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Abstract Ethanol from corn is produced using dry grind corn process in which
simultaneous saccharification and fermentation (SSF) is one of the most critical
unit operations. In this work an optimal controller based on a previously validated
SSF model was developed by formulating the SSF process as a Bolza problem and
using gradient descent methods. Validation experiments were performed to evaluate
the performance of optimal controller under different process disturbances that are
likely to occur in practice. Use of optimal control algorithm for the SSF process
resulted in lower peak glucose concentration, similar ethanol yields (13.38±0.36%
v/v and 13.50±0.15% v/v for optimally controlled and baseline experiments, respec-
tively). Optimal controller improved final ethanol concentrations as compared to
process without optimal controller under conditions of temperature (13.35±1.28
and 12.52±1.19% v/v for optimal and no optimal control, respectively) and pH
disturbances (12.65±0.74 and 11.86±0.49% v/v for optimal and no optimal control,
respectively). Cost savings due to lower enzyme usage and reduced cooling require-
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ment were estimated to be up to $1 million for a 151 million L/yr (40 million gal/yr)
dry grind plant.

Keywords Dry grind corn ethanol · Saccharomyces cerevisiae · Cybernetic model ·
SSF process · Optimal controller · Gradient descent · Process disturbances

Introduction

Ethanol from corn is mostly produced using dry grind corn process in which
simultaneous saccharification and fermentation (SSF) is one of the most critical
unit operations. Temperature, pH and the glucoamylase dose are three variable
that could be controlled in SSF process. A simplified control strategy for SSF
process control is generally followed in most dry grind plants. Mash temperature
is maintained at 30◦C throughout the SSF process; whereas, pH is adjusted prior
to SSF and not controlled thereafter. Glucoamylase enzyme is dosed within the
first 10 h of SSF process in two/three steps. SSF reactor temperature and pH are
monitored in most dry grind corn plants. Complexity of the fermentation process
poses a challenge for development of a reliable, optimal controller that can improve
SSF performance under varying conditions of pH, temperature and yeast growth.
Hence, most commercial plant adopt the above mentioned simple, yet reliable fixed
set point strategy to minimize the risk of inefficient SSF process. However, some
difficulties in using such a control strategy exist in practice. For example, in hot
weather cooling capacity of the plant is reached and the set point temperatures are
not maintained resulting in SSF reactors operating at higher temperatures for some
time during the SSF process. Similar issues also exist during extreme cold weather
where the SSF process temperature is lower than the set point temperature. Another
example is that manufacturer’s reported minimum activity level is often used for
determining glucoamylase dose, while in reality the actual activity of this enzyme
is generally higher. However, due to storage and other factors, the glucoamylase
activity decreases with time and is difficult to measure activity on a daily/batch-
batch basis in industrial setting. Therefore all the enzyme dosings are based on the
manufacturer’s reported minimum activities. Similarly, SSF reactor pH is influenced
by amount of recycled thin stillage (backset), buffering capacity of the mash and
bacterial contamination. Thus control of fermenter temperature, pH and glucoamy-
lase dose using a constant set point control approach may not achieve optimum
performance. Additionally, since operating variables are not changed in response
to fermenter conditions, optimal performance (minimize operating costs such as
heating, cooling, use of chemicals and enzymes, while maintaining or achieving
higher final ethanol concentrations) may not be achieved under all conditions.

Under normal circumstances high overall SSF process efficiencies of 90%
are generally achieved in industrial scale fermenters, thus there is little scope for
increasing the overall efficiencies of the process by application of a control strategy.
On the other hand there is a potential for development of optimal control strategies
that can reduce enzyme and energy use during SSF process that use existing plant
controls with minimum additional capital cost. Such a controller would have to
be reliable and capable of handling undesired fluctuations in temperature, pH and
constantly adapt to any changes in the glucoamylase activity.
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Control of the fermentation process should reduce chemicals (enzymes,
acid/alkali) and utilities (cooling water) requirement and minimize fermentation
time by continuously responding to fermenter conditions. Improving fermenter
performance by incorporating a controller could also increase ethanol yield by
minimizing residual starch and glucose fractions. An optimal controller could be
used to determine set point profiles for fermenter temperature, pH and amount
of glucoamylase to achieve such an optimum performance. As opposed to ‘static’
set point controllers, the set point profiles for temperature, pH and glucoamylase
amount could change in response to varying operating conditions, with optimal
controller.

Control of bioreactors has been investigated using several approaches by many
researchers [2, 4, 5, 7–10, 15–17, 21, 23, 24]. Most have used fed batch or continuous
fermentations, where the feed rate to the fermenter was controlled continuously. Fed
batch fermentations operate in steady state conditions and controllers maintain the
system in a desirable steady state. Disturbances perturbing the system from optimal
states are controlled by manipulating nutrient feed rate, fermenter temperature,
mash pH and dissolved oxygen concentration.

In the majority of models, researchers do not consider all dynamics of cellular
metabolism. Further, even these models are linearized and systems are represented
as linear time invariant models. Szederkènyi et al. [23] found that nonlinear models,
even in the case of simple bioreactor models, have differences in terms of stability,
time domain performance and model parameter tuning. Adaptive controls have been
used for fed batch fermentations and are suitable for systems where process parame-
ters are time varying. Chen et al. [3] developed a nonlinear adaptive controller for
fed batch fermentation of glucose for ethanol production. They found the approach
could stabilize an unstable process but may not optimize the process. Cybernetic
modeling incorporates microorganism regulatory mechanisms and is better suited
to applications where all measurements may not be available. Efforts by researchers
[6, 19, 26] in the use of cybernetic models were limited to yeast metabolism modeling.
A cybernetic model structure, a set of coupled nonlinear differential equations, is
amenable to controller design.

