1	Advances	in	the	Analysis	of	Biogeochemical	Interfaces:	NanoSIMS	to
2	Investigate Soil Microenvironments								

- 3 Review article for "Advances in Agronomy"
- 4 Carsten W. Mueller¹, Peter K. Weber², Matt R. Kilburn³, Carmen Hoeschen¹, Markus Kleber⁴
 5 and Jennifer Pett-Ridge²
- 6 ¹Lehrstuhl für Bodenkunde, TU München, Freising, Germany
- 7 ²Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore,

```
8 California, USA
```

- **9** ³Centre for Microscopy, Characterisation and Analysis, The University of Western Australia,
- **10** Crawley, Australia
- ⁴Department of Crop and Soil Science, Oregon State University, Corvallis, USA

12

- **13** Running head: NanoSIMS to Investigate Soil Microenvironments
- 14 Corresponding author: Carsten W. Mueller, carsten.mueller@wzw.tum.de,
- **15** phone: +49(0)8161-714423, FAX: +49(0)8161-714466
- **16** Used platform: Windows XP, Word 2010
- **17** Date: 11. October 2012

- **19** Table of Contents
- 20 Abstract
- **21** 1. Introduction
- 22 1.1. The importance of nano-scale processes in soils research
- 23 1.2. Fundamentals of Secondary Ion Mass Spectrometry
- 24 1.2.1 NanoSIMS
- **25** 1.2.2. Basic requirements for NanoSIMS samples
- 26 2. Experimental approaches for the study of soil microenvironments using NanoSIMS
- 27 2.1. Lessons learned from geology and microbiology
- 28 2.1.1. Investigating mineral-organic associations
- **29** 2.1.2. Investigating intact three dimensional micro-structures
- 30 2.1.3. Investigating plant soil processes
- **31** 2.1.4. Tracking organic and inorganic pollutants
- **32** 3. NanoSIMS requirements for soil related studies
- **33** 3.1. Technical considerations for soil samples
- **34** 3.2. Sample documentation
- **35** 3.3. Instrument tuning and quality control
- **36** 3.4. Sample preparation from single particles to intact soil
- **37** 3.4.1. Direct deposition of individual particles and microaggregates
- **38** 3.4.2. Fixation and preparation of organic materials
- **39** 3.4.3. Preparation of aggregated soil structure and intact plant-soil systems
- **40** 3.5. Data acquisition and analysis
- **41** 4. Combination with other micro-scale techniques

- 4.1. Scanning and transmission electron microscopy
- 4.2. Synchrotron based techniques
- 4.3. Atomic force microscopy
- 45 4.4. In situ single-cell labeling
- 5. Conclusion
- 47 Acknowledgments
- 48 References

50 Abstract

51 Since a NanoSIMS high-resolution secondary ion mass spectrometry instrument was first 52 used for cosmochemistry investigations over a decade ago, both interest in NanoSIMS and 53 the number of instruments available have significantly increased. However, SIMS comes with 54 a set of challenges that are of both technical and conceptual nature, particularly for complex 55 samples such as soils. Here, we synthesize existing research and provide conceptual and 56 technical guidance to those who wish to investigate soil processes at the sub-micron scale 57 using secondary ion mass spectrometry, specifically with NanoSIMS. Our review offers 58 advice resulting from our own operational experience but also intends to promote synergistic 59 research on yet unresolved methodological issues. We identify and describe the basic setup 60 of a NanoSIMS instrument and important issues that may arise as a soil sample specimen is prepared for NanoSIMS analysis. This is complemented by discussions of experimental 61 62 design, data analysis and data representation. Next to experimental design, sample 63 preparation is the most crucial prerequisite for successful NanoSIMS analyses. We discuss 64 the requirements and limitations for sample preparation over the size range from individual 65 soil particles to intact soil structures such as macroaggregates or intact soil cores. For robust 66 interpretation of data obtained by NanoSIMS, parallel spatial, textural (scanning electron 67 microscopy, atomic force microscopy) or compositional analyses (scanning transmission X-68 ray microscopy) are often necessary to provide necessary context. We suggest that NanoSIMS analysis is most valuable when applied in concert with other analytical 69 70 procedures and can provide powerful inference about small scale processes that can be 71 traced via isotopic labeling or elemental mapping.

73 1. Introduction

74 1.1. The importance of nano-scale processes in soils research

75 Soil is often described as one of the most complex media on earth (Schulze and Freibauer, 76 2005). This complexity extends from the ecosystem-scale to individual microaggregates, 77 where nanometer-scale interactions between microbiota, organic matter and mineral particles are thought to control the long-term fate of soil carbon, nutrients and pollutants 78 79 (Lehmann et al., 2007; Schmidt et al., 2011). Processes that have a major impact at the 80 landscape- or global-scale are determined by events occurring at the micro- and nanometer 81 scales. For example, entrapment of soil organic matter (SOM) within microaggregates with a 82 diameter of less than 250 µm and SOM sorption onto even smaller clay and iron oxides is a 83 vital mechanism for long term preservation of organic carbon (OC) in soils (Lehmann et al., 84 2007; von Lützow et al., 2006). Release of nutrients in the rhizosphere is driven by root 85 exudation at highly active micron-scale biogeochemical interfaces between roots, microbes 86 and minerals (Breland and Bakken, 1991; Hinsinger et al., 2009; Norton and Firestone, 87 1996). Microbial activity occurs mostly in micro-habitats (Dechesne et al., 2007; Müller and 88 Defago, 2006; Nunan et al., 2007) and involves mineralization of SOM and organic 89 pollutants. Hydrologic processes at the field-scale are also influenced by fine-scale 90 interactions as preferential flow paths may create localized zones of altered water and 91 nutrient flow and thereby impact microbial abundance, community structure and SOM 92 turnover (Chabbi et al., 2009; Morales et al., 2010). Preferential flow zones are themselves 93 heterogeneous at the micro-scale, with a heterogeneous supply of oxygen, water and nutrients driving "hot spots" of microbial growth directly adjacent to areas of lesser microbial 94 activity (Bundt et al., 2001). In all of these cases, activities at nano- to micron-scale soil 95 96 biogeochemical interfaces determine the expression of higher level ecosystem functions. The majority of soil research, however, is conducted on bulk (> 1 g) samples, which are often 97 98 significantly altered prior to analysis. Pretreatments and analytical side effects include drying 99 at varying temperatures, sieving/homogenization for process or elemental analysis, thermal 100 alteration (as in pyrolysis GC/MS) or chemical alteration (as in alkaline extraction of "humic"

substances or in cupric oxide oxidation for lignin analyses). With the advent of novel microspectroscopy and spectrometry techniques that allow for the study of micro- to nano-scale
molecular, isotopic, and elemental patterns, it is now possible to make process-oriented
observations (e.g. the stabilization of organic matter, sorption of pollutants and mineral
weathering) at the micron or sub-micron scale.

106 Elemental and isotopic imaging conducted via secondary ion mass spectrometry (SIMS) is a 107 particularly promising technique for small-scale soil process research. SIMS uses a high-108 energy ion beam to sputter material from a sample surface, which can then be analyzed in a 109 mass-spectrometer. With high resolution SIMS instruments (Cameca NanoSIMS 50, 50L, 110 Gennevilliers, France), the distribution of elements and isotopes can be visualized with up to 111 50-150 nm lateral resolution within soil samples ranging from primary particles to sub-regions 112 of intact soil cores. For this reason, NanoSIMS has the potential to provide quantitative 113 measures of organic matter-mineral-microbial interactions and biogeochemical processing at 114 the macro- and microaggregate or single-cell scale.

115 Relatively few SIMS experiments have been conducted to date in soil science. In one of the 116 first, Cliff et al., (2002b) used time of flight-SIMS (ToF-SIMS) and additions of ¹⁵N-labeled 117 and ¹³C-labeled compounds to study small-scale differences in N assimilation as a function of 118 C vs. N limitation. When they compared SIMS values with bulk-measured microbial biomass N assimilation, they found substantial spatial heterogeneity in ¹⁵N distribution that was not 119 120 apparent through bulk analysis (Cliff et al., 2007). More recently, studies using SIMS and 121 NanoSIMS analysis have revealed effects at even finer scales within individual 122 microaggregates, mineral surfaces, microbes, and root hairs (Blair et al., 2006; Cliff et al., 123 2002a; Clode et al., 2009; DeRito et al., 2005; Herrmann et al., 2007a; Herrmann et al., 124 2007b; Keiluweit et al., 2012; Pumphrey et al., 2009). An early review paper by Herrmann 125 and co-authors (Herrmann et al., 2007b) focused on potential applications for soil ecology and included the first application of the NanoSIMS technique with an intact soil 126 127 microaggregate. Subsequent publications have addressed the technical aspects (sample

preparation) and investigations of organo-mineral associations at scales ranging from clay
size mineral grain to intact soil cores (Keiluweit et al., 2012; Mueller et al., 2012b; Remusat
et al., 2012).

In this article, our goal is to provide insight into the range of potential NanoSIMS applications in soil system research, discussing technical capabilities and limitations, major sample requirements, and important complementary micro-spectrometry techniques. As NanoSIMS applications in closely related fields, such as plant science and microbiology, have been reviewed recently (Moore et al., 2011a; Musat et al., 2012), we focus on the use of NanoSIMS in soil research.

137 1.2. Fundamentals of Secondary Ion Mass Spectrometry

138 SIMS is a surface analysis technique for solid samples. Primary ions, with a kinetic energy 139 ranging from a few hundred electron volts to tens of thousands of electron volts, are focused 140 on the sample surface, ejecting atoms and molecules in a process called sputtering (see 141 Figure 1). A small fraction of the ejected atoms and molecules are ionized, and can be 142 extracted with an electrostatic field into a mass spectrometer. The fraction of the sputtered 143 material that is ionized is determined by the ionization efficiency of the element in the sample 144 matrix, and is referred to as the secondary ion yield. For different elements, secondary ion 145 yields vary over many orders of magnitude, and also strongly depend on the physico-146 chemical nature of the sample (Storms et al., 1977; Wilson et al., 1989). Within the mass 147 spectrometer, secondary ions can be separated according to their mass to charge ratio in a 148 quadrupole, magnetic-sector, or time-of-flight (TOF) mass analyzer. These analyzers differ in 149 terms of detectable mass range, sensitivity, ion transmission, and cost. As NanoSIMS has 150 both high sensitivity and spatial resolution at high mass resolving power, this particular SIMS 151 instrument meets many of the specific requirements for micro-scale elemental and isotopic 152 mapping analyses in soil science.

154 1.2.1. NanoSIMS

155 The NanoSIMS is optimized for SIMS imaging with sub-micron lateral resolution. The 156 NanoSIMS 50 and 50L instruments, conceived by George Slodzian (Slodzian, 1987; 157 Slodzian et al., 1992) was designed by Bernard Daigne, François Girard and François Hillion 158 (Hillion et al., 1993), and manufactured by Cameca France under a license from the Office 159 National d'Études et de Recherches Aérospatiales at Université Paris-Sud (UPS ONERA). 160 There are now more than thirty NanoSIMS instruments installed world-wide, working on a 161 wide range of applications ranging from geology and cosmochemistry (Floss et al., 2006; 162 Hoppe, 2006; Stadermann et al., 1999; Wacey et al., 2010a), to biology (Finzi-Hart et al., 163 2009; Kraft et al., 2006; Lechene et al., 2006), material science (Valle et al., 2011) and soil 164 science (Herrmann et al., 2007a; Keiluweit et al., 2012; Mueller et al., 2012b).

165 The key innovation of the NanoSIMS is the coaxial lens (Figure 1) which focuses the primary 166 ion beam and extracts and focuses the secondary ion beam as well. This configuration 167 minimizes the distance between the sample surface and primary focusing lens, allowing the 168 primary beam to be focused to a much smaller diameter than in conventional SIMS 169 instruments. In addition, the secondary mass spectrometer is optimized for high-transmission 170 at high (>3000) mass resolving power. The NanoSIMS comes equipped with a Cs⁺ primary ion source for analysis of negative secondary ion species (e.g. ¹²C⁻, ¹³C⁻, ¹²C¹⁴N⁻, ¹²C¹⁵N⁻, 171 ²⁸Si⁻, ²⁷Al¹⁶O⁻ and ⁵⁶Fe¹⁶O⁻), and an O⁻ primary beam source, for analysis of positive 172 secondary ions (e.g. ²³Na⁺, ³⁹K⁺, ⁴⁴Ca⁺, ⁵⁶Fe). Due to the coaxial lens setup (Figure 1 B), 173 174 secondary ions must have the opposite charge from primary ions to enable extraction to the 175 mass spectrometer. A ~150 nm diameter Cs⁺ primary ion beam with a beam current of 1 to 2 176 pico Ampere can routinely be achieved. While an even smaller beam diameter is possible, 177 there are trade-offs between high-resolution (with reduced beam current) and secondary ion 178 count rates. Higher currents and thus beam diameters are often crucial to yield significant amounts of secondary ions (e.g. ¹³C⁻, ¹²C¹⁵N⁻, ⁵⁶Fe¹⁶O⁻) when analyzing soil samples. With an 179 180 O⁻ beam, a diameter of ~400 nm is typical.

181 The advantage of the NanoSIMS instrument lies in the coupling of a continuous, high spatial 182 resolution analysis beam with high mass resolving power, resulting in high sensitivity and 183 specificity with relatively short integration times. Users should also be fully aware that the 184 NanoSIMS 50 and 50L are both 'dynamic' SIMS instruments where the sample is actively 185 eroded during the sputtering process and molecular bonds are broken by the primary ion 186 beam. Up to five (NanoSIMS 50) or seven (NanoSIMS 50L) secondary ions can be detected simultaneously. Additionally, if operated in Cs⁺ mode, secondary electrons produced by the 187 collision cascade can be detected by a photo-multiplier, providing a secondary electron 188 189 image that can provide structural and textural information that is comparable to a low-190 resolution SEM micrograph.

191 1.2.2. Basic requirements for NanoSIMS samples

192 A wide range of solid samples are compatible with SIMS, provided they are dry and stable under high vacuum (< 10^{-9} mbar), relatively flat (< 2-30 microns of relief), and conductive. 193 194 Sample out-gassing can be caused by absorbed water, other volatiles, hydrocarbons or 195 samples prepared via resin embedding. Pre-treatment in a vacuum oven under low heat can 196 reduce out-gassing within the analysis chamber. Out-gassing may degrade analysis 197 conditions by elevating chamber pressure, reducing ion transmission and generating 198 molecular interferences or physical contamination, which will all lead to poor analysis quality. 199 Sample flatness is also important as any surface roughness may influence sample 200 sputtering, ion extraction and mass spectrometer tuning. For natural abundance isotopic ratio 201 measurements, 2-4 per mil level external precision can be achieved with repeated analyses 202 of bacterial spores with ~1 micron of relief (P.K. Weber, unpublished results). For isotopic 203 tracer experiments, more topographic relief (10 to 20 microns) can be tolerated (Woebken et 204 al., 2012). Even higher topographic relief (~30 microns) may also be viable in some 205 applications (P.K. Weber, unpublished results) but with significant loss in precision and the 206 need for careful monitoring of measurement quality. Finally, because SIMS uses an ion 207 beam to eject charged ions from the sample's upper atomic layers, a mechanism to dissipate

208 charge from the analysis location is critical. In our experience, most soil samples are semi-209 insulating, and typically must be coated in an evaporator or sputter coater with a 2 - 20 nm 210 layer of gold (or carbon, iridium, gold-palladium, or platinum) to minimize charging during 211 analysis. Sample flatness can also interact with charge dissipation characteristics. As a 212 general rule, the more topography a sample has, the thicker a conductive coat needs to be to 213 bridge topographic gaps. Metal coating and sample flatness become particularly important if 214 an electron flood gun is to be used for charge compensation (see NanoSIMS soil preparation 215 details below).

