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Abstract

Finite element calculations were used to bound the modulus of aligned, short-fiber composites with

randomly arranged fibers, including high fiber to matrix modulus ratios and high fiber aspect ratios. The

bounds were narrow for low modulus ratio, but far apart for high ratio. These numerical experiments

were used to evaluate prior numerical and analytical methods for modeling short-fiber composites.

Prior numerical methods based on periodic boundary conditions were revealed as acceptable for low

modulus ratio, but degenerate to lower bound modulus at high ratio. Numerical experiments were also

compared to an Eshelby analysis and to an new, enhanced shear lag model. Both models could predict

modulus for low modulus ratio, but also degenerated to lower bound modulus at high ratio. The new

shear lag model accounts for stress transfer on fiber ends and includes imperfect interface effects; it

was confirmed as accurate by comparison to finite element calculations.
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1. Introduction

In mean-field modeling of short-fiber composite materials, a composite unit cell is subjected to

mean stress or strain and the effective stiffness or compliance tensors are found by averaging strains

and stresses throughout the composite [1]. This averaging is done over all unit cell orientations using

a fiber orientation distribution function. The unit cell for this analysis is a short fiber composite with

all fibers aligned in the same direction. Thus, the fundamental problem for analysis of short-fiber

composites is to determine mechanical properties of an aligned, short-fiber composite.

One might think this problem is solved by methods such as Eshelby [2], Mori-Tanaka [3], modern
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shear-lag models [4–7], or numerical methods [8–15], but some gaps appear. First, most prior numer-

ical studies have been limited to modest fiber/matrix modulus ratios of R = E f /Em < 30 and relatively

short fiber aspect ratios, ρ = l f /d f < 30 [8, 9, 11, 13–15]. Gusev and Lusti [10, 12] looked at higher

aspect ratios, but only for a narrow selection of R and fiber volume fraction, Vf . As a consequence, the

validation of analytical models by these numerical studies [9] only validates them for the corresponding

small range of properties.

A recent trend in composites research, especially in nanocomposites, is to reinforce soft polymers

(e.g., elastomers with R > 104) and isolate nano-fibers with aspect ratios higher then 30 [16–19];

the results of such work has been a challenge to model. Figure 1 show some experimental results

for reinforcement of an elastomer with nano-cellulose fibers [16] and compares them to an existing

analytical model (labeled “Mori-Tanaka” [3]) and an existing numerical method based on large periodic

representative volume elements (RVEs) with randomly placed fibers (labeled “Periodic RVE (FEA)”

using approach of Gusev [8]). These experimental results are two to three orders of magnitude higher

then existing models. The question arises — are these high reinforcements the discovery of a new nano-

phenomenon that cannot be modeled with continuum mechanics or do continuum methods just need to

be revised for high R? To explore this question, we developed a new numerical method to derive upper

and lower bounds to the modulus. The sample calculation of bounds in Fig. 1 (see dashed lines) shows

that experimental results fall within continuum mechanics bounds and that prior modeling methods all

degenerate to lower bound results. In other words, the methods described here have new potential to

guide expectations of properties for composites with high R.

To study composite modeling methods at high R and aspect ratio as well has how they relate to

conventional methods at low R and aspect ratio, we ran numerical calculations for a very wide range

of R (from 10 to 105) and aspect ratios (from 5 to 100). The calculations in this part of the study

were based on novel methods that allowed us to numerically determine upper and lower bounds to the

fiber-direction modulus. The shear number of calculations along with the size of mesh (particularly at

high aspect ratio) precluded mesh refinement of numerical results. A powerful feature of the bounding

method, however, is that it allows one to get definitive bounds even without mesh convergence. These

numerical results provided input for considering four questions:

What is correct modulus? One of the best ways to judge the accuracy of modeling methods is to compare

them to numerical results [9], but what numerical method gives the correct modulus? Here we derived

numerical bounds using Monte Carlo methods with randomly placed and well-dispersed, aligned fibers.
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Figure 1: The symbols are experimental results from Ref. [16] with R = 9.5× 105, which are compared to existing modeling
methods (Mori-Tanaka and Periodic RVE (FEA)) and to upper and lower bounds described in this paper (dashed lines). The
experiments are quasi-2D with fibers claimed to be randomly aligned in the plane of a film. The models are 2D calculations
for aligned fibers. The comparison with experiments is only qualitative, but if experiments had aligned fibers, they would move
toward the upper bound and still demonstrate that prior models are near the lower bound and far below experiments.

We used bounding methods to define limits on the modulus for R up to 105 and ρ up to 100. The

separation of the bounds shows that the calculated modulus depends on boundary conditions, especially

for large R.

How do periodic RVE calculations compare to numerical bounds? Most numerical models use periodic

RVEs and assume analysis results with periodic boundary conditions are equivalent to bulk composite

properties. To test this hypothesis, we compared the new numerical bounds to both small periodic RVEs

(using either cylindrical (rectangles in 2D) or elliptical fibers) and large RVEs with random fibers. All

periodic RVE methods work well for low R, but degenerate to lower bound results at high R.

Can an analytical model sufficiently capture the results of periodic RVE composites? Given the capabilities

(and limitations) of periodic RVE analysis, an analytical model that agrees with those numerical results

would have those same capabilities (and limitations). We developed an improved shear-lag model for

short composite fibers that explicitly includes stress transfer on the fiber ends and imperfect interfaces.

The new model, along with an Eshelby [2] analysis, were compared to numerical results on the same

geometries. These analytical methods can reproduce numerical methods based on periodic conditions,

which means they give good prediction for low R, but degenerate to lower bound results for high R.

Can an analytical model account for 3D fibers and for imperfect interfaces? The first three questions

used 2D calculations and assumed perfect fiber/matrix interfaces. Real composites are 3D and may

have imperfect interfaces. We lastly considered 3D single fiber RVE results by comparing axisymmetric
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numerical calculations with imperfect interfaces to the new shear lag analysis with concentric cylinders

that also includes imperfect interface effects. The new model accurately reproduces all numerical results

including the role of imperfect interfaces.