The SSF process in the dry grind corn process is affected by temperature, pH
and bacterial infections. Using a previously validated SSF model based on cybernetic
principles for yeast modeling, an optimal controller based on iterative gradient
descent algorithm was developed. Performance of the optimal controller was tested
under externally applied disturbances during the SSF process.

Specific objectives of this research were to:

1. Develop an algorithm to optimize the SSF process using an optimal controller
for the SSF model.

2. Test the optimal controller performance during the SSF process under:

(a) normal operating conditions,
(b) temperature disturbance,
(c) pH fluctuation.

3. Compare glucoamylase use in SSF process with and without the optimal
controller.
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Design of Optimal Controller

A model that captures the dynamics of the SSF process is a prerequisite for the design
of a controller. A previously validated model for simultaneous saccharification and
fermentation (SSF) model, outlined in Appendix: A, was used as the basic framework
for controller design [11–13]. Using cybernetic principles, a model of the yeast was
developed to incorporate the effects of process variables such as temperature, pH,
enzyme dosage, initial inoculum, substrate and acetic acid concentrations.

The model consists of a simplified enzymatic hydrolysis (saccharification) reac-
tion. Substrate limitation or temperature effect on the enzymes was not considered
relevant for the present problem as the substrate limitation will be active only
towards the end of the fermentation and temperature range (28–40◦C) does not
significantly affect the enzyme activity. The fermentation model is an abstraction of
the actual metabolic processes in glucose limited cultures of yeast (Fig. 1). The yeast
cell is simplified into four enzymatic reactions for: aerobic and anaerobic reactions
producing energy and redox metabolites (EM) such as ATP and NADH/NADPH;
Conversion of glucose into structural metabolites (SM) that are used to make the
components of daughter cells; and reaction for cell production from energy and
structural metabolites. Since the yeast cell has limited intracellular material and
energy resources, they regulate these reactions to optimize growth. This regulation of
resource allocation with alternatives can be captured using the cybernetic modeling
framework [22]. According to the matching law for resource allocation in cybernetic
modeling, given a choice of alternatives a consumer allocates resources in conjunc-
tion with resources already invested to achieve maximum returns. The biological
equivalent of resource allocation is synthesis of new enzymes while preferential
utilization of past resources is similar to selective activation/deactivation of enzymes
already present. The cybernetic variables ν and u in Appendix: A govern the
regulation of enzyme activities and synthesis for different pathways respectively.

Fig. 1 Proposed cybernetic
model of yeast
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This model (Appendix: A) was calibrated using experimental data to determine
the parameters (Table 4) in the model [11]. This model was used to develop a
controller to maximize final ethanol concentration in the fermenter while maintain-
ing low glucose concentrations. Maximization of final ethanol concentration is the
most important goal of the SSF process. Lower sugar concentrations during the SSF
process reduce yeast osmotic stress and improve yeast cell viability. The controller is
used to determine the set point values for the set point controller based on an optimal
control algorithm. Since the set point control profiles are recalculated whenever
HPLC measurements are available, control values may not be constant throughout
the process and change in response to operating conditions. Hence, the controller is
not ‘static’ but rather ‘dynamic’ in nature.

The SSF system of equations (Eq. 10) and the associated control design prob-
lem was formulated as a Bolza problem [18]. In Bolza problem, a scalar cost
function is minimized subject to the differential equality constraints, admissible
control constraints, and initial and terminal state constraints. After simplification
using variational calculus, Lagrange multipliers and Hamilton–Jacobi theory, an
algorithm based on steepest descent techniques [18] was used to find iteratively a
convergent optimal solution. The optimal solution values (u(t), i.e temperature, pH
and glucoamylase amount) were used by the set point controller to control the SSF
process. The SSF model (Eq. 10) was reformulated using matrix notation to simplify
the development of the dynamic controller: Let,

System states [xi]i=1 to 11 = [
X G E O EM SM e1 e2 e3 e4 GP

]T

Control variables
[
u j

]
j=1 to 3 = [

T pH GA
]T

System dynamics
[

fi
]

i=1 to 11 = Right hand side of SSF model defined in Eq. 10

⎫
⎪⎪⎬

⎪⎪⎭

(1)

The system defined by Eq. 10 can be compactly represented using Eq. 1 as:

ẋi = fi(x, u, t) where, i = 1 to 11 (2)

The goal of optimum control is to:

1. Maximize x3 at a given final time (t f ) (i.e., maximize final ethanol concentration).
2. Minimize deviation of x2 from a set point (x2 = 20) at all times (i.e., minimize

the deviation of glucose concentration from 20 g/L. A glucose concentration of
20 g/L has been assumed to be the minimum level that does not affect adversely
the SSF process).

Defining J, a cost function that comprises of process goals to be achieved throughout
the process, the optimal controller design problem for Eq. 2 can be posed as follows.

Obtain an optimal control vector (u(t)) that minimizes the cost function (J):

J = θ(x, t)|t f
t0 +

∫ t f

t0

{
φ(x, u, t) + λT [ fi(x, u, t) − ẋ] + (

U THU,0
)}

dt (3)

Subject to :

1. Differential system equality constraints: ẋi = fi (x, u, t) (System dynamics)
2. Initial condition equality constraints: x(t0) = x0
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3. Admissible control vector constraints:

20 ≤ u1 ≤ 35 (◦C, temperature limits)

3.5 ≤ u2 ≤ 5.0 (pH limits)
du3

dt
≥ 0 (enzyme dosage limits)

⎫
⎪⎪⎬

⎪⎪⎭
(4)

Inequality constraints can be changed to equality constraints as follows [18]:

(
u1,max − u1

) (
u1 − u1,min

) = �−2
1(

u2,max − u2
) (

u2 − u2,min
) = �−2

2

du3

dt
≥ 0 ⇒ u3,min ≤ u3 ≤ u3,max

(
u3,max − u3

) (
u3 − u3,min

) = �−2
3

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5)

Where �1, �2 and �3 are constants.