216 2. Experimental approaches for the study of soil microenvironments using

217 NanoSIMS

218 2.1. Lessons learned from geology and microbiology

219 Perhaps one of the most appealing aspects of NanoSIMS analysis for many soil scientists is 220 the instrument's potential to quantitatively localize stable isotopes at a previously unresolved 221 spatial scale. Since the fields of geology, cosmochemistry, and geomicrobiology have a more 222 extensive tradition with SIMS and NanoSIMS applications, that literature is a logical source of 223 illustrative models for soils research. Cosmochemists were first to use NanoSIMS for isotopic 224 measurements, taking advantage of its high spatial resolution and simultaneous imaging 225 capabilities. Using NanoSIMS, Messenger et al. (2003) located rare isotopically anomalous 226 (> 100 ‰) micron-sized pre-solar grains within meteoritic samples that are too small to have 227 been analyzed by bulk measurements or even conventional SIMS (e.g. Cameca SIMS 1280). 228 NanoSIMS has also been used to measure large isotopic fractionation in biominerals (e.g. 229 carbonates from mollusk shells and corals) and deduce metabolic pathways such as 230 methanotrophy (Rasmussen et al., 2009) or sulfate reduction and sulfur disproportionation 231 (Philippot et al., 2007; Wacey et al., 2010b). In geologic samples, NanoSIMS imaging was 232 employed to support a microbial origin for Ooids - concentrically-laminated sedimentary 233 grains found in turbulent marine and freshwater environments (Pacton et al., 2012), and a microbial role in Fe-mineralization within spheroidal iron oxide concretions associated withpalaeoaquifers (Weber et al., 2012).

236 All of the studies mentioned above capitalized upon natural isotope fractionation effects that can shift natural abundance values by 10s to 100 per mil (e.g. for biological sulfur cycling -237 8.5‰ to +19‰ $\delta^{34}S_{CDT}$ (CDT – Canyon Diablo troilite); for methanotrophy -55‰ to -43‰ 238 $\delta^{13}C_{PDB}$ (PDB – Pee Dee belemnite) (Rasmussen et al., 2009). These effects are in many 239 240 cases significantly larger than those found in soil/sediment systems, where prominent 241 isotopic effects range from ~ 1 to 11‰ δ^{13} C (litter decomposition, C3-C4 plant shifts, (Ehleringer et al., 2000)), ~7‰ δ¹⁵N (soil depth gradients, (Billings and Richter, 2006)) or as 242 little as 0.8‰ δ^{56} Fe (soil iron pools, (Kiczka et al., 2011)). One exception is the work of 243 244 Orphan and colleagues (2001) who have used SIMS and NanoSIMS to image isotopic 245 fractionation in modern anoxic sediment cores of the Eel river basin in the Pacific Ocean. There, the authors report isotopic fractionations of δ^{13} C of up to -96‰ in the interior of 246 247 bacterial aggregates, indicating consumption of isotopically light methane by methanotrophic 248 bacteria.

249 For most soil process-level questions, the best approach may be to use stable isotope 250 labeling as a way to document transformation pathways in soil micro-environments over time. 251 This approach, like many of the published examples in cosmo- and geo-chemistry, would 252 take full advantage of the NanoSIMS's spatial resolution while improving detection of the 253 isotopic species of interest. In the past decade, stable isotope labeling (often with ¹³C or ¹⁵N) 254 and NanoSIMS analyses have been widely used in environmental microbiology, supporting research on the metabolism of single microbial cells (Pett-Ridge and Weber, 2012) both in 255 256 pure culture and in natural environmental samples ranging from marine bacterial and 257 archaeal communities (Dekas et al., 2009; Halm et al., 2009; Musat et al., 2008; Ploug et al., 2010), to acid mine drainage biofilms (Moreau et al., 2007), to ¹³C and ¹⁵N fixation in 258 259 diazotrophic cyanobacteria (Finzi-Hart et al., 2009; Popa et al., 2007; Woebken et al., 2012) 260 and eukaryotes (Lechene et al., 2006; Lechene et al., 2007).

261 An idealized stable isotope labeling experiment in soil might proceed as follows: (1) add an organic compound of interest, labeled for instance with ¹³C or ¹⁵N, to a model system that 262 263 contains reactive mineral surfaces and an active microbial decomposer community; (2) 264 incubate under controlled conditions, varying an edaphic variable of interest (moisture, 265 temperature, pH); (3) prepare and analyze samples via NanoSIMS imaging to determine the 266 physical fate of the target compound – whether it becomes metabolized (and the label is 267 transferred to microbial decomposers) or whether it is adsorbed to mineral surfaces. 268 Enrichment of the label above a background value could then be used to support inference 269 about the fate of the compound of interest. This type of application could potentially 270 contribute to both studies of soil carbon turnover dynamics as well as investigations of 271 contaminant fate in soils.

272 Previous NanoSIMS studies of biotic (microorganisms and plants) and abiotic materials 273 (minerals, fossils) represent endmember models of the soil system, with its inherent 274 combination of geologic and microbiological aspects. This substantial literature serves as a 275 valuable resource for soil scientists interested in designing micro-scale soil research, 276 particularly as a resource for experimental concepts and sample preparation protocols. In the following section we discuss examples from soil science where NanoSIMS has been 277 278 successfully applied, as well as additional areas where soil interface research could 279 significantly benefit from high-resolution isotopic imaging in the future. As we point out 280 potential applications, we also mention pitfalls and methodological constraints.

281 2.1.1 Investigating mineral-organic associations

Historically, studies of mineral-organic associations have employed bulk analysis procedures
performed on operationally defined physical fractions (Balesdent et al., 2000; Christensen,
2001; Eusterhues et al., 2005; Schöning et al., 2005). The goal of such procedures is to
isolate mineral-organic associations of given characteristics, such as an increasing
proportion of microbially processed organic matter (OM) in fractions of increasing density
(Derrien et al., 2006; Grandy and Neff, 2008; von Lützow et al., 2007). In contrast to bulk

288 analysis, NanoSIMS offers the possibility to examine organo-mineral assemblages in the 289 context of intact spatial structures. If a stable isotope labeling experiment (see above) is 290 used, NanoSIMS images can potentially reveal the spatial distribution and dilution of a tracer 291 material as it moves into the soil matrix. They can also reveal whether preferential 292 associations of certain OM types predictably associate with certain mineral phases. This is 293 possible because of three main advantages NanoSIMS has over other microscopic 294 techniques: (1) elemental mapping can be done with better lateral resolution, (2) the low depth penetration (~ 10 to 20 nm) of the NanoSIMS primary beam allows thin surface layers 295 to be examined, (3) highly accurate isotope detection allows the operator to track OM¹³C and 296 297 OM¹⁵N onto distinct minerals in an intact micro-environment, and thus enables process-level 298 studies. In a proof-of concept example, these three advantages were exploited by Heister et 299 al. (2012), who showed that in artificial soil mixtures, soil minerals and organic materials can 300 be distinguished in NanoSIMS images, using the distinction between organic material 301 derived ions (¹²C⁻ and ¹²C¹⁴N⁻) and mineral derived ions (²⁸Si⁻, ²⁷Al¹⁶O⁻, and ⁵⁶Fe¹⁶O⁻). The 302 authors used NanoSIMS in this study as a tool for micro-scale elemental mapping of organic 303 matter on mineral surfaces. They showed that organic matter tended to be attached to 304 phyllosilicate clays in the form of isolated patches, while continuous coatings of organic 305 matter enveloped small ferrihydrite particles. Such micro-scale heterogeneities could not 306 have been resolved by SEM/EDX measurements. In another example, Mueller et al. (2012b), 307 working with resin-embedded soil macroaggregates, found heterogeneous isotopic enrichment at the micro-scale following the application of a ¹³C/¹⁵N label (amino acid mixture 308 309 of algal origin) to natural soils. They speculated that microbial activity may have lead to the 310 increased utilization of freshly added organic matter, or that soil components have different 311 sorption capacities. The NanoSIMS's unique capacity to detect stable isotope tracers at the 312 micro-scale enabled both these studies to confirm the predicted physical dimensions of 313 organo-mineral associations.

By combining isotopic and elemental imaging, NanoSIMS analysis can also reveal whethercertain OM types predictably associate with certain mineral phases. This particular capacity

of the NanoSIMS was used by Keiluweit et al (2012) in a study where ¹³C/¹⁵N enriched fungal 316 hyphal extracts were incubated with organic horizon soil. NanoSIMS images of ¹⁵N 317 318 enrichment and iron distribution suggest that nitrogen from fungal cell walls was rapidly and 319 preferentially deposited as thin organic coatings onto Fe (hydr)oxide surfaces (Keiluweit et 320 al., 2012). Further analysis of these samples by scanning transmission X-ray microscope in 321 combination with near edge X-ray absorption fine structure spectrometry (STXM-NEXAFS) 322 revealed these soil microstructures were enriched in aliphatic C and amide N, suggesting 323 that a concentration of microbial lipids and proteins had quickly become associated with Fe 324 (hydr)oxide surfaces. Remusat et al. (2012) used a similar approach to image intact soil 325 particles with low levels of isotopic enrichment sampled 12 years after a ¹⁵N litter labeling 326 experiment in a temperate forest. They describe microsites of isotopic enrichment ("¹⁵N hot spots") on mineral surfaces, and in one microsite, suggest that ¹⁵N enrichment was also 327 328 linked to the presence of microbial metabolites. This kind of combined approach, NanoSIMS 329 image analysis joined to complementary microscopy (SEM-EDX, STXM/NEXAFS), may be a 330 particularly profitable means to infer the molecular and spatial fate of labeled organic 331 materials in a mineral matrix, and has the potential to contribute to a mechanistic 332 understanding of sorption, occlusion, and decomposition processes that operate at fine 333 spatial scales.

334 A recent quantitative analysis of organo-mineral assemblages by Hatton et al. (2012) used a combination of macro- and micro-scale analyses for an internal calibration of C/N and ¹⁵N/¹⁴N 335 336 ratios in sequentially separated soil density fractions. This approach is based on the 337 assumption that macroscopic features, visible under reflectance light microscope and 338 analyzable by elemental analyzer isotope ratio mass spectrometry (EA-IRMS), are also 339 found at the micro-scale as detected in SEM or NanoSIMS images. The authors collected NanoSIMS images over 500 μ m² for each density SOM fraction, and corrected these using 340 341 EA-IRMS data from macroscopic features. Because matrix-matching SIMS standards for soil 342 organic matter do not yet exist, this calibration approach is a promising step towards a better 343 quantification of data derived from SIMS images. While significant procedural challenges

remain, the examples presented above illustrate how well-designed experiments can benefit
from NanoSIMS information to help decipher chemical and microbiological processes in soil
microenvironments.

347 2.1.2 Investigating intact three dimensional micro-structures

348 NanoSIMS imaging may also be profitable in studies of micro-scale soil architecture. The first 349 systematic approach to the study of in-situ soil features was established by the 350 micropedological work of Kubiena (1938). Whole intact soil clods were impregnated with 351 epoxy resin, thin sections were produced and small scale pedological features were studied 352 using transmitted light microscopy. A large range of soils have been studied using this 353 technique, combining different light sources ranging from polarized light to fluorescent 354 staining of microbial cells (Bullock and Murphy, 1980; Eickhorst and Tippkoetter, 2008; Fisk 355 et al., 1999; Li et al., 2004; Pulleman et al., 2005). With the rise of analytical techniques that 356 can resolve soil features at the nano- to micro-scale (e.g. TEM, AFM, NanoSIMS), the 357 micromorphological examination of soils is experiencing a renaissance. However, mineral 358 particles pose a challenge to elemental mapping and isotope tracing experiments in intact 359 soil matrices because they make embedding and thin-sectioning more difficult, and can 360 cause electrical charging effects (Cliff et al., 2002b; Pett-Ridge et al., 2012). Still, a number of proof-of-concept studies have successfully shown that ¹⁵N and ¹³C isotope additions can 361 362 be imaged by NanoSIMS in two dimensions within a natural or synthetic soil matrix (Herrmann et al., 2007b; Keiluweit et al., 2012; Mueller et al., 2012b; Pett-Ridge et al., 2012; 363 364 Remusat et al., 2012).

Sample preparation is the most important issue to be resolved prior to micro-scale studies of soil three dimensional structures. This is particularly true for soil macroaggregates (> 250 µm in diameter) which have topography too large for reliable NanoSIMS measurements. To maintain adequate flatness and integrity in friable samples, larger soil aggregates and intact soil cores will typically require embedding and subsequent sectioning. However, simply cutting large aggregates into sections can affect structural integrity. One solution is thin 371 sectioning, although the approach used must be chosen with the target ions in mind. The372 most important considerations include:

373 Does the sample contain both mineral and organic phases?

374 Might the embedding medium dilute the signal of the target species (e.g. ¹³C)?

375 Is in situ hybridization to be used, and are diffusible ions or molecules of interest? 376 We discuss the finer details of these concerns in Sections 3.3.2 and 3.3.3. In general, our 377 experience has shown that for smaller macroaggregates (~250 µm) cryosectioning is a 378 laborious but worthwhile technique to obtain cross sections while avoiding contamination with 379 any artificial C or N sources. For examination of whole intact soil cores or macroaggregates 380 (several mm in diameter) resin embedding is currently the best option, although it introduces 381 an artificial C and N source, which can interfere with both isotopic analyses and techniques 382 to determine the chemical structure of OM (e.g. STXM). If target ions include C and N, resin 383 embedding should thus be used only for larger volume soil specimens consisting of a friable 384 porous network of organic and mineral particles that have to be tightly bound together in 385 order to allow cross sectioning and polishing. However, for some resins (e.g. Araldite 502) the ¹²C¹⁴N/¹²C ratio allows to distinguish between sample OM and embedding agent (Weber 386 387 et al., 2012). The resin embedding approach has been used to prepare slices of intact soil 388 cores for elemental mapping of in-situ interfaces in a buried Oa horizon originating from a permafrost-affected soil in Northern Alaska (Typic Aquiturbel, coastal plain near Barrow) 389 390 (Figure 2). In this case, NanoSIMS imaging was used for elemental mapping of natural 391 micro-scale features at a scale which could not be resolved by comparable techniques such 392 as SEM-EDX. This example shows how NanoSIMS can illustrate the patterning of distinct phases (organic matter (¹²C¹⁴N⁻), organo-mineral interfaces, plant cells) via elemental 393 mapping of such friable and highly heterogeneous intact soil structures. 394

395

2.1.3 Investigating plant – soil processes

396 The interfaces between plant roots and soil (rhizosphere) or fungal hyphae and minerals397 (hyphaesphere) are extremely biologically active and important sites for mineral weathering

398 (Finlay et al., 2009). Hinsinger et al. (2009) suggest that a lack of suitable observational tools 399 stands in the way of a better understanding of micro-scale elemental distributions in the 400 rhizosphere. Here NanoSIMS might well fill the gap between reflectance light microscopic 401 (e.g. epifluorescence, polarized light) and x-ray techniques (e.g. x-ray tomography) to trace 402 C, N and nutrient transfers between roots, microbes and soil. For the biotic side of the plant-403 soil system, Gea et al. (1994) showed the utility of SIMS by imaging Ca in ectomycorrhizal 404 fungi (Hebeloma cylindrosporum) associated with pine trees (Pinus pinaster). Figure 3 is a 405 proof-of-concept of how NanoSIMS may be used to explore an intact plant-soil system at the 406 micro-scale. In this example, a French oak (Quercus robur) seedling was grown in a 407 vermiculite / soil mixture with a mycorrhizal fungi Piloderma croceum in order to track 408 interfaces between mineral constituents and the plant root. NanoSIMS images of an 409 embedded oak root tip illustrate that clay minerals may be distinguished from root cells and 410 mycorrhizal cells within the vermiculite layers, revealing the interfaces between the mineral 411 soil compartment, roots, and mycorrhizal fungi. This example demonstrates how NanoSIMS 412 images might contribute to the exploration of intact plant-soil-microbe interfaces.

413 Part of the difficulty associated with attempts to image the interfaces between plants, 414 microbes and mineral particles has to do with preparing samples in a manner that adequately 415 preserves these interfaces. A challenging but promising approach to preserve intact soil 416 architecture was demonstrated by Clode et al. (2009) who prepared 100 nm thick cross-417 sections of ¹⁵N labeled wheat roots and associated bacteria by slowly infiltrating with araldite 418 epoxy over the course of several days. The resulting epoxy blocks were thin-sectioned and 419 then observed by both TEM and NanoSIMS at the University of Western Australia. The TEM 420 images clearly identified bacteria attached to the cortical cell walls, while NanoSIMS imaging 421 revealed that not all of the bacteria had incorporated the ¹⁵N label (Figure 4). While it is 422 possible that some cells were not metabolically active or dead, it is equally possible that some of the ¹⁵N 'hotspots' were actually remnant effects of salts derived from the enriched 423 precursor material ($({}^{15}NH_4)_2SO_4$). This is a case where a complementary technique, for 424 425 example fluorescent in situ hybridization (FISH) or a live/dead or DAPI stain (see section 426 4.4.), might be useful to corroborate whether enriched features in NanoSIMS images truly427 are bacterial cells.