2. Methods

All finite element calculations (FEA) were linear elastic, static, and two dimensional. Most simula-

tions were plain strain analyses although some 3D results were generated using axisymmetric simula-

tions. All calculations were done using the open source code NairnFEA [20] with 8-node quadrilateral

elements. Issues involving convergence are discussed in section 3. By using script control, we au-

tomated the thousands of FEA calculations needed to get sufficient results for answering the posed

questions. The FEA calculations were run on either desktop computers or Linux nodes in a cluster. The

main requirement for the largest calculations was to have sufficient memory (more than 5 GB).

3. Results and Discussion

3.1. What is the Correct Modulus?

To run numerical experiments for the “correct” modulus of aligned short fiber composites, we ran

FEA calculations on representative composites with randomly placed fibers. The fibers were all aligned

in one direction, placed using a random sequential adsorption (RSA) method [11], and well dispersed

(separated by at least one element in the mesh). The numerical experiments were done for fiber to

matrix modulus ratios of R = 10, 100, 1000, 104, and 105, for fiber aspect ratios of ρ = 5, 10, 20, 40,

70, and 100, and for fiber volume fractions of Vf = 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, and 0.25. Monte

Carlo methods were used to account for the random structures. For each combination of R, ρ, and

Vf , we ran FEA calculations for 20 random structures and averaged the results for mean and standard

deviation of the modulus. For most property settings, the 20 replicates gave sufficiently narrow errors

bars on the results. The total number of FEA calculations required to map the parameter space exceeded

15,000.

The first issue was the mesh. To deal with randomly placed fibers with randomly situated stress

concentrations, the modeling used a regular mesh. A quick calculation showed that a 3D mesh for

the largest aspect ratio would have over a billion degrees of freedom, which is infeasible for the 15,000

calculations we needed to run. 3D calculations by Gusev [8] required 30 processor-hours per calculation

and that was for spherical inclusions (ρ = 1) which can use much smaller RVEs then needed here. We
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therefore switched to 2D, plain-strain FEA (which still can be used to evaluate other methods provided

comparisons are made to 2D versions of those methods). Even in 2D, the mesh could not be highly

refined. We used the crudest mesh possible where the element size was equal to the fiber diameter.

Thus each fiber had one element across its width and the well-dispersed fibers were separated by

at least one fiber diameter (i.e., one mesh element). With this mesh, the largest calculation had about

200,000 degrees of freedom and could be completed in a 5-30 minutes (depending on computer speed).

Because we were limited to a crude mesh, we could not refine the mesh for convergence. To

allow definitive results with such a mesh, we adopted a bounding method. In composite variational

mechanics, upper and lower bound results are found by the solving the two problems in Fig. 2 [1, 21–

23]. First, the composite is subjected to constant tractions, T , over the entire surface of

T = σ0 · n̂ (1)

where σ is the uniform applied stress and n̂ is surface normal. For stress corresponding to axial loading

in the fiber direction (see Fig. 2A), the complementary energy, as approximated by FEA strain energy

(ΓF EA), must be greater than or equal to the exact complementary energy, Γ, leading to

ΓF EA ≥ Γ =
σ2

0V

2E(r)y y

or E(r)y y ≥
σ2

0V

2ΓF EA
= ELB (2)

where V is specimen volume and E(r)y y is the effective, plain strain modulus in the y direction. In other

words, an FEA calculation of ΓF EA provides a lower bound to the axial modulus (ELB).

Second, the composite is subjected to a uniform strain field, which corresponds to fixed displacement

(in both directions), u, over the entire surface of

u = ε0 · x (3)

where ε0 is the applied strain and x is position on the surface. For such fixed-strain conditions (see

Fig. 2B), the FEA strain energy (UF EA) is a rigorous upper bound to the exact strain energy, U , leading

to

UF EA ≥ U =
1

2
ε0 ·Cε0V (4)

where C is the effective stiffness tensor. Numerical calculation of axial modulus when using fixed-strain

boundary conditions requires three separate FEA calculations:

1. Use εx = ε0, εy = 0, and γx y = 0. An FEA calculation gives C11 ≤ 2U11/(ε2
0V ) (where U11 is the

strain energy from that FEA analysis).
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Figure 2: Schematic view of finite element model used for stress and fixed-strain boundary conditions. A. Stress boundary
conditions apply uniform stress in the y direction on the top and bottom edges and no stress on the side edge. A minimal number
of displacement conditions are used to prevent rigid body rotation. B. Fixed-strain boundary conditions apply fixed displacements
in both the x and y directions on all edges to match the imposed strains.

2. Use εx = 0, εy = ε0, and γx y = 0. An FEA calculation gives C22 ≤ 2U22/(ε2
0V ).

3. Use εx = ε0, εy = ε0, and γx y = 0. An FEA calculation gives C11 + C22 + 2C12 ≤ 2U12/(ε2
0V ).

A reduced plain-strain axial modulus can be found from these three results using

E(r)y y ≤
2

ε2
0V

�

U22 −
(U12 − U11 − U22)2

4U11

�

= EUB (5)

The plain strain properties are defined from the reduced compliance tensor, S(r), which is the inverse

of the stiffness tensor found by 2D FEA:
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(6)

A side benefit of the three upper bound calculations is that they can also determine E(r)x x and ν (r)x y . One

more calculation with εx = εy = 0, and γx y = γ0 can add the fourth (and final) in-plane property, G(r)x y .

The results here focus on E(r)y y although some comments on other properties are at the end.
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Formally, neither the lower bound in Eq. (2) nor the upper bound in Eq. (5) are rigorous bounds.

A rigorous lower bound requires complementary energy. Here we assumed strain energy found under

stress boundary conditions is a good approximation to complementary energy. Although fixed-strain

conditions give rigorous upper bounds to the elements of C, Eq. (5) combines those bounds to find a

modulus that may not be a rigorous upper bound to axial modulus. Because the second term in Eq. (5)

is generally small (<2% of U22, especially at higher R and Vf ), E(r)y y is effectively a rigorous upper bound

property. We therefore took these two results as defining bounds for the composite modulus.