U =
⎡

⎢
⎣

�2
1

(
u1,max − u1

) (
u1 − u1,min

) − 1

�2
2

(
u2,max − u2

) (
u2 − u2,min

) − 1

�2
3

(
u3,max − u3

) (
u3 − u3,min

) − 1

⎤

⎥
⎦ (6)

Define:

Hamiltonian is defined as: H = φ(x, u, t) + λT f (x, u, t) (7)

In the cost function (Eq. 3), first term on the right hand side (θ(x, t))|t f
t0 ) defines

the process goal that is to be achieved at the final time, subject to the initial state
constraints. The first term (

∫ t f

t0
{φ(x, u, t)} dt) inside the integral defines the second

goal (minimizing the deviation from the glucose set point) during SSF process. The
second term inside the integral (

∫ t f

t0
{λ[ fi(x, u, t) − ẋ]} dt) accounts for the system

dynamic constraint. The parameter λ is the Lagrange multiplier that converts vector
constraints into a scalar quantity H and transforms a vector performance index
(defined by φ(x, u, t)) to a scalar minimization problem (defined in terms of J
maximization/minimization). The third term inside the integral (

∫ t f

t0

{(
U THU,0

)}
dt)

determines the penalty function for deviations outside the allowed ranges for the
control variables. The magnitude of the penalty function depends on constants �1, �2

and �3 chosen while defining U in Eq. 6. Based on a variational calculus approach
[18], a choice of �u that reduces J (i.e. �J ≤ 0) can be obtained as:

�u = −k(t)

[
∂H

∂u
− ∂

(
U THU,0

)

∂u

]

where, k(t) is a parameter gain matrix. (8)

Absolute change in u is determined by the parameter gain matrix (k(t)). Absolute
values of different control variables, such as temperature, pH and glucoamylase
amount are dependent on the sensitivity of the SSF process to changes in these
variables. Hence, the values in k(t) are chosen (based on prior trial and error using
model predictions) to account for the differences in the sensitivity of the control
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variables. In general, k(t) is dependent on total fermentation time and is a function
of time. In this model, it is assumed to be static, i.e., a constant matrix. Therefore
for any scale up of the system, k(t) values need to be determined. This choice of
�u is guaranteed to minimize cost function J without violating the constraints on the
control vector u [18]. Steepest descent algorithm [18] was used to iteratively calculate
the changes in u until the change in cost function (J) was less than a small number,
ε(> 0).

Model Implementation

All the derivatives in the optimal controller were discretized using a first order finite
difference scheme. The optimal controller was implemented using C++ language.
A set point controller was developed and implemented using C++ to execute the
temperature, pH and enzyme set points specified by the optimal controller. During
various treatments, optimal controller algorithm was implemented after every 2 h
mash sampling and HPLC analysis of the sample. Actual temperature, pH and
enzyme dosage profiles were input as text files to the program. Generated output
consisted of concentration profiles of new set point time series for temperature,
pH and enzyme dosage. Some of the system states were measured directly using a
HPLC method (glucose, ethanol, acetic acid and glycerol). Concentration of dextrins
in the media was estimated based on a previously developed and validated stochastic
liquefaction and saccharification model [11, 14]. Yeast biomass was estimated using
a simplified yeast metabolic network as described in Murthy [11].

A computer controlled fermenter system was designed for testing the optimal con-
troller. The control system architecture is shown in Fig. 2. This control architecture
was implemented using a custom built fermentation system with set point controller
for temperature, pH and glucoamylase enzyme (Fig. 3). Briefly, the system consisted

Fig. 2 Control system architecture
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Fig. 3 Schematic of the fermentation system to evaluate optimal controller

of a fermenter vessel (15 L, Bellco Glass, Vineland, NJ) housed in a water bath.
Mash was agitated (100 rpm) using a paddle type agitator driven by a DC motor
drive (model 7774-10000, Bellco Glass, Vineland, NJ).

Required heating or cooling was provided by circulating hot or cold water in
the water bath. Uniform water bath temperature was achieved by recirculation
of water in the water bath with a centrifugal pump (model AC-3C-MD, March
Mfg., Glenview, IL). Temperature was measured using two thermocouples (T-type,
Omega, Stamford, CT) placed in the fermenter and water bath. An ice box provided
the reference junction temperature for the thermocouples. Solenoid valves (13A432,
Dayton Electric, Niles, IL) on the hot and cold water lines were controlled by relays
(W6210DSX-1, Magnecraft, Northfield, IL). Mash pH was measured using a pH
probe (PHE 7352, Omega, Stamford, CT). Pumps required for pH control were
a low volume positive displacement gear pump (PQM-1/115, Greylor, Capecord,
FL) for alkali and a peristaltic pump (Masterflex 7535-10, Cole-Parmer, Chicago,
IL) for acid. The pH controller activation of the appropriate pump was based on
pH probe readings of mash pH. A high precision peristaltic pump (Masterflex L/S
digital drive model 7523-50 and pump head model 7523-08, Cole-Parmer, Chicago,
IL) was used to add required amounts of glucoamylase enzyme into the fermenter.
The enzyme pump was set at a fixed volumetric flow rate and switched on using
relays (W6210DSX-1, Magnecraft, Northfield, IL) for desired time duration. Data
acquisition from thermocouples, pH probes and activation of relays for operation of
acid/alkali pumps and hot/cold water lines was controlled by a data acquisition device
(U12, Labjack, Lakewood, CO).
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It was important to calibrate the system components and equipment such as
thermocouples, pH probes, hammer mill and substrate characteristics to validate
the developed models. The details of system components, testing and calibration are
reported elsewhere [11].

