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Abstract Taylor’s frozen turbulence hypothesis is the central assumption invoked in most
experiments designed to investigate turbulence physics with time resolving sensors. It is also
frequently used in theoretical discussions when linking Lagrangian to Eulerian flow formal-
isms. In this work we seek to quantify the effectiveness of Taylor’s hypothesis on the field
scale using water vapour as a passive tracer. A horizontally orientated Raman lidar is used to
capture the humidity field in space and time above an agricultural region in Switzerland. High
resolution wind speed and direction measurements are conducted simultaneously allowing
for a direct test of Taylor’s hypothesis at the field scale. Through a wavelet decomposition
of the lidar humidity measurements we show that the scale of turbulent motions has a strong
influence on the applicability of Taylor’s hypothesis. This dependency on scale is explained
through the use of dimensional analysis. We identify a ‘persistency scale’ that can be used to
quantify the effectiveness of Taylor’s hypothesis, and present the accuracy of the hypothesis
as a function of this non-dimensional length scale. These results are further investigated and
verified through the use of large-eddy simulations.

Keywords Atmospheric boundary layer - Humidity - Raman lidar - Taylor’s frozen
turbulence hypothesis

1 Introduction

The Taylor frozen turbulence hypothesis (Taylor 1938) is universally prevalent in the investi-

gation of fluid flow physics, as it is far more practical to deploy time-resolving instruments to
track the temporal evolution of the fluid flow. Reliance on Taylor’s hypothesis has diminished
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in the past decade in small-scale experiments due to advancements in particle image veloci-
metry (PIV) and other laser-based measurement technologies. For field scale measurements,
one must still invoke a frozen turbulence assumption, for example in recent analyses of sub-
grid-scale physics for large-eddy simulation (LES) (Tong et al. 1999; Porté-Agel et al. 1998,
2000a,b, 2001a,b; Higgins et al. 2003, 2004, 2009; Kleissl et al. 2003, 2004; Kelly et al.
2009; Bou-Zeid et al. 2010; Patton et al. 2011). Due to its widespread use, Taylor’s hypoth-
esis has been studied theoretically (Lumley 1965; Wyngaard and Clifford 1977; Hill 1996),
with simulations (Horst et al. 2004; Dosio et al. 2005; Bahraminasab et al. 2008; Del Alamo
and Jimenez 2009; Moin 2009), with laboratory experiments (Willis and Deardorff 1976;
Dahm and Southerland 1997), and consequences of Taylor’s hypothesis have been inferred
from field measurements (Tong 1996; Thomas 2011) but to our knowledge there has been
no test of Taylor’s hypothesis across the wide range of scales relevant to field measurements.
In this paper we describe the Turbulent Atmospheric Boundary-layer, Lidar and Evaporation
(TABLE) experiment that was designed, in part, to provide an appropriate test of Taylor’s
hypothesis.

Formally, Taylor’s hypothesis assumes that the advection velocity of the turbulence is
much greater than the velocity scale of the turbulence itself. To quote the original statement
in Taylor (1938): “If the velocity of the air stream which carries the eddies is very much
greater than the turbulence velocity, one may assume that the sequence of changes in u at a
fixed point are simply due to the passage of an unchanging pattern of turbulent motion over
the point.” Invoking this assumption, time is replaced with a distance scaled by velocity,

u(f):u(g), %)

where U is the advection velocity, and x and ¢ are distance and time, respectively. Of course
Eq. 1 is not strictly true for all time; nonetheless it is reasonable to expect that it will hold if
t is sufficiently short. The question then becomes: over what time interval is Eq. 1 generally
valid? To quantify the validity of the hypothesis we use the following generalized space—time
correlation function following Pope (2000) written in the mean flow direction,

u' (x,Hu’(x + 8x,t — 8t)
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where, the overbar represents averaging in both space and time. Using Eq. 2 we compute the
spatial correlation function (in the case of 6 = 0), the time correlation function (in the case
of 6x = 0) and all cross-correlations in space—time. In this equation, Taylor’s hypothesis is
represented as the special case 6x /8t = U, which follows directly from (1). Therefore, if
Taylor’s hypothesis is applicable, we would expect high correlation when 8x /8t = U. Given
a sufficient dataset, one can directly compute ®(8x, §t), set a threshold for an acceptable
value of correlation to accept Taylor’s hypothesis, and deduce the time over which Taylor’s
hypothesis is valid using Eq. 1. The difficulty, of course, in such an analysis is acquiring a
dataset where u is measured in both space and time simultaneously. In the present study we
present a dataset obtained with a Raman lidar suitable for the analysis explained above, and
then use a wavelet approach to investigate the importance of eddy size on the applicability
of Taylor’s hypothesis. Large-eddy simulation results are also used in a comparative anal-
ysis. We finally define a persistency scale that is used to then determine the absolute best
correlation that can be achieved in Eq. 2 from the data and from LES.

