocity has the wrong sign in that case,
and thus energy propagates in the wrong direction.

Next consider the dispersion relations for the DG approximation. Figures
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Figure 2: Dispersion relations for the B-grid and C-grid, for the case R = 1/2. In the case of
the C-grid, the group velocity for the inertia-gravity mode is dω/dk = 0. In the case R = 1/4
(not shown here), the group velocity for the C-grid has the wrong sign, so energy is propagated
in the wrong direction in that case.

3 and 4 illustrate the case of piecewise quadratic approximations (i.e., N = 2)
with ratios R = 2 and R = 1/2, respectively. A comparison with (55) shows
that if N = 2 then there are three degrees of freedom for each of the unknowns
U , V , and η. The system (69), which represents the Fourier transform of the
DG method in this case, then consists of nine equations in nine unknowns. For
each value of k∆x, the matrix A in (70) has nine eigenvalues, which correspond
to nine modal solutions of the system (69). In comparison, the exact solution
and the B- and C-grid approximations each have two inertia-gravity modes and
one stationary mode, so the DG method admits six computational modes in the
present case.

In order to produce the plots in Figures 3 and 4, the eigenvalues of A were
computed numerically, for each value of k∆x in a finely-spaced mesh in the
interval [0, π]. In each of the Figures, the top frame contains plots of ω/f ,
and the bottom frame contains plots of the damping/growth factor eReλ/(f∆t),
as described earlier in this subsection. These quantities were sorted prior to
plotting, in order to produce continuous curves. For the cases plotted here,
inspections of some numerical output indicate that there are two inertia-gravity
modes (with positive and negative ω), three stationary modes with ω = 0, and
four other modes with ω 6= 0.

In the top frame in each Figure, the solid sloping curve shows the DG rep-
resentation of the inertia-gravity mode with ω > 0, and the solid horizontal line
shows a stationary mode with ω = 0. The inertia-gravity mode in the exact so-
lution is shown with a dashed curve that coincides almost exactly with the DG
representation of the inertia-gravity mode over the entire range 0 ≤ k∆x ≤ π.
This illustrates a high level of accuracy in the DG method that is radically

33



different from what is seen with the B- and C-grids in Figures 1 and 2. In par-
ticular, the close agreement for larger values of k∆x suggests high accuracy at
low resolution, and this is illustrated by some numerical experiments described
in Section 8.

In the bottom frame in each of Figures 3 and 4, the solid curve represents
the damping factor for the inertia-gravity modes. (For given k∆x, this factor
is the same for the two inertia-gravity modes with ω > 0 and ω < 0.) These
curves indicate very little spurious numerical dissipation for these modes.

Of the three modes with ω = 0, two have damping factor 1 and one has
damping factor less than 1; these are indicated by the horizontal dash-dot lines
in the lower frames. The four remaining (computational) modes have values of
ω/f that come in plus/minus pairs, and the positive values are illustrated with
dash-dot curves in the upper frames that in some portions exceed the vertical
ranges of those plots. However, these modes are damped very rapidly in time,
as indicated by the remaining dash-dot curves in the lower frames of Figures 3
and 4. In Figure 3, corresponding to R = 2, one of the damping factors is so
close to zero that it is not visible in the plot.
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Figure 3: The upper frame shows the dispersion relation for the discontinuous Galerkin ap-
proximation to the linearized shallow water equations in the quasi-one-dimensional case, with
the Lax-Friedrichs representation of the mass flux and pressure forcing at cell edges, piecewise
quadratic approximations, and R = 2. It is assumed here that there is no discretization with
respect to time. The solid curves represent the physical modes, and the dash-dot curves rep-
resent computational modes. The exact dispersion relation for the inertia-gravity wave mode
is represented by a dashed curve in the upper frame, which is almost identical to the plot of
the inertia-gravity mode in the DG approximation. The lower frame shows damping factors
for the various modes, with the solid curve corresponding to the physical inertia-gravity wave
mode.
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Figure 4: This Figure shows the same situation as Figure 3, except that R = 0.5 in this case.

For piecewise linear approximations (N = 1), the dispersion relations for
inertia-gravity waves are not quite as accurate as for N = 2, and the numerical
dissipation is noticeably larger. For piecewise cubic approximations (N = 3),
the dispersion relations for inertia-gravity waves are slightly more accurate than
for N = 2, and the numerical dissipation for those modes is less. Further exper-
iments with other values of R indicate that the DG approximation is accurate
for a wide range of values of that parameter. In this respect, the DG method
presents a distinct advantage over second-order finite differences on the B- and
C-grids.

7. Analysis of time-stepping methods

The dispersion analysis in the preceding section assumes that there is no
discretization with respect to time. The present section extends that analysis
to a time-stepping method developed by Higdon [16], [17]. We also compare the
stability of that method to the stability of some standard Runge-Kutta methods,
as applied to the discontinuous Galerkin representation of the linearized shallow
water equations in the quasi-one-dimensional setting. The starting point is the
formulation (68)–(70), which is obtained after a Fourier transform in x.

7.1. A two-level time-stepping method

The method developed in [16] and [17] is a two-time-level, second-order
method for ocean circulation modeling with a barotropic-baroclinic time split-
ting. With such a splitting, the fast external motions are modeled with a two-
dimensional vertically-integrated subsystem that resembles the shallow water
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equations, and the slow motions are modeled with a subsystem that is fully
three-dimensional. If the barotropic equations are discarded and the baroclinic
equations are reduced to the case of a single homogeneous layer, then the method
in [16] and [17] becomes a time-stepping method for the shallow water equations.