Optimal Controller Validation

Two sets of experiments were conducted to validate the optimal controller for the
SSF process. In addition to the base case with/without optimal controller, experi-
ments were conducted to evaluate the response to process perturbations likely to
occur in industrial fermenters (Experiment 1). An additional set of experiments was
conducted without optimal controller to compare the performance of SSF process to
similar process fluctuations without optimal controller (Experiment 2). An overview
of the validation experiments is presented in Table 1.

Samples and Chemicals Yellow dent corn (35D28, Pioneer Hi-Breed International,
Johnston, IA) grown during the 2005 at the Agricultural and Biological Engineering
Research Farm, University of Illinois at Urbana-Champaign was used. Samples were
hand cleaned; kernel moisture content was determined using a convection oven
method [1]. Proximate analysis, determined by near infrared spectrometer (model
OmegaAnalyserG, Dickey-John, Springfield, IL), was 72.2% starch, 9.0% protein,
4.7% oil and 14.9% moisture (wb).

The α-amylase (SpezymeFred, Genencor, Palo Alto, CA) and glucoamylase
(Distillase L 400, Genencor, Palo Alto, CA) used in all experiments had activities
of 21,390 activity units/mL and 315 amyloglucosidase units/mL, respectively. Urea,
used as a nitrogenous nutrient for yeast, was obtained from Fischer (Fair Lawn, NJ).
Active dry yeast (ADY) (Ethanol Red, Fermentis, Marcq-en-Baroeul, France) was
used in all experiments. Mash pH was adjusted using concentrated H2SO4 (96%
w/w) and NaOH (pellet form) obtained from Mallinckrodt Baker (Paris, KY) and

Table 1 Outline of validation experiments

Treatment Treatment details

Experiment 1: Perturbation with optimal control (15 L)
E1T1Baseline Baseline (No optimal controller)
E1T2OC Optimal controller without disturbances.
E1T3OC, T A temperature disturbance (2 h, 20◦C)

from 24 to 26 h.
E1T4OC, pH A pH disturbance (2 h, 2.8pH) from 24 to 26 h.

Experiment 2: Perturbation without optimal control (200 mL)
E2T1T, adjusted Temperature adjusted after temperature

disturbance (2 h, 20◦C) from 24 to 26 h.
E2T2T, not adjusted Temperature not adjusted after temperature

disturbance (20◦C) at 24 h.
E2T3pH, adjusted pH adjusted after an induced pH disturbance

(2 h, 2.8pH) from 24 to 26 h.
E2T4pH, not adjusted pH not adjusted after an induced pH disturbance

(2.8pH) at 24 h.
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Sigma-Aldrich (St. Louis, MO), respectively. Tetracycline, an antibiotic, was ob-
tained from Sigma-Aldrich (St. Louis, MO).

Conventional Dry Grind Process Hand cleaned corn samples (5,000 g) were ground
in a pilot plant scale hammer mill (7” diameter, 3500 rpm, motor model G600
Allis-Chalmers, Nurwood, OH) equipped with a 0.5 mm round hole sieve. Moisture
content of ground corn was determined using a convection oven method [1] prior
to each experiment. Ground corn (3,750 g db) was mixed with hot water at 60◦C
to form 25% solids mash. Mash, liquefied using 3.75 mL α-amylase for 90 min in
a water bath maintained at 90◦C, was cooled to 30◦C and adjusted to 4.5 pH using
H2SO4. Urea (1 g/L of mash) and ADY (0.7% w/w of starch) were added to the mash.
Tetracycline was added at 6.67 ppm level to prevent bacterial contamination. As
described below, liquefied mash was subjected to treatments using the experimental
apparatus. Simultaneous saccharification and fermentation (SSF) was performed
by adding 3.75 mL glucoamylase (manufacturer recommended dose) and 18.5 g of
ADY. The SSF process was performed for 72 h with samples withdrawn every 2 h
until 60 h.

Experiment 1: Perturbation with Optimal Control

All experiments were conducted with a 15 L mash volume containing 3,750 g initial
dry solids (25%). Baseline experiments (Experiment 1, treatment 1; E1T1Baseline),
similar to the SSF process used in dry grind corn process, were conducted by a
onetime initial addition of glucoamylase (0.1% w/w solids i.e., 3.75 mL) to the mash
after addition of urea and ADY followed by adjustment to 4.5 pH. Temperature was
maintained at 30◦C during the SSF process.

Four treatments, in addition to baseline experiments were conducted to test
effectiveness of the optimal controller. The second treatment (Experiment 1, treat-
ment 2;E1T2OC) consisted of evaluation of optimal controller without any externally
induced disturbances.

In the third treatment (Experiment 1, treatment 3; E1T3OC, T), a temperature dis-
turbance was introduced randomly between 15 and 25 h and temperature was held at
20◦C for 2 h. Under normal circumstances, temperature would be maintained at the
required set point as set by operator/controller. However, temperature disturbances
can occur in dry grind corn plants due to various factors such as improper mixing,
failure of sensors and circulation pumps. Therefore, the plant is unable to maintain
the temperature set by the controller/operators. These type of disturbances are
very regular in structure (square/triangular wave type disturbances) and therefore a
temperature disturbance was induced to simulate this case. Performance of optimal
controller with a simulated temperature disturbance was evaluated.