@ Springer



The Effect of Scale 381

Fig. 1 Aerial photograph of the experimental site; the wind direction is computed using the two indicated
sonic towers (a) and (b), and humidity measurements are taken between these two towers using the EPFL
Raman lidar

2 Field Measurement Campaign

The TABLE experiment was performed in the summer of 2008 (from August 8 to September
5) near the town of Seedorf, Switzerland on the Swiss plateau. High spatial (1.25m) and
temporal (1s) resolution measurements of humidity over a water/land transition were per-
formed by the EPFL Raman lidar. To calculate turbulent fluxes and to validate the Raman
lidar measurements, three eddy-flux measurement stations were placed along the measure-
ment transect. The average height of the lidar beam was 5.5 m, while each eddy-flux station
contained a CSAT3 three-dimensional sonic anemometer and a LI7500 fast response hygrom-
eter. With each eddy-correlation set-up at 62, 129 and 490 m from the lidar, we have in situ
validation of the humidity signal, a measurement of the mean flow velocity (U throughout the
paper) and the wind direction. An aerial photograph of the experiential set-up is provided in
Fig. 1. A more detailed description of the experimental set-up, statement of purpose, detailed
accounting of the instrumentation, and description of the EPFL. Raman lidar can be found in
Froidevaux et al. (2012).

To control the quality of the humidity data, humidity fluctuations from both the Raman
lidar and point measurements of the Licor 7500 hygrometers are directly compared. A time
trace for both are presented in Fig. 2a and b for two of the hygrometers (62 and 129 m) respec-
tively. We see that the variance of the lidar data is comparable for tower 2 while being greater
for tower 3. The greater variance of the lidar humidity measurements relative to the Licor
7500 measurements at tower 2 is likely due to a decrease in signal-to-noise ratio of the lidar
signal with increasing range. The time spectra of the lidar and Licor 7500 measurements are
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Fig.2 Time series and spectral density (¢) collocated Raman lidar and LI7500 humidity measurements. The
data are spectrally filtered to eliminate the noise floor present in the lidar data, and to ensure that the mean
and variance of the lidar measurements agree with the LI7500 measurements

presented in Fig. 2c and d. Spectra are computed with linearly detrended data using a standard
Hanning window and the Matlab fast Fourier transform function. Here it is evident that the
lidar spectra have a noise floor near 0.2s~!. To then compare directly the two measurements,
we filter both spectra with a low-pass filter of a characteristic length scale A, thus eliminating
the noise floor in the lidar while simultaneously eliminating the small-scale contributions to
the variance in the Licor hygrometer. The resulting spectra are then retransformed to real
space. These noise controlled data are also presented in Fig. 2a and b and we see that the
variance is reduced and the traces track substantially closer to each other, although there are
still noticeable differences in the signals. The filter operation is repeated to find the smallest
filter time scale while ensuring the signal variances match. Recall that the sensors are not
perfectly collocated, and the volume of the atmosphere being measured by the LI7500 and
the EPFL Raman lidar is not identical. Twenty-min averages of humidity were also computed
from the lidar and Licor 7500 time series; these averages were highly correlated throughout
the field campaign (correlation coefficient of 0.97).

Water vapour alters the air density slightly (less than 1% for the current experimental
conditions), but given the available dataset, humidity is treated as a passive tracer, and its
measurements in space and time are used to compute the correlation function in Eq. 2. To
ensure the best data quality, only the section from 20 to 140 m away from the lidar is used.
Recall that the eddy-flux towers are located 62 and 129 m over the clover field from the light
source respectively; therefore the chosen spatial extent for the humidity measurements has
the added advantage of being bracketed by velocity measurements. The data are then broken
into 2.5-min segments and the wind direction computed from the CSAT3 anemometers at
the two previously mentioned tower locations. Data segments were selected such that the
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average wind direction (over 2.5 min) was aligned within 2° of the lidar measurement line.
After two weeks of measurements, nine such segments were identified resulting in a total of
22.5 min of available data.