Here, we apply that method to the Fourier-transformed system in (69). In
that system, Lax-Friedrichs interpolation is used to compute the mass fluxes
and the pressure forcing at the edges of grid cells. Write (69) in the form

∂q

∂t
=

∂

∂t

 Û

V̂
η̂

 =

(
1

∆t

)
Aq,

where

Û(k, t) =
(
Û0, . . . , ÛN

)T
, V̂ (k, t) =

(
V̂0, . . . , V̂N

)T
, η̂(k, t) = (η̂0, . . . , η̂N )

T
.

Consider the evolution of the system from time tn to time tn+1 = tn + ∆t,
and use superscripts on dependent variables to denote their dependence on the
time level. In the present situation, the method in [16] and [17] consists of the
following steps.

(i) Predict Û and η̂ with a forward Euler step, to produce Ûpred and η̂pred.
(In the quasi-one-dimensional case, the role of V̂ is limited to the Coriolis terms,
and V̂ is updated in step (iii).)

(ii) Correct η̂ to produce η̂n+1. The Lax-Friedrichs mass flux uses both Û
and η̂; during this step, use unweighted averages of Ûn and Ûpred and of η̂n and
η̂pred.

(iii) Correct Û and update V̂ , to produce Ûn+1 and V̂ n+1. Implement the
Coriolis term implicitly with the trapezoidal rule, and in the Lax-Friedrichs
interpolation in the pressure forcing use unweighted averages of Ûn and Ûpred

and of η̂n and η̂n+1.
The prediction step (i) can be expressed in matrix-vector form as Ûpred

V̂ pred

η̂pred

 =

 Ûn

V̂ n

η̂n

+ ∆t

(
1

∆t

) E (f∆t)I F
0 0 0
F 0 E

 Ûn

V̂ n

η̂n

 ,

or

qpred =

 I + E (f∆t)I F
0 I 0
F 0 I + E

 qn ≡ Qpred q
n. (80)

The matrices E and F depend on the dimensionless wavenumber k∆x, for fixed
values of the Courant number ν = c∆t/∆x. The quantity V̂ pred plays no sub-
stantive role and is used here only for notational convenience. The combination
of steps (ii) and (iii) can be written in matrix-vector form as I − 1

2 (f∆t)I − 1
2F

1
2 (f∆t)I I 0

0 0 I

 Ûn+1

V̂ n+1

η̂n+1
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=

 I + 1
2E

1
2 (f∆t)I 1

2F
− 1

2 (f∆t)I I 0
1
2F 0 I + 1

2E

 Ûn

V̂ n

η̂n


+

 1
2E 0 0
0 0 0

1
2F 0 1

2E

 Ûpred

V̂ pred

η̂pred

 ,

or
G1q

n+1 = G0q
n +Gpred q

pred. (81)

Equations (80) and (81) can be combined to yield

qn+1 = G−1
1 (G0 +GpredQpred) q

n ≡ Gqn. (82)

For fixed values of ν and f∆t, the matrix G depends on k∆x. For given
values of those parameters, let λ be an eigenvalue of G with eigenvector z. A
corresponding solution to (82) is qn = λnz, where the superscript on q is a time
index and the superscript on λ is an exponent. Write λ as λ = |λ| exp(−iω∆t),
where ω is real and has units of 1/time; the dimensionless quantity −ω∆t is
then an argument of the complex number λ. A corresponding solution at time
tn to the spatially-dependent problem (i.e., before Fourier transform in x) is

qneikx = |λ|ne−iωn∆teikx = |λ|neikx−iωtn . (83)

(Compare to (63).)
Plots of all of the values of |λ| versus k∆x, for fixed ν and f∆t, can then be

used to assess the stability of the method. If |λ| ≤ 1 for all modes and all k∆x,
then the method is stable for that ν and f∆t. If |λ| < 1 for some eigenvalue,
then the method is dissipative for that mode. Furthermore, plots of ω∆t versus
k∆x give dispersion relations for the various modes and can be compared to the
relation (75), (ω∆t)2 = ν2(k∆x)2 + (f∆t)2, for the exact inertia-gravity mode.

In a manner analogous that used in Section 6.4, the eigenvalues of G are
computed here for each value of k∆x on a finely-spaced mesh in the interval
0 ≤ k∆x ≤ π. Some experiments for the cases N = 1 (piecewise linear), N = 2
(piecewise quadratic), and N = 3 (piecewise cubic) suggest that the stability of
the method depends on the value of the Courant number ν but is independent
of the value of f∆t. For each case, let νmax denote the maximum possible value
of ν for which the method is stable. The experiments show that if N = 1 then
νmax ≈ 0.33; if N = 2 then νmax ≈ 0.16; if N = 3 then νmax ≈ 0.09. These
values are also listed in Table 1, which is given later.

The values of νmax for this method are considerably less than the values
that are typically encountered when finite differences are used to discretize in
space. However, in the next subsection these values are seen to be competitive
with those encountered with some standard Runge-Kutta methods, and some
numerical experiments described in Section 8 suggest that the higher spatial
accuracy with the DG method can more than offset the disadvantage of the
greater restriction on the time step.
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Figures 5 and 6 show plots of ω∆t versus k∆x and |λ| versus k∆x for the
case N = 2; ν = 0.16; and f∆t = 0.08 and f∆t = 0.32, respectively. In these
two plots the ratio R = (c/f)/∆x = ν/(f∆t) has values R = 2 and R = 1/2,
respectively, which are the same values used in Figures 1–4.