The fourth treatment (Experiment 1, treatment 4; E1T4OC, pH) consisted of a
pH disturbance in which mash was changed to 2.8 pH and held at 2.8 pH from
24 to 26 h after start of the SSF process. Similar to temperature disturbances, pH
disturbances can also occur in dry grind corn plants due to various factors such as
bacterial infection, failure of alkali and acid pumps and pH may not be maintained
at the required set point even after controller/operator intervention due to various
types of failures. Performance of optimal controller with a simulated pH disturbance
was evaluated.
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Mash samples (2 mL) were drawn at 2 h intervals until 60 h and a final sample
was drawn at 72 hr. Samples were analyzed using an HPLC method described below.
Three replicate fermentations were conducted for all treatments including baseline
experiments.

Experiment 2: Perturbation without Optimal Control

Five additional treatments were conducted on a smaller scale (50 g corn db, 25%
solids wb) to evaluate the effect of the disturbances without the optimal controller. In
a dry grind corn plant, correction measures could be initiated by manual temperature
correction on detection of temperature disturbances. Such a scenario was simulated
by adjusting the temperature of the fermenter back to 30◦C after a disturbance
(Experiment 2, treatment 1; E2T1T, adjusted). In the second scenario the temperature
was not adjusted to simulate breakdown of thermal regulation in the plant that could
not be repaired during the batch time (Experiment 2, treatment 2; E2T2T, not adjusted).

Similar to temperature disturbance correction in a dry grind corn plant, cor-
rection measures could be initiated by manual pH correction on detection of pH
disturbances. Such a scenario was simulated by adjusting the pH of the fermenter
back to 4.5 pH after externally induced disturbance (Experiment 2, treatment 3;
E2T3pH, adjusted). In the fourth scenario, the pH was left unchanged (Experiment 2,
treatment 4; E2T4pH, not adjusted). A control sample was processed using the SSF
process along with the four treatments. Initial SSF (0 h) and final SSF (72 h) samples
(2 mL) were drawn and processed using HPLC method described below. Three
replicate fermentations were conducted for each treatment.

HPLC Analysis

From each 2 mL sample, clear supernatant liquid was obtained by centrifuging the
sample at 16,110×g (model 5415 D, Brinkmann-Eppendorf, Hamburg, Germany).
Supernatant was passed through a 0.2 μm syringe filter into 150 μL vials. Filtered
supernatant liquid (5 μL) was injected into an ion exclusion column (Aminex
HPX-87H, Bio-Rad, Hercules, CA) maintained at 50◦C. Sugars (glucose, fructose,
maltose and maltotriose), organic acids (lactic, succinic and acetic) and alcohols
(ethanol, methanol and glycerol) were eluted from the column with HPLC grade
water containing 5 mM H2SO4. Separated components were detected with a refrac-
tive index detector (model 2414, Waters Corporation, Milford, MA). Elution rate
was 0.6 mL/min; a calibration standard (DP4+ 0.44% w/v, maltotriose 0.5% w/v,
maltose 2% w/v, glucose 2% w/v, fructose 1% w/v, succinic acid 0.5% w/v, lactic acid
1% w/v, glycerol 2% w/v, acetic acid 0.5% v/v, methanol 1% v/v and ethanol 20%
v/v) was used to calibrate HPLC prior to each set of samples. Calibration standards
were used as unknown secondary standards to check the consistency of the HPLC
measurements. Data were processed using HPLC software (version 3.01, Waters,
Milford, MA).

Experimental Design

A complete randomized block design was used in each experiment. Each treatment
was replicated three times. Each fermentation sample was analyzed using a mean of
two HPLC injections. Analysis of variance and Tukey’s test (SAS Institute, Cary,
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NC) were used for mean separation at α = 0.4. Economic analysis of potential
cost savings from the process were calculated using glucoamylase enzyme price of
$0.006/L ($0.024/gal) of ethanol [20].

Results and Discussion

Performance of the optimal controller was evaluated by simulations and convergence
of the algorithm. For an iterative algorithm it is essential to check the convergence
criteria of the results because the number of iterations determines computer proces-
sor time. The need for shorter processor time is balanced with the need for conver-
gence of control vectors. Balance can be achieved if the convergence criteria are set
such that variation in the values of control vectors in subsequent iterations is less than
the band of control variation achievable by the set point controller which controls
the SSF process. For example, the SSF process was initiated with non-optimal initial
values (temperature 20◦C, 2.5 pH and glucoamylase 0.01 mL/L mash). The output of
optimal control algorithm after one iteration was a constant temperature of 32.67◦C
(Fig. 4), a linearly decreasing pH from 4.5 to 3.3 (Fig. 5) and glucoamylase dose
that increased linearly to 0.44 mL/L mash at 50 h and displayed an exponential
rise thereafter (Fig. 6). When the SSF process was initialized with low glucoamylase
dosage, corrective action of the optimal control algorithm caused the exponential rise
in the glucoamylase dosage towards the end of the SSF process. This was the result of
the primary goal of the optimal algorithm which was to maximize ethanol production
by complete starch hydrolysis while maintaining favorable fermentation conditions.
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Fig. 4 Predicted temperature profiles as a function of iteration number
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With increasing number of iterations (>10) the exponential increase disappeared
and a more balanced profile was obtained (Fig. 6). Corresponding glucose and
ethanol profiles are shown in Figs. 7 and 8, respectively. Final ethanol concentrations
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Fig. 6 Predicted glucoamylase enzyme dose profiles as a function of iteration number
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Fig. 7 Predicted glucose concentrations (g/L) for different optimal profiles

increased with number of iterations as the set point control profiles were optimized
progressively. Results obtained by varying the number of iterations indicate that
after 15 iterations the variations in the control vector were very small and the best
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Fig. 8 Predicted ethanol concentrations (g/L) for different optimal profiles
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performance was achieved. After 15 iterations, the changes in the set point control
profiles were too small to be controlled accurately by the set point controller. Hence
the results obtained after 15 iterations of the optimal controller were used to control
the SSF process. As compared to a conventional SSF process with no controller,
there was potential for reduction in total glucoamylase enzyme requirement for an
optimally controlled SSF process.