3 Analysis of Field Measurements

A space-time plot of the measured humidity is shown in Fig. 3. The diagonal pattern in
this plot arises from large-scale (50-100m) flow features that move with the mean flow and
transect the lidar beam for 50-100 seconds; these long-lived structures are investigated in
more detail in Froidevaux et al. (2012). A plot of the correlation function (Eq. 2) for one
of the nine data segments is shown in Fig. 4. Here there is no correlation beyond the first
few metres, and no evidence per se that Taylor’s hypothesis can be supported beyond the
resolution of the measurements. This is in contrast to the observed large advected structures
present in Fig. 3, suggesting that the applicability of Taylor’s hypothesis strongly depends
on the length scale of interest (in this dataset the large scales are apparently more persistent).

To investigate the influence of scale on Taylor’s hypothesis, the data are decomposed via
Daubechies wavelet decomposition (Katul and Parlange 1995), and for each level of wavelet
coefficients, we compute the correlation function (Eq. 2) using the resulting wavelet coeffi-
cients. The results (for a representative 2.5-min segment) for the lowest four levels of wavelet
coefficients are shown in Fig. 5. Each set of wavelet coefficients represents a unique length
scale (i.e. 2.5, 5, 10, 20 and 40 m). In Fig. 5, the results are shown for length scale of 2.5m
(a), Sm (b), 10m (c), and 20m (d). From Fig. 5 it is evident that, as the length scale of the
turbulent structures grows, the time scale over which Taylor’s hypothesis is applicable also
Srows.

Rescaling the abscissa by the average wind speed measured by the sonic anemometers, U,
allows for all data segments to be averaged. This averaged result is shown in Fig. 6, where a
one-to-one line is also included to indicate 6x /6t = U, and where we would expect the max-
imum correlation at any distance. If we define a cut-off correlation where Taylor’s hypothesis
is no longer acceptable (20%) and then solve for the intersection of the one-to-one line with
the isoline of 20% correlation, we can directly read off the maximum distance (or scaled
time) over which Taylor’s hypothesis is acceptable for a given scale. A plot showing the rela-
tionship between this ‘structure lifetime’ and scale is presented in Fig. 7, where the scales are
broken into two segments—those scales larger than the measurement height and those scales
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Fig. 3 An example plot of humidity measured in space and time with the EPFL Raman lidar. Humidity
‘streaks’ represent large-scale advected structures. Note that this image has been smoothed for presentation
and to highlight the large-scale features of the flow

@ Springer



384 C. W. Higgins et al.

08

0.8

07

086

05

8x [m]

0.4

20 40 60 80 100 120
5t [s]

Fig. 4 The space—time correlation function, ® (8x, 6¢), computed using the Raman lidar humidity data. Inset
zoom of the section 0 < §x < 10m and 0 < 8¢ < 10s, showing correlations >0.8. For all other values of §x
and §t, the correlation is <0.15

smaller than the measurement height. A range of correlation times are represented for some
scales as there are multiple crossings in the data. In the plot, the minimum and maximum
crossings are shown. Figure 7 shows that the applicability of Taylor’s hypothesis for the field
data follows a linear scaling relationship

Ut

D P 3)

where U is the flow velocity measured with sonic anemometry, D is the characteristic length
scale of the turbulent structure, and ¢ is the ‘lifetime’ of the structure defined by when its
autocorrelation falls below 20% along its Lagrangian path. For the present purpose we define
the parameter, p, in Eq. 3 as the ‘persistency scale’, and it is clear from Fig. 7 that smaller
scales have a lower persistency scale.
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Fig.5 The space—time correlation function computed at four different turbulence scales for a typical segment:
a2.55m, b 5m, ¢ 10m, and d 20 m. Here it is readily apparent that larger scales of motion are better suited to
the use of Taylor’s hypothesis

One can define a persistency scale for any correlation threshold, and we set the threshold at
20%, though this choice is arbitrary. A plot of the average persistency scale versus correlation
is shown in Fig. 8. For Taylor’s hypothesis to be valid, the persistency scale must be greater
than one since a turbulent structure must have a lifetime long enough for it to be completely
sampled by a stationary instrument. As the autocorrelation criteria become more and more
strict, the persistency scale diminishes until ultimately it crosses below unity. This crossing
takes place at 33% correlation for the small scales, and at 61% for the large scales, implying
that during the advection of the smaller turbulent structure across a hypothetical instrument
each structure loses 67% of its original structure by the time it is fully sampled. For larger
scales (greater than the measurement height) the result is more favourable with only 39%
loss in correlation.