In the top frames in Figures 5 and 6, the solid curve and solid line show
the inertia-gravity and stationary modes as represented in the discrete system,
and the dashed curve shows the inertia-gravity mode in the exact solution to
the continuous problem. As in the time-continuous case discussed in Section
6.4, the representation of the inertia-gravity mode in the fully-discrete system is
nearly exact. The solid curves in the lower frames illustrate the damping factor
|λ| in the inertia-gravity mode, and for this mode the dissipation is small.

Among the computational modes, there are typically one or more stationary
modes that are nearly undamped, and there are other modes for which the
dissipation is much stronger. The upper frames do not show dispersion relations
for the computational modes in order to reduce clutter, as there are cases where
a real eigenvalue migrates across the origin as k∆x varies, with the consequence
that its argument changes suddenly between 0 and ±π. Such modes decay very
rapidly in time.
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Figure 5: Plots of dispersion relations and damping factors for the fully-discrete problem
consisting of a discontinuous Galerkin spatial discretization and the two-level time-stepping
method of Higdon [16], [17]. The case shown here uses piecewise quadratic approximations,
with ν = 0.16 and f∆t = 0.08 and thus R = 2. In the upper frame, the solid curve shows
the inertia-gravity mode as represented in the discrete problem, and the dashed curve shows
the inertia-gravity mode in the exact solution. These nearly coincide. In the lower frame, the
solid curve shows |λ| for the inertia-gravity mode in the discrete system, and the dash-dot
curves correspond to other modes.
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Figure 6: Same configuration as in Figure 5, except that f∆t = 0.32 and thus R = 1/2.

7.2. Runge-Kutta methods

Next consider Runge-Kutta time-stepping methods, as applied to the for-
mulation (68)–(70) of the Fourier transform in x of the discontinuous Galerkin
spatial discretization.

The system (69) has the form q′(t) = (1/∆t)Aq, where the matrix A is
independent of t. In that case, a p-stage Runge-Kutta method of order p reduces
to a Taylor expansion of the matrix exponential (Ascher and Petzold [4]), i.e.,
the method is

qn+1 =

(
p∑
k=0

1

k!
Ak

)
qn ≡ G

RK
qn (84)

in this case. Runge-Kutta methods with p stages and order p exist only for
p ≤ 4.

A recently-developed alternative to the classical Runge-Kutta methods is
the class of strong-stability-preserving Runge-Kutta methods (Gottlieb et al.
[13]). Within this class, improvements on the maximum allowable time step
can be obtained with methods for which the number of stages exceeds the order
(Spiteri and Ruuth [27], Kubatko et al. [21]). For example, the optimal four-
stage method of order three for the equation dq/dt = F (q) is

Q(1) = qn +
∆t

2
F
(
qn
)

Q(2) = Q(1) +
∆t

2
F
(
Q(1)

)
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Q(3) =
2

3
qn +

1

3

[
Q(2) +

∆t

2
F
(
Q(2)

)]
qn+1 = Q(3) +

∆t

2
F
(
Q(3)

)
. (85)

For the special case q′(t) = (1/∆t)Aq, this method reduces to

qn+1 =

(
I +

1

2
A

)[
2

3
I +

1

3

(
I +

1

2
A

)3
]
qn ≡ G43 q

n. (86)

Similar to the technique used in Section 7.1, the stability of the above Runge-
Kutta methods can be explored by computing eigenvalues of the matrices G

RK

and G43 for all k∆x on a finely-spaced mesh in the interval [0, π], for various
values of the parameter ν and f∆t. The results of some experiments are listed
in Table 1.

In the case of the two-level method discussed in Section 7.1, the stability
appears to be independent of the value of f∆t. However, with the Runge-
Kutta methods considered here, the value of that parameter has an influence
on stability. The values of νmax given in Table 1 for the Runge-Kutta methods
are approximations to the maximum value of ν for which the method is stable
when f∆t is restricted to the range 0 ≤ f∆t ≤ 1.

N = 1 N = 2 N = 3

Two-level 0.33 0.16 0.09
RK(3,3) 0.40 0.20 0.13
RK(4,4) 0.46 0.23 0.14
SSPRK(4,3) 0.58 0.30 0.18

Table 1: Stability of time-stepping methods. Here, “Two-level” refers to the two-level method
described in Section 7.1, RK(p, p) refers to a p-stage Runge-Kutta method of order p, and
SSPRK(4, 3) refers to the method in (86). The columns of numbers give approximate values
of the maximum Courant number νmax for which the method is stable, for piecewise linear,
piecewise quadratic, and piecewise cubic approximations to the solution. The values of νmax

for the Runge-Kutta methods are the maximum values of ν when f∆t is restricted to the
range 0 ≤ f∆t ≤ 1. The method RK(2, 2) is not listed in the table, as it is unconditionally
unstable for nonzero values of f∆t. The two-level method has an operation count similar to
a two-stage Runge-Kutta method, so the lesser values of νmax relative to the other methods
is not a disadvantage.

The values of νmax for the two-level method are smaller than those for
the three-stage and four-stage Runge-Kutta methods. However, the two-level
method is a predictor-corrector method with an operation count similar to that
of a two-stage Runge-Kutta method. If a four-stage Runge-Kutta method is
used with twice the value of ∆t as is used with the two-level method, then over
a given length of model time the two methods would have comparable costs.

Figures 5 and 6 suggest that the two-level method represents the inertia-
gravity mode nearly exactly, if a piecewise quadratic DG method is used for

40



the spatial discretization. The accuracy of the two-level method may suffice, at
least for the situation covered by the present analysis.