The set point temperature controller was able to maintain target temperature
within ±0.5◦C for a constant set point. However, for a variable temperature profile
there were oscillations (±4◦C) which were caused due to large inflow of hot or cold
water into the waterbath on opening of hot or cold water valves, respectively. The
pH probe showed a drift in the measured voltage over time and was not used in
the experiments. Some of the possible reasons for the drift in pH probe included
probe fouling and leaching of charged molecules from the mash into the probe.
Therefore, instead of automatic pH adjustment using the pH probe and acid or alkali
pumps, the pH was adjusted manually to the target pH values (determined by optimal
control algorithm) every 2 h. The set point controller for control of glucoamylase
enzyme dose was able to achieve a reliable and accurate tracking of the set points
for glucoamylase dosage. Additional details on the performance of the set point
controller are reported in [11].

Glucose concentrations in the optimally controlled SSF process (E1T2OC) were
lower than the baseline experiments (E1T1Baseline) (Fig. 9). Lower glucose con-
centrations during SSF should have resulted in reduced osmotic stress to the
yeast and thus improved yeast viability. However, ethanol concentration profiles
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Fig. 9 Comparison of glucose concentrations: optimal control vs baseline
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Fig. 10 Comparison of ethanol concentrations: optimal control vs baseline
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Fig. 11 Comparison of glucose concentrations: temperature perturbation vs baseline
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(Fig. 10) for E1T2OC were similar to E1T1Baseline. Final ethanol concentrations for
E1T2OC (13.38±0.36% v/v) were not statistically different from the E1T1Baseline

(13.50±0.15% v/v). One of the significant results of this optimal controller imple-
mentation was that the amount of glucoamylase used in the E1T2OC was 1.86 mL;
whereas, 3.75 mL (manufacturer recommended dose) was used in E1T1Baseline to
achieve the same final ethanol concentrations. Yeast osmotic stress is more important
in high gravity fermentations where the glucose concentrations are higher than
200 g/L during the SSF process. Hence use of optimal controller in high gravity
fermentations can provide additional advantages.

Comparisons of glucose concentrations in the optimally controlled SSF process
with a temperature disturbance (E1T3OC, T) are shown in Fig. 11. Ethanol con-
centrations were lower for E1T3OC, T (13.35±1.28% v/v) and E2T2T, not adjusted

(12.21±0.22% v/v) compared to E1T1Baseline (13.50±0.15% v/v)(Fig. 12). How-
ever, final ethanol concentrations for E2T1T, adjusted (12.52±1.19% v/v) and
E2T2T, not adjusted (12.21±0.22% v/v) were significantly lower (0.83% v/v) than final
ethanol concentration for E1T3OC, T (13.35±1.28% v/v) (Fig. 12). This indicates that
use of optimal controller can result in increased final ethanol concentrations when
SSF process is subject to temperature fluctuations.

Comparisons of glucose concentrations in the optimally controlled SSF process
with a pH disturbance (E1T4OC, pH) are shown in Fig. 13. As compared to baseline
experiments (E1T1Baseline), ethanol concentrations were lower for the SSF process
with pH disturbance (Fig. 14). Final ethanol concentration was higher (12.65±0.74%
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Fig. 13 Comparison of glucose concentrations: pH perturbation vs baseline

v/v) for E1T4OC, pH compared to E2T3pH, adjusted (11.86±0.49% v/v). Similarly,
final ethanol concentrations were also higher for E1T4OC, pH (12.65±0.74% v/v)
compared to E2T4pH, not adjusted (12.44±0.33% v/v). Lower fermenter pH leads to
increased maintenance requirements for the yeast cell and results in increased
ethanol production [25]. Increased carbon flux through the fermentation pathway
leads to lower cell mass yields. This phenomenon could have resulted in the observed
significantly higher ethanol concentrations in E2T4pH, not adjusted (12.44 ±0.33% v/v)
compared to E2T3pH, adjusted (11.86 ±0.49% v/v). However, even in this case, use
of optimal controller resulted in higher final ethanol concentrations for SSF process
with pH fluctuations. Final glucose and ethanol concentrations for all the validation
experiments are summarized in Table 2.

Using optimal controller for SSF process, glucoamylase amount required in the
SSF process was reduced 50% compared to baseline experiments. This reduction
was observed even in the case of simulated process disturbaces in temperature
and pH that were designed to mimic likely operational difficulties that a plant
would face in maintaing set point temperatures and pH. Significantly in all such
cases, final ethanol concentrations were significantly higher with the use of optimal
controller for SSF process (Table 2). Assuming the cost of glucoamylase enzyme
to be $0.006/L ($0.024/gal) of ethanol [20], a 50% reduction in glucoamylase usage
could lead to $480,000/yr savings in a 151 million L/yr (40 million gal/yr) ethanol
plant. The SSF profiles using optimal control had on an average higher fermenting
operating temperatures (32◦C) compared to the baseline with no optimal control
(30◦C). Higher temperatures (32◦C) maintained during the SSF process with optimal
controller, compared to a constant process temperature (30◦C) in a conventional
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Fig. 14 Comparison of ethanol concentrations: pH perturbation vs baseline

SSF process, required 7% less energy (as cooling water) and thus could result in
potential reduction of cooling water requirements. Assuming an energy cost of
$0.057/L ($0.2142/gal) of ethanol [20], reduced energy requirements could lead to
$600,000/yr savings (Table 3).