4 Large-Eddy Simulation

To cross check the analysis of the field measurements, LES of the lower atmosphere (see
Deardorff 1974; Moeng 1984; Mason 1994; Albertson and Parlange 1999; Beare et al. 2006)
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Fig. 6 Composite average of all data with a scaled time axis. The 1:1 line represents the advection velocity
and expected correlation maxima for: a 2.5m, b Sm, ¢ 10m, and d 20m
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Fig. 7 Plot of the size of structure versus lifetime of structure as defined by an 80% correlation loss. This
formulation indicates a scaling slope of unity, consistent with a Buckingham Pi dimensional analysis approach.
Note that the ratio Ut /D is much larger for structures larger than the measurement height (indicated by the
dashed line)
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Fig. 8 The persistency as a function of correlation for both small-scale and large-scale structures. When
the persistency drops below 1, a single eddy can no longer be resolved by a stationary sensor. Therefore the
crossing of 1 indicates the optimal acceptance cut-off for the applicability of Taylor’s hypothesis for those
scales of motion

were also performed. LES is a numerical tool particularly well suited for this comparison
since it is capable of resolving turbulent fluid motions on temporal and spatial scales com-
parable to the measurements. LES simulates the transport of mass, momentum and energy
in the atmospheric boundary layer using the filtered incompressible Navier—Stokes equation
together with the filtered scalar conservation equations (Tennekes and Lumley 1972; Pope
2000). The initial conditions are set by an approximation of measured temperature and spe-
cific humidity profiles. The simulated domain is 1024 x 512 m? in the horizontal directions
and 256 m in the vertical, while the numerical resolution used is 512 x 256 x 128 nodes,
leading to a spatial resolution of 2 m in all directions, with the first vertical node at 1 m.
The bottom boundary is fixed at a constant temperature (292 K) and a constant mixing ratio
(13 gkg™"), with the lower boundary conditions enforced through a local implementation of
Monin—Obukhov similarity described in Bou-Zeid et al. (2005). The flow is forced with a
mean pressure gradient aligned with the mean flow direction. The subgrid-scale model is the
Lagrangian scale dependent dynamic model (Bou-Zeid et al. 2005).

The full analysis above is repeated using data from the LES. Here a single line of data at
a height of 10m above the simulation surface is extracted for analysis, and for consistency
we also use humidity as a proxy to test Taylor’s hypothesis. The full computed correlation
function is plotted in Fig. 9. It is evident that, for the simulations, Taylor’s hypothesis is more
applicable. This is due in part to the prescribed, perfectly oriented, mean flow. In the data,
although we are very strict in our definition of acceptable wind directions, there are small
meandering motions present in all data segments, in addition to measurement noise.

When the simulation results are decomposed into wavelet coefficients and the previous
analysis repeated for the LES data (Fig. 10), it is clear that larger scales still have a greater
persistency than the smaller scales; however the smallest scales are far more persistent in the
LES than they were in the data. Finally, the persistency scale as a function of correlation is
presented in Fig. 11 as an average for all scales. We do not separate scales in this case as they
all have the same behaviour, and is likely due to the fact of the finite domain size of the LES,
and thus the restriction on the formation of very large scales. The point at which Taylor’s
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Fig.9 The space—time correlation function of the LES data. Note that here there is a much higher correlation
over a longer time (compared to the field data)
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Fig. 10 The space-time correlations on wavelet coefficients for the LES data for the scales a 4m, b 8m,
¢ 16m, and d 32 m. Here the smallest scales have a much better behaviour with respect to Taylor’s hypothesis
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Fig. 11 The persistency as a function of correlation for the LES data. As we are limited by the domain size,
the LES is only able to simulate scales consistent with the ‘small scales’ of the field experiment. Here the
crossing of the ut/D = 1 line is consistent with the field measurements at around 34%

hypothesis will no longer hold is a 34% correlation, which is in close agreement with the
field measurements.

5 Conclusions

The applicability of Taylor’s frozen turbulence hypothesis is strongly dependent on the scale
of the turbulent structures that are investigated. Atmospheric structures larger than the mea-
surement height tend to be especially long lived and are the best candidates for the applicabil-
ity of Taylor’s hypothesis from the analysis of our field data. Turbulent structures smaller than
the measurement height are less persistent, and thus Taylor’s hypothesis must be applied in
a stricter way (i.e. the acceptable correlation cut-off must be reduced). Both simulations and
experimental data agree that this cut-off is ~#33—-34%, implying that a single eddy may change
significantly while it is resolved by a stationary sensor. Larger flow features retain a higher
degree of autocorrelation. Figure 8 provides a framework to determine the applicability of
Taylor’s hypothesis given the length and time scales of interest.
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