428 2.1.4 Tracking organic and inorganic pollutants

429 Organic and inorganic pollutants span a wide range of molecular properties and may be 430 involved in a host of mechanistically different interactions with soil solids. Important inorganic 431 pollutants are metals and metalloids (e.g. Pb, As) (Bradl, 2004; Wilson et al., 2010; Zimmer 432 et al., 2011), including radioactive particles from nuclear accidents (Carbol et al., 2003; 433 Spezzano, 2005). Organic pollutants are inherently more diverse, encompassing the full 434 range from nonpolar polycyclic aromatic hydrocarbons to relatively polar chlorinated 435 hydrocarbons and polychlorinated biphenyls. To date, SIMS has been used to study the 436 micro-scale distribution of metals (e.g. Cd, Cr), metalloids (e.g. As), and halogens and 437 organic pollutants in microbial cells (Eybe et al., 2008), plants (Lombi et al., 2011; 438 Mangabeira et al., 2006; Martin et al., 2001; Migeon et al., 2009; Moore et al., 2010; Moore 439 et al., 2011b; Tartivel et al., 2012), animals (Eybe et al., 2009) and human tissues (Audinot et 440 al., 2004). NanoSIMS has been used to examine plutonium transport in the subsurface of 441 heavily contaminated sites (parts per million levels) (Kips et al., 2012; Novikov et al., 2006). 442 When there is substantial contamination, Pu can be directly imaged in situ and the 443 association of Pu with specific minerals can be determined to constrain transport 444 mechanisms. An intriguing example of a system comparable to primary soil particles (e.g. 445 clay minerals, OM particles) was presented by Krein et al. (2007), who located heavy metal 446 accumulation in aerosols using NanoSIMS by imaging ⁶³Cu⁷⁵As, ¹¹⁸Sn⁻ and ¹²³Sb⁻. This 447 work suggests that it is possible to determine spatial dependencies between organic matter 448 and inorganic pollutants and evaluate 'hot spots' on micron-scale particles.

The primary limitations for NanoSIMS studies on organic pollutants are the vapor pressure of
the target pollutants (e.g. non-volatile organic compounds), the concentration of the target,
and incorporating a tracer for the target. Eybe et al. (2008) embedded *Anabaena* sp. cells
grown on the pesticide deltamethrin in an epoxy resin. To trace the pesticide within the

embedded cells, ⁸¹Br- was imaged in the NanoSIMS, illustrating how halogen containing
pollutants may be used as tracers within biological samples. Another example is the work of
Tartivel et al. (2012), who traced bromotoluene by the imaging of ⁸¹Br⁻ in chemically fixed
plant roots (*Hedera helix*) and resin embedded soil cross sections.

457

3.

NanoSIMS requirements for soil related studies

458 3.1. Technical considerations for soil samples

459 With its improved primary ion optics and secondary ion transmission at high mass resolving 460 power the NanoSIMS 50 and 50L enable SIMS analysis at the nanometer scale. However, 461 there are specific technical limitations that the potential user must consider, especially for 462 soils applications. While primary beams smaller than 50 nm are possible with idealized 463 samples, the number of ions collected from the impacted volume starts to fall below the useful level in soils. NanoSIMS is a high vacuum (~10⁻¹⁰ Torr) instrument that requires 464 465 samples to be dehydrated, conductive and have low topography (ideally submicron for 466 natural abundance and < 30 micron-scale for isotopic enrichment experiments). As a result, 467 live microbial cells cannot be tracked, and to measure process effects over time, one must 468 rely on sub-sampling and replication. Samples should be fixed and can be thin-sectioned to achieve a flat surface, ideally without re-arranging the locale of target elements or molecules. 469 470 While not currently available, a cryogenic stage might allow frozen samples to be analyzed, 471 thereby preserving them in a more natural state.

Though analyses of natural abundance ¹³C and ¹⁵N are widely used in soil science, the 472 473 NanoSIMS is capable of measuring isotope ratios with a precision of ~ 1‰ only in very 474 favorable cases, and even a level of ~10‰ precision is likely to be very challenging to 475 achieve in most complex soil samples. To obtain such a high precision (<1%), relatively large amounts of material must be extracted from the sample surface (nanograms), requiring a 476 477 large primary spot size ~20 - 30 µm. Such a spot size might itself exceed the micro-scale 478 structures of interest (e.g. bacterial cells, clay minerals). Also, the much smaller primary 479 beam used in NanoSIMS imaging generates a smaller number of secondary ions,

480 necessitating the use of electron multiplier (EM) detectors. EMs have a faster response time 481 than faraday cup detectors (FC) (commonly used in larger beam SIMS instruments), and are 482 thus both fast enough and provide sufficient dynamic range for imaging. EM detectors are, 483 however, subject to a number of artefacts (limited count rates and detector aging) that 484 effectively limit the precision to about 1‰. On top of this, the extraction conditions from 485 location to location can be hard to maintain at a level that yields precision better than one 486 part in a thousand, especially with heterogeneous samples such as soils. The limitations on 487 precision mean that in most soil systems, natural abundance measurements will not produce 488 useful data. Isotopic measurements with higher precision can be achieved using the Cameca 489 IMS1280, a large-geometry magnetic sector ion probe, combining high transmission, high 490 abundance sensitivity and high density of the primary beam with thermally insulated FC 491 electronics. This instrument could potentially be used in complementary studies with a 492 NanoSIMS to record images of high spatial resolution as well as per mil level precision.

493 In our experience, tracking of isotopically labeled tracers is probably the most practical way 494 to explore micro-scale soil processes using NanoSIMS (Herrmann et al., 2007a; Keiluweit et 495 al., 2012). As C and N are the key elements in organic matter studies, substrates enriched in ¹³C and/or ¹⁵N are regularly used for general investigations of microbial metabolism in soils 496 497 as well as for the more specific purpose of following the fate of organic compounds as they 498 cycle through soils (Kuzyakov et al., 2000; Ruetting et al., 2011). Of critical importance in 499 tracer studies is whether the labeled substrate becomes chemically modified or is otherwise 500 affected by the sample preparation. The potential user is reminded that NanoSIMS is not well 501 suited for the identification of molecules or characteristic molecular fragments and so will 502 rarely be able to address this kind of problem directly.

503 While quantitative NanoSIMS isotopic analyses are relatively straightforward, quantitative 504 analyses of elemental abundances are considerably more challenging. In the fields of 505 material science and mineralogy, SIMS users usually employ standards to correct for 506 differences in yields and quantity for defined element-matrix combinations. The inherent 507 complexity and variability of soil matrices can complicate this approach, as appropriate 508 standards are harder to obtain or manufacture. The C to N elemental ratio in soil OM, for 509 example, is of general interest to soil scientists. The measurement of this ratio is inherently challenging because ${}^{12}C^{-}$ has a different formation mechanism than the ${}^{12}C^{14}N^{-}$ ion (N is 510 511 detected as CN), as atomic N ionization is very poor. As a result, the yield of the two species 512 can change relative to each other during the course of an analysis. C to N ratio 513 measurements are therefore very challenging, requiring matrix-matched standards and 514 method optimization, and ultimately may result in measurements of low accuracy and 515 precision. It is an open question whether the heterogeneity of soil material makes such 516 measurements additionally challenging.

517 3.2. Sample documentation

518 To facilitate the analyses, it is best to determine regions of interest on the sample prior to 519 performing NanoSIMS measurements (Herrmann et al., 2007a; Moore et al., 2011a; Weber 520 and Holt, 2008). Sample mapping can greatly enhance the efficiency of the analyses and is 521 often critical to interpretation of results. Most SIMS instruments have the equivalent of an epi-522 illumination microscope for sample navigation, and therefore epi-illumination micrographs 523 provide the best reference images for general navigation. Electron microscopy can also 524 positively identify targets for analysis, and these images are often easily comparable to the 525 secondary electron or ion images generated during NanoSIMS analyses. Ideal mapping 526 images range from the whole sample scale to the individual target scale, with reference 527 points that can be used to translate from one image scale to the next.

528

529

530 3.3. Instrument tuning and quality control

531 Here we present a brief introduction to issues that may be encountered during the tuning of a532 NanoSIMS 50 or 50L; more detailed instructions have been previously published(Pett-Ridge

and Weber, 2012). The central aspects of SIMS instrument tuning are mass selection,resolving isobaric interferences and peak shape.

535 a) Mass selection: To obtain accurate measurements, the secondary ion mass 536 spectrometer must be tuned and aligned to collect ion masses of interest. Choosing 537 masses will depend entirely upon the question being asked, what isotopically labeled compounds have been added, and whether operation is proceeding in Cs⁺ or O⁻ 538 539 mode. Often this necessitates choosing between analyzing common bio-elements 540 (e.g. C, N, O, S, P) with a Cs⁺ beam, or metals/metalloids (e.g. Fe, Al, Mn, Mo) with a 541 O beam. If the ion yield is sufficient, some creative solutions exist, for example Fe can be detected as FeO⁻ in Cs⁺ mode. Alternatively, subsequent O⁻ mode 542 543 measurement of the same spot is possible.

544 b) Isobaric interferences: When selecting ion masses it is critical to consider and 545 exclude isobaric interferences, which are species with near-identical masses to the species of interest. Isobaric interferences can be problematic for SIMS because the 546 547 sputtering process generates molecules. Therefore, in addition to isotopes with the same mass (e.g., ⁴⁸Ti and ⁴⁸Ca), users must consider isobaric interferences that are 548 clusters of atoms, many of which are artificial (e.g., ²³Na²⁴Mg¹H⁺). To identify 549 550 potentially significant isobaric interferences, the first step is to determine the major 551 elemental composition of the sample (here, previous SIMS studies may be helpful). 552 Blanks and control samples can be used to determine if interfering molecules are 553 produced at significant levels. If this turns out to be the case, the exact masses of 554 significant isobaric interferences need to be calculated relative to the exact mass of 555 the target species to determine difference in mass (ΔM) and the mass resolving 556 power (MRP = M/ Δ M) required to resolve the target species. MRP is a metric of peak 557 shape and the tuning of the mass spectrometer.

c) Peak shape: The scan of the mass peak should be both flat-topped and steep-sided.
The shape of the peak is the cumulative result of everything from the primary beam
location and size to the gain on the detector. A tightly focused and well centered

561 primary beam reduces angular aberration and minimizes potential distortions. The 562 secondary ion beam should be aligned relative to all the lenses, slits and apertures in 563 the secondary mass spectrometer in order to maximize transmission and minimize distortion. The entrance slit effectively sets the nominal MRP of the mass 564 spectrometer, and the aperture slit and energy slit are used to steepen the peak side 565 slopes and reach the target MRP by reducing angular and chromatic aberrations. 566 567 Peak top flatness is important to measurement stability and indicates that 100% of 568 the target species is collected to the exclusion of isobaric interferences. In addition to 569 tuning and alignment issues, peak top flatness is also affected by the electron 570 multiplier gain, high voltage, threshold and deflector settings.

571 Standards are used during the process of setting up the mass spectrometer; they are used 572 for mass selection, quantification, and session to session comparison of transmission, MRP, 573 and elemental or isotopic ratios. Reference materials can be simple (e.g., iron), multi-element 574 standards like the NIST glass standard NBS610 (500 µg/g of most elements), or 575 generated/characterized 'in-house' by characterizing samples through bulk methods and 576 verifying high resolution homogeneity by replicate SIMS analyses. One example is the 577 Bacillus subtilis spore sample used by the LLNL NanoSIMS group as a reference standard for C and N isotopic measurements $({}^{13}C/{}^{12}C = 0.0110; {}^{15}N/{}^{14}N = 0.00370)$. For this standard, 578 isotopic enrichments were determined by bulk analysis at the University of Utah (Finzi-Hart et 579 al., 2009); measurement precision, σ (internal), is ~4 % (2 σ) for individual ¹³C/¹²C and 580 ¹⁵N/¹⁵N. For many soil science applications, the co-occurrence of both mineral and organic 581 582 phases requires that both a multi-element (NBS 610) and organic phase standard be used. 583 However, when studying complex organo-mineral interfaces, the aim should always be to 584 simultaneously record mineral and organic derived ions to obtain a complete view on the 585 studied mineral surfaces. Caution must also be exercised when applying SIMS to identify 586 specific mineral phases. The count rate of an ion is not directly proportional to the 587 concentration in the mineral. For example, the content of iron influences the secondary ion 588 yield of other elements that are present in the sample. A linear interpolation based on the

elemental concentration of the mineral is, therefore, not reasonable (Lehmann, 2003). It is
thus advantageous to confirm mineral identity using X-ray techniques or other methods. In
cases where quantification of an element is desired, mineral specific standards are
necessary.

593 Minerals in soil pose a particular challenge because mineral grains may accumulate an 594 electrical charge under sustained Cs⁺ primary ion beam sputtering. The phenomenon can 595 readily be observed in the NanoSIMS because charged regions generate very low secondary 596 electron yields. The area of charge accumulation may still yield secondary ions, but their 597 trajectories through the secondary mass spectrometer will deviate from those of other ions 598 when they have significantly different energy (>10 V difference). As a result, some species 599 may not be detected with the same relative efficiency, resulting in inaccurate measurements. 600 This is primarily an issue for the analysis of negative secondary ions because large numbers 601 of electrons are extracted when the sample surface is bombarded by a beam of Cs⁺ ions. At 602 the initiation of analysis, while the metal coating is still intact, charging may not be obvious. In 603 some cases, minerals (e.g., magnetite) or organic material in the sample may provide 604 sufficient charge conductivity to allow analysis. Most organic matter, while insulating in its 605 natural state, becomes conducting under ion bombardment. However, soil particles, even 606 those initially coated with Au, often begin to show evidence of sample charging after ~ 20 607 minutes of analysis, with significantly diminished total ion counts (Pett-Ridge et al., 2012). 608 This effect has been observed in a NanoSIMS study of microaggregates deposited on 609 silicon-nitride windows, where regions free of organic material appeared to undergo the most 610 obvious charging (Remusat et al., 2012).

The best way to overcome sample charging is to use a device called an electron flood gun, commonly referred to as the e-gun. Tuning of the e-gun requires significant experience in aligning the electrons with the primary beam on the sample, and in adjusting the voltage to the charge status of the sample. Another challenge is that secondary electron imaging is not possible while the e-gun is in use. Often it is easiest to initially locate particles of interest with secondary electron imaging, and then turn on the e-gun for ion image data collection. When 617 the e-gun is tuned correctly, nonconductive minerals will not charge and the mass peaks will 618 maintain the same level of mass resolution as achieved on a conducting sample. We note 619 that the sample must be covered with a conductive coating for the e-gun to work; electrons 620 that reach the sample outside the analysis area must have a path to ground. The e-gun is not 621 likely to work with samples with significant topography and is not a solution in cases where 622 topography is the proximal cause of charging and ion shadowing. In tests of different mineral 623 types performed at LLNL, using the e-gun increased the ion yield for C and N by as much as 624 a factor of 10. Additional tests showed that isotope ratios of standard reference materials 625 analyzed both with and without the e-gun were not significantly different (Pett-Ridge et al., 626 2012). Caution is always advisable when interpreting results were charging is possible.

627 3.4. Sample preparation – from single particles to intact soil

628 In the next paragraphs we discuss possible ways to prepare soil samples ranging from
629 primary particles and aggregates to complex intact samples containing microbial and plant
630 tissues.

631 3.4.1. Direct deposition of individual particles and microaggregates

Individual soil particles (e.g. clay minerals, particulate OM) as well as microaggregates can
be deposited directly onto an analysis support (e.g. Si-wafer, polished metal stubs) and
imaged via NanoSIMS provided they have limited topography and remain adhered to the
sample support under high vacuum.