Use of the optimal controller could reduce the proliferation of bacteria by
reducing the available glucose and thus result in reduced antibiotic requirements.
Reduced antibiotic usage would decrease the concentration of antibiotics in DDGS
and would increase the marketability of DDGS. Optimal controller use would im-
prove fermentation characteristics and reduce the variability in DDGS composition

Table 2 Final ethanol and glucose concentrations in validation experiments

Treatment Glucose Ethanol Glucoamylase
(%w/v) (%v/v) (% w/w mash solids)

Experiment 1: Perturbation with optimal control (15 L)
E1T1Baseline 0.115 ± 0.082 13.50 ± 0.15 0.1
E1T2OC 0.134 ± 0.04 13.38 ± 0.36 0.05
E1T3OC, T 0.214 ± 0.23 13.35 ± 1.28 0.05
E1T4OC, pH 0.09 ± 0.10 12.65 ± 0.74 0.05

Experiment 2: Perturbation without optimal control (200 mL)
E2T1T, adjusted 0.15 ± 0.18 12.52 ± 1.19 0.1
E2T2T, not adjusted 0.17 ± 0.19 12.21 ± 0.22 0.1
E2T3pH, adjusted 1.05 ± 0.41 11.86 ± 0.49 0.1
E2T4pH, not adjusted 0.754 ± 0.59 12.44 ± 0.33 0.1
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Table 3 Estimated savings
with use of optimal controller
assuming total enzyme and
energy cost of $0.0126/L
($0.048/gal) and $0.057/L
($0.2142/gal), respectively [20]

Plant capacity Savings (×$1000$/yr)

(million L/yr (gal/yr)) Enzyme Energy Total costs

57 (15) 180 227 407
151 (40) 480 605 1,085
227 (60) 720 908 1,628
284 (75) 900 1,135 2,035
378 (100) 1,200 1,513 2,713
568 (150) 1,800 2,269 4,069

caused by variability in residual glucose concentrations at the end of SSF process.
Reduced final glucose concentrations are expected to reduce the potential problems
during drying (Millard reactions) and handling (caking) of DDGS. Maintaining
lower glucose concentrations in the SSF process can lead to indirect benefits such
as increased bioavailability of the lysine by reducing its reaction with reducing sugars
during DDGS drying process and degradation to furosine [27].

Conclusions

An optimal controller was developed for the SSF process. The control problem was
formulated as a scalar performance criteria minimization and was solved using an
iterative algorithm based on steepest descent technique. Control profiles converged
after 15 iterations. Simulations showed reduced glucoamylase requirement with
optimum controller. A fermentation system was built and calibrated. Set point con-
trollers for temperature and pH were tested. The temperature controller maintained
temperature within ±0.5◦C, while pH controller had a maximum deviation of ±0.2
from the setpoint. Use of optimal control algorithm for the SSF process resulted
in lower peak glucose concentration, similar ethanol yields (13.38±0.36% v/v and
13.50±0.15% v/v for optimally controlled and baseline experiments respectively)
and 50% reduction in glucoamylase amount required for SSF process under varying
operating conditions as compared to standard SSF process.

Optimal controller significantly improved final ethanol concentrations as com-
pared to conventional process without optimal controller under conditions of tem-
perature and pH disturbances. Ethanol concentrations were lower for E1T3OC, T

(13.35±1.28% v/v) as compared to E1T1Baseline (13.50±0.15% v/v). However
final ethanol concentrations were significantly higher compared to E2T1T, adjusted

(12.52±1.19% v/v) and E2T2T, not adjusted (12.21±0.22% v/v). Ethanol concentra-
tions were lower for E1T4OC, pH (12.65±0.74% v/v) compared to E1T1Baseline

(13.50±0.15% v/v), but was higher compared to E2T3pH, adjusted(11.86±0.49% v/v)
and E2T4pH, not adjusted(12.44±0.33% v/v).

Use of the optimal controller in conventional dry grind ethanol process could
result in lower glucoamylase dose, higher operating temperature and increased
ability to minimize the impact of process disturbances. Measurable savings in lower
enzyme usage and reduced cooling requirement could result in estimated cost savings
up to $1 million for a 151 million L/yr (40 million gal/yr) dry grind plant.
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Appendix A: Model Summary

The cybernetic yeast model equations are summarized below.

Cybernetic Control Equations

r1 = μ1e1

(
G

K1 + G

)(
1 − HG,150

(
G − 150

650 − 150

)) (
1 − HE,95

(
E − 95

150 − 95

))

r2 = μ2e2

(
G

K2 + G

)(
1 − HG,150

(
G − 150

650 − 150

)) (
1 − HE,95

(
E − 95

150 − 95

))

r3 = μ3e3

(
EM

K3 + EM

)(
SM

K4 + SM

)

r4 = μ4e4

(
G

K1 + G

)(
O

K5 + O

)

Ha,b =
{

1 if a > b is the Heavyside function.
0 if a ≤ b

ν ′
1 =

(
r1

Max (r1, r4)

)
← for substitutable pathway r1, r4

ν ′′
1 =

(
r1/EM

Max (r1/EM, r2/SM)

)
← for complementary pathway r1, r2

ν1 = ν ′
1ν

′′
1 ← overall regulation for substitutable and complementary pathways r1

ν2 =
(

r2/SM
Max (r1/EM, r2/SM)

)
← for complementary pathway r2, r1

ν3 = 1 ← for pathway r3

ν4 =
(

r4

Max(r1, r4)