8. Numerical experiments

Compared to finite difference methods, DG methods present some potential
disadvantages related to efficiency. In particular, a DG method requires the
computation of multiple degrees of freedom per dependent variable, in each
grid cell and at each time step, whereas finite difference methods require only
one degree of freedom. In addition, DG methods encounter more restrictive
bounds on the allowable time step for stable computations. On the other hand,
the multiple degrees of freedom in a DG method allow for higher accuracy, and
this raises the question of whether the higher accuracy can compensate for the
disadvantages in efficiency that were just mentioned.

The present section describes a numerical experiment which suggests that
this is the case, in a simple setting in which a DG method is compared to second-
order finite differencing on the B- and C-grids. In the situation described here,
DG methods and finite difference methods are equally applicable, and in this
test the DG method is at least as good if not better. More generally, DG
methods are well-suited for usage on unstructured meshes, and they can obtain
high-order accuracy while maintaining high locality. These features represent
fundamental advantages over finite difference methods, but a discussion of these
points is beyond the scope of the present paper.

The present section also describes a second numerical experiment, with vari-
able bottom topography, which illustrates the well-balanced nature of the pres-
sure forcing that is developed in this paper.

8.1. Configuration of the computations

The DG code used here is an implementation of the weak forms (21), (24),
(26) of the nonlinear equations for conservation of momentum and mass in a
constant-density fluid in the quasi-one-dimensional configuration that has been
discussed here. That is, we consider the shallow water equations in an infinite
straight channel in a rotating reference frame.

The formulation of the DG method for this case is similar to the formu-
lation used in Section 6.1 for the linearized equations (47)–(49), in the sense
that the polynomial basis functions are Legendre polynomials under a change
of independent variable. However, in Section 6.1 the integrals appearing in the
weak forms (47)–(49) are evaluated exactly by using orthogonality properties,
in order to carry out the analyses of dispersion and stability in Sections 6 and
7, whereas the code used for the present computations employs Gauss-Legendre
quadrature to compute all of the integrals. Numerical quadrature is appropriate
when an explicit time-stepping method is used, since at any stage in the com-
putation the time tendencies are determined by information that has already
been computed. In the simulations described here, five quadrature points are
used for all integrals.
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For a time-stepping method, this code uses the two-level method of Hig-
don ([16], [17]), as outlined in Section 7.1. For the nonlinear case implemented
here, the prediction of momentum involves both pbu and pbv. The momentum
equations include momentum advection terms that are not present in the lin-
ear case discussed in Sections 6 and 7; in equations (21) and (24), these are
the terms involving u(pbu) and u(pbv), respectively. During the computations,
the momentum advection is evaluated at time tn during both the prediction
and correction steps, and the boundary terms for the momentum advection are
evaluated with the Lax-Friedrichs flux.

8.2. Test #1: Wave propagation at low resolution

The analyses of dispersion relations in Sections 6.4 and 7.1 indicate that the
DG spatial discretization produces very little error in group velocity and phase
velocity for the physical inertia-gravity modes, and in addition the numerical
dissipation for such modes is very low. These remarks apply even when the
dimensionless wavenumber k∆x is large, i.e., at low resolution, and they apply
both to the time-continuous case and to the case where the system is discretized
in time with the two-level time stepping method described in Section 7.1. The
purpose of the present set of computations is to test the ability of the DG
method to propagate an inertia-gravity wave at low resolution and to compare
the results with those produced with centered second-order finite differences on
the B-grid and the C-grid.

For this test, the spatial interval has the form −xmax ≤ x ≤ xmax, where
xmax = 10, 000 km. The initial state consists of a localized pulse centered at
x = 0 at time t = 0, and the resulting waves propagate both to the left and to the
right for t > 0. The graphs displayed below show only the interval 0 ≤ x ≤ xmax,
and for purposes of these observations the test consists of initiating a signal at
x = 0 and then observing its propagation to the right.

The fluid domain has constant depth, and the gravity wave speed in the
nondispersive limit is chosen to be c = 1 m/sec. This speed is within the typical
range for internal waves (Section 6.3). In general, c =

√
gh for the shallow water

equations, where g is the acceleration due to gravity and h is the thickness of
the fluid layer. The present computations use the arbitrary value h = 100
meters, and the corresponding value of g is then 0.01 m/sec

2
. The effect of this

procedure is to produce a weak restoring force so that the inertia-gravity waves
move slowly. The small value of g is a “reduced gravity” that is sometimes used
in studies of internal waves (Cushman-Roisin [8], Gill [11]). Equivalently, one

could use the physical value g ≈ 9.8 m/sec
2

and use a small “equivalent depth”
h that produces the desired value of c.

In these tests the Coriolis parameter is the constant value f = 10−4 sec−1,
which is a representative value for the mid-latitudes. The Rossby radius for the
present wave motion is then c/f = 10 km.

The spatial interval is divided into grid cells having equal width ∆x, with
several different values of ∆x being used here. The largest of these is ∆x0 =
40 km. For that value, the ratio R of Rossby radius to cell width is R = 0.25.
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According to the discussions in Sections 6.3 and 6.4, the C-grid is not expected
to work well for this value of R.

In order to define the initial conditions, let L = 4∆x0 and M = 16∆x0.
Also let k0 = 2π/L denote the wavenumber corresponding to wavelength L.
The initial condition for the x-component u of velocity is

u(x, 0) = u0(x) = A0e
−(x/M)2 sin k0x, (87)

where A0 = 0.01 m/sec. At time t = 0, the perturbation in the elevation of the
free surface is set to zero, as is the y-component v of velocity. The amplitude A0

is chosen to have a small value so that the dynamics of the solution are nearly
linear, which enables a comparison with the results of simple implementations
of the linearized shallow water equations on the B- and C-grids.