636 Such materials may be derived from physical soil fractionation (Eusterhues et al., 2005) or 637 taken directly from a soil suspension (Keiluweit et al., 2012). The application of ultrasound 638 during soil fractionation may destroy natural soil structure and also re-distribute both organic 639 compounds as well as individual mineral particles between physical fractions (Amelung and 640 Zech, 1999; Mueller et al., 2012a). While pretreatments needed to isolate small particles may 641 introduce experimental bias, it may still be desirable to attempt direct observations of small 642 particles or microaggregates, especially when the nature of the research question prohibits 643 the use of C and N-containing fixatives. Samples can be deposited on flat surfaces like 644 polished metal stubs, Si-wafers, gold foil or directly on SEM or TEM grids (Keiluweit et al., 645 2012; Mueller et al., 2012b). Alternatively, particles can be collected from soil suspensions 646 on gold coated filter discs, a widely used preparation technique in microbiology (Musat et al., 647 2012). For obvious reasons, the sample support must be chosen with the elements of 648 interest in mind (Si-wafers are not advisable when Si is a target element). In the direct 649 deposition preparation technique, a single layer of small particles/microaggregates should be 650 deposited on the sample support to minimize topography. If the goal is to simultaneously 651 explore both mineral and microbial constituents, fixation of the biological tissues will be 652 necessary (see below for detailed description).

653 3.4.2. Fixation and preparation of organic materials

654 A variety of biological sample types may be of interest to soil scientists, ranging from root or hyphal tissues to bacterial and archaeal cells, protists and microfauna, or decaying plant 655 656 litter. For all these sample types, preservation of cell structure is important for target 657 identification and to contain mobile organic and inorganic constituents. Sample preparation 658 typically involves stabilization of biological components (fixation), removal of water 659 (dehydration) and salts (derived from growth media or sea/soil water), deposition of the 660 sample on a conductive support (Si wafer, TEM grid) and subsequent whole cell analysis or 661 thin sectioning after embedding. Fixation of biological tissues is a process used to preserve 662 cell morphology from decay and immobilize analytes of interest by increasing molecular 663 mechanical strength or stability. Chemical fixation for imaging analysis is typically performed 664 with aldehydes (e.g., glutaraldehyde, paraformaldehyde, formaldehyde) that cross-link 665 proteins to hold cell structure together during dehydration, (Kuo, 2007; Nunan et al., 2001; 666 Tippkötter and Ritz, 1996). Low temperature methods like flash freezing and high pressure 667 freezing (Chandra and Morrison, 1992; Dykstra and Reuss, 2003; Echlin, 1992) are an 668 alternative in some circumstances if it is critical to preserve the distribution of small 669 molecules and diffusible ions. For biological samples that are to be analyzed intact, collection 670 on a filter is very efficient, and nucleopore or polycarbonate filters can be used as a sample

671 support for SIMS analysis if they are kept flat at the micron scale. Samples grown on a solid672 sample support can be immersed in fixative and gently washed by repeated immersion in673 deionized water.

674 If subcellular elemental or isotopic distributions are of interest in soil microbial or plant tissue 675 samples, fixation is often followed by embedding (impregnating the sample with a hard, 676 vacuum stable matrix) and sectioning (cutting the sample into cross-sections) prior to 677 NanoSIMS analysis. Samples can be embedded in a number of polymers for room 678 temperature sectioning (e.g., epoxy, acrylic, paraffin (Dykstra and Reuss, 2003)). Cryogenic 679 sectioning can be performed with sucrose, OCT or similar compounds. Cryosectioning of 680 frozen (water/ice embedded) samples is also an option, but is more technically challenging 681 and requires much practice. Sectioning can be performed with an ultramicrotome, a standard 682 histological microtome or cryostat, or even with a razor blade, depending on the type of pre-683 NanoSIMS imaging that is desired. An adhesive surface coating (e.g. poly-L-lysine, vector 684 bond, egg white) can be used to retain sections during washing or staining. Such surface 685 coatings can also be used for the fixation of other thin sections or micro-scale single particles 686 on sample mounts (e.g. Me-stubs, Si-wafers). Contrast stains used for TEM imaging of 687 biological ultrastructure (e.g. uranyl acetate) typically are compatible with SIMS because 688 mass spectrometry can easily resolve the stain components from many species of interest. 689 However, there may be cases where contrast stains would be a source of unwanted 690 background counts, particularly for metal analysis. Standard TEM-grade ultrathin sections 691 (~100 nm) can be analyzed by high resolution NanoSIMS, but with a limited analysis time to 692 avoid section breakage or consumption. To extend the SIMS analysis time and collect more 693 data while still allowing correlated TEM-SIMS analysis, thicker sections (up to 500 nm) can 694 be prepared, though with a loss in TEM image quality. Thicker sections are also desirable if 695 large areas (mm²) need to be analyzed. Focused ion beam (FIB) milling can also be used as 696 an alternative to embedding and sectioning (Weber et al., 2010), particularly where the user 697 needs to have precise control over the location and orientation of the sample thin-section. 698 Thin sections can be laid on a TEM grid or directly on a solid substrate prior to SIMS

analysis. For example, this technique was used by Bonneville et al. (2011) to prepare cross
sections of a micro-scale fungal hyphae / biotite interface for subsequent TEM analyzes. If
transmission light imaging is necessary for sample mapping, indium tin oxide (ITO) coated
glass slides are preferable to uncoated glass slides because the ITO coating does not
charge under ion bombardment.

704

3.4.3. Preparation of aggregated soil structure and intact plant-soil systems

705 Many soil researchers would like to be able to image cross-sections of both biological and 706 mineral phases in intact plant-soil samples. However, three dimensional multiphase objects 707 often require additional preparation steps that go beyond what is required for a purely 708 organic or purely mineral sample. Essentially, the object of interest needs to be embedded in 709 a solid, vacuum-compatible medium and subsequently cut and or polished to generate a flat 710 surface. The primary distinction between preparation of organic materials (see above) and 711 preparing soil samples, is that cutting heterogeneous samples must accommodate both 712 'hard' (quartz, Fe oxides) and 'soft' components (plant tissues).

713 The most useful approaches for NanoSIMS soil sample preparation fall into three general 714 categories: 1) embedding with resin (epoxy, acrylic, polyester), sucrose or paraffin, 2) 715 embedding in molten elemental sulphur (S), or 3) cryo-techniques. The appropriateness of 716 these three techniques depends on the target elements which are to be analyzed and the 717 size of the sample (microaggregate vs. intact soil core). In general, resin embedding is the 718 most useful approach for larger aggregates and soil cores, whereas cryo-719 preservation/sectioning and S embedding are the best choices for small (~100 µm) 720 microaggregates. Cryo and S embedding have the added benefit that no artificial C or N is 721 added as background material. We note that it may be possible to subtract a background 722 resin signal from the sample signal using the difference in the CN/C ratio, (e.g. the biological 723 from the non-biological material). The CN/C ratio of resin is quite distinct from that of 724 biological material, so regions representing resin within analysis images can be omitted at 725 the data processing stage (Weber et al., 2012).

726 For larger specimens like macroaggregates (>2 mm) or intact soil cores containing both hard 727 mineral constituents and soft tissues such as plant residues (e.g. roots in Figure 5), microbes 728 and plant roots, resin embedded sections are typically created and then polished for further 729 analyses. One epoxy resin approach was described by (Herrmann et al., 2007a), who 730 developed a technique for the preservation of microbial communities in quartz-based soils 731 that was later modified by Clode et al. (2009) to include plant roots. Infiltration of samples in 732 acetone-epoxy resin mixtures was conducted over a period of days, with the concentration of 733 'Araldite' (epoxy resin) gradually increased until 100%. At a larger spatial scale, at TU 734 München this procedure was successfully applied to prepare natural intact soil cores for 735 NanoSIMS analyses from the permafrost layer of cryoturbated soils (see Figure 2). Previous 736 studies show that the abundance of nitrogeneous compounds was not adversely affected by 737 this procedure (Herrmann et al., 2007a; Peteranderl and Lechene, 2004).

738 An alternative to resin embedding is sulfur embedding (De Gregorio et al., 2010; Flynn et al., 739 2004; Lehmann et al., 2005) which has been successfully used to section heterogeneous soil 740 aggregates (Herrmann et al., 2007a; Lehmann et al., 2005). The most significant benefit of S 741 embedding is that aggregates can be embedded in a non-C based, room temperature 742 sectionable medium. In the DeGregorio et al. (2010) approach, elemental sulphur is heated 743 to its molten state (> 100°C), then a soil aggregate is inserted and allowed to cool. The 744 resulting material can be glued to a metal stub and sectioned using an ultramicrotome. 745 Unfortunately, the sulphur may provide only limited structural integrity for the sections 746 because it tends not to impregnate samples extensively. Also, the high temperature could 747 potentially alter organic materials, particularly those on the surface of the aggregate. A low-748 temperature alternative, the S embedding approach described by Lehman et al. (2005), 749 consists of S heated until molten and rapidly cooled in liquid N₂. As the S is slowly warmed to 750 room temperature, it goes through a phase of high viscosity and at this stage (~20 seconds) 751 aggregates may be inserted into the S. The resulting S block remains amorphous or plastic 752 for a limited amount of time, during which sectioning should be carried out.

753 A final option for fixation and sectioning is the cryopreservation/sectioning approach used by 754 researchers at LLNL: high-pressure freezing (Leica EMPACT2) of soil aggregates 755 surrounded by ultrapure H₂O in small copper tubes (16.6mm) with an internal diameter of 756 350µm, followed by cryosectioning and freeze drying. This approach results in samples of 757 regular thickness (<400 nm) and minimal chemical changes (Figure 6). This method, though 758 challenging, preserves the distribution of diffusible ions and molecules. Because it involves 759 fast freezing but no cyro-protectant, no background material is introduced that might dilute 760 the C or N isotopic signal (Figure 6).

761 Once a soil sample is embedded, it must then be cut to expose a cross-section for 762 NanoSIMS analysis. The presence of mineral grains significantly increases the difficulty of 763 sectioning samples. While ultramicrotomy with a diamond knife is possible, it is significantly 764 easier to cut embedded soil aggregates and cores with a wafer saw and then polish them as 765 per a geological sample. This is, however, not ideal for some softer biological materials and 766 resins, which can abrade more easily, resulting in topographical differences across the 767 sample surface. This abrasion effect can be particularly pronounced at the edges of mineral 768 grains, where inorganic-organic interfaces are located.

769 Sectioning via ultramicrotomy is the primary alternative option to saw cutting, and has proven 770 highly effective for combined TEM and NanoSIMS stable isotope measurements of plant-soil 771 systems (Clode et al., 2009). In Figure 5, a SEM image of three embedded roots illustrates how the heterogeneous distribution of soft and hard soil compartments can both be 772 preserved in a thin section (Clode et al., 2009). In this procedure, both plant tissues and 773 microorganisms appeared to be well preserved (Figure 4 and Figure 5). We note that the 774 sectioning of embedded soil aggregates with heterogeneous density requires a highly skilled 775 776 operator; it is easy to chip a diamond knife. A final option for sectioning fixed samples is FIB 777 sectioning. This approach is a particularly good option for preserving the distribution of 778 diffusible species because a fully dry sample can be sectioned, however the method requires

specialized equipment and limited sample material can be processed. If the samples are onlydestined for SIMS analysis, top-cutting is a more rapid FIB option (Weber et al., 2010).

781 3.5. Data acquisition and analysis

782 There are two main data collection modes possible with the NanoSIMS 50; spot 783 measurements and ion images. The collection of secondary ions in the spot mode is usually 784 used for the direct recording of isotopic ratio data for a discrete location. However, the main 785 data collection mode for soil related studies is likely to be ion imaging because users working with highly complex samples are usually interested in spatially explicit isotope ratios and 786 787 contextual information. NanoSIMS ion image files consist of individual images for each scan 788 (plane) for each given mass, along with metadata describing the conditions of the analysis. 789 There are a number of image processing software options available to analyze the ion image 790 data. WinImage is Cameca's Windows-based image processing package that comes preinstalled with the Windows-based NanoSIMS software. The previous Solaris-based 791 792 NanoSIMS software featured a somewhat rudimentary ion image processing application 793 called simply, Image. Another software package for SIMS image processing is the Windows 794 based LIMAGE program developed by Larry Nittler at the Carnegie Institution of Washington 795 (independent from Cameca). In addition to these commercial programs there are two open 796 source packages. The NRIMS (National Resource for Imaging Mass Spectrometry) group at 797 Harvard University has developed a plugin for the java-based freeware ImageJ. The so-798 called MIMS plugin provides a number of specific data processing options in addition to the 799 full range of ImageJ capabilities. Most notable is the ability to express ratio images on a Hue-800 Saturation-Intensity (HSI) scale, where the scale parameters can be set by the user. Finally, 801 a very recently developed software is the Matlab based application Look@NanoSIMS 802 developed by Lubos Polerecky at the Max-Planck Institute for Marine Microbiology in Bremen 803 (Polerecky et al., 2012). No matter what software is used there are some basic steps for the 804 processing of NanoSIMS images (the sequence of steps may vary slightly for some specific 805 data sets or research questions).

806 Briefly, the first step of image analysis is to examine all obtained images for possible flaws 807 (e.g. spots of charging, unrecorded spots or lines within images). When multiple cycles are 808 recorded, the analyst has to decide whether any cycles should be excluded from further 809 analysis. Individual cycles should be aligned to correct for primary beam drift, and also dead-810 time corrected. This dead time is the period when the detector has counted a single 811 secondary ion but is not ready to count another (usually tens of nanoseconds). Next, the species of interest are normalized to major element species (e.g. ${}^{13}C/{}^{12}C$, or ${}^{12}C/{}^{12}C^{14}N$); 812 813 ratio images can be used efficiently to evaluate the quality of the ratio data and the 814 distribution of normalized data. Typically, guantitative data are obtained by defining regions 815 of interest (ROIs), which consist of a group of pixels bounding a particular feature. In most 816 image processing applications a ROI can be drawn directly onto the image, and the software 817 then records the sum of the counts from the pixels within the ROI and thus also ratio data. 818 Defining ROIs is a critical step. Without objective criteria, it is possible to change the isotopic 819 enrichments just by changing the size of an ROI. The best ROI selection criteria are external images (e.g. SEM image or fluorescence image) or single ion images (e.g. ⁵⁶Fe¹⁶O⁻ for iron 820 821 oxide particles). Alignment with an external image is possible when using the 822 Look@NanoSIMS software. In many cases, it is necessary to visually evaluate the spatial 823 distribution of several ions to interpret and properly define ROI's. Unfortunately, there are no 824 standard procedures for feature selection in complex matrices like soils.

825 After ROIs are defined, the data can be extracted and interpreted. One promising way to 826 evaluate micro-scale ion images might be use of geostatistics, which are often used for 827 larger plot or ecosystem analyses (Steffens et al., 2008). Geostatistics can be used to 828 identify dependencies within any spatial data (e.g. NanoSIMS ion images). For example it 829 might be possible to use this approach to evaluate the spatial distribution of Fe within a 830 complex soil matrix. Figure 7 illustrates the application of a statistical approach (R 2.13.1 (R 831 Development Core Team, 2011) in combination with the g-stat 2.4.0 package (Pebesma, 2004) to evaluate spatial dependencies between organic matter (¹²C¹⁴N⁻) and particles 832 containing iron (⁵⁶Fe¹⁶O). The analysis is based on data extracted from a 32 µm line scan 833

drawn on the NanoSIMS images (Figure 7 A and B). The sample is a Cambisol soil 834 835 aggregate embedded in Araldite, originally from Höglwald, Bavaria, Germany. Both semivariograms for ¹²C¹⁴N⁻ and ⁵⁶Fe¹⁶O⁻ (Figure 7 C and D) show a comparable periodic 836 837 behavior, where the semivariance is oscillating (y-axis). The semivariance is a measure of 838 spatial dissimilarity. Thus the wave like appearance of the semivariance demonstrates a distinct spatial pattern of similar ion counts (¹²C¹⁴N⁻ and ⁵⁶Fe¹⁶O⁻) and thus a regularity in the 839 840 aggregate architecture (organic and mineral spheres). But as the spatial frequency (x-axis) of the maxima and minima of the semivariance is different between ¹²C¹⁴N⁻ and ⁵⁶Fe¹⁶O⁻, this 841 842 indicates differences in spatial structures and different pattern sizes. This analysis indicated that iron clusters (⁵⁶Fe¹⁶O⁻) are spatially independent from organic matter (¹²C¹⁴N⁻). Similar 843 844 analyses may be particularly useful to reveal spatial inter-dependencies between mineral and 845 organic soil constituents or even between areas enriched or depleted in specific stable 846 isotopes. Another approach to NanoSIMS data analysis is the upscaling approach used by 847 Fike and colleagues (Fike et al., 2008). They collected numerous single spot (6 μ m x 6 μ m) 848 NanoSIMS measurements (>300) and measured the isotopic variability of sulfide within the 849 oxycline of a cyanobacterial mat (sampling grids: 3500 µm by 450 µm and 3000 µm by 500 μ m, spatial increment of 50-200 μ m). Analyzing the δ^{34} S abundance and isotopic 850 851 fractionation, they observed fine scale laminations (1 to 400 µm) and clear zonation. This 852 work suggests that single spot NanoSIMS measurements, collected on up to a millimeter 853 scale and linearly interpolated, could be applied for upscaling micrometer spot data in soils.