The next issue was the size required for the BVE. It should be large enough that results are unaffected

by its size, but small enough to keep calculation times reasonable. Figure 3A plots ELB for fixed traction

(solid curves) and upper bound C11 for fixed strain (dashed curves) as a function of the length of the

BVE relative to the fiber length (L/L f ) for fixed width of 20 times the fiber diameter (d f ). These results

are for fiber volume fraction Vf = 10%, modulus ratio R = 105 (more details on fiber properties are

given below), and two fiber aspect ratios (ρ = 10 and 100); they include the extreme cases with the

largest value of R = 105 and largest ρ = 100. Figure 3B shows analogous results as function of width

of the BVE relative to fiber diameter (W/d f ) for fixed length of 10L f and a different R = 102. For RVE

with short L, it is likely for fibers to span the entire length of the RVE resulting in an artificially high

modulus that approaches the continuous fiber composite. As L increased, the modulus decreased and

plateaued above L/L f in the range of 5 to 10. Similarly, the magnitude of the error bars decreased up

to about L/L f = 10. All subsequent simulations used L/L f = 10. For short width BVE, the modulus

bounds were widely separated, but moved closer as W increased. They plateaued at about W/d f = 40.

Width effects at higher R= 105 showed a small amount of continued decrease in the upper bound result

for W/d f > 40. The decrease, however, was relatively small. Because using larger W made simulations

impractical, all subsequent simulations used W/d f = 40. Note that this BVE size is larger than some

published RVE results. For example, Gusev and Lusti [10, 12] used L/L f ∼ 3 and W/d f ∼ 12. We

expect that the nature of fixed strain boundary conditions, as opposed to periodic boundary conditions

used in other FEA methods, is the cause of the need for BVEs to be larger than other RVEs.

Remark 1: Traditional RVE methods (e.g., [10–15]) use periodic boundary conditions where dis-

placements normal to an edge are constant (such that plane sections remain plane) while tangential

displacements are a degree of freedom [9]. These prior boundary conditions are neither fixed strain nor

fixed traction. While they may converge to a result, they provide no information on where they fall rel-

ative to upper and lower bounds (i.e., how those boundary conditions affect the converged result). The
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Figure 3: A. The lower bound axial composite modulus Ey y (LB) and upper bound C11 as a function of RVE length (L/L f ) for
fixed width of 20d f and for two fiber aspect ratios. B. The lower bound axial composite modulus Ey y (LB) and upper bound C11
as a function of RVE width (W/d f ) for fixed length of 10L f and for two fiber aspect ratios. Both plots used fiber volume fraction
Vf = 0.1.

boundary conditions used here to get bounds are different. The sample calculations in Fig. 1 suggest

that traditional methods degenerate to lower bound results, while the bounding method has the poten-

tial to bracket experimental results. To distinguish the fixed strain or traction boundary conditions used

here from traditional RVE methods, the new method will be called a BVE method for bounded volume

element.

Remark 2: Although a BVE model can formally describe a periodic structure, it seems unrealistic to

assume fixed strain on the edge of a full-scale composite would translate to fixed strains on represen-

tative subelements of the composite. Instead, the BVE method is best imagined as external boundary

conditions on a full-scale composite (albeit, a small one). When imagining a full-scale composite, it

could be inconsistent to require the BVE to be geometrically periodic (as commonly done for RVEs of

traditional methods [10]). Nevertheless, we compared geometrically non-periodic BVE calculations to

some periodic ones and the differences were negligible for the size BVEs used.

Using the above method and BVE size, we ran all combinations of R, ρ, and Vf ; some selected

results are discussed here (other results are in subsequent sections). All simulations used an isotropic,

elastic, high-modulus fiber with reduced plain strain modulus E(r)f = 100,000 MPa and Poisson’s ratio

ν
(r)
f = 0.33 (the unreduced properties were E f = 93,843 MPa and ν f = 0.2481). The plane strain

matrix modulus varied as Em = E f /R and its Poisson’s ratio was the same as the fiber’s. Figure 4A shows

axial modulus for R= 100 for three selected aspect ratios. The dashed curves are the lower bound and
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Figure 4: Axial composite modulus for R= 100 (A) and R= 105 (B) for three aspect ratios as a function of fiber volume fraction.
The symbols are Monte Carlo BVE results with error bars indicating their standard deviations. The dashed and solid curves
connecting the symbols indicate lower and upper bounds, respectively. Note that (A) uses a linear scale while (B) uses a log scale
to better visualize all results.

the solid curves are the upper bound. As expected, the modulus increased as volume fraction increased,

but the increase is non-linear. The initial slope is low indicating low volume fraction does a relatively

poor job of providing modulus. The slope gradually increased indicating increased fiber effectiveness

at higher volume fraction. The error bars are rather small — in most cases smaller than the size of

symbols used in the plots. Figure 4B shows the same results for R = 105 (on a log scale). Unlike the

R = 100 results, these results have lower bound modulus that is three orders of magnitude below the

upper bound. Furthermore, the upper bound results have higher error bars; the coefficient of variation

was over 100% at low Vf , but decreased to a range of 40% to 20% for Vf from 0.15 to 0.25.

Differences between upper and lower bounds in analytical modeling are well known to increase as R

gets larger [1]. But those differences are attributed to approximations in the modeling while numerical

results are commonly assumed to hone in on the correct answer and therefore upper and lower bounds

should be the same. The question remains — are the differences between upper and lower bounds

because the FEA is not converged or something else? To answer this question, we refined the mesh. We

could most refine the mesh for the shortest fiber with ρ = 5. Figure 5 gives modulus as a function of

mesh element size for R= 100 and for R= 105 when ρ = 5 and Vf = 0.25. As the mesh was refined, the

upper bound dropped, while the lower bound was nearly constant. We estimated converged results by

extrapolating to zero element size and a discrepancy that was outside errors bars (as calculated by least

squares fits with error estimations) remained between upper and lower bound results. In other words,

part (probably most) of the difference between stress and strain boundary conditions is that even exact
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Figure 5: Axial composite modulus for ρ = 5 and Vf = 0.25 and R = 100 (A) or R = 105 (B) as a function of element size. The
lines extrapolate to zero element size or a mesh with an infinite number of elements. The symbols are Monte Carlo BVE results
with error bars indicating their standard deviations.

solutions for upper and lower bounds differ. This observation is an effect of the heterogenous BVE. For

homogeneous materials, the two boundary conditions used here would give exactly the same results;

for heterogeneous materials, however, the effective modulus depends on the boundary conditions. As

a consequence, one cannot define the “correct” composite modulus without specifying the boundary

conditions as well. The challenge is to determine which results most accurately describe the full-scale

composite. This boundary condition effect is a function of R. For R< 100, which comprises the range of

most conventional composites, the boundary condition effect is relatively small (<20%). But for high

R, the effect becomes very large (1 to 3 orders of magnitude).