Numerical experiments show that the solution breaks cleanly into left-going
and right-going wave packets from x = 0. (Other experiments show that if the
initial pulse consists of a perturbation in the free-surface elevation instead of u,
then much of the energy resides in the stationary mode ω = 0, and not much
energy is propagated.) The Fourier transform of the function u0 in (87) is a
Gaussian centered at wavenumber k0. According to the dispersion relation (75)
for exact solutions of the linearized shallow water equations, the group velocity
corresponding to wavenumber k0 in the right-going part of the exact solution is

dω

dk
(k0) =

k0c
2√

c2k2
0 + f2

. (88)

Since the solution is localized in wavenumber space, the solution is a wave packet
that travels with the group velocity (88). This velocity will be used below to
determine the location of the packet at a specified time and thereby assess the
accuracy of numerical solutions.

Because of the choice of the wavenumber k0, the factor sin k0x in (87) has
wavelength L = 4∆x0, or four grid cells when the grid spacing is ∆x0. For
a finite difference method, this is a low resolution; here, we test how the DG
discretization performs at this resolution.

However, a fair comparison of the two types of methods should acknowledge
that a DG method uses multiple degrees of freedom for each dependent vari-
able in each grid cell, whereas a finite difference method uses only one degree
of freedom for each dependent variable in each cell. A DG method with cell
size ∆x0 should therefore be compared with finite difference methods that use
smaller values of ∆x. A comparison of methods should also account for different
restrictions on the allowable time increment ∆t.

In these experiments, solutions were computed to time T = 20, 000, 000
seconds, or about 231 days. According to the value of the group velocity (88),
the wave packet should travel a distance of approximately 7310 kilometers over
that time interval.

Figure 7 shows the results obtained with the DG spatial discretization with
piecewise quadratic polynomials. For the computation shown in the upper
frame, the grid spacing is ∆x0 = 40 km, and the time increment is ∆t =

43



6400 sec. Since c = 1 m/sec, the corresponding Courant number is ν =
c∆t/∆x = 0.16, which is the approximate upper bound listed in Table 1 for
the two-level time-stepping method with N = 2. The plot indicates that the
location of the wave packet is essentially equal to the location found in the exact
solution.

For a check on this solution, an additional computation was run with ∆x and
∆t cut in half. Again, the location of the wave packet is essentially exact. The
slight increase in amplitude can be attributed to the fact that the dimensionless
wavenumbers k∆x for this packet are cut in half, and this reduces the slight
numerical dissipation that is found with the DG method.

0.4

0

0.4
DG,      Degree = 2,       x = 40 km,       t = 6400 sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.4

0

0.4
 x = 20 km,       t = 3200 sec

x  (km)

Figure 7: Propagation of a wave packet with a DG spatial discretization that uses piecewise
quadratic approximations. In each frame, the plotted curve shows the elevation of the free
surface, in meters, and the vertical dashed line indicates the location of the center of the wave
packet in the exact solution, as determined by the group velocity (88). For the computation
shown in the upper plot, there are four grid cells per wavelength, and for the lower plot there
are eight grid cells per wavelength.

Figure 8 shows the results obtained with centered second-order finite differ-
ences on a C-grid. The time-stepping method used here is the same two-level
method that was used for the DG computations. In this case, the Courant num-
ber must satisfy ν < 1 in order for the method to be stable (Higdon [16]); this
condition is much less restrictive than the ones encountered with the DG spatial
discretizations. The computations shown here use Courant number ν = 0.8.

For the solution shown in the top frame of Figure 8, the grid size is ∆x0 =
40 km, which is the same size used in the DG solution shown in the upper frame
of Figure 7. In this case the ratio R of Rossby radius to grid size is 0.25, and the
solution computed with the C-grid is highly inaccurate. For the middle frame
of Figure 8, the grid size and time step are cut in half, and for the bottom frame
these quantities are reduced by a factor of 5. For the last case, the time step is
∆t = 6400 sec, which is the same value used for the DG solution in the upper
frame of Figure 7. In this case, the location of the wave packet in the C-grid
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solution is still not nearly as accurate as in that DG solution.
In addition, the C-grid solution in the bottom frame requires the computa-

tion of more dependent variables than does the DG solution. Compared to the
C-grid computation with grid spacing ∆x0 = 40 km, the C-grid solution with
∆x = 8 km requires the computation of 5 times as many quantities per time
step. On the other hand, the DG solution with quadratic approximations in
the upper frame of Figure 7 requires the computation of only 3 times as many
quantities per time step.