854

4. Combination with other micro-scale techniques

855 4.1. Scanning and transmission electron microscopy

Prior to the development of NanoSIMS, electron microscopy was the approach of choice for
the observation of soil particle arrangements (Gillott, 1970; Gray, 1967; Howard et al., 1996;
Kowalkowski and Mycielskadowgiallo, 1985). Electron microscopy has evolved to achieve
very high resolution, touching on 1 nm in scanning electron microscopy (SEM) and 0.05 nm
in transmission electron microscopy (TEM). Similar to NanoSIMS, electron microscopy

861 techniques can be used to obtain information about the material properties of a sample, in 862 addition to providing an image. In a scanning electron microscope (SEM), a high energy 863 focused beam of electrons is produced. The electrons interact with electrons in the sample, 864 producing secondary electrons, back scattered electrons (BSE), and characteristic X-rays 865 (Energy-dispersive X-Ray Spectroscopy EDX/EDS/EDXS) that can be detected and that 866 deliver information about the sample's surface topography and composition. An SEM-BSE 867 image is a good tool to differentiate between organic and mineral spheres. This can be useful 868 in samples without topography such as polished soil cross sections. The crystalline state of a 869 sample can be determined by recording patterns of the diffracted backscattered electrons 870 (EBSD) and matching them with a data base for crystallographic structures. An EDX scan 871 yields information on the localization of minerals versus organic matter and is useful for 872 identifying regions of interest within the sample.

873 It should be noted however, that in contrast to NanoSIMS, where information is gathered only 874 from secondary ions sputtered from the uppermost atomic layers, the interaction volume of 875 secondary ions in SEM extends in a pear shaped fashion between 100 nm and 5 µm deep 876 into the sample (depending on the energy of the electron beam, atomic number and density 877 of the specimen). EDX is therefore not a surface technique *sensu strictu* and it has been 878 shown that TEM maps do not always compare well with subsequently obtained NanoSIMS 879 images (Badro et al., 2007).

880 4.2. Synchrotron based techniques

To study soil process dynamics as a function of location within aggregates and microaggregates, simultaneous information on (a) localization, (b) identification and (c) transformation of organic matter and mineral phases is required with very high spatial resolution. Conventional electron microscopes can visualize basic elemental composition but are unable to speciate carbon compounds. A number of techniques can yield data on C composition (ion microprobe laser desorption, laser ionization mass spectrometry, Raman microscopy, ¹³C-NMR, FTIR (Lehmann et al., 2005; Lehmann et al., 2009), though few can 888 provide molecular or elemental characterization with the sub-micron resolution necessary to 889 study mineral-organic interactions in microaggregates. These goals can be approximated 890 with the combination of NanoSIMS and Scanning Transmission X-ray Microscopy, Near 891 Edge X-ray Absorption Fine Structure Spectroscopy (STXM/NEXAFS). The resolution of 892 synchrotron based X-ray microscopes can approach 50 nm, comparable to the NanoSIMS 893 spot size. Raster scan images can be obtained at energy spacings of ~0.1 eV across 100's 894 of eV energy ranges. The spatially resolved NEXAFS spectra extracted from the respective 895 image 'stacks' reveal the bonding environment of the element of interest, allowing the 896 speciation of organic matter forms and elemental redox states. STXM/NEXAFS has been 897 used successfully to describe spatial patterns and speciation of soil organic matter 898 associated carbon (Bardgett et al., 2007; Cheng et al., 2008a; Cheng et al., 2008b; Lehmann 899 et al., 2005), and nitrogen (Gillespie et al., 2009; Kögel-Knabner et al., 2008; Sleutel et al.) in 900 a broad range of environments, including marine systems (Brandes et al., 2004).

901 A combined 'STXM-SIMS' approach allows precise, quantitative measurement of molecular 902 and isotopic patterns in undisturbed samples, at high resolution (Keiluweit et al., 2012; Pett-903 Ridge et al., 2012). By combining NanoSIMS with STXM/NEXAFS it is possible to map 904 organic C distribution, to image associations of organics with specific mineral types, and to 905 trace organic matter of variable origin into the soil matrix (Lehmann et al., 2007; Wan et al., 906 2007). If combined with isotope tracer experiments, the images acquired through this 907 approach can document the forms of C that become stored in soil aggregates and 908 simultaneously track microbial debris and other organic polymers into the soil matrix.

909 Technical challenges to the combined application of STXM and NanoSIMS have recently 910 been summarized by Pett-Ridge et al. (2012). They point out that experimental activities 911 have to be planned in a way such that STXM analysis precedes NanoSIMS, as the latter 912 method has a much greater potential for destructive interference with the sample. Sample 913 holders commonly used in synchrotron spectroscopy may contain N (Si₃N₄) or C (TEM Cu 914 grids with C lacey) and must therefore be chosen to avoid unwanted secondary ion species

(e.g. ¹²C⁻, ¹²C¹⁴N⁻) in subsequent NanoSIMS applications. Samples cannot be significantly 915 916 thicker than 150-200 nm for STXM/NEXAFS or they will be impenetrable for soft X-rays. This 917 limits the type of microstructures that can be observed with both methods at the same time to 918 thin platelet-like objects. Taking these restrictions into account, SEM, NanoSIMS and STXM 919 may be applied to the identical soil sample specimen, providing information that is 920 complementary: SEM may be used to generate a mesoscale surface image of the region of 921 interest (ROI), STXM/NEXAFS imaging can obtain information about whole sample 922 chemistry, and NanoSIMS analysis can yield elemental/isotopic data on either surface 923 characteristics or from a depth profile (Pett-Ridge et al., 2012) (Figures 6, 8). To allow for 924 high-resolution SIMS imaging and STXM/NEXAFS spectromicroscopic analysis of the same 925 sample, a specimen must be prepared with limited topography, able to withstand high 926 vacuum, be dry, conductive, thin enough to allow photon transmission (<1 µm), and prepared 927 without carbon-based reagents.

928 An example for the synergistic application of NanoSIMS and STXM/NEXAFS was recently 929 presented by Keiluweit et al. (2012). These authors employed NanoSIMS to follow the fate of 930 isotopically labeled amino sugars from fungal cell walls as they became metabolized or 931 bound to minerals and SOM. Concurrently, STXM/NEXAFS spectromicroscopy was used to determine the chemical transformations of substrate C and N functionalities during the 932 process (Figure 8). The authors determined that ¹⁵N-labeled amide N derived from fungal cell 933 934 wall material preferentially associated with Fe (hydr)oxide surfaces or Fe-OM coprecipitates 935 on the surface of other minerals. Through the combination of NanoSIMS and STXM/NEXAFS 936 it was further possible to determine that amide N found on mineral surfaces originated from 937 bacterial protein rather than from the original amino sugars or from nucleotides. This 938 example illustrates that combined applications of synergistic imaging techniques such as 939 NanoSIMS and STXM have the potential to provide information about organic matter-940 mineral-microbial relationships while avoiding the artifacts inevitably generated by chemical 941 or physical fractionation procedures.

942 4.3. Atomic force microscopy

943 The atomic force microscope (AFM) is another tool for imaging, measuring, and manipulating 944 matter at the nanoscale. An AFM consists of a cantilever with a sharp tip that is used to scan 945 the specimen surface. When the tip is brought into proximity of a sample surface, forces 946 between the tip and the sample lead to a deflection of the cantilever. The deflection of the 947 cantilever is measured and converted to an image of the sample surface. Reports on AFM 948 applications in soil science are increasing (Cheng et al., 2008c; Rennert et al., 2012; 949 Schaumann and Mouvenchery, 2012; Totsche et al., 2010) and typically provide information 950 about local topography and properties of minerals and soil aggregates surfaces at very high 951 spatial resolution. To date, the focus of soil related AFM work has been on interactions 952 between microorganisms and minerals, mainly iron oxides and hydroxides (Maurice, 1996; 953 Maurice et al., 2000). Balogh-Brunstad et al. (2008) combined SEM and AFM to investigate 954 fungal weathering of biotite in a batch liquid culture.

955 One potential combined AFM-NanoSIMS application could be the use of AFM to correct for 956 topography effects in NanoSIMS analyses. Here AFM would be applied both before and after 957 SIMS, allowing the user to convert SIMS data into a true three-dimensional representation of 958 the analyzed species (Fleming et al., 2011). Wirtz et al. (2012a; 2012b) report the 959 development of an integrated SIMS- scanning probe microscope (SPM). In this instrument, a 960 specially developed SPM system was integrated in a Cameca NanoSIMS 50, allowing the 961 user to record topographical in situ images of the sample surface before, in between and 962 after SIMS analysis.

963 4.4. In situ single-cell labeling

964 Environmental microbiologists see particular value in the combination of *in situ* phylogenetic
965 labeling and NanoSIMS in order to link metabolic function with taxonomic identity (Kuypers
966 and Jorgensen, 2007). This capacity was first demonstrated using a combination of
967 conventional SIMS and fluorescence *in situ* hybridisation (FISH) to analyze an archaeal-

968 bacterial consortium in anoxic marine sediments (Orphan et al., 2001). The FISH-SIMS 969 combination allowed Orphan et al. (2001) to demonstrate that cell aggregates binding a specific archeal probe were strongly depleted in ¹³C, indicating a methane-based 970 971 metabolism. In many natural microbial systems, this approach may be even better suited to 972 NanoSIMS, as it can provide this information at the length-scale of an individual bacterium (~1 µm). Two variations of this approach are currently used: element-labeled fluorescent in 973 974 situ hybridization (EL-FISH) where catalyzed reporter deposition FISH (CARD-FISH) is used 975 to deposit high concentrations of fluorine-containing fluorophores in target cells (Behrens et 976 al., 2008); or halogen-labeled in situ hybridisation (HISH) where a standard FISH protocol is 977 used in combination with halogen (I, Br) tagged probes (Li et al., 2008). NanoSIMS can then 978 be used to visualize the labeled cells by acquiring a signal for ¹⁹F, which is not naturally 979 present at high concentrations in most environmental cells (Behrens et al., 2008; Halm et al., 980 2009; Musat et al., 2008). In these approaches, a phylogentic probe is linked to a highly 981 electronegative elemental label (fluorine, iodine, gold, selenium, or bromine) instead of the typical fluorophore, which can be detected in concert with ¹³C and ¹⁵N isotopes for functional 982 983 characterization. These approaches enable simultaneous localization of the tag and chemical 984 mapping in the NanoSIMS. It may even be possible to use FISH-SIMS approaches in 985 embedded samples (Woebken et al., 2012). The work of Lemaire et al. (2008), where fixed 986 samples were embedded in TissueTek® (Sakura Finetek Labware & Accessories) and then 987 cryosectioned and FISH labeled, suggests this may be possible. However, its usefulness in soil may be limited unless a means to overcome soil's natural background fluorescence is 988 989 developed. Also, care must be taken with quantitative interpretation of FISH-SIMS results, since these approaches may reduce the original cell enrichment by 60-80% for ¹³C and 30-990 60% for ¹⁵N (J. Pett-Ridge and S. Behrens, unpublished data). 991

992 5. Conclusion

993 Over the last decades soil scientists have gained a working knowledge of fundamental soil994 processes ranging from the stabilization of organic matter to microbial diversity in soils. We

995 are now able to track the fate of specific molecular plant biomarkers into organo-mineral 996 associations and to determine the microbial communities responsible for the turnover of 997 specific organic compounds. However, commonly used bulk analyses average over a vast 998 swath of microbial and mineral landscapes, and can miss micro-scale phenomena caused by 999 specific micro-habitats or distinct spatial heterogeneities in the formation of organo-mineral 1000 assemblages. Thus, while our knowledge of bulk scale biogeochemical soil processes is 1001 expanding, we have lacked the high resolution techniques needed to illustrate the 1002 mechanistic underpinnings such processes in intact soil structures.

1003 The emerging class of nano- and microscale spectroscopy and spectrometry techniques has 1004 opened a new frontier in the effort to develop a fundamental understanding of soil processes. 1005 Though the first review of NanoSIMS in soil ecology and biogeochemistry by Herrmann and 1006 colleagues was in 2007 (Herrmann et al., 2007b), this field is still in its early phases as soil 1007 scientists grapple with the many technical challenges. Looking forward, the challenge will be 1008 upscaling from micro-scale analyses to scales from the soil horizon or even to the pedon or 1009 ecosystem scale. These leaps may not come soon, but for now the ability to image elements 1010 and stable isotopes at a previously unresolved spatial scale permits the combination of 1011 established isotopic enrichment techniques with the description of their spatial distribution in 1012 soil microenvironments. Recently, several new NanoSIMS instruments have been installed 1013 and the access for soil scientists is increasing. NanoSIMS analyses have the potential to 1014 contribute to a fundamentally new understanding of soil processes, one that is rooted at the 1015 relevant scale of microbial, mineral and organic matter interactions.

1016 Acknowledgements

1017 The authors thank H. Lugmeier, M. Hanzlik, M. Keiluweit, J. Bougoure, and P. Nico for their
1018 help and support with imaging. The oak clones were cultivated by the group of F. Buscot at
1019 the UFZ in Halle, Germany. The oak root experiment was carried out together with T. Grams
1020 and O. Angay and the samples were prepared by M. Greiner. The sampling campaign of the
1021 Alaskan samples was funded by the NSF Postdoctoral Fellowship in Polar Regions

1022 Research (#0852036) and the DFG "Initiation of International Cooperations" (MU 3021/2-1). 1023 We thank J. Kao-Kniffin, J. Bockheim and K. Hinkel for their help with sampling and sample 1024 preparation of the Alaskan samples. We thank M. Steffens for his assistance in geostatistics. The NanoSIMS instrument at TUM was funded by DFG (KO 1035/38-1). Work of P.K. Weber 1025 1026 and J. Pett-Ridge was performed under the auspices of the U.S. Department of Energy by 1027 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding provided by an LDRD "Microbes and Minerals: Imaging C Stabilization" at LLNL to JPR and 1028 1029 PKW.

1031 References

- Amelung, W., and Zech, W. (1999). Minimisation of organic matter disruption during particle-size
 fractionation of grassland epipedons. *Geoderma* 92, 73-85.
- Audinot, J. N., Schneider, S., Yegles, M., Hallegot, P., Wennig, R., and Migeon, H. N. (2004). Imaging of
 arsenic traces in human hair by nano-SIMS 50. *Applied Surface Science* 231, 490-496.
- Badro, J., Ryerson, F. J., Weber, P. K., Ricolleau, A., Fallon, S. J., and Hutcheon, I. D. (2007). Chemical imaging with NanoSIMS: A window into deep-Earth geochemistry. *Earth and Planetary Science Letters* 262, 543-551.
- Balesdent, J., Chenu, C., and Balabane, M. (2000). Relationship of soil organic matter dynamics to
 physical protection and tillage. *Soil & Tillage Research* 53, 215-230.
- 1041 Bardgett, R. D., Richter, A., Bol, R., Garnett, M. H., Baumler, R., Xu, X. L., Lopez-Capel, E., Manning, D.
 1042 A. C., Hobbs, P. J., Hartley, I. R., and Wanek, W. (2007). Heterotrophic microbial communities
 1043 use ancient carbon following glacial retreat. *Biology Letters* 3, 487-490.
- Behrens, S., Losekann, T., Pett-Ridge, J., Weber, P. K., Ng, W.-O., Stevenson, B. S., Hutcheon, I. D.,
 Relman, D. A., and Spormann, A. M. (2008). Linking Microbial Phylogeny to Metabolic Activity
 at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition
 Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS. *Appl. Environ. Microbiol.* 74, 3143-3150.
- Billings, S. A., and Richter, D. D. (2006). Changes in stable isotopic signatures of soil nitrogen and carbon during 40 years of forest development. *Oecologia* 148, 325-333.
- 1051 Blair, N., Prince, K. E., Faulkner, R. D., and Till, A. R. (2006). Using the scanning electron microprobe
 and secondary ion mass spectrometry to locate C-14- and C-13-labelled plant residues within
 soil aggregates. *Scanning* 28, 259-266.
- Bonneville, S., Morgan, D. J., Schmalenberger, A., Bray, A., Brown, A., Banwart, S. A., and Benning, L.
 G. (2011). Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. *Geochimica Et Cosmochimica Acta* 75, 6988-7005.
- Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. *Journal of Colloid and Interface Science* 277, 1-18.
- Brandes, J. A., Lee, C., Wakeham, S., Peterson, M., Jacobsen, C., Wirick, S., and Cody, G. (2004).
 Examining marine particulate organic matter at sub-micron scales using scanning
 transmission X-ray microscopy and carbon X-ray absorption near edge structure
 spectroscopy. *Marine Chemistry* 92, 107-121.
- Breland, T. A., and Bakken, L. R. (1991). Microbial growth and nitrogen immobilization in the root
 zone of barley (Hordeum vulgate L.), Italian ryegrass (Lolium multiflorum Lam.), and white
 clover (Trifolium repens L.). *Biology and Fertility of Soils* 12, 154-160.
- Bullock, P., and Murphy, C. P. (1980). Towards the quantification of soil structure. *Journal of Microscopy-Oxford* 120, 317-328.