Lastly, we emphasize the BVE bounds are just that — bounds to axial modulus — and should not

be construed as a “solution” for modeling composites with high R. Indeed, Fig. 5 shows that the upper

bound decreases (by a factor of 2) for a refined mesh when ρ = 5 (we do not know how much it

would decrease for large ρ). Similarly, Fig. 3 shows the upper bound might decrease further if the BVE

was made much wider. Nevertheless, the bounds presented here remain as valid bounds to composite

properties, even if they are not the best bounds that could ever be obtained. If experimental results

are discovered that exceed these upper bounds, those results potentially indicate a new reinforcement

mechanism that needs further study. On the other hand, any experiments bracketed by these bounds

may be conventional reinforcement that can be explained by continuum mechanics.
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Figure 6: A. A periodic structure with parallel fibers. B. A periodic structure with staggered fibers. C. A geometrically periodic
structure with many randomly placed fibers. The dashed lines in A and B outline two possible unit cells for analysis. Each of
these has two planes of symmetry allowing the numerical calculations to be done on one quadrant of the cell.

3.2. How do periodic RVE calculations compare to numerical bounds?

Most numerical models analyze composite unit cells containing from one or two fibers [9] to many

fibers [8]. Figures 6A and B show the two simplest, 2D, periodic structures with parallel or staggered

fibers and with dashed lines indicating the smallest repeating unit cells. The parallel structure can be

modeled with a single fiber unit cell while the staggered structure requires a unit cell with two complete

fibers (each of these can model one quadrant of the unit cell by symmetry). Figure 6C shows a geo-

metrically periodic structure with many fibers subjected to periodic displacement boundary conditions.

Models that use any of the unit cells in Figure 6 assume the results reflect the full composite. This

section compares results from these periodic structures to the numerical bounds from BVE experiments.

Figure 7 shows the meshes used to model the parallel structure with either rectangular or elliptical

fibers (elliptical fiber models were done for comparison to elliptical-fiber-based Eshelby [2] method in

the next section). An unknown parameter for an encapsulated fiber is how much matrix is above the

fiber and how much is on the sides? We choose this parameter by setting the distance from the fiber

end to the top of the mesh, ∆, to equal the distance from the side of the fiber to the edge of the mesh.

Under this assumption, the rectangular fiber volume fraction is:

Vf =
r f L f t

rm Lm t
=

ρr2
f

(r f +∆)(ρr f +∆)
(7)

where t is the 2D thickness. This quadratic equation is easily solved to find ∆ for input modeling

parameters ρ, r f , and Vf . For comparing rectangular to elliptical fibers, we kept aspect ratio (ρ =
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Figure 7: The finite element meshes along with definition of geometric parameters for single-fiber, unit cell models for the parallel
structure with either rectangular or elliptical fibers. For clarity, the boundary conditions were omitted and the mesh is shown
coarser than the actual mesh used for converged calculations.

L f /(2r f ) = a/b) and fiber area (which is also Vf in 2D) constant resulting in

2L f r f = 4ρr2
f = πρb2 = πab or b =

2r f
p
π

and a =
2ρr f
p
π

(8)

where a and b are the major and minor axes of the ellipse. The distance from the top and side of the

ellipse to the edge is now found by solving the quadratic equation for ∆ defined from

Vf =
πabt

2rm Lm t
=

πρb2

4(b+∆)(ρb+∆)
(9)

The meshes for the two fiber unit cells (i.e., staggered structure) were similar, but considered only rect-

angular fibers. The meshes for the many-fiber periodic structure were regular grids with one element

across the fiber width (i.e., same as in BVE calculations) and rectangular fibers only. We did periodic

FEA calculations for selected combinations of R, ρ, and Vf used in the BVE modeling. Unlike the BVE

modeling, we were able to refine the one- and two-fiber unit cell meshes and reach convergence by sub-

dividing the elements in Fig. 7 until results became constant (the converged meshes had six elements

across the fiber diameter).

First, we analyzed each periodic structure using periodic boundary conditions (e.g., the displace-

ment boundary condition in Fig. 6C) and found modulus from three calculations (analogous to BVE
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Figure 8: Axial composite modulus for ρ = 20 as a function of fiber volume fraction for R from 10 to 105. A. Compares results of
periodic unit cells to BVE bounds. B. Compares fixed traction analysis of the parallel structure to lower bound BVE results. The
dashed and solid curves are elliptical and rectangular fibers, respectively. The dashed-dotted lines in A are for numerical analysis
of a staggered structure. The filled triangular symbols (with error bars) in A are for Monte Carlo analysis of many-fiber unit cells
with periodic boundary conditions. The open symbols (with error bars) are upper bound (squares) and lower bound (circles)
BVE results.

method using Eq. (5)). Figure 8A compares these periodic FEA results to BVE bounds. The solid and

dashed lines are for parallel structures with rectangular and elliptical fibers, respectively (the dashed

elliptical results are mostly obscured by rectangular fiber results). The dash-dot lines are for the stag-

gered structure. The dotted lines with filled triangular symbols are Monte-Carlo FEA of many-fiber unit

cells. The open symbols are the BVE bounds. For R= 10 or 100, the BVE bounds are fairly close and all

periodic FEA results were within those bounds. In other words, all methods gave good results. For R

greater than 1000, however, the BVE bounds diverge, such as R = 104 in Fig. 8A, and all periodic FEA

methods track the lower bounds results. The staggered structure (dash-dot lines) was slightly stiffer (as

expected) than the parallel structure, but the many-fiber, periodic FEA reverses that trend by reverting

to be closer to the lower bound result.