The DG solution in the top frame of Figure 7 contains a small amplitude
error, due to a small amount of numerical dissipation that is inherent in that
method. Such an amplitude error appears not to be present in the C-grid solu-
tion in the bottom frame of Figure 8. However, the numerical algorithm used
here for the linearized equations on the C-grid is completely nondissipative,
whereas any algorithm used in an ocean model would contain some dissipa-
tion due to the usage of numerical advection schemes. A comparison of wave
amplitudes in the present test would therefore be misleading.
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Figure 8: Propagation of a wave packet with second-order finite differences on a C-grid, for
a sequence of decreasing values of ∆x and ∆t. The plotting format is the same as in Figure
7. Compared to the DG solution shown in the upper frame in Figure 7, the C-grid solution
shown in the top frame of the present figure uses the same grid size but a larger value of
∆t. The C-grid solution shown in the bottom frame uses the same ∆t but a smaller grid
size; it requires the computation of 5/3 times as many dependent variables and produces a
less accurate location of the wave packet. A comparison of wave amplitudes is of limited
value here, as the simple code used for this C-grid computation does not include a numerical
advection scheme and is entirely nondissipative.
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Figure 9 shows the results of some computations in which the B-grid is used
in place of the C-grid. The top two frames in that Figure use the same values
of ∆x and ∆t as in the top two frames of Figure 8. Again, the location of the
wave packet is not as accurate as the location produced by the DG method. For
this grid, an accurate location of the wave packet is obtained by reducing the
original ∆x and ∆t by a factor of 4 instead of 5, and the results are shown in
the bottom frame. Compared to the DG solution in the top frame of Figure 7,
this computation produces 4/3 as many unknowns per time step and uses 4/5
as many steps.

The results shown in Figure 9 suggest that the B-grid may not be at a
disadvantage relative to the DG method, in this particular test. However, this
quasi-one-dimensional setting does not fully display the deficiencies of the B-
grid in propagating inertia-gravity waves. It was mentioned in Section 6.3 that
the B-grid is generally less accurate than the C-grid when the ratio R of Rossby
radius to grid size is greater than 1. However, some contour plots of regions
of error in Figure 4 of Dukowicz [10] indicate that the B-grid and C-grid give
similar results for wave propagation parallel to the coordinate axes. Instead,
the real deficiencies of the B-grid are displayed with waves that propagate in
oblique directions, and such waves are not present in the quasi-one-dimensional
configuration considered here. A related remark is that, as noted in Section
6.2, the spatial averaging that is normally required on the B-grid is not actually
used in the quasi-one-dimensional case.

8.3. Test #2: Well-balanced pressure forcing

For the nonlinear shallow water equations in an infinite straight channel in
a rotating reference frame, a weak form of the u-momentum equation is given
in equation (21). The pressure forcing for this equation is given by the term
Πu(j, ψ), which is specified in (22). Section 5.3 describes a method for imple-
menting this pressure term in the presence of sloping and discontinuous bottom
topography, and Section 5.4 gives a proof that this forcing is well-balanced.
Here we describe a numerical experiment that illustrates this result.

For this computation, the spatial interval has the form 0 ≤ x ≤ xmax, where
xmax = 500 km. This interval is partitioned into 50 grid cells of equal width
10 km. The bottom topography of the channel is assumed to have a trapezoidal
cross-section, as illustrated in the upper frame of Figure 10. On each end of
the interval, the sloping portion of the topography occupies one-fourth the total
width of the interval. On the sloping portions, the elevation zbot of the bottom
topography is discontinuous across cell edges, and within each of those cells the
slope is half the slope that would be used if zbot were to be linear and continuous.
The small number of grid cells was chosen here so that the discontinuous nature
of the bottom topography would be readily visible in the plot.

The depth of the channel in the middle is 1000 meters, and the acceleration
due to gravity was set to a physical value of g = 9.81 m/sec2. For a layer
thickness h = 1000 m, the speed of gravity waves in the nondispersive limit
is then c =

√
gh ≈ 99 m/sec. The time step was chosen to be 16 sec, so

the Courant number is ν = c∆t/∆x ≈ 0.158. This is slightly less than the
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Figure 9: Propagation of a wave packet with second-order finite differences on a B-grid. For
the computation shown in the bottom frame, the number of dependent variables computed
is similar to the number computed for the DG solution in the top frame of Figure 7. Again,
a comparison of wave amplitudes is of limited value. As noted in the text, the quasi-one-
dimensional case considered here does not display the full deficiencies of the B-grid for inertia-
gravity waves.

upper bound stated in Table 1 for the case N = 2, i.e., for piecewise quadratic
approximations to the solution. Such approximations were used in the present
computation. The Coriolis parameter was defined to be the constant value
f = 10−4 sec−1.

For one simple test of well-balancing, the system was initialized to a rest
state consisting of a level free surface and zero velocity, and the algorithm was
executed for 106 time steps with zero wind forcing. In the computed solution,
the system remained at rest, as expected.

Another test was obtained by initializing the system to a geostrophically-
balanced state, which was then maintained by the algorithm over a long time.
To define such a state, assume that all time derivatives are zero, the cross-
channel velocity u is zero, and the wind and bottom stresses are zero. In this
case, the pointwise form (29) of the u-momentum equation reduces to

−fv = −g ∂ztop
∂x

, (89)

and the v-momentum equation (23) and the mass equation (25) both reduce
to 0 = 0. The free-surface elevation ztop was initialized to be continuous and
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piecewise linear, with mean zero, a slope of 1 m / 50 km in the middle 100 km
of the interval, and constant elevation ±1 meter elsewhere. Equation (89) was
then used to initialize the along-channel velocity v. The resulting v is piecewise
constant, with v = (1/50, 000)g/f = 1.962 m/sec on the subinterval where ztop
varies, and v = 0 elsewhere.

The algorithm was run for 106 time steps. The resulting elevation of the free
surface is shown in the lower frame of Figure 10. This elevation is essentially
equal to the initial state, so the geostrophic balance is maintained in this simu-
lation. In this system, the only physical processes present are the Coriolis effect
due to the rotating reference frame and the horizontal pressure forcing due to
the variation in the elevation of the free surface. As predicted by the analysis
in Section 5.4, the numerical results do not indicate any spurious forcing due to
the variable and discontinuous bottom topography.