- Bundt, M., Widmer, F., Pesaro, M., Zeyer, J., and Blaser, P. (2001). Preferential flow paths: biological
 'hot spots' in soils. *Soil Biology & Biochemistry* 33, 729-738.
- 1071 Carbol, P., Solatie, D., Erdmann, N., Nylen, T., and Betti, M. (2003). Deposition and distribution of
 1072 Chernobyl fallout fission products and actinides in a Russian soil profile. *Journal of* 1073 *Environmental Radioactivity* 68, 27-46.
- 1074 Chabbi, A., Kogel-Knabner, I., and Rumpel, C. (2009). Stabilised carbon in subsoil horizons is located
 1075 in spatially distinct parts of the soil profile. *Soil Biology & Biochemistry* 41, 256-261.
- 1076 Chandra, S., and Morrison, G. H. (1992). Sample preparation of animal tissues and cell cultures for
 1077 secondary ion mass spectrometry (SIMS) microscopy. *Biology of the Cell* 74, 31-42.
- 1078 Cheng, C. H., Lehmann, J., and Engelhard, M. H. (2008a). Natural oxidation of black carbon in soils:
 1079 Changes in molecular form and surface charge along a climosequence. *Geochimica et Cosmochimica Acta* 72, 1598-1610.
- 1081 Cheng, C. H., Lehmann, J., Thies, J. E., and Burton, S. D. (2008b). Stability of black carbon in soils across a climatic gradient. *Journal of Geophysical Research-Biogeosciences* 113.
- 1083 Cheng, S., Bryant, R., Doerr, S. H., Williams, P. R., and Wright, C. J. (2008c). Application of atomic
 1084 force microscopy to the study of natural and model soil particles. *Journal of Microscopy-* 1085 *Oxford* 231, 384-394.
- 1086 Christensen, B. T. (2001). Physical fractionation of soil and structural and functional complexity in
 1087 organic matter turnover. *European Journal of Soil Science* 52, 345-353.
- 1088 Cliff, J. B., Bottomley, P. J., Gaspar, D. J., and Myrold, D. D. (2007). Nitrogen mineralization and assimilation at millimeter scales. *Soil Biology & Biochemistry* 39, 823-826.
- 1090 Cliff, J. B., Bottomley, P. J., Haggerty, R., and Myrold, D. D. (2002a). Modeling the effects of diffusion
 1091 limitations on nitrogen-15 isotope dilution experiments with soil aggregates. *Soil Science* 1092 Society of America Journal 66, 1868-1877.
- 1093 Cliff, J. B., Gaspar, D. J., Bottomley, P. J., and Myrold, D. D. (2002b). Exploration of inorganic C and N
 1094 assimilation by soil microbes with time-of-flight secondary ion mass spectrometry. *Applied* 1095 and Environmental Microbiology 68, 4067-4073.
- 1096 Clode, P. L., Kilburn, M. R., Jones, D. L., Stockdale, E. A., Cliff, J. B., Herrmann, A. M., and Murphy, D.
 1097 V. (2009). In situ mapping of nutrient uptake in the rhizosphere using nanoscale sceondary
 1098 ion mass spectrometry. *Plant Physiology* 151, 1751-1757.
- 1099 De Gregorio, B. T., Stroud, R. M., Nittler, L. R., Alexander, C. M. O. D., Kilcoyne, A. L. D., and Zega, T. J.
 (2010). Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation. *Geochimica Et Cosmochimica Acta* 74, 4454-4470.
- 1103 Dechesne, A., Pallud, C., and Grundmann, G. L. (2007). "Spatial distribution of bacteria at the microscale in soil."
- 1105 Dekas, A. E., Poretsky, R. S., and Orphan, V. J. (2009). Deep-Sea Archaea Fix and Share Nitrogen in
 1106 Methane-Consuming Microbial Consortia. *Science* 326, 422-426.

- 1107 DeRito, C. M., Pumphrey, G. M., and Madsen, E. L. (2005). Use of field-based stable isotope probing
 1108 to identify adapted populations and track carbon flow through a phenol-degrading soil
 1109 microbial community. *Appl Environ Microbiol* 71, 7858-7865.
- 1110 Derrien, D., Marol, C., Balabane, M., and Balesdent, J. (2006). The turnover of carbohydrates in a
 1111 cultivated soil estimated by 13C natural abundances. *European Journal of Soil Science* 57,
 1112 547-557.
- 1113 Dykstra, M. J., and Reuss, L. E., eds. (2003). "Biological Electron Microscopy: Theory, Techniques and
 1114 Troubleshooting." Kluwer Academic/Plenum Publishers, New York.
- **1115** Echlin, P. (1992). "Low-Temperature Microscopy and Analysis," Springer, New York.
- Ehleringer, J. R., Buchmann, N., and Flanagan, L. B. (2000). Carbon isotope ratios in belowground
 carbon cycle processes. *Ecological Applications* 10, 412-422.
- Eickhorst, T., and Tippkoetter, R. (2008). Detection of microorganisms in undisturbed soil by combining fluorescence in situ hybridization (FISH) and micropedological methods. *Soil Biology & Biochemistry* 40, 1284-1293.
- Eusterhues, K., Rumpel, C., and Kögel-Knabner, I. (2005). Organo-mineral associations in sandy acid
 forest soils: importance of specific surface area, iron oxides and micropores. *European Journal of Soil Science* 56, 753-763.
- Eybe, T., Audinot, J. N., Bohn, T., Guignard, C., Migeon, H. N., and Hoffmann, L. (2008). NanoSIMS 50
 elucidation of the natural element composition in structures of cyanobacteria and their
 exposure to halogen compounds. *Journal of Applied Microbiology* 105, 1502-1510.
- 1127 Eybe, T., Bohn, T., Audinot, J. N., Udelhoven, T., Cauchie, H. M., Migeon, H. N., and Hoffmann, L.
 (2009). Uptake visualization of deltamethrin by NanoSIMS and acute toxicity to the water
 1129 flea Daphnia magna. *Chemosphere* **76**, 134-140.
- Fike, D. A., Gammon, C. L., Ziebis, W., and Orphan, V. J. (2008). Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: a paired nanoSIMS and CARD-FISH approach. *Isme Journal* 2, 749-759.
- Finlay, R., Wallander, H., Smits, M., Holmstrom, S., Van Hees, P., Lian, B., and Rosling, A. (2009). The
 role of fungi in biogenic weathering in boreal forest soils. *Fungal Biology Reviews* 23, 101106.
- Finzi-Hart, J., Pett-Ridge, J., Weber, P., Popa, R., Fallon, S. J., Gunderson, T., Hutcheon, I., Nealson, K., and Capone, D. G. (2009). Fixation and fate of carbon and nitrogen in Trichodesmium IMS101 using nanometer resolution secondary ion mass spectrometry (NanoSIMS). *Proceedings of the National Academy of Sciences, USA* 106, 6345-6350.
- Fisk, A. C., Murphy, S. L., and Tate, R. L. (1999). Microscopic observations of bacterial sorption in soil cores. *Biology and Fertility of Soils* 28, 111-116.
- Fleming, Y., Wirtz, T., Gysin, U., Glatzel, T., Wegmann, U., Meyer, E., Maier, U., and Rychen, J. (2011).
 Three dimensional imaging using secondary ion mass spectrometry and atomic force microscopy. *Applied Surface Science* 258, 1322-1327.

- Floss, C., Stadermann, F. J., Bradley, J. P., Dai, Z. R., Bajt, S., Graham, G., and Lea, A. S. (2006).
 Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study. *Geochimica Et Cosmochimica Acta* 70, 2371-2399.
- Flynn, G. J., Keller, L. P., Jacobsen, C., and Wirick, S. (2004). An assessment of the amount and types
 of organic matter contributed to the Earth by interplanetary dust. *Advances in Space Research* 33, 57-66.
- 1151 Gea, L., Jauneau, A., and Vian, B. (1994). Preliminary SIMS imaging of Calcium distribution in
 1152 ectomycorrhizas of Pinus pinaster and Hebeloma cylindrosporum. *Journal of Trace and* 1153 *Microprobe Techniques* 12, 323-329.
- Gillespie, A. W., Walley, F. L., Farrell, R. E., Leinweber, P., Schlichting, A., Eckhardt, K. U., Regier, T. Z.,
 and Blyth, R. I. R. (2009). Profiling Rhizosphere Chemistry: Evidence from Carbon and
 Nitrogen K-Edge XANES and Pyrolysis-FIMS. *Soil Science Society of America Journal* 73, 20022012.
- Gillott, J. E. (1970). Fabric of Leda clay investigated by optical, electron-optical, and x-ray diffractions
 methods. *Engineering Geology* 4, 133-&.
- Grandy, A. S., and Neff, J. C. (2008). Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function.
 Science of the Total Environment 404, 297-307.
- **1163** Gray, T. R. G. (1967). Stereoscan electron microscopy of soil microorganisms. *Science* **155**, 1668-&.
- Halm, H., Musat, N., Lam, P., Langlois, R., Musat, F., Peduzzi, S., Lavik, G., Schubert, C. J., Singha, B.,
 LaRoche, J., and Kuypers, M. M. M. (2009). Co-occurrence of denitrification and nitrogen
 fixation in a meromictic lake, Lake Cadagno (Switzerland). *Environmental Microbiology* 11, 1945-1958.
- Hatton, P.-J., Remusat, L., Zeller, B., and Derrien, D. (2012). A multi-scale approach to determine
 accurate elemental and isotopic ratios by nano-scale secondary ion mass spectrometry
 imaging. *Rapid Communications in Mass Spectrometry* 26, 1363-1371.
- Heister, K., Höschen, C., Pronk, G. J., Müller, C. W., and Kögel-Knabner, I. (2012). NanoSIMS as a tool
 for characterizing soil model compounds and organomineral associations in artificial soils.
 Journal of Soils and Sediments 12, 35-47.
- Herrmann, A. M., Clode, P. L., Fletcher, I. R., Nunan, N., Stockdale, E. A., O'Donnel, A. G., and Murphy,
 D. V. (2007a). A novel method for the study of the biophysical interface in soils using nano scale secondary ion mass spectrometry. *Rapid Communications in Mass Spectrometry* 21, 29 34.
- Herrmann, A. M., Ritz, K., Nunan, N., Clode, P. L., Pett-Ridge, J., Kilburn, M. R., Murphy, D. V.,
 O'Donnell, A. G., and Stockdale, E. A. (2007b). Nano-scale secondary ion mass spectrometry A new analytical tool in biogeochemistry and soil ecology: A review article. *Soil Biology and Biochemistry* 39, 1835-1850.
- Hillion, F., Daigne, B., Girard, F., and Slodzian, G. (1993). A new high performance instrument: the Cameca NanoSIMS 50. *In* "Secondary Ion Mass Spectrometry" (A. Benninghoven, Y. Nihei, R. Shimizu and H. W. Werner, eds.), pp. 254-257. Wiley, New York.

- Hinsinger, P., Bengough, A. G., Vetterlein, D., and Young, I. M. (2009). Rhizosphere: biophysics,
 biogeochemistry and ecological relevance. *Plant and Soil* 321, 117-152.
- **1187** Hoppe, P. (2006). NanoSIMS: A new tool in cosmochemistry. *Applied Surface Science* **252**, 7102-7106.
- Howard, J. L., Amos, D. F., and Daniels, W. L. (1996). Micromorphology and dissolution of quartz sand
 in some exceptionally ancient soils. *Sedimentary Geology* 105, 51-62.
- 1190 Keiluweit, M., Bougoure, J. J., Zeglin, L. H., Myrold, D. D., Weber, P. K., Pett-Ridge, J., Kleber, M., and
 1191 Nico, P. S. (2012). Nano-scale Investigation of the Association of Microbial Nitrogen residues
 1192 with Iron (hydr)oxides in a Forest Soil O-horizon. *Geochimica et Cosmochimica Acta* in press.
- 1193 Kiczka, M., Wiederhold, J. G., Frommer, J., Voegelin, A., Kraemer, S. M., Bourdon, B., and
 1194 Kretzschmar, R. (2011). Iron speciation and isotope fractionation during silicate weathering
 1195 and soil formation in an alpine glacier forefield chronosequence. *Geochimica Et*1196 *Cosmochimica Acta* 75, 5559-5573.
- 1197 Kips, R. S. E., Weber, P. K., Zavarin, M., Jacobsen, B., Felmy, A. R., and Kersting, A. B. (2012).
 1198 Plutonium transport through vadose zone sediments at the Hanford Site: A NanoSIMS study.
 1199 In "Plutonium Futures", Cambridge England.
- 1200 Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K.,
 1201 and Leinweber, P. (2008). Organo-mineral associations in temperate soils: Integrating
 1202 biology, mineralogy, and organic matter chemistry. *Journal of Plant Nutrition and Soil* 1203 Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 171, 61-82.
- 1204 Kowalkowski, A., and Mycielskadowgiallo, E. (1985). Weathering of quartz grains in the liquefied
 1205 horizon of permafrost solonchaks in the arid steppe zone, Central Mongolia. *Catena* 12, 179 1206 190.
- 1207 Kraft, M. L., Weber, P. K., Longo, M. L., Hutcheon, I. D., and Boxer, S. G. (2006). Phase Separation of
 1208 Lipid Membranes Analyzed with High-Resolution Secondary Ion Mass Spectrometry. *Science* 1209 313, 1948-1951.
- 1210 Krein, A., Audinot, J.-N., Migeon, H.-N., and Hoffmann, L. (2007). Facing hazardous matter in atmospheric particles with NanoSIMS. *Environmental Science and Pollution Research* 14, 3-4.
- 1212 Kubiena, W. L. (1938). "Micropedology."
- **1213** Kuo, J., ed. (2007). "Electron Microscopy: Methods and Protocols." Humana Press, Totowa, NJ.
- 1214 Kuypers, M. M. M., and Jorgensen, B. B. (2007). The future of single-cell environmental microbiology.
 1215 Environmental Microbiology 9, 6-7.
- 1216 Kuzyakov, Y., Friedel, J. K., and Stahr, K. (2000). Review of mechanisms and quantification of priming
 1217 effects. *Soil Biology & Biochemistry* 32, 1485-1498.
- 1218 Lechene, C., Hillion, F., McMahon, G., Benson, D., Kleinfeld, A. M., Kampf, J. P., Distel, D., Luyten, Y.,
 1219 Bonventre, J., Hentschel, D., Park, K. M., Ito, S., Schwartz, M., Benichou, G., and Slodzian, G.
 1220 (2006). High-resolution quantitative imaging of mammalian and bacterial cells using stable
 1221 isotope mass spectrometry. *J Biol* 5, 20.
- 1222 Lechene, C. P., Luyten, Y., McMahon, G., and Distel, D. L. (2007). Quantitative imaging of nitrogen
 1223 fixation by individual bacteria within animal cells. *Science* 317, 1563-1566.