We considered two causes for periodic FEA being lower bound results and far from upper bound

results for high R. First, the parallel and staggered unit cells were converged results while the BVE re-

sults bounds were non-converged results. But, this difference cannot explain the observations, because

upper bound BVE results do no converge to lower bound results with a more refined mesh. For example

the results in Fig. 5B show that BVE results for R = 105 and ρ = 5 for Vf = 0.25 extrapolated to zero

element size give upper and lower bound moduli of 492± 202 MPa and 2.15± 0.05 MPa, respectively.

In contrast, the results for parallel structure with periodic boundary conditions gave E(r)y y = 2.9 MPa,
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which is two orders of magnitude below the upper bound and very close to the lower bound.

Second, we considered the boundary conditions. An alternate approach to periodic boundary con-

ditions is to apply the fixed-strain boundary conditions used for the BVE. This effect clearly can explain

the differences. When fixed-strain boundary conditions are applied to the many-fiber unit cell, it is

converted essentially into the BVE method and matches the upper bound results. The only difference

is the geometrically periodic structure, which as mentioned above has negligible affect on BVE results.

The fixed-strain method, however, does not work well for parallel and staggered structures because the

final result depends on the choice of unit cell (e.g., quadrants of unit cells 1 or 2 in Fig. 6A and B).

This dependence is caused by variable amount of fiber material contacting the fixed-strain boundary

conditions. In other words, the BVE method only works for large unit cells (see Fig. 3). A potential

concern on all upper bound results is that they are influenced too much by fibers contacting the bound-

ary conditions. It would be a simple matter to artificially force all fibers sufficiently far from the mesh

edges. This approach, however, would effectively create a parallel structure that would degenerate to

the lower bound results and therefore be far below experimental results. The better solution is to verify

the volume element in BVE calculations is sufficiently large and this size requirement may be much

higher then the size needed when using periodic RVEs with periodic boundary conditions.

Lastly, we comment on rectangular vs. elliptical fibers for the parallel structure. The modulus with

a rectangular fiber was always very close to the modulus with an elliptical fiber (as seen by solid and

dashed lines in Fig. 8). Looking closer, the elliptical fiber was always slightly stiffer than a rectangular

fiber, with the exception of R ≤ 10 and ρ < 50. Steif and Hoyson [24] previously looked at cylindrical

vs. ellipsoidal fibers and saw larger differences, but they did different calculations. All their results were

for the limit of low Vf and they used different cylinder-ellipse analogies. Their calculations matched

either minor or major axis of the ellipse to the corresponding axis of the cylinder and then either kept

ρ or Vf constant. We claim our analogy with both ρ and Vf constant is more appropriate, although it

non-intuitively leads to both the major and minor axes of the ellipse being larger than the fiber length

and diameter, respectively. Although rectangular and elliptical fibers gave nearly the same modulus,

they gave different fiber stress states. As known from Eshelby, the stress in an elliptical fiber is constant

[2]. In contrast, a rectangular fiber shows classic stress transfer with low stress on the ends building

to higher stress in the middle. These differences apparently do not affect modulus calculations, but

they would be expected to affect models of composite properties that depend on fiber stress, such as

modeling of stress transfer or interfacial failure.
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3.3. Can an analytical model sufficiently capture the results of small periodic RVE composites?

Most analytical models consider a parallel structure with the single fiber geometry in Fig. 7 subjected

to constant axial stress in the y direction. Figure 8B shows numerical calculations for the single-fiber

unit cell and compares to BVE lower bounds. The numerical calculations used constant traction in the

y direction rather then periodic displacement (i.e., the same boundary conditions used in analytical

modeling). The numerical results were found to match lower bound results for all values of Vf , ρ,

and R that were studied. Furthermore the modulus for rectangular and elliptical fibers were nearly

identical (the solid and dashed lines in Fig. 8B overlap). The next task was to see if analytical modeling

reproduces numerical RVE results and thereby inherits agreements with lower bound BVE results, but

also disagreements with upper bound BVE results for high R.

We first considered an Eshelby analysis [2], but all prior Eshelby models are for 3D composites

with ellipsoidal fibers [1, 25] where we need a 2D analysis to compare to 2D FEA. Fortunately, the 2D,

plane-strain results can be derived as outlined in the Appendix. Although an Eshelby analysis is for low

Vf , that limit can be removed by a Mori-Tanaka [3] extension. Tucker and Liang [9] point out that a

Mori-Tanaka [3] extension can be derived from an Eshelby analysis [2] by replacing the Eshelby tensor,

S, with an effective tensor, S∗, defined by:

S∗ = (1− Vf )S (10)

In addition to an Eshelby/Mori-Tanaka model (E/MT), we also compared to shear-lag methods. The

common shear-lag solution in the literature [4, 5] and in textbooks [26, 27] considers two concentric

cylinders (or two parallel layers when in 2D) with zero stress on the fiber ends. We tried this model

(using optimal shear-lag parameters [4–7]) and it was inaccurate. For a better analysis, we derived a

new shear lag model for a single fiber encapsulated in matrix (i.e., the geometry in Fig. 7A). In addition,

the new analysis accounts for stress transfer on the fiber ends and imperfect interfaces between the

fiber and the matrix [7, 28]. This model, denoted as a shear-lag capped model (SLC), is derived next

followed by comparison of E/MT and SLC to numerical calculations on the same structure and boundary

conditions.