0 100 200 300 400 500
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0

1

Elevation of the free surface (m)

x  (km)

           
1000

500

0
Cross section of the fluid domain

Figure 10: A test of well-balanced pressure forcing. The system is initialized to a
geostrophically-balanced state consisting of a piecewise linear free-surface elevation and a
corresponding component of velocity along the direction of the channel (i.e., into the page).
The lower frame shows the free-surface elevation after 106 time steps. The elevation shown is
essentially equal to the elevation at the initial time, so the geostrophic balance is maintained.
In this system, the only physical processes present are the Coriolis effect due to the rotating
reference frame and the horizontal pressure force due to variations in the elevation of the free
surface. The sloping and discontinuous bottom topography shown in the upper frame does
not contribute any spurious forcing to the system.

9. Summary

This paper is part of a longer-term study of the application of discontinuous
Galerkin methods to the numerical modeling of ocean circulation. One step
taken here is to develop a weak integral formulation of the lateral pressure forc-
ing in a three-dimensional hydrostatic fluid that is described by an arbitrary,
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generalized vertical coordinate. Such a formulation is suitable for a discontin-
uous Galerkin numerical method, and it avoids some known problems with the
pressure forcing in a generalized coordinate.

We then begin an analysis of this approach by considering a hydrostatic fluid
of constant density in a quasi-one-dimensional setting consisting of a flow in an
infinite straight channel in a rotating reference frame. One issue is the practical
implementation of the pressure forcing derived here, as one needs values of
mass variables at cell edges, but in the case of a DG method those quantities
are discontinuous at cell edges. The method developed here is applicable to
a fluid domain in which the bottom topography is variable within grid cells
and discontinuous across cell edges. The pressure forcing is shown to be well-
balanced, in this setting. The well-balancing is also illustrated with a numerical
experiment.

In addition, an analysis of numerical dispersion relations in the linearized
case indicates that this DG discretization is much more accurate than second-
order finite difference approximations on the B- and C-grids, which are widely
used in ocean modeling. A related analysis demonstrates the stability of some
time-stepping schemes, subject to restrictions on the Courant number. In a
simple numerical experiment in which the DG method and the B- and C-grids
are equally applicable, the additional accuracy of the DG approach can more
than offset its disadvantages, which result from a reduced time step and the
need to compute multiple degrees of freedom.

Section 4 outlines some other issues that are the subject of continuing work.
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Appendix A. Two horizontal dimensions and curvilinear coordinates

Section 3 contains a derivation of the weak forms of the momentum and mass
equations for the case where the horizontal dependence is quasi-one-dimensional.
For future reference, we now generalize the derivations in Section 3 to the case
of two horizontal dimensions.

Consider a hydrostatic and stratified fluid on a rotating spheroid, and assume
that the horizontal coordinates are arbitrary orthogonal curvilinear coordinates.
The vertical coordinate is a generalized coordinate s, as described in Sections 2
and 3. Partial differential equations for the conservation of mass, momentum,
and tracers in this case are derived in [18]. Here we derive weak forms for the
momentum and mass equations in this setting.

The present discussion uses notation similar to that used in [18], and more
details can be found there. Denote the rotating spheroid by Σ, and assume
that all or part of Σ is parameterized with coordinates x = (x1, x2). These
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coordinates need not have units of length; for example, x1 and x2 could be
angles that represent latitude and longitude, although such coordinates would
not be used in a global ocean model due to the convergence of coordinate lines
at the north pole. Let m1 and m2 be metric coefficients corresponding to x1 and
x2, respectively, so that m1(x)dx1 and m2(x)dx2 represent elements of length
along the surface Σ. Also let i(x, t) and j(x, t) denote unit vectors tangent to
Σ in the directions of increasing x1 and x2, respectively, and assume i · j = 0.
The (Eulerian) horizontal velocity of a fluid on the spheroid Σ is u(x, s, t) =
u(x, s, t)i(x, t) + v(x, s, t)j(x, t), where u = m1ẋ1 and v = m2ẋ2.

For the sake of integration, let E(x) = m1(x)m2(x); since the coordinates
are orthogonal, the element of area on Σ is then E(x)dx = m1m2dx1dx2. Let
D denote a region on Σ, and let D̃ denote its parameterization in terms of the
coordinates x = (x1, x2). The regions D̃ and D can be regarded as a parameter
domain and a physical domain, respectively.

The u-component of the momentum equation, from [18], is a generalization
of equation (2) and can be written in the form

∂

∂t

[
u(−ps)

]
+ div

[
uu(−ps)

]
+

∂

∂s

[
ṡu(−ps)

]
− f̃v(−ps)

= − 1

m1

∂P

∂x1

(
x, z(x, s, t), t

)
gzs + g

∂τu
∂s

, (A.1)

Here,

f̃(x) = f(x) + j ·
(
u

1

m1

∂i

∂x1
+ v

1

m2

∂i

∂x2

)
, (A.2)

where f(x) is the Coriolis parameter; the remaining terms in (A.2) relate to
the curvature of the spheroid Σ and the nature of its parameterization. The
v-component of the momentum equation is an analogue of (A.1). The equation
for conservation of mass is

∂

∂t

(
−ps

)
+ div

[
u(−ps)

]
+

∂

∂s

[
ṡ(−ps)

]
= 0. (A.3)

In equations (A.1) and (A.3), the symbol “div” denotes the divergence in two
horizontal dimensions in curvilinear coordinates. For a vector-valued function
on the parameter domain D̃ having the form F(x) = F1(x)i + F2(x)j, this
quantity is defined by

divF =
1

m1m2

[
∂

∂x1

(
m2F1

)
+

∂

∂x2

(
m1F2

)]
.