- 1224 Lehmann, H. (2003). Investigation of the matrix effect of Mg, Si, Ca, Sc, Fe, Y, La and Lu in pyroxene
 1225 composition synthetic silicate glasses by ion microprobe. *Geostandards Newsletter-the* 1226 *Journal of Geostandards and Geoanalysis* 27, 99-117.
- 1227 Lehmann, J., Kinyangi, J., and Solomon, D. (2007). Organic matter stabilization in soil
 1228 microaggregates: implications from spatial heterogeneity of organic carbon contents and
 1229 carbon forms. *Biogeochemistry* 85, 45-57.
- Lehmann, J., Liang, B., Solomon, D., Lerotic, M., Luizao, F., Schafer, T., and Wirick, S. (2005). Nearedge x-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soils: Application to black carbon particles. *Global Biogeochemical Cycles* 19.
- 1234 Lehmann, J., Solomon, D., Brandes, J., Fleckenstein, H., Jacobson, C., and Thieme, J. (2009).
 1235 Synchrotron-Based Near-Edge X-Ray Spectroscopy of Natural Organic Matter in Soils and 1236 Sediments. *In* "Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in 1237 Environmental Systems", pp. 729-781. John Wiley & Sons, Inc.
- 1238 Lemaire, R., Webb, R. I., and Yuan, Z. (2008). Micro-scale observations of the structure of aerobic
 1239 microbial granules used for the treatment of nutrient-rich industrial wastewater. *ISME J* 2, 528-541.
- 1241 Li, T., Wu, T.-D., Mazéas, L., Toffin, L., Guerquin-Kern, J.-L., Leblon, G., and Bouchez, T. (2008).
 1242 Simultaneous analysis of microbial identity and function using NanoSIMS. *Environmental* 1243 *Microbiology* 10, 580-588.
- 1244 Li, Y., Dick, W. A., and Tuovinen, O. H. (2004). Fluorescence microscopy for visualization of soil microorganisms a review. *Biology and Fertility of Soils* 39, 301-311.
- Lombi, E., Scheckel, K. G., and Kempson, I. M. (2011). In situ analysis of metal(loid)s in plants: State of
 the art and artefacts. *Environmental and Experimental Botany* 72, 3-17.
- Mangabeira, P. A., Gavrilov, K. L., de Almeida, A. A. F., Oliveira, A. H., Severo, M. I., Rosa, T. S., Silva,
 D. D., Labejof, L., Escaig, F., Levi-Setti, R., Mielke, M. S., Loustalot, F. G., and Galle, P. (2006).
 Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion
 microscopy (SIMS). *Applied Surface Science* 252, 3488-3501.
- Martin, R. R., Sham, T. K., Won, G. W., Jones, K. W., and Feng, H. (2001). Synchrotron x-ray
 fluorescence and secondary ion mass spectrometry in tree ring microanalysis: applications to
 dendroanalysis. *X-Ray Spectrometry* **30**, 338-341.
- Maurice, P. A. (1996). Applications of atomic-force microscopy in environmental colloid and surface
 chemistry. *Colloids and Surfaces a-Physicochemical and Engineering Aspects* 107, 57-75.
- Maurice, P. A., Lee, Y. J., and Hersman, L. E. (2000). Dissolution of Al-substituted goethites by an
 aerobic Pseudomonas mendocina var. bacteria. *Geochimica Et Cosmochimica Acta* 64, 1363 1374.
- Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M., and Zinner, E. (2003). Samples of stars
 beyond the solar system: Silicate grains in interplanetary dust. *Science* 300, 105-108.
- 1262 Migeon, A., Audinot, J.-N., Eybe, T., Richaud, P., Damien, B., Migeon, H.-N., and Chalot, A. (2009).
 1263 Cadmium and zinc localization by SIMS in leaves of Populus deltoides (cv. Lena) grown in a
 1264 metal polluted soil. *Surface and Interface Analysis* 43, 367-369.

- 1265 Moore, K. L., Lombi, E., Zhao, F.-J., and Grovenor, C. R. M. (2011a). Elemental imaging at the nanoscale: NanoSIMS and complementary techniques for element localisation in plants.
 1267 Analytical and Bioanalytical Chemistry 402, 3263-3273.
- Moore, K. L., Schroder, M., Lombi, E., Zhao, F.-J., McGrath, S. P., Hawkesford, M. J., Shewry, P. R., and
 Grovenor, C. R. M. (2010). NanoSIMS analysis of arsenic and selenium in cereal grain. *New Phytologist* 185, 434-445.
- Moore, K. L., Schroeder, M., Wu, Z., Martin, B. G. H., Hawes, C. R., McGrath, S. P., Hawkesford, M. J.,
 Ma, J. F., Zhao, F.-J., and Grovenor, C. R. M. (2011b). High-Resolution Secondary Ion Mass
 Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice
 Roots. *Plant Physiology* 156, 913-924.
- Morales, V. L., Parlange, J. Y., and Steenhuis, T. S. (2010). Are preferential flow paths perpetuated by
 microbial activity in the soil matrix? A review. *Journal of Hydrology* 393, 29-36.
- Moreau, J. W., Weber, P. K., Martin, M. C., Gilbert, B., Hutcheon, I. D., and Banfield, J. F. (2007).
 Extracellular proteins limit the dispersal of biogenic nanoparticles. *Science* 316, 1600-1603.
- Mueller, C. W., Gutsch, M., Schlund, S., Prietzel, J., and Kögel-Knabner, I. (2012a). Soil aggregate
 destruction by ultrasonication increases soil organic matter mineralization and mobility. *Soil Science Society of America Journal* **76**, 1634-1643.
- Mueller, C. W., Kölbl, A., Hoeschen, C., Hillion, F., Heister, K., Herrmann, A. M., and Kögel-Knabner, I.
 (2012b). Submicron scale imaging of soil organic matter dynamics using NanoSIMS From
 single particles to intact aggregates. *Organic Geochemistry* 42, 1476-1488.
- 1285 Müller, B., and Defago, G. (2006). Interaction between the bacterium Pseudomonas fluorescens and
 1286 vermiculite: Effects on chemical, mineralogical, and mechanical properties of vermiculite.
 1287 Journal of Geophysical Research-Biogeosciences 111.
- Musat, N., Foster, R., Vagner, T., Adam, B., and Kuypers, M. M. M. (2012). Detecting metabolic
 activities in single cells, with emphasis on nanoSIMS. *FEMS Microbiology Reviews* 36, 486511.
- Musat, N., Halm, H., Winterholler, B., Hoppe, P., Peduzzi, S., Hillion, F., Horreard, F., Amann, R.,
 Jørgensen, B. B., and Kuypers, M. M. M. (2008). A single-cell view on the ecophysiology of
 anaerobic phototrophic bacteria. *Proceedings of the National Academy of Sciences* 105,
 17861-17866.
- 1295 Norton, J. M., and Firestone, M. K. (1996). N dynamics in the rhizosphere of Pinus ponderosa
 1296 seedlings. *Soil Biology & Biochemistry* 28, 351-362.
- 1297 Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., Clark, S. B.,
 1298 Tkachev, V. V., and Myasoedov, B. F. (2006). Colloid transport of plutonium in the far-field of
 1299 the Mayak Production Association, Russia. *Science* 314, 638-641.
- 1300 Nunan, N., Ritz, K., Crabb, D., Harris, K., Wu, K., Crawford, J. W., and Young, I. M. (2001).
 1301 Quantification of the in situ distribution of soil bacteria by large-scale imaging of thin sections of undisturbed soil. *FEMS Microbiology Ecology* 37, 67-77.
- 1303 Nunan, N., Young, I. M., Crawford, J. W., and Ritz, K. (2007). "Bacterial interactions at the microscale 1304 Linking habitat to function in soil."

- 1305 Orphan, V. J., House, C. H., Hinrichs, K.-U., McKeegan, K. D., and DeLong, E. F. (2001). Methane 1306 consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. *Science* 1307 293, 484-487.
- Pacton, M., Ariztegui, D., Wacey, D., Kilburn, M. R., Rollion-Bard, C., Farah, R., and Vasconcelos, C.
 (2012). Going nano: A new step toward understanding the processes governing freshwater
 ooid formation. *Geology* 40, 547-550.
- 1311 Pebesma, E. J. (2004). Multivariable geostatistics in R: the gstat package. *Computational Geoscience*1312 30, 683-691.
- Peteranderl, R., and Lechene, C. (2004). Measure of carbon and nitrogen stable isotope ratios in
 cultured cells. *Journal of the American Society for Mass Spectrometry* 15, 478-485.
- Pett-Ridge, J., Keiluweit, M., Zeglin, L. H., Myrold, D. D., Bougoure, J. J., Weber, P. K., Kleber, M., and
 Nico, P. S. (2012). Joining NanoSIMS and STXM/NEXAFS to visualize soil biotic and abiotic
 processes at the nano-scale. *Soil Biology and Biogeochemistry* in review.
- Pett-Ridge, J., and Weber, P. K. (2012). NanoSIP: NanoSIMS applications for microbial biology. *In* "Microbial Systems Biology: Methods and Protocols" (A. Navid, ed.), Vol. 881. Humana Press.
- Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., and Van Kranendonk, M. J. (2007).
 Early Archaean microorganisms preferred elemental sulfur, not sulfate. *Science* 317, 1534-1537.
- Ploug, H., Musat, N., Adam, B., Moraru, C. L., Lavik, G., Vagner, T., Bergman, B., and Kuypers, M. M.
 M. (2010). Carbon and nitrogen fluxes associated with the cyanobacterium Aphanizomenon
 sp. in the Baltic Sea. *ISME J* 4, 1215-1223.
- Polerecky, L., Adam, B., Milucka, J., Musat, N., Vagner, T., and Kuypers, M. M. M. (2012).
 Look@NanoSIMS a tool for the analysis of nanoSIMS data in environmental microbiology.
 Environmental Microbiology 14, 1009-1023.
- Popa, R., Weber, P. K., Pett-Ridge, J., Finzi, J. A., Fallon, S. J., Hutcheon, I. D., Nealson, K. H., and
 Capone, D. G. (2007). Carbon and nitrogen fixation and metabolite exchange in and between
 individual cells of Anabaena oscillarioides. *Isme Journal* 1, 354-360.
- Pulleman, M. M., Six, J., van Breemen, N., and Jongmans, A. G. (2005). Soil organic matter
 distribution and microaggregate characteristics as affected by agricultural management and
 earthworm activity. *European Journal of Soil Science* 56, 453-467.
- Pumphrey, G. M., Hanson, B. T., Chandra, S., and Madsen, E. L. (2009). Dynamic secondary ion mass
 spectrometry imaging of microbial populations utilizing 13C-labelled substrates in pure
 culture and in soil. *Environmental Microbiology* 11, 220-229.
- Rasmussen, B., Blake, T. S., Fletcher, I. R., and Kilburn, M. R. (2009). Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments. *Geology* 37, 423-426.
- 1340 Remusat, L., Hatton, P.-J., Nico, P. S., Zeller, B., Kleber, M., and Derrien, D. (2012). NanoSIMS Study of
 1341 Organic Matter Associated with Soil Aggregates: Advantages, Limitations, and Combination
 1342 with STXM. *Environmental Science & Technology* 46, 3943-3949.

- 1343 Rennert, T., Totsche, K. U., Heister, K., Kersten, M., and Thieme, J. (2012). Advanced spectroscopic,
 1344 microscopic, and tomographic characterization techniques to study biogeochemical
 1345 interfaces in soil. *Journal of Soils and Sediments* 12, 3-23.
- Ruetting, T., Huygens, D., Staelens, J., Mueller, C., and Boeckx, P. (2011). Advances in N-15-tracing
 experiments: new labelling and data analysis approaches. *Biochemical Society Transactions* 39, 279-283.
- Schaumann, G. E., and Mouvenchery, Y. K. (2012). Potential of AFM-nanothermal analysis to study
 the microscale thermal characteristics in soils and natural organic matter (NOM). *Journal of Soils and Sediments* 12, 48-62.
- Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., Kleber, M.,
 Kogel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S., and
 Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. *Nature*478, 49-56.
- Schöning, I., Morgenroth, G., and Kögel-Knabner, I. (2005). O/N-alkyl and alkyl C are stabilised in fine
 particle size fractions of forest soils. *Biogeochemistry* 73, 475-497.
- 1358 Schulze, E. D., and Freibauer, A. (2005). Environmental science Carbon unlocked from soils. *Nature*1359 437, 205-206.
- Sleutel, S., Leinweber, P., Van Ranst, E., Kader, M. A., and Jegajeevagan, K. Organic Matter in Clay
 Density Fractions from Sandy Cropland Soils with Differing Land-Use History. *Soil Science Society of America Journal* **75**, 521-532.
- **1363** Slodzian, G. (1987). Basic aspects in ion imaging with secondary ions. *Scanning Microscopy*, 1-12.
- 1364 Slodzian, G., Daigne, B., Girard, F., Boust, F., and Hillion, F. (1992). Scanning secondary ion analytical
 1365 microscopy with parallel detection. *Biology of the Cell* 74, 43-50.
- Spezzano, P. (2005). Distribution of pre- and post-Chernobyl radiocaesium with particle size fractions
 of soils. *Journal of Environmental Radioactivity* 83, 117-127.
- 1368 Stadermann, F. J., Walker, R. M., and Zinner, E. (1999). Nanosims: The next generation ion probe for
 1369 the microanalysis of extraterrestrial material. *Meteoritics & Planetary Science* 34, A111-A112.
- 1370 Steffens, M., Kölbl, A., Totsche, K. U., and Kögel-Knabner, I. (2008). Grazing effects on soil chemical and physical properties in a semiarid steppe of inner Mongolia (P.R. China). *Geoderma* 143, 63-72.
- 1373 Storms, H. A., Brown, K. F., and Stein, J. D. (1977). Evaluation of a cesium positive-ion source for
 1374 secondary ion mass-spectrometry. *Analytical Chemistry* 49, 2023-2030.
- 1375 Tartivel, R., Tatin, R., Delhaye, T., Maupas, A., Gendron, A., Gautier, S., and Lavastre, O. (2012).
 1376 Visualization and localization of bromotoluene distribution in Hedera helix using NanoSIMS.
 1377 Chemosphere 89, 805-9.
- 1378 Tippkötter, R., and Ritz, K. (1996). Evaluation of polyester, epoxy and acrylic resins for suitability in preparation of soil thin sections for in situ biological studies. *Geoderma* 69, 31-57.