The SLC model is based on recently optimized shear lag methods that alter (and improve) the shear

lag parameter [4–6] and explicitly account for imperfect interfaces [7]. The model is split into two

regions (see Fig. 7A) and the y axis is converted to a dimensionless coordinate using ζ = y/r f ; the

fiber top is at ζ= ρ and the matrix top is at ζ= ρV1/Vf where V1 is fiber volume fraction within region
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II:

V1 =
r f L f t

rm L f t
=

r f

r f +∆

where ∆ is found by Eq. (7). Region I is divided into two perfectly-bonded matrix layers aligned with

the fiber — a “core” layer from x = 0 to r f and an “outer” layer from x = r f to rm (note that V1 is also

core layer volume fraction in region I). The general shear lag solution [5–7] for average axial stress in

the core region is:



σc(ζ)
�

= σ0 + C1eβ1ζ + C2e−β1ζ

where σ0 is the total applied stress and β1 is the shear lag parameter [4, 5] in region I for layers with

identical properties and a perfect interface:

β2
1 =

3GmV1

EmV2

Here V2 = 1− V1 is the matrix volume fraction in region II (and outer layer volume fraction in region

I) and Em and Gm are matrix tensile and shear moduli. Assuming uniform stress σ0 along the edge at

ζ = ρV1/Vf , using force balance, and redefining C1, the average axial stresses in the region I layers

simplify to:




σc(ζ)
�

= σ0 + C1 sinh

�

β1

�

ζ−
ρV1

Vf

��




σo(ζ)
�

= σ0 −
C1V1

V2
sinh

�

β1

�

ζ−
ρV1

Vf

��

In region II, the average axial stresses in the fiber and matrix are [5–7]:

¬

σ f (ζ)
¶

= σ∞ + C3 cosh(β2ζ) and



σm(ζ)
�

=
σ0 − V1

�

σ∞ + C3 cosh(β2ζ)
�

V2

where σ∞ is the far-field fiber stress (i.e., stress at the middle of a long fiber) and β2 is the shear lag

parameter in region II [7]:

β2
2 =

E2V1

E f EmV2

V1

3G f
+ V2

3Gm
+ V1

r f Dt

where E2 = E f V1+ EmV2 is rule of mixtures axial modulus of region II, E f and G f are tensile and shear

moduli of the fiber, and Dt is an imperfect interface term. The imperfect interface is modeled by al-

lowing interfacial displacement discontinuities that are proportional to the traction in the displacement

direction [28]. For region II, the axial displacement jump at x = r f is [w] = τ(r f )/Dt , where τ(r f ) is
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the interfacial shear stress. When Dt =∞, the displacement jump is zero and the interface is perfect;

when Dt = 0, τ(r f ) is zero and the interface is debonded; all other Dt values model an imperfect

interface.

The two unknown constants, C1 and C3, can be eliminated by continuity conditions between the

fiber end and the core layer in region I:

¬

σ f (ρ)
¶

=



σc(ρ)
�

and [w(ρ)] =

¬

σ f (ρ)
¶

Dn
(11)

The first is stress continuity. The second is a new imperfect interface relation on the fiber ends where

the jump in axial displacement between the fiber and the core layer is determined by Dn, which is an

imperfect interface parameter analogous to Dt but for normal displacements [28]. The displacement

jump needed for this condition is calculated from

[w(ρ)] = ∆



wm
�

+∆



wo
�

−∆



wc
�

−∆
¬

w f

¶

where ∆〈wi〉 is the displacement difference between the top and bottom of region i. Using 1D Hooke’s

laws:

∆



wm
�

= r f

∫ ρ

0

�



σm(ζ)
�

Em
+αm∆T

�

dζ ∆
¬

w f

¶

= r f

∫ ρ

0

 ¬

σ f (ζ)
¶

E f
+α f∆T

!

dζ

∆



wc
�

= r f

∫

ρV1
Vf

ρ

�



σc(ζ)
�

Em
+αm∆T

�

dζ ∆



wo
�

= r f

∫

ρV1
Vf

ρ

�



σo(ζ)
�

Em
+αm∆T

�

dζ

where αm and α f are the thermal expansion coefficients of the matrix and fiber and ∆T is the temper-

ature difference. Substituting the stresses, using

σ∞ =
E f

E2
σ0 +α2∆T and α2 =

α f E f V1 +αmEmV2

E2

where α2 is the weighted rule-of-mixtures thermal expansion coefficient of region II, and integrating

(in Mathematica, Wolfram Research) gives

[w(ρ)] =
r f ρ

EmV2

�

2C1

sinh2(β∗1ρ)

β1ρ
− C3

E2

E f

sinh(β2ρ)
β2ρ

�

where

β∗1 =
(V1 − Vf )β1

2Vf
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Solving Eq. (11) for C1 and C3 gives:

C1 =

σ0

2

�

EmV2β1

r f Dn
+ E2β1

E f β2

�

1− σ∞
σ0

�

tanh(β2ρ)
�

csch(β∗1ρ)

sinh(β∗1ρ) +
�

EmV2β1

r f Dn
+ E2β1

E f β2
tanh(β2ρ)

�

cosh(β∗1ρ)

C3 =
σ∞

�
�

σ0

σ∞
− 1
�

sinh(β∗1ρ)−
EmV2β1

r f Dn
cosh(β∗1ρ)

�

sech(β2ρ)

sinh(β∗1ρ) +
�

EmV2β1

r f Dn
+ E2β1

E f β2
tanh(β2ρ)

�

cosh(β∗1ρ)

This stress state was compared to FEA average stresses and the results were good for a wide range of

properties. Although this analysis assumed an isotropic fiber, it works for anisotropic fibers by replacing

E f , G f , and α f with the corresponding axial properties of an anisotropic fiber.

Finally, the modulus is found by integrating displacements in the outer matrix layers. By this process,

the incremental length and effective modulus are:

∆L(σ0,∆T ) = ∆



wm
�

+∆



wo
�

and
1

E∗
=

2∆L(σ0, 0)
σ0 Lm

Substituting stresses, C1, and C3 followed by much simplification (in Mathematica, Wolfram Research),

the modulus can be cast as:

E2

E∗
= 1+

� E f

Em
− 1
�

(V1 − Vf ) +
E f Vf

EmVm
Λ(ρ)

where

Λ(ρ) =
Vm

V2

E2

E f

tanh(β∗1ρ)
β1ρ

+
�

1+
�

1− E2

E f

�2
tanh(β∗1ρ)
β1η

�

tanh(β2ρ)
β2ρ

1+ tanh(β∗1ρ)
β1η

+ E2

ηE f

tanh(β2ρ)
β2

and η = EmV2/(r f Dn). In the limit of no region I (V1 → Vf ) and debonded fiber end (Dn → 0 and

η→∞ to get zero stress on the fiber end), the stresses and modulus reduce to the standard shear lag

result for two layers:

C3 =−σ∞sech(β2ρ) and
E2

E∗
= 1+

E f Vf

EmVm

tanh(β2ρ)
β2ρ

(12)

The results here extend this old result to an encapsulated fiber including both fiber end stress transfer

and an imperfect interface on fiber ends and sides.