)
← for substitutable pathway r4, r1

u′
1 =

(
r1

r1 + r4

)
← for substitutable pathway r1, r4

u′′
1 =

(
r1/EM

r1/EM + r2/SM

)
← for complementary pathway r1, r2

u1 = u′
1u′′

1 ← overall regulation for both pathways r1

u2 =
(

r2/SM
r1/EM + r2/SM

)
← for complementary pathway r2, r1

u3 = 1 ← for pathway r3

u4 =
(

r4

r1 + r4

)
← for substitutable pathway r4, r1 (9)
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Dynamic Mass Balance Equations

Cell mass:
dX
dt

= (r3 − D) X + 0.1212 η3

(
T − 15

30 − 15

)

−η4

(
HT,33e(

T−33
41−33 )

)
− HCaa,5H4.71,pH0.05

Glucose:
dG
dt

= HGP,0
dGP

dt
−

(
r1 ν1

Y1
+ r2 ν2

Y2
+ r4 ν4

Y3

)
X

+ (G0 − G) D

Ethanol:
dE
dt

=
(

φ1
r1 ν1

Y1

)
X − E.D

Oxygen
dO
dt

= −
(

φ2
r4 ν4

Y3

)
X + (

KLa O∗ − D.O
)

Energy precursors:
dEM

dt
=

(
r1 ν1 + r4 ν4 − r3 ν1

α1

)
X − η1

×
(

1229.56 Caa

10pH−4.71 + 1

)
− EM.D

Structural precursors:
dSM

dt
=

(
r2 ν2 − r3 ν1

α2

)
X−η2HpH,5.0(0.725pH) − SM.D

Enzyme 1 for pathway r1:
de1

dt
= u1

(
G

K1 + G

)
− e1 β + α∗ − e1.D

Enzyme 2 for pathway r2:
de2

dt
= u2

(
G

K2 + G

)
− e2 β + α∗ − e2.D

Enzyme 3 for pathway r3:
de3

dt
= u3

(
EM

K3 + EM

)(
SM

K4 + SM

)
− e3 β + α∗ − e3.D

Enzyme 4 for pathway r4:
de4

dt
= u4

(
G

K1 + G

) (
O

K5 + O

)
− e4 β + α∗ − e4.D

Acetic acid:
dCaa

dt
= −D.Caa + (

H5.0,pH(0.1056)

+ HpH,5.0 (0.0533pH − 0.1782)
) dX

dt

Glycerol:
dCgy

dt
= −D.Cgy + (

H5.0,pH(4.018)

+ HpH,5.0 (0.416pH − 1.40)
) dX

dt

Saccharification:
dGP

dt
= (GP0 − GP) D + (

GAActivityGA
)

(10)
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Table 4 Parameters used for
the SSF simulations

Parameter values

α∗ (g/L.s) = 7.04619×10−3

β (1/s) = 0.095796
D (1/s) = 0.0
KLa (1/s) = 3.5×102 (aerobic fermentation)
KLa (1/s) = 0.0 (anaerobic fermentation)
K1 (g/L) = 71.0798
K2 (g/L) = 99.7452
K3 (g/L) = 10.96
K4 (g/L) = 8.14321
K5 (g/L) = 1.08898×10−3

Y1 = 5.00602×10−2

Y2 = 1.68912×10−1

Y3 = 1.07946×10−1

φ1 = 5.15×10−1

φ2 = 5.50923×10−1

μ1 (1/s) = 0.268862
μ2 (1/s) = 0.226583
μ3 (1/s) = 0.363602
μ4 (1/s) = 0.355017
α1 = 1.33103
α2 = 1.09596
η1 (1/s) = 3.3349×10−3

η2 (g/L·s) = 1.2137×10−3

η3 (g/L·s.◦C) = 1.0862×10−2

η4 (g/L·s) = 9.75287×10−4

η4 (g/L·s) = 5.0×10−4

Vmax (g/L-s) = 2.34245×10−2

Kgp (g/L) = 29.2525
Kg (g/L) = 13.9939

List of Symbols

ei Concentration of ith enzyme (g/g cell mass) catalyzing
reaction ri

ri Reaction rate for ith pathway (1/s)
t Time (s)
Caa Concentration of acetic acid (g/L)
Cgy Concentration of glycerol (g/L)
D Dilution rate (1/s)
E Concentration of ethanol (g/L)
EM Concentration of energy metabolite precursors (g/L)
G Concentration of glucose (g/L)
GA Concentration of glucoamylase (g/L)
GP Concentration of glucose equivalent of dextrins(g/L)
H The Heavyside function
Ki Monod model constants (g/L)
Kgp Monod model constant in saccharification model(g/L)
Kg Product inhibition constant in saccharification

model(g/L)
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KLa Oxygen mass transfer coefficient (1/s)
O Concentration of oxygen (g/L)
O∗ Dissolved oxygen concentration limit (g/L)
Pij Concentration for product produced in ith pathway and

jth reaction
pH Mash/fermenter pH
SM Concentration of structural metabolite precursors (g/L)
T Mash/fermenter temperature (◦C)
Vmax Rate constant in saccharification model(g/L-s)
X Concentration of cell mass (g/L)
Yi Yield coefficient for ith pathway
α1, α2 Coefficients for production of a unit cell mass from EM

and SM in reaction r3, respectively
α∗ Constant intracellular enzyme synthesis rate (g/L·s)
β Constant intracellular enzyme breakdown rate (1/s)
η1 (1/s), η2 (g/L·s), Assumed proportionality constants for including the
η3 (g/L·s·◦C), η4 (g/L·s) environmental effects

μi Growth rate constant for ith pathway (1/s)
ν Cybernetic variable controlling enzyme activity
u Cybernetic variable controlling enzyme synthesis
φ1 Coefficients for production of ethanol in reaction r1

φ2 Coefficients for consumption of oxygen in reaction r4

Superscripts
c Complementary pathway
s Substitutable pathway
n Number of reactions/alternative pathways
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