- Totsche, K. U., Rennert, T., Gerzabek, M. H., Kögel-Knabner, I., Smalla, K., Spiteller, M., and Vogel, H.
 J. (2010). Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science.
 Journal of Plant Nutrition and Soil Science 173, 88-99.
- 1383 Valle, N., Drillet, J., Pic, A., and Migeon, H. N. (2011). Nano-SIMS investigation of boron distribution in
 1384 steels. *Surface and Interface Analysis* 43, 573-575.
- von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberg, G., Matzner, E., and
 Marschner, B. (2007). SOM fractionation methods: Relevance to functional pools and
 stabilization mechanisms. *Soil Biology & Biochemistry*.
- von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., and
 Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their
 relevance under different soil conditions a review. *European Journal of Soil Science* 57, 426 445.
- Wacey, D., Gleeson, D., and Kilburn, M. R. (2010a). Microbialite taphonomy and biogenicity: new insights from NanoSIMS. *Geobiology* 8, 403-16.
- Wacey, D., McLoughlin, N., Whitehouse, M. J., and Kilburn, M. R. (2010b). Two coexisting sulfur metabolisms in a ca. 3400 Ma sandstone. *Geology* 38, 1115-1118.
- 1396 Wan, J., Tyliszczak, T., and Tokunaga, T. K. (2007). Organic carbon distribution, speciation, and
 1397 elemental correlations within soil microaggregates: applications of STXM and NEXAFS
 1398 spectroscopy.
- Weber, K. A., Spanbauer, T. L., Wacey, D., Kilburn, M. R., Loope, D. B., and Kettler, R. M. (2012).
 Biosignatures link microorganisms to iron mineralization in a paleoaquifer. *Geology* 40, 747750.
- 1402 Weber, P., and Holt, J. (2008). "Virus and Bacterial Cell Chemical Analysis by NanoSIMS."
- Weber, P. K., Graham, G. A., Teslich, N. E., MoberlyChan, W., Ghosal, S., Leighton, T. J., and Wheeler,
 K. E. (2010). NanoSIMS imaging of Bacillus spores sectioned by Focused Ion Beam. *Journal of Microscopy* 238, 189-199.
- 1406 Wilson, R. G., Stevie, F. A., and Magee, C. W. (1989). "Secondary Ion Mass Spectrometry: A Practical
 1407 Handbook for Depth Profiling and Bulk Impurity Analysis," New York.
- 1408 Wilson, S. C., Lockwood, P. V., Ashley, P. M., and Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review.
 1410 Environmental Pollution 158, 1169-1181.
- Wirtz, T., Fleming, Y., Gerard, M., Gysin, U., Glatzel, T., Meyer, E., Wegmann, U., Maier, U., Odriozola,
 A. H., and Uehli, D. (2012a). Design and performance of a combined secondary ion mass
 spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution
 elemental three-dimensional analysis. *Review of Scientific Instruments* 83.
- 1415 Wirtz, T., Fleming, Y., Gysin, U., Glatzel, T., Wegmann, U., Meyer, E., Maier, U., and Rychen, J.
 1416 (2012b). Combined SIMS-SPM instrument for high sensitivity and high-resolution elemental
 1417 3D analysis. *Surface and Interface Analysis*.
- Woebken, D., Burow, L. C., Prufert-Bebout, L., Bebout, B. M., Hoehler, T. M., Pett-Ridge, J.,
 Spormann, A. M., Weber, P. K., and Singer, S. W. (2012). Identification of a novel

- 1420 cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS1421 analysis. *Isme Journal* 6, 1427-1439.
- 1422 Zimmer, D., Kruse, J., Baum, C., Borca, C., Laue, M., Hause, G., Meissner, R., and Leinweber, P. (2011).
 1423 Spatial distribution of arsenic and heavy metals in willow roots from a contaminated
 1424 floodplain soil measured by X-ray fluorescence spectroscopy. *Science of the Total*1425 *Environment* 409, 4094-4100.
- 1426
- 1427

Figure captions

Figure 1: A) coaxial setup of the NanoSIMS, indicating the primary and secondary ion beam in relation to the sample surface. Due to the coaxial setup, the secondary ions must have the opposite charge from the primary ions to enable extraction to the mass spectrometer. B) schematic of the NanoSIMS, with the primary ion beam in blue and the secondary ion beam in red. Courtesy of Cameca (Gennevilliers, France), adapted from Myrold et al. (2011).

Figure 2: Micrograph and microanalysis of an embedded cross section derived from a Cryosol soil core (Oa horizon, Typic Aquiturbel) from Barrow, Northern Alaska. A) back scatter electron image recorded with a SEM; B, C) NanoSIMS images (¹²C¹⁴N' and ⁵⁶Fe¹⁶O') recorded with a NanoSIMS 50 L at TU München. The back scatter SEM image shows collapsing plant cells of particulate OM in the center surrounded by mineral spheres. The red square in the SEM image indicates the area analyzed by NanoSIMS, the green line indicates the interface between particulate organic matter and mineral phase, the blue line depicts the boundary between totally and partly collapsed plant cell structures. The NanoSIMS images indicate the distribution of organic matter (¹²C¹⁴N') and the iron distribution (⁵⁶Fe¹⁶O') within the plant cell region, and suggest organo-mineral interfaces in the early stages of formation. D) line scan data derived from analysis of NanoSIMS ¹²C¹⁴N' and ⁵⁶Fe¹⁶O' secondary ion images. The line scans demonstrate the spatial distribution of both secondary ion species along a transect, illustrating the iron clusters within the organic matter region. An area of 0.5 to 0.5 µm (square #2 in images) in size was scanned along the transect (Mueller, unpublished data).

Figure 3: Back scattered secondary electron micrograph and NanoSIMS ion images (¹⁶O⁻; ¹²C¹⁴N⁻) of an embedded root tip cross-section prepared from a French oak root (*Quercus robur,* clone DF159 infected with mycorrhizal fungi *Piloderma croceum,* courtesy of F. Buscot, UFZ Halle, Germany and T. Grams, TU München, Germany) grown in a vermiculite / soil mixture. The root and adhering rhizosphere soil was fixed according to Karnovsky (1965), embedded in an epoxy resin, cross sectioned, polished and imaged via NanoSIMS. The ¹⁶O⁻ NanoSIMS images illustrate thin clay mineral layers, whereas the ¹²C¹⁴N⁻ ion images

indicate the location of root cells. The row of yellow squares in the SEM image show where NanoSIMS analyses occured, in a transect across the interfaces between root, mycorrhizal fungi and mineral particles (Mueller, unpublished data).

Figure 4: TEM and NanoSIMS images of wheat roots (*Triticum aestivum*) exposed to ¹⁵N for 24 h. The samples were fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffered saline and dehydrated in a graded series of acetone. The roots were infiltrated in acetone araldite mixtures over several days, using a gradually increasing araldite concentration. Final embedding in Araldite 502 was done according to Herrmann et al. (2007a). Embedded samples were cut into slices, re-embedded in 10 mm mounts and polished using silicon carbide paper and finally diamond paste. TEM images (A, D) show the presence of microorganisms in the rhizosphere (rh) and extracellular mucilage matrix (e) adjacent to the root cells (c). NanoSIMS images (B, E) of the same regions show organic matter distribution recorded as ¹²C¹⁴N⁻. NanoSIMS ratio images (E, F) of ¹⁵N/¹⁴N (natural abundance at 0.004), confirmed the ¹⁵N enrichment of some microorganisms. Linescan data from the regions between the arrows (in C, F) is shown in G (from C) and H (from F). (Figure adapted from Clode et al. 2009) (Copyright American Society of Biologists www.plantphysiology.org).

Figure 5: SEM micrograph (Figure 1adapted from Clode et al. 2009) of three roots (*Triticum aestivum*) in soil, showing harder materials as quartz (light areas) and softer materials including roots (dark grey areas). The loamy-sand textured soil (Ap horizon from Meckering, Western Australia) containing the roots was infiltrated in acetone araldite mixtures over several days, using a gradually increasing araldite concentration. Final embedding in Araldite 502 was done according to Herrmann et al. (2007a). Embedded samples were cut in slices, re-embedded in 10 mm mounts and polished using silicon carbide paper and finally diamond paste. (Copyright American Society of Biologists www.plantphysiology.org).

Figure 6: A soil thin section prepared by 'cryo' techniques: high pressure freezing followed by cryosectioning and then freeze drying. The soil is from a clay-rich forest soil from the H.J. Andrews Experiment Station, Oregon, USA, and was exposed in a controlled microcosm to a low-concentration ¹³C glucose label. A) SEM micrograph collected at 2 kV; B) NanoSIMS δ^{13} C image showing what appear to be isotopically enriched microbial cells (white arrows) flanked by plant residue particles; C) STXM transmission image collected at 300 eV of the region annotated by the red/white box in (A,B), scale = 1 µm; D) false color overlay of a STXM C difference map (ratio of scans collected above and below the C edge) and the

transmission map shown in (C); E, F) NEXAFS spectra extracted from the regions of interest circled in (D) are plotted against the standard spectra for (E) ligno-cellulose and (F) protein and substantiate plant vs. microbe particle definitions. (M. Keiluweit, J. Bougoure, P. Weber, P. Nico, M. Kleber, J. Pett-Ridge, unpublished data).

Figure 7: NanoSIMS images and semivariograms (lower panel) of an embedded cross section of organic matter derived from a aggregate of Cambisol topsoil (Ah horizon) from Höglwald, Bavaria, Germany. A) NanoSIMS ¹²C¹⁴N⁻ ion image, B) NanoSIMS ⁵⁶Fe¹⁶O⁻ ion image. The white arrow in the NanoSIMS images indicate the line scan which was used to generate the semivariograms in C-D. (Mueller, unpublished data).

Figure 8: Microstructures associated with fungal hyphae in an organic forest soil investigated by both NanoSIMS imaging and STXM/NEXAFS spectromicroscopy. A) STXM optical density map recorded at 300 eV; B, C) NanoSIMS isotope ratio images for ¹²C¹⁵N/¹³C¹⁴N and Fe concentrations (56 Fe 16 O⁻/ 12 C⁻, normalized to carbon) of the same feature shown in the STXM image. Brighter colors reflect high enrichment/concentration. D) Optical density map of hyphal-associated microstructures with colored regions of interest (ROIs) from which NEXAFS spectra at the C 1s absorption edge and the N 1s absorption edge were collected. ROIs are color-coded according to the spectral types extracted from them: intact fungal hyphae (grey), decomposing hyphal residue (brown), microbial residue (green) and mineral surfaces (blue). E) Average NEXAFS spectra representing the major carbon forms encountered in the regions of interest defined in D. Carbon 1s absorption edge peaks are identified as C=C 1s- π^* transition of aromatic C at 285.1 eV (a), 1s- π^* transition of C=C in ene-ketone at 286.7 eV (b), 1s-3p/ σ^* transition of aliphatic C at 287.4 eV (c), 1s- π^* transition of carboxylic and/or amide C at 288.3 eV (d), the 1s-3p/ σ^* transition of alcohol C-OH at 289.4 eV (e), and the 1s- π^* transition of carbonyl C at 290.3 eV (f). Reproduced with permission from Geochimica and Cosmochimica Acta.

Figure 1: A) coaxial setup of the NanoSIMS, indicating the primary and secondary ion beam in relation to the sample surface. Due to the coaxial setup, the secondary ions must have the opposite charge from the primary ions to enable extraction to the mass spectrometer. B) schematic of the NanoSIMS, with the primary ion beam in blue and the secondary ion beam in red. Courtesy of Cameca (Gennevilliers, France), adapted from Myrold et al. (2011).

Figure 2: Micrograph and microanalysis of an embedded cross section derived from a Cryosol soil core (Oa horizon, Typic Aquiturbel) from Barrow, Northern Alaska. A) back scatter electron image recorded with a SEM; B, C) NanoSIMS images (${}^{12}C^{14}N^{-}$ and ${}^{56}Fe^{16}O$) recorded with a NanoSIMS 50 L at TU München. The back scatter SEM image shows collapsing plant cells of particulate OM in the center surrounded by mineral spheres. The red square in the SEM image indicates the area analyzed by NanoSIMS, the green line indicates the interface between particulate organic matter and mineral phase, the blue line depicts the boundary between totally and partly collapsed plant cell structures. The NanoSIMS images indicate the distribution of organic matter (${}^{12}C^{14}N^{-}$) and the iron distribution (${}^{56}Fe^{16}O^{-}$) within the plant cell region, and suggest organo-mineral interfaces in the early stages of formation. D) line scan data derived from analysis of NanoSIMS ${}^{12}C^{14}N^{-}$ and ${}^{56}Fe^{16}O^{-}$ secondary ion images. The line scans demonstrate the spatial distribution of both secondary ion species along a transect, illustrating the iron clusters within the organic matter region. An area of 0.5 to 0.5 µm (square #2 in images) in size was scanned along the transect (Mueller, unpublished data).

Figure 3: Back scattered secondary electron micrograph and NanoSIMS ion images (¹⁶O⁻; ¹²C¹⁴N⁻) of an embedded root tip cross-section prepared from a French oak root (*Quercus robur*, clone DF159 infected with mycorrhizal fungi *Piloderma croceum*, courtesy of F. Buscot, UFZ Halle, Germany and T. Grams, TU München, Germany) grown in a vermiculite / soil mixture. The root and adhering rhizosphere soil was fixed according to Karnovsky (1965), embedded in an epoxy resin, cross sectioned, polished and imaged via NanoSIMS. The ¹⁶O⁻ NanoSIMS images illustrate thin clay mineral layers, whereas the ¹²C¹⁴N⁻ ion images indicate the location of root cells. The row of yellow squares in the SEM image show where NanoSIMS analyses occured, in a transect across the interfaces between root, mycorrhizal fungi and mineral particles (Mueller, unpublished data).

Figure 4: TEM and NanoSIMS images of wheat roots (*Triticum aestivum*) exposed to ¹⁵N for 24 h. The samples were fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffered saline and dehydrated in a graded series of acetone. The roots were infiltrated in acetone araldite mixtures over several days, using a gradually increasing araldite concentration. Final embedding in Araldite 502 was done according to Herrmann et al. (2007a). Embedded samples were cut into slices, re-embedded in 10 mm mounts and polished using silicon carbide paper and finally diamond paste. TEM images (A, D) show the presence of microorganisms in the rhizosphere (rh) and extracellular mucilage matrix (e) adjacent to the root cells (c). NanoSIMS images (B, E) of the same regions show organic matter distribution recorded as ¹²C¹⁴N⁻. NanoSIMS ratio images (E, F) of ¹⁵N/¹⁴N (natural abundance at 0.004), confirmed the ¹⁵N enrichment of some microorganisms. Linescan data from the regions between the arrows (in C, F) is shown in G (from C) and H (from F). (Figure adapted from Clode et al. 2009) (Copyright American Society of Biologists www.plantphysiology.org).

Figure 5: SEM micrograph (Figure 1adapted from Clode et al. 2009) of three roots (*Triticum aestivum*) in soil, showing harder materials as quartz (light areas) and softer materials including roots (dark grey areas). The loamy-sand textured soil (Ap horizon from Meckering, Western Australia) containing the roots was infiltrated in acetone araldite mixtures over several days, using a gradually increasing araldite concentration. Final embedding in Araldite 502 was done according to Herrmann et al. (2007a). Embedded samples were cut in slices, re-embedded in 10 mm mounts and polished using silicon carbide paper and finally diamond paste. (Copyright American Society of Biologists www.plantphysiology.org).

Figure 6: A soil thin section prepared by 'cryo' techniques: high pressure freezing followed by cryosectioning and then freeze drying. The soil is from a clay-rich forest soil from the H.J. Andrews Experiment Station, Oregon, USA, and was exposed in a controlled microcosm to a low-concentration ¹³C glucose label. A) SEM micrograph collected at 2 kV; B) NanoSIMS δ^{13} C image showing what appear to be isotopically enriched microbial cells (white arrows) flanked by plant residue particles; C) STXM transmission image collected at 300 eV of the region annotated by the red/white box in (A,B), scale = 1 µm; D) false color overlay of a

STXM C difference map (ratio of scans collected above and below the C edge) and the transmission map shown in (C); E, F) NEXAFS spectra extracted from the regions of interest circled in (D) are plotted against the standard spectra for (E) ligno-cellulose and (F) protein and substantiate plant vs. microbe particle definitions. (M. Keiluweit, J. Bougoure, P. Weber, P. Nico, M. Kleber, J. Pett-Ridge, unpublished data).

Figure 7: NanoSIMS images and semivariograms (lower panel) of an embedded cross section of organic matter derived from a aggregate of Cambisol topsoil (Ah horizon) from Höglwald, Bavaria, Germany. A) NanoSIMS ¹²C¹⁴N⁻ ion image, B) NanoSIMS ⁵⁶Fe¹⁶O⁻ ion image. The white arrow in the NanoSIMS images indicate the line scan which was used to generate the semivariograms in C-D. (Mueller, unpublished data).

Figure 8: Microstructures associated with fungal hyphae in an organic forest soil investigated by both NanoSIMS imaging and STXM/NEXAFS spectromicroscopy. A) STXM optical density map recorded at 300 eV; B, C) NanoSIMS isotope ratio images for ¹²C¹⁵N^{-/13}C¹⁴N⁻ and Fe concentrations (⁵⁶Fe¹⁶O^{-/12}C⁻, normalized to carbon) of the same feature shown in the STXM image. Brighter colors reflect high enrichment/concentration. D) Optical density map of hyphal-associated microstructures with colored regions of interest (ROIs) from which NEXAFS spectra at the C 1s absorption edge and the N 1s absorption edge were collected. ROIs are color-coded according to the spectral types extracted from them: intact fungal hyphae (grey), decomposing hyphal residue (brown), microbial residue (green) and mineral surfaces (blue). E) Average NEXAFS spectra representing the major carbon forms encountered in the regions of interest defined in D. Carbon 1s absorption edge peaks are identified as C=C 1s-π* transition of aromatic C at 285.1 eV (a), 1s-π* transition of C=C in ene-ketone at 286.7 eV (b), 1s-3p/ σ* transition of aliphatic C at 287.4 eV (c), 1s-π* transition of carboxylic and/or amide C at 288.3 eV (d), the 1s-3p/σ* transition of alcohol C-OH at 289.4 eV (e), and the 1s- π^* transition of carbonyl C at 290.3 eV (f). Reproduced with permission from Geochimica and Cosmochimica Acta.