Figure 9 compares E/MT and SLC models to numerical single-fiber unit cell (SFUC) models with

traction loading and to lower bound BVE results for R = 100 or R = 104 and for ρ = 5, 20, and 70. For

both R = 100 and R = 104, both the SLC and E/MT models agreed well with both the SFUC and lower
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Figure 9: Axial composite modulus for R = 100 (A) and R = 104 (B) as a function of fiber volume fraction for three fiber aspect
ratios. The dashed and solid curves are analytical models based on the new shear lag method (SLC) and an Eshelby/Mori-Tanaka
approach (E/MT), respectively. The dotted curves are numerical results with traction boundary conditions for a single-fiber unit
cell (SFUC). The symbols are lower bound, Monte Carlo BVE results with error bars indicating their standard deviations.

bound BVE. In summary, both the SLC and E/MT models accurately predict lower bound modulus for

an aligned, short fiber composite for all tested values of R and ρ. They track the lower bound because

the models are based on an assumption of uniform far-field stress. Because upper and lower bound

results are fairly close for R ≤ 100, the SLC and E/MT models are also close to upper bound results

within this range. But, for R > 100, these models should be recognized as providing pessimistic, lower

bound modulus predictions.

There is a long history of refining analytical models for short fiber composites based on analysis of

the single-fiber geometry [9]. Because the SLC and E/MT models agree with refined numerical models

for lower bound modulus, this half of the problem is “solved,” leaving little room for seeking improved

lower bound models. The development of better analytical models for upper bound modulus (e.g., using

displacement boundary conditions) is tempting, but we claim is doomed to limited success. The best

such analytical modeling could achieve would be to agree with numerical RVE results with periodic

boundary conditions. Section 3.2 shows those results also give lower bound results for R > 100. In

summary, future analytical modeling should focus on finding an upper bound modulus using non-unit-

cell methods.

3.4. Can an analytical model account for 3D fibers and for imperfect interfaces?

Because analytical models agree with most lower bound BVE results and with upper bound BVE

results for R ≤ 100, we hypothesize that 3D analytical modeling would agree similarly with 3D BVE
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modeling, even though the 3D BVE modeling is not available. This section compares 3D analytical

modeling (an axisymmetric analysis), to numerical, axisymmetric, single-fiber unit cell results (which

is the only unit cell amenable to axisymmetric analysis). In addition, this section investigates imperfect

interface effects [7, 28]. Unfortunately, an Eshelby analysis [2] cannot be extended to modeling of

imperfect interfaces. An Eshelby analysis works by exploiting the observation that elliptical fibers have

constant stress; this property allows replacement methods to find modulus [1, 25]. When the interfaces

are imperfect [28], however, the stresses in an elliptical fiber are no longer constant (as confirmed by

FEA modeling), which means an Eshelby approach no longer works. In contrast, the SLC model derived

above includes imperfect interfaces. This section therefore compares an axisymmetric SLC model to

converged, axisymmetric FEA calculations with imperfect interface elements [29] to verify if the SLC

model works in 3D and if it correctly models imperfect interfaces.

The SLC analysis in the previous section was for the 2D problem. It can easily be extended to an

axisymmetric analysis for an end-capped fiber cylinder simply by redefining volume fractions, ∆, and

the shear lag parameters β1 and β2. The fiber volume fraction within region II becomes

V1 =
πr2

f L f

πr2
m L f

=
ρr2

f

(r f +∆)2

where ∆ is found by solving the following cubic equation

Vf =
πr2

f L f

πr2
m Lm

=
ρr3

f

(r f +∆)2(ρr f +∆)

The shear lag parameters become [7]:

β2
1 =−

4GmV2

Em(V2 + ln V1)
and β2

2 =

4E2

E f Em

V2

2G f
− 1

Gm

�

V2

2
+ 1+ ln V1

V2

�

+ 2V2

r f Dt

After these changes, all other equations in the SLC model are the same.

Figure 10 compares SLC models to FEA analysis of an axisymmetric model using periodic displace-

ment or traction boundary conditions as a function of interface parameter for three different aspect

ratios, two R values, and all for Vf = 0.15. In these calculations, the two interface parameters were

made equal Dn = Dt and high values on the right correspond to the perfect interface limit. The SLC

model accurately reproduces the numerical results and therefore provides a useful model for studying

both 3D (cylindrical fibers) and imperfect interface effects. The SLC model falls between numerical re-

sults with displacement and traction boundary conditions and is closer to the traction results. This trend
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Figure 10: Axial composite modulus for Vf = 0.15 as a function of fiber/matrix imperfect interface parameter and for three fiber
aspect ratios. The open and solid symbols are upper and lower bound, axisymmetric, numerical calculations, respectively. The
solid curves are axisymmetric version of the new shear lag solution. The dashed lines on the right are 3D Eshelby/Mori-Tanaka
approach results for a perfect interface. Note that the R= 105 plot uses a log axis.

is likely because the SLC model is based on traction boundary conditions. Because an Eshelby analysis

[2] cannot account for imperfect interfaces, it is plotted on the right as short, dashed horizontal lines

representing the 3D (ellipsoidal fibers), perfect-interface, E/MT result [1, 2, 25]. Contrary to the Russel

[25] approach of approximating the Eshelby tensor for high aspect ratio fibers, these calculations used

the exact Eshelby tensor for ellipsoidal inclusions given in Ref. [2]. The Eshelby analysis is inconsistent.

It is below numerical results for ρ = 5, but moves above it as ρ increases.