The action of this quantity on the physical domain D is obtained by multiplying
by the area element E(x)dx = m1m2dx1dx2 to obtain the divergence theorem∫

D̃

(divF) E(x)dx =

∫
∂D

F · n dS, (A.4)

assuming that the function F is sufficiently smooth and the boundaries of D̃ and
D are piecewise smooth. The right side of (A.4) is an integral on the boundary
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∂D of the physical domain D, with values of F taken from the corresponding
points on ∂D̃. The symbol n denotes the unit outward normal vector to ∂D,
and dS refers to arclength along ∂D. If φ is a scalar-valued function on D̃, then
(A.4) implies∫

∂D

φF · n dS =

∫
D̃

φ(divF) E(x)dx +

∫
D̃

F · ∇φ E(x)dx, (A.5)

where

∇φ =

(
1

m1

∂φ

∂x1

)
i +

(
1

m2

∂φ

∂x2

)
j.

Equation (A.5) is used below during integrations by parts.
Now regard the regions D̃ and D as grid cells in parameter space and phys-

ical space, respectively. Partition the fluid domain vertically with coordinate
surfaces defined by s = s0, s1, . . . , sR, with s0 > s1 > . . . > sR, and let

Ṽr = D̃ × [sr, sr−1] = {(x, s) : x ∈ D̃, sr < s < sr−1}.

To obtain a weak form for the u-component of the momentum equation,
multiply (A.1) by a test function ψ defined in D̃, and integrate on Ṽr with
respect to the measure E(x)dxds. As in Section 3.1, the test function is assumed
to be independent of s, and the integration with respect to s produces quantities
ur(x, t) and ∆pr(x, t). For the divergence term, use (A.5) to integrate by parts.
The resulting weak form is∫

D̃

{
∂

∂t
(ur∆pr)− f̃rvr∆pr +

[
ṡu(−ps)

]s=sr−1

s=sr

}
ψ(x) E(x) dx

+

∫
∂D

[
ur (ur∆pr)

]
· n ψ dS −

∫
D̃

[
ur (ur∆pr)

]
· ∇ψ E(x) dx

= Πu(r, ψ) + g

∫
D̃

{
(τu)r−1(x, t)− (τu)r(x, t)

}
ψ(x) E(x) dx, (A.6)

where Πu(r, ψ) is the pressure term discussed below. Equation (A.6) is a gen-
eralization of the weak form (8) for the case that was developed in Section 3.1.

The pressure term in equation (A.6) is

Πu(r, ψ) = −
∫
D̃

1

m1

[∫ sr−1

sr

∂P

∂x1

(
x, z(x, s, t), t

)
gzs ds

]
ψ(x)E(x) dx

= −g
∫
D̃

1

m1

[∫ zr−1(x,t)

zr(x,t)

∂P

∂x1
(x, z, t) dz

]
ψ(x)E(x) dx. (A.7)

Here, zr(x, t) = z(x, sr, t) and zr−1(x, t) = z(x, sr−1, t) denote the lower and
upper elevations associated with the parameter domain Ṽr. In the first line of
(A.7), the notation ∂P

∂x1

(
x, z(x, s, t), t

)
does not refer to a composite function, for

which the chain rule would apply; instead, the function ∂P/∂x1 is evaluated at
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the location (x, z(x, s, t), t). The second line of (A.7) is obtained with a change
of variable in the integration over s.

In analogy to (10), let

Hr(x, t) = g

∫ zr−1(x,t)

zr(x,t)

P (x, z, t) dz

for all x ∈ D̃. Then, by using an analogue of (14), equation (A.7) can be written
as

Πu(r, ψ) = −
∫
D̃

1

m1(x)

∂Hr

∂x1
ψ(x)E(x) dx

+ g

∫
D̃

pr−1(x, t)
1

m1

∂zr−1

∂x1
ψ(x)E(x) dx

− g

∫
D̃

pr(x, t)
1

m1

∂zr
∂x1

ψ(x)E(x) dx, (A.8)

where pr−1(x, t) = p(x, sr−1, t) and pr(x, t) = p(x, sr, t) denote the pressures at
the top and bottom of layer r, respectively. In the integral in the first term on
the right side of (A.8), the derivative of Hr can be removed by observing∫

D̃

1

m1

∂Hr

∂x1
ψ(x)E(x) dx

=

∫
D̃

∇Hr ·
(
ψ(x)i

)
E(x) dx

=

∫
∂D

Hr ψ i · n dS −
∫
D̃

Hr div
(
ψ(x)i

)
E(x) dx

=

∫
∂D

Hr ψ i · n dS −
∫
D̃

Hr
∂

∂x1

(
m2(x)ψ(x)

)
dx. (A.9)

The weak form of the u-component of the momentum equation is then equa-
tion (A.6), with the pressure term Πu(r, ψ) obtained by substituting the last
line of (A.9) into the first term on the right side of (A.8).

The weak form of the mass equation (A.3) is obtained with a derivation that
is similar to that of the momentum equation, except that it is less complicated,
and the result is∫

D̃

{
∂

∂t
(∆pr) +

[
ṡ(−ps)

]s=sr−1

s=sr

}
ψ(x) E(x) dx

+

∫
∂D

(ur∆pr) · n ψ dS −
∫
D̃

(ur∆pr) · ∇ψ E(x) dx

= 0.
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