3.5. Other Properties

For mean field modeling of random or partially ordered composites, one needs all mechanical prop-

erties of the unit cell with random, aligned fibers. Most work focuses on analysis for E(r)y y because it is

the property that is most affected by fiber aspect ratio, ρ. Christensen [1] shows that for an Eshelby [2]

analysis, the shear modulus is independent of ρ and therefore equal to the shear modulus of a continu-

ous fiber composite. Similarly, the transverse modulus, E(r)x x , and Poisson’s ratio, νy x , may only weakly

be affected by ρ. In other words, once E(r)y y is found, the remaining properties are assumed to follow

by simpler methods. We checked this conventional wisdom with the numerical BVE results. Figure 11

plots E(r)x x , G(r)x y , and ν (r)y x as a function of ρ for two R values and all for Vf = 0.2. For R = 100, all these

properties are nearly independent of ρ and thus are equal to results for continuous fiber composites. In

contrast, for R = 105, E(r)x x and G(r)x y decrease. This behavior will need to be included when doing mean

field modeling of such composites.
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Figure 11: Plots of E(r)x x , G(r)x y , and ν (r)y x as a function of fiber aspect ratio for two R values and all for Vf = 0.2. The dashed lines

are for R= 100 and the solid lines are for R= 105.

4. Conclusions

This paper tackled seemingly basic questions whose answers, in our opinion, provide insights for

evaluating past and future literature on short fiber composites. The novel results were to develop

a method for bounding the mechanical properties and use that approach to study a regime that is

not commonly examined (namely large R and large ρ). The numerical experiments showed that for

R < 100, the bounds are rather close and other numerical and analytical models fall within those

bounds and therefore must be close to the correct answer. For R> 100, however, the numerical bounds

diverge and both analytical methods and prior numerical methods based on periodic displacement

boundary conditions degenerate to lower bound results. We do not claim the numerical upper bounds

are predicting the modulus of real materials — they are upper bound results and because of the crude

mesh are not the best upper bounds possible. But, all efforts to seek refined upper bounds suggest that

at large R even improved upper bounds are two or more orders of magnitude higher than results found

by prior methods. Given that some experimental results on reinforcement of elastomers [16, 18] exceed

predictions by analytical or prior numerical models, but do not exceed upper bound BVE results, the

two options are that current modeling methods are inadequate or that we must abandon continuum

mechanics. The upper bound results here demonstrate the answer might be the former.

Analytical models typically treat a single fiber. The Eshelby/ Mori-Tanaka approach [2, 3] and the

new shear lag method presented here, agreed well with lower bound, numerical, single-fiber models,

but gave no information about upper bound modulus for high R. The new shear lag method adds
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modeling for imperfect interfaces. It is not worth the effort to seek “improved” analytical models

because there is little room to improve agreement with numerical modeling on the same structure.

The more interesting problem is how to avoid degenerating to a lower bound results. The next tasks

for short fiber composite modeling should be to develop a new approach to analytical modeling that

can predict upper bound moduli for all values of R and to extend that modeling to composites with

non-aligned fibers by averaging over a fiber distribution function [1].
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Appendix

A 2D, plane-strain Eshelby analysis [2] can be derived by following Christensen [1], which is based

on Russel [25]. We begin by specifying ε11 = ε0, ε22 = εr , and ε33 = 0, where the fiber is the 1 direction

and the 3 direction is the thickness direction with zero strain for a plane-strain analysis. Modifying

Russel [25] with a plane-strain constitutive law and requiring only the stress in the 2 direction to be

zero, the effective fiber direction modulus and Poisson’s ratio become:

E∗11 = E(r)m

�

1− Vf (A1111 − A1122ν
∗
12)
�

and ν∗12 =
ν (r)m − Vf

�

A2211 + ν (r)m A1111
�

1− Vf
�

A2222 + ν
(r)
m A1122

�

where Ai jkl are elements of the fourth-rank tensor that relates Eshelby transformation strain to applied

strain:

εT
i j = Ai jklε

0
kl

Continuing along a 2D plane-strain analog of the Russel analysis [25], the Ai jkl terms can be found

from

A1111 =
a22 b11 − a12 b12

a11a22 − a12a21
A1122 =

a22 b12 − a12 b22

a11a22 − a12a21

A2211 =
a11 b12 − a21 b11

a11a22 − a12a21
A2222 =

a11 b22 − a21 b12

a11a22 − a12a21
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where

a11 = ∆λ(S1111 + S2211) + 2∆GS1111 +λm + 2Gm

a12 = ∆λ(S1122 + S2222) + 2∆GS1122 +λm

a21 = ∆λ(S1111 + S2211) + 2∆GS2211 +λm

a22 = ∆λ(S1122 + S2222) + 2∆GS2222 +λm + 2Gm

b11 = b22 =−∆λ− 2∆G =−(λ f −λm)− 2(G f − Gm)

b12 = b21 =−∆λ=−(λ f −λm)

and Si jkl are elements of the 2D, plain-strain Eshelby tensor. The terms λ f and λm are the Lamé

parameters for the fiber and matrix. For results, Russel [25] substituted the 3D Eshelby tensor [2] (as

approximated for large aspect ratio [1, 25]) and took limiting results for small Vf . Here we need the

2D plane-strain Eshelby tensor [2] evaluated exactly to handle small aspect ratios and we used the full

modulus and Poisson’s ratio expressions instead of their low Vf limits. Fortunately, Eshelby [2] provides

explicit 2D plane-strain results for the case with elliptical axes a > b (ρ = a/b) and c =∞:

S1111 =
1

2(1− νm)

�

1+ 2ρ

(ρ+ 1)2
+

1− 2νm

ρ+ 1

�

S1122 =
1

2(1− νm)

�

1

(ρ+ 1)2
−

1− 2νm

ρ+ 1

�

S2211 =
1

2(1− νm)

�

ρ2

(ρ+ 1)2
−
(1− 2νm)ρ
ρ+ 1

�

S2222 =
1

2(1− νm)

�

ρ(ρ+ 2)
(ρ+ 1)2

+
(1− 2νm)ρ
ρ+ 1

�

Here νm is the unreduced matrix Poisson’s ratio and it is related to the plane-strain Poisson’s ratio by

νm = ν (r)m /(1+ ν
(r)
m